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This paper introduces a method for computing eigenvalues and eigenvectors of a generalized Hermitian, matrix 
eigenvalue problem. The work is focused on large scale eigenvalue problems, where the application of a direct 
inverse is out of reach. Instead, an explicit time-domain integrator for the corresponding wave problem is 
combined with a proper filtering and a Krylov iteration in order to solve for eigenvalues within a given region of 
interest. We report results of small scale model problems to confirm the reliability of the method, as well as the 
computation of acoustic resonances in a three dimensional model of a hunting horn to demonstrate the efficiency.
1. Introduction

Computing eigenvalues and eigenvectors of large scale eigenvalue 
problems is still a challenging task in applied mathematics. We consider 
in this paper the computation of eigenpairs (𝜔2, 𝑣) to the generalized 
matrix eigenvalue problem 𝑆𝑣 = 𝜔2𝑀𝑣 with sparse Hermitian, positive 
(semi-)definite matrices 𝑆 and 𝑀 generated by a finite element dis-

cretization of a Laplacian eigenvalue problem. Even in this most simple 
setting numerical solvers struggle if the matrices become large and if 
non-extremal or clustered eigenvalues are sought.

We refer to [1] for the standard algorithms for such problems. All 
of the methods therein rely on the basic principle of a simple power it-
eration which might be combined e.g., with a Krylov subspace method. 
Unfortunately, with this basic idea only eigenvalues with largest ab-

solute value can be computed efficiently. One remedy is the use of 
inverse or shift-and-inverse iterations, which allow in general the com-

putation/approximation of eigenvalues with smallest absolute value or 
closest to a chosen shift parameter. The price to pay is the need to invert 
a large, sometimes indefinite matrix in each iteration step. If the matrix 
dimension is too large for a direct solver to be feasible, then in each step 
iterative solvers have to be used leading to very high computation times 
and/or the need for efficient preconditioners.

There exist several variants of these methods like the filtered sub-

space iteration (FEAST), see [2,3], or the contour integral method in-

troduced in [4,5] for eigenvalue problems, which are non-linear in the 
eigenvalue. These methods can reduce the number of iterations, since 
they focus the iterations to the sought eigenvalues similar to shift-and-

inverts described above. Again in each iteration step of these methods 
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several linear systems of equations have to be solved. Hence these meth-

ods are efficient as long as a direct solver can be used.

The locally optimal block preconditioned conjugate gradient method 
(LOBPCG), see [6], avoids the solution of large linear systems of equa-

tions with the additional requirement of a preconditioner for the matrix 
𝑆 . With this method, even for large systems, the smallest eigenvalues 
can be computed efficiently. However, we also consider situations where 
not only the smallest eigenvalues but also eigenvalues within a certain 
interval are of interest. For the latter, the LOBPCG method cannot be 
used in a straightforward way.

In this paper we propose a method, which is related to time domain 
solvers for the Helmholtz problem, see [7–9]. We construct a Krylov 
space based on filtered time domain solutions. More precisely, in each 
Krylov iteration several steps of an explicit time-stepping scheme are 
applied to a semi-discrete wave equation. The time domain solutions 
are then combined with a proper weight function in order to construct 
the next Krylov vector. Finally, the large matrix eigenvalue problem is 
projected and solved on the small dimensional Krylov space. The crucial 
part of the method is the choice of the weight function. We construct 
a discrete weight function based on an inverse Fourier transform of a 
characteristic function of an interval of interest, where the eigenvalues 
are sought.

We show that this method results in a polynomial filtering for the 
matrix 𝑀−1𝑆 . Even though polynomial filters are more popular for the 
computation of eigenvalues with largest magnitude they can be used 
for non-extremal eigenvalues as well (see e.g., [10]). In contrast to the 
filter constructed in [10], our approach is motivated by the underlying 
partial differential equation. We exploit the efficiency and flexibility 
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of already existing explicit solvers for wave equations. In particular, 
we use mass lumping techniques (see [11]) for a cheap inversion of 
the mass matrix. Moreover, choosing stable time-domain discretizations 
automatically yields polynomial filters fitted to the numerical range of 
the matrix eigenvalue problem.

The remainder of the paper is organized as follows. The basic concept 
of the method is presented in Section 2. Section 3 contains numerical 
examples for a small scale as well as a large scale problem. The small 
scale problem is used to give hints for choosing suitable method param-

eters. In the large scale problem we compute resonance frequencies of a 
three dimensional model of a hunting horn in a closed room. The eigen-

values, which model the playable notes on the horn belong to a region 
where the background eigenvalues of the room are already quite dense, 
such that the LOBPCG method is not feasible anymore. The same holds 
true for methods using a direct solver, since the application of such a 
solver to the systems with more than 106 unknowns typically exceeds 
the computer memory of a standard desktop computer. The paper closes 
with a discussion of extensions to the method in Section 4 and a short 
conclusion in Section 5.

2. Presentation of the method

In this section we explain the concept in a most simple setting. For a 
bounded Lipschitz domain Ω ⊂ℝ𝑑 (for 𝑑 = 2, 3) we solve for eigenpairs 
(𝜔2, 𝑢) with 𝜔 ≥ 0 and non-trivial 𝑢 ∈𝐻1(Ω) of the negative Neumann-

Laplacian, i.e., (𝜔2, 𝑢) solves

−Δ𝑢 = 𝜔2𝑢 in Ω, (1a)

𝜕𝑢

𝜕𝑛
= 0 at 𝜕Ω. (1b)

In the following, we will refer to 𝜔 as resonance or resonance frequency, 
if 𝜔2 is an eigenvalue.

The problem is discretized using a standard Galerkin method. We 
choose a partition  of Ω consisting of simplexes and use the discrete 
finite element space

𝑉ℎ ∶=
{
𝑣 ∈𝐻1(Ω) ∶ ∀𝑇 ∈  𝑣|𝑇 ∈ 𝑝

}
,

where 𝑝 denotes the space of polynomials up to degree 𝑝 ∈ ℕ. Thus 
𝑉ℎ consists of piecewise polynomials. We solve for discrete eigenpairs 
(𝜔2

ℎ
, 𝑢ℎ) with 𝜔ℎ ≥ 0 and non-trivial 𝑢ℎ ∈ 𝑉ℎ of the variational formula-

tion

∫
Ω

∇𝑢ℎ ⋅∇𝜑𝑑𝑥 = 𝜔2
ℎ ∫
Ω

𝑢ℎ 𝜑𝑑𝑥 ∀𝜑 ∈ 𝑉ℎ.

In the following, we omit the index ℎ since we fix the spatial discretiza-

tion and focus on the equivalent matrix eigenvalue problem to find 
eigenvectors 𝑣 ∈ℝ𝑁 ⧵ {0} and eigenvalues 𝜔2 ≥ 0 with 𝑁 ∶= dim𝑉ℎ ∈
ℕ such that

𝑆𝑣 = 𝜔2𝑀𝑣. (2)

The self-adjoint matrices 𝑆 = (𝑠𝑖𝑗 ), 𝑀 = (𝑚𝑖𝑗 ) are obtained by choosing 
basis functions 𝜓𝑛 such that 𝑉ℎ = span{𝜑1, … , 𝜑𝑁} with

𝑠𝑖𝑗 ∶= ∫
Ω

∇𝜑𝑖 ⋅∇𝜑𝑗 𝑑𝑥, 𝑚𝑖𝑗 ∶= ∫
Ω

𝜑𝑖 𝜑𝑗 𝑑𝑥, 𝑖, 𝑗 = 1,… ,𝑁.

Clearly, 𝑀 is positive definite and 𝑆 positive semi-definite.

Remark 2.1. Due to the fact that in the following it will become neces-

sary to apply the inverse of the mass matrix 𝑀 , instead of evaluating the 
integrals exactly one may approximate them by numerical integration 
such that the sparsity pattern of 𝑀 is more favorable (e.g., 𝑀 is diago-

nal if mass lumping is used, see [11]). See Sec. 4 for other discretizations 
leading to a cheap inverse of the mass matrix.

2

e

o

𝐶

T

to

o

R


b

𝑟0
ca

i.

th

𝐵

(2(
𝐵

T

v

R

th

e

v

so

so

4

w

v

e

e

in

u

e

a

a

th

o

𝜔

th

u

v

o

F

ci

co

p

in

le

T

o

d

le
180
.1. Krylov eigenvalue solver

Let us assume that there exists a matrix 𝐶 ∈ ℝ𝑁×𝑁 such that the 
igenvectors of the matrix eigenvalue problem (2) are also eigenvectors 
f the auxiliary eigenvalue problem

𝑤 = 𝜇𝑤. (3)

his includes the possibility that an eigenspace of (3) corresponding 
 a single eigenvalue 𝜇 is the direct sum of two or more eigenspaces 

f (2) corresponding to different eigenvalues (cf., also Lemma 2.3 and 
emark 2.2). Moreover, let

𝑚(𝐶, 𝑟0) ∶= span{𝑟0,𝐶𝑟0,… ,𝐶𝑚−1𝑟0},

e the Krylov space of 𝐶 with a normalized random starting vector 
∈ ℝ𝑁 and 𝑚 ∈ ℕ. An orthonormal basis {𝑏0, … , 𝑏𝑚−1} of 𝑚(𝐶, 𝑟0)
n be computed iteratively using a Gram-Schmidt orthogonalization, 

e., using 𝑏0 = 𝑟0 and for each 𝑗 = 1, … , 𝑚 −1 we compute 𝐶𝑏𝑗−1 and or-

onormalize it with respect to 𝑏0, … , 𝑏𝑗−1. Using the projection matrix 
𝑚 =
(
𝑏0…𝑏𝑚−1

)
∈ ℝ𝑁×𝑚 we project the original eigenvalue problem 

) onto the Krylov space generated by the matrix 𝐶 : find eigenpairs 
𝜔2
𝑚
, 𝑣𝑚
)
∈ℝ ×ℝ𝑚 ⧵ {0} such that

⊤
𝑚
𝑆𝐵𝑚𝑣𝑚 = 𝜔2

𝑚
𝐵⊤
𝑚
𝑀𝐵𝑚𝑣𝑚. (4)

ypically, 𝑚 is small compared to 𝑁 . Hence, the 𝑚-dimensional eigen-

alue problem (4) can be solved with low computational costs.

emark 2.2. An optimal filter choice of the matrix 𝐶 would be such 
at the eigenvectors corresponding to sought eigenvalues form the 

igenspace of 𝐶 of the eigenvalue 𝜇 = 1 and all the remaining eigen-

ectors lie in the kernel of 𝐶 . In this case the algorithm yields the exact 
ught eigenpairs after 𝑙 Krylov steps, where 𝑙 is the number of the 
ught eigenvalues.

Since (2) is a Hermitian eigenvalue problem, following [1, Theorem 
.6 and Sec. 6.7] we expect convergence of the eigenvectors of (4) to-

ards the eigenspaces to the eigenvalues 𝜇 of (3) with largest absolute 
alues. Hence, the projected eigenvalues 𝜔2

𝑚
converge towards those 

igenvalues 𝜔2 of the original problem, for which the corresponding 
igenvalues 𝜇 of the auxiliary problem (3) have largest absolute value.

Following the considerations above the matrix 𝐶 has to be chosen 
 a way that the eigenvalues 𝜇 of (3) corresponding to the eigenval-

es 𝜔2 of interest of (2) have large absolute values, while the remaining 
igenvalues of (3) are close to zero. Most standard would be to choose 
 shift parameter 𝜌 such that 𝑆 − 𝜌𝑀 is regular and use the shift-

nd-invert matrix 𝐶 ∶= (𝑆 − 𝜌𝑀)−1𝑀 . It is straightforward to show, 
at with this choice of 𝐶 the eigenvectors of (2) are identical to the 

nes of (3) and that the correspondence of the eigenvalues is given by 
2 = 𝜌 + 𝜇−1. Hence, the presented method yields approximations to 
e squared eigenvalues closest to the shift parameter 𝜌. Unfortunately, 

sing this shift-and-invert technique requires the application of the in-

erse (𝑆 − 𝜌𝑀)−1. In other words, in each Krylov step a linear system 
f equations for the matrix 𝑆 − 𝜌𝑀 of dimension 𝑁 has to be solved. 
or problems small enough such that a direct solver can be used effi-

ently, this shift-and-invert approach can be applied with reasonable 
mputational costs.

However, in this paper we are interested in problems where the ap-

lication of a direct solver is out of reach. An alternative for a direct 
verse would be the use of iterative solvers. For Helmholtz type prob-

ms in resonating structures the use of such solvers can be challenging. 
hus we choose a different approach and define the operator 𝐶 based 
n filtered time-domain solutions of the underlying wave problem.

Note that our approach differs from applying the Arnoldi method 
irectly to the auxiliary problem (3), since we project the original prob-

m (2) onto the Krylov space constructed by the auxiliary problem (3). 
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In our experiments it turned out that a stopping criterion for the Krylov 
iterations is easier to construct for the projected original problem (4). 
Moreover, we are interested in 𝜔 and not the auxiliary eigenvalues 𝜇. 
For a shift-and-invert method the mapping 𝜔2 ↦ 𝜇 is one-to-one, i.e. 𝜔
can be easily computed if 𝜇 is known. This is not the case for the method 
based on filtered time-domain solutions.

2.2. Filtered time-domain solutions

To motivate our specific choice of the auxiliary problem (3), we 
follow the approach from [8], which was developed for scattering prob-

lems. For given 𝑟 ∈ ℝ𝑁 let 𝑦(⋅; 𝑟) ∶ [0, ∞) → ℝ𝑁 be the solution to the 
semi-discrete wave problem

𝑀𝑦̈(𝑡; 𝑟) = −𝑆𝑦(𝑡; 𝑟), for 𝑡 > 0, (5a)

𝑦(0; 𝑟) = 𝑟, 𝑦̇(0; 𝑟) = 0, (5b)

where 𝑦̇(⋅; 𝑟) and 𝑦̈(⋅; 𝑟) denote the first and second time derivative. Since 
𝑀, 𝑆 are Hermitian matrices, there exists an orthonormal basis of eigen-

vectors 𝑣𝑗 ∈ℝ𝑁, 𝑗 = 1, … , 𝑁 with corresponding eigenvalues 𝜔2
𝑗

to (2)

and the unique solution to (5) is given by

𝑦(𝑡; 𝑟) =
𝑁∑
𝑗=1

cos(𝜔𝑗𝑡)(𝑣⊤𝑗 𝑟)𝑣𝑗 . (6)

For a given piecewise continuous weight function 𝛼 ∶ [0, ∞) → ℝ with 
compact support we define the integral operator Π𝛼 ∶ℝ𝑁 →ℝ𝑁 by

Π𝛼𝑟 ∶=

∞

∫
0

𝛼(𝑡)𝑦(𝑡; 𝑟)𝑑𝑡. (7)

A discrete version of this integral operator will adopt the role of the 
matrix 𝐶 from the preceding subsection. The following Lemma quan-

tifies the correspondence of eigenpairs of the initial matrix eigenvalue 
problem (2) and the ones of Π𝛼 .

Lemma 2.3. Let (𝜔2, 𝑣) be an eigenpair of (2) and the filter function 𝛽𝛼 ∶
[0, ∞) →ℝ be defined by

𝛽𝛼(𝑠) ∶=

∞

∫
0

𝛼(𝑡) cos (𝑡𝑠)𝑑𝑡. (8)

Then (𝛽𝛼(𝜔), 𝑣) is an eigenpair of Π𝛼 , i.e., Π𝛼𝑣 = 𝛽𝛼(𝜔)𝑣. Vice versa, if (𝜆, 𝑣)
is an eigenpair of Π𝛼 , then there exists at least one eigenvalue 𝜔2 of (2) such 
that 𝛽𝛼(𝜔) = 𝜆 and 𝑣 belongs to the sum of eigenspaces of those eigenvalues 
𝜔2 of (2) for which 𝛽𝛼(𝜔) = 𝜆.

Proof. Its straightforward to show, that the solution 𝑦(⋅; 𝑣) of (5) is 
given by 𝑦(𝑡; 𝑣) = cos(𝜔𝑡)𝑣 if (𝜔2, 𝑣) is an eigenpair of (2). Hence, the 
first claim holds by definition of 𝛽𝛼 and Π𝛼 . If (𝜆, 𝑣) is an eigenpair of 
Π𝛼 , then the representation (6) of the solution to the wave equation 
yields⎛⎜⎜⎝

∞

∫
0

𝛼(𝑡) cos
(
𝜔𝑗𝑡
)
𝑑𝑡− 𝜆

⎞⎟⎟⎠𝑣⊤𝑗 𝑣 = 0, 𝑗 = 1,… ,𝑁,

since the eigenvectors 𝑣𝑗 form an orthonormal basis of ℝ𝑁 . For 𝜔𝑗 with 
𝜆 ≠ 𝛽𝛼(𝜔𝑗 ) this implies 𝑣⊤

𝑗
𝑣 = 0. Since 𝑣 ≠ 0, there exists at least one 𝜔

with 𝜆 = 𝛽𝛼(𝜔). □

Lemma 2.3 shows that eigenvectors of the original eigenvalue prob-

lem are also eigenvectors of the operator Π𝛼 . In particular, if we use 
Π𝛼 to construct a Krylov space, this Krylov space approximates sums of 
eigenspaces to the original problem only. If this were not the case Krylov 
steps would possibly be wasted into approximations of eigenvectors to 
Π𝛼 which are irrelevant for the original eigenvalue problem.
181
In what follows, we motivate our choice of the weight function 𝛼. 
Using the symmetric extension 𝛼̂(𝑡) ∶= 𝛼(−𝑡) for 𝑡 < 0, the function 𝛽𝛼
can be represented by the Fourier transform of 𝛼̂:

𝛽𝛼(𝑠) =

∞

∫
0

𝛼(𝑡) cos (𝑡𝑠)𝑑𝑡

= 1
2

∞

∫
−∞

𝛼̂(𝑡) exp(−𝑖𝑡𝑠)𝑑𝑡 =
√

𝜋

2
 (𝛼̂) (𝑠) .

Since the presented Krylov method converges towards the eigenvalues 
with largest absolute values, the weight function 𝛼 should be adapted 
to the location of the sought eigenvalues. E.g., if eigenvalues 𝜔 in an 
interval [𝜔−, 𝜔+] are sought, it would be optimal to find 𝛼 such that 
𝛽𝛼 = 𝜒[𝜔− ,𝜔+] where 𝜒𝐴 denotes the characteristic function of a set 𝐴. 
This would correspond to the choice of 𝛼 as√

2
𝜋
−1

(
𝜒[𝜔− ,𝜔+]

)
= 4

𝜋𝑡
sin
(
𝑡

2
(
𝜔+ −𝜔−

))
cos
(
𝑡

2
(
𝜔+ +𝜔−

))
, (9)

for 𝑡 > 0. Obviously, the function on the right hand side is not com-

pactly supported in [0, ∞). However we are not forced to use exactly 
this weight function. In fact, in the following we choose a finite time 
interval [0, 𝑇 ] with 𝑇 > 0 together with the weight function

𝛼(𝑡) ∶=
⎧⎪⎨⎪⎩

2(𝜔+−𝜔−)
𝜋

, 𝑡 = 0,
4
𝜋𝑡
sin
(

𝑡

2

(
𝜔+ −𝜔−

))
cos
(

𝑡

2

(
𝜔+ +𝜔−

))
, 𝑡 ∈ (0, 𝑇 ],

0, 𝑡 > 𝑇 .

(10)

Note that the method is not limited to this specific weight function (see 
also Section 4.3). In general, for fast convergence the function 𝛼 should 
be chosen such that |𝛽𝛼(𝜔)| ≫ |𝛽𝛼(𝜔̃)| for the sought 𝜔 and the unsought 
𝜔̃.

2.3. Discretization of the filtered time-domain solution

We discretize the integral operator (7) using a rectangle rule. To 
this end, we introduce a time-stepping method for the wave equation 
(5). Since we are interested in eigenvalue problems where applying a 
direct solve is out of reach we focus on explicit methods. For a fixed, 
uniform step-size 𝜏 > 0, which is specified later, we approximate 𝑦(𝓁𝜏; 𝑟)
for 𝓁 ∈ ℕ by 𝑦𝓁(𝑟) using finite differences. This leads to the explicit, 
second order two-step method

𝑦𝓁+1(𝑟) = −𝜏2𝑀−1𝑆𝑦𝓁(𝑟) + 2𝑦𝓁(𝑟) − 𝑦𝓁−1(𝑟), 𝓁 ∈ ℕ, (11)

with initial time steps

𝑦−1(𝑟) = 𝑦0(𝑟) = 𝑟. (12)

Note, that we define 𝑦−1(𝑟) = 𝑟 since 𝑦−1(𝑟) approximates 𝑦(−𝜏; 𝑟) =
𝑦(0; 𝑟) − 𝜏𝑦̇(0; 𝑟) +(𝜏2) = 𝑟 +(𝜏2).

Using the rectangle rule with 𝐿 ∈ ℕ quadrature points and there-

fore the step-size 𝜏 ∶= 𝑇∕𝐿, we finally arrive at the fully discrete linear 
mapping 𝐶 ∶ℝ𝑁 →ℝ𝑁 :

𝑟𝑗−1 ↦ 𝑟𝑗 = 𝐶𝑟𝑗−1 ∶=
𝐿−1∑
𝓁=0

𝜏𝛼(𝓁𝜏)𝑦𝓁(𝑟𝑗−1), (13)

which approximates the integral operator (7).

In order to find the discrete analogue to the filter function 𝛽𝛼 de-

fined in (8) we study the scalar linear difference problems: for 𝜔 > 0 let 
𝑞𝓁(𝜔) ∈ℝ for 𝓁 ∈ℕ0 be the unique solution to

𝑞−1(𝜔) = 𝑞0(𝜔) = 1, 𝑞𝓁+1(𝜔) =
(
2 − 𝜏2𝜔2) 𝑞𝓁(𝜔) − 𝑞𝓁−1(𝜔). (14)

Note, that diagonalization of the matrix 𝑀−1𝑆 separates (11) into such 
problems for those 𝜔 > 0 such that 𝜔2 are eigenvalues of the matrix 
eigenvalue problem (2). It is straightforward to show that
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𝑞𝓁(𝜔) =
1 − 𝑐(𝜔)
2𝑖ℑ(𝑐(𝜔))

𝑐(𝜔)𝓁 + 𝑐(𝜔) − 1
2𝑖ℑ(𝑐(𝜔))

𝑐(𝜔)
𝓁

= ℑ(𝑐(𝜔)𝓁) − |𝑐(𝜔)|2ℑ(𝑐(𝜔))𝓁−1

ℑ(𝑐(𝜔))
,

with

𝑐(𝜔) ∶= 1 − 𝜏2𝜔2

2
+ 𝑖

√
1 −
(
1 − 𝜏2𝜔2

2

)2
.

Hence, |𝑐(𝜔)| = 1 if the CFL condition 𝜏 < 2∕𝜔 is satisfied. In this case ||𝑞𝓁(𝜔)|| is bounded in 𝓁. Otherwise the sequence 𝑞𝓁(𝜔) is unbounded for 
𝓁→∞.

Remark 2.4. The time-stepping is stable if the step-size 𝜏 is smaller than 
2∕𝜔 for all eigenvalues 𝜔2 of 𝑀−1𝑆 . For typical triangular finite element 
discretizations it can be shown that the maximal eigenvalues 𝜔2

max of 
𝑀−1𝑆 are related to the smallest mesh-size ℎ of the used triangulation, 
i.e., 0 ≤ 𝜔2 < 𝐶∕ℎ2 with a constant 𝐶 > 0. Hence, up to a constant, the 
time step-size 𝜏 needs to be smaller than the spatial mesh-size ℎ.

In practice we determine the maximal eigenvalue of 𝑀−1𝑆 using 
a simple power iteration and choose the maximal step-size 𝜏 such that 
the time-stepping is stable. Note, that smaller values of 𝜏 lead to larger 
numbers of time-steps 𝐿 to reach the end-time 𝑇 =𝐿𝜏 used in the weight 
function (10).

Lemma 2.5. The fully discrete filter function 𝛽𝛼 ∶ [0, ∞) →ℝ defined by

𝜔↦ 𝛽𝛼(𝜔) ∶=
𝐿−1∑
𝓁=0

𝜏𝛼(𝜏𝓁)𝑞𝓁(𝜔), (15)

is a polynomial of degree 𝐿 − 1 in 𝜔2 and there holds

𝐶 = 𝛽𝛼

(√
𝑀−1𝑆

)
. (16)

In particular, if (𝜔2, 𝑣) is an eigenpair of (2), then (𝛽𝛼(𝜔), 𝑣) is an eigenpair 
of 𝐶 , and if (𝜆, 𝑣) is an eigenpair of 𝐶 then there exists at least one eigenvalue 
𝜔2 of (2) with 𝜆 = 𝛽𝛼(𝜔) and 𝑣 belongs to the sum of eigenspaces of those 
eigenvalues 𝜔2 of (2) for which 𝛽𝛼(𝜔) = 𝜆.

Proof. By definition of the scalar time-stepping (14) 𝑞𝓁(𝜔) is a polyno-

mial of degree 𝓁 in 𝜔2. Hence, 𝛽𝛼(𝜔) defined in (15) is a polynomial 
of degree 𝐿 − 1 in 𝜔2. To prove (16) we start with an arbitrary vector 
𝑟 and the orthonormal basis of eigenvectors 𝑣𝑗 to (2) corresponding to 
the eigenvalues 𝜔2

𝑗
. The solutions 𝑦𝓁(𝑟) to (11) are given by

𝑦𝓁 (𝑟) = 𝑦𝓁

(
𝑁∑
𝑗=1

(
𝑟⊤𝑣𝑗

)
𝑣𝑗

)

=
𝑁∑
𝑗=1

(
𝑟⊤𝑣𝑗

)
𝑦𝓁
(
𝑣𝑗
)
=

𝑁∑
𝑗=1

(
𝑟⊤𝑣𝑗

)
𝑞𝓁(𝜔𝑗 )𝑣𝑗 .

Hence, by definition of the matrix application 𝐶 in (13) there holds

𝐶𝑟 =
𝐿−1∑
𝓁=0

𝜏𝛼(𝓁𝜏)
𝑁∑
𝑗=1

(
𝑟⊤𝑣𝑗

)
𝑞𝓁(𝜔𝑗 )𝑣𝑗 =

𝑁∑
𝑗=1

𝛽𝛼(𝜔𝑗 )
(
𝑟⊤𝑣𝑗

)
𝑣𝑗

= 𝑉 diag
(
𝛽𝛼(𝜔1),… , 𝛽𝛼(𝜔𝑁 )

)
𝑉 ⊤𝑟 = 𝛽𝛼

(√
𝑀−1𝑆

)
𝑟,

where we used the spectral decomposition 𝑀−1𝑆 = 𝑉 ⊤diag
(
𝜔1,… ,

𝜔𝑁

)
𝑉 with 𝑉 ∶=

(
𝑣1,… , 𝑣𝑁

)
. The equivalence of eigenpairs of (2)

to eigenpairs of 𝐶 is a direct consequence of (16). □

In other words, we use a specific type of polynomial filtering.

Remark 2.6. Typically, polynomial filters are used for the computation 
of maximal eigenvalues (see [1]), but they can be used for the compu-
182
Fig. 1. Discrete filter functions for fixed time-step 𝜏 = 0.025, the target interval 
[𝜔−, 𝜔+] = [2, 4], and varying end times 𝑇 .

tation of non-extremal eigenvalues as well [10]. Instead of working on 
the linear algebra level we use an existing, stable solver for the wave 
equation. This solver can be exchanged easily by a different one as 
long as the time-stepping is diagonalized by the eigenvectors 𝑣𝑗 , i.e., 
if 𝑦𝓁(𝑣𝑗 ) = 𝑓𝓁(𝜔𝑗 )𝑣𝑗 holds for some functions 𝑓𝓁 .

Fig. 1 shows discrete filter functions 𝛽𝛼 of (15) for fixed time-step 
𝜏 and [𝜔−, 𝜔+] = [2, 4] in (9), while varying the end time 𝑇 (and thus 
also the number of total time-steps). While the filter certainly separates 
the wanted from the unwanted eigenvalues better for larger end times 
𝑇 , the total number of necessary time-steps in the Arnoldi process can 
not be predicted by solely looking at the discrete filter function (see 
numerical experiments in Section 3).

2.4. Algorithm

The considerations above lead to the following basic algorithm for 
computing the Krylov subspace 𝑚(𝐶, 𝑟0).

Algorithm 2.7 (Krylov subspace by filtered time-domain solutions). 
Input: matrices 𝑀−1, 𝑆 ∈ℝ𝑁×𝑁 , random starting vector 𝑟0 ∈ℝ𝑁 with ‖𝑟0‖2 = 1, number of time steps 𝐿 ∈ ℕ, dimension of Krylov space 𝑚 ∈
ℕ, weight function 𝛼

1: find max. stable step-size 𝜏 by power iteration for 𝑀−1𝑆
2: for 𝑘 = 0, … , 𝑚 − 1 do Krylov loop

3: 𝑦0 ∶= 𝑦1 ∶= 𝑟𝑘
4: 𝑟𝑘+1 ∶= 𝜏𝛼(0)𝑦0 first term in (13)

5: for 𝑖 = 1, … , 𝐿 − 1 do time loop

6: 𝑦2 ∶= −𝜏2𝑀−1𝑆𝑦1 + 2𝑦1 − 𝑦0 time step (11)

7: 𝑟𝑘+1+ = 𝜏𝛼(𝑖𝜏)𝑦2 additions in (13)

8: 𝑦0 ∶= 𝑦1, 𝑦1 ∶= 𝑦2
9: end for

10: for 𝑗 = 0, … , 𝑘 do orthogonalization loop

11: 𝑟𝑘+1− =
(
𝑟𝑘+1, 𝑟𝑗

)
2 𝑟𝑗

12: end for

13: if ‖‖𝑟𝑘+1‖‖2 ≠ 0 then

14: 𝑟𝑘+1 ∗= 1∕ ‖‖𝑟𝑘+1‖‖2 normalization

15: else exact eigenspace found

16: stop Krylov loop

17: end if

18: end for

Output: projection matrix 𝐵𝑚 ∶=
(
𝑟0,… , 𝑟𝑚−1

)
∈ℝ𝑁×𝑚 with orthonor-

mal column vectors.

The projected eigenvalue problem (4) with small dimension 𝑚 can 
be solved using a standard eigenvalue solver. Note, that the main costs 
of the method are related to the total number of time-steps, i.e., the 
dimension 𝑚 of the Krylov space times the number of time steps 𝐿 in 
each Krylov iteration. The orthonormalization of Krylov vectors and the 
solution of the small eigenvalue problems can be neglected for 𝑚 ≪𝑁 .
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It remains to discuss a stopping criterion, i.e., how to choose the di-

mension 𝑚 of the Krylov space, and a criterion to distinguish converged 
from non-converged eigenvalues. To this end, we compute for the eigen-

pairs 
(
𝜔2
𝑗;𝑚, 𝑣𝑗;𝑚

)
of (4) the residuals

res𝑗 ∶=
‖‖‖‖(𝑆 −𝜔2

𝑗;𝑚𝑀
)
𝐵𝑚𝑣𝑗;𝑚

‖‖‖‖2 , 𝑗 = 1,… ,𝑚, (17)

of the large eigenvalue problem (2). We accept eigenpairs 
(
𝜔2
𝑗;𝑚,

𝐵𝑚𝑣𝑗;𝑚
)
∈ ℝ × ℝ𝑁 for which the residuals are below a given toler-

ance. A possible stopping criterion would be to increase 𝑚 until a fixed 
number of accepted eigenvalues is found.

Other approaches turned out to be problematic in practice. One 
idea would be to use the absolute values of the eigenvalues 𝜇𝑗,𝑚 ∶=
𝛽𝛼(𝜔𝑗;𝑚) of the auxiliary problem (3), which was used to construct 
the Krylov space. Since we expect convergence towards the eigen-

values 𝜇 with largest absolute values, we e.g., could accept those 
eigenpairs 

(
𝜔2
𝑗;𝑚,𝐵𝑚𝑣𝑗;𝑚

)
for which the ratio 

(|𝜇̂|∕|||𝜇𝑗,𝑚|||)𝑚 with |𝜇̂| ∶=
min
{|||𝜇𝑗,𝑚||| , 𝑗 = 1,… ,𝑚

}
is small enough.

Nevertheless, in our numerical experiments sometimes non-con-

verged eigenvalues with large |𝜇| appeared. This might be the case, 
if eigenvalues within a certain interval are sought. Then, from time to 
time, a discrete eigenvalue, which will finally converge for 𝑚 →𝑁 from 
above to an eigenvalue below the region of interest, passes by and leads 
by accident to a large value |𝜇|. See Fig. 11b for such an example, where 
even after 50 Krylov steps there are non-converged eigenvalues with 
large values 𝜇 and very large residuals. Therefore, we refrained from 
using the values 𝛽𝛼(𝜔𝑗;𝑚) in an error indicator.

Another idea would be to use a standard Arnoldi solver for the aux-

iliary problem (3), i.e., project the matrix 𝐶 to the Krylov space, solve 
the projected eigenvalue problem, use e.g., the residuals of this auxil-

iary problem as an error indicator, and project the original eigenvalue 
problem (2) only on the span of those eigenvectors, which were com-

puted and accepted by the auxiliary problem. We refrained from this 
approach since the residuals of the auxiliary problem are somewhat ar-

tificial. The eigenvectors are approximations of the sought eigenvectors, 
but the eigenvalues 𝜇 have no one-to-one relation to the eigenvalues 𝜔2

or the original eigenvalue problem.

3. Numerical experiments

We apply our algorithm to two different sets of problems. In Sec-

tion 3.1 we tackle a two-dimensional problem where reference solutions 
can be computed using a shift-and-invert Arnoldi method. In Section 3.2

we choose a three-dimensional problem with more than 106 unknowns, 
where the application of reference solutions would require significant 
computational effort when a direct inverse is used in the process. All nu-

merical examples were carried out using the high-order finite element 
library Netgen/NGSolve ([12,13]).

3.1. Small scale (2d) examples

The examples in this subsection are chosen in a way that the result-

ing systems are small enough to allow to compute reference values by 
applying a shift-and-invert Arnoldi algorithm. The goal of this subsec-

tion is to demonstrate the applicability and functionality of our method 
as well as to give hints on how to choose the parameters.

3.1.1. Description of the experiments

We choose a two-dimensional domain shaped like a dumbbell, con-

sisting of two circles with radii 𝑟𝑙 , 𝑟𝑟 connected by a square with width 𝑑
(cf. Fig. 2). We prescribe homogeneous Neumann boundary conditions 
and choose the geometry parameters

𝑟𝑙 = 1.5, 𝑟𝑟 = 0.15, 𝑑 = 0.03. (18)
183
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Fig. 2. Sketch of the two-dimensional geometry used for the small scale exam-

ples from Section 3.1.

Fig. 3. Exact resonances of (2) on the circles with radii 𝑟𝑙 = 1.5, 𝑟𝑟 = 0.15 and 
the whole dumbbell domain (cf. Fig. 2 and (18), (19)).

Fig. 4. Numerical results for the computation of resonances of (2) for the dumb-

bell domain and discrete filter function for 𝑇 = 300𝜏 , 𝜔− = 0, 𝜔+ = 3. Note that 
the multiple indices of 𝜔 separated by commas refer to resonances close to each 
other and are not resonances of higher multiplicity.

Fig. 5. Errors and residuals for selected resonances of Fig. 4.
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Fig. 6. Convergence of the smallest eigenpairs for different weight function parameters 𝜔−, 𝜔+, 𝑇 (see Fig. 4 for a detailed explanation of the illustration).
For the spacial discretization we employ the mass lumping technique 
described in Remark 2.1. We choose a mesh-size of ℎ = 𝑑 = 0.03 (cf. 
Fig. 7) and second order finite elements. We expect the corresponding 
discrete resonances 𝜔𝑗 to be perturbations of the union of the three 
sets

Λ𝑙 =
{

𝜆𝑗,𝑛

𝑟𝑙
, 𝑗, 𝑛 ∈ℕ0

}
, Λ𝑟 =

{
𝜆𝑗,𝑛

𝑟𝑟
, 𝑗, 𝑛 ∈ℕ0

}
,

Λ𝑑 =

{
𝜋
√
𝑛2 + 𝑗2

𝑑
, 𝑗, 𝑛 ∈ℕ0

}
,

(19)

where 𝜆𝑗,𝑛 are the roots of the derivatives 𝐽 ′
𝑛

of the cylindrical Bessel 
functions 𝐽𝑛 of the first kind with order 𝑛 ∈ ℕ0 (cf. [14, (10.2.2)]). 
Fig. 3 shows the resonances 𝜔 of the discrete problem (2) together 
with the sets Λ𝑙 and Λ𝑟. The set Λ𝑑 ⧵ {0} is omitted since it consists 
of high frequencies, which are irrelevant for our computations. In our 
following experiments we look for the discrete resonances which corre-

spond to perturbations of the smallest non-trivial elements of the sets 
Λ𝑙 , Λ𝑟.
184
3.1.2. First results

A stable time step 𝜏 ≈ 0.0056 is determined using a power itera-

tion and the CFL condition of the time-stepping (11). We choose the 
weight function 𝛼 given in (10) with 𝜔− = 0, 𝜔+ = 3 and end-time 
𝑇 = 300𝜏 ≈ 1.68. Fig. 4 shows the resulting approximations to the dis-

crete resonances in each Krylov step 𝑘, as well as the residuals (see (17)), 
reference values and the discrete filter function 𝛽𝛼 . Since we will use this 
type of illustration throughout the remainder of the paper we use Fig. 4

to explain all the features of this illustration in more detail.

The horizontal axis corresponds to the values of the approximated 
resonances 𝜔. The vertical axis on the one hand, corresponds to the 
Krylov step 𝑘 and on the other hand to the absolute value of the dis-

crete filter function 𝛽𝛼(𝜔). The reference resonances are marked by the 
vertical grid, thus we observe convergence of the computed values to-

wards these horizontal lines going upward (i.e., increasing the Krylov 
step). The colors denote the value of the residuals (color bar above the 
plot), where we use the ring symbol for residuals smaller than 10−5 (i.e., 
we consider the resonance converged) and the cross symbol for resid-

uals larger than 10−5. Fig. 5 confirms that our algorithm converges for 
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Fig. 7. Eigenfunctions corresponding to the resonances 𝜔1, 𝜔2 of the 2d example problem, where the green coloring is zero and red/blue marks positive/negative 
values.

Fig. 8. Convergence of higher frequency eigenpairs for 𝜔− = 12.2, 𝜔+ = 12.5 and different end times 𝑇 (see Fig. 4 for a detailed explanation of the illustration).
two selected resonances and that the squares of the residuals behave 
asymptotically as the errors.

As to be expected, in general, resonances where the value of the filter 
function is larger are approximated after fewer Krylov steps: Resonances 
in the range of 0 to 3 are approximated well at around 20 Krylov steps. 
The resonances around 3.5 are approximated later. The resonances at 
around 4.5 still seem to be approximated (but are by far not converged 
yet). The resonances close to the root of the filter function around 4.3
are not approximated at all using this filter and 30 Krylov steps.

We also note that the convergence does not correspond exactly to 
the absolute value of the filter function. This is to be expected since 
the speed of convergence of one resonance also depends on its ratio to 
neighboring ones, i.e., the convergence of resonances with close abso-

lute values of 𝛽𝛼 is worse than the convergence of resonances with more 
isolated absolute values of 𝛽𝛼 .
185
3.1.3. Different filters

We study the effect of choosing different parameters 𝜔−, 𝜔+, and 𝑇
on the discrete filter and the approximation of eigenvalues. Fig. 6 shows 
the approximation of the same problem as before. In Figs. 6a-6c the same 
interval [𝜔−, 𝜔+] = [0, 3] as before is combined with different numbers 
of time steps. In Fig. 6d the interval is changed. Due to the few time steps 
𝑇 = 100𝜏 , in Fig. 6a the filter function does not have a good contrast for 
the wanted low frequencies and the unwanted higher frequencies. Thus 
convergence (except for 𝜔 = 0) is only achieved after 30 Krylov steps. 
For more time steps (cf. Figs. 6b, 6c the contrast is better. This leads 
to convergence for eight resonances after 20 Krylov steps. However the 
experiment also shows, that using more time steps does not necessarily 
lead to better results: The computational effort from Fig. 6b to 6c is 
doubled, due to the twice as many time steps. This would only pay off if 
the number of Krylov steps needed to compute the sought resonances is 
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Fig. 9. Eigenfunctions corresponding to the resonances 𝜔95, 𝜔96 of the 2d example problem.
more than halved. However using 1000 time steps enables us to choose 
a narrow range of resonances (i.e., 𝜔− = 1.6, 𝜔+ = 2.3, in Fig. 6d). In this 
case the resonance 𝜔3 is approximated well after 7 Krylov steps (7000 
time steps in total) opposed to 18 Krylov steps (9000 time steps in total) 
in Fig. 6b. To complete the example Fig. 7 shows the first two non-trivial 
eigenfunctions generated by the large ball. They are perturbations of the 
eigenfunctions the first non-trivial eigenvalue of multiplicity two of the 
closed ball. (cf. Section 3.1.1).

To test the filtering of larger resonances we look for the resonance 
corresponding to the smallest non-trivial element of Λ𝑟 (cf. Fig. 3). To 
this end we choose 𝜔− = 12.2, 𝜔+ = 12.5. The results in Fig. 8 show that 
the filtering of higher frequency resonances works as expected. However 
due to the fact that the spectrum of our problem gets denser in higher 
frequency ranges we have to choose a narrower peak of the filter and 
thus also more time steps.

Fig. 8b also underlines the necessity to sort out the results based on 
the residuum, since even in the last Krylov step, there are non-converged 
resonances in between the converged ones. These resonances will even-

tually converge with increasing Krylov space dimension to eigenvalues 
below the region of interest. Finally, Fig. 9 shows that the resonances 
around 12.3 are in fact perturbations of the resonances of the closed 
small circle with multiplicity two.

3.2. Large scale examples

In this section we apply our method to large examples (> 106 un-

knowns) where methods which require matrix inversion are no longer 
feasible on desktop computers, due to long factorization times and/or 
memory requirements. We demonstrate that our method is applicable 
on off-the-shelf computers.

Our goal is to simulate a hunting horn in a closed room and to find 
the resonances corresponding to the lowest notes of the horn (i.e., the 
first few notes of the harmonic series). The horn (cf. Fig. 10) consists of a 
coiled tube with inner radius 𝑟 and thickness 𝑑. The radius of the coil is 
𝑅𝑐 and the winding number is 1.35 and coil spacing 𝐻 . The mouthpiece 
is modeled by Dirichlet boundary conditions on one end of the tube. The 
bell is modeled by the rotation of a spline along the axis with parameters 
𝑅𝑏, 𝐿𝑏.
186
Fig. 10. Cuts through the geometry of the horn and surroundings.

The horn is enclosed in a cuboidal box with dimensions 𝐴, 𝐵, and 
𝐶 . In all our experiments we fixed the parameters

𝑟 = 0.0123, 𝑑 = 0.0246, 𝑅𝑐 = 0.15,

𝑅𝑏 = 0.08, 𝐿𝑏 = 0.2, 𝐻 = 4𝑟+ 2𝑑

of the horn and 𝐴 = 𝐵 = 3, 𝐶 = 2.4 for the bounding box. To discretize 
the problem we use a mesh with mesh-size ℎ = 𝑑 = 0.0246. We use a 
space of first order, mass lumped finite elements. This results in a prob-

lem of size 𝑁 ≈ 1.245 ⋅106. Again, a power iteration determines the time 
step 𝜏 ≈ 0.000346 to be stable.

Similar to the small scale experiments we expect the resonances of 
the resulting problem to be either perturbations of the resonances of the 
box (their discrete approximations will be denoted by 𝜔room

𝑙
sorted in 

ascending order in the following) given by

𝜆𝑖,𝑗,𝑘 = 𝜋

√
𝑖2∕𝐴+ 𝑗2∕𝐵 + 𝑘2∕𝐶, 𝑖, 𝑗, 𝑘 ∈ℕ0,

or perturbations of the resonances of the (closed) inner of the horn (dis-

crete approximations are denoted by 𝜔horn
𝑙

). We look for the latter, since 
they correspond to the musical notes which can be played on the horn.

The example is chosen as a challenging task for eigenvalue solvers, 
since the sought resonance frequencies of the horn lie in a region where 
the background resonances of the box are already quite dense. Note 
however, that for the efficient computation of such resonances absorb-

ing boundaries/layers like perfectly matched layers (PMLs) or infinite 
elements may be used.
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Fig. 11. Computed resonances of the horn domain for different filter parameters 𝑇 ,𝜔−, 𝜔+, where we look for the base harmonics of the horn 𝜔horn
0 , 𝜔horn

1 .

Fig. 12. Eigenfunctions of the horn problem corresponding to the frequencies 𝜔room
2 , 𝜔horn

0 , 𝜔horn
1 from Fig. 11. The colors blue and red correspond to higher/lower 

values while gray corresponds to zero. Note that not the whole domain, but merely a cutout (cf., Fig. 10) is shown.
As before we use different sets of parameters for 𝑇 , 𝜔−, 𝜔+ to 
search in different frequency ranges for eigenfrequencies. Using 𝑇 =
4000𝜏, 𝜔− = 0, 𝜔+ = 2.7 we find the base mode of the horn at 𝜔horn

0 ≈
2.315 (cf. Figs. 11a, 12b). Thus we look for the second harmonic at 
approximately 2𝜔horn

0 . Fig. 11b shows the result for 𝑇 = 10000, 𝜔− =
4.3, 𝜔+ = 4.9. The spectrum is already very dense in this region, still our 
algorithm manages to converge for a few resonances. Indeed we find the 
second harmonic of our horn at 𝜔horn

1 ≈ 4.624 (cf. Fig. 12c).

Remark 3.1. If we assume the dimensions of our horn to be given in 
meters and a speed of sound of 343𝑚∕𝑠 we obtain that the first two 
notes which can be played have frequencies of

343
𝜔horn
0
2𝜋

≈ 126.38𝐻𝑧, 343
𝜔horn
1
2𝜋

≈ 252.43𝐻𝑧.

In musical notation this corresponds to notes a little higher than a great 
and small B respectively. This is a reasonable result given the fact that 
our horn has a total length of 1.479𝑚, which is in a similar range as a 
trumpet tuned in B flat (usually a length of approximately 1.485𝑚).

4. Generalizations and extensions

In Section 2 and the corresponding numerical experiments in Sec-

tion 3 we focused on applying our ideas to an example composed of the 
following components:
187
discrete problem: The generalized matrix eigenvalue problem (2)

stems from a finite element discretization of a Laplacian eigenvalue 
problem using mass lumping.

time-stepping: The discrete filter function defined in (15) is based on 
the Verlet time-stepping of the time-domain problem (5) corre-

sponding to (2) and a suitable

weight function: The weight function is based on an approximation of 
the inverse Fourier transform of an indicator function (cf. Equations 
(9) and (10)).

eigenvalue solver: To approximate the eigenvectors of the auxiliary 
eigenvalue problem (3) we construct a basis of the Krylov space of 
the operator 𝐶 by iterative application and orthonormalization.

In fact, all of these components can be replaced by suitable alternatives. 
In the following we discuss such extensions of the method, as well as 
the limits of the current approach.

4.1. Discrete problem

The main requirement for the method to work is the fact that the 
matrix eigenvalue problem (2) corresponds to a stable time-domain 
problem of the form (5). This is certainly the case if the matrices 𝑀
and 𝑆 are symmetric and positive definite and positive semi-definite 
respectively. This is fulfilled for suitable discretizations of wave-type 
equations where 𝑆 is the discrete representation of any elliptic, second 
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order differential operator. Examples include the curl curl-operator (for 
linear Maxwell equations) or the elastic operator.

The main requirement for the method to be efficient is the fact that 
the according time-domain problem can be efficiently approximated. 
For explicit time-stepping methods (cf. Section 4.2) this is the case if the 
inverse of the mass matrix 𝑀 can be applied efficiently. Apart from mass 
lumping techniques this is also the case for finite difference methods, 
discontinuous Galerkin approaches (see e.g., [15]) or cell methods [16,

17].

Going further one could even drop the assumption that the prob-

lem is self-adjoint (Hermitian) if there is a stable time-domain counter-

part. One example could be resonance problems in open systems, which 
are discretized using perfectly matched layers (cf. [18]). However, the 
choice of the weight function 𝛼 is not a priori clear if complex reso-

nances exist.

4.2. Time-stepping

Following Remark 2.6 the Verlet time-stepping (11) can be easily 
replaced by any other explicit time-stepping method, if the eigenvec-

tors of (2) are still eigenvectors of (3). For first order formulations one 
could e.g., use leap frog time-stepping or high-order variants thereof 
to construct a similar method. Time-stepping schemes where the cor-

respondence of eigenvectors as described above is not clear any more 
include local time-stepping [19] or locally implicit methods [20]. These 
methods have been proven to significantly reduce the CFL condition on 
the time-step size which is a major limiting factor in computational ef-

ficiency. However, they do not fit directly into the concept presented in 
this paper.

4.3. Weight function

The weight function chosen in (10) is based on the inverse Fourier 
transform of a characteristic function. As an alternative to the char-

acteristic function one could choose more localized and/or smoother 
functions (e.g., a triangle impulse or a Gaussian peak) to construct the 
weight function 𝛼. In particular, the weight function 𝛼 could be adapted, 
such that in regions where an essential spectrum or an eigenvalue with 
very high multiplicity is expected, the absolute values of the correspond-

ing discrete filter 𝛽𝛼 are small. An example where this would be useful 
is e.g., the infinite dimensional kernel of the curl curl-operator.

4.4. Eigenvalue solver

To resolve issues with multiple eigenvalues a block version of the 
Krylov space approach can be used (i.e., starting with an orthonor-

malized set of random vectors and also orthonormalizing the resulting 
vectors in each step). Alternatively instead of considering a growing 
Krylov space in each step one could fix the dimension which leads to 
a method corresponding to a FEAST [2] algorithm with a time-domain 
filter.

5. Conclusion

We have presented an eigenvalue solver for large scale eigenvalue 
problems originating from finite element discretizations of Laplacian 
eigenvalue problems. Existing explicit time-domain solvers are com-

bined with a weight function in order to focus a Krylov method to eigen-

values which might be non-extremal and/or clustered. It is straightfor-

ward to show that the method converges to those eigenvalues, which 
are mapped by the discrete filter 𝛽𝛼 defined in (15) to eigenvalues with 

largest absolute value of the auxiliary eigenvalue problem. A complete 
error analysis would need to control the absolute values of the filtered 
sought and unsought eigenvalues, which lies out of the scope of this 
paper.

Note, that the discrete filter depends on the weight function 𝛼, the 
number and size of time-steps, and on the time-stepping scheme. The 
filter function can be computed in a preprocessing step with negligible 
computational costs. Hence, an optimization of the method parameters 
for a given problem is easy to carry out experimentally.
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