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ABSTRACT
Outlier detection can be seen as a pre-processing step for locating
data points in a data sample, which do not conform to the majority
of observations. Various techniques and methods for outlier detec-
tion can be found in the literature dealing with different types of
data. However, many data sets are inflated by true zeros and, in addi-
tion, some components/variables might be of compositional nature.
Important examples of such data sets are the Structural Earnings
Survey, the Structural Business Statistics, the European Statistics on
Income and Living Conditions, tax data or – as in this contribution –
householdexpendituredatawhich areused, for example, to estimate
the Purchase Power Parity of a country.

In this work, robust univariate and multivariate outlier detection
methods are compared by a complex simulation study that con-
siders various challenges included in data sets, namely structural
(true) zeros, missing values, and compositional variables. These cir-
cumstances make it difficult or impossible to flag true outliers and
influential observations by well-known outlier detection methods.

Our aim is to assess the performance of outlier detection meth-
ods in terms of their effectiveness to identify outlierswhen applied to
challenging data sets such as the household expenditures data sur-
veyed all over the world. Moreover, different methods are evaluated
through a close-to-reality simulation study. Differences in perfor-
mance of univariate and multivariate robust techniques for outlier
detection and their shortcomings are reported.We found that robust
multivariate methods outperform robust univariate methods. The
best performing methods in finding the outliers and in providing a
low false discovery rate were found to be the generalized S estima-
tors (GSE), the BACON-EEM algorithm and a compositional method
(CoDa-Cov). In addition, these methods performed also best when
the outliers are imputed based on the corresponding outlier detec-
tion method and indicators are estimated from the data sets.
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1. Introduction

Data quality is an important issue in quantitative data analysis. A critical aspect of the data
quality monitoring is outlier detection, especially also in data sets includingmissing values
or/and zero-inflated variables. Classical statisticalmethods are sensitive to outliers andmay
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be led, consequently, to a distorted picture of the reality due to the presence of outlier val-
ues, leading to erroneous conclusions. Therefore, the identification of values which either
are obviously erroneous or may have high influence on statistical methods is a major task.
Especially for large data sets the automatized detection of outliers becomes an important
task.

A general view on outliers, historical remarks and literature:
In the literature the term outlier is not defined uniformly nor are the definitions for an out-
lier connected to only one mathematical formula. Many authors became aware of outliers
already quite a long time ago. For example, [5] considered outliers in a rather philosophical
manner in his Novum Organum. The choice of means in presence of outliers was investi-
gated in [21]. Errors in measurements were already discussed in [37], and they introduced
trimming as a sound statistical method [see also 33]. It was suggested to leave one (the
largest observed value) out of five observed values. In the work [30] it was mentioned that
‘An outlier is an observation that deviates so much from other observations as to arose
suspicion that it was generated by different mechanism’. And [6] wrote ‘An outlying obser-
vation, or outlier, is one that appears to deviatemarkedly fromothermembers of the sample
in which it occurs’. According to our study, we define an outlier as a data point that behaves
differently than the majority of data points which are assumed to follow some underlying
model; a similar definition can be found in [26].

Some of these attempts to define outliers are ‘rule based’ approaches – the identification
by data specific edit rules developed by subject matter experts followed by deletion and
imputation. However, these rules – even though efficient and important inmany situations
– are strictly deterministic and ignore the probabilistic component. In addition, they are
extremely labour intensive. It should be noted that deterministic methods are not topic of
this paper, and for details we refer to [16]. We also mention that outlier detection methods
for time series are not the topic of this paper; we refer to [27,38]. Many univariate andmul-
tivariate outlier detectionmethods can be named, but only few can deal with complex data
sets. As an example, the rank-based method of [31] is suited to detect outliers in continu-
ous data sets without missing values and zeros. Even [30] already wrote that ‘the problem
of outliers is one of the oldest in statistics’, but – as just mentioned – still there is a lack for
outlier detection methods that account for problems with missing values, zero-inflation
and special kinds of data such as compositional data and non-symmetric distributions.
The paper [56] already considered outlier detection methods on complex business survey
samples and compared also some methods that are evaluated in the following.

However, we want to go some steps further especially by discussing a greater variety of
outlier detection methods and by allowing for more deviations from ‘normality’ in terms
of missing values, zero-inflation and non-symmetric compositional distributions. These
challenges are described in the following.

Missing values:
Especially survey data often contain missing values, therefore the outlier detection meth-
ods must be able to work with incomplete data, either by imputation of missing values in
advance or by imputation procedures implemented within the method.

Zero-inflation:
In surveys on monetary values, often several monetary variables are collected in order
to capture the economic situation of an entity [9]. This holds, for example, for business



1146 M. TEMPL ET AL.

surveys, where many particular types of expenditures may be asked as this is the case
for expenditure data collected by almost any state of the world and committed to the
World Bank. Such kind of surveys are based on elaborated questionnaires; they typically
include unit- and itemnon-responses and zero inflated distributions. Zero-inflation occurs
because a particular entity usually only has information on a subset of the possible dimen-
sions. The zero inflation occurs, for example, in multi-faceted economic situations. Not
all people have, for example, income related to agriculture in income surveys, or not all
retired personsmay have labour income. For a non-smoking family it is also not very likely
that they have expenditures on tobacco, for example. Only a few methods can deal with
zero-inflated data. While for univariate methods the outlier detection method may just
be applied to the observed part only, this is not a trivial problem in higher dimensions.
Multivariate methods are often not designed to deal with this problem. Exceptions are, for
example, the method of [9].

Non-symmetric distributions:
It is also challenging for outlier detection methods to deal with the size effect of families,
farms or businesses and, very important, to deal with potential skewed distributions – in
particular survey data are often skewed. Note that most of the univariate and multivariate
outlier detection methods assume symmetric distributions, and an appropriate transfor-
mation of variables (or the use of special robust methods for skewed data [32]) is thus an
important step before outlier detection algorithms are applied. Additional difficulties arise
from compositional parts in a data set, where the components (e.g. household expenditure
variables) are not independent from each other. For example, if the expenditures on alco-
hol and tobacco will be raised in a particular household, the household can (frequently)
spend less money on other expenditures. This leads to compositional data analysis and
to the log-ratio methodology [2,22] that has also been used recently for outlier detection
[24,54].

Complex surveys and survey weights:
Survey data aremostly conductedwith a complex sampling design leading to a possible dif-
ferent design weight for each individual. If so, the naming convention is to use the wording
complex survey data. Through calibration procedures finally each individual is connected
to a survey weight.Whenever one deals with complex surveys, mostly estimations are done
in aweighted (design-based)manner. All univariate outlier detectionmethods investigated
in this study consider sample weights, the epidemic algorithm [7] and the BACON-EEM
method [8] is the only multivariate method considered in this study that can deal with
survey weights.

True outliers, influential observations and outliers:
The previously given definitions about outliers do not distinguish between data points
with extreme erroneous values (measurement errors, non-representative outliers), anddata
points which are true values but are too distant from the rest of the data so that they will
have huge influence on classical estimators (representative outliers) [13]. In practice it has
to bementioned that it is not always possible to distinguish betweenmeasurement errors or
a genuine, but very extreme observation. In general we thus use outlier methods to detect
data points which have the potential of being an outlier. Such data points are sometimes
also referred to as potential outliers.
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Properties of robust methods:
Statistical outlier detection methods are usually built around some sort of robust statisti-
cal estimate. Such estimators are characterized by not being strongly influenced by outliers
which enables them to produce reliable estimates although extreme values are present in
the data. The robustness of an estimator T is typically characterized by either the ’influ-
ence function’ (IF) or the ’breakdown point’ (BP). The IF describes the sensitivity of a
single outlier (or very small amount of contamination) on an estimator T, and for estima-
tion methods, including various outlier detection methods, one prefers estimators T with
bounded IF. Contrary to the IF, which describes the influence on the estimator T by small
amounts of contamination, the breakdown point specifies the minimal amount of con-
tamination for which the estimator is no longer able to produce a useful estimation value.
The maximal achievable breakdown point is 50%, since for a value higher than 50% the
bigger share of the outliers could be considered ’genuine’ data. Logically, an outlier detec-
tion method should itself not be influenced by outliers, thus any outlier detection method
should be robust, optimally with a bounded IF, with a high breakdown point and high
statistical efficiency.

Variety of methods:
Next to mostly non-robust outlier detection methods [see, e.g. 1] and hundreds of (mostly
univariate) outlier detection methods, a broad variety of robust outlier detection methods
exists in the literature. Such robust statistical methods have been studied for quite some
time now and a variety of different methods has been developed not only for the purpose
of detecting outliers, but also for gaining reliable estimations on data that are potentially
corrupted by outliers or contain a lot of noise. Since the variety of robust statistical meth-
ods is quite large it can be difficult to assess which method is most appropriate for the
underlying data sets. For a recent overview of outlier detection methods, see [60].

Outline of the paper:
In this work, we explore the impact of a variety of robust statistical outlier detection meth-
ods on large household expenditure data and finally assess their performance within a
simulation study. The rest of this work is structured as follows: Section 2 will give a brief
overview of the robust estimates which were used. Section 3 presents empirical results
of these statistical outlier detection methods applied on one of the data sets, followed by
Section 4 which presents a simulation study to assess the performance of the used outlier
detection methods applied on large household expenditure data.

2. Methods under consideration

In the following, a pre-selected set of robust univariate and robust multivariate outlier
detection methods is reviewed and evaluated.

Univariate methods – favored for their simplicity – can be informal graphical meth-
ods like histograms, boxplots, dot plots; quartile methods to create allowable ranges
for the data, or robust methods, e.g. based on robust univariate location and scale
estimates.

Multivariate methods are still rarely used in this context, although most of the surveys
collect multivariate data.
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Table 1. Overview of univariate and multivariate outlier detection methods addressed.

Kind Method Reference Specifics

univariate IQR – used in combination with Box-Cox transformation
MAD – used in combination with Box-Cox transformation
boxplot – very common outlier detection method
adjusted boxplot [58] extension of boxplot for skewed data
Pareto tail modelling [4,20,35,59] used for skewed data and uses sophisticated replacement of outlier

multivariate M-estimate [43] generalization of Maximum Likelihood estimate
S-estimate [15,40] high BP with low efficiency
MM-estimate [52] high BP with high efficiency
MCD-estimate [47] affine equivariant
MVE-estimate [47] affine equivariant
Stahel Donoho estimate [18,50,51] incorporates weights corresponding to the ’outlyingness’ of a data

point
OGK-estimate [17,44] combines bivariate covariance estimator defined by [29] with PCA
BACON-EEM [8] able to deal with missing values
EA [7] simulates an epidemic in the data
GSE [14] extension to S-estimate
TSGS [39] treats cell-wise outliers before applying GSE
CoDa-Cov [54] treats data in compositional context

2.1. Univariatemethods

In terms of one-dimensional data, outliers are solely those points which are ’far enough’
away from the main bulk of the data. In order to locate these points, one way is to esti-
mate location and scale of a data sample in a robust way. For example, all observations
which fall outside the range of location plus/minus a multiple of the scale can be consid-
ered as outliers. We did not consider non-robust methods because it is well-known that
these methods cannot adequately detect outliers, and we did not consider methods based
on quantiles, because hereby a number of observations are classified as outliers even if there
are no outliers in a data set. The chosen methods are listed in Table 1 and briefly explained
in the following.

As a robust estimator of location we use the Median, and for the scale either the
interquartile range (IQR) or the median absolute deviation (MAD), both standardized to
produce a normal-consistent estimate of the standard deviation. The constant was chosen
equal to 3, since this represents a common outlier detection rule, and in case of normal dis-
tribution, the interval mean plus/minus 3 times standard deviation theoretically contains
more than 99% of the possible realizations.

Applying these methods to household expenditure data could yield problematic results
since expenditure data are typically skewed to the right. Naturally, if it can be assumed that
the distribution of a variable is log-normal, it would be reasonable to apply the logarithm,
since this would lead to a symmetric normal distribution. However, this assumption does
not always hold and we therefore used the Box-Cox transformation [11] to account for the
skewness. TheBox-Cox transformation relies on one parameterλ. Forλ = 0 it equals to the
log-transformation. The appropriate value of λ can be estimated via maximum likelihood
or a robust regression approach. The robust regression approach was taken into account
since the Box-Cox transformation could be influenced by extreme values. Considering the
sorted data values 0 < x1 ≤ . . . ≤ xi ≤ . . . ≤ xn, then the Box-Cox transformed values
with the Box-Cox parameter λ are defined as x(λ)

i = (xλ
i − 1)/λ if λ �= 0 and x(λ)

i = log xi
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otherwise. We consider the linear model

x(λ)
i = α + βzi + ui, (1)

with α, β and λ as real parameters, and zi as the i/nth quantile of the standard nor-
mal distribution. Furthermore, the errors ui are considered i.i.d., independent of zi and
E[ui] = 0. Then the Box-Cox parameter λ can be estimated by applyingMM-regression to
the responses x(λ)

i for given λ, and λ is chosen such that the robust residual auto-correlation
ρn(λ) is minimized [42]. To combine the Box-Cox transformation with outlier detection
we first transformed the data and applied the outlier detection methods, robust locations
plus/minus constant times robust scale, on the transformed data. Afterwards the bound-
aries beyond which outliers can be found are transformed back and are applied onto the
untransformed data to detect outliers.

Another univariate outlier detection method which can cope with right skewed data
incorporates Pareto tail modelling [20,35]. By estimating a cut-off point beyond which a
Pareto distribution can be fitted to the right tail of the data one can declare outliers as those
points that are larger than a certain quantile of the fitted Pareto distribution. The cut-off
point used was the Van Kerm’s rule of thumb [57], and the Pareto distribution was fitted
using a partial density component estimator [4,59].

In addition to the previously mentioned methods, the boxplot and the adjusted box-
plot [58] were used to detect outliers in the univariate case. The adjusted boxplot adjusts
the term 1.5 ± IQR of the original boxplot rule to better accomodate skewed data. Hereby,
the medcouple (MC) [12] is used as a measure of skewness, and observations outside
[Q1 − 1.5e−4MCIQR;Q3 + 1.5e3MCIQR] are marked as outlier, with Q1 and Q3 being the
first and third quantiles.

The data used contain survey sample weights. The sampling weights are considered for
univariate outlier detection methods. For example, the median is replaced by the weighted
median, the cut-off point and scale parameter of the semi-parametric Pareto tail modelling
method are estimated in a weighted manner [4], etc.

2.2. Multivariatemethods

For multivariate data the task of declaring outliers is not as simple as in the univariate case.
Data points that are just ‘far’ away from the data centre do not need to be actual outliers.
Instead, outliers in themultivariate case are data points that are not in correspondence with
the structure of the main bulk of the data. A very prominent measure which incorporates
the structure of the data is the so-called squared Mahalanobis distanceMD2

i . Given a data
matrix X ∈ R

n×p with n observations xi, for i = 1, . . . , n, containing pmeasurements, the
squared Mahalanobis distance for the i-th observationMD2

i is defined by

MD2
i = (xi − x)tS−1(xi − x) , (2)

with x as the sample mean and S as the sample covariance matrix. In case of data
following a multivariate normal distribution the squared Mahalanobis distance MD2

i is
approximately χ2

p distributed with p degrees of freedom. Therefore, observations with high
squared Mahalanobis distance are possible candidates for outliers. A common rule is to
declare data points as outliers if they exceed the 97.5% quantile of the χ2

p distribution,
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χ2
p;0.975. The squared Mahalanobis distance, however, can be subject to so called masking

and swamping [see also 48]. To address this problem it is necessary to use robust estimates
for location and covariance. In the literature one can find many different robust estima-
tors for location T and covariance C which differ in their statistical properties and in their
computational efficiency.

The different robust estimators used are as follows (see also Table 1). The M-estimate
[43] which presents a generalization of the Maximum Likelihood estimate. For the
M-estimate it can be shown that the asymptotic breakdown point is bounded by 1/p.
For the empirical calculations a so called constrained M-estimate, also abbreviated with
CM-estimate, as described in [46] was used.

The S-estimate [15,40] incorporates M-scale estimates with a robust estimation of the
scale.

The MM-estimate [52] uses an S-estimate with high breakdown point as a preliminary
scale estimate and combines this preliminary estimate with a ’better’ tuned ρ-function to
gain an efficient estimate with high breakdown point.

The minimum covariance determinant (MCD) and minimum volume ellipsoid (MVE)
[47] estimate determines location and covariance by the covariance matrix of at least half
of the data points, having a minimal determinant or minimal volume, respectively.

The Stahel Donoho [18,50,51] estimate incorporates weights corresponding to the ’out-
lyingness’ of a data point. The OGK-estimate [17,44] uses the robust bivariate covariance
estimator sjk proposed by [29] and combines it with a principal component decomposition.

The BACON-EEM [8] algorithm is composed of the BACON algorithm [10] starting
from a robust centre and subsequently selecting observations. It has been modified by the
authors to deal with sample weights and missing cells, e.g. when one or multiple values of
an observation xi aremissing. The epidemic algorithm (EA) [7] starts an epidemic from the
estimated centre of the data and is thus a density-based method. Similar to the BACON-
EEM, the EA is able to deal withmissing cells in the data. For the calculations the BACON-
EEM was initialized using the squared marginal Mahalanobis distance and the EA was
used in connection with the Euclidean distance and a linear transmission function. It has
to be noted that the EA algorithm does not compute a robust estimate for location and
covariance and thismethodwas only used in addition to the othermethods since it presents
a very different approach to outlier detection.

The Generalized S-estimate (GSE) [14] and the Two-Step Generalized S-estimate
(TSGS) [39] are extensions to the S-estimator that simultaneously deal with outliers and
missing data. The TSGS even incorporates a preprocessing step to detect cell-wise outliers
and sets them to missing before applying the GSE.

Finally, an outlier detection method which is a slight adaptation from the function
compareMahal in theR-packagerobCompositions [53,54] is selected. Thismethod
can deal with missing cells and zeros, and treats the data as compositional data. A short
description of this method applied to a data matrix X ∈ R

n×p works as follows:

(1) Impute themissings and zeros inXwith the k-nearest-neighbour algorithm [36], with
k = 5, resulting in Ximp.

(2) Split Ximp into subsets according to the structure of the missing values or zeros in X,
meaning that every resulting subset contains only those observations which contained
missing values or zeros in the same cells in X.
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(3) For each subset rearrange the order of the columns in Ximp such that all columns that
did contain missing values or zeros in X for this subset are listed first.

(4) Apply the isometric log-ratio transformation [22] toXimp with reordered columns and
calculate the covariance estimate using the Minimum Covariance Estimator [49].

(5) In each subset use the parts of the covariance matrix, where the subset had nomissing
values or zeros in X. Calculate robust Mahalanobis distances and use a threshold rule
(based on χ2 distribution), see [54].

It has to be noted that this method only detects outliers regarding the composition of an
observation (in fact, the ratios between the variables are taken) and it does not consider the
absolute values. Note that the method itself relies on (a specific) isometric log-ratio trans-
formation. Since this isometric log-ratio transformation is permutation invariant, it can
be shown that the outlier detection method is also permutation invariant, i.e. reordering
of the variables in a data set does not change the results. This method will be denoted as
CoDa-Cov for the rest of this paper. Note that with this approach outliers can be detected
on subsets even if they contain more columns than rows.

For reasons of clarity, the presented outlier detection methods are – as already men-
tioned – summarized in Table 1.

2.3. Replacement of outliers

Obviously, the aim of this study is to detect outliers and not to impute them. However, in
the numerical studies we also aim to estimate indicators from the data sets where outliers
are automatically detected by an outlier detection method and then modified specifically
to the outlier detection method. This allows to not only consider false discovery rates in
simulation studies, but also to evaluate the estimation of important indicators, which is the
main issue for the used data sets for organizations like the World Bank.

Univariate outliers are replaced by either the upper or lower boundary which declare
the range of ‘good’ data points. As for the Pareto tail modelling, outliers are replaced by
resampling values from the fitted distribution [see also 3].

Multivariate outliers are replaced by winsorizing them onto the 97.5% tolerance ellipse,
created by the robust estimate of location and covariance. In the case of the EA and the
BACON-EEM the algorithms do not produce robust estimates of location and covariance.
To achieve comparable results between the methods, the 97.5% tolerance ellipse is created
by classical estimates of location and covariance from all infected data points, in case of
the EA and in case of the BACON-EEM the estimates of location and covariance from the
last steps are used to create the tolerance ellipse. For the CoDa-Cov method the tolerance
ellipses are calculated for each subset using the needed parts of the corresponding MCD
estimate.

3. Empirical results

3.1. Provided data and data structure

The data used were provided by the World Bank and contain household expenditure data
from five different countries, namely Albania, Mexico, India, Malawi and Tajikistan. The
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household data sets resulted from large household surveys conducted in each of these
countries in the years 2007, 2008, 2010, 2009, and 2010 respectively. In order to use the
same methodology and terminology the data sets were harmonized by the World Bank
[19] using a standardized framework for goods and services, namely the basic headings
used by the International Comparison Program (ICP) 2005. Besides socio-demographic
characteristics of each household aswell as information on the household structure, includ-
ing household size, education and age structure of the household members, the data sets
include yearly household expenditures in local currency. The yearly household expendi-
tures of each data set are factorized by 4 different category codes, namely the ICP basic
headings, the ICP class, the ICP group and ICP category, for which every code represents
a rougher grouping of the former. For the ICP basic headings, consisting of 107 different
expenditure categories, the number of zeros in each category is quite substantial through-
out all data sets. Therefore, we used the roughest grouping (ICP category), containing 13
main expenditure categories. Even when analysing only themain categories, the amount of
zeros can for some categories exceed 50% of the corresponding sample size. In some cases
the amount is even over 80% or 90% of the sample size.

A common non-robust estimator that is calculated with household expenditure data
is the so called Gini coefficient [28,41]. In this context the Gini coefficient measures the
inequality of expenditures in terms of monetary value between the surveyed households.
Since the datawere generated through large surveys, extreme values ormeasurement errors
can occur, with a potential effect on the Gini coefficient [see also 4]. Therefore, it would be
beneficial to detect and impute outliers beforehand. An important issue was that the posi-
tion of true outliers was not known beforehand and neither was the true value of the Gini
coefficient. Nevertheless, looking at the value of the Gini coefficient after different outlier
detectionmethods and adjustments have been applied, gives insight on how strongly these
detection schemes influence the level of the Gini coefficient.

3.2. Data preparation

Before applying the outlier detectionmethods onemust first deal with the zeros in the data.
In case of univariate outlier detection methods, if a household should happen to have no
listed yearly expenditures it will be discarded for the outlier detection. For the multivari-
ate case the high number of zeros would heavily influence the robust estimates for location
and covariance. Therefore, these zeros will be treated asmissing values and imputed before
outlier detection. The algorithms which are able to deal with missing values are the EA,
the BACON-EEM, the GSE, the TSGS and the CoDa-Cov. For the other methods it is
necessary to select a pre-processing step. In order to keep the influence of the missing val-
ues to a minimum they will be imputed using the k-nearest-neighbour algorithm [36],
with k = 5.

3.3. Numerical results

Results have been derived from the data from all five countries, however, the results from
one country (Albania) are in focus here in order to stay in the page limits. This data set
consists of 3600 observations on households, and it was already investigated in a technical
report by the authors, see [23]. We extend these analyses in the following.
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Figure 1. Top: Estimates of the Gini coefficient (left) and variance of the Gini coefficient (right) for the
Albanian data set after univariate outlier detection methods as well as outlier imputation have been
applied. Bottom: Share of upper and lower outliers for each outlier detection scheme applied to the
Albanian data set.

For the underlying data the univariate outlier detection methods were applied on the
total household expenditures per household. The results shown in Figure 1 present on
the top left side the estimated values for the Gini coefficient after the outlier detection
schemes have been applied and outliers have been adjusted. IQR, MAD, box and adjbox
indicate the use of the interquartile range, the median absolute deviation, the boxplot or
the adjusted boxplot for outlier detection. The abbreviations bc and bcrob indicate that in
these cases the Box-Cox transformation and the robustification of the Box-Cox transfor-
mation, respectively, were applied togetherwith the IQRorMAD. For Paretomodelling the
detected outliers have either been replaced by values drawn from the fitted Pareto distribu-
tion (denoted by Pareto.rn), or the corresponding weights for the outliers have been set to
1 and the weights for the other observations have been re-calibrated accordingly (denoted
by Pareto.cn) [4,23]. The 95% confidence intervals for the estimated Gini coefficients are
represented by blue horizontal lines. The variances of the estimated Gini coefficient can be
found for all univariate outlier detection methods in Figure 1, top right. The variances and
confidence intervals of the Gini coefficient were calculated with a bootstrap (100 bootstrap
replicates), in which the sample weights are re-calibrated in every bootstrap sample using
geographical information provided by the data sets. The percentages of detected outliers
are shown on the bottom barchart (Figure 1). The different colours indicate upper and
lower outliers. It can be seen that only outlier detection methods which do account for
skewed data detect lower outliers. Furthermore, the number of flagged outliers by those
detection schemes that do not account for skewness is rather substantial. In combination
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with the top part of Figure 1 it is clear that the corresponding Gini coefficients are heav-
ily influenced after the adjustment of these outliers. Except for the Pareto tail modelling
approach, methods which adjust for the skewness of the data detect quite a large number of
lower outliers. For the adjusted boxplot method, the number of lower outliers is especially
high and thus this method performs not well in this case. The detection of lower outliers
might be important in general, but the influence of lower outliers on the Gini coefficient
is small. In other words, if the data contain true outliers and the estimated Gini coefficient
thus will be biased, then this is mainly caused by upper outliers.

The multivariate outlier detection methods are applied on the household expenditure
data set using the ICP category code. To summarize, the used estimators ormethods consist
of the M-estimator (Mest), the MM-estimator (MMest), the S-estimator (Sest), the MCD
estimator (Mcd), the MVE estimator (Mve), the Stahel-Donoho estimator (Sde), the OGK
estimator (Ogk), the epidemic algorithm (EA) the BACON-EEM (BEM), GSE (GSE), the
TSGS (TSGS) and the CoDa-Cov method (CoDa-Cov). The R-package modi is used to
calculate the BACON-EEM and the epidemic algorithm, for the calculation of the GSE
and TSGS the R-package GSE is used, and for the CoDa-Cov method the code is available
in the R-package robComposition. The rest of the robust estimates for location and
covariance were calculated with the R-package rrcov [55]. Many of these methods have
tuning parameters affecting e.g. the breakdown point or the efficiency. We used the default
parameters as they are implemented in theR-packagerrcov. Formost of themethods the
household expenditure data were log-transformed beforehand. This was necessary since
most of the methods rely on elliptical symmetry of the data distribution. For the EA and
the CoDa-Cov method the data were not transformed by the logarithm. The former does
not require the data to be of elliptical shape and the latter treats the data in a compositional
context.

Figure 2 shows the results for the estimates for the Gini coefficient and share of detected
outliers for each multivariate outlier detection method applied to the Albanian household
expenditure data. In contrast to the case of univariate outlier detectionmethods, the results
for the Gini coefficients do not differ somuch among the appliedmethods. Only the results
for the OGK estimator, the epidemic algorithm and the CoDa-Cov differ slightly more
from the results of the other methods. The same can be noted for the share of detected
outliers. The results for the multivariate outlier detection methods are quite similar and it
is therefore not clear which of the multivariate methods performed best. Even in compar-
ison with the use of univariate methods it is not clear if univariate or multivariate outlier
detection methods should be preferred. To address this problem, we conducted a simula-
tion study to see how the differentmethods performed on data whichwere generated based
on the Albanian household expenditure data.

4. Simulation study

This simulation study extends results already partly presented in a technical report of the
authors, see [23]. Due to the fact that the number and position of the ‘real’ outliers in the
data sets are unknown and there is no knowledge about a ‘true’ Gini value, it is difficult
to decide which method performs ‘better’ in the sense of ‘more reliable’. Differences in
the performance are expected just by the different theoretical properties of the estimators.
Furthermore, one could expect that multivariate methods outperform univariate methods
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Figure 2. Top: Estimates of Gini coefficient (left) and variance of Gini coefficient (right) for the Albanian
data set after multivariate outlier detection methods as well as outlier imputation have been applied.
Bottom: Share of outliers detected bymultivariate outlier detectionmethods for theAlbanian household
data.

just becasue multivariate information is used. However, this is not as clear when we are
interested in estimating an indicator such as theGini coefficient. A simulation study should
give deeper insights.

The simulation study addresses two important issues:

(1) Simulate a data set that represents important properties of the data set provided by the
World Bank.

(2) The number and position of ‘true’ outliers must be known.

4.1. Simulated data

We generate data for which the distribution is based on the distribution of the expenditure
data from the Albanian data set. It is important to note that expenditure data listed by
expenditure categories are considered as compositional data, thereforewewill take this into
account when generating new data. Our design to simulate data consists of the following
steps:

(1) The zeros in the Albanian data set are first imputed using the k-nearest-neighbour
algorithm [36].

(2) Since the data are considered as compositional data, the data set is first represented
in orthonormal isometric logratio (ilr) coordinates. Since the specific choice of ilr
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coordinates would not alter the results, we represent the data in pivot coordinates,
see [25].

(3) The data set in ilr coordinates is split into a ’clean’ and a ’contaminated’ data set. The
former one should contain most likely no outliers whereas the latter should contain
mostly outliers. Univariate as well as multivariate outlier detection schemes applied
previously were used to partition the observations into the two groups. More pre-
cisely, the clean data set contains only observations that have not been flagged by any
of the outlier detection schemes as outliers. This resulting data set consists of 2687, out
of 3600, most likely uncontaminated observations. The contaminated data set con-
tains observations that were flagged as outliers by the majority of the outlier detection
methods. These are all observations that were flagged as outliers by at least 6 univari-
ate outlier detection methods or at least 8 multivariate outlier detection methods. The
contaminated data set consists of 311 observations.

(4) From the contaminated and clean data set the location and covariance are estimated
in a classical way and used as a basis for the distribution of the simulated data set.

(5) This resulting simulated data set follows a classical contamination scheme. More pre-
cisely, let (μcl,�cl) and (μco,�co) be classical estimates of location and covariance of
the clean and contaminated data set, respectively, then the simulated data setX follows
the following distribution

X ∼ (1 − ε)MVN(μcl,�cl) + εMVN(μco,�co), (3)

with ε ∈ (0, 1) determining the share of contaminated data points. As the Albanian
data set, the simulated data set is also constructed with 3600 observations.

(6) For the contamination (for further discussions on outlier mechanisms, see [34]),
observations were picked at random and
(a) replaced by the data simulated from a multivariate normal distribution with

(μco,�co).
(b) for a share of all the randomly picked observations to be contaminated, not the

whole observation but just one randomly chosen cell is contaminated. Given the
ith observation for which only the jth cell will be contaminated, the cell is replaced
by yij, withY ∼ MVN(μco,�co). This addition to the contamination scheme was
also implemented since such structures can be expected for real expenditure data
sets and there is no real reason why such kind of contamination should not occur.

(7) To obtain data that are more comparable with the original Albanian data set, the data
are transformed back to the simplex by using the inverse ilr transformation. The result-
ing columns are multiplied by the columnwise centred means of the original data set
in order to obtain the original scale of the Albanian data set.

(8) The number of zero-observations can be quite high and play quite a big role for the
analysis of such data sets. The simulated data will therefore contain zeros. To ensure
a realistic distribution of the zero-observations we copied the structure of the zero-
observations from the whole Albanian data set and applied this to the simulated data.
This means that we assigned zeros to each cell in the simulated data where zeros have
been found in the Albanian data set. The percentages of values beeing zero varies
between the variables and ranges from less than 0.2% to 41%. By replacing values in
the simulated data set with zeros, it can occur that previously generated artificial out-
liers will be replaced by those zeros. Since the data are simulated many times and the
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placement of zeros overlapping with the randomly chosen contaminations is not very
likely, it is expected that there is not a large impact on the simulation study.

(9) Sample weights also play quite a role for the presented outlier detection methods as
well as for the Gini calculation. Thus, the simulated data sets receive the same sample
weights as the household weights given in the Albanian data set.

4.2. Application of univariatemethods

In order to be able to estimate indicators like the Gini coefficient, an outlier detection
method is applied on each column of the data set, and the detected outliers are imputed for
each column seperately. The main reason for this approach is that in this way the results
are more comparable between the univariate and multivariate outlier detection methods.
In addition, univariate outlier detection methods will make use of the household sample
weights. Note that for the univariate outlier detection methods the zeros are discarded for
calculating and imputing outliers.

4.3. Application ofmultivariatemethods

Formultivariate outlier detectionmethods, zeros are treated as missing values (as in corre-
spondence with [56] and [54]). For some outlier detectionmethods, the resulting missings
are imputed prior to outlier detection by using the k-nearest-neighbour algorithm ([36]).
Imputation of missing values is only for the purpose of outlier detection, and afterwards
the imputed values are again replaced by zeros. In the case of the epidemic algorithm, BEM,
TSGS, GSE and CoDa-Cov, the missing values do not need to be imputed.

In the univariate as well as in the multivariate case, the number of correctly identified
artificial outliers and falsely declared outliers are counted. Furthermore, applying the out-
lier detection methods and imputing outliers generates new data sets which correspond
the each of the used outlier detection methods. For these data sets, the weighted Gini
coefficient for the sum of the expenditures per observation is calculated.

In the simulation procedure different levels of ε, ε ∈ {0, 0.01, 0.025, 0.05} were taken.
In total, 50 simulation runs for each setting are taken, and the average number of cor-
rectly identified artificial outliers and falsely declared outliers are reported. As discussed
for the outlier simulation, for a part of the contaminated data only one cell of each obser-
vation is contaminated, and for the rest of the contaminated data, the whole observation
is contaminated. For the simulation, 1/3 of the contamination is cell-wise and for 2/3 of
the contaminated data the whole observation is contaminated. At first the results for the
univariate outlier detection methods are discussed.

4.4. Simulation results

The estimated Gini coefficients for each univariate method and each level of ε are shown
in Figure 3. From Figure 3 it is interesting to see that for higher values of ε the values for
theGini coefficient increase, evenwhen outlier detection and imputation have been applied
beforehand. This seems strange since the outlier detection schemes are supposed to identify
and impute the outliers in order to reduce the effect of the outliers on an estimate. How-
ever, for the outlier imputation, except in the case of the Pareto modelling, the outliers are
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Figure 3. EstimatedGini coefficients for different levels of ε anddifferent outlier detectionmethods. The
dashed line indicates a baseline representing themedian of the Gini coefficients of the uncontaminated
data.

Figure 4. Boxplots of successfully detected artificial outliers, where thewhole observationwas contam-
inated, for different outlier detection methods and different levels of ε.

winsorised onto the interval boundaries, whereas these boundaries are calculated during
the detection methods, imputed outliers still have an influence on the Gini. Nevertheless,
this trend is rather small and for outlier detection schemes which take into account skew-
ness of the data, the resulting Gini is still quite close to the one with no contamination and
no outlier detection scheme applied.

It is also crucial to see successfully detected outliers (whole observation contaminated),
which is shown in Figure 4 for different levels of ε and the investigated outlier detection
methods. The legend indicates the ratio of artificial outliers. The methods were not suc-
cessful in detecting outliers. For higher values of ε, the performance on outlier detection
gotworse.Moreover, using the Box-Cox transformationwas not as successful at identifying
outliers for this scenario. Looking at the szenario where only one single cell was contami-
nated, the outlier detectionmethods performed not well either. These results are visualized
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Figure 5. Boxplots of successfully detected artificial outliers, where only single cellswere contaminated,
for different outlier detection methods and different levels of ε.

in Figure 5 (compare also [23]). In opposite to the row-wise contaminations, the results for
the cell-wise contamination does not show as drastic differences between the univariate
methods. Pareto modelling performed poor in this setting, but the reason for this is given
by the fact that Van Kerm’s rule of thumb is used, which suggests after which threshold
the Pareto distribution is fitted. This suggestion might not be suitable for this simulation
with outliers shifted with other means. The Pareto method is suited for fitting heavy-tailed
distributions, but does not cope well with distributions that have separated support, such
as the pointwise-outliers which are far away from the main bulk of the data in our simu-
lation setup. The results for the Pareto modelling are therefore not satisfactory. Regarding
the successful detection of outliers it can be said that the boxplot, adjusted boxplot and
the methods using IQR or MAD without Box-Cox transformation were able to identify
comparatively more artificial outliers than the other detection methods. However, to get a
clearer picture of the performance of the methods it is important to consider the number
of falsely flagged outliers as well.

Figure 6 shows the corresponding boxplots for different outlier detection methods and
different levels of ε. The x-axis corresponds to the share of flagged outliers to the total
amount of clean data in the simulated data set. Except for methods like the Pareto mod-
elling or methods which incorporate the use of the Box-Cox transformation the number
of falsely flagged outliers is especially high. One could even argue that the numbers for
methods which use the Box-Cox transformation are too high. The high amount of falsely
flagged outliers in the case of the boxplot, adjusted boxplot and the methods using IQR
or MAD without Box-Cox transformation put in perspective their relatively better perfor-
mance regarding the ability to correctly identify artificial outlier. Therefore, one can argue
that thesemethods are not precise for outlier detection in this kind of data. From the results
shown above, the use of univariate outlier detection schemes, or at least the column-wise
use of those methods does not seem appropriate for this kind of data. The ability to detect
artificial outliers was not very satisfactory and the number of falsely flagged outliers was
far too high in almost all cases. This can also be seen in Table 2, which shows the average
misclassification rate for each univariate method and different levels of ε.
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Figure 6. Share of false/positive outliers to number of clean data points for different outlier detection
methods and different levels of ε.

Table 2. Percentages of misclassified observations for
different levels of ε for the univariate methods.

Method ε = 0.01 ε = 0.025 ε = 0.05

Pareto.rn 1.21 2.82 5.43
adjbox 18.35 20.17 23.39
box 60.99 60.68 60.59
bcrob.MAD 3.84 6.69 11.37
bc.MAD 3.84 6.77 11.31
MAD 59.00 58.89 59.12
bcrob.IQR 3.84 6.69 11.35
bc.IQR 3.84 6.75 11.28
IQR 48.37 48.42 49.17

Similar to the univariate outlier detection methods, Figure 7 shows the boxplots of the
Gini values for the different multivariate outlier detection methods and different levels of
ε. The Gini estimates for the epidemic algorithm as well as the CoDa-Cov method are
still heavily influenced by the artificial outliers. For the epidemic algorithm this can be
explained by the fact that this algorithm needs quite a lot of tuning for parameter calibra-
tion until it is really applicable to a problem. Since we used the default parameter settings
in our simulation study we cannot argue that the algorithm is bad but it is not very versa-
tile without meaningful calibration which differs depending on the underlying data. The
CoDa-Covmethod treats the data in a compositional context and therefore does not detect
or impute outliers on row totals, for which the Gini coefficient is estimated. For the other
outlier detectionmethods one can see, as in the case of univariate outliers, an increase in the
Gini coefficient for rising levels of contamination. As it was argued for the univariate case,
this is caused by the imputation, which does not perfectly replace an outlier by winsorising
it onto the 97.5% tolerance ellipse. Thus a rising number of outliers leads to a rising num-
ber of observations lying on the boundary of the 97.5% tolerance ellipse. The data points
of the resulting data set are therefore wider spread from the centre of the data than the data
points in the uncontaminated data set. This difference in the distribution of the data can
finally be seen in values of the Gini coefficients for different levels of ε. Apart from that the
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Figure 7. Boxplots of calculated Gini coefficients for different outlier detection methods and different
levels of ε. The dashed line indicates a baseline representing the median of the Gini coefficients of the
uncontaminated data.

Figure 8. Boxplots of successfully detected artificial outliers, where thewhole observationwas contam-
inated, for different outlier detection methods and different levels of ε.

results for the multivariate outlier detection methods do – especially for higher levels of ε
– not differ too much from the case where the data were not contaminated.

Figure 8 corresponds to artificial outliers for which the whole observation was contami-
nated and Figure 9 corresponds to those where only one cell was contaminated. Regarding
the row-wise outliers, the multivariate outlier detection methods were much more suc-
cessful than the univariate methods, not considering the epidemic algorithm. In many
cases, the algorithms were able to detect every artificial outlier and even for increasing
values of ε the numbers are still very high. The epidemic algorithm did not perform too
well, but as stated earlier this is due to poor calibration of parameters, which is in prac-
tice a very cumbersome task. The results in Figure 9 show that none of the methods was
particularly successful in detecting cell-wise artificial outliers. This can on one hand be
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Figure 9. Boxplots of successfully detected artificial outliers, where only single cellswere contaminated,
for different outlier detection methods and different levels of ε.

Figure 10. Boxplots of share of false/positive outliers to number of clean data points for different outlier
detection methods and different levels of ε.

explained by the fact that none of the chosenmultivariate outlier detectionmethods is espe-
cially suited for detecting outlying cells in contrast to outlying observations. On the other
hand, the artificially created outlying cells where generated in the real space, and detecting
them in the transformed compositional space can be especially challenging. For the case of
falsely flagged outliers regarding multivariate outlier detection methods, Figure 10 shows
the resulting boxplots for different outlier detection methods and different levels of con-
tamination. Compared to the univariate case the number of falsely flagged outliers is far
smaller for the multivariate outlier detection schemes. The OGK estimator seems to per-
formnot sowell as it has a higher number of falsely flagged outliers than the othermethods.
For ε = 0.01 the majority of the multivariate outlier detection schemes have roughly the
same amount of falsely flagged outlier and the share increases slightly with rising values
of ε. Looking at all multivariate outlier detection methods, except the epidemic algorithm
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Table 3. Percentages of misclassified observations for dif-
ferent levels of ε regarding multivariate methods.

Method ε = 0.01 ε = 0.025 ε = 0.05

CoDa-Cov 4.50 4.50 4.72
TSGS 3.32 3.31 3.50
GSE 2.78 2.79 3.10
EA 1.51 2.93 5.38
BEM 5.04 5.21 5.65
Sest 3.54 3.59 3.75
Sde 3.92 4.05 4.32
Ogk 6.90 7.00 7.16
Mve 3.50 3.63 3.91
MMest 3.50 3.55 3.73
Mest 3.87 3.99 4.29
Mcd 3.64 3.75 3.98

that was ruled out as valid method beforehand, the GSE delivers the least amount of falsely
flagged outliers.

The average misclassification rates, shown in Table 3, increase for most of the meth-
ods only slighty with increasing ε, which also supports the notion that multivariate outlier
detection methods did quite well in most of the cases.

To conclude it can be said that the multivariate outlier detection methods all performed
very well, also compared to univariate outlier detection methods. That only leads to the
conclusion that univariate outlier detectionmethods are less suited for the detection of out-
liers in large household expenditure data whereas multivariate outlier detection methods
can deal better with the complexity of this problem and deliver therefore more satisfactory
results.

5. Conclusions

Data sets often include difficulties for outlier detection algorithms that have not been inves-
tigated in detail, like dealing with missing and zero values, skewness and compositional
nature of the data as well as possible complex sampling designs of surveys. The outlined
methods for univariate and multivariate outlier detection can be considered as the (large)
set of possiblemethods available in the statistics literature. Themethods differ in their need
for preprocessing (e.g. imputation of missing values), distributional assumptions, but also
in the sensitivity and specificity to identify outliers.

One general conclusion from the simulation but also from the application to real-world
data is that univariate outlier detectionmethodsmust be adapted for skewness. Depending
on the applied outlier detection method, a univariate outlier in original scale must not be
an outlier in, e.g. log-scale. Without a transformation to achieve a more symmetric distri-
bution ormethods that account for skewness internally (adjusted boxplot, Paretomethod),
univariate outlier detection methods might simply declare larger data values (e.g. in right-
skewed data) as outliers. Thus, these methods should be used with care in practice if data
are skewed. Especially for the expenditure data (but also from the simulation results) we see
that the adjusted boxplot method detected too many outliers in the left tails of the distri-
butions. The Pareto method seems to detect too few outliers. Methods based on the robust



1164 M. TEMPL ET AL.

(and non-robust) Box-Cox transformation combined with a robust estimation of variance
gave the most reasonable results for the univariate methods.

For the expenditure data set, no clear picture about differences between themethods for
multivariate outlier detection can be detected. Only EA and OGK behave clearly different,
which is an indication that they underestimate (EA) and overestimate (OGK) the number
of outliers.

The simulation study, which was conducted based on the information of one of the data
sets, gave additional insights. We used the number of correctly identified artificial outliers
and falsely declared outliers for the evaluation of the methods. The results from the simu-
lation study highlighted that multivariate outlier detection methods are more suitable for
outlier detection for household expenditures, because (i) they detected a very high share
of artificial and true outliers and (ii) they flagged only few false/positive outliers. Overall,
multivariate outlier detection methods were more precise than univariate rules in terms of
correctly identifying outliers and in terms of smaller amounts of incorrectly flagged out-
liers. Out of the tested methods only the Epidemic Algorithm (EA) delivered poor results,
which was mainly based on using the default values of the tuning parameters. Other meth-
ods are less dependent on tuning constants and the determination of its optimal values. The
resultsmight be improved by chosing better tuning constants. However, for real-world data
sets this is complicated, because the number of outliers is unknown. The OGK estimator
gave slightly worse results in terms of the percentage of false/positive outliers, but all other
methods behave similarly. The BEM method performed best for the correct number of
true outliers identified, but a higher percentage of false/positive outliers was detected. The
GSE method provided good results for a combination of both, the numbers of true out-
liers detected and the percentage of false/positive outliers. Interesting is the fact that the
method CoDa-Cov leads to approximately the same results as other multivariate outlier
detection methods. From the theoretical properties, this method should be most suitable,
but the simulation results do not confirm this.

For outlier detection in data collected with a complex survey design, survey weights
should be considered. Further research is thus needed to adapt the methods for complex
survey designs. The BACON-EEM (BEM) and the Epidemic Algorithm (EA) can deal with
weights, but other multivariate methods do not consider the sampling weights.

Finally, we want to emphasize that after the application of outlier detection methods, a
careful analysis of the detected outliers is necessary for any of the methods.

The calculations have been done using the programming language R [45], version 3.5.3.
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