
Machine Learning for Network
Traffic Monitoring and Analysis
Application to Internet QoE Assessment and

Network Security

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

by

Sarah Anne Wassermann
Registration Number 11941823

to the Faculty of Electrical Engineering and Information Technology

at the TU Wien

Advisor: Univ. Prof. Dr.-Ing. Tanja Zseby, TU Vienna
Second advisor: Dr. Pedro Casas, AIT Austria

External reviewers:
Prof. Stefano Secci. Conservatoire des arts et métiers, France.
Prof. Anna Brunström. Karlstad University, Sweden.

Vienna, 6th April, 2022

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Abstract

The Internet plays a crucial role in today’s society. Indeed, numerous everyday tasks
can now be accomplished online. For instance, it has become very easy to carry out a
bank transfer via our computer or smartphone. While digitalization simplifies processes,
it is very attractive for cybercriminals, as they can potentially access very sensitive and
valuable user information, or even interconnected critical infrastructures. Protecting
confidential data is now paramount and more challenging than ever before. We also
increasingly rely on the Internet for entertainment. Whereas we used to watch movies
on DVDs, we use today streaming services like Netflix. Statistics confirm this trend: ac-
cording to Sandvine, video streaming made up 60% of the global Internet traffic in 2019.
The COVID-19 pandemic has intensified this tendency: Netflix, YouTube, and Amazon
even decided to reduce the default playback resolution to avoid a service breakdown
during the lockdown. However, services need to deliver the best Quality of Experience
(QoE) to avoid churn. The same is true for Internet service providers, whose goal is
to operate their networks efficiently and to avoid severe QoE degradations. Monitoring
their networks also becomes more difficult, as end-to-end encryption renders traditional
Deep-Packet-Inspection techniques unreliable.

In this thesis, we leveraged machine learning (ML) for advanced network-traffic mon-
itoring, with a specific focus on (i) the analysis of video and Web QoE, and (ii) the
automatic detection of malware and network attacks, both relying on in-network and
in-device measurements. All the proposed solutions were thoroughly evaluated on top of
large and heterogeneous datasets. More precisely, our work revolved around the following
topics:

Video QoE: we conceived two ML-based solutions to infer key QoE indicators (KQIs)
for video-streaming services, the first one built on top of data gathered with
YoMoApp, an Android application for session-based YouTube-QoE monitoring,
the second one integrated into ViCrypt, a system for real-time sensing of rele-
vant quality metrics of video streaming. ViCrypt infers the considered metrics
every second while the user is watching a YouTube video, relying on in-network,
encrypted-traffic measurements. To the best of our knowledge, this is the finest
granularity so far used for quality inference in the context of encrypted traffic.
With our two solutions, we achieved highly promising results in the context of
video-KQI inference.

ii

Web QoE: we built an AI-based framework to estimate the SpeedIndex of Web ses-
sions and the levels of Web QoE from encrypted-network-traffic measurements.
We showed that ML models did not generalize well across the considered devices
(desktop, smartphone, tablet): a model trained on data coming from a single device
yielded disappointing results when applied to data coming from other device types.
To the best of our knowledge, we are the first to unveil the strong impact of the
device type on the quality of Web-QoE inference. We additionally conceived multi-
device, Web-QoE estimation models based on flow-level measurements, achieving
high accuracy while being easily deployable.

Mobile-malware detection: we conceived BIGMOMAL – Big Data Analytics for Mo-
bile Malware Detection –, an ML-based system for mobile-malware detection and
application fingerprinting. BIGMOMAL exclusively relies on lightweight ML mod-
els and features extracted directly on the users’ smartphone, while respecting their
privacy. Through BIGMOMAL, we realized both tasks with high accuracy.

Stream-based active learning for detection of network attacks: we aimed at con-
tinuously tuning a supervised-learning model with limited availability of labeled
data. We developed RAL – Reinforced stream-based Active Learning –, a frame-
work based on stream-based active learning coupled with reinforcement learning
to wisely choose the training points from which ML models can learn while still
being able to infer crucial metrics with high accuracy. RAL outperformed the
state of the art by increasing the estimation accuracy and lowering the number
of necessary labeling queries. While we have applied RAL exclusively in network
security problems in this thesis, it has been designed for any type of stream-based
learning application.

In conclusion, we investigated highly relevant QoE and cybersecurity problems and pro-
posed innovative data-driven solutions extending the state of the art. We advanced the
broad domain of network-traffic monitoring and analysis by pushing forward the ap-
plication of AI/ML to networking problems (AI4NETS), paving the way for a better
Internet.

Kurzfassung

Das Internet spielt heute eine wichtige Rolle. Zahlreiche alltägliche Aufgaben können on-
line erledigt werden. So ist es zum Beispiel sehr einfach geworden, eine Banküberweisung
über den Rechner oder das Smartphone zu tätigen. Während die Digitalisierung vieles
vereinfacht, ist sie für Cyberkriminelle sehr attraktiv, da sie potenziell auf sehr sensi-
ble Informationen oder sogar auf vernetzte kritische Infrastrukturen zugreifen können.
Datenschutz ist bedeutender und eine größere Herausforderung als je zuvor. Auch für die
Unterhaltung verlassen wir uns zunehmend auf das Internet: früher sahen wir uns Filme
auf DVDs an, heute nutzen wir Streaming-Dienste wie Netflix. Statistiken bestätigen
diesen Trend: Laut Sandvine machte Videostreaming 2019 60 % des weltweiten Inter-
netverkehrs aus. COVID-19 hat diese Tendenz verstärkt: Netflix, YouTube und Ama-
zon entschieden sogar, die Standard-Auflösung zu reduzieren, um einen Zusammenbruch
während dem Lockdown zu vermeiden. Die Dienste müssen jedoch die beste Quality of
Experience (QoE) liefern, um Abwanderung zu vermeiden. Das Gleiche gilt für Inter-
netdienstanbieter, deren Ziel es ist, ihre Netze effizient zu betreiben und schwerwiegende
QoE-Verschlechterungen zu vermeiden. Außerdem wird die Überwachung ihrer Netzw-
erke schwieriger, da die Verschlüsselung Deep Packet Inspection unzuverlässig macht.

In dieser Arbeit setzten wir maschinelles Lernen (ML) für die fortschrittliche Überwachung
des Netzwerkverkehrs ein, mit besonderem Schwerpunkt auf (i) der Analyse der Video-
und Web-QoE und (ii) der automatischen Erkennung von Malware und Netzwerkangrif-
fen, die beide auf netzwerk- und geräteinternen Messungen beruhen. Alle vorgeschla-
genen Lösungen wurden anhand von großen und heterogenen Datensätzen gründlich
evaluiert. Genauer gesagt, drehte sich unsere Arbeit um die folgenden Themen:

Video-QoE: Wir haben zwei KI-Lösungen für die Inferenz wichtiger QoE-Indikatoren
vorgeschlagen: eine basiert auf Daten von YoMoApp, eine Android-App für sitzungs-
basierte YouTube-QoE-Erfassung, und eine integriert in ViCrypt, ein System für
die Echtzeit-Erfassung relevanter Metriken des Videostreaming. ViCrypt ermittelt
diese jede Sekunde wenn der Nutzer sich ein YouTube-Video ansieht, und nutzt
dazu netzinterne, verschlüsselte Verkehrsmessungen. Dies ist unseres Wissens nach
die feinste Granularität, die bisher für die Qualitätsinferenz im Kontext von ver-
schlüsseltem Datenverkehr verwendet wurde. Mit beiden Systemen erzielten wir
vielversprechende Ergebnisse.

iv

Web-QoE: wir schätzten den SpeedIndex und das QoE-Niveau von Web-Sitzungen,
indem wir ausschließlich verschlüsselte Netz-Level Eingaben nutzten. Wir haben
gezeigt, dass ML-Modelle nicht gut über die analysierten Geräte (Rechner, Smart-
phone, Tablet) hinweg funktionierten, d.h. dass ein Modell, das auf Daten von
einem einzigen Gerät trainiert wurde, enttäuschende Ergebnisse lieferte, wenn es
auf Daten von anderen Geräten angewendet wurde. Unseres Wissens nach sind
wir die ersten, die den starken Einfluss des Gerätetyps auf die Qualität der QoE-
Inferenz zeigen. Außerdem haben wir Modelle erstellt, die Flow-Level- statt Paket-
Level-Eingaben nutzen; sie lieferten sehr gute Ergebnisse und können gleichzeitig
einfach eingesetzt werden.

Erkennung mobiler Malware: wir entwickelten BIGMOMAL – Big Data Analytics
for Mobile Malware Detection –, ein System für die Erkennung von Malware und
das Fingerprinting von Apps auf Android-Telefonen. BIGMOMAL nutzt auss-
chließlich einfache Modelle und Eingaben, die direkt auf dem Gerät extrahiert
werden, unter Wahrung der Privatsphäre. BIGMOMAL ermöglicht es beides mit
hoher Genauigkeit durchzuführen.

Datenstrom-basierendes aktives Lernen für die Erkennung von Netzwerkangriffen:
Unser Ziel ist die kontinuierliche Optimierung eines überwachten Lernmodells bei
begrenzter Verfügbarkeit von markierten Daten. Wir haben RAL – Reinforced
Stream-based Active Learning – entwickelt, ein System, das aktives Lernen mit
bestärktem Lernen nutzt, um die Trainingspunkte der ML-Modelle im Strom klug
auszuwählen und noch in der Lage zu sein, Metriken mit hoher Genauigkeit zu
schätzen. RAL übertraf den Stand der Technik, indem es die Schätzgenauigkeit
erhöhte und die Anzahl der erforderlichen Datenabfragen verringerte. Im Rah-
men dieser Arbeit haben wir RAL ausschließlich für Netzwerkangriffe verwendet,
obwohl es für alle Arten von Datenströmen entwickelt wurde.

Zusammendfassend lässt sich sagen, dass wir wichtige QoE- und Sicherheitsprobleme
erforscht und innovative datengesteuerte Lösungen vorgeschlagen haben, die den Stand
der Technik erweitern. Wir haben den breiten Bereich der Überwachung und Analyse
des Netzwerkverkehrs vorangebracht, indem wir die Anwendung von KI/ML auf Net-
zwerkprobleme (AI4NETS) vorangetrieben und so den Weg für ein besseres Internet
geebnet haben.

Acknowledgments

With the submission of this thesis, a long journey comes to an end. Even though it has
not always been easy, it has been a very enriching period of my life. Throughout the
last couple of years, I have been shaped both as a researcher and as a human being by
a handful of unforgettable people, to whom I want to express my sincerest gratitude.

First and foremost, I would like to thank Pedro Casas. I am immensely grateful to you.
Since my first internship in Vienna in 2015, thanks to which I discovered the exciting
world of research in networking, you have always believed in me, even in difficult times
and when I was about to give up. Thanks to your commitment and support, I never felt
alone when I faced a challenge, which was an invaluable help. You always had an open
ear for all my concerns and doubts, and our collaborations and insightful discussions
allowed me to grow in many aspects. You are not only an inspiring researcher, but also
an exceptional human being. The completion of this PhD would not have been possible
without you.

I am also very grateful to Tanja Zseby. Thank you so much for letting me do my PhD
under your supervision. Your many constructive comments greatly contributed to the
quality of this manuscript.

I also want to thank Michael Seufert. Working with you was a real pleasure and I
learned a lot. Our interesting discussions gave me a better picture of the life of a young
researcher. I also had a lot of fun when I had the opportunity to visit you in Würzburg.

Even though he was not directly involved in this thesis, I am extremely grateful to
Marc, who largely contributed to my academic success. Throughout my high-school
and university years, you helped me understand the world of mathematics, physics, and
chemistry. You always answered my innumerable questions with a lot of patience. I will
never be able to thank you enough for all the time and energy you sacrificed to support
me.

I thank my partner Thibaut for his unconditional love and support. I can discuss with
you about simply everything, and you always help me in any possible way. For example,
you spent countless hours proofreading this manuscript, many more than I could have
hoped for. All the adventures we are living together are very precious memories and
make my life much more fulfilling. I could not imagine a more loving and caring partner.

vi

A special thank you goes to my mother, who supported me throughout my whole life as
best as she could. You greatly helped me when I was going through the hardest times
of my life. During my studies, you suffered with me during the exam periods and made
sure that I did not have to worry about anything else than my academic career.

The next lines are heartbreaking to write. I want to express my deepest gratitude to
my best friend, Caroline, even though she will unfortunately never be able to read those
acknowledgments. Even though you left us almost two years ago, it is still impossible
to describe the pain. I want to thank you for all the moments we spent together, the
countless hours we spent together laughing and talking about our doubts and fears.
You were always trying to help me, even though you were facing your own problems. I
unfortunately never thanked you enough for being such a wonderful friend and for your
trust.

Contents

Contents viii

List of Figures xii

List of Tables xv

List of Algorithms xvii

List of Acronyms xx

1 Introduction 1
1.1 Overall Background in AI for Networks (AI4NETS) 2
1.2 Contributions of the Thesis . 4
1.3 Outline of the Thesis . 6

2 Background 7
2.1 Video Streaming . 7

2.1.1 Progressive Streaming . 7
2.1.2 HTTP Adaptive Streaming . 8
2.1.3 Video-Quality Assessment . 9

2.2 Web Browsing . 9
2.2.1 Loading of a Webpage . 10
2.2.2 Rendering of a Webpage . 10
2.2.3 Web-QoE Assessment . 11

2.3 Network Measurements . 12
2.3.1 Active Measurements . 13

Ping . 13
Traceroute . 13

2.3.2 Passive Measurements . 14
Tcpdump and Wireshark . 14
Simple Network Management Protocol 15

2.4 Machine Learning . 15
2.4.1 Supervised Learning . 15

Algorithms . 15

viii

Evaluation Strategies . 19
Evaluation Metrics . 19
Feature Selection . 21

2.4.2 Unsupervised Learning . 22
2.4.3 Active Learning . 23
2.4.4 Reinforcement Learning . 23

3 Video-QoE Monitoring and Analysis 26
3.1 Related Work . 28
3.2 Session-Based Mobile Video-QoE Monitoring and Analysis 30

3.2.1 YoMoApp – the YouTube Monitoring App 30
3.2.2 YoMoApp Dataset . 31
3.2.3 Temporal YouTube QoE Analysis 32
3.2.4 QoE Modeling and Assessment 37
3.2.5 QoE Inference Through Machine Learning 38

3.3 Stream-based Video-Quality-Metric Inference 41
3.3.1 Introducing ViCrypt . 42
3.3.2 YouTube Dataset . 44

Dataset Acquisition . 44
Dataset Analysis . 46

3.3.3 ViCrypt Feature Extraction . 48
3.3.4 ML-Model Benchmarking . 50
3.3.5 ViCrypt in Action – Performance Evaluation 53

Stalling Estimation . 53
Video-Resolution Estimation 56
Average-Bitrate Estimation . 62

3.3.6 Feature-Importance Analysis 64
Stalling . 66
Video Resolution . 67
Average Bitrate . 68

3.3.7 Practical Considerations for Real-Time Operation & Discussion 68
ViCrypt vs. State of the Art 71

3.4 Conclusions . 72

4 Web-QoE Monitoring and Analysis 73
4.1 Related Work . 75
4.2 Web-QoE Datasets & Modeling Approach 76

4.2.1 Data Characterization . 78
4.2.2 Subjective QoE Analysis . 80
4.2.3 Targets and Input Features . 81

4.3 Desktop Models’ Lack of Generalization 84
4.3.1 RUMSI Inference on Desktop 84
4.3.2 QoE Classification on Desktop 85
4.3.3 Lack of Generalization for Mobile Devices 86

4.4 Multi-Device Models . 89
4.5 Multi-Device, Flow-Level Models . 90
4.6 Conclusions . 93

5 (Adaptive) Detection of Network Attacks 94
5.1 Related Work . 97
5.2 In-Device Mobile Malware Detection with BIGMOMAL 99

5.2.1 The SherLock Dataset . 100
5.2.2 Identifying Running Applications 103

Feature Selection . 105
Temporal App Identification 106

5.2.3 Malware Detection . 107
Feature Selection . 108
Temporal Malware Detection 108
Malware Detection Across Multiple Users 108

5.3 Reinforcement Learning for in-Network Attack Detection with RAL . 109
5.3.1 Overview of RAL . 110
5.3.2 Diving into RAL . 110

Learners as Experts . 111
Reinforcement-Learning-Based Controller 111

5.3.3 Learning with a Committee of Learners 112
Design of Update Rule . 114
Choice of Hyperparameters . 115

5.3.4 Learning with a Single Classifier 116
5.3.5 RAL Evaluation . 116

Data Description . 116
Setup . 117
Results . 119

5.4 Conclusions . 122

6 Conclusions and Perspectives 123

List of Publications 128

Bibliography 132

A YoMoApp Features 148

B ViCrypt Features 154

C Web-QoE Features 158

D BIGMOMAL Features 159

E MAWILab Features 162

Index 164

List of Figures

1.1 YouTube-QoE monitoring: the metrics of interest need to be measured at
different locations in the network due to end-to-end encryption. 2

2.1 Example of HAS; the chunks are represented by the yellow blocks. When
riding the metro, the user’s Internet connection usually deteriorates. As soon
as connection issues appear, HAS adapts the streaming behavior by starting
to send smaller, lower-quality video chunks. The video quality progressively
improves as soon as the connection gets back to normal again. 8

2.2 Page-rendering in a browser. 11
2.3 SpeedIndex illustration. For better user experience, visual elements should

load from the first seconds on. 12
2.4 Ping overview. 13
2.5 Traceroute overview. 14
2.6 Decision-tree example. A1, A2, and A3 are selected features, and aij are the

corresponding possible values of those features. C1 and C2 are the available
classes. 16

2.7 k-nearest-neighbors example with k = 5. The labels of the 5 samples closest
to the orange point to consider (the 5 data points in the red circle) are
combined to compute the label of the point under consideration. 17

2.8 SVM example. 17
2.9 Neural-network example. 17
2.10 Interactions in RL. 24

3.1 Distribution of the YoMoApp measurements worldwide. 32
3.2 Cumulative number of measurements and different devices over time. . . . 32
3.3 Temporal evolution of the performance of YouTube mobile streaming in terms

of QoE-relevant KPIs. 33
3.4 Distribution of MOS scores per session. 34
3.5 Video-quality levels and quality switches. 35
3.6 Radio access technology and video download throughput. 36
3.7 Evolution of user engagement. 36
3.8 Modeled MOS scores vs. actual user feedback. 38
3.9 Linear correlations – subjective ratings and P.1203. 38

xii

3.10 QoE-metrics estimation performance. ROC (one-versus-all) curves highlight
high recall for the considered classes against the other ones. 39

3.11 Characterization of the YouTube dataset, composed of more than 15,000
video-streaming sessions. © IEEE 2020 . 47

3.12 ViCrypt session overview (video in red). We extract the session features from
the blue time slots, the trend features from the yellow ones, and the features
about the current state from the green one. 48

3.15 Example of ViCrypt real-time stalling detection. © IEEE 2020 56
3.13 Normalized confusion matrices obtained by the benchmarked ML models for

the estimation of stalling. The color scale ranges from dark red (poor accu-
racy) to dark green (excellent accuracy). © IEEE 2020 57

3.14 Inference performance for session-based stalling metrics, using ERT10 as the
underlying model. © IEEE 2020 . 58

3.16 Accuracy per class (i.e., recall) obtained by the benchmarked ML models for
the resolution estimation. The color scale ranges from dark red (poor recall)
to dark green (excellent recall). © IEEE 2020 60

3.17 Precision per class obtained by the benchmarked ML models for the resolution
estimation. The color scale ranges from dark red (poor precision) to dark
green (excellent precision). © IEEE 2020 . 61

3.18 Example of ViCrypt real-time video-resolution estimation. © IEEE 2020 . . . 62
3.19 Estimation errors (estimated values − ground truth) obtained by the bench-

marked ML models for the average video-bitrate inference. © IEEE 2020 . . . 64
3.20 Example of ViCrypt real-time average video-bitrate estimation. © IEEE 2020 64
3.21 Time needed to update the ViCrypt features each time a new packet arrives

(log scale). © IEEE 2020 . 69
3.22 Time needed to estimate video-QoE metrics from features for an exemplary

YouTube video session. © IEEE 2020 . 70

4.1 Diagram and workflow of the proposed solution. 77
4.2 Distribution of time performance metrics (TTFP, RUMSI, and PLT) per

device. 78
4.3 Cumulative density function, per device type, for page size, number of re-

sources, number of root domains, and SI/PLT ratio. 79
4.4 Distribution of (a) QoE classes per device type, based on (d) real-user MOS

scores. 81
4.5 Examples of CBD features or loading curves, using ΔT = 100 ms, and dif-

ferent RTT setups. 82
4.6 Correlation between each of our 311 input features (300 CBD and 11 session-

related) and inference targets. 83
4.7 Cross-device QoE classification performance. Models are trained on desktop

measurements. 85

4.8 Cross-device RUMSI-inference performance, using per-device ERT10 as un-
derlying model. In each cell, the first line gives the means and the second one
the medians of both the absolute error (MAE and mEA, in ms) and the rela-
tive error (MRE and mRE, in %); the third line is the correlation coefficient
(PLCC). 87

4.9 Cross-device QoE-class-inference performance, using per-device ERT10 trained
on desktop data as underlying model. 88

4.10 Cross-device QoE-class-inference performance across all device types, using
per-device ERT10 as underlying model. 88

4.11 RUMSI-inference and QoE-classification performance, the ERT10 model was
trained on multi-device data. 90

4.12 Flow-level features – FlowIndex computation. 91
4.13 Flow-level features, ranked by PLCC. 92
4.14 Multi-device RUMSI-inference performance – flow-level features. 92

5.1 Most seen malware types in 2019 and 2020 for Android OS (data from Kasper-
sky’s Mobile Malware Evolution 2020 report [1]). 96

5.2 Number of different applications launched during Q2 2016 by each user. . 101
5.3 Characterization of the WhatsApp and Moriarty Android applications. Each

CDF curve on a plot corresponds to the cumulative distribution for one user
and the sampling frequency is once per hour. 104

5.4 App-identification accuracy when training and testing on a weekly basis. . 106
5.5 Recall obtained while detecting Moriarty for each Q2 user. 107
5.6 Recall obtained while detecting Moriarty on a weekly basis for one Q2 user. 109
5.7 Overall idea of the RAL system. 111
5.8 Function based on the reward used in our update rule of RAL’s certainty

threshold. 115
5.9 PHT detection for the ping-flood dataset; dashed lines indicate changes. ©

IEEE 2021 . 118
5.10 Detection accuracy for RAL, RVU, and RS. For each of the tested datasets,

RAL outperforms both techniques. © IEEE 2021 120
5.11 Number of queries issued by RAL (top) and RVU (bottom). RAL achieves

better accuracy, while querying fewer samples. © IEEE 2021 120
5.12 RAL’s detection accuracy temporal convergence. © IEEE 2021 121

List of Tables

3.1 ViCrypt vs. Requet and INFOCOM’18 [2]. Overview of the properties of the
proposed solutions in terms of type and detail of the inferred KQIs, input
features, monitoring capabilities, and datasets used for training and testing
purposes. © IEEE 2020 . 44

3.2 ViCrypt features. All features are derived from three basic packet-level met-
rics, namely packet count, packet size, and inter-arrival time (IAT), aggre-
gated at time-slot-based and window-based resolutions. © IEEE 2020 49

3.3 Benchmarking of ML models for the stalling detection. To compute the
overall accuracy, the recall, and the precision, we consider the stalling class
as the positive one. © IEEE 2020 . 54

3.4 Benchmarking of different ML models for the resolution estimation. © IEEE

2020 . 56
3.5 Benchmarking of different ML models for the average-bitrate estimation. ©

IEEE 2020 . 62
3.6 Top 5 most important features for the three stream-based estimation targets

tackled by ViCrypt, with their corresponding window (current, trend, or
session) and Gini importance scores. © IEEE 2020 66

3.7 ViCrypt performance for stalling estimation with ERT10, using different fea-
ture subsets (overall accuracy and recall/precision only indicated for the
stalling class). © IEEE 2020 . 67

3.8 ViCrypt performance for inferring the video resolution with RF10, using dif-
ferent feature subsets. © IEEE 2020 . 67

3.9 ViCrypt performance for estimating the average bitrate with ERT10 using
different feature subsets. © IEEE 2020 . 68

3.10 Referencing performance comparison between ViCrypt, Requet [3], and IN-
FOCOM’18 [2]. Results correspond to numbers reported in [3] and [2], for
different datasets. See Table 3.1. © IEEE 2020 71

4.1 QoE-class distribution per device type. 81
4.2 Benchmarking of different ML models for RUMSI inference, for desktop. . 84
4.3 Benchmarking of different ML models for Web-QoE-class estimation on desk-

top. The three levels of QoE correspond to excellent {e}, good {g}, and
poor {p} QoE. 86

xv

4.4 Inference performance per device type. The ERT10 model is trained using
desktop data. 87

4.5 Multi-device RUMSI-inference performance. 89
4.6 Multi-device, flow-level RUMSI-inference performance. 93

5.1 Top ten popular apps in Q2 2016. 102
5.2 Top ten popular apps in Q2 2016 (Android services and SherLock excluded). 103
5.3 Most relevant features for identifying running Android applications and de-

tecting malware. 105
5.4 Confusion matrix obtained while detecting Moriarty for one Q2 user. . . . 107
5.5 Confusion matrix obtained while detecting Moriarty for several Q2 users when

training on data instances from other clients. 109
5.6 RAL hyperparameters, selected by grid search.© IEEE 2021 119

List of Algorithms

3.1 Online regression computation. 51
3.2 Online update of distribution metrics, used for computation of distribu-

tion features. The algorithm is executed when new values are observed. 51
3.3 Computation of distribution features. 52
5.1 RAL algorithm. 113

xvii

List of Acronyms

ABR adaptive bitrate

ACR absolute category rating

ADA AdaBoost

AFT above the fold time

AI4NETS AI for networks

AL active learning

AUC area under the ROC curve

BI ByteIndex

BIGMOMAL big data analytics for mobile malware detection

CDF cumulative distribution function

CSS cascading stylesheet

CSSOM CSS object model

DASH dynamic adaptive streaming over HTTP

DBSCAN density-based spatial clustering of applications with noise

DNS domain name service

DOM document object model

DPI deep packet inspection

DT decision tree

ERT extremely randomized tree

FCP first contentful paint

xviii

HAS HTTP adaptive streaming

HEVC high efficiency video coding

HLS HTTP live streaming

HTML hypertext markup language

HTTP hypertext transfer protocol

IAT inter-arrival time

ICMP Internet control message protocol

ISO isolation forest

ISP Internet service provider

JS JavaScript

kNN k-nearest neighbors

KPI key performance indicator

KQI key QoE indicator

LOF local outlier factor

MAE mean absolute error

ML machine learning

MOS mean opinion score

MPEG moving picture experts group

MRE mean relative error

NAT network address translation

NB naive Bayes

NN neural network

OI ObjectIndex

PCA principal component analysis

PHT Page-Hinkley test

PLCC Pearson linear correlation coefficient

PLT page load time

QoE quality of experience

QoS quality of service

QUIC quick UDP Internet connections

RAL reinforced stream-based active learning

RAT radio access technology

RDA rate determination algorithm

RF random forest

RL reinforcement learning

RMSE root mean squared error

ROC receiver operating characteristic

RS random sampling

RUMSI real user monitoring SpeedIndex

RVU randomized variable uncertainty

SI SpeedIndex

SMOTE synthetic minority over-sampling technique

SNMP simple network management protocol

SVM support vector machine

TCP transmission control protocol

TTFB time to first byte

TTFP time to first paint

TTI time to interactive

TTL time to live

UDP user datagram protocol

URI uniform resource identifier

URL uniform resource locator

VCR visual-completion ratio

WPT WebPageTest

XGB XGBoost

CHAPTER 1
Introduction

As our lives become more and more dependent on the Internet, two factors play a crucial
role in the online world, namely Quality of Experience (QoE) and security.
Indeed, we are increasingly frustrated when poor Internet performance prevents us from
accomplishing evermore important online activities. The QoE when accessing the Inter-
net is thus a key factor for today’s society. Poor Internet QoE is annoying, in particular
for most Internet users who are not tech savvy and hence cannot diagnose – let alone
fix – problems by themselves. The interactions of Internet services with the networks
they use have become increasingly difficult to predict, which hampers the attempts to
diagnose QoE, e.g. due to proliferation of proxies and caches at the network core, of
home wireless, and of 3G/4G/5G access. It is hard even for networking experts to fully
diagnose and fix problems. When users get frustrated with degraded QoE, they may
stop using services, and companies get the blame (and possibly lose money). Despite the
relevance of QoE, we still face limitations to correctly infer and assess QoE, especially
in real operational deployments. Diagnosing the causes for poor QoE related to the
network and to application-layer decisions remains an open challenge. One factor which
makes QoE monitoring and modeling especially difficult in today’s Internet is end-to-
end encryption. Indeed, encryption has rendered previous Deep-Packet-Inspection (DPI)
approaches highly inaccurate or even infeasible. Figure 1.1 illustrates this issue for the
monitoring of YouTube QoE: while encrypted network-layer features such as packet sizes,
inter-arrival times, and throughput can still be measured by the ISPs, application-layer
information such as quality levels and stallings can only be monitored on the users’
devices.
Apart from entertainment, we use the Internet for essential everyday tasks. Indeed,
we might want to complete critical online activities, such as bank transfers or orga-
nizing medical appointments, and these require us to enter personal information. This
is why personal computers, and especially mobile devices, become more and more the
target of malicious attacks that aim at stealing the users’ private information and using

1

1.1. Overall Background in AI for Networks (AI4NETS)

YouTube data center ISP network User mobile device

Network
features

Application
information

Figure 1.1: YouTube-QoE monitoring: the metrics of interest need to be measured at
different locations in the network due to end-to-end encryption.

it for bad-natured activities. Smart devices are not only an appealing target because
of their popularity, but also because they incorporate a very large amount of sensitive
information, even more than a personal computer [4]. For instance, the included sen-
sors can track the user’s current location and physical activities. As technology evolves,
cybercriminals are enhancing their attack methods, tools, and techniques to exploit indi-
viduals and organizations. We are facing a ramping-up cyberarms race, where attackers
are constantly finding clever ways to bypass security systems and to reach their targets.

In this thesis, we leveraged machine learning to tackle the problem of QoE monitoring
and modeling as well as of cybersecurity in dynamic, heterogeneous, and encrypted
environments.

1.1 Overall Background in AI for Networks (AI4NETS)
In the last years, the popularity of artificial intelligence (AI) – and the one of machine
learning (ML) as an approach to AI – has significantly increased due to its outstanding
performance in a wide range of domains such as video, audio, and natural language
processing. Recently, AI has also become more and more important in games thanks to
recent developments in deep neural networks and reinforcement learning [5, 6].

Unfortunately, when it comes to AI4NETS, the picture looks less promising. The appli-
cation of AI concepts and ML approaches to networking problems has today more than
two decades of existence, with the first steps taken back in 1998, with the introduction of
the concept of cognitive networks [7] by researchers at KTH Sweden. This paradigm char-
acterizes a network with cognitive capabilities which could learn from past observations
and behaviors, to better adapt to end-to-end requirements. Cognitive networks have
been strongly refurbished along time, referring to them as self-organizing networks, self-
aware networks, self-driving networks, and intelligent networks, for instance. This kind

2

1.1. Overall Background in AI for Networks (AI4NETS)

of network served as a motivation for a large number of papers applying ML principles
to current networking problems, such as traffic prediction, traffic classification, traffic
routing, congestion control, network resource management, network security, anomaly
detection, and Quality of Service (QoS) and QoE management [8, 9, 10, 11, 12, 13, 14].
A common trend we find in the existing literature is that there is a systematic lack of
analysis on the multiple aspects which could lead to eventually re-use and reproduce,
generalize, or even apply the obtained results in real deployments, for the most part
of those papers. In a nutshell, most of what we have in ML for networking has been
about grabbing one particular algorithm and testing it on some particular networking
dataset – hopefully large, but in reality, of limited size and most probably of limited
representativeness of the studied problems.

Nevertheless, we are seeing today multiple papers applying more modern flavors of ML
to important networking problems. Some examples are deep learning [15, 16, 17], trans-
fer learning [18], and explainable AI [19] for network security, and deep reinforcement
learning for network management [20, 21, 22]. However, the speed of adoption of AI-
based solutions to current networking problems is extremely slow and we are still facing
a striking gap between the academic research efforts and the actual deployments of such
systems in operational environments.

One might wonder why the development of AI in the domain of networking is stalling
as compared to other applications. There are a couple of reasons worth mentioning:

Data complexity and diversity: the data coming from networks is very heteroge-
neous, as they are made up of a wide range of diverse technologies, applications,
services, devices, and end users. It is thus very difficult to learn something out of
the complex interactions between all those components. Eric Schmidt, former CEO
of Google, rightfully said “the Internet is the first thing that humanity has built
that humanity does not understand, the largest experiment in anarchy that we have
ever had”. The domains in which AI is very popular mostly rely on structured,
more predictable, and easy to understand data, as for instance images. With the
ever-growing number of devices connected to large-scale networks and the contin-
uous emergence of new applications and services running on them, the diversity
and unpredictability of networking data is constantly increasing.

Data dynamics: another challenge faced by networking-data analysts is the fact that
the data is dynamic and comes most often in the form of data streams, which need
to be rapidly and continuously processed. Moreover, these streams are subject to
concept drifts, i.e. changes in the underlying statistical properties, making their
accurate processing and estimation even more difficult.

Lack of learning generalization: due to the complexity and dynamics of the data, it
is very difficult to build ML models which generalize well to other environments,
i.e. environments including data different from the training data. In particular,
this means that models built and calibrated based on a certain network have a high

3

1.2. Contributions of the Thesis

risk of not working well in other networks, which is problematic in case a model
should be deployed in an operational environment.

Lack of ground truth: the methods of supervised learning, which are for now the
dominant for networking problems, require a large amount of labeled training data.
However, most networking datasets including “in the wild” data are unlabeled, as
labeling complex and dynamic data is very costly and error-prone. Another fac-
tor which makes building representative datasets difficult is the sensitive nature of
data points, as we need to preserve the users’ privacy. Finally, given the scale of In-
ternet networks, their massive volumes of data, and the multiplicity of operational
conditions, building such a representative dataset is a daunting task.

High costs of errors and lack of performance bounds: deploying an AI-based sys-
tem in operational environments comes with its fair share of risks, as the deploy-
ments can result in costly errors. This is especially risky for critical applications
such as the medical field or cybersecurity. Very often, Internet service providers
(ISPs) and network-equipment vendors are not willing to bear these risks. More-
over, being data-driven by nature, and prone to outliers, it is extremely challenging
to provide tight performance bounds on trained ML models. Robust learning is
paramount for networking. Finally, most ML models lack transparency, which
limits their application even further. If ISPs cannot understand why a particular
decision was taken by the model, they will not trust it and therefore not use it.

Learning in adversarial settings: the world of networking presents a lot of adver-
sarial examples. An obvious example is security, where an arms race is evident.
However, we also face this challenge for other areas such as traffic-identification
and classification tasks, because user applications do not want to be tracked by
intermediate entities, and therefore obfuscate and dynamically modify their func-
tioning to bypass monitoring and avoid traffic-engineering policies.

1.2 Contributions of the Thesis
In the context of this thesis, we aimed at contributing to AI4NETS. We leveraged
machine-learning techniques to build AI-based systems for QoE monitoring & mod-
eling and cybersecurity in dynamic, heterogeneous, and encrypted environments. In
particular, the thesis revolves around three main axes:

1. ML-based QoE modeling for video-streaming services: can we accurately
infer video QoE from network-layer traffic despite end-to-end encryption? To an-
swer this question, we investigated machine-learning approaches to infer key QoE
indicators (KQIs) from encrypted traffic, by exclusively relying on network-layer
features. We looked into ML-based video-QoE monitoring and modeling both on
mobile devices as well as on desktop machines. We explored two different methods
for QoE monitoring:

4

1.2. Contributions of the Thesis

a) Session-based QoE monitoring on mobile devices, i.e. we inferred KQIs after
the user watched a video within a dedicated application from network data
easily accessible through the Android API.

b) Stream-based QoE estimation on desktop, i.e. we estimated KQIs for each
1-second time slot while the user was watching a YouTube video, which is,
to the best of our knowledge, by now the finest time granularity for real-time
estimation of quality metrics from encrypted traffic.

We obtained very encouraging results for both scenarios.

2. ML-based Web-QoE monitoring: can we accurately infer Web QoE from net-
work measurements? Are models trained on data coming from a specific device
type applicable in a heterogeneous ecosystem? We applied ML methods to infer
key Web-QoE metrics from network data on different types of devices, more pre-
cisely on desktop machines, smartphones, and tablets. In particular, we focused
on the Real User Monitoring (RUM) SpeedIndex, a passive approximation of the
widely used SpeedIndex metric. In the context of this work, we tackled Web-QoE
estimation both as a regression and a classification task. Our results showed that
ML models trained on data coming exclusively from a single device type did not
generalize well to other devices. However, we found that models learning from
multi-device measurements yielded very promising inference accuracy. Besides
ML models based on packet-level features, we also explored ML models relying on
flow-level features, which are much more lightweight, and found that both types
of models performed similarly well.

3. ML-based detection of security breaches: can we rely on machine learn-
ing for security-related tasks on smartphones? In particular, how can we handle
scarce resources to uncover malicious application behavior and network attacks?
To investigate these questions, our research efforts for cybersecurity were two-fold.
First, we studied the problem of malware detection and application fingerprinting
in smartphones, using supervised machine learning. We obtained promising results
with lightweight decision trees. Next, we tackled the problem of data labeling. As
mentioned in Section 1.1, ground-truth data is a scarce resource and obtaining
accurately labeled data is a tedious task, especially if humans are involved. When
facing a fast incoming data stream, one might want to avoid having to label each
and every sample, but only the most beneficial ones (the definition of “beneficial”
can of course vary from one use case to another). One particular scenario where
this challenge appears is security: labeling a data point as malicious or benign can
be costly and time consuming; querying only the most interesting samples greatly
improves the whole process. We developed a framework based on stream-based
active learning coupled with reinforcement learning to wisely choose the train-
ing points from which ML models can learn while still being able to infer crucial
metrics with high accuracy.

5

1.3. Outline of the Thesis

1.3 Outline of the Thesis
The remainder of this thesis is divided into five chapters. More specifically, it is organized
as follows:

Chapter 2 “Background”: this chapter explains the basic notions underlying the top-
ics that are tackled in this thesis, namely video streaming, Web browsing, network
measurements, and machine learning.

Chapter 3 “Video-QoE Monitoring and Analysis”: this chapter presents the AI-
based frameworks we developed for video-QoE monitoring and modeling, in partic-
ular built on top of YoMoApp data [23] for session-based KQI inference on mobile
devices and integrated into ViCrypt [24] for real-time KQI estimation on desktop
machines. Both frameworks rely exclusively on lightweight network-layer features.
The chapter also describes the results we obtained for the two systems.

Chapter 4 “Web-QoE Monitoring and Analysis”: this chapter details our ML-
based Web-QoE-inference methodology. It explains how we collected our data
and its characteristics. Moreover, this chapter gives insights into the different ML
models we built to tackle the Web-QoE-estimation challenge and into the corre-
sponding results. For instance, we show the lack of cross-device generalization of
models and present a promising solution.

Chapter 5 “(Adaptive) Detection of Network Attacks”: this chapter introduces
BIGMOMAL and RAL. With BIGMOMAL – Big Data Analytics for Mobile Mal-
ware Detection –, we were able to perform application fingerprinting and malware
detection on Android phones with high accuracy. BIGMOMAL exclusively relies
on simple ML models and on lightweight features extracted directly on the users’
phone, in respect of their privacy. RAL – Reinforced stream-based Active Learning
–, is a system coupling reinforcement learning with stream-based active learning.
RAL allows ML models to wisely choose the most informative samples from which
they should learn. We show that the models still achieved high inference accuracy
for the considered estimation targets even though they were trained on a reduced
dataset. In this thesis, we applied RAL on security-related problems, even though
the system has been designed to work with any type of data coming in the form
of streams.

Chapter 6 “Conclusions and Perspectives”: in this chapter, we conclude this the-
sis and discuss perspectives and potential future work.

6

CHAPTER 2
Background

This thesis revolves around the interplay of video streaming, Web, and machine learning.
To ease the understanding of this manuscript, we provide background knowledge about
these topics in this chapter.

In Section 2.1, we explain how adaptive video streaming works and how to assess its
quality. In Section 2.2, we describe the basic functioning of a Web browser and the most
important performance-evaluation metrics. In Section 2.3, we review how to gather
network statistics. Lastly, in Section 2.4, we present an overview about ML concepts
and algorithms.

2.1 Video Streaming
In this section, we introduce the basic notions of video streaming. We can distinguish
between two types of streaming: progressive video streaming and adaptive video stream-
ing. For the sake of completeness, we briefly explain progressive streaming, but mainly
focus on adaptive streaming, as the video services we investigate in this thesis rely on
the adaptive paradigm.

2.1.1 Progressive Streaming
Progressive streaming is a very simple approach to deliver a video to the user. Indeed,
the video is streamed as single large file over the Internet. This implies that every user,
regardless of her Internet connection and her device, downloads the same file from the
video server. As a consequence, it might happen that the user is not satisfied with her
video experience because of connection problems while downloading a too large file or
because the video looks unnatural as it needs to be stretched/squashed to fit the device
screen, for instance.

7

2.1. Video Streaming

Tunnel Station
Louvre

Station
Champs-
Élysées

Tunnel Station
Louvre

Station
Champs-
Élysées

Stable
excellent

connection

Connection
improving

Connection
deteriorating

Figure 2.1: Example of HAS; the chunks are represented by the yellow blocks. When
riding the metro, the user’s Internet connection usually deteriorates. As soon as con-
nection issues appear, HAS adapts the streaming behavior by starting to send smaller,
lower-quality video chunks. The video quality progressively improves as soon as the
connection gets back to normal again.

2.1.2 HTTP Adaptive Streaming
With HTTP Adaptive Streaming (HAS), the streaming becomes, as its name suggests,
adaptive. In particular, in contrary to progressive streaming, HAS adapts the bitrate to
the connection conditions of the user by, for instance, transferring lower-quality video
chunks in case of connectivity issues. Figure 2.1 illustrates the purpose of HAS with an
example. The main goal of HAS is to optimize the user’s QoE.

Functioning

HAS requires the video provider to create multiple video files, each containing the video
in a different quality. Moreover, each of these videos will be divided into segments
having a fixed duration – typically between one and ten seconds. This allows the client
to request segments of different quality levels depending on her Internet connection.

To initiate a video session, the user first downloads a manifest file from the server.
This file contains information about the video and lists all its segments, the different
quality levels they are available in, and their URIs. After this first step, the user’s video
player determines with the help of a Rate Determination Algorithm (RDA) the quality
of the segments to download, based on multiple factors such as buffer level, state of the
Internet connection, or CPU load. Thanks to the different quality levels of the video

8

2.2. Web Browsing

and its segmentation, the RDA can easily adapt its video-chunk requests and avoid bad
user QoE.

The two most commonly used HAS implementations are MPEG Dynamic Adaptive
Streaming over HTTP (DASH) [25] and HLS [26]. Both approaches are very similar,
but do present some differences.

HLS has originally been developed by Apple exclusively for the iPhone. However, almost
every device is able to use this protocol today. HLS only plays videos encoded with the
H.264 or HEVC/H.265 codecs.

DASH is the most recent competitor of HLS. As opposed to Apple’s solution, DASH
is video-codec independent. It also allows the insertion of advertisements. Major video
services such as YouTube and Netflix rely on this protocol.

2.1.3 Video-Quality Assessment
There exist several ways to assess video quality. In this subsection, we briefly discuss one
metric, namely the ACR Mean Opinion Score (MOS) [27], and one standard inference
model for the MOS, the ITU-T P.1203 model [28].

The MOS score is a quality metric which was initially designed for the telephony domain.
The standard 5-level score ranges from bad (MOS = 1) to excellent (MOS = 5). As it is
a very intuitive score and easy to indicate (one mouse click is enough), it is a commonly
used evaluation metric when it comes to quality studies involving humans. Today, more
and more quality-evaluation algorithms try to map video statistics to a MOS score.

The ITU-T P.1203 model is a parametric model for audiovisual quality assessment of
adaptive video streaming. It is the first standard for inferring the Quality of Experi-
ence of HTTP Adaptive Streaming services. It is composed of three different modules:
the audio-quality-estimation module, video-quality-estimation module, and the quality-
integration module. It outputs a series of quality metrics, such as audio/video quality
per sampling interval (one second), and also a final video-session quality score, which is
a mapping of all the input information to a MOS score.

2.2 Web Browsing
In this section, we provide an introduction to the concepts underlying Web browsing.
The content displayed by browsers on the screen can be divided into two parts:

• a static part, described in the HTML file downloaded by the browser, that uses
external resources like CSS for the style and images. The time needed to complete
this part of rendering is mostly determined by network conditions.

• a dynamic part, obtained by executing JavaScript (JS) code on the client side. Its
execution speed is largely determined by the characteristics of the processor.

9

2.2. Web Browsing

2.2.1 Loading of a Webpage
We now explain the generic functioning of a modern Web browser by detailing how a
Webpage is displayed on a screen, starting with the query of the user.

When the user enters the URL of the Webpage to show, the browser must first retrieve
the HTML content of the page. It does so using the HTTP protocol (version 1.1 was
predominant in the last few years, but versions 2 and 3 become more and more common)
once the DNS record is resolved. Some Websites use many external resources and can
indicate, at the beginning of the HTML page, which domains should also be resolved by
DNS as soon as possible (as opposed to resolving when it becomes necessary), in order
to lower the total latency for loading the site.

While the HTML content is being downloaded, the browser can fetch resources that are
needed for the page (like stylesheets and images), in parallel (i.e. using several HTTP
connections). As the resources are being loaded, the browser can start rendering the
page and updating the view when new resources arrive or when changes are requested
by the JavaScript code. Finally, when all the elements of the page are completely loaded,
the browser fires the JavaScript onLoad event.

2.2.2 Rendering of a Webpage
To render an HTML page, the browser builds the corresponding DOM tree, a repre-
sentation that is amenable to many operations, notably alterations via JavaScript code.
This DOM tree only represents the data to render on a screen and has no notion of style.
For instance, the DOM tree indicates that the page contains a title and a table.

In parallel to the DOM creation, the browser loads the style information conveyed
through CSS. It is stored in a data structure analogous to the DOM, called the CS-
SOM. The CSSOM tree only represents style, independently of the actual contents of
the Webpage. For instance, the CSSOM memorizes the space between two paragraphs.

Once the DOM and CSSOM are built, styles from the CSSOM are applied onto the
DOM to determine how each element should be displayed. The resulting tree is called
the render tree; compared to the DOM tree, the render tree has information about colors
and dimensions.

Following this annotation step, the page is laid out: each element of the render tree
is given exact coordinates in the viewport, which corresponds to the way the page is
rendered on a screen of unlimited length (depending on the quantity of content to show).

Finally, a part of this viewport is painted on the screen, depending on the scrolling level
within the page.

The complete process is illustrated in Figure 2.2.

10

2.2. Web Browsing

HTML

JS

CSS

Parsed as

Alters
Render

tree

DOM

ViewportLaid out as Painted to

Screen
CSSOMParsed as

Figure 2.2: Page-rendering in a browser.

2.2.3 Web-QoE Assessment
In order to assess the user experience on the Web, we can use several performance
metrics. We briefly describe a couple of the most commonly used ones here:

Time to First Byte (TTFB): this is a metric commonly used to assess the respon-
siveness of a Website by checking how fast the server responds. In particular, the
TTFB indicates the time between the browser requesting a page and receiving the
first byte of the response.

Time to First Paint (TTFP): this metric is very similar to TTFB. It measures the
time until the first pixel is painted on the screen.

First Contentful Paint (FCP): it represents the time until the browser renders the
first element of the DOM tree.

Page Load Time (PLT): it indicates the time needed to fully load the Webpage (i.e.
until the onLoad event is fired).

Above the Fold Time (AFT): a major drawback of the PLT is that it considers the
whole Webpage, even though the user only sees a fraction of it on the screen (and
needs to scroll to see the remaining parts). Therefore, the AFT was introduced,
which indicates the time required to fully load the first sight encountered by the
user during her visit, i.e. without scrolling. The term “above the fold” comes from
the newspaper domain and designates the upper half of the front page containing
the top stories.

Time to Interactive (TTI): the time it takes the Webpage to become fully interac-
tive.

SpeedIndex (SI): this integral metric measures how quickly content is visually dis-
played while the page is loaded, by processing a video capture of the screen. The SI
is therefore particularly interesting for evaluating the perception of speed. Mathe-
matically, the SI can be expressed as

✁ onLoad
0 [1 − VCR(t)] dt where VCR represents

the visual-completion ratio over time. Figure 2.3 shows an example of both good

11

2.3. Network Measurements

Time0.0

0.2

0.4

0.6

0.8

1.0
Visual-completion ratio

SpeedIndex = 1083

(a) Good SpeedIndex (optimized Website).
Time0.0

0.2

0.4

0.6

0.8

1.0
Visual-completion ratio

SpeedIndex = 12038

(b) Bad SpeedIndex (non-optimized Website).

Figure 2.3: SpeedIndex illustration. For better user experience, visual elements should
load from the first seconds on.

and bad SpeedIndexes. It illustrates that it is better to have a Website whose
elements are displayed from the first second on.

Real User Monitoring SpeedIndex (RUMSI): the RUMSI is a passive approxi-
mation to the SI proposed in [29], and it is computed from the analysis of Webpage-
resource timings.

ObjectIndex (OI): this metric follows the same logic as the SI and has been introduced
in [30]. It represents how quickly objects are downloaded.

ByteIndex (BI): another metric which has been proposed in [30], and similar to SI
and OI. It shows how quickly the bytes are downloaded.

In Chapter 4, we mostly focus on RUMSI, but also analyze TTFP and PLT for different
devices.

2.3 Network Measurements
In this thesis, we analyze a significant amount of data coming from the network. In
this section, we therefore explain how we can actually measure the network and extract
relevant information about its state. There exist two kinds of measurements, namely
active and passive ones:

• By doing active measurements, we inject packets into the network based on which
we can derive network performance. This has a negative side effect, as we may
disturb the network traffic with these additional packets.

• By doing passive measurements, we monitor the network without injecting any
additional traffic. This type of monitoring is usually done by including some kind
of intelligence into the network devices to enable them to identify and record the
packets flowing through them. With passive measurements, users can monitor a
single point in the network, which can be very useful for debugging purposes.

12

2.3. Network Measurements

Client Server

ICMP echo request
ICMP echo reply

Figure 2.4: Ping overview.

We discuss both types for the sake of completeness, even though our work exclusively
relies on passive measurements.

2.3.1 Active Measurements
We briefly present the two most commonly used active-measurement tools, ping and
traceroute.

Ping

Ping [31] is a powerful tool built by Mike Muuss in 1983. Its purposes are twofold:
first of all, it checks whether a server is reachable, and, if so, it measures the round-
trip time (RTT) for messages sent from the client (i.e. the machine on which ping is
executed) to the server. To do so, ping relies on the Internet Control Message Protocol
(ICMP) [32]: it sends ICMP echo request packets (ping packets) towards the server and
waits for an echo reply (pong packets). This waiting time is the RTT. If the waiting time
is higher than a given threshold, ping considers the server as unreachable. Moreover,
ping provides additional information such as packet loss, the mean RTT, and errors that
occurred during its execution. The general working scheme of this tool is depicted in
Figure 2.4.

Traceroute

Traceroute [33] is a tool allowing to infer a route from a client to a server. It was designed
by Van Jacobson in 1989. Traceroute relies on UDP packets with a UDP destination
port number that is likely unused (i.e. no process is listening on this port) and whose
destination address is the one of the server. This tool makes use of the Time To Live
(TTL) field and the IP forwarding mechanism in an ingenious way.

The basic idea behind traceroute is to discover the routers on the path by receiving
ICMP time exceeded messages. Traceroute initially sends a UDP packet with a TTL
equal to one and iteratively increments this value until the destination has been reached

13

2.3. Network Measurements

Client Server

TTL = 1 TTL = 2 TTL = 3

TTL = N

ICMP TTL exceeded

ICMP port unreachable

Figure 2.5: Traceroute overview.

(or the TTL has exceeded a value defined by the user). The general working scheme of
traceroute is depicted in Figure 2.5.

In a nutshell, when the N th packet arrives at the N th router, this router observes that
the TTL has expired. According to the forwarding rules of the IP protocol, this router
discards the datagram, but sends an ICMP time exceeded message back to the client,
which can then use the received packet to extract the IP address of the given router. The
TTL of a datagram can thus be considered as its “life bar”: each encountered router
decreases it by one and, as soon as it is equal to zero, the packet “dies” (i.e. is not
forwarded anymore). This TTL mechanism therefore prevents a cycling packet from
wasting too many resources which could be useful for others. We have to point out that
not every router sends an ICMP message back to the source. In this case, a timeout will
be triggered and this hop will be indicated by a * instead of an IP address. When the
target has been reached, the source receives an ICMP port unreachable message instead
of a time exceeded message.

In addition, traceroute reports for each hop the RTT. Indeed, a timer is started when a
new packet is sent, which allows traceroute to determine the time elapsed between the
transmission of the UDP packet and the reception of the time exceeded/port unreachable
message.

2.3.2 Passive Measurements
We briefly introduce two approaches to carry out passive network measurements. In
particular, we explain the tcpdump and Wireshark tools as well as the Simple Network
Management Protocol (SNMP).

Tcpdump and Wireshark

Tcpdump and Wireshark are packet-capturing tools. They listen to all traffic on a given
network interface and have very similar functionalities. The user has the possibility
to apply filters on the incoming and outgoing packets, such as specifying the source
IP or recording only TCP flows. Only the matching packets are picked for potential

14

2.4. Machine Learning

further analysis. The main difference between the two software packages is the interface:
tcpdump only offers a command-line interface, while Wireshark also provides a graphical
one. Moreover, according to [34], Wireshark captures high-speed connections better than
tcpdump, which is very important in today’s ever faster Internet. In this thesis, we rely
on these kinds of tools for our measurements.

A similar tool is TStat[35], which does not simply capture packets, but gives insights
into the network state by computing statistics on the network and transport levels.

Simple Network Management Protocol

SNMP [36] is a protocol whose goal is to simplify management of network equipment.
One of its main features is the ability to gather statistics from switches, routers, firewalls,
and other network functions, which can be periodically retrieved on a centralized server,
the NMS (network management server). The available information depends on the
manufacturer of each device, even though some standardization happened for commonly
monitored fields. Typically measured values are the number of TCP flows witnessed
by the device, the number of undeliverable UDP datagrams, or the failure of a specific
network interface.

2.4 Machine Learning
In the context of this thesis, we heavily rely on machine learning (ML) to infer our
metrics of interests. We therefore introduce the basic ML concepts and algorithms in
this section. In particular, we will introduce several approaches, namely supervised,
unsupervised, active, and reinforcement learning. As we barely use the unsupervised
paradigm in our research, we mostly focus on the other ones.

2.4.1 Supervised Learning
Supervised ML is the most commonly used paradigm. The goal is to determine a function
that maps an input database, consisting of labeled data points, to an approximation of
the output. More formally, from a labeled learning database {(xi, yi)|i = 1 . . . N} with
xi ∈ X and yi ∈ Y , we want to conceive a function f : X → Y that minimizes the
expectation of some loss function.

We differentiate between classification and regression tasks. While we infer discrete
class labels when carrying out a classification task (for instance, an animal shown on a
picture), we estimate continuous quantities in the context of regression (the height of a
person, for example).

Algorithms

There exist a multitude of algorithms generating models that approximate the output
of learning databases. We briefly present the most well-known ones:

15

2.4. Machine Learning

A1

C1A2 A3

C2C1 C1C2

a12a11 a13

a22a21 a31 a32

Figure 2.6: Decision-tree example. A1, A2, and A3 are selected features, and aij are the
corresponding possible values of those features. C1 and C2 are the available classes.

Linear regression: a relatively simple statistical model. The inferred value ŷ is a linear
combination of the input-feature vector X containing F features: ŷ = θ1x1+θ2x2+
· · · + θF xF , where θ is the vector of parameters which we need to determine to
approximate the ground truth in the best possible way. Linear regression can be
easily adapted to classification problems. For instance, we can output ŷ = 1 if
θ1x1 + θ2x2 + · · · + θF xF > 0 and ŷ = 0 otherwise.

Decision tree [37]: a hierarchical structure with one feature-based decision rule per
node. In other words, at each node, the model asks a question about one specific
feature, and the answer decides the next question, until a leaf is reached. The
feature is selected using the notion of impurity, which is a measure of the class
dispersion (if all samples have the same class, the impurity is minimum). In par-
ticular, the feature for each node is decided by the level of impurity reduction that
is achieved splitting the dataset based on this feature. One very frequently used
impurity metric is the Gini index [38]. For continuous attributes, the split is made
at the cut-point value, also determined to reach the largest decrease in impurity.
The content of the leaf node determines the inferred output. Figure 2.6 illustrates
an example.

k-nearest neighbors [39]: an intuitive algorithm which computes the output of the
sample to label from the labels of the k closest training examples in the feature
space (k being a hyperparameter). An example is shown in Figure 2.7.

Naive Bayes [40]: a probabilistic classification algorithm which computes the most
likely output using the Bayes theorem assuming that all features are independent.

Support-vector machine [41]: an algorithm which computes a maximum-margin hy-
perplane to split the training samples into two classes. As SVMs are solely binary
classifiers, the multiclass implementation is done via the one-versus-all paradigm,
i.e., an SVM is built for each class and tests whether a sample belongs to that
particular class or another one. A regression version also exists, which is called
support-vector regression. An example of an SVM is depicted in Figure 2.8.

16

2.4. Machine Learning

Figure 2.7: k-nearest-neighbors example with k = 5. The labels of the 5 samples closest
to the orange point to consider (the 5 data points in the red circle) are combined to
compute the label of the point under consideration.

margin

margin

margin

Figure 2.8: SVM example.

y1
[1]

y2
[1]

y3
[1]

y1
[1]

y2
[1]

y3
[1]

x1

x2

x1

x2

y1
[2]

y2
[2]

y3
[2]

y1
[2]

y2
[2]

y3
[2]

y1
[3]

y2
[3]

y3
[3]

y1
[3]

y2
[3]

y3
[3]

ŷ

Input layer Hidden layers Output layer

Figure 2.9: Neural-network example.

Neural network [42]: an algorithm which is inspired by the way the human brain
works. The input data is transiting through a series of connected neurons until it
reaches the output layer. Each neuron computes a non-linear function of its inputs.
A network is composed of an input layer (the input features of the sample), the
output layer (the estimated output), and optionally one or several hidden layers
between the input and output layer. Each layer contains one ore several neurons.
An example topology is shown in Figure 2.9.

17

2.4. Machine Learning

Now that we have covered the most basic algorithms, we discuss more complex ap-
proaches. Indeed, different models can be combined using different approaches, such as
averaging, boosting, or stacking. These techniques are called ensemble methods, as more
than one model is involved:

Averaging [43]: techniques which build several models independently, potentially in
parallel. They obtain their outputs by averaging the outputs of the different models
in case of regression, or by carrying out majority voting in classification tasks.
There exist multiple averaging algorithms:

Bagging [44]: bagging stands for Bootstrap Aggregating. In the context of this
approach, we build multiple models derived from the same algorithm on top
of bootstraps, i.e. samples drawn from the original dataset with replacement.

Random forest [45]: an ensemble method which builds a set of decision trees,
each using only a randomly selected subset of samples (i.e. bootstraps) and a
random subset S of features for determining the best split at each node; the
cut point for each candidate feature in S is chosen optimally, as in a simple
decision tree.

Ensemble of randomized trees [46]: an ensemble method similar to random
forests, but with two main differences: (i) each extremely randomized tree
is trained on the whole training set, (ii) at each node, similar to a random
forest, the best feature is selected in a randomly chosen subset S, but the cut
point for each candidate feature in S is determined randomly instead of being
optimal.

Boosting [47]: in the context of boosting, we build good models based on poor ones.
As opposed to averaging, the models are built sequentially and not in parallel, as
the creation of a new model relies on information of the previous one. Similarly
to the averaging methods, the inferences of the all the models are aggregated to
obtain the output, however, the different learners’ outputs are weighted. AdaBoost,
Gradient Boosting, and XGBoost are well-known boosting algorithms:

AdaBoost [48]: AdaBoost stands for Adaptive Boosting. It starts by fitting a
very simple and weak model on the training set. It then sequentially creates
new models on the same dataset, but by putting more weight on the wrongly
classified samples, such that we obtain a simple yet accurate model at the
end of the training phase.

Gradient boosting [49]: as opposed to AdaBoost, gradient boosting does not
adapt the weights of the training samples for each new tree, but uses gradient
descent to adjust the new model’s parameters to minimize a loss function.

XGBoost [50]: XGBoost stands for eXtreme Gradient Boosting. XGBoost is an
optimized implementation of gradient boosting, using system optimization
and algorithm enhancements. This algorithm is a very widely (and success-
fully) used in Kaggle competitions.

18

2.4. Machine Learning

Stacking [51]: stacking stands for Stacked Generalization. With this protocol, we aim
at learning a model to learn the models. More precisely, we combine the inferences
of different so-called base ML models and consider these base outputs as new input
data for a meta-model, while still aiming at estimating the ground-truth value from
the original dataset. This meta-model thus learns how to best combine inferences
to improve accuracy.

Evaluation Strategies

We briefly discuss how we can evaluate ML models by explaining two commonly used
evaluation strategies:

Test-set method: this is the simplest assessment we can use. We divide our dataset
into two parts, with random sampling used to decide to which subset each sample
belongs to:

• The training set, on which we train/build the model,
• The test set, on which we let the model carry out inferences.

We finally analyze the quality of these estimations to get an idea about the perfor-
mance of the model. Very often, we use between 70%-80% of the data for training,
and the remaining part for testing.

k-fold cross-validation: when using this protocol, we randomly subdivide our dataset
into k parts. For each of these parts, we first learn a model on the data not in
the considered part, i.e. on the k − 1 other folds. We then evaluate the trained
model on the data reserved for testing. With this approach, we ensure that each
sample is used once for model assessment. Typically, we choose k = 5 or k = 10
depending on the size of the dataset.

Evaluation Metrics

We introduce the most widely used metrics for the evaluation of ML models. The
choice of the evaluation metric mostly depends on the type of the inference task (regres-
sion/classification) and on the application itself.

We denote by yi the ground truth for the ith sample and ŷi the estimated value for the
same sample.

For regression, the following metrics are very common:

Mean absolute error (MAE): 1
N · �N

i=1 |ŷi − yi|. The absolute value avoids that er-
rors with different signs cancel each other.

Root mean squared error (RMSE):
	

1
N · �N

i=1 |ŷi − yi|2. RMSE penalizes much
more the large errors than MAE.

19

2.4. Machine Learning

Mean relative error (MRE): 1
N · �N

i=1
|ŷi−yi|

yi
.

Pearson linear correlation coefficient (PLCC):
�N

i=1(ŷi−ŷ)·(yi−y)	�N

i=1(ŷi−ŷ)2·
	�N

i=1(yi−y)2
where

y = 1
N ·�N

i=1 yi. A PLCC value close to 1 indicates that the real and estimated val-
ues are strongly positively correlated, a negative value shows a negative correlation,
and a PLCC close to 0 indicates that there is no linear correlation.

For classification, a very basic measure is the overall accuracy, which is defined as the
ratio of correctly classified samples over the number of total data points. However, this
metric is not useful when dealing with a highly imbalanced dataset, and even misleading
in that case.

To retrieve more detailed information about the performance of an ML model, we intro-
duce the following notions for binary classification. Those can be easily generalized to
multi-class classification.

True positive/negative (TP/TN): a sample that has been correctly classified as
positive/negative respectively.

False positive/negative (FP/FN): a sample that has been wrongly classified as pos-
itive/negative respectively.

A handy tool to summarize the performance of a binary classifier is the confusion
matrix. It includes the four previously mentioned metrics, or the corresponding rates
defined as follows:

True positive rate (TPR): T P
T P +F N . It’s also called sensitivity or recall.

True negative rate (TNR): T N
T N+F P . It’s also called specificity.

False positive rate (FPR): F P
F P +T N .

False negative rate (FNR): F N
F N+T P .

Another very important metric is the precision, which is defined as T P
T P +F P . The

precision tells us what proportion of inferred positive samples are actually positive. This
score should be very high if false positives are a problem (such as for spam detection).

We also introduce the F1 score, which takes into account both the precision and recall.
This can be useful if there should be a balance between those two. It is defined as
2 · precision·recall

precision+recall .

As a last notion, we present receiver-operating-characteristic (ROC) curves. They
help understand the performance of binary-classification models at all classification

20

2.4. Machine Learning

thresholds and show the different trade-offs between the false-positive rates (FPRs)
and true-positive rates (TPRs). ROC curves are only defined for two classes; therefore,
when there are more than two classes, we plot one such curve for each class versus all the
other ones (“one versus all”). To summarize a ROC curve in a single number, we use the
area under the ROC curve (AUC). The machine-learning community often uses the
AUC statistic for model comparison, which is simple and informative, and provides more
reliable comparisons when dealing with imbalanced data. To explain the AUC, let us
consider a 2-class classification model f that first estimates a probability of a sample x
belonging to the class +, denoted by f(x), then uses this probability to make a decision.
If x+ is a random sample of the class + and x− another random sample of the class −,
the AUC is the probability that f(x+) > f(x−). The higher the AUC, the better the
discrimination of the model. The AUC also reveals how good the recall and precision of
a model for a specific target class are: higher AUC values reflect higher TPR values and
lower FPR values.

Feature Selection

In this subsection, we present feature selection, which is used to reduce the number of
features. Reducing the number of features when building models has several benefits: it
helps avoid overfitting and thus potentially increases the model’s performance, it makes
the model easier to interpret, and it might reduce the computation time.

We can group feature-selection approaches into three categories:

1. Filter techniques. With these, we calculate a relevance score for each feature
based on its relationship with the inference target and remove the ones with the
lowest scores from our feature set. To compute these scores, we can use simple
statistical methods such as the information gain, a chi-squared test, etc. Filter
techniques are completely independent from the considered supervised algorithm.

2. Embedded techniques. As the term already suggests, they are embedded within
the learning algorithms themselves. More precisely, the most relevant features are
selected during the training process. A good example is the decision tree, whose
training is based on ranking the different features based on their impurity reduction
to select the best one for the node splits. The final feature importance is calculated
as the sum over the nodes in which that feature is tested of the decreases in node
impurities weighted by the probability of reaching the corresponding nodes [38].
For a forest, the resulting variable importances are the averages over all trees.

3. Wrapper techniques. With these methods, we evaluate subsets of features with
the model we want to use for training and use the one which maximizes its quality.
One example is Recursive Feature Elimination (RFE) [52]: the model is trained
n times, n being a hyperparameter fixed by the user, and, at each iteration, we
remove the weakest feature.

21

2.4. Machine Learning

2.4.2 Unsupervised Learning
As opposed to supervised learning, we do not provide the models with labeled data in
unsupervised learning. Instead, the aim is to discover patterns in the data, without any
guidance. In particular, the role of this domain of ML is threefold:

• to search for interesting groups of variables and/or samples (i.e. searching for
clusters)

• to detect anomalies

• to reduce the dimensionality of data, i.e. the transformation of high-dimensional
data into data fitting into a low-dimensional space, in such a way that the impor-
tant properties of the original data are preserved

For clustering, we can mention two important algorithms:

k-Means [53]: this is the simplest clustering algorithm. The number of clusters (k)
needs to be determined in advance. The algorithm starts by randomly selecting
k centers among the available data points. Each sample is then assigned to the
closest center (in terms of Euclidean distance, typically). Next, a new center
gets calculated for each cluster by computing the component-wise mean of all the
samples belonging to the same cluster. The samples get now reassigned to the
clusters with the new centers. These steps are repeated until the assignments do
not change anymore.

DBSCAN [54]: DBSCAN stands for Density-Based Spatial Clustering of Applications
with Noise. Unlike for k-means, we do not need to specify the number of clusters in
advance; this number is automatically detected by the algorithm using the notion
of density (an area is dense if it contains many data points). In a nutshell, the
algorithm proceeds by selecting a point arbitrarily and deciding whether it forms a
cluster with nearby points: if the distance to these other points is below a variable
threshold and if there are sufficiently many such points (this is another parameter
of the algorithm), they are considered part of the same cluster. The algorithm
stops as soon as all data points are either assigned to a cluster or decided to be
noise.

When it comes to anomaly detection, we briefly introduce two algorithms:

Isolation forest [55]: this algorithm behaves similarly to randomized trees, but at
each node, both the feature and the cut point are chosen randomly. The number
of nodes a sample needs to traverse to reach a leaf is the normality measure, such
that the fewer nodes a sample has to visit, the more abnormal it is. This is intuitive,
as outliers have unusual characteristics, and are thus rapidly distinguishable from
the normal samples.

22

2.4. Machine Learning

Local outlier factor [56]: an algorithm that relies on the concept of local density for
detecting outliers. The local density of a sample is estimated from the distance to
its k nearest neighbors. The algorithm compares the local densities of the given
sample and its k nearest neighbors and if a sample has a much lower density than
they do, it is considered as an outlier.

Finally, we present the most well-known algorithm for dimensionality reduction:

PCA [57]: PCA stands for Principal Component Analysis. In a nutshell, PCA allows
us to linearly transform a large set of variables into a smaller one that contains only
uncorrelated variables, without losing any important properties. To achieve this,
the algorithm maps the data into the user-specified number of dimensions, while
trying to preserve its variance as much as possible. There exist two equivalent
formulations to tackle this problem: the maximum-variance formulation to search
for directions that maximize the variance of the new data, and the minimum-error
formulation to minimize the reconstruction error of the new data.

2.4.3 Active Learning
Active learning (AL) is a variant of supervised learning where not all labels are known:
it is up to the active-learning algorithm to decide which labels are worth acquiring.
That choice can be carried out using different methods, like inference uncertainty, for
instance. This paradigm is especially useful when acquiring labeled data is expensive.
A good example is the domain of cybersecurity: determining whether an Android app
is malicious requires manual intervention of highly-skilled security researchers.

The main distinction in active-learning algorithms is the frequency at which new data
is obtained:

• In pool-based active learning, the whole dataset is available from the beginning,
with some samples labeled and others not; the algorithm must decide which labels
should be retrieved.

• In stream-based active learning, new data points are continuously flowing into
the system; the algorithm must decide, typically very quickly, whether a newly
arrived sample should be labeled.

As active learning is part of supervised learning, we still need a small set of labeled data
points for training. After this initial training, the model is free to choose the samples
among the unlabeled ones it wants to learn from.

2.4.4 Reinforcement Learning
Reinforcement learning (RL) is a very different learning paradigm, due to the central
importance of interactions with an environment [58]. Some interactions are beneficial

23

2.4. Machine Learning

Agent

Take action

Give reward
Give new state Environment

Figure 2.10: Interactions in RL.

and should be encouraged: they are generally associated with a positive reward; other
behaviors should be avoided and they thus generate lower rewards, potentially negative
ones (i.e. penalties).

Reinforcement-learning algorithms provide a way to build an agent which interacts with
the environment, with the goal of maximizing the total reward the agent gathers each
time it performs an action.

A couple of notions, besides the terms of agents and rewards, are important in reinforce-
ment learning:

Environment: it comprises everything outside the agent, typically the outside world;
for instance, the road for a self-driving car, or the computer network in which an
intelligent router is deployed.

State: the RL-driven agent measures the state of the environment before taking any
decision: a car that is on the edge of a cliff should not speed up (the state indicates
that the car is near the ledge), an intelligent router should strive to avoid sending
more packets into an already congested link (the state describes the congestion
level of the outside links).

Action: any action that the agent performs has the potential to influence the next
state of the environment (forwarding more packets into a congested link will only
worsen the blockage, for instance). The action to take is decided with the goal of
maximizing the overall reward over a large period of time: the agent is not forced
to take decisions that yield immediate rewards, but is instead encouraged to move
to states that are more likely to generate excellent rewards in the long term.

The interactions between the different parts are depicted in Figure 2.10.

A particular case in RL is the domain of bandit algorithms. They consider a simplified
version of the problem where the environment has only a single state, and the actions

24

2.4. Machine Learning

taken by the agent do not influence in any way this state. Bandits are typically eval-
uated using a metric called the regret, defined as the difference between the maximum
reward the agent can get from the environment on average and the actual reward it ob-
tained. The literature presents many examples of extremely efficient bandit algorithms
(as measured by the regret) for several scenarios, like multi-armed bandits [59], linear
bandits [60, 61], or linear contextual bandits [60, 62].

25

CHAPTER 3
Video-QoE Monitoring and

Analysis

Notice
Parts (text as well as figures, tables, and algorithms) of this chapter have already been
published in the following publications:

[J3] ViCrypt to the Rescue: Real-time, Machine Learning-Driven Video QoE Monitoring for En-
crypted Streaming Traffic
S. Wassermann, M. Seufert, P. Casas, G. Li, L. Kuang
IEEE Transactions on Network and Service Management, vol. 17, no. 4, pp. 2007-2023,
2020
DOI: 10.1109/TNSM.2020.3036497
© IEEE 2020

[W2] I See What You See: Real Time Prediction of Video Quality from Encrypted Streaming Traf-
fic
S. Wassermann, M. Seufert, P. Casas, L. Gang, K. Li
Workshop on QoE-based Analysis and Management of Data Communication Networks, Oc-
tober 2019
DOI: 10.1145/3349611.3355549

[C3] On the Analysis of YouTube QoE in Cellular Networks through In-Smartphone Measurements
S. Wassermann, P. Casas, M.Seufert, F. Wamser
Wireless and Mobile Networking Conference, September 2019*
DOI: 10.23919/WMNC.2019.8881828

[J1] Machine Learning Models for YouTube QoE and User Engagement Prediction in Smartphones
S. Wassermann, N. Wehner, P. Casas
ACM SIGMETRICS Performance Evaluation Review, vol. 46, no. 3, pp. 155-158, 2018
DOI: 10.1145/3308897.3308962

26

[C2] Beauty is in the Eye of the Smartphone Holder – A Data Driven Analysis of YouTube Mobile
QoE
N. Wehner, S. Wassermann, P. Casas, M. Seufert, F. Wamser
Conference on Network and Service Management, November 2018*

*Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this work owned by others
than IFIP must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

YoMoApp and the data- and feature-acquisition modules of ViCrypt have been de-
veloped by the researchers of the university of Würzburg. The paragraphs describing
those modules have been mostly written by this team, even though I edited them for
clarity (Sections 3.2.1, 3.3.1, 3.3.2 Dataset Acquisition, and 3.3.3). My work focused
on the data-analytics and machine-learning parts and I wrote the corresponding
sections.

Video streaming is the dominant application of today’s Internet. According to Sand-
vine’s Global Internet Phenomena Report [63], video streaming made up 61% of the
global Internet application download traffic in 2019. The same company found that
video streaming was very popular during the stay-at-home period in the context of the
COVID-19 pandemic in 2020 [64]: YouTube accounted for 15% of the global traffic and
Netflix 11%. Netflix, YouTube, and Amazon even decided to reduce the default playback
resolution to avoid a service breakdown during that time. Futuresource further predicts
that video viewing will represent more than 80% in 2022 [65].

As a consequence, ISPs strive to deliver a high video-streaming QoE, in order to satisfy
their clients and avoid customer churn. The intensifying competition among the different
ISPs is forcing them to integrate QoE into the core of their network-management sys-
tems, from network monitoring and reporting to traffic engineering. The goal of network
operators is not only to operate their networks efficiently, but also to avoid severe degra-
dations of the subjective experience. QoE measurements represent today a major source
of information to monitor, analyze and subsequently manage operational networks.

Traditionally, network-traffic monitoring has relied on Deep-Packet-Inspection (DPI)
techniques to analyze the performance of Internet services and applications. DPI ap-
proaches were particularly handy for video-streaming analysis, as investigating the pay-
load of the packets containing video information could be used to understand the status
of the video-player buffer [66, 67] and gave insight into the video-playback performance.
Unfortunately, ISPs can no longer use those methods as they have lost access to this
kind of information due to the deployment of TLS encryption.

Today, we are facing an additional challenge, the one of the ever growing number of
mobile devices. Most of the end users nowadays access the Internet via cellular networks
to consume contents, from Web browsing and video streaming to a plethora of novel
services offered through apps. Indeed, according to Ericsson, there were more than 6

27

3.1. Related Work

billion mobile broadband subscriptions globally in November 2020 [68]. The increase in
the volume and heterogeneity of contents consumed in cellular networks and on mobile
devices forces cellular-network ISPs to not only focus on the quality of their fixed-line
networks, but also on their cellular networks which come with their own issues, such as
user mobility.

In this chapter, we first dive into the related work done on QoE of adaptive video
streaming. We then present two systems for QoE monitoring:

1. YoMoApp, an Android application collecting session-based KQIs after a user watched
a YouTube video. We conceived an AI solution based on YoMoApp data for the
inference of session-based QoE metrics exclusively from network-level features.

2. ViCrypt, a platform retrieving QoE metrics in real time while a user is watching
a YouTube video on a desktop machine. An ML module allows the real-time
inference of those metrics from network statistics.

For both frameworks, we detail their functioning, the evaluations we conducted with
them, and the corresponding results we obtained. The last section concludes this work.

3.1 Related Work
In the past, video streaming mostly suffered from waiting times, namely stalling, caused
by re-buffering events [69, 70, 71], and also from initial delay, i.e. the time until the start
of the playback [72]. In the last years, these degradations have been partially mitigated
by adapting the video bitrate to the network conditions, using HTTP Adaptive Video
Streaming (HAS) or Adaptive Bitrate (ABR) streaming technologies. To operate HAS
video streaming, the video content must be available in multiple bitrates, i.e. quality
levels, and split into small segments or chunks, each containing a few seconds of playtime.
The client-side adaptation logic requests the next chunk of the video in an appropriate
bitrate, such that the initial delay is minimized, stalling is avoided, and the quality level
is maximized to best utilize the available bandwidth. The decisions of the adaptation
logic are typically based on the current bandwidth and/or buffer status [73, 74], but
might take into account other aspects, such as client characteristics or fairness among
competing clients [75]. The HAS streaming technology is adopted by a wide range of
applications and video content providers, such as YouTube, Netflix, and Amazon, and
has been standardized as MPEG-DASH in ISO/IEC 23009-1 [76].

Changing the video bitrate also means modifying the visual quality of the streamed video,
e.g., in terms of resolution, frame rate, or compression, which introduces an additional
impact on QoE. An interesting finding on the impact of HAS on QoE [77, 78, 79, 80]
is that, rather than quality changes, the most relevant metric to monitor is the fraction
of time during which the video is played out at a high visual quality: the higher this
fraction, the better the QoE. As a consequence, ISPs are highly interested in solutions

28

3.1. Related Work

to estimate video-resolution levels, which can serve to detect events when the played-
out quality level drops as soon as they happen, to take appropriate countermeasures.
For example, thinking towards a more proactive network-management paradigm, ISPs
would like to additionally estimate and predict the video bitrate to adjust the network
configuration in time. This could include appropriately shaping the allocated bandwidth
or selecting suitable routes for the streaming traffic, which would avoid further QoE
degradation.

In [81], authors presented YoMo, an in-device, application and DPI-based tool for
YouTube-QoE monitoring, capturing video-player activity and buffering conditions to
infer re-buffering events. In [67, 82, 66], they extended YoMo and its overall concept to
monitor YouTube QoE in cellular and fixed-line networks at scale, using DPI approaches.
Others [83, 84, 85] adopted similar in-application measurements for YouTube-QoE mon-
itoring, relying on application-side tools to directly collect KQIs such as playback delay,
re-buffering events, video resolution, or quality switches. Application-side monitoring
provides accurate measurements for QoE assessment, as these can be directly observed,
without the need of additional estimation or mapping approaches. As mobile Internet
access gets more and more important, there are also numerous tools which are developed
with the purpose of monitoring QoE in cellular networks and on smartphones, such as
Netalyzr [86] and Mobilyzer [87]. Smartphone-app QoE can be monitored with QoE
Doctor [88], an active-measurement tool analyzing both network- and application-layer
features. Other tools for measuring YouTube QoE in smartphones are introduced in [89]
and [90].

As already mentioned earlier, the trend towards end-to-end encryption makes it much
harder for network operators to have a good picture of the traffic of their customers.
It is no longer possible to rely on DPI to analyze the video data contained in each
packet and reconstruct the streaming process and the video buffer [67], or to intercept
and analyze segment requests. The encrypted stream of packets offers only very basic
information about the streaming process, such as packet sizes and inter-arrival times,
which brings ML-based approaches more and more to the center of the academic and
industrial attention. For example, in [2, 91, 92], authors apply different ML approaches
to estimate QoE-relevant metrics for YouTube by extracting features from the stream of
encrypted packets, generally using simple features such as packet sizes or throughput.
Similarly, authors in [93] follow a machine-learning-based analysis to infer QoE metrics
for YouTube streaming over cellular networks. Other papers propose to reconstruct
the evolution of the buffered video playtime [66], by analyzing the encrypted stream
of packets through heuristics and statistical modeling approaches [94]. In particular,
[95] considers the data in the form of TLS transactions to perform the considered QoE
inferences. In [96], authors present Prometheus, a system using machine-learning models
to infer the QoE of smartphone apps through passive network measurements.

29

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

3.2 Session-Based Mobile Video-QoE Monitoring and
Analysis

In this section, we present YoMoApp, an Android application allowing users to watch
YouTube videos in an embedded YouTube video player while collecting a rich set of
measurements such as traffic statistics and video-quality metrics like stalling events and
video-quality switches. We also detail the analyses we performed with this tool. The
contributions to the networking community are as follows:

• Presentation of a rich dataset: our dataset is very rich in terms of user diversity
and spans a long measurement period. It thus provides a unique insight into
mobile-end-user YouTube QoE.

• Mobile QoE modeling: we built ML models to infer crucial application-layer
QoE metrics exclusively relying on network-layer measurements collected through
YoMoApp.

• Comparison of QoE-assessment models: YoMoApp gives the user the possi-
bility to rate the quality of the session, which allows us to compare different QoE
models to real user feedback.

In Section 3.2.1, we describe the application, and in Section 3.2.2, we detail the dataset
collected with YoMoApp. Next, we use the YoMoApp dataset to carry out a temporal
analysis of YouTube performance in Section 3.2.3. In Section 3.2.4, we discuss and
compare different QoE models. As a last step, we infer key video-QoE metrics with
machine-learning models in Section 3.2.5.

3.2.1 YoMoApp – the YouTube Monitoring App
Note about adoption of text from co-authors: The text in Section 3.2.1 was mainly contributed by co-authors to the

joint paper [C3], even though I edited it for clarity.

YoMoApp [23] is an Android application which is freely available on the Google Play
Store and can be run both on smartphones and tablets. It provides a distributed moni-
toring platform for YouTube QoE, collecting user feedback in a crowd-sourced manner,
and passively measuring a large set of QoE-relevant KPIs at the player and network
side. Metrics such as stallings, initial playback delay, and video resolution are retrieved
at play time. YoMoApp additionally collects QoE feedback provided by the user, once
a video is fully watched or aborted. A simple questionnaire with multiple questions
allows the user to rate the QoE of the video session according to a standard 5-level
ACR MOS scale [27], ranging from bad (MOS = 1) to excellent (MOS = 5). Questions
include the user’s feedback on the quality of the video, the quality of the streaming, the
user’s opinion on the video content, as well as the service acceptability (yes/no). The
QoE-feedback questionnaire is presented to the user only if she wishes to provide such
feedback, which is specified at the YoMoApp starting time.

30

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

All YoMoApp measurements are periodically uploaded to a remote server, building a
comprehensive database of YouTube performance- and QoE-related measurements.

YoMoApp replicates the original YouTube mobile Website in functionality, design, and
video-playback performance. An Android WebView is embedded to display the YouTube
Website, using an HTML5 video element relying on adaptive-streaming technology for
the video playback. The monitoring is done at runtime via JavaScript, which queries
the HTML5 video element.

YoMoApp relies on JavaScript event listeners to monitor changes of the player state
(“playing”, “paused”, “buffering”, and “ended”, for instance), and the resolution of the
video element. The app monitors the current playback time and the buffered playtime
every second. Additionally, it retrieves metadata, as for example the YouTube video ID,
title, and duration of the watched video. The gathered data is then sent to and processed
by the application. As the usage of JavaScript is prone to inconsistencies and errors,
like missing/incorrect values or non-equidistant data queries, the data is post-processed
locally by YoMoApp.

Besides playback events, YoMoApp measures both network and context features. More-
over, it collects device features such as size of the screen, orientation, playback audio
volume, size of the player, and playing mode (“full screen”, for example). Lastly, the
application gathers network-traffic statistics such as per-second uploaded/downloaded
bytes, as well as information such as GPS-based location, cellular operator, ID of the
cell, Radio Access Technology (RAT), or strength of the signal. The current version of
YoMoApp extracts the session state on the user’s device, which could also be done in
the network, but this inference task is difficult in its own right and we leave it as future
work.

3.2.2 YoMoApp Dataset
In this subsection, we analyze the dataset retrieved with the help of YoMoApp. The
dataset spans five years, namely the period from 2014 to 2018. It includes more than
3,000 YouTube video sessions collected worldwide over 70 distinct cellular ISPs and
from more than 360 different users. These users were scattered throughout multiple
regions of the world, with most of them in Europe (Germany, France, Austria, and the
UK), but also with some residing in the US. The heat map in Figure 3.1 depicts the
geographical distribution of the recorded video sessions: they are distributed all over 58
different countries. About 38% of the measurements were carried out in Germany, 17%
in Greece, 9% in India, and 5% in France. Measurements gathered in other countries
represent a share equal or less than 3% each.

Figure 3.2 reports the accumulated number of YoMoApp measurements over time and
the cumulative number of unique devices, respectively. A surge of new users is clearly
observed from 2016 on, which comes as a consequence of a stronger advertisement of
YoMoApp performed by the researchers leading this project at that time and an increased
dissemination through different research communities and conferences. The numbers of

31

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

Figure 3.1: Distribution of the YoMoApp measurements worldwide.

streamed sessions, new users, and collected measurements have more than doubled since
January 2017. Interestingly, there were more than 900 new sessions during the first half
of 2018, largely exceeding the number of measurements monitored in 2017.

2014-0
6

2014-1
2

2015-0
6

2015-1
2

2016-0
6

2016-1
2

2017-0
6

2017-1
2

2018-0
6

Date

0

50

100

150

200

250

300

350

D
is

ti
n
c
t
de
vi
ce
s

(a) Cumulative number of devices.

2014-0
6

2014-1
2

2015-0
6

2015-1
2

2016-0
6

2016-1
2

2017-0
6

2017-1
2

2018-0
6

Date

0

500

1000

1500

2000

2500

3000

M
e
a
s
u
re

m
e
n
ts

(b) Cumulative number of video sessions.

Figure 3.2: Cumulative number of measurements and different devices over time.

3.2.3 Temporal YouTube QoE Analysis
We now study the evolution of the most important YouTube KQIs over time. In par-
ticular, we study the evolution of initial delays, number of stallings, stalling times, and
re-buffering ratios. Figure 3.3 depicts the empirical distribution of these metrics per
year. A first observation is that there is a clear enhancement of all QoE-related metrics
along time, 2018 being the year with the best performance in terms of initial playback
delays and re-buffering events.

32

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

0 5 10 15 20

Initial Delay [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Year

2014

2015

2016

2017

2018

(a) Initial delay.

0 1 2 3 4 5

Number of Stalling Events

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Year

2014

2015

2016

2017

2018

(b) Number of re-bufferings.

0 5 10 15 20

Total Stalling Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Year

2014

2015

2016

2017

2018

(c) Total stalling time.

0.0 0.1 0.2 0.3 0.4

Stalling Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Year

2014

2015

2016

2017

2018

(d) Stalling ratio.

Figure 3.3: Temporal evolution of the performance of YouTube mobile streaming in
terms of QoE-relevant KPIs.

About 90% of the sessions in 2018 have an associated initial delay below 5 seconds, and
we observe a similar fraction for videos streamed and displayed without stalling. On the
other hand, the initial delay for video sessions in 2016 was below 5 seconds for about
80% of the videos, and only 60% of the videos were played without re-buffering events.
Furthermore, more than 15% of the videos in 2016 suffered from a re-buffering ratio
higher than 10%, whereas this fraction falls to about 5% in 2017/2018.

We also show in Figure 3.4 that such an improvement is reflected by the QoE feedback
reported by the end users. In particular, this figure depicts the distribution of the
subjective MOS scores as provided by the users (Figure 3.4a) and an estimation of the
MOS scores, obtained by the ITU-T P.1203 model for adaptive video streaming [28]
(Figure 3.4b). As we can see, the users’ feedback is accurately captured by the P.1203
model. We focus on the QoE of the users regarding their opinion on the video-streaming
performance. As we can observe in Figure 3.4a, the users indicated MOS scores through
a continuous scale before 2017, and using a discrete scale from 2017 on to make the

33

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

interface more intuitive.

As already stated earlier in this subsection, the quality of YouTube streaming increased
significantly in the last two considered years. Indeed, in 2017 and 2018, we have more
than 80% of the videos rated with MOS scores equal or above 4, while this fraction had
a value between 40% to 60% in previous years.

Finding 1: YouTube QoE on mobile devices has improved over the past years.

1 2 3 4 5

Streaming Ratings

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Year

2015

2016

2017

2018

(a) Subjective ratings.

1 2 3 4 5

P.1203

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Year

2015

2016

2017

2018

(b) P.1203 scores.

Figure 3.4: Distribution of MOS scores per session.

The distribution of requested video qualities by the YoMoApp video player reveals that
the played-out video qualities varied much more back in 2014 and 2015 in contrast to the
period from 2016 to 2018, with a higher prevalence of higher quality levels as compared
to today. Figure 3.5a shows the distribution of the main quality levels per session
grouped per year. The YouTube streaming service has been evolving over time, not only
for the fixed-line network scenario, but also in mobile networks. When YouTube started
playing on mobile devices, the adaptive-streaming policy was less conservative and higher
quality levels would be requested in the adaptive-streaming mode. From 2016 onward,
the dominant video quality changed to 360p, which is a more conservative quality level,
imposing less bandwidth requirements. There are also videos with lower resolutions
like 144p or 240p, but almost no HD content was streamed within the last three years
with YoMoApp. This is perfectly aligned to previous findings on YouTube QoE in
smartphones [97], where the authors observed that lower vertical resolutions result in
the same subjective experience as higher resolutions when dealing with smartphones,
due to the small screen sizes. Thus, streaming HD content makes less sense and is less
efficient in mobile devices than lower qualities.

Thanks to this conservative behavior, it is also not surprising that the number of quality
switches observed within the last three analyzed years is significantly lower compared to

34

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

2014 and 2015. Figure 3.5b displays the distribution of the number of quality switches
per session. In more than 80% of the sessions, no quality switch could be observed for
the period of 2016 to 2018, meaning that the initial quality selected by YouTube was
matching the underlying network performance. In contrast, in 2014, only 43% of the
sessions showed no quality switch, around 53% observed one quality switch, and the
remaining sessions resulted in two or more quality switches.

Finding 2: YouTube mobile video distribution is more efficient today than in the
past.

2014 2015 2016 2017 2018

Year

0

20

40

60

80

100

Q
u
a
li
ty

 L
a
y
e
r

[%
] Unknown

144p
240p
360p
480p
720p
1080p

(a) Video-quality-level distribution.

0 1 2 3

Number of Quality Switches

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Year

2014

2015

2016

2017

2018

(b) Distribution of the number of switches.

Figure 3.5: Video-quality levels and quality switches.

As a last step, let’s take a look at the mobile technologies, in particular RAT, and user
engagement. For the RAT, we differentiate between 2G (GSM, EDGE), 3G (UMTS,
HSDPA), and 4G (LTE). RAT information started being collected only from 2016 on.
In 2016, 3G was the dominant RAT, with a prevalence of about 66% of all sessions with
cellular access. In 2017, the balance shifted and 4G became the dominant RAT with a
share of 59%. This dominance increased even more in 2018, where sessions with LTE
make up 90% of all streaming sessions with cellular access. Figure 3.6a depicts the dis-
tribution of the main RAT per session per year. As a consequence of the RAT evolution,
we observe better network performance over time. For example, Figure 3.6b shows the
distribution of the maximum download throughput achieved by YoMoApp video sessions
before and after December 2016. The average maximum download throughput increased
from about 2 Mbps to more than 10 Mbps, and the median has also increased from about
600 kbps to 1 Mbps.

User engagement is defined as the fraction of the total video length a user watched
before the video was aborted or the video ended (100% user engagement). Figure 3.7

35

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

reports the user-engagement distribution per year. YoMoApp started to measure the
user engagement only in 2015, we therefore have no results for 2014. Results show how
user engagement has systematically increased over time, and significantly in 2018: more
than 60% of the videos were watched completely and only 20% of the users aborted the
video at 20% or less of the video playback. This indicates that YoMoApp is more and
more being used as a standard video player. The increased user engagement can also be
explained by the improvement of the network performance in terms of higher downlink
throughputs. We note that video-duration averages and distributions are similar across
the different years, ruling out potential bias on user engagement.

Finding 3: Mobile network technology and performance have also improved,
potentially resulting in increased user engagement.

2016 2017 2018

Year

0

20

40

60

80

100

R
A

T
 [

%
]

GSM/EDGE
UMTS/HSDPA
LTE

(a) Radio Access Technology (RAT).

0 500 1000 1500 2000 2500

max downlink throughput [kbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

2016 and before

2017 and after

(b) Maximum downlink throughput.

Figure 3.6: Radio access technology and video download throughput.

0.0 0.2 0.4 0.6 0.8 1.0

User Engagement

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Year

2015

2016

2017

2018

Figure 3.7: Evolution of user engagement.

36

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

3.2.4 QoE Modeling and Assessment
In this subsection, we focus on the problem of YouTube-QoE modeling and assessment,
calibrating different YouTube QoE models available in the literature as well as standard-
ized models – in particular, the ITU-T P.1203 model.

As already observed in Section 3.2.3, the subjective MOS ratings obtained from the users
are accurately modeled with the P.1203 model.

Besides the application of the P.1203 model, we additionally investigate simpler QoE
models available in the literature [98, 99]. These models are of exponential nature,
under the form

f (α, β, γ, δ, L, N) = α · e−(β·L+γ)·N + δ

where α, β, γ, and δ are parameters that need to be calibrated using the specific dataset
being analyzed, and L and N correspond to the average stalling length and number of
stallings respectively. We take a simple manual calibration approach to set α = 4 and
δ = 1 to be within the MOS range. In particular, we want the values of f to be close to
1 (i.e. bad quality) when we are faced with numerous and/or long stallings and close to
5 in case the playback runs smoothly. We apply non-linear-least-squares regression to
set the other parameters.

Another family of models we look at are referred to as simple additive QoE models,
which are expressed as a linear combination of individual univariate models:

Q (x1, . . . , xn) =
n

i=1
wi · Qi (xi)

where weights wi are greater or equal to 0, �n
i=1 wi = 1, and Qi (xi) is of exponential

nature just as f , but takes into account only a single QoE metric xi [99]. We rely again
on non-linear-least-squares regression to determine the values of the parameters to tune.
Our evaluation revealed that the additive QoE model expressed as

0.49 ·
�
4 · e−0.14·#stallings + 1

�
+ 0.17 ·

�
4 · e−47.7·initialDelay + 1

�
+ 0.34 ·

�
4 · e−0.44·#qualitySwitches + 1

�
is the one which fits best the data.

Figure 3.8 depicts two scatter plots reporting the modeled MOS scores vs. the actual
user subjective feedback. Figure 3.8a reports the results for the P.1203 model, whereas
Figure 3.8b considers the best model out of the two tested ones [98, 99], which corre-
sponds to the additive QoE model. In both cases, we observe that both QoE models
tend to overestimate the actual QoE ratings reported by the users. This suggests that
users might be actually more annoyed than what one could perceive by directly using
these QoE models in practice.

Lastly, Figure 3.9 depicts the linear correlations observed between both the subjective
ratings and the P.1203 estimations and application-layer metrics such as stalling, initial

37

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Subjective Rating

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P
1
2
0
3

(a) P.1203 vs. subjective ratings.

1 1.5 2 2.5 3 3.5 4 4.5 5
Subjective Rating

1

1.5

2

2.5

3

3.5

4

4.5

5

A
dd

iti
ve

 Q
oE

 M
od

el

(b) Additive QoE model vs. user feedback.

Figure 3.8: Modeled MOS scores vs. actual user feedback.

Figure 3.9: Linear correlations – subjective ratings and P.1203.

delay, quality switches, and up to user engagement. While the correlations tend to be
rather low, there is a clear negative impact of stalling duration, initial delay, and number
of stallings on both QoE values (feedback and P.1203), as observed in past studies.

3.2.5 QoE Inference Through Machine Learning
As a last study, we focus on the inference of QoE-relevant metrics which are normally
measured directly by YoMoApp, but assuming that we only have access to the mo-
bile devices’ general network-level measurements, available through the Android APIs.
The rationale is that we would like to monitor YouTube mobile KQIs such as initial
delay, stalling, and quality switches, but without using an application like YoMoApp.
These estimators could be applied in a more generic mobile-device-based monitoring

38

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

system, where users would not be forced to run an app with an embedded player such as
YoMoApp to measure relevant KPIs, and where such KPIs could be actually estimated
for any user watching YouTube videos on her device, independently of the YouTube
player being used. We do not take into account the hardware used for streaming (e.g.,
the video-decoding performance of the device) and focus on the network layer. Indeed,
a previous study [100] showed that the hardware of the smartphone is not a strong
predictor of the user QoE.

0 1 2 3 4 5 6 7 8 9 10
FPR (%)

0
10
20
30
40
50
60
70
80
90

100

TP
R

 (%
)

ID < 4s
ID > 4s

(a) Initial delay (ID).

0 1 2 3 4 5 6 7 8 9 10
FPR (%)

0
10
20
30
40
50
60
70
80
90

100

TP
R

 (%
)

#QS = 0
#QS > 0

(b) Number of quality switches (QS).

0 1 2 3 4 5 6 7 8 9 10
FPR (%)

0
10
20
30
40
50
60
70
80
90

100

TP
R

 (%
)

no stalling
NS = 1 or 2
NS > 2

(c) Number of stallings (NS).

0 1 2 3 4 5 6 7 8 9 10
FPR (%)

0
10
20
30
40
50
60
70
80
90

100

TP
R

 (%
)

no stalling
RR < 10%
RR > 10%

(d) Stalling ratio (RR).

Figure 3.10: QoE-metrics estimation performance. ROC (one-versus-all) curves highlight
high recall for the considered classes against the other ones.

We tackle the inference of four key video-QoE metrics. We build estimators using ML
models, treating each of the four problems as a classification task, where targets are
discretized. The reason why we choose to address our inference tasks as classification
problems is that ISPs are more interested in the overall performance of their services

39

3.2. Session-Based Mobile Video-QoE Monitoring and Analysis

than in exact numbers, i.e. want to mainly know whether a given KPI is above/below a
certain threshold or not. The four classification targets are as follows:

1. Initial delays: whether initial delays (ID) are above or below a pre-defined QoE-
relevant threshold. Based on previous work on initial delay tolerance [101], we set
this value to four seconds; 77% of the sessions in our dataset have an ID below
four seconds.

2. Video-quality switch: whether a video-quality switch (QS) has occurred during
the session or not; more than 80% of the sessions did not experience any quality
switches.

3. Stalling event: the number of stalling events (NS), grouped into three classes:

• Zero stalling: 85% of the sessions.
• Mild stalling: one or two stalling events; 10% of the sessions.
• Severe stalling: more than two stallings; 5% of the sessions.

4. Re-buffering rate: the stalling frequency or re-buffering rate (RR), considering
again three classes:

• Stalling-free: 85% of the sessions.
• Mild stalling: stalling events occurred and lasted for less than 10% of the

total duration of the video session; 10% of the sessions.
• Severe stalling: stallings occurred for more than 10% of the whole session;

5% of the sessions.

For each metric, we train and evaluate a random-forest model with 10 trees through
10-fold cross-validation. We rely on simple bootstrapping techniques to balance classes
for learning purposes. For the inference, we use the network-layer features captured by
YoMoApp, which can actually be measured by simply accessing the Android developer
APIs. The full feature set encompasses 275 features (see complete list in Appendix A),
including information about the received signal strength, the number of handovers, the
number of network switches, and multiple statistics about the incoming and outgoing
traffic, aggregated at different time windows of 1, 5, 10, 30, and 60 seconds. The traffic
is measured on three different levels: the total traffic transmitted/received by the de-
vice, the traffic captured over the mobile network, and the traffic sent/received by the
application itself.

Figure 3.10 reports the obtained results for the inference of the four KQIs in terms of
ROC curves. The curves are interesting as they show the trade-offs between TPRs and
FPRs. Our results are fairly accurate for the four estimation targets, achieving good
classification rates for most of the classes. For example, the initial-delay discrimination
as well as the quality-switching detection can be done with a false positive rate below 5%

40

3.3. Stream-based Video-Quality-Metric Inference

for more than 90% of the sessions. Results are even better when inferring the re-buffering
ratio, with an almost perfect performance for detecting bad-quality sessions with a high
stalling ratio. Inferring the number of stalling events is clearly more challenging than
that of the other three targets.

We use feature-selection techniques to identify the most relevant features for each esti-
mation target. In particular, we rely on an embedded approach within a 10-tree random
forest. We find that about 30 features out of the 275 are needed to obtain accura-
cies highly similar to the ones achieved with the full feature set using the same type
of model. In particular, features derived from the received and transmitted traffic are
very important. Indeed, statistics about the traffic generated by the application itself
and by the device are among the top features, including metrics describing the variation
of the throughput across multiple time-window lengths. Metrics related to changes in
the signal strength are also among the selected features. Interestingly, the number of
handovers does not seem to play an important role for the QoE-metrics inference in our
case.

3.3 Stream-based Video-Quality-Metric Inference
With YoMoApp, we focused solely on session-based QoE estimations, we now go one
step further and infer video-quality metrics in real time. In this section, we present
ViCrypt, an ML-driven monitoring solution able to infer the most important KQIs for
HAS, namely stalling, initial delay, video resolution, and average video bitrate. The
contributions to the QoE community are as follows:

• Fine-grained, real-time operation: ViCrypt estimates the most important
KQIs, i.e., initial delay, stalling, and visual quality, as well as the video bitrate
in real time during the streaming of a video session with a fine-grained temporal
resolution of just one second. To the best of our knowledge, this is the smallest
granularity proposed so far in the literature, enabling quick anomaly detection and
troubleshooting approaches, as well as proactive traffic management.

• Stream-based feature computation in constant memory without requir-
ing chunk detection: different from all previously presented proposals, ViCrypt
continuously extracts features from the encrypted stream of packets in a stream-like
manner, using a bounded and low memory footprint. This enables the execution
of ViCrypt on top of memory-constrained hardware, such as home routers, which
are nowadays the preferred devices for conducting end-customer monitoring by
major vendors. Indeed, ViCrypt targets the monitoring of video-streaming QoE
from devices installed near the end user, which do not necessarily belong to the
ISP – but to the vendor – and where traffic load enables real-time monitoring with
limited hardware. ViCrypt features are based on packet-level statistics and their
computation does not require chunk-detection mechanisms, removing the extra
overheads and errors introduced by such a detection step.

41

3.3. Stream-based Video-Quality-Metric Inference

• Fine-grained estimation: ViCrypt tackles substantially more precise estimation
tasks than previous work [2, 102]. In fact, ViCrypt estimates the six most com-
mon different video-resolution classes – 144p, 240p, 360p, 480p, 720p, and 1080p
– instead of discriminating between low and high resolution. In addition, it pro-
vides a continuous estimation of the average video bitrate by relying on regression
techniques.

• Extensive ML-model benchmarking: also unlike previous work, we devote a
significant part of this study to benchmark different ML algorithms and evaluate
their performance using different sets of inputs, carefully engineered by feature-
selection approaches to limit the quantity of required input data for proper execu-
tion.

• Empirical validation over a heterogeneous YouTube dataset: last but not
least, we show that ViCrypt performs accurately under a very heterogeneous set of
scenarios. For this, we empirically tested the system over a large dataset of more
than 15,000 streaming sessions of different YouTube videos. The dataset covers dif-
ferent access technologies (WiFi and LTE), transport protocols (QUIC and TCP),
bandwidth configurations, players, and devices (browser player in laptops and na-
tive YouTube application in smartphones). Measurements were collected at four
different ISPs in four different EU countries. This is an additional advantage over
the state of the art, where proposals are generally validated using fewer or less
representative scenarios.

In Section 3.3.1, we give an overview of ViCrypt and compare it to the state of the
art. In Section 3.3.2, we present the dataset we collected in the context of this study.
In Section 3.3.3, we detail the features used by ViCrypt for the QoE estimations. In
Section 3.3.4, we introduce the machine-learning models we use in our benchmarking.
In Section 3.3.5, we evaluate the different ML models and report the results. As a next
step, in Section 3.3.6, we investigate which features are the most important ones for
the considered QoE metrics. Finally, in Section 3.3.7, we run ViCrypt on two different
machines and observe its running times.

3.3.1 Introducing ViCrypt
Note about adoption of text from co-authors: The text in Section 3.3.1 was mainly contributed by co-authors to the

joint paper [J3], even though I edited it for clarity.

In this subsection, we present ViCrypt [24], an ML-driven monitoring solution capable
of estimating and continuously tracking the most relevant KQIs for HAS, in real time,
and using input features derived from raw network-traffic measurements. As it has been
shown in previous work [102, 93, 3, 2, 103, 104, 105], it is possible to extract features
from the (encrypted) stream of packets which are strongly correlated with different
QoE-relevant metrics. The targeted KQIs include stallings, initial playback delay, video
resolution, and average video bitrate. To do so, ViCrypt analyzes ongoing streaming

42

3.3. Stream-based Video-Quality-Metric Inference

sessions using fine-grained time slots of 1-second length, computing multiple lightweight,
statistical features from the video traffic in a stream-based fashion. At the design phase
of ViCrypt, we tested similar temporal resolutions – up to 5 seconds – without resulting
in significant changes in performance, yet loosing monitoring resolution. Besides per-
time-slot features, ViCrypt additionally computes features for two different temporal
aggregations of past slots:

1. A short-term memory capturing the last t slots, also called trend windows.

2. A long-term memory, aggregating all time slots since the start of the video session,
also called session windows.

At the end of each 1-second time slot, all these described features are fed into ML models,
which estimate the video resolution, average bitrate, and stalling of this slot. Capturing
statistics at different time scales is very beneficial, as some quality degradations build up
in a few time slots or even instantly, while others are the result of longer-term phenomena.

ViCrypt provides fine-grained estimations, either by building classification models with
many quality classes – such as for video-resolution analysis – or by building regression
models – as for video-bitrate analysis, for instance. Such a combined fine-grained tempo-
ral scope and estimation resolution allows ViCrypt to provide better and sharper insights
into video HAS QoE than other solutions.

The two most similar approaches to ViCrypt are Requet [3] and the system presented
in [2]. ViCrypt improves on both in multiple aspects:

1. While both approaches claim to be real-time, there is no evaluation of the compu-
tational costs required during the feature-extraction procedures, questioning their
claims; in addition, for some of the targets, Requet has a temporal resolution
based on chunk lengths (typically several seconds of a video), and [2] operates at
a 10-second time scale, both significantly higher than for ViCrypt. This impacts
their usability in practice for critical real-time monitoring applications, such as
troubleshooting.

2. While Requet also provides the same fine-grained classes for estimation of video
resolution as ViCrypt, estimations in [2] are coarser-grained, with just a few classes.
Moreover, video bitrate, which is especially relevant for ISPs, is not inferred by
their systems.

3. While ViCrypt operates directly on the stream of packets at the network and trans-
port layers, Requet requires chunk-detection mechanisms to extract chunk-based
features, which is error-prone and introduces additional delays and complexities.

Other relevant differences between our study and the previous studies presented in [3]
and [2] are reported in Table 3.1; it offers a comprehensive overview on the properties of

43

3.3. Stream-based Video-Quality-Metric Inference

ViCrypt Requet INFOCOM’18[2]

KQI estimation

target

Initial delay (# classes) ✓ (continuous) ✗ ✓ (binary)

Stalling (# classes)
✓ (binary detection /

continuous estimation)
✓ (binary detection) ✓ (binary detection)

Resolution (# classes)
✓ (6 levels, 144p -

1080p)

✓ (6 levels, 144p -

1080p)
✓(binary, ≷ 480p)

Bitrate (# classes) ✓ (continuous) ✗ ✗

Input features

Chunk detection

required

✗ ✓ ✗

features 208 127 226

Feature selection ✓ (down to 20 features) ✗ ✗

Network

monitoring

Real-time ✓ ✓ ✓

Temporal resolution 1 second
5 seconds or every

chunk
5 - 10 seconds

Feature computational

efficiency

✓ not tested not tested

Training /

evaluation data

Streaming service YouTube YouTube YouTube

video sessions 15,000+ 600 11,000

Access network WiFi & cellular WiFi not mentioned

ISPs | geo-location 4 ISPs | 4 EU countries 2 ISPs | US / India 1 ISP

Devices
laptop & smartphone

(native app)
laptop laptop

Time span 9 months in 2018 / 2019 6 months in 2018 4 months in 2017

Table 3.1: ViCrypt vs. Requet and INFOCOM’18 [2]. Overview of the properties of
the proposed solutions in terms of type and detail of the inferred KQIs, input features,
monitoring capabilities, and datasets used for training and testing purposes. © IEEE 2020

the proposed solutions in terms of type and detail of the inferred KQIs, input features,
monitoring capabilities, and datasets used for training and testing purposes.

3.3.2 YouTube Dataset
In this subsection, we first detail how we retrieved our dataset before diving into its
analysis.

Dataset Acquisition

Note about adoption of text from co-authors: The text in this section (Data Acquisition) was mainly contributed by

co-authors to the joint paper [J3], even though I edited it for clarity.

Over a period of several months from June 2018 to February 2019, we streamed and
recorded more than 15,000 YouTube video sessions, resulting in a total of more than
4,600,000 1-second time slots. For reference, Requet [3] collected measurements for only

44

3.3. Stream-based Video-Quality-Metric Inference

580 video sessions, resulting in a dataset almost 26 times smaller. As we describe next,
our dataset is not only large in terms of number of video sessions, but also very diverse.

For the video-streaming and data-collection tasks, we used a monitoring tool similar
to [106]. It relies on the Selenium browser-automation library to automatically start
a Chrome browser and randomly select a YouTube video to stream. Chrome was con-
figured such that all HTTP requests were logged and QUIC traffic was enabled. A
JavaScript monitoring script [23, 107] was injected into the Webpage to record the cur-
rent timestamp every 250 ms, as well as the current video playtime, buffered playtime,
video resolution, and player state.

We streamed the video sessions with very diverse network setups to reach a highly
generalizable model. Video sessions were collected at home (30% of the samples) and
over corporate WiFi networks (50%), as well as over LTE mobile networks (20%). For
60% of the sessions, a firewall was enabled, which blocked all QUIC traffic, such that
the videos were streamed via TCP. The maximum bandwidth was roughly 20 Mbps.
Additionally, some streaming sessions faced bandwidth limitations, which were applied
to limit both up- and downlink traffic. The bandwidth limitations were either constant
on a level of 300 kbps, 1 Mbps, 3 Mbps, or 5 Mbps, or they fluctuated between these levels
every one to five minutes. The number of video sessions per bandwidth configuration is
mostly balanced among the different categories, with a slightly higher number of sessions
streamed without bandwidth limitations. We collected video sessions from four different
geographic locations – France, Austria, Germany, and Italy – and from four different
ISPs.

Network traffic was collected for each video-streaming session, logging basic per-packet
information (timestamp, source IP address, source port, destination IP address, desti-
nation port, size), as well as DNS-lookup responses to obtain a mapping between IP
addresses and domain names. In each network-traffic trace, we identified YouTube video
flows based on domain names (googlevideo.com), and extracted features only for
these video flows, ignoring all non-YouTube traffic. Finally, we also included in our
measurements the recently published YouTube open dataset [108], which includes mea-
surements from the native, mobile Android YouTube application. While the share of
app measurements is limited compared to desktop devices (less than 10%), it contributes
to the heterogeneity of the learning data.

Finally, we did not consider the challenging issue of video-traffic detection and filtering in
this work, besides the aforementioned DNS-based identification approach. This is indeed
a complex issue, especially when considering multiple users sharing the same IP address
– e.g., NAT. Indeed, running multiple video sessions in parallel without disentanglement
would lead to wrong network statistics, as we would not be able to identify which pack-
ets belong to which videos, for instance. The specific video-traffic identification and
disentangling of concurrent video-streaming sessions is out of our scope.

45

3.3. Stream-based Video-Quality-Metric Inference

Dataset Analysis

Next, we provide some insight into the collected dataset. Figure 3.11 shows the character-
istics of the dataset as cumulative distribution functions (CDF), regarding the duration
of the video sessions, the video resolution, the average bitrate, the initial delay, and
stalling. Figure 3.11a shows that the recorded video sessions have durations between a
couple of seconds and 11 minutes. The average length of a video session is approximately
5 minutes.

YouTube typically indicates the video resolution as the number of vertical pixels, for
which standard quality classes exist. The video-resolution classes contained in the
dataset can be easily observed in Figure 3.11b, namely 144p, 240p, 360p, 480p, 720p, and
1080p. In some videos, the video resolution did not match exactly one of these classes,
and was therefore rounded to the nearest class. The distribution shows that the adapta-
tion logic of YouTube decided to stream videos mostly in 480p resolution, but also very
low resolutions occur (9% 144p, 6% 240p, 10% 360p). At the other end, HD resolution is
rare (18% 720p, 1% 1080p). We did not observe any resolutions above 1080p during the
measurements; thus, although supported by YouTube, we kept resolution classes to the
6 observed in the dataset – the same 6 resolution levels were considered by Requet [3].

Figure 3.11c depicts the distribution of the average bitrate. Here, the average bitrate
was obtained via the YouTube API, and represents the average bitrate of the full video
when streamed with a given quality level (itag). Thus, this estimation target is not
the momentary bitrate of the current slot, but rather the average bitrate of the quality
level that was downloaded in the current slot. The average video bitrate spreads from
approximately 20 kbps to about 4,600 kbps. Nearly all of the slots have an average
bitrate less than 3,000 kbps. The CDF increases steeply, almost uniformly, until roughly
900 kbps, which corresponds to 78% of the slots. Then, it increases slower only showing
a steep increase around 1,280 kbps, which is the average bitrate for 4% of the slots, and
thus seems to be a certain target bitrate for encoding.

Figure 3.11d shows the distribution of the initial delays. Nearly 50% of the sessions have
an initial delay of at most two seconds, and 75% of the sessions have a delay below five
seconds. Figures 3.11e and 3.11f depict the distribution of two stalling metrics, namely
the number of stallings per video session and the stalling ratio, i.e. the fraction of time
spent in stalling mode with respect to the full session duration. Stalling events are rare:
more than 90% of the videos do not stall at all, and when they do, the large majority
stalls only once. The stalling ratio suggests that most of the stalling events are short
with respect to the session duration: more than half of the observed stalling ratios are
at most 3%.

46

3.3. Stream-based Video-Quality-Metric Inference

0 1 2 3 4 5 6 7 8 9 10 11 12
Session duration (minutes)

0
10
20
30
40
50
60
70
80
90

100

C
D

F

(a) Video-session duration.

144 240 360 480 720 1080
Video resolution

0
10
20
30
40
50
60
70
80
90

100

C
D

F

(b) Video resolution.

0 500 1000 1500 2000 2500 3000
Average bitrate (kbps)

0
10
20
30
40
50
60
70
80
90

100

C
D

F

(c) Average video bitrate.

0 5 10 15 20 25 30 35 40 45
Initial delay (seconds)

0
10
20
30
40
50
60
70
80
90

100

C
D

F

(d) Initial delay.

0 1 2 3 4 5
Number of stallings (#)

0
10
20
30
40
50
60
70
80
90

100

C
D

F

(e) Number of stallings.

0 1 2 3 4 5 6 7 8
Stalling ratio (%)

0
10
20
30
40
50
60
70
80
90

100

C
D

F

(f) Stalling ratio.

Figure 3.11: Characterization of the YouTube dataset, composed of more than 15,000
video-streaming sessions. © IEEE 2020

47

3.3. Stream-based Video-Quality-Metric Inference

Ɵme
eǆtracƟon

Figure 3.12: ViCrypt session overview (video in red). We extract the session features
from the blue time slots, the trend features from the yellow ones, and the features about
the current state from the green one.

3.3.3 ViCrypt Feature Extraction
Note about adoption of text from co-authors: The text in Section 3.3.3 was mainly contributed by co-authors to the

joint paper [J3], even though I edited it for clarity.

We now detail how the feature extraction works within our framework. Figure 3.12
presents a general overview of the functioning of ViCrypt. ViCrypt operates in a time-
slotted, sequential manner, producing estimations for the selected KQIs at the end of
each elapsed time slot. Features are extracted and continuously updated for each new
packet on the stream of encrypted video traffic; at the end of each new time slot, different
ML models infer the corresponding KQI from the extracted features.

ViCrypt embeds temporal notions in the construction of features, using information not
only from the current time slot, but also from past slots. For memory and computational
efficiency, the past streaming information must be compressed and structured. This is
why ViCrypt keeps track of two additional macro windows, referred to as trend or short-
term memory window, and session or long-term memory window. The trend window
comprises the last t time slots in a sliding-window fashion, i.e., it contains all traffic of
the current time slot and the t−1 most recent slots. In the context of this study, ViCrypt
uses a trend size of t = 3, and thus the features of the trend window of each time slot are
computed from the traffic of the current slot and the previous two time slots. The value
of t is set using grid search on the evaluated dataset, but as opposed to the time-slot
length, the trend window length has a non-negligible impact on the model performance.
The proposed value provides the best results in terms of inference performance for the
analyzed data.

The second macro window is the session window, which includes all traffic of the session
so far observed, and its features are therefore extracted from the traffic in all previous
slots including the current time slot. All features of each current slot, trend window,
and session window are computed in an online, stream-based fashion, without the need
to store the previous traffic or detailed information about traffic packets observed in
the past. This technique significantly reduces the memory consumption of the feature-
extraction process – from linear to constant –, enabling a lightweight monitoring solution.

Next, we dig deeper into the feature-extraction process, elaborating on the different
computation steps.

48

3.3. Stream-based Video-Quality-Metric Inference

Table 3.2 briefly summarizes the features computed per time slot. All features are
derived from three basic, packet-level metrics, namely packet count, packet size, and
inter-arrival time (IAT). Different aggregations are done on these metrics, based on
individual time slots and aggregation windows – trend and session ones. Features are
computed for uplink, downlink, and total traffic. The rationale behind the computed
features is rather straightforward: adaptive video-streaming protocols employ closed-
loop algorithms to achieve synchronization and adaptability between server and video
player, thus traffic patterns on both uplink and downlink direction might reveal different
behaviors at the player side.

up/down/total Volume Throughput Distribution Protocol shares

packet size ✓ ✓ ✓ ✓

packet count ✓ ✓

packet IAT ✓ ✓

Table 3.2: ViCrypt features. All features are derived from three basic packet-level
metrics, namely packet count, packet size, and inter-arrival time (IAT), aggregated at
time-slot-based and window-based resolutions. © IEEE 2020

Firstly, we compute simple count-based features from the traffic observed in the time slot.
These consist of the number of total, uplink, and downlink packets, and the number of
transferred bytes (total, uplink, downlink). We also count the number and byte volume
of TCP and UDP packets, and compute the upload ratio, download ratio, TCP ratio,
and UDP ratio from these counters, for both number of packets and number of bytes.
Next, we extract time-based features. These include the time from the start of the slot
until the first packet, the time after the last packet until the slot ends, and the burst
duration, i.e., the time between the first packet and the last packet of the time slot.
All features are again computed for the total traffic, as well as for uplink and downlink
traffic. The average throughput of the slot (traffic volume divided by slot length) and
the burst throughput (traffic volume divided by burst duration) can be subsequently
derived for total, uplink, and downlink traffic. A covariance-based procedure is used to
obtain a linear regression for the cumulative traffic over time, in an online fashion [109].
Algorithm 3.1 stores the origin of the regression (start time of the time slot slotstart),
and keeps updates of the number of packets numP and the cumulative packet size cumsize,
to compute the regression for the cumulative traffic. In addition, it stores and updates
the current means of the abscissa (time, meanT) and ordinate (cumulative packet size,
meanS), the number of packets n, as well as the temporal variance varT and covariance
covTS. These are the only permanently stored variables, updated whenever a new packet
of size s arrives at time t.

The updates to these statistics only use three additional temporal variables: diffslot,
dt, and ds. At the end of the slot, we compute the final slope (slope) and intercept
(intercept) values from the regression curve. We perform two regressions for uplink

49

3.3. Stream-based Video-Quality-Metric Inference

and downlink traffic, and the slope and intercept of these regression curves are added as
features.

Finally, we extract multiple features derived from the empirical distribution of the traffic.
We use an algorithm based on [110], which can compute the first four statistical moments
of any distribution in an online fashion, i.e., the mean, the variance, the skewness, and
the kurtosis. We extend this algorithm to additionally output the standard deviation,
the coefficient of variation, as well as the minimal and the maximal values.

Here again, only few statistics are stored in memory and updated, namely the number
of packets n, the mean value mean, the second, third, and fourth centered statistical
moments (sdm2, sdm3, sdm4), which are defined as:

sdmi =
n

t=1
(xt − mean)i ∀i ∈ {2, 3, 4} ,

as well as the minimal (min) and the maximal (max) values. The update of these
statistics occurs whenever a new value x is observed for the corresponding statistic. The
approach is explained in Algorithm 3.2.

The computed updates allow to directly obtain the mean (mean), minimal (min), and
maximal (max) values. Moreover, the variance (var), standard deviation (std), coeffi-
cient of variation (cvar), skewness (skew), and kurtosis (kurt) of the distributions can
be computed as stated in Algorithm 3.3. These distribution-based features are computed
for the packet size and the IAT, for both uplink and downlink traffic.

This results in a total of 69 basic features for the traffic in a time slot, plus the same
69 basic features for each of the two additionally considered macro windows, namely
the trend and the session windows. Together with the sequence number of the current
time slot, which is also included as a feature, this sums up to a total of 208 features,
characterizing each slot of 1-second length (see complete list in Appendix B. To keep
track of the trend windows of size t, we have to maintain and update not only the
current trend window, but additionally t − 1 future trend windows. These future trend
windows are the windows which will become trend windows in 1, . . . , t − 1 windows, but
already have to consider and aggregate the traffic of the current time slot. In contrast,
only a single session window is needed, as it only needs to accumulate the full traffic
of the complete session. Thus, in total, t + 2 windows with 69 features each have to
be maintained and updated at all times, i.e., current time slot, trend window, session
window, and t − 1 future trend windows.

3.3.4 ML-Model Benchmarking
Solutions so far proposed in the state of the art such as [102, 93, 3, 2, 103, 104, 105] rely
mostly on random-forest models as the underlying ML approach. We provide further
insights into the performance of different types of models, benchmarking 11 different ML
models within ViCrypt. 9 out of these 11 models can be trained for both classification

50

3.3. Stream-based Video-Quality-Metric Inference

Algorithm 3.1 Online regression computation.
1: procedure computeRegression(s, t)
2: n ← n+1

3: cumsize ← cumsize + s

4: diffslot ← t − slotstart
5: dt ← diffslot − meanT
6: ds ← cumsize − meanS

7: varT ← varT +
n-1
n ·d2

t−varT
n

8: covTS ← covTS +
n-1
n ·dt·ds−covTS

n

9: meanT ← meanT + dt
n

10: meanS ← meanS + ds
n

11: slope ← covTS
varT

12: intercept ← meanS − slope · meanT
13: end procedure

Algorithm 3.2 Online update of distribution metrics, used for computation of distri-
bution features. The algorithm is executed when new values are observed.

1: procedure updateDistributions(x)
2: n ← n+1

3: dx ← x − mean

4: dn ← dx
n

5: mean ← mean + dn
6: sdm4 ← sdm4 +

�
dx dn (n-1)d2

n

�
n2 − 3n + 3

��
+

�
6d2

n sdm2
� − (4dn sdm3)

7: sdm3 ← sdm3 + [dx dn (n-1)dn (n-2)] − (3dn sdm2)
8: sdm2 ← sdm2 + [dx dn (n-1)]
9: if x < min then

10: min ← x

11: end if
12: if x > max then
13: max ← x

14: end if
15: end procedure

51

3.3. Stream-based Video-Quality-Metric Inference

Algorithm 3.3 Computation of distribution features.
1: procedure computeDistributionFeatures
2: var ← sdm2

n-1

3: std ← √
var

4: cvar ← std
mean

5: skew ← 	
n

sdm3
2

· sdm3
6: kurt ← n · sdm4

sdm2
2

− 3

7: end procedure

and regression tasks, while the other two are designed for anomaly detection, hence our
selection.

Most of the selected models also rely on decision trees, not only because of their proven
high accuracy and low computational cost, but also due to a series of embedded prop-
erties, such as model explainability, robustness to input noise, and embedded feature
selection. We consider both averaging and boosting ensembles based on trees, which
brings robustness, increased accuracy, and improved generalization of the trained model.
To increase training speed, reduce model complexity, and therefore reduce the chances
of overfitting, we favor small-sized ensembles, using 10 to 50 models.

Model hyperparameters are calibrated through standard grid-search optimization for the
stalling-inference task; we reuse the same hyperparameters for the two remaining tasks.
Finally, all evaluations throughout this study are done through 5-fold cross-validation.
When it comes to the classification tasks, we apply stratified cross-validation, i.e., we
ensure that the five folds preserve the percentage of samples for each class. The list of
benchmarked models includes:

• Decision tree (DT)

• Random forests with 10 trees (RF10)

• Adaboost using 50 trees (ADA)

• Ensemble with 10 extremely randomized trees (ERT10)

• Bagging with 10 trees (Bagging)

• Naive Bayes (Bayes)

• k-nearest neighbors with k = 5 (kNN)

• Neural network with three hidden layers (NN): the first layer containing 200 neu-
rons, the second 100 neurons, and the last 50 neurons. For each hidden layer, we
use the sigmoid function as the activation function, and for the output layer, we
use the softmax function.

52

3.3. Stream-based Video-Quality-Metric Inference

• Support-vector machine (SVM)

As stalling can be considered as an anomaly of the streaming process, we additionally
evaluate two anomaly-detection algorithms for stalling detection:

• Isolation forests with 10 trees (ISO10)

• Local outlier factor with the number of neighbors set to 20 (LOF)

When considering DT, RF10, and ERT10 models, and to counterbalance the impact of
imbalanced classes, we assign weights to each sample i of classi based on the occurrence
frequency of its class:

Wi = #samples
#classes·(#samples in classi)

This implies that the estimation errors for samples of rare or under-represented classes
are significantly penalized, which improves the estimation accuracy in theory for these
classes. We further exploit the fact that RF10, ERT10, Bagging, and kNN models can be
parallelized for speed improvement, and run them in a parallelized fashion. For NN, we
use TensorFlow on GPU, while we use the scikit-learn library for the remaining models.
The benchmark of the models is executed on a high-end desktop computer, equipped
with two Intel Xeon Silver 4116 processors including 12 physical cores each (a total of 48
virtual cores thanks to Intel HyperThreading), 128 GB of RAM, and a NVIDIA GeForce
RTX 2080 Ti graphics card (with 11 GB of VRAM).

3.3.5 ViCrypt in Action – Performance Evaluation
We now present the performance-evaluation results of ViCrypt for all the described KQIs.
We take the full set of 208 features as input, i.e., we do not explicitly consider feature-
selection approaches. We devote Section 3.3.6 to feature selection. For each of the
tested ML algorithms, we report performance metrics, as well as the total running time
for training and inference, i.e., the time needed to compute the 5-fold cross-validation on
the whole dataset. This helps better understand the practical trade-offs when it comes
to real-time analysis.

Stalling Estimation

As stalling is the most severe QoE degradation, our first goal is to estimate whether
the video is stalling or not. More precisely, for each 1-second time slot, ViCrypt infers
whether the video is being played or stalling; this is therefore a binary classification
problem. We consider only time slots which contain network traffic, and end up with
almost 1,283,000 samples.

The binary stalling-estimation results obtained for each of the time slots can be further
combined to obtain stalling metrics at a video-session level, such as the initial playback

53

3.3. Stream-based Video-Quality-Metric Inference

Accuracy (%) Recall (%) Precision (%) 5-CV time (min)
DT 96 64 68 57

RF10 97 55 88 3
ADA 95 29 61 154

ERT10 97 54 88 1
Bagging 97 65 87 63

Bayes 50 86 9 1
kNN 96 48 71 10
NN 94 0 0 600

SVM 84 62 21 36
ISO10 86 13 8 4
LOF 86 11 6 46

Table 3.3: Benchmarking of ML models for the stalling detection. To compute the overall
accuracy, the recall, and the precision, we consider the stalling class as the positive one.
© IEEE 2020

delay, the number of stalling events, and the stalling ratio – ratio of total stalling time to
total playback time. The initial delay is given by the number of slots inferred as stalling
at the start of the session. The number of consecutive slots with stalling is added to
the total stalling time in seconds. Thus, simply counting slots with their estimated
stalling status allows to obtain the initial delay, the number of stalling events, the total
stalling time, and the stalling ratio of the whole streaming session. The granularity
of the initial-delay and stalling-time estimation is limited by the time-slot length, one
second. Nevertheless, such a fine-grained resolution is sufficient for most monitoring use
cases.

We therefore present evaluation results for stalling at two different temporal granulari-
ties:

1. Per slot: binary stalling classification (stalling/no stalling).

2. Per session: continuous estimation of initial delay, number of stalling events, and
stalling ratio.

Table 3.3 summarizes the overall accuracy, recall, and precision for the stalling class per
model, as well as the overall cross-validation times. The recall indicates the percentage
of time slots of a given class for which ViCrypt correctly inferred the playback state. In
contrast, the precision for a given state expresses the proportion of the class estimations
which are correct. Results show that stalling detection is a challenging task, especially
due to the high imbalance of the data (cf. Figure 3.11e). Indeed, let us take the NN
model as example: the trained model was not able to identify a single stalling slot,
still achieving a high accuracy of 94.3%, due to the imbalance. This highlights that
the overall accuracy can be misleading with highly imbalanced data, and that it is

54

3.3. Stream-based Video-Quality-Metric Inference

particularly important to look in detail at recall and precision results. Here, we observe
that the tree-based models achieve a high precision of around 90% for most of them, but
only a recall of around 55%. Bagging is an exception, with a recall of 65%.

To dig deeper into these results, Figure 3.13 presents the confusion matrices for the
different models. We left out the confusion matrix of the neural network, due to its
poor performance as discussed above, and the ones for RF10 and LOF, as the matrices
are nearly identical to those of ERT10 and ISO10, respectively. The confusion matrices
underline once again that stalling detection is a rather difficult task. Surprisingly, Bayes
is the algorithm yielding the highest stalling-class accuracy (i.e., recall), achieving 86%.
However, its very poor precision turns the approach inapplicable. The outlier-detection
algorithms (ISO10 and LOF) also perform poorly for this estimation task, which might
indicate that the feature values do not deviate much between the stalling and no-stalling
classes.

ERT10 seems to be a good model choice for stalling detection: it runs very quickly and
reaches a decent recall-precision combination. Only Bagging achieves an overall better
performance, especially a higher recall, but at the cost of a much higher cross-validation
processing time of roughly one hour versus one minute for ERT10. Of course, as training
is usually done offline, this would in principle not be a limitation for Bagging. However,
if one would consider adaptive learning approaches, or applying the model in scenarios
with strong video-traffic variations, low training times become paramount.

As a final analysis for this model, we additionally try imbalance-correcting techniques,
such as SMOTE [111] and random oversampling of the majority class. When randomly
oversampling the stalling class, the results are highly similar to the ones without re-
balancing. With SMOTE, ERT10 achieves a much higher recall – almost 74% – but
the precision drops by 17 percentage points to 71%. Moreover, the running time gets
multiplied by 10, which is a significant drawback when speed is important.

We now explore the inference performance of ViCrypt for stalling metrics at the session
level. More precisely, we estimate the initial playback delay of the videos, the number of
stalling events, and the stalling ratio. Figure 3.14 shows the distribution of estimation
errors for the three considered targets. Regarding initial delay, ViCrypt perfectly infers
the real playback delay for about 40% of the video sessions, and achieves an error of at
most 2 seconds for 70% of the sessions. The number of stallings is perfectly estimated for
about 50% of the sessions, and an error of at most 2 stallings is realized for about 75%
of the sessions. The stalling ratio is perfectly estimated for about 60% of the sessions,
and the error is below 3% for more than 85% of the sessions. Errors related to stalling
estimation usually correspond to over-estimations, which is always preferred from the
point of view of ISPs, for the sake of safety margins and over-provisioning. Also, stalling
ratio has been the preferred metric in the state of the art when it comes to session-based
stalling estimation [93, 102], and our results are in line with or even better than the
state of the art [93, 102], even when dealing with such a strong imbalance in the data.

Finally, for visualization purposes, Figure 3.15 shows the real-time stalling estimation

55

3.3. Stream-based Video-Quality-Metric Inference

produced by ViCrypt for an exemplary YouTube video-streaming session, using ERT10
as underlying model. ViCrypt can track in real time the overall stalling pattern of the
video session, from the initial playback delay to the occurrence of stalling events.

0 20 40 60 80 100 120 140 160

Time slot

0

1

N
o
 s

ta
lli

n
g
 (

0
)

/
s
ta

lli
n
g
 (

1
) True stalling behavior

Inferred stalling behavior

Figure 3.15: Example of ViCrypt real-time stalling detection. © IEEE 2020

Video-Resolution Estimation

The video resolution is highly linked to the visual quality of the streamed video, and is
therefore a crucial QoE metric. The estimation of the resolution is treated as a multi-class
classification problem. The considered classes correspond to the typical YouTube video
resolutions: 144p, 240p, 360p, 480p, 720p, and 1080p. Thus, the classification problem
is based on six classes, which is substantially more precise than other approaches, e.g.,
[102, 2, 93]. After considering only time slots with a valid resolution and containing
traffic, we end up with a dataset including almost 1,160,000 time slots.

Accuracy (%) 5-CV time (minutes)
DT 92 43

RF10 92 2
ADA 68 125

ERT10 90 1
Bagging 95 37

Bayes 42 1
kNN 73 9
NN 58 507

SVM 54 194

Table 3.4: Benchmarking of different ML models for the resolution estimation. © IEEE

2020

56

3.3. Stream-based Video-Quality-Metric Inference

No stalling

Estimated label

Stalling

No stalling

True label

Stalling

98.2 1.8

35.7 64.3

(a) DT confusion matrix.

No stalling

Estimated label

Stalling

No stalling

True label

Stalling

98.9 1.1

71.0 29.0

(b) ADA confusion matrix.

No stalling

Estimated label

Stalling

No stalling

True label

Stalling

99.6 0.4

45.9 54.1

(c) ERT10 confusion matrix.

No stalling

Estimated label

Stalling

No stalling

True label

Stalling

99.4 0.6

35.2 64.8

(d) Bagging confusion matrix.

No stalling

Estimated label

Stalling

No stalling

True label

Stalling

98.7 1.3

52.1 47.9

(e) kNN confusion matrix.

No stalling

Estimated label

Stalling

No stalling

True label

Stalling

85.4 14.6

37.6 62.3

(f) SVM confusion matrix.

No stalling

Estimated label

Stalling

No stalling

True label

Stalling

45.6 54.4

14.2 85.8

(g) Bayes confusion matrix.

No stalling

Estimated label

Stalling

No stalling

True label

Stalling

90.2 9.8

86.9 13.1

(h) ISO10 confusion matrix.

Figure 3.13: Normalized confusion matrices obtained by the benchmarked ML models
for the estimation of stalling. The color scale ranges from dark red (poor accuracy) to
dark green (excellent accuracy). © IEEE 2020

57

3.3. Stream-based Video-Quality-Metric Inference

-200.0

0.1

0.2

0.3

0.4

-10 0 10 20
Error (inferred - ground truth) (s)

Fr
ac
tio
n
of
se
ss
io
ns

(a) Initial delay.

-200.0

0.1

0.2

0.3

0.4

0.5

-10 0 10 20
Error (inferred - ground truth) (#)

Fr
ac
tio
n
of
se
ss
io
ns

(b) Number of stallings.

-200.0

0.1

0.2

0.3

0.4

0.5

0.6

-10 0 10 20
Error (inferred - ground truth) (%)

Fr
ac
tio
n
of
se
ss
io
ns

(c) Stalling ratio.

Figure 3.14: Inference performance for session-based stalling metrics, using ERT10 as
the underlying model. © IEEE 2020

We report the accuracy achieved by the different models and the corresponding total
processing times for cross-validation in Table 3.4. Except for AdaBoost, all the tree-based
methods provide very high overall accuracy, above 90%. kNN also achieves encouraging
results, with an accuracy of 73%. The accuracy of Bayes is by far the worst, which is most
probably due to its underlying hypothesis that the different features are independent
from each other, which does not seem to be satisfied for the video resolution. NN
and SVM also yield disappointing results, especially when considering that they needed
significantly more time than the other models. Here, we can also verify the benefit of
parallelization: besides Bayes, the fastest algorithms are the parallelizable ones, which is
a non-negligible advantage for these models. For instance, RF10 and ERT10 were done
in at most two minutes, while ADA, NN, and SVM took several hours.

As the video-resolution classes are also strongly imbalanced (cf. Figure 3.11b), we take
a closer look at the per-class accuracy (i.e., recall) and precision. Results are depicted in
Figures 3.16 and 3.17. We left Bayes out of this analysis because of its poor performance.

Figure 3.16 reveals that the 480p class is accurately detected by all of the eight mod-

58

3.3. Stream-based Video-Quality-Metric Inference

els, with SVM being the worst with an accuracy below 70%. DT, RF10, ERT10, and
Bagging achieve a near perfect score for this video resolution. This comes as no real
surprise, as more than 50% of the time slots have a resolution of 480p. However, it is
interesting to note that most models accurately estimate the 144p class, even though it
is a significantly underrepresented class with only 9% of the slots having that resolution.
For all the models, these two classes are the ones that are the most accurately detected.
For instance, NN obtained an accuracy of more than 60% for 144p and more than 80%
for 480p, while for the other classes its accuracy is below 30%. For a couple of models,
and especially for ADA and NN, it was challenging to accurately classify the 240p and
360p resolutions; for NN, the accuracy for 360p is even close to 0%. In case of ADA and
NN, the two classes were very frequently detected as either 144p or 480p.

Figure 3.17 shows that the precision of the benchmarked models is similar to the recall:
it is highest for DT, RF10, ERT10, and Bagging (always higher than 80%), while it
is relatively low for ADA, NN, and SVM. Contrary to the recall, the precision is not
systematically high for the 144p and 480p classes. Overall, the per-class analysis gives
us interesting insights into the performance of the models and indicates that only DT,
RF10, ERT10, and Bagging provide consistently excellent estimation throughout all the
six video-resolution classes. For example, even though the total accuracy of kNN is
decent, it is mostly due to its performance for the 144p and 480p classes.

Results suggest that RF10 is the most appropriate model for the video-resolution esti-
mation task: this model is extremely lightweight, executes fast, and presents an excellent
performance, with a recall and precision close to or above 80% for each resolution class.
Similar to the stalling-inference results, Bagging is the best model in the benchmark,
with recall and precision close to or above 80% for all resolution classes, but using a
more complex underlying structure, as reflected by the cross-validation execution times.

Again, for visualization purposes, Figure 3.18 shows the real-time estimation and track-
ing of the video resolution produced by ViCrypt for an exemplary YouTube video-
streaming session using multiple resolution levels (720p, 360p, 480p, and 144p), using
RF10 as underlying model.

59

3.3. Stream-based Video-Quality-Metric Inference

(a) DT recall. (b) RF10 recall.

(c) ADA recall. (d) ERT10 recall.

(e) Bagging recall. (f) kNN recall.

(g) NN recall. (h) SVM recall.

Figure 3.16: Accuracy per class (i.e., recall) obtained by the benchmarked ML models
for the resolution estimation. The color scale ranges from dark red (poor recall) to dark
green (excellent recall). © IEEE 2020

60

3.3. Stream-based Video-Quality-Metric Inference

(a) DT precision. (b) RF10 precision.

(c) ADA precision. (d) ERT10 precision.

(e) Bagging precision. (f) kNN precision.

(g) NN precision. (h) SVM precision.

Figure 3.17: Precision per class obtained by the benchmarked ML models for the reso-
lution estimation. The color scale ranges from dark red (poor precision) to dark green
(excellent precision). © IEEE 2020

61

3.3. Stream-based Video-Quality-Metric Inference

0 50 100 150 200

Time slot

100

200

300

400

500

600

700

800

R
e

s
o

lu
ti
o

n

True resolution

Inferred resolution

Figure 3.18: Example of ViCrypt real-time video-resolution estimation. © IEEE 2020

Average-Bitrate Estimation

The last estimation target is the average video (encoding) bitrate, which is highly relevant
for proactive network management. ViCrypt infers the average video bitrate of the video
contents monitored at each 1-second time slot. As the bitrate is per-se continuous, the
estimation of the average bitrate is tackled as a regression task. Again, we consider only
those time slots with actual traffic and a valid average bitrate label, obtained from the
YouTube API. The resulting dataset consists of more than 933,000 samples.

We benchmark the same models as before, using 5-fold cross-validation. The only ex-
ception is the Naive-Bayes model, which can only handle classification tasks; we thus
replace it by the Bayesian ridge regression (Bayes). For each model, we report the mean
absolute error (MAE), the root mean squared error (RMSE), the mean relative error
(MRE), and the Pearson linear correlation coefficient (PLCC). As before, we also report
the total processing times for the 5-fold cross-validation.

MAE (kbps) RMSE (kbps) MRE (%) PLCC 5-CV time (minutes)
DT 94 246 18 0.88 31

RF10 89 179 18 0.93 36
ADA 492 573 130 0.59 126

ERT10 93 182 19 0.93 7
Bagging 89 179 18 0.93 22

Bayes 2,540 6,530 545 -0.14 3
kNN 229 353 42 0.70 6
NN 333 489 70 0.20 305

SVM 1023 2 · 1023 2 · 1023 0.12 143

Table 3.5: Benchmarking of different ML models for the average-bitrate estimation. ©

IEEE 2020

Results are summarized in Table 3.5. We note that the models that worked well for

62

3.3. Stream-based Video-Quality-Metric Inference

the video-resolution estimation and stalling detection, namely DT, RF10, Bagging, and
ERT10, perform also very well for the inference of the average bitrate. Indeed, these four
tree-based models yield the lowest errors, achieving a MAE below 100 kbps, and very
high PLCCs close to 1. RMSE and MRE values are relatively low for these algorithms,
suggesting that they only rarely make large errors. However, it is interesting to see that
RF10 needs significantly more time to process the whole dataset than for the video-
resolution estimation. As for the video-resolution inference, Bayes and especially SVM
provide disappointing results. With Bayes, ViCrypt obtained a negative PLCC as well
as very high error metrics, which underlines the bad performance of the model. With
SVM, the system output errors of an unacceptable order of magnitude.

Figure 3.19 depicts the distributions of the inference errors for the different regression
models. SVM errors are not reported, as they are simply too large. Overall, the CDFs
confirm our observations from Table 3.5. The most promising tree-based methods present
errors very close to 0 for a non-negligible fraction of the dataset; this is especially true
for DT, which realizes an almost perfect estimation for 60% of the samples. However,
DT presents a large RMSE compared to its tree-based competitors, indicating that it
yields larger errors than the other tree algorithms. ADA is the only tree-based method
where estimation errors are most often quite high, higher than 500 kbps for about 45%
of the time slots. Absolute errors are below 100 kbps for approximately 80% of the time
slots when using DT, RF10, Bagging, or ERT10 as underlying models.

Based on these results, and again considering the outperformance in terms of computa-
tional times, ERT10 seems to be the best algorithm for the estimation of the average
bitrate with ViCrypt. Even though error metrics are slightly worse for ERT10 than
those for RF10 or Bagging, differences are not significant enough and lightweight models
should be preferred.

Finally, Figure 3.20 shows ViCrypt’s estimation of the average bitrate for an exemplary
video with several bitrate changes. Again, ViCrypt estimates the average bitrate with
high precision throughout the whole video. Rather than estimating a too low bitrate,
ViCrypt coupled with ERT10 overestimates the ground truth in more than half of the
time slots (54%). This overestimation of ERT10 together with the generally low esti-
mation error is advantageous from the point of view of the ISP, as overestimating the
video bitrate helps them to avoid allocating insufficient bandwidth in the context of
traffic shaping. This could cause the video to stall, which is a major QoE degradation.
This behavior could be even enforced by adding a safety margin to the estimations of
ViCrypt.

63

3.3. Stream-based Video-Quality-Metric Inference

-500 -400 -300 -200 -100 0 100 200 300 400 500
Estimation error (kbps)

0

10

20

30

40

50

60

70

80

90

100

C
D

F

DT
RF10
ADA
ERT10
Bagging
kNN
NN
Bayes

Figure 3.19: Estimation errors (estimated values − ground truth) obtained by the bench-
marked ML models for the average video-bitrate inference. © IEEE 2020

0 100 200 300 400

Time slot

0

200

400

600

800

1000

1200

1400

A
v
e

ra
g

e
 b

it
ra

te
 (

k
b

p
s
)

True average bitrate

inferred average bitrate

Figure 3.20: Example of ViCrypt real-time average video-bitrate estimation. © IEEE 2020

3.3.6 Feature-Importance Analysis
The results presented so far correspond to ViCrypt models using the full set of 208
features as input for the estimations. In this subsection, we analyze the importance of
different feature sets and their impact on inference performance. Using an extensive list
of input features is not always the best strategy, as it may negatively impact estimation
performance. Using more features increases the dimensionality of the feature space,
introducing sparsity issues. In addition, using irrelevant or redundant features may
lower model performance in practice. Last but not least, working in higher-dimensional
spaces usually results in higher computational times.

We resort to standard automatic feature-selection techniques to identify the most rele-
vant input features for our three stream-based estimation targets. Moreover, we consider

64

3.3. Stream-based Video-Quality-Metric Inference

additional feature subsets which might have a significant impact on their own, consider-
ing for example the difference between snapshot features – i.e., those computed for the
same slot where the estimation takes place – and trend- or session-based features. Based
on these guidelines, we divide the full input-feature set into the following six feature
subsets:

FC subset: the features representing the current time slot, i.e., the time slot for which
we want to infer the video resolution (70 features).

FT subset: the features collected for the trend window (69 features).

FS subset: the features summarizing the characteristics of the session since the begin-
ning of the streaming (69 features).

FDOW N subset: the features related to the download traffic for all three windows (81
features).

FUP subset: the features representing the upload traffic for all three windows (81 fea-
tures).

FT OP 20 subset: the 20 most important features, determined using automatic feature-
selection techniques (20 features).

To select the 20 most relevant features (FT OP 20), we take the best-performing ML algo-
rithm, which is always a tree-based method, and apply an embedded feature-selection
technique. For each run of the 5-fold stratified cross-validation, we fit the model on
the training folds and detect the 20 most discriminative features. Then, we re-train the
model only on those 20 features and test its performance on the test fold. We finally
determine the overall top 20 features based on their importance score averaged over the
five folds, as well as the average accuracy of the algorithm over the folds with only the
selected features.

Before going into the specific performance results achieved with these subsets, let us take
a look at the five most relevant features according to the aforementioned feature-selection
approach. Table 3.6 reports the five most important features for the three investigated
KQIs. For each of the selected features, we additionally report the corresponding tempo-
ral window (current, trend, or session) and the importance score. For stalling detection,
the most important features come from different subsets. The most important feature
for stalling inference comes from the FT subset (trend window). Nevertheless, almost
all of the most important features actually come from the set of session-based features.
FS can be generally considered as the most relevant feature set for stalling estimation,
which is in line with previous results in [104], albeit using a different feature-importance
metric, namely, the information gain. For video resolution, the top 5 features are all
session-related and include statistics about throughput patterns and information related
to the inter-arrival times between packets. The results for the average bitrate confirm

65

3.3. Stream-based Video-Quality-Metric Inference

Stalling Video resolution Average bitrate
#1 feature maximum upload

packet size (trend)
[0.03]

throughput (session)
[0.04]

throughput (session)
[0.07]

#2 feature standard deviation of
upload packet size (ses-
sion) [0.02]

burst throughput (ses-
sion) [0.03]

burst throughput (ses-
sion) [0.05]

#3 feature upload volume (session)
[0.02]

mean IAT of download
packets (session) [0.02]

skewness of upload
packet-size distribution
(session) [0.04]

#4 feature standard deviation of
download packet size
(session) [0.02]

burst throughput
of download traffic
(session) [0.02]

mean IAT of download
packets (session) [0.04]

#5 feature skewness of upload
packet-size distribution
(session) [0.01]

coefficient of variation
of IAT of download
packets (session) [0.02]

download burst
throughput (session)
[0.04]

Table 3.6: Top 5 most important features for the three stream-based estimation targets
tackled by ViCrypt, with their corresponding window (current, trend, or session) and
Gini importance scores. © IEEE 2020

that session-based features are often relevant ones, followed by the features of the trend
window and the current time slot.

As we show next in the specific comparison results, session-related features – the FS

subset – are the most important ones, and have the most discriminative power, followed
by trend features – FT . This is coherent with the overall nature of adaptive-video-
streaming algorithms, where stronger variations tend to occur at the beginning of the
video session, and conditions tend to remain constant over the course of the streaming
– as long as the connection remains stable. Features computed for the current time
slot generally achieve the lowest importance scores. This suggests that snapshot-like
approaches as the one proposed in [2] are less powerful and more prone to overfitting,
and probably have poorer generalization capabilities.

Stalling

Table 3.7 reports the estimation performance for stalling in terms of recall and precision
for the stalling class, using ERT10 as the underlying model, which is the one we selected
in Section 3.3.5 for this task. As before, results correspond to 5-fold stratified cross-
validation. Stalling-detection results when using only FC and FT subsets are poor for
both recall and precision. However, performance dramatically improves when considering
FS features only; indeed, the recall for ERT10 increases from 54% (using all features,
cf. Table 3.3) to 72%, and even the precision increases from 88% to 91%, taking the
overall accuracy to 99%. This confirms the paramount importance of session-progression

66

3.3. Stream-based Video-Quality-Metric Inference

Features Accuracy (%) Recall (%) Precision (%)
All 97 54 88
FC 96 10 30
FT 97 17 51
FS 99 72 91

FDOW N 98 41 87
FUP 98 47 74

FT OP 20 97 56 86

Table 3.7: ViCrypt performance for stalling estimation with ERT10, using different fea-
ture subsets (overall accuracy and recall/precision only indicated for the stalling class).
© IEEE 2020

Features Accuracy (%)
All 92
FC 70
FT 73
FS 96

FDOW N 90
FUP 90

FT OP 20 95

Table 3.8: ViCrypt performance for inferring the video resolution with RF10, using
different feature subsets. © IEEE 2020

features, which is in line with our above findings and discussion.

When relying exclusively on the 20 most important features, ViCrypt obtains a recall
score of 56% and a precision score of 86%, almost on a par with using all features. This
tells us the following:

1. The overall statistics describing the entire history of the session are very insightful
metrics for detecting stalling.

2. ViCrypt produces highly accurate estimations even with a reduced set of features:
instead of using 208 attributes, 69 or even 20 would be sufficient.

This shows that a substantial number of features can be removed with only a minor
performance degradation, which even increases the practical applicability of ViCrypt.

Video Resolution

For the case of video-resolution inference, we study the performance of RF10, the model
that produces the most promising outcome, based on the different feature groups. The

67

3.3. Stream-based Video-Quality-Metric Inference

Features MAE [kbps] RMSE [kbps] MRE [%] PLCC
All 93 182 19 0.93
FC 275 407 55 0.58
FT 253 377 51 0.64
FS 68 157 14 0.95

FDOW N 105 195 21 0.92
FUP 106 198 21 0.92

FT OP 20 81 175 16 0.93

Table 3.9: ViCrypt performance for estimating the average bitrate with ERT10 using
different feature subsets. © IEEE 2020

results in Table 3.8 also reveal that the features of FC and FT yield the poorest results
in terms of accuracy, indicating that they are insufficient to infer the video resolution
with high precision. Indeed, their accuracy is more than 15 percentage points below
the accuracy obtained by ViCrypt based on the entire feature set. However, ViCrypt
performs very well when used with either FS , FDOW N , or FUP , with FS performing even
better than the entire feature set. The average accuracy of ViCrypt when using only the
top 20 features is highly encouraging: it is equal to 95%, confirming the above finding
that a substantial number of features can be removed.

Average Bitrate

Table 3.9 reports the results obtained for the estimation of the average bitrate, using
ERT10 as underlying model. The differences in terms of performance between the con-
sidered subsets and the whole set of features are much more significant than in the
video-resolution case. As a matter of fact, with FC and FT , the value of the MAE is
nearly three times higher than when relying on the whole feature set; the other error
metrics underline the poor performance of these feature sets. In case ViCrypt bases it-
self on the download- or upload-traffic information, the obtained errors are only slightly
higher than when inferring from all the features. However, as for the stalling detection
and video-resolution inference, ViCrypt yields excellent results when coupled with FS

features only, showing once again that information about the session history is the most
valuable one. Again, using only the top 20 selected features for the ERT10 model yields
slightly more precise estimations than when using the whole feature set. Indeed, the
MAE and the RMSE decrease to 81 kbps and 175 kbps, respectively.

3.3.7 Practical Considerations for Real-Time Operation & Discussion
Finally, we elaborate on the presented results and discuss the applicability of ViCrypt
in practice. To ensure that ViCrypt is scalable and can be deployed in the wild, we
analyze several key aspects in terms of computation time, and execute multiple tests
on two machines with completely different technical specifications: on server, the high-
end computer presented in Section 3.3.4, and laptop, which includes an Intel Core i5-

68

3.3. Stream-based Video-Quality-Metric Inference

0 0.5 1 1.5 2 2.5 3 3.5 4
video packets ×104

101

102

103

104

105

106

P
ro

ce
ss

in
g

tim
e

(µ
s)

Laptop
Server

Figure 3.21: Time needed to update the ViCrypt features each time a new packet arrives
(log scale). © IEEE 2020

4200U CPU with two physical cores and a total of four virtual ones, eight gigabytes of
RAM, and an integrated GPU Intel HD Graphics 4400. We show that ViCrypt runs
extremely quickly, with minimal memory footprint. The evaluation is not done at scale,
but considering the end-to-end processing of single video sessions. Indeed, the main
target of ViCrypt is video-streaming-QoE monitoring at devices installed near the end
user (e.g., home routers), where traffic load enables real-time monitoring with limited
hardware capabilities.

Feature extraction: to demonstrate the real-time properties of ViCrypt for the feature-
extraction process, we record at each packet arrival the time needed to update the
feature set for a session lasting four minutes. The results are reported in Fig-
ure 3.21. Feature updates are performed extremely quickly on both machines:
they take only a couple of microseconds. On server, the peak value is about 12 ms,
while the average duration is of only 13 µs. More than 90% of the updates took
less than 25 µs. Even on laptop, the average processing duration is 37 µs, with
a maximum value of 129 ms, which is still almost an order of magnitude smaller
than the time-slot length of 1 s.

Stalling detection: we measure the time needed by the most suitable model (ERT10)
to detect the stalling of a time slot on both laptop and server. To do so, we train the
model on 80% of the data, i.e., on four folds, and record, for one video session in the
remaining fold, the time required to detect the occurrence of stalling per time slot.
We use the same video as before, and, to make computations harder, we disable the
parallelization of the algorithm for the estimation phase. The estimation times for
this task are depicted in Figure 3.22a. The model runs very fast, with an average

69

3.3. Stream-based Video-Quality-Metric Inference

0 50 100 150 200 250
Time slot # in video

0

0.5

1

1.5

2

P
ro

ce
ss

in
g

tim
e

(µ
s)

×104

Laptop
Server

(a) Stalling.

0 25 50 75 100 125 150 175 200 225 250
Time slot # in video

0

0.5

1

1.5

2

P
ro

ce
ss

in
g

tim
e

(µ
s)

×104

Laptop
Server

(b) Video resolution.

0 25 50 75 100 125 150 175 200 225 250
Time slot # in video

0

0.5

1

1.5

2

P
ro

ce
ss

in
g

tim
e

(µ
s)

×104

Laptop
Server

(c) Average bitrate.

Figure 3.22: Time needed to estimate video-QoE metrics from features for an exemplary
YouTube video session. © IEEE 2020

of 740 µs and a maximum of 2 ms on server, and an average of 2.5 ms on laptop,
which confirms that ViCrypt can also infer stalling in real time.

Video-resolution estimation: we measure the time needed by the best performing
model, RF10, for a single estimation of the video resolution, following the same
procedure. Figure 3.22b shows the processing times for video-resolution estimation
for the consecutive time slots of the exemplary video. On server, almost all of the
durations are around 1 ms, with an average of 700 µs and a maximum of around
1.4 ms; on laptop, the average duration is 2.5 ms and all estimations are available
in less than 20 ms. Again, results confirm that ViCrypt performs video-resolution
inference very fast, and significantly faster than the time slot length of 1 s.

Average-bitrate estimation: finally, we analyze the time needed by the best model
(here, ERT10) to infer the average bitrate of a time slot. The observed estimation
times are almost identical to the ones observed for the video resolution on both
machines, as we can see in Figure 3.22c, with an average value of 700 µs and a
maximum of 3 ms on server, showing that ViCrypt can also infer average video
bitrate in real time.

70

3.3. Stream-based Video-Quality-Metric Inference

Sessions Stalling Video Resolution – P Video Resolution – R

P R 144p 240p 360p 480p 720p 1080p 144p 240p 360p 480p 720p 1080p

ViCrypt 15,000+ 91.0 72.0 96.5 89.5 93.4 95.1 96.2 96.0 96.2 88.3 87.5 98.1 93.5 88.2

Requet 580 70.4 51.9 80.6 68.7 49.2 64.9 60.6 75.0 79.9 64.3 64.4 63.8 54.5 76.9

INFOCOM’18 10,863 80.9 83.9 73.2 80.1 71.1 82.1

Table 3.10: Referencing performance comparison between ViCrypt, Requet [3], and
INFOCOM’18 [2]. Results correspond to numbers reported in [3] and [2], for different
datasets. See Table 3.1. © IEEE 2020

ViCrypt vs. State of the Art

To conclude our study, we provide some indicative results comparing the estimation
performance of ViCrypt against the two most similar systems in the literature, namely
Requet [3] and INFOCOM’18 [2]. While a re-implementation of both systems for bench-
marking purposes is out of the scope of our study, we present in Table 3.10 the per-
formance results reported by the authors of both approaches in the corresponding pa-
pers [2, 3]. Naturally, this is not intended as a valid or fair comparison among approaches,
as the used datasets are not the same. Still, we decided to include the table to better
position ViCrypt within the state of the art, and to serve as reference or baseline for the
results presented in this study.

We consider the estimation of two of the KQIs, namely stalling and video resolution, as
neither Requet nor INFOCOM’18 are designed to estimate the average video bitrate. In
addition, while both ViCrypt and Requet tackle the video-resolution inference problem as
a multi-class classification task, using exactly the same resolution levels, INFOCOM’18
considers only a binary classification task, defining low video resolution as all resolutions
below 480p, and high video resolution for levels above 480p.

As already mentioned, the size and heterogeneity of the considered datasets is signifi-
cantly different for the three systems. A particularly challenging issue for ViCrypt is
that our dataset is highly imbalanced, especially when it comes to the occurrence of
stalling, with only a small fraction of videos and time slots experiencing stalling. On
the contrary, the dataset used in INFOCOM’18 is almost perfectly balanced in terms of
stalling, with about 106,000 time slots corresponding to no-re-buffering and 94,000 slots
reported as stalling. Unfortunately, this dataset is not publicly available, preventing us
from doing further analysis and comparisons.

Nevertheless, Table 3.10 shows that ViCrypt achieves similar or even better results
than INFOCOM’18 in the binary detection of stalling events, and that both systems
significantly outperform Requet, which presents quite poor results for stalling detection.
Here, ViCrypt uses the ERT10 model with only FS features (cf. Table 3.7), which is
still not the best of all models reported in the study – Bagging performance using only
FS features is even better. Regarding the video resolution, ViCrypt provides highly
accurate results in terms of precision and recall, while both Requet and INFOCOM’18

71

3.4. Conclusions

report lower performance on the classification task. INFOCOM’18 achieves relatively
poor performance for video-resolution estimation, even if the KQI is addressed as a plain
binary-classification task.

All in all, we can conclude that ViCrypt is not only able to estimate video-quality metrics
with high accuracy – similar to or even potentially better than the state of the art – but
also to do it in real time, with minimal computation-time requirements.

3.4 Conclusions
In this chapter, we presented two tools for video QoE monitoring, namely YoMoApp,
an Android application for session-based YouTube QoE monitoring, and ViCrypt, a
machine-learning-driven system for real-time estimation of QoE-relevant metrics of video
streaming.

Through a detailed analysis of the YoMoApp data, we demonstrated that there has
been a systematic performance and QoE improvement of YouTube in mobile devices
since 2014, additionally evidencing that these enhancements might have a direct impact
on the user engagement in YouTube mobile. We also built ML models to estimate
key session-based video-QoE metrics relying exclusively on network-layer features easily
accessible through the Android API. We obtained very encouraging results, especially
with a 10-tree random-forest model. Indeed, random forests provide in general better
results in terms of accuracy than other models, with a much smaller computational
overhead for building decision trees as compared to neural networks or support-vector
machines. The presented models could enable a broader, non-intrusive, and privacy-
preserving approach for large-scale, QoE-based monitoring of YouTube mobile, as they
could be directly applied as filtering modules running on the mobile device’s OS, without
accessing any higher-layer metric to perform the estimations.

With ViCrypt, we were able to very accurately estimate KQIs in real time, more specif-
ically with a time granularity of only one second. This is, to the best of our knowledge,
the finest granularity so far used for quality inference in the context of encrypted traf-
fic. We benchmarked a wide range of ML models and found that tree-based techniques
are the most appropriate algorithms for ViCrypt. We also analyzed the feature impor-
tance and showed that ViCrypt performed best with only a reduced feature set. Here,
the features summarizing the characteristics of the session since the beginning of the
streaming were the most relevant ones. As a last step, we evaluated key computational
aspects and demonstrated that ViCrypt runs extremely quickly, with minimal memory
footprint. Overall, we demonstrated that our framework is a very powerful tool to infer
KQIs of YouTube.

72

CHAPTER 4
Web-QoE Monitoring and

Analysis

Notice
Parts (text as well as figures and tables) of this chapter have already been published in the
following publications:

[C6] Mobile Web and App QoE Monitoring for ISPs – from Encrypted Traffic to Speed Index
through Machine Learning
P. Casas, S. Wassermann, N. Wehner, M. Seufert, J. Schüler, T. Hoßfeld
Wireless and Mobile Networking Conference, October 2021*
DOI: 10.23919/WMNC53478.2021.9619058

[C5] Are you on Mobile or Desktop? On the Impact of End-User Device on Web QoE Inference
from Encrypted Traffic
S. Wassermann, P. Casas, Z. Ben Houidi, A. Huet, M. Seufert, N. Wehner, J. Schüler, S.
Cai, H. Shi, J. Xu, T. Hoßfeld, D. Rossi
International Conference on Network and Service Management, November 2020*
DOI: 10.23919/CNSM50824.2020.9269095

[A2] How Good is your Mobile (Web) Surfing? Speed Index Inference from Encrypted Traffic
S.Wassermann, P. Casas, M. Seufert, N. Wehner, J. Schüler, T. Hossfeld
SIGCOMM Posters, Demos, and Student Research Competition, August 2020
DOI: 10.1145/3405837.3411382

*Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this work owned by others
than IFIP must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

73

The data-collection setup has been developed by the researchers of the university of
Würzburg. The feature-extraction process has been developed by Dr. Pedro Casas.
The paragraphs describing this setup have mostly been written by this team, even
though I edited them for clarity (introduction to Section 4.2, and Section 4.2.3). I
mostly focused on the parts about data analytics and ML during our collaboration
and wrote the corresponding sections.

The Web is one of the most relevant applications of the Internet. Its performance is
highly relevant to the success of every online service, as it severely impacts the engage-
ment and churn of users. The assessment of a Web service as perceived by the end user
can be performed through the corresponding Web Quality of Experience (QoE), which
is very challenging to measure. Different from other services, such as video streaming or
gaming, Web browsing is composed of numerous multimedia components and embedded
services; loading a Webpage today requires tens of flows to get the various page resources
located in diverse servers from different content providers. Moreover, the expectations
and the assessment of the browsing experience itself might significantly vary depending
on the type of application that is being used by the end users, and even what portion
of the application they are interacting with. For example, the expectation for speed
when searching for flights on a travel site is different than it is for loading the checkout
page. In this complex process, the network plays a key role in the users’ Web QoE,
forcing Internet Service Providers (ISPs) to deploy effective means to monitor Web QoE
as perceived by their customers.

The literature on Web-performance analysis presents a wide range of objective metrics
capturing the performance of Webpage loading, including metrics such as Page Load
Time (PLT), SpeedIndex (SI), and Above the Fold Time (AFT). However, all these
metrics require access to the application layer, which is hidden from the eyes of the ISP
by the wide deployment of end-to-end network traffic encryption.

The analysis of Web QoE from purely in-network, encrypted traffic measurements is
still an under-explored problem. We bring the following contributions to the Web-QoE
community:

• Multi-device QoE models: we consider Web QoE not only for desktop devices,
but include smartphone and tablet Web QoE, conceiving cross-device generalizable
models. Smartphones represent the lion’s share of Internet-access devices today,
with nearly three quarters of the world population using exclusively their smart-
phones to access the Internet by 2025 [112]. According to our results, a model
trained only on desktop browsing data provides poor Web-QoE-estimation per-
formance when applied to smartphone and tablet measurements. More generally,
a model trained on data coming from a single device yields disappointing results
when applied to data coming from any different device.

74

4.1. Related Work

• Subjective Web-QoE estimation: besides training regression models to esti-
mate objective Web-QoE metrics – in particular SI –, we rely on real end-user data
from previous studies [113] to build Web-QoE classification models for subjective
metrics, as for instance Mean Opinion Scores (MOS).

• ML benchmarking: we present an extensive benchmark comparing the perfor-
mance of different ML models for both estimation tasks – regression for SI inference
and classification for QoE-class estimation.

• Packet and flow-level models: we conceive models working either at the packet
level or at the flow level; the proposed flow-level models achieve highly similar
performance to the packet-level ones, but using an order of magnitude fewer input
features, which demonstrates that they have strong potential to become practical
monitoring solutions.

In Section 4.1, we present an overview of the literature about Web-QoE monitoring
and analysis. In Section 4.2, we introduce the generated dataset and the corresponding
analyses. In Section 4.3, we benchmark a set of packet-level ML models for QoE inference
and classification on desktop devices. We also highlight that these kinds of models do
not generalize well to other devices. In Section 4.4, we build a multi-device model,
trained on data coming from different types of devices, and show that it achieves high
inference performance with a strong generalization potential across desktop, smartphone,
and tablet devices. In Section 4.5, we create a multi-device model based on flow-level
features instead of packet-level features. Our study reveals that the same performance
can be achieved using significantly fewer input features. Section 4.6 concludes this
chapter.

4.1 Related Work
Initial Web-QoE models were based on Page Load Times (PLT) [114, 72], and are still
broadly used in practice to infer user satisfaction in Web browsing, as for instance in the
ITU-T G.1030 model [115]. However, PLT is a poor proxy for user perception of Webpage
loading times. Indeed, the actual Web content visible to the user is usually displayed
much earlier than all the initially invisible parts, as most Webpages often stretch beyond
the browser’s viewport. Additional in-browser metrics have been accordingly devised to
better characterize the page-rendering progress on the screen. An example is the Above
the Fold Time (AFT), i.e., the time until the visible portion of a Webpage has been fully
loaded, which has been also tested within traditional Web-QoE models [116]. Newer
Web-QoE metrics have been introduced recently, such as the SpeedIndex (SI). Besides
single-metric modeling, ML-based approaches have been explored [117, 113] to model
Web QoE from a combination of metrics.

Another direction in the literature suggests to understand how external components in-
fluence Web QoE. Prior work has studied the impact of network-quality fluctuations and

75

4.2. Web-QoE Datasets & Modeling Approach

outages on Web QoE [118, 119]. But besides network quality, other components influence
QoE. They are linked to the specific Webpage content – aesthetics [120], usability [121],
etc. – as well as to the device type – desktop, smartphone, tablets [122]. These papers
show that smartphones and tablets have their own characteristics, not only regarding
screen sizes, but also in terms of content rendering and Web designs. Most of these
papers focus on Web QoE in controlled, small-scale lab environments.

Others directly rely on in-browser metrics as a proxy to infer Web QoE, conducting large-
scale active-measurement campaigns. For example, the impact of multiple features such
as transport protocols and network performance on PLT and AFT is studied in [123],
based on a set of 244 million measurements collected during six months for the top-
10,000 Alexa Websites. Other papers also measured the impact of similar features on
PLT and SI or AFT in different countries and different types of networks [124], including
mobile ones [125].

Most of prior work stayed at the application level: this situation is problematic for ISPs,
who have no direct access to in-browser metrics. In recent years, TLS encryption has
even narrowed the information that ISPs can collect from the network side, and previous
approaches [126] based on Deep-Packet-Inspection (DPI) and HTTP-traffic analysis are
no longer applicable. Other papers [30, 127] developed correlated approximations to the
SI metric, such as Byte/ObjectIndex [30] and Pain Index [127], which can be computed
from statistics of packet- and flow-level measurements, thus seamlessly operating with
encrypted traffic.

When it comes to the specific case of Web-QoE monitoring in mobile devices, there
have been multiple papers using machine learning [96, 128, 129, 130] or simple modeling
approaches [131] to map application-layer [129, 130] or network-QoS metrics [96, 128,
131] into QoE-related metrics. From these, two papers [96, 128] are the closest to our
work, but both offer analysis approaches which are no longer applicable due to HTTP-
traffic encryption [128], or do not address the specific problem of Web browsing [96].

4.2 Web-QoE Datasets & Modeling Approach
Note about adoption of text from co-authors: The text in the introduction of Section 4.2 up to 4.2.1 was mainly

contributed by co-authors to the joint paper [C5], even though I edited it for clarity.

The proposed solution to the Web-QoE monitoring problem consists of training super-
vised ML models to map network-traffic features, extracted from the encrypted network-
Webpage traffic, into relevant Web-QoE metrics. The approach is data-driven, and thus
needs datasets containing both the collected traffic traces – the input – and the targeted
Web-QoE metric – the ground truth. The diagram presented in Figure 4.1 presents the
workflow and the different stages of the solution.

To fully control the generation of such datasets, we built a measurement testbed based on
multiple private instances of WebPageTest (WPT) 1, an open-source Web-performance-

1https://www.webpagetest.org/

76

https://www.webpagetest.org/

4.2. Web-QoE Datasets & Modeling Approach

emu

Internet

netmon

emu

emu

netmon

netmon

WWW

L3 network traces
extraction of traffic features

L7 WPT
Web QoE
logs

ML
models

WPT

WPT

WPT

(1)

(2)

(3) Web QoE
KQIs

A B C

Figure 4.1: Diagram and workflow of the proposed solution.

analysis tool commonly used both in industry and academia. Rows (1) and (2) in
Figure 4.1 depict this testbed and its usage. Different from previous studies [123, 132,
30, 125, 124, 133], which studied Web QoE exclusively for desktop browsers and desk-
top devices (or in some exceptional cases, emulating mobile devices), our measurement
testbed consists of three different, non-emulated types of devices, including a smartphone
(Google Pixel 2 XL), a tablet (Google Pixel Slate), and a desktop computer (laptop),
using WPT agents for Android and Linux. Chrome (the last stable version) is used as
browser. Instead of leveraging in-device WPT traffic-shaping capabilities, devices are
connected to the open Internet through independent network emulators (emu), which
makes it possible to have more realistic network-access-performance configurations in
terms of bandwidth, latency, packet-loss rate, etc. This allows for heterogeneity in
the generated measurements. Configurations used in the study include access-downlink
bandwidth up to 10 Mbps, packet-loss rates up to 10%, and RTTs up to 100 ms. Us-
ing WPT measurements, the platform extracts about 90 different KPIs and Web-QoE
metrics, indicated as L7 Web-QoE logs in Figure 4.1, row (2), such as PLT, SI, AFT,
ByteIndex [30], and Time to Interactive (TTI), as well as content characteristics of the
visited pages. Network traffic is captured at an intermediate passive monitoring device
(netmon) and stored as .pcap traces, from where model input features are extracted,
indicated as L3 network-traffic features in Figure 4.1, row (2).

For this study, we generated a per-device-type balanced dataset of more than 40.000
Webpage loading sessions (i.e., the loading of a single page), targeting the top 500 Web-
sites according to the Alexa top-sites list 2. The same pages are visited multiple times
for each device type, using the same access-network setups. We do not consider the
effect of caching, i.e., tests correspond to a first-view loading session. As it has been

2https://www.alexa.com/topsites

77

https://www.alexa.com/topsites

4.2. Web-QoE Datasets & Modeling Approach

0 2 4 6 8 10 12 14 16

time (s)

0

10

20

30

40

50

60

70

80

90

100

%
 W

e
b

 s
e

s
s
io

n
s

TTFP

RUMSI

PLT

desktop

smartphone

tablet

Figure 4.2: Distribution of time performance metrics (TTFP, RUMSI, and PLT) per
device.

shown in [132], while caching has an impact on the performance of inference models,
this impact is limited, and models generalize well across different protocol and caching
settings. We focus on the inference of one particular Web-QoE metric, the SI, which is
today one of the most accepted metrics reflecting Web QoE. Nevertheless, the method-
ology applies to any other similar Web-QoE metric. As shown in [30], measuring the
SI proves to be cumbersome in terms of computational resources and might introduce
bias in the data capturing/processing, mainly due to the video capturing and analysis.
This is particularly critical on smartphones and tablets, which are generally resource-
constrained; therefore, instead of focusing on the SI metric, we collect the Real User
Monitoring SpeedIndex (RUMSI).

Finally, we assume that the measurement system takes as input network traffic from
single Web sessions. In an operational deployment in the wild – see row (3) in Figure 4.1
–, the traffic mix of concurrent Web sessions must first be disentangled (step A) to then
extract features from the traffic belonging to each Web session (step B) and apply the
trained model(s) (step C). Our study exclusively addresses steps B and C, as we run our
sessions sequentially. Nevertheless, in case of concurrent Web sessions, a classification
methodology from the literature [127] could be applied to disentangle them.

4.2.1 Data Characterization
The list of top-500 Alexa pages is very diverse in terms of contents and, as we show
next, the type of device being used has a visible impact on Webpage characteristics
and timing performance. Figure 4.2 depicts the distribution of three relevant Web-QoE
metrics, including the Time to First Paint (TTFP), the RUMSI, and the PLT. The values
are significantly higher for both smartphone and tablet devices as compared to desktop
devices, pointing to a more complex rendering process in mobile devices. This is most

78

4.2. Web-QoE Datasets & Modeling Approach

0 2.5 5 7.5 10 12.5 15
content bytes (MB)

0
10
20
30
40
50
60
70
80
90

100

%
 W

eb
pa

ge
s

desktop
smartphone
tablet

(a) Bytes.

0 50 100 150 200 250
number of resources

0
10
20
30
40
50
60
70
80
90

100

%
 W

eb
pa

ge
s

desktop
smartphone
tablet

(b) Resources.

0 5 10 15 20 25 30 35 40 45
number of different root domains

0
10
20
30
40
50
60
70
80
90

100

%
 W

eb
pa

ge
s

desktop
smartphone
tablet

(c) Root domains.

0 10 20 30 40 50 60 70 80 90 100
ratio RUMSI/PLT (%)

0
10
20
30
40
50
60
70
80
90

100

%
 W

eb
pa

ge
s

desktop
smartphone
tablet

(d) RUMSI/PLT ratio.

Figure 4.3: Cumulative density function, per device type, for page size, number of
resources, number of root domains, and SI/PLT ratio.

probably linked to the specific hardware limitations of smartphones and tablets, as well
as the particular characteristics of the OS and browser combination – native Chrome
in Android. In addition, the way pages are optimized and rendered in mobile devices
impacts loading times. Worse loading performance in mobile devices is a commonly
known issue in practice3. Interestingly, when comparing Android devices, TTFP values
are almost identical for smartphone and tablet, RUMSI is slightly higher for tablet, while
PLT is significantly higher for tablet. As we see next, this is most probably explained
by the fact that Webpages have more content to load in tablets. It is also interesting
to note how PLT significantly overestimates the perceived loading time of Webpages,
represented by the (RUM)SI metric.

Figure 4.3 characterizes the top-500 Webpages per device type, in terms of (a) page size,
(b) number of resources (total number of images, fonts, video, CSS, JavaScript, etc.), (c)
number of root domains, and (d) RUMSI to PLT ratio. The latter reflects the complexity
of the Webpage in terms of visible content (SI, approximated by the RUMSI) and full
content downloading (PLT). As expected, Webpages browsed on desktop devices are

3https://backlinko.com/page-speed-stats

79

https://backlinko.com/page-speed-stats

4.2. Web-QoE Datasets & Modeling Approach

heavier than those browsed on smartphones or tablets, which are optimized for smaller
screen sizes. The average page size is 2.7 MB in desktop, 2.4 MB in tablet, and 2.1 MB
in smartphone.

Figures 4.3b and 4.3c further illustrate the richness and complexity of the Webpages in
terms of number of embedded contents and their location at different root domains, with
more than 30% to 35% of the Webpages consisting of more than 100 resources, and about
40% of the Webpages fetching resources from more than 10 different root domains. The
screen size probably plays a key role in influencing page characteristics, as the number
of resources is higher for desktop, followed by tablet, and finally by smartphone. The
RUMSI/PLT ratio not only shows how large the overestimation introduced by PLT is
in terms of perceived page load times, but also how different this is for the different
Webpages. Indeed, about 10% of the pages have a ratio below 30% (the visible content
loads significantly faster than the full content) and less than 5% of the pages have a
ratio above 90% (the visible content basically corresponds to the full Webpage content).

Our analysis shows that, while most of the analyzed pages are very similar for every
device type in terms of size and retrieved contents from external servers, differences
can be significant for a small share of the pages. In terms of performance, we see that
loading times on Android devices (smartphone and tablet) are significantly higher than
on desktop, a common trend observed in practice of Webpage speed analysis.

4.2.2 Subjective QoE Analysis
While the SI is a good objective metric that reasonably captures the Web QoE of real
users [116], we resort to previous subjective Web-QoE studies to better understand the
expected QoE for the generated dataset. In particular, prior work [113] conducted a
subjective study where about 240 participants rated their browsing experience – loading
of individual pages using a desktop browser –, according to a 5-level Absolute Category
Rating (ACR) MOS score (bad QoE being 1 and excellent being 5). We rely on their
publicly available dataset to identify QoE-related timing thresholds which could trans-
late the RUMSI in our dataset into broad QoE classes. In Figure 4.4b, we depict the
relationship between SI and MOS scores obtained in that study. While the SI metric
was not directly measured, additional metrics such as the ByteIndex were computed,
which can be used as good proxies to the real SI [30].

We define three Web-QoE classes:

• (e)xcellent: MOS ≥ 4

• (g)ood: MOS = 3

• (p)oor: MOS ≤ 2

This results in SI thresholds of 2 and 4 seconds. Interestingly, the SI thresholds recom-
mended in the industry as target for excellent Web performance vary between 1 second

80

4.2. Web-QoE Datasets & Modeling Approach

device excellent good poor
desktop 58% 26% 16%

smartphone 38% 34% 28%
tablet 36% 34% 30%

Table 4.1: QoE-class distribution per device type.

0 1 2 3 4 5 6 7 8 9 10
RUMSI (s)

0
10
20
30
40
50
60
70
80
90

100

%
 W

eb
 s

es
si

on
s

Excellent QoE (SI < 2s)
Good QoE
Poor QoE
desktop
smartphone
tablet

(a) RUMSI and QoE classes.

1 2 3 4 5
MOS

0

2

4

6

8

10

12

14

16

S
I (

BI
) [

s]
(b) SI vs. MOS scores.

Figure 4.4: Distribution of (a) QoE classes per device type, based on (d) real-user MOS
scores.

(desktop) and 3 seconds (mobile), which are in line with the proposed higher QoE-class
threshold of 2 seconds. It is important to note that our thresholds are derived for the
case of browsing on desktop devices, and one would expect higher thresholds for Web
QoE in mobile devices. Nevertheless, for this study, we assume the same thresholds ap-
ply to the three device types. Figure 4.4a shows that about 60%/40% (desktop/mobile)
of the loading sessions correspond to excellent QoE, 25%/35% to good QoE, and the
remaining 15%/30% result in poor QoE. Table 4.1 provides more details about the exact
distribution for each device.

4.2.3 Targets and Input Features
Note about adoption of text from co-authors: The text in Section 4.2.3 was mainly contributed by co-authors to the

joint paper [C5], even though I edited it for clarity.

We implemented our Web-QoE monitoring solution with two different inference tasks:

1. Inference of the RUMSI metric, which corresponds to a regression task

2. Estimation of the Web-QoE class {e,g,p}, which corresponds to a 3-class classifi-
cation task.

We use the same input features in both tasks, derived from the stream of encrypted
packets. To define input features, we follow the rationale behind the computation of the

81

4.2. Web-QoE Datasets & Modeling Approach

0 0.5 1 1.5 2 2.5 3 3.5 4
time (s)

0

20

40

60

80

100

%
 to

ta
l d

ow
nl

oa
d

by
te

s

desktop, RTT = 20ms
desktop, RTT = 100ms
smartphone, RTT = 20ms
smartphone, RTT = 100ms

(a) https://zoom.us

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
time (s)

0

20

40

60

80

100

%
 to

ta
l d

ow
nl

oa
d

by
te

s

(b) https://cnn.com

Figure 4.5: Examples of CBD features or loading curves, using ΔT = 100 ms, and
different RTT setups.

SI metric itself, which considers the whole progress of the page loading. We define the
Cumulative Bytes Downloaded features CBD(i)ΔT as the cumulative number of bytes
downloaded from the first collected byte at time t0 up to time t = t0 + i · ΔT , with
i = 1, . . . , m, normalized by dividing the values by the maximum observed number of
bytes, CBD(t0 + m · ΔT)ΔT (such that the maximum value is equal to 1). The CBD
features track the download progress of the page bytes, using a time resolution ΔT .
Figure 4.5 depicts examples of CBD features for different network configurations, both
for desktop and smartphone devices, using m = 100 and ΔT = 100 ms. Pages loading
faster have a CBD loading curve rising sharper and arriving to full loading earlier.

For this study, we took m = 100, and three different resolutions for the computation of
features, using ΔT = 50 ms, 100 ms, and 500 ms, for a total of 300 CBD features. Using
different resolutions helps capture different phenomena in the downloading progress,
which potentially impact the SI; it also allows to track different page-load durations, in
this case up to 5, 10, and 50 seconds, respectively.

We consider n = 11 additional input session features, related to the complete page-
loading session; these include: full session duration (first to last packet), downlink/uplink
session duration (first to last packet in downlink/uplink direction), total number of
packets downlink/uplink/full, total number of bytes downlink/uplink/full, and session
mean throughput downlink/uplink.

The complete list of features can be found in Appendix C. While these are mostly packet-
level features, we extend in Section 4.5 the study to the implementation of flow-level
features, achieving highly similar results.

Figure 4.6a depicts the linear correlation (more precisely, the Pearson Linear Corre-
lation Coefficient) between these input features and the RUMSI metric, for different
device types. Correlation values are rather high for all devices, with stronger corre-
lations observed for CBD features between 5 seconds and 10 seconds, as well as for
session-duration features. Figure 4.6b shows correlation values for the QoE classifica-
tion problem, for all devices together. Based on the considered time thresholds, higher
correlations are observed between 2 and 5 seconds.

82

https://zoom.us
https://cnn.com

4.2. Web-QoE Datasets & Modeling Approach

desktop

0.1
0.2
0.3
0.4
0.5
0.6
0.7

PL
CC

CBD 50ms
CBD 100ms
CBD 500ms
session

smartphone

0.1
0.2
0.3
0.4
0.5
0.6
0.7

PL
CC

0 50 100 150 200 250 300
tablet

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

PL
CC

CBD@5s CBD@5s CBD@5s

(a) Correlation between input features and RUMSI.

0 50 100 150 200 250 300
features

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

P
LC

C

(b) Correlation between input features and QoE class.

Figure 4.6: Correlation between each of our 311 input features (300 CBD and 11 session-
related) and inference targets.

83

4.3. Desktop Models’ Lack of Generalization

model MAE − mAE (ms) MRE − mRE (%) PLCC

DT 766 – 288 37 – 18 0.817
ERT10 598 – 260 31 – 16 0.879
RF10 602 – 262 31 – 16 0.860

RF100 564 – 249 30 – 15 0.885
Bagging 600 – 266 31 – 16 0.857
Boosting 767 – 426 48 – 26 0.861

Bayes 976 – 491 64 – 29 0.727
kNN 940 – 496 54 – 29 0.752
XGB 774 – 429 48 – 26 0.849

Table 4.2: Benchmarking of different ML models for RUMSI inference, for desktop.

4.3 Desktop Models’ Lack of Generalization
We now focus on the Web-QoE estimation tasks. As a reference for performance evalua-
tion, we start by training and evaluating different ML models on desktop measurements.
Recall that desktop measurements represent the most common data source so far used
in the Web-QoE literature [123, 132, 133, 30, 124, 125]. We then apply the trained
models to both smartphone and tablet data to demonstrate the lack of cross-device gen-
eralization and poor performance achieved by single-device models in such multi-device
scenarios.

4.3.1 RUMSI Inference on Desktop
Table 4.2 reports the RUMSI-inference performance achieved by nine different ML mod-
els, most of them being based on decision trees. The tested models include:

• Single decision tree (DT)

• Multiple types of ensembles using different numbers of trees, such as:

– Ensemble with 10 extremely randomized trees (ERT10)
– Random forest with 10 and 100 trees (RF10 and RF100)
– Bagging with 10 trees (Bagging)

• Boosting:

– Gradient boosting with 100 trees (Boosting)
– XGBoost with 100 trees (XGB)

84

4.3. Desktop Models’ Lack of Generalization

-5 -4 -3 -2 -1 0 1 2 3 4 5
true - estimated (s)

0

10

20

30

40

50

60

70

80

90

100

%
 W

eb
 s

es
si

on
s

DT
ERT10
RF10
RF100
Bagging
Boosting
Bayes
kNN
XGB

(a) RUMSI-inference performance on desktop mea-
surements.

-5 -4 -3 -2 -1 0 1 2 3 4 5
true - inferred (s)

0

10

20

30

40

50

60

70

80

90

100

%
 W

eb
 s

es
si

on
s

desktop
smartphone
tablet
smartphone
RUMSI < 5s
smartphone
RUMSI > 5s

(b) RUMSI-inference performance on all mea-
surements.

Figure 4.7: Cross-device QoE classification performance. Models are trained on desktop
measurements.

The list is completed by Naive Bayes (Bayes), and by the k-nearest-neighbors algorithm
(kNN) with k = 5, this hyperparameter being calibrated through grid search.

We assess their performance using three commonly used evaluation metrics for regression
problems, namely the absolute error (AE), the relative error (RE), and the linear corre-
lation (PLCC). We take both mean (M) and median (m) values for the error metrics, the
latter being a robust estimator of the average against outliers. The results correspond to
10-fold cross-validation and all the reported performance metrics are computed over the
ten folds. Figure 4.7a additionally depicts the cumulative distribution of the estimation
errors.

RF100 attains the best inference performance, with a median absolute error of 249 ms,
and a median relative error of 15%. Absolute inference errors are below 500 ms for
more than 70% of the sessions. More than 85% of the RUMSI values are inferred with
an error below one second. Similar performance is realized by smaller ensembles, e.g.,
RF10, ERT10, and bagging, which use 10 instead of 100 trees as in RF100. Given
the training-speed improvements obtained with the ERT10 model, we take it as the
underlying estimation model in subsequent evaluations.

4.3.2 QoE Classification on Desktop
Table 4.3 reports the classification-benchmark results obtained for desktop through 10-
fold cross-validation. As for the regression task, the reported values are computed over
the folds. Again, RF100 provides the best results, with an overall accuracy (ACC) close
to 87%. Recall (R) and precision (P) are above 90% for the excellent QoE-class estima-
tion, but good and poor QoE classes tend to be confused by the estimator. Nevertheless,
recall and precision are close to 80% for these classes.

85

4.3. Desktop Models’ Lack of Generalization

model
desktop

ACC R{e} R{g} R{p} P{e} P{g} P{p}
DT 80.3 88.8 66.1 72.8 88.4 66.2 73.8

ERT10 84.4 93.1 70.5 75.6 89.6 73.7 81.7
RF10 84.6 93.1 71.6 74.6 90.1 73.1 82.1

RF100 86.9 93.3 77.4 79.1 92.3 76.2 84.7
Bagging 85.7 93.2 74.3 76.8 90.8 74.6 84.8
Boosting 82.9 91.1 70.3 73.7 90.1 69.1 79.3

Bayes 60.1 93.0 11.6 19.5 63.2 38.3 46.7
kNN 74.9 87.3 55.1 62.1 81.8 59.1 72.0
XGB 82.2 90.9 69.0 72.1 89.8 67.9 77.6

Table 4.3: Benchmarking of different ML models for Web-QoE-class estimation on desk-
top. The three levels of QoE correspond to excellent {e}, good {g}, and poor {p}
QoE.

4.3.3 Lack of Generalization for Mobile Devices
Now that we have built the models for desktop, a natural question is: how good would
these models perform on data collected from other device types? This is critical in prac-
tice, as a significant, and ever growing, share of Web-browsing activity comes from mobile
devices. Figure 4.7b depicts the distribution of inference errors per device type, using
the ERT10 model, trained exclusively on desktop data. Table 4.4 summarizes the corre-
sponding performance metrics. There is a strong degradation in estimation performance
when applying the desktop model to both smartphone and tablet data. Median abso-
lute errors almost triple as compared to the performance on the desktop dataset. The
distribution of errors shows that the desktop model tends to underestimate the RUMSI
metric when applied to other devices not present at training time. One could argue that
the RUMSI on smartphone and tablet is significantly higher than on desktop (cf. Fig-
ure 4.2), thus the performance degradation could be linked exclusively to this mismatch.
However, the degradation is also significant when considering only smaller RUMSI val-
ues, with median errors more than doubling for the example case of smartphone – from
260 ms to 592 ms –, testing only for RUMSI values below five seconds.

Figure 4.8 shows how the aforementioned cross-device training and validation difficulties
also hold when considering different device types when inferring the RUMSI. More pre-
cisely, we consider all the possible pairs of training sets and test sets to give the broadest
picture of cross-device issues: all combinations of the three device types are explored.
The figure reports the usual AE, RE, and PLCC metrics arranged as a training/testing
matrix, where rows correspond to the device-type data used for training and columns
to the device-type data used for testing. While specialization improves inference per-

86

4.3. Desktop Models’ Lack of Generalization

device MAE – mAE (ms) MRE – mRE (%) PLCC

desktop 598 – 260 31 – 16 0.879
smartphone 1245 – 721 41 – 28 0.728

tablet 1434 – 724 44 – 28 0.618

smartphone
867 – 592 43 – 29 0.455

RUMSI < 5s
smartphone

2812 – 2000 32 – 27 0.667
RUMSI > 5s

Table 4.4: Inference performance per device type. The ERT10 model is trained using
desktop data.

desktop (D) smartphone (S) tablet (T)
model testing

T

S

D

m
od

el
 tr

ai
ni

ng

598 ms (31%)
260 ms (16%)

0.879

1055 ms (79%)
644 ms (37%)

0.689

1040 ms (79%)
644 ms (38%)

0.745

1245 ms (41%)
721 ms (28%)

0.728

788 ms (28%)
354 ms (13%)

0.859

1028 ms (38%)
526 ms (20%)

0.815

804 ms (25%)
314 ms (11%)

0.867

1139 ms (36%)
510 ms (18%)

0.778

1434 ms (44%)
724 ms (28%)

0.618

Figure 4.8: Cross-device RUMSI-inference performance, using per-device ERT10 as un-
derlying model. In each cell, the first line gives the means and the second one the
medians of both the absolute error (MAE and mEA, in ms) and the relative error (MRE
and mRE, in %); the third line is the correlation coefficient (PLCC).

formance – the matrix diagonal –, training a model on measurements from a particular
device type and applying the resulting model on measurements from a different device
type results in poor inference performance, for all device-type combinations. This lack
of cross-device generalization ability also applies to the two types of mobile devices:
even though tablets and smartphones are quite similar in terms of characteristics (cf.
Figures 4.2 and 4.3), training on a mobile device and testing on another yields poor
performance compared to training and testing on the same type of device. However,
the difference in performance is not as large as in the case where training happens on a
mobile device and testing on a desktop device (or vice-versa).

87

4.3. Desktop Models’ Lack of Generalization

ACC R {e} R {g} R {p} P {e} P {g} P {p}
0

10

20

30

40

50

60

70

80

90

100

Desktop
Smartphone
Tablet

Figure 4.9: Cross-device QoE-class-inference performance, using per-device ERT10
trained on desktop data as underlying model.

desktop (D) smartphone (S) tablet (T)
model testing

T

S

D

m
od

el
 tr

ai
ni

ng

R{e} = 73.6
R{g} = 61.4
R{p} = 75.6

R{e} = 79.8
R{g} = 57.3
R{p} = 73.8

R{e} = 87.4
R{g} = 47.8
R{p} = 59.2

R{e} = 85.7
R{g} = 74.6
R{p} = 80.5

R{e} = 80.0
R{g} = 65.4
R{p} = 74.2

R{e} = 86.9
R{g} = 49.1
R{p} = 60.1

R{e} = 93.1
R{g} = 70.4
R{p} = 75.6

R{e} = 87.9
R{g} = 77.9
R{p} = 84.4

R{e} = 79.7
R{g} = 66.0
R{p} = 73.4

(a) Recall.

desktop (D) smartphone (S) tablet (T)
model testing

T

S

D
m

od
el

 tr
ai

ni
ng

P{e} = 88.7
P{g} = 48.6
P{p} = 63.5

P{e} = 88.4
P{g} = 52.4
P{p} = 61.0

P{e} = 66.0
P{g} = 56.5
P{p} = 78.9

P{e} = 84.4
P{g} = 73.6
P{p} = 83.6

P{e} = 79.3
P{g} = 64.5
P{p} = 76.3

P{e} = 65.9
P{g} = 56.1
P{p} = 77.9

P{e} = 89.6
P{g} = 73.7
P{p} = 81.7

P{e} = 87.7
P{g} = 77.8
P{p} = 84.9

P{e} = 79.5
P{g} = 63.9
P{p} = 76.6

(b) Precision.

Figure 4.10: Cross-device QoE-class-inference performance across all device types, using
per-device ERT10 as underlying model.

Performance degradation is also significant for the QoE-classification problem. Figure 4.9
reports the classification performance per device type, again using the ERT10 model,
trained on desktop data. The overall classification accuracy drops from 84% on desktop
to 67% on smartphone and tablet. Recall for excellent QoE degrades only slightly, but
strongly for the other classes, and most importantly, precision for excellent QoE also
drops drastically. Similarly to the RUMSI-inference analysis, we summarize the cross-
device training and validation results across different devices in Figure 4.10. We observe
the same lack of cross-device generalization, and once again also for the two mobile
devices.

88

4.4. Multi-Device Models

device MAE – mAE (ms) MRE – mRE (%) PLCC

desktop 649 – 300 37 – 18 0.874
smartphone 804 – 363 27 – 14 0.855

tablet 798 – 318 25 – 11 0.868
all 750 – 327 30 – 14 0.869

Table 4.5: Multi-device RUMSI-inference performance.

Overall, our study shows that RUMSI inference and QoE-class estimation can be carried
out properly using CBD and session-based features, extracted directly from the stream
of encrypted bytes. However, models so far proposed in the literature for single device
types [123, 132, 30, 125, 124, 133] might not perform properly in the wild, where other
devices than desktop machines are used for Web browsing.

4.4 Multi-Device Models
Now that we have highlighted the lack of generalization and the cross-device issues in-
troduced by per-device models, we take the most natural step to conceive multi-device
Web-QoE models. Possible approaches include the usage of stacking/ensembles of spe-
cialized models [134] or the inclusion of a pre-processing device-type classification task,
preceding the main inference task. However, the simplest approach, exposing models
to data coming from all types of devices at training time, already provides high accu-
racy: these models generalize well across devices, which has high practical appeal as it
simplifies deployment.

In the context of our study, we apply stratified 10-fold cross-validation on the whole
dataset. With this strategy, we ensure that we have data from all types of devices in
both training and test sets.

Considering multi-device RUMSI inference first, Table 4.5 and Figure 4.11a summarize
the performance attained by a single ERT10 model, trained on multi-device data. Com-
pared to per-device specialized models (cf. the matrix diagonal in Figure 4.8), there is
a marginal degradation for the corresponding multi-device model, mainly observed for
desktop, with an error increase close to 10%. Still, performance is consistent across the
three device types, with an overall median absolute error of 327 ms, and a relative error
of 14%. Overall, the generalization capabilities of the multi-device model outweigh the
accuracy of the specialized models, making it a preferred choice for Web-QoE monitoring
in operational deployments.

Considering multi-device QoE classification next, Figure 4.11b reports the performance
obtained with a single ERT10 model, trained on multi-device data: again, we see a slight

89

4.5. Multi-Device, Flow-Level Models

-5 -4 -3 -2 -1 0 1 2 3 4 5
true - inferred (s)

0
10
20
30
40
50
60
70
80
90

100

%
 W

eb
 s

es
si

on
s

desktop
smartphone
tablet

(a) RUMSI-inference performance.

ACC R {e} R {g} R {p} P {e} P {g} P {p}
0

10

20

30

40

50

60

70

80

90

100

Desktop
Smartphone
Tablet

(b) QoE-classification performance.

Figure 4.11: RUMSI-inference and QoE-classification performance, the ERT10 model
was trained on multi-device data.

performance degradation compared to the specialized desktop model (cf. Table 4.3), but
with significant gains in terms of generalization to mobile devices (cf. Figure 4.9). The
overall model accuracy is 82.2%, with recall and precision values for excellent {e},
good {g}, and poor {p} QoE of about {89%, 73%, 80%} and {86%, 74%, 82%}, re-
spectively.

Overall, our evaluation shows that a single multi-device model significantly improves
generalization of the Web-QoE inference across different devices, with only slight under-
performance as compared to specialized models applied to data coming from the corre-
sponding device type. As such, multi-device models provide simple, more accurate, and
more reliable monitoring capabilities in realistic Web-browsing scenarios.

4.5 Multi-Device, Flow-Level Models
In the last part of the study, we focus on improving the practical application of the
proposed Web-QoE inference models. In particular, we explore the definition of new

90

4.5. Multi-Device, Flow-Level Models
▪ Flow-Index (FI): integral-based metric, same rationale as BI

▪ Two variants (start with 0 bytes or first-flow bytes)

Flow-level Models – Flow-Index

time

Cumulative
Flow
Bytes
(normalized)

100

FI

Figure 4.12: Flow-level features – FlowIndex computation.

input features at the flow level, with the intent of using fewer features and creating more
lightweight models. We define a set of 21 flow-level features, using similar notions to the
ones which guided the packet-level features. These include:

• The total number of flows (all, downlink, uplink).

• The min/mean/median/max flow duration in downlink.

• The min/mean/median/max flow size in downlink.

• The min/mean/median/max flow ByteIndex in downlink.

• The mean/median in-flow, average intra-packets time (MDT) in downlink.

• The mean/median/max flow throughput in downlink.

• The FlowIndex (FI).

The flow ByteIndex uses the standard definition of ByteIndex (BI) [30], but considering
only the packets belonging to a specific flow.

The FI feature represents an extension to the BI, using flow size and flow ending time
instead of packet size and time. Figure 4.12 depicts the basic notions behind the calcu-
lation of the FI. Both the FI and BI are integral metrics, similar to the definition of the
SI.

Flow features are complemented by the 11 session-level features, previously defined in
Section 4.2.3, for a total of 32 input features. In the context of this last analysis, we
use the same Web sessions as before, replacing the packet-level features with the newly
defined flow-level descriptors.

91

4.5. Multi-Device, Flow-Level Models

Figure 4.13: Flow-level features, ranked by PLCC.

-5 -4 -3 -2 -1 0 1 2 3 4 5
true - estimated (s)

0
10
20
30
40
50
60
70
80
90

100

%
 W

eb
 s

es
si

on
s

all devices
desktop
smartphone
tablet

Figure 4.14: Multi-device RUMSI-inference performance – flow-level features.

For the sake of completeness, Figure 4.13 reports the linear correlation between these
flow-level and session-level input features and the RUMSI metric. Features related to flow
duration, flow BI, FI, and session duration are the ones showing the highest correlation
to the RUMSI.

Figure 4.14 and Table 4.6 report and summarize the RUMSI-inference performance
achieved by a multi-device model based on ERT10. Results are comparable, and even
slightly better for some device types, than those obtained by using packet-level features
(cf. Table 4.5), with the paramount advantage of using an order of magnitude fewer
features, while being easier to compute and more scalable.

92

4.6. Conclusions

device MAE-mAE (ms) MRE-mRE (%)

desktop 628 – 309 35 – 18
smartphone 815 – 364 26 – 13

tablet 751 – 317 25 – 11
all 732 – 324 29 – 13

Table 4.6: Multi-device, flow-level RUMSI-inference performance.

4.6 Conclusions
We have tackled the problem of Web-QoE monitoring from the ISP perspective, rely-
ing on in-network, passive measurements. We built a large, multi-device, heterogeneous
corpus of Web-QoE measurements for the most popular Websites in order to conduct
empirical evaluations. They highlight that the proposed solution can infer the RUMSI as
well as estimate Web-QoE ranges from in-network traffic measurements with high accu-
racy. Thanks to the heterogeneity of our data, we believe that our ML models have the
potential to perform well in the wild. At the same time, we showed that the device type
introduced a strong bias in the capabilities of Web-QoE inference models, causing mod-
els trained for single device types to badly generalize to other devices. We demonstrated
that this lack of cross-device generalization can be solved by properly training on data
coming from a multitude of devices. Our findings raise awareness of the fact that mod-
els for Web-QoE monitoring must be exposed to multi-device measurements to achieve
good inference performance in real network deployments; this insight is highly relevant
for ISPs, but is generally neglected in the literature. To the best of our knowledge, we
are the first to unveil the strong impact that the device type has on such models. The
definition of novel flow-level features which also yield highly accurate estimations is an
additional key contribution of the study, as these kinds of lightweight statistics allow
ISPs to create even more scalable models.

93

CHAPTER 5
(Adaptive) Detection of Network

Attacks

Notice
Parts (text as well as figures, tables, and algorithms) of this chapter have already been
published in the following publications:

[J4] Adaptive and Reinforcement Learning Approaches for Online Network Monitoring and Anal-
ysis
S. Wassermann, T. Cuvelier, P. Mulinka, P. Casas
IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 1832-1849,
2021
DOI: 10.1109/TNSM.2020.3037486
© IEEE 2021

[A1] RAL – Reinforcement Active Learning for Network Traffic Monitoring and Analysis
S. Wassermann, T. Cuvelier, P. Casas
SIGCOMM Posters, Demos, and Student Research Competition, August 2020
DOI: 10.1145/3405837.3411390

[C4] ADAM & RAL: Adaptive Memory Learning and Reinforcement Active Learning for Network
Monitoring
S. Wassermann, T. Cuvelier, P. Mulinka, P. Casas
International Conference on Network and Service Management (CNSM), October 2019*
DOI: 10.23919/CNSM46954.2019.9012675

[W3] RAL – Improving Stream-Based Active Learning by Reinforcement Learning
S. Wassermann, T. Cuvelier, P. Casas
European Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases, Workshop on Interactive Adaptive Learning, September 2019

[W1] BIGMOMAL – Big Data Analytics for Mobile Malware Detection
S. Wassermann, P. Casas

94

SIGCOMM Workshop on Traffic Measurements for Cybersecurity, August 2018
DOI: 10.1145/3229598.3229600

*Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this work owned by others
than IFIP must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

The MAWILab datasets [135] on which we evaluate RAL have been gathered, pro-
cessed, and described by researchers of the CTU Czech Technical University in
Prague (Section 5.3.5 Data Description). The work about BIGMOMAL has been
carried out exclusively by myself. RAL has been conceived, implemented, and de-
scribed with my co-author Thibaut Cuvelier.

Today, more and more tasks are performed on smart devices, and they see an impressive
popularity: while 472,000,000 smartphones were sold in 2011 [136], this number has
more than doubled in 2014 [137]. Moreover, users spend most of their time browsing
on their mobile phones, more than on any other device. In the United States and the
United Kingdom, for instance, smartphone users spend 2 to 3 times more hours (87 hours
per month in the US and 66 hours in the UK) on their mobile device than on desktop
machines (34 hours and 29 hours, respectively) [138]. The impressive growth of mobile
devices and usage has led to unprecedented increase in cellular traffic. Unfortunately,
these devices increasingly become the target of malicious attacks that aim at stealing the
users’ private information and using it for bad-natured activities. Smart devices are not
only an appealing target because of their popularity, but also because they incorporate
a very large amount of sensitive information about the users, even more than a personal
computer [4]. For instance, the included sensors can track the user’s current location and
physical activities, and the camera can take pictures and record videos, even without
the users’ awareness.

The first piece of malware on a smart device was detected before 2004 [4] and the number
of malware detections and their diversity grew with the expansion of the smart-device
market. In particular, popular mobile operating systems such as Symbian, iOS, and
Android accelerated the development of mobile malware: while only about 500 malware
infections were reported between 2004 and 2007, this number increased by 3,325% in
2011 for Android [139]. In 2016, Kaspersky Lab found approximately 8,500,000 malicious
installation packages, 130,000 mobile banking Trojans, and 260,000 mobile ransomware
Trojans [140]. They noted that a large part of malicious software is distributed via the
official app stores. From 2017 to 2019, the number of malicious packages decreased,
but unfortunately this number increased again significantly (by 2,100,000) in 2020 [1].
Figure 5.1 depicts the types of malware which have been seen the most in 2019 and 2020.
2016 also underlined that developers of malicious apps make use of the current trends:
an app called Guide for Pokémon Go including a Trojan made its appearance on Google
Play and was installed more than 500,000 times [141].

95

Adware

Risk tool

Trojan dropper

Trojan

Trojan SMS

Trojan banker

Trojan spy

Backdoor

0 10 20 30 40 50
%

2019
2020

Figure 5.1: Most seen malware types in 2019 and 2020 for Android OS (data from
Kaspersky’s Mobile Malware Evolution 2020 report [1]).

Detecting mobile malware is a very challenging task and subject to a lot of research
efforts. Unfortunately, Zhou et al. found that the best antivirus software merely detected
79.6% of malware [142], which is a rather disappointing result.

With the rise of IoT (Internet of Things) devices, the playground for cybercriminals
becomes even larger. Indeed, this kind of device is used in many different domains such
as the health-care, food, and energy sectors, and encompasses highly sensitive data.
Due to the variety of devices and ways to connect to each other, we are facing a lack of
standardization of protocols at the communication and data-audit level, which gives the
threat actors more possibilities for attacks [143].

In this chapter, we first discuss the related work in the fields of mobile malware and active
learning, a subdomain of ML which proves to be very promising for networking problems.
We then introduce two frameworks that we apply in the context of cybersecurity:

1. BIGMOMAL, Big Data Analytics for Mobile Malware Detection. BIGMOMAL is a
framework relying on supervised learning to identify running Android applications
and to detect malware activity.

2. RAL, Reinforced stream-based Active Learning, a stream-based active-learning
strategy coupled with reinforcement learning to reduce the amount of labeled data
needed for learning.

For both BIGMOMAL and RAL, we present their functioning, the evaluations we con-
ducted with them, and the achieved results. The last section concludes this chapter.

96

5.1. Related Work

5.1 Related Work
Detecting mobile malware is a very challenging task and subject to significant research
efforts. Zhou et al. made the rather disappointing observation that the best antivirus
software merely detected 79.6% of malware [142]. It is worth noting that the wide range
of touch commands (such as swiping and tapping on the display) adds another layer
of complexity to the process of malware detection, as this makes the exploration of
all execution paths almost impossible [144]. Nevertheless, the authors of Malton [145]
developed a system which promises to be a non-invasive Android-malware-detection tool
outperforming multiple other proposals.

According to [4], Android OS relies more on platform protection than on market pro-
tection. In other words, Android users can download applications even from unofficial
markets, but the operating system attempts to protect the users from malicious behavior
by, for instance, applying a permission-based system (i.e., an application can only per-
form the actions for which the permission has been granted) or letting applications run
in a sandbox (i.e., an environment isolating the app). Non-negligible efforts have been
spent to detect the overprivilege problem, where an application requests more permis-
sions than it needs to work properly. Projects such as Stowaway [146], PScout [147], and
DroidRisk [148] try to identify applications incorporating this kind of security threat.
The work presented in [149] uses permission-based heuristics to determine whether an
application is malicious or not.

In [150, 144], Arshad et al. and Tam et al. provide extensive surveys about malware
detection and protection on Android. They present two approaches for detecting mal-
ware on Android phones: static and dynamic ones. While the static techniques are
mainly based on bytecode analysis, without executing the app, dynamic methods ana-
lyze applications during their execution. For example, static techniques involve signature
and permission analyses, whereas dynamic ones use anomaly-detection approaches and
emulation. The aforementioned works [146, 147, 148, 149] fall into the category of static-
analysis systems. TaintDroid [151] and Maline [152] are two examples of systems making
use of dynamic techniques. TaintDroid relies on captured network data to analyze An-
droid applications, while Maline is a malware-detection tool based on machine-learning
techniques to classify system calls. Another tool relying on a dynamic approach has been
developed by Afonso et al. [153]: it investigates the system calls and API uses of an ap-
plication to feed extracted features to an ML algorithm. With MalDozer [154], Karbab
et al. use more complex algorithms, in particular deep learning, to detect malware on
Android devices.

To help the cybersecurity research community, several researchers make their mobile-
malware datasets publicly available. A good example is the SherLock dataset [155], a
massive time-series dataset containing more than 600,000,000,000 samples. More pre-
cisely, they analyzed the activities of Android applications in a very fine-grained fashion
and simulated malicious behaviors on the monitored smartphones. Other examples are
the Device Analyzer dataset [156], a very large dataset including data collected from

97

5.1. Related Work

nearly 900 different devices showing the behavioral diversity among users, the LiveLab
Project [157], a dataset investigating the usage of iPhone 3GS smartphones, and the An-
droid Malware Genome Project [142], a dataset encompassing more than 1,200 different
Android malware samples from nearly 50 distinct malware families.
Relying on ML to build novel malware-detection systems is on the rise, due to its promis-
ing results in a wide range of domains and its first applications in the field of cyber-
security. Network security is a very dynamic field, in the sense that security threats
evolve very quickly and users, as well as security systems, need to be watched out for
new threats constantly. Even though ML is getting used more and more often, most
techniques still rely on offline-learning approaches, i.e. models are trained once and then
applied to the incoming measurements. However, this is far from ideal when we are
facing highly dynamic environments, where the underlying properties of the inference
target evolve often and previous knowledge rapidly becomes obsolete. Another challenge
we need to consider in network security is the issue of data sparsity: even though the
total amount of data is overwhelming, not all attacks are equally covered, and a lot of
the captured traffic is (thankfully) benign.
To tackle those problems, we developed an active-learning framework coupled with re-
inforcement learning.
Many research efforts have already been undertaken in the field of active learning. For
example, [158, 159] present three simple approaches for this learning paradigm. Their
Randomized Variable Uncertainty approach tackles the problem of stream-based active
learning using the model’s inference uncertainty to decide whether to query. They try
to adapt to concept drifts by randomizing the certainty threshold used for querying de-
cisions. [160] develops an active-learning algorithm with two different classifiers: one
“reactive” and one “stable”. The stable classifier is trained on all available labeled in-
stances, while the reactive one learns on a window of recent instances. In [161], the
authors present an active-learning technique based on clustering and estimation un-
certainty. [162] conceives an approach relying on a modification of the Naive-Bayes
classifier to update the different learners through the queried samples. In particular,
the author uses one-versus-one classifiers to tackle multi-class problems and update the
weights of the different classifiers by comparing their estimations to the ground truth.
Krawczyk’s technique behaves similarly to ours. However, the major difference is that
he is using information about the classifiers’ inference certainty (without considering
the corresponding weights) in order to adapt the minimum threshold to query the ora-
cle, while we rely on the usefulness of the decisions taken by RAL to tune the system
according to the data stream.
Extending active learning through reinforcement learning is currently a very active re-
search area. Active learning alone can easily converge on a policy of actions that have
worked well in the past, but are sub-optimal. Reinforcement learning helps to improve
the exploration-exploitation trade-off by letting the learner take risks with an uncertain
outcome. However, most proposals do not consider the stream scenario, and operate
on the basis of pool-based approaches. In [163, 164], authors rely on the multi-armed

98

5.2. In-Device Mobile Malware Detection with BIGMOMAL

bandit paradigm. [164] develops ALBL, which uses a modified version of EXP4 [165],
a weight-updating rule, to attribute adaptive weights to different learners based on re-
wards; the learner to use is then determined through these weights; the chosen learner
selects the samples in the pool to hand to the oracle based on its uncertainty mea-
sure. The approach described in [163] is similar to the one in [164], except for the
reward-computation scheme. Some other papers in the field of pool-based active learn-
ing are [166, 167]. The algorithm presented in [168, 169] relies on the same principles as
the system we are proposing, but tackles a different problem: Song’s goal is to introduce
an active-learning component into a contextual-bandit problem, while we are aiming at
solving an active-learning problem by using contextual bandits.

Other recent papers dealing with active learning and reinforcement learning include [170,
171, 172, 173]. However, most of them consider only one of the perspectives addressed
by RAL, namely the enhancement of pool-based active learning through reinforcement
learning [171, 173, 172], or the application of active learning to the streaming setup [170].
Combining active learning with reinforcement learning in a streaming, adaptive learn-
ing context is the most important contribution of RAL, a very timely yet vaguely ad-
dressed problem in the literature. [174, 175] use the idea of learning to active learn, i.e.
data-driven active learning. [175] suggests this view on pool-based active learning: the
querying decision for a sample is based on an estimation of the accuracy improvement.
[174] uses reinforcement learning in stream-based active one-shot learning, but this work
is different from RAL on multiple aspects:

1. It tackles a different learning task, as it aims at detecting new classes instead
of improving overall classification accuracy for previously known classes in the
training phase.

2. Their scheme relies on reinforcement learning only during the training phase and
not once deployed, while RAL continuously adapts its querying policy during the
whole incoming stream.

3. The system heavily relies on deep recurrent networks, too cumbersome to use in
real-time resource-constrained scenarios, unlike RAL, which is model-independent.

5.2 In-Device Mobile Malware Detection with
BIGMOMAL

Given the relevance and sensitivity of mobile cybersecurity, we study the problem of mal-
ware and running-application detection in Android smartphones relying on supervised-
machine-learning models. We use a large, publicly available dataset for smartphone data
analysis, namely the SherLock data collection1, to build BIGMOMAL, a framework to
detect malware activity through supervised machine learning. We evaluate three differ-
ent aspects:

1http://bigdata.ise.bgu.ac.il/sherlock/

99

http://bigdata.ise.bgu.ac.il/sherlock/

5.2. In-Device Mobile Malware Detection with BIGMOMAL

1. Overall model performance.

2. Generalization of the learned models across different users.

3. Detection-accuracy drift along time.

Initial results suggest that decision trees are capable of identifying malware activity with
high accuracy and extremely low computational time.

Our contributions to the mobile-security domain are as follows:

• Running-application identification: we identify running Android applications
for each user through lightweight ML models with resource-level features as input.
We also investigate the impact of time on this identification, i.e. how our models
behave when they are trained on a different time period than the one on which
they are tested (for example, trained on data at the beginning of the month, and
tested at the end of it).

• Malware detection: we use the same input features as for the running-app
identification to detect malicious applications. Besides a temporal analysis, we
also evaluate ML models when mixing data from multiple users.

In Section 5.2.1, we describe the Sherlock dataset and its characteristics. In Section 5.2.2,
we present how we use BIGMOMAL to identify running applications on Android devices.
In Section 5.2.3, we rely on BIGMOMAL to detect potential Android malware.

5.2.1 The SherLock Dataset
In the context of this work, we rely on the SherLock dataset, published by the BGU
Cyber Security Research Center [155]. The SherLock dataset has been collected from
January 2015 until December 2017 and includes very valuable information about the
usage of Android smartphones. The collection was done during a long-term field trial
on 50 smartphones used as primary device for different participants. More precisely,
Mirsky et al. handed a Samsung Galaxy S5 to 50 clients. On these smartphones, the
authors installed two applications, namely SherLock and Moriarty: while SherLock is
responsible for collecting data about the smartphone (SMS, call logs, etc.), Moriarty
periodically performs malicious activities, simulating the behavior of malware found in
the wild. SherLock monitors two kinds of sensors:

1. PULL sensors, analyzed regularly (to collect, for instance, information about the
installed and currently running applications, and the values of accelerometers).

2. PUSH sensors, triggered when an event occurs (for example, receiving / issuing a
call or a text message).

100

5.2. In-Device Mobile Malware Detection with BIGMOMAL

The malicious actions of Moriarty are diverse and encompass activities such as contact,
photo and SMS theft, phishing, and ransomware: its payload is updated every few weeks.
Data collection is done at very high sample rate (as frequently as once every 5 seconds).
The complete labeled dataset contains more than 600,000,000,000 data records, with a
total of more than 4 TB of data. It is worth noting that the SherLock team cares a lot
about the users’ privacy: network identifiers such as cell-tower IDs, WiFi SSIDs, and
MAC addresses have been hashed; geographical locations have been anonymized through
clustering techniques.

In this study, our evaluation focuses on the data collected during the second quarter of
2016. From the complete dataset, we keep two specific feature categories:

1. All those features related to the network traffic generated by the apps.

2. All those features corresponding to the footprint of the app on the CPU and
internal running processes (e.g., statistics on CPU and memory usage, Linux-level
process information).

The rationale is that some malware activity would be more visible at the network-traffic
level, whereas some others would be better identified at the local-process level. The full
list of used features can be found in Appendix D.

Given the size of the data we study, we rely on big-data platforms to conduct the study.
In particular, we use the Big-DAMA framework [176] to process the dataset, build
machine-learning models, and evaluate their performance. In a nutshell, Big-DAMA uses
Apache Spark Streaming for stream-based analysis, Spark for batch analysis, and Apache
Cassandra for query and storage. Within the Big-DAMA platform, we have conceived
different algorithms for network security and anomaly detection using supervised- and
unsupervised-machine-learning models.

0 50 100 150 200 250 300 350

Number of run apps

U
s
e
rs

Figure 5.2: Number of different applications launched during Q2 2016 by each user.

We start by doing a brief characterization of the considered dataset snippet. During
these three months, we found more than 600,000,000 records from 48 different users.

101

5.2. In-Device Mobile Malware Detection with BIGMOMAL

Rank Application name # samples
#1 SherLock 88,770,706
#2 Google Play Services 40,618,023
#3 Chrome 39,826,584
#4 SmartcardService 37,303,817
#5 Unified Deamon 37,151,289
#6 SecurityManagerService 37,139,510
#7 WhatsApp 36,427,517
#8 S Finder 35,370,165
#9 Samsung Push Service 34,685,712
#10 Context Service 31,030,179

Table 5.1: Top ten popular apps in Q2 2016.

Figure 5.2 depicts the number of different Android applications launched by each user.
We can easily see that not all the users use their smartphone in the same way: while
nearly 50% of them launched more than 200 apps, there are also clients who used less
than 10 different applications. For the latter, we suppose that they did not use the
Samsung smartphone on a daily basis, but only periodically for the SherLock campaign.
Next, we check which applications were the most popular among our users. We consider
an app as popular if the dataset contains a large number of data points for it. Table 5.1
shows the ten most popular apps for Q2 2016. For Moriarty, we observe 7,330,805
data points. We note that SherLock was the app yielding by far the most samples (12
times more), which comes as no surprise because it is the application responsible for the
information gathering. Through this table, we can also point out that a non-negligible
part of the popular applications are Android services which are automatically launched in
the background by the Android OS and not by the users. For instance, SmartcardService
ensures that applications can communicate with the SIM card and Google Play services
allows the installed applications to access the newest features published by Google. In
Table 5.2, we summarize the ten most popular apps excluding internal Android services
and the SherLock application. According to our findings, WhatsApp and Hangouts seem
to have been the favorite social applications of our users from April to June 2016.

To better understand the behavior of Moriarty as compared to benign applications, we
compare WhatsApp – the most popular social app in the dataset – against Moriarty, the
malware-emulation app. In Figure 5.3, we plot several characteristics of both of them.
In particular, we focus on the average CPU utilization per hour, the average number
of used threads per hour, and the sent / received traffic on a hourly basis. We observe
that Moriarty used much more CPU resources than WhatsApp: while WhatsApp used
most of the time only 5% of the CPU on the monitored smartphones, Moriarty mostly

102

5.2. In-Device Mobile Malware Detection with BIGMOMAL

Rank Application name # samples
#1 Chrome 60,906,775
#2 Google App 39,826,584
#3 WhatsApp 36,427,517
#4 S Finder 35,370,165
#5 S Health 24,584,561
#6 Hangouts 19,787,131
#7 Samsung text-to-speech engine 18,538,122
#8 Geo News 17,132,911
#9 Peel Smart Remote 15,729,303
#10 Contacts 14,995,777

Table 5.2: Top ten popular apps in Q2 2016 (Android services and SherLock excluded).

needed at least 20%, which is a significant difference. However, WhatsApp seems to
need more threads to run properly compared to Moriarty. When it comes to network
traffic, we can see that WhatsApp sends more data than Moriarty. We observe a similar
behavior for the received traffic, even though the difference is not as striking. While this
is expected, as the users of WhatsApp constantly exchange messages and multimedia
files, this simple comparison makes the point in the statistical differences in some of the
aforementioned characteristics, which shall form the basis for the input features to the
machine-learning models detecting malware activity.

5.2.2 Identifying Running Applications
Before setting the focus on the malware detection, we investigate the possibility of au-
tomatically identifying the different running Android applications from the set of input
features available in the dataset. The goal is to differentiate among different running
apps without gathering the process name, so as to better understand if it would be
possible to later on identify malware activity using the same approach.

We consider as input a set of 45 SherLock-monitored smartphone features (see Ap-
pendix D), reflecting the behavior of the different apps, and build supervised-machine-
learning models to automatically classify them. We particularly focus on the usage
of decision trees, based on their a-priory excellent performance in similar network-
measurement analysis problems, as we saw in Chapters 3 and 4 and in [177]. We proceed
as follows: for each user, we randomly choose 20% of the application samples as training
set and the remaining 80% for testing. We obtain almost perfect results for the entire
set of Q2 users: for all of them, our model correctly identified the running applications
in about 99% of the cases.

103

5.2. In-Device Mobile Malware Detection with BIGMOMAL

0 5 10 15 20

Hourly average CPU usage in %

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) Avg. CPU utilization / hour for WhatsApp.

0 20 40 60 80 100 120

Hourly average CPU usage in %

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) Avg. CPU utilization / hour for Moriarty.

40 50 60 70 80 90 100 110

Hourly average number of threads

0

0.2

0.4

0.6

0.8

1

C
D

F

(c) Avg. # used threads / hour for WhatsApp.

0 20 40 60 80 100

Hourly average number of used threads

0

0.2

0.4

0.6

0.8

1

C
D

F

(d) Avg. # used threads / hour for Moriarty.

0 100 200 300 400

outgoing kilobytes per hour

0

0.2

0.4

0.6

0.8

1

C
D

F

(e) # sent kilobytes / hour by WhatsApp.

0 100 200 300 400

outgoing kilobytes per hour

0

0.2

0.4

0.6

0.8

1

C
D

F

(f) # sent kilobytes / hour by Moriarty.

0 1 2 3 4 5 6 7

incoming megabytes per hour

0

0.2

0.4

0.6

0.8

1

C
D

F

(g) # received megabytes / hour by WhatsApp.

0 1 2 3 4 5 6 7

incoming megabytes per hour

0

0.2

0.4

0.6

0.8

1

C
D

F

(h) # received megabytes / hour by Moriarty.

Figure 5.3: Characterization of the WhatsApp and Moriarty Android applications. Each
CDF curve on a plot corresponds to the cumulative distribution for one user and the
sampling frequency is once per hour.

104

5.2. In-Device Mobile Malware Detection with BIGMOMAL

Top 10 features Application identification Malware detection

#1 feature virtual memory size shared dirty pages used by
Dalvik heap

#2 feature number of threads number of minor page faults
#3 feature CPU utilization time process scheduled in

user mode
#4 feature process priority level

(foreground, background,
service, sleeping, etc.)

proportional set size for
Dalvik heap

#5 feature ordering within a particular
priority category

time process-children
scheduled in user mode

#6 feature process life time virtual memory size
#7 feature time process scheduled in

user mode
time process scheduled in

kernel mode
#8 feature time process-children

scheduled in user mode
process ID

#9 feature number of minor page faults process life time
#10 feature number of private dirty pages

used by everything else than
the native heap

number of private dirty pages
used by the native heap

Table 5.3: Most relevant features for identifying running Android applications and de-
tecting malware.

Feature Selection

Next, we investigate which features are the most discriminative ones when it comes to
the identification of applications. We rely on an embedded method within a decision
tree. The ten most important features are reported in Table 5.3.

We note that the most discriminative features are related to the CPU, threads, and
memory. Moreover, the information related to the importance of the Android application
– i.e., whether it is running as a service, in the background, or in the foreground – helps
for the identification. Overall, our results show that low-level information is very useful
for this kind of inference task. Interestingly, the feature-importance scores show that
we do not have any feature with an importance close to 1; instead, the highest is 0.32.
This shows that the ML technique can combine these features in a very smart way for
an accurate inference.

As an additional analysis, we evaluate the application-identification power of a decision
tree for one user when relying only on the five and ten most important features. For

105

5.2. In-Device Mobile Malware Detection with BIGMOMAL

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8

Estimation weeks

40

50

60

70

80

C
o
rr

e
c
t
a
p
p
 i
d
e
n
ti
fi
c
a
ti
o
n
s
 (

%
)

Figure 5.4: App-identification accuracy when training and testing on a weekly basis.

this, we split the dataset as previously, i.e. 20% of the data is considered as the training
set and the remaining 80% as test set. Our results reveal that the decision-tree model
still works extremely well even when using only 5 or 10 features instead of 45: in both
cases, the identification was correct for about 99% of the testing records. It thus seems
that only a small amount of data is required to obtain a high estimation accuracy, which
is a paramount advantage in case the app identification needs to be done in an online
context. Indeed, when working with a restricted set of features, classifiers can work
more efficiently and provide an answer quickly. Furthermore, gathering only little data
implies that we do not have to overload the smartphone for data collection – only a few
system calls are necessary.

Temporal App Identification

As a last step for the app-identification study, we are interested in the quality of the
application identification on a temporal basis. More precisely, we are curious about the
accuracy of the inference model in case the training phase takes place in a different time
span. In particular, for each user, we train a decision tree on data collected during the
first week and try to identify the applications run during the following weeks.

Figure 5.4 depicts the results for one user. It reveals that the overall identification
accuracy decreases with respect to our previous evaluation, suggesting that restricting
the training set to the samples collected during the first week does not capture as well the
users’ smartphone habits as when the training set is randomly sampled. As a concrete
example, a user could be traveling during the seventh week and send a lot of photos to
her friends via WhatsApp, which would significantly alter the network-related features of
this application. Furthermore, the plot shows that the accuracy of our model decreases
over time: while almost 80% of the applications were correctly identified in the first
estimation week, this was the case for only about 62% in the eighth one. The outcome
of this analysis for the other users is very similar.

106

5.2. In-Device Mobile Malware Detection with BIGMOMAL

Users
0

20

40

60

80

100

R
e

c
a

ll
(%

)

Figure 5.5: Recall obtained while detecting Moriarty for each Q2 user.

Inferred negative Inferred positive

Ground-truth negative 14,275,309 117
Ground-truth positive 155 35,076

Table 5.4: Confusion matrix obtained while detecting Moriarty for one Q2 user.

5.2.3 Malware Detection
Our next goal using BIGMOMAL is to detect whether an application is malicious or not,
still working with the data collected during the second quarter of 2016. As presented
in Section 5.2.1, Moriarty simulates bad-natured behavior and is thus the target of the
detection model. We are now trying to answer the following question: “Is the running
application Moriarty or not?”, which boils down to a binary-classification problem.

We use the same feature set and ML model as for the application-identification task.
However, as the execution of the Moriarty application can be considered as a rare event
(the dataset contains millions of non-Moriarty samples versus only a few thousands of
Moriarty records for each user), we randomly choose 40% of samples for the test set
compared to 20% in the context of the application identification.

Figure 5.5 depicts the obtained recall for the Moriarty detection per user. A high recall
value reveals that the number of missed malware instances (the false negatives) is low.
This is a very important property in our context, as false negatives (i.e., considering an
application as benign although it is malicious) are a considerable security threat for the
user. Moreover, we achieve an extremely low false positive rate (below 1% for each user),
indicating that we almost never classify a benign application as malicious. For the sake
of illustration, Table 5.4 shows the confusion matrix obtained for one of our users.

107

5.2. In-Device Mobile Malware Detection with BIGMOMAL

Feature Selection

Similar to the identification of applications, we are interested in the most important
features for detecting malicious apps. The ten most relevant features (determined using
the same technique as in Section 5.2.2) are summarized in Table 5.3. We note that,
compared to the application-identification task, a lot of these features are related to
the memory (five out of ten). Once again, low-level metrics are very useful indicators.
Similar to the app identification, we do not observe any importance score close to 1. As
a final step, and similarly to Section 5.2.2, we evaluate our decision-tree model for this
detection problem with the top five and top ten features. The results are excellent even
with these reduced feature sets. Indeed, in both cases, the recall is over 99%.

Temporal Malware Detection

Next, we carry out the temporal analysis for the Moriarty detection. We proceed in the
same way as for our previous task, i.e., we train for each user the detection model on
data gathered during the first week of the second quarter and test it in the remaining
weeks. Given the major imbalance in classes between benign and Moriarty instances,
we resort to SMOTE [111] to oversample the Moriarty class to achieve a 50-50 ratio
between the majority and minority classes.

Figure 5.6 depicts the recall obtained per week for one user. As we can easily observe,
the results are very poor and detection performance rapidly degrades after the 3rd week.
Two issues could be the cause of this performance: firstly, the extremely low number of
gathered Moriarty samples in the training week, and secondly, a high level of dynamism
in the data; as stated in Section 5.2.1, the Moriarty application periodically changes
its behavior, which makes its detection very challenging when the training set does not
include samples of all the patterns. Indeed, during the second quarter of 2016, Moriarty
changed twice its malicious behavior to emulate several kinds of malware: it started with
SMS- / bank-theft malware activity, moved on to phishing, and finished with simulating
adware [155]. For instance, displaying ads intuitively requires more network traffic and
CPU usage than SMS/bank theft and phishing. This prevents the decision tree from
accurately grasping the behavior of the malicious Android application. Again, the results
for the other users are highly similar. We tested several other models for this specific
task, without any notable detection improvements.

Malware Detection Across Multiple Users

Finally, we evaluate our detection model on data collected from multiple users. More
precisely, we train our decision tree on data gathered from three Q2 users and test it on
data belonging to three other ones.

The resulting confusion matrix is shown in Table 5.5. Results are again quite disap-
pointing, suggesting that the particularities of the ways users use their smartphone play
a more important role than the set of features used as input by the model. Indeed, each

108

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

week 1 week 2 week 3 week 4 week 5 week 6

Estimation weeks

0

5

10

15

20

25

30

R
e

c
a

ll
(%

)

Figure 5.6: Recall obtained while detecting Moriarty on a weekly basis for one Q2 user.

Inferred negative Inferred positive

Ground-truth negative 79,775,923 16,784
Ground-truth positive 35,401 3,472

Table 5.5: Confusion matrix obtained while detecting Moriarty for several Q2 users when
training on data instances from other clients.

and every user uses her smartphone differently and it is thus very challenging to build a
model from multiple users that can be accurately applied to other ones.

5.3 Reinforcement Learning for in-Network Attack
Detection with RAL

One of the main challenges associated with supervised learning under dynamic scenar-
ios is that of periodically getting access to labels of fresh, previously unseen samples.
Labeling new data is usually an expensive and cumbersome process, and not all data
points are equally valuable. A good example is again the domain of cybersecurity, where
manually analyzing and labeling potentially malicious samples is both time- and effort-
consuming. Another challenge we are facing in security, and in network monitoring in
general, is the one of fast incoming and heterogeneous data. This data usually comes in
the form of high-speed streams, which need to be rapidly and continuously processed.
In this context, detecting and adapting to strong variations in the underlying statistical
properties of the modeled data makes data-stream analysis a challenging task.

Active learning aims at labeling only the most informative samples to reduce cost. In
this paradigm, a learner can choose from which new data points it wants to learn, and
can obtain the ground truth by asking an oracle for the corresponding labels.

In this section, we introduce our contribution to the active-learning domain: RAL –
Reinforced stream-based Active Learning –, a new active-learning approach, coupling

109

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

stream-based active learning with reinforcement-learning concepts. In particular, RAL’s
decision-making process is guided by rewards and penalties. To the best of our knowl-
edge, combining stream-based active learning with reinforcement learning has not yet
been explored in the literature. Additionally, we release RAL on GitHub as an open-
source Python package to the machine-learning community2.

In Sections 5.3.1 and 5.3.2, we present the general functioning of RAL. In Sections 5.3.3
and 5.3.4, we detail two different versions of RAL: the one using a committee of mod-
els and the one based on a single ML model. In Section 5.3.5, we benchmark RAL
against state-of-the-art algorithms on two network-security datasets, and show that it
outperforms the considered techniques.

Even though we evaluate RAL only on cybersecurity datasets in this thesis, we designed
it to work in all situations where data sparsity is an issue. For instance, we benchmark
our system on forest covertype data in [J4, W3].

5.3.1 Overview of RAL
In this subsection, we give a broad overview of RAL – Reinforced stream-based Active
Learning – and its two building blocks. The overall idea is summarized in Figure 5.7.

RAL can be used within systems that have an incoming stream of data to label, one
sample at a time; each data point is referred to as x and the corresponding ground-truth
label y is not cheaply available through an oracle. The designers of these systems want to
continuously improve their performance (typically, measured as a misclassification rate)
while minimizing the number of useless sample labelings. The role of RAL is to decide,
for each sample, whether it would be beneficial for the global system to have access to
its label through the oracle.

To accomplish this goal, RAL is composed of two essential building blocks:

1. A set of experts. Each of them gives its own independent opinion on each
incoming sample, indicating whether the corresponding label should be obtained.

2. A controller that takes the final query decision based on the opinion
of each expert. This module is based on reinforcement learning and gives more
importance to experts that have a good performance history (i.e. following their
advice mostly lead to labeling samples that were useful).

5.3.2 Diving into RAL
In this subsection, we detail the design of RAL and its two main building blocks.
RAL relies on inference uncertainty, a commonly used metric in active learning, and
reinforcement-learning principles, using rewards and bandits, which are among the most
studied algorithms.

2https://github.com/SAWassermann/RAL

110

https://github.com/SAWassermann/RAL

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

ŷ

Oracley

x

ρ± reward / penalty

Committee
learners

Single
learner

Committee
learners

Single
learner ε-greedy? query?no

yes

Figure 5.7: Overall idea of the RAL system.

Learners as Experts

In RAL’s committee, each ML model is an expert, taking decisions based on its own cer-
tainty. The calculation of the inference certainty is independent of the way the classifier
is trained. The certainty of the model is defined as the highest posterior classifica-
tion probability among all possible labels for sample x. More formally, it is equal to
maxŷ P (ŷ|x) with ŷ being one of all the possible labels for x. The uncertainty is thus
defined as 1 − maxŷ P (ŷ|x).

The underlying assumption for designing RAL is based on the rationale that the ex-
pert’s (un)certainty is an appropriate proxy for assessing the usefulness of a data point.
Indeed, if the learner is uncertain about its estimation, this sample likely represents a
region which has not been explored enough. Adding that sample with its true label to
the training set would improve the overall inference accuracy; the alternative is that
the uncertainty is due to noise or to concept drift, these two points being especially
challenging in a streaming setting.

Reinforcement-Learning-Based Controller

The implemented controller is mainly driven by rewards. The intuition behind the
different reward values is that we attribute a positive reward in case our system behaves
as expected, and a negative one otherwise, to penalize it. RAL obtains rewards/penalties
only when it is asking for ground truth. In a nutshell, it earns a positive reward ρ+

in case it queries the oracle and would have inferred the wrong label otherwise (the
system made the right decision to ask for the ground truth) and a penalty ρ− (i.e. a
negative reward) when it asks the oracle even though the underlying classification model
would have estimated the correct label (querying was unnecessary). The rationale for
using reinforcement learning is that RAL learns not only based on the queried samples
themselves, but also from the usefulness of its decisions. The objective function to
maximize is the total reward �T

n=1 rn, where rn is the nth reward (either ρ+ or ρ−)
obtained by RAL.

In RAL, we use the reward mechanism to tune the sample-informativeness heuristic in
order to better guide the future query decisions, which will be explained in the next

111

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

subsection. In case RAL’s committee is composed of more than one expert, rewards and
penalties also influence the weight of each expert.

As a final element, we implement an ε-greedy policy in our controller (also inspired by
the bandit literature [178]) for the sake of data-space exploration: with probability ε, the
system queries the oracle, even if the committee agreed not to query; we call this the ε-
scenario. This ensures that we have a good chance of detecting potential concept drifts:
without this policy, the system could end up being too confident about its estimations
(and thus never ask the oracle again) even though its estimations are erroneous.

5.3.3 Learning with a Committee of Learners

In this subection, we present RAL coupled with a committee of learners. The algorithm
behind this version of RAL is summarized in Algorithm 5.1. We rely on a set of experts
(i.e. different ML models), referred to as a committee. Each expert gives its advice for
the sample to consider: should the system ask the oracle for feedback or is the expert
confident enough about its inference? To assess a model’s estimation certainty, we rely
on a certainty threshold θ:

• If the model’s certainty is below θ, the model is too uncertain about the inference
to make and thus it advises that RAL asks the ground truth.

• Otherwise, the model has at least a certainty of θ and querying the label seems to
be unnecessary.

The query decision of the committee takes into account the opinions of the experts, but
also their decision power: if the weighted majority of the experts votes for not querying,
RAL will rely on the label inference provided by the committee, used in the form of a
voting classifier. The decision power of each expert gets updated such that the experts
which agree with the entire committee are obtaining more power in case that particular
decision is rewarding, i.e. informative (otherwise, these experts get penalized). These
weights are updated through the EXP4 rule [165], with a learning rate η; this algorithm
is typically used for contextual bandits with a set of experts. RAL does not update the
decision powers of the different learners in the ε-scenario: the committee did not take
the querying decision and thus the weights of the models should not be impacted by this
querying action.

The computation of the reward is carried out every time the committee decided to query
(i.e. not in the ε-scenario). RAL therefore gets rewarded with ρ+ when it queried the
oracle and asking was rewarding (i.e. the voting classifier would have inferred the wrong
label). Conversely, RAL is penalized with ρ− if the system used the oracle because the
committee decided to do so, even though the underlying classifier would have inferred
the correct class.

112

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

Algorithm 5.1 RAL algorithm.
1: procedure RAL(x, E, α, θ, ε, η, ρ±)
2: x: sample to consider
3: E: set of learners, members of the committee
4: α: vector of decision powers of learners in E
5: θ: certainty/querying threshold
6: ε: threshold for ε-greedy
7: η: learning rate for updating decision powers and the querying threshold
8: ρ±: reward and penalty
9: decisions ← {} + will contain decisions of learners

10: for e ∈ E do
11: decisions[e] ← e.askCertainty(x) < θ + decisions[e] ∈ {0, 1}
12: end for
13: committeeDecision ← round(�e∈E α[e] · decisions[e])
14: p ← U[0,1] + random number drawn from a uniform distribution
15: if p < ε or committeeDecision = 1 then + ε-scenario or not?
16: y ← acquireLabel(x)
17: end if
18: if committeeDecision = 1 then
19: r ← getReward(x, y, ρ±)
20: α ← updateDecisionPowers(r, E, decisions, committeeDecision, α, η)
21: θ ← min

�
θ ·

�
1 + η ·

�
1 − 2

r
ρ−

��
, 1

�
22: end if
23: end procedure
24:
25: function getReward(x, y, ρ±)
26: return (ρ− if ŷ(x) = y else ρ+) + ŷ(x) is the predicted class for x
27: end function
28:
29: function updateDecisionPowers(r, E, decisions, committeeDecision, α, η)
30: for e ∈ E do
31: if decisions[e] = committeeDecision then
32: α[e] ← α[e] · exp(η · r) + EXP4
33: end if
34: end for
35: α ← α/

�
e∈E α[e] + normalize each value of α

36: return α
37: end function

As an additional step, to ensure that RAL adapts as best as possible to the data stream,
we do not only tune the weights of the committee members based on rewards, but also
the certainty threshold θ, denoted in the remainder of this subsection as θn to stress that

113

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

it is influenced by the n − 1 samples observed so far. Again, as for the decision powers,
θn is not updated in the ε-scenario.

The update rule of θn we implemented for our tool is written as follows:

θn ← min
�

θn−1 ·
�
1 + η ·

�
1 − 2

rn
ρ−

��
, 1

�
(5.1)

Design of Update Rule

In this subsection, we detail the reasoning behind our choice of the update policy. Most
active-learning algorithms only rely on a static or random certainty threshold (like Ran-
domized Variable Uncertainty [158, 159]), while reinforcement learning provides the op-
portunity to have a threshold that adapts to the system’s current state.

We are looking for a rule of this form:

θn ← min {θn−1 · (1 + f(rn)) , 1} , (5.2)

where f(rn) = 1 − exp (a · rn) with a < 0 is a function indicating how the threshold
should change: the threshold should increase when f takes positive values, decrease
when f is negative.

The design goals of this update policy are that the threshold increases slightly when the
reward is positive, conversely when the reward is negative. More formally, our update
policy should satisfy the following properties:

1. θn should decrease rapidly in case rn is negative, as this indicates that the
system queries too often and thus is performing poorly. Therefore, θn should be
adapted fast to improve its performance.

2. θn should slightly increase when rn is positive, so that the system does not
keep decreasing the threshold. The model was right to ask for more samples, and
thus the threshold should be increased. Nevertheless, the system is doing well: the
threshold should not be too reactive to the queries.

3. f must have two extrema: a minimum at ρ− < 0 and a maximum at ρ+ > 0,
while being monotonic in between.

4. θn represents a probability. θn = 0 is not acceptable due to the product form
of the update policy, thus the values of θn must be in the interval (0, 1].

5. f(rn) must be in the interval (−1, 1] to ensure that θn takes values correspond-
ing to a probability. We exclude −1 from the allowed range of values to avoid that
θn drops to 0.

114

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

ρ⁻ ρ⁺ Reward r

-1

0.5
f(r)

1 - exp(a·r)
with
a = ln 2ρ⁻

Figure 5.8: Function based on the reward used in our update rule of RAL’s certainty
threshold.

Properties 1 and 2 lead us to choose the family of functions fa : r
→ 1 − exp (a · r)
parameterized by a. Property 5 can be translated into an equation to determine this
parameter:

lim
r→ρ−

f(r) = 1 − exp
�
a · ρ−�

= −1 (5.3)

After solving Equation 5.3, we get a = ln 2
ρ− . As f is strictly increasing, and because a

is negative, f will have a maximum when rn = ρ+. To satisfy Property 5, ρ+ must be
chosen such that 0 < f(ρ+) ≤ 1, i.e. ρ+ > 0. Figure 5.8 depicts the function f used in
our update rule.

As a final step, we introduce an additional hyperparameter to the update rule, namely
the learning rate η. This rate aims at smoothing the evolution of the threshold θn,
i.e. avoiding that θn changes too dramatically with a single query. We thus have the
following update rule:

θn ← min
�

θn−1 ·
�
1 + η ·

�
1 − 2

rn
ρ−

��
, 1

�
(5.4)

The values of η are restricted to the range (0, 1). Indeed, we still must satisfy Property
5 (a value of 1 would violate this one) and η = 0 would lead to a nonreactive system, as
the threshold would never adapt. Note that this version of RAL uses the same value of
η for updating both θn and the decision powers in α.

Choice of Hyperparameters

We acknowledge that RAL includes a non-negligible number of hyperparameters which
should be well chosen in order to obtain the best results. While we do not have any rule
of thumb on how to define exact values, the following guidelines help RAL learn from
the streaming data:

• The initial value of θ should be high when the number of possible labels is low, to
avoid that the model is always too certain about its estimation for the encountered
samples

115

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

• ε should be higher when dealing with more dynamic datasets, to increase the
probability to accurately grasp concept drifts; in general, we would advise using
values in the range of 1 to 5%

• η should be small to avoid changing the decision powers of the different learners
(α) and θn too abruptly; we would advise values below 0.1

• There is no specific range of values for ρ± which works better than others and
these values should be picked considering the situation in which RAL is used: if
unnecessary queries are a major issue, one should set ρ− such that its absolute
value is much higher than the one of ρ+

5.3.4 Learning with a Single Classifier
RAL can also be used with a single classifier instead of a committee of learners. In that
case, RAL becomes very lightweight and the only element of the system that allows it
to efficiently adapt to and learn from the data stream is the variation of the certainty
threshold θ by relying on the rewards rn.

5.3.5 RAL Evaluation
To showcase the performance of RAL, we evaluate our tool and compare it to a state-
of-the-art algorithm for stream-based active learning, and to random sampling (RS). In
particular, we compare RAL to the Randomized Variable Uncertainty (RVU) technique
presented in [158, 159] and mentioned in Section 5.1, as this approach also heavily relies
on the uncertainty of the underlying ML model to take the querying decisions. We use
two network-attack datasets extracted from MAWILab [135].

Data Description

Note about adoption of text from co-authors: The text in this section (Data Description) was mainly contributed by

co-authors to the joint paper [C4], even though I edited it for clarity.

The traffic studied in the context of this work spans two weeks of packet traces collected
in late 2015. From the labeled anomalies and attacks, we specifically focus on those
which are detected consistently by all four MAWILab detectors (one detector based on
PCA, one based on the Hough transform, one relying on a Gamma model, and the last
one relying on the Kullback-Leibler divergence). We consider two types of attacks:

• Flooding attacks, and in particular ping flood, which consists in overwhelming a
victim’s machine with ICMP echo request packets (ping packets).

• Distributed network scans, and in particular UDP probing traffic. This attack
consists in scanning a group of machines (i.e. sending UDP packets and analyzing
the potential reply) on a usually limited number of different ports.

116

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

In the ping-flood dataset, we observe 32% of anomalous samples, while the netscan
dataset includes 37% of malicious data points.

To perform the analysis in a stream-based manner, we consider a slotted, time-based
approach: we split the traffic traces in consecutive time slots of ΔT seconds each, and
compute a set of features describing the traffic in each of these slots (i.e. each of them
corresponds to one sample). Each slot i is assigned a label li ∈ {0, 1}2, consisting of
a 2-dimensional binary vector which indicates at each position j if anomaly of type
j ∈ {1, 2} is present (li,j = 1) or not (li,j = 0) in the current time slot. The goal is
to detect each of these attack types separately, with binary classifiers indicating if the
attack j ∈ {1, 2} is present for the time slot i.

We compute a large number of features describing a time slot, using traditional packet-
level measurements including traffic throughput, packet sizes, IP addresses, ports, trans-
port protocols, flags, etc. The total set accounts for 245 features, which are computed
for every time slot i. Besides using traditional features such as min/avg/max values of
some of the input measurements, we also consider the empirical distribution of some of
them, sampling it at many different percentiles. This provides much richer information,
as the complete distribution is taken into account. We also compute the empirical en-
tropy H(·) of these distributions, reflecting the feature dispersion. Appendix E describes
the full set of 245 features.

Naturally, the length of a time slot ΔT influences the computation of the proposed fea-
tures, and therefore the performance of the detection models. We have tried different
values for ΔT and adopted ΔT = 5 seconds for the computation of features, which pro-
vides a good trade-off between fine-grained temporal resolution and model performance.

Additionally, we study the variation of the statistical properties of the considered datasets,
in particular detecting concept drifts in the labels. To this end, we use the Page-Hinkley
test (PHT) [179], a common statistical test. Figure 5.9 depicts the cumulative number
of changes observed in the ping-flood dataset, as well as the times when those changes
are detected. The test detects 14 abrupt changes during the total measurement time
span. The frequency of changes significantly increases in the last third of the dataset,
with more than 10 changes detected in the last four days. Concept drifts occur from
modifications of the underlying characteristics of the inference target and can be the
reason behind sudden shifts in the performance of algorithms. The PHT results for the
netscan set were highly comparable (same number of changes, and similarly distributed
in time), and thus we omitted the corresponding plot.

Setup

For each benchmarked algorithm, we proceed as follows:

• First, we subdivide the considered datasets into three consecutive, disjoint parts:
the initial training set, the streaming data, and the validation set. The validation
set consists of the last 30% of the dataset (where there are, incidentally, most of

117

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

Figure 5.9: PHT detection for the ping-flood dataset; dashed lines indicate changes. ©

IEEE 2021

the detected concept drifts), the initial training set is a variable fraction of the
first samples (varying between the first 0.5%, 1%, 2%, 5%, 10%, and 15%), and
the streaming part includes all the remaining samples not belonging to the other
two subsets.

• We then train a model on the initial training set and check its inference accuracy
(referred to as the initial accuracy) on the validation part.

• Next, we run the benchmarked algorithm on the streaming part and let it pick the
samples it wants to learn from. We retrain the models after each queried label.

• Finally, we evaluate the final model (i.e. trained on the initial training set and
the chosen samples) again on the validation set and report this model’s inference
accuracy (referred to as the final accuracy).

In the context of this evaluation, the analysis focuses on the accuracy for the attack class
(i.e., recall). We implement for both RAL and RVU the budget mechanism presented
in [158], based on the ratio between the number of queries and the total number of
samples observed so far; the system is allowed to issue queries to the oracle as long as
this ratio is below a certain threshold, i.e. the budget. For random sampling, we use a
budget indicating the exact number of samples to ask feedback for. For each dataset, we
set it to the highest average number of queried samples by either RAL or RVU among all
the tests with all the considered initial-training-set sizes. All tests are repeated 10 times,
and we report both the average recall and its standard error. For RAL, we indicate the
average number of queries performed due to the uncertainty of the underlying model
and the ones issued through the ε-greedy mechanism. For RVU, we report the average
number of queries. The hyperparameter values of RAL are chosen by grid search for
our datasets on the training set within the ranges prescribed in Section 5.3.3. The used

118

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

ε η initial θ budget ρ+ ρ−

2.5% 0.01 0.9 0.05 1 −1

Table 5.6: RAL hyperparameters, selected by grid search.© IEEE 2021

values are indicated in Table 5.6. For RAL and RVU, the budget is set to 0.05 for all
the experiments and we test RVU with the hyperparameters recommended in [159].

Results

The results are shown in Figures 5.10 and 5.11. The reported all-streaming accuracy
refers to the detection accuracy obtained by the model in case it queries all the samples
seen in the streaming data.

We use the committee version of RAL for our evaluations. More precisely, the committee
is a voting classifier composed of three commonly used ML models that provide inference-
certainty quantification, namely a k-NN model with k equal to 5, a decision tree, and
a random forest with 10 trees. We also use the same model for RVU and RS. On
Figures 5.10a and 5.10b, we can clearly note that RAL outperforms both RVU and RS
on average. A striking example are the results for the netscan detection, where RAL
obtains final accuracies which are 5 percent points higher than the ones of RVU and RS
for the two smallest initial-training-set sizes. It is also worth highlighting that RAL is
the only algorithm yielding higher final accuracies than the all-streaming one as long as
the initial training set contains less than 5% of the data. To our surprise, RVU is often
outperformed by RS. Finally, the flood-attack-detection analysis shows that the three
approaches often yield a final accuracy higher than the all-streaming one, underlining
that learning from the entire data stream does not necessarily output the best possible
accuracy.

Note that the initial accuracy is constant for the two different datasets. This is due to
the fact that the first 15% of these datasets consist of points with the same label (more
precisely, they represent an attack).

When it comes to the number of queried samples, Figure 5.11 shows that RAL queries,
on average, significantly less often than RVU – between 20% and 25% fewer queries. A
non-negligible part of these queries are due to the model’s uncertainty, suggesting that
the samples picked by RAL for its learning purposes are wisely chosen. The results also
highlight that the ε-greedy policy is very useful, as the additional exploration capability
helps better deal with the concept drifts in the data, contributing to the better results
shown in Figure 5.10. Finally, the number of samples/labels queried by RAL represents
less than 4% of the total number of streaming samples, also showing how much one can
save in terms of required labeling for training.

119

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Initial-training-set size (%)

60

65

70

75

80

85

D
et

ec
tio

n
ac

cu
ra

cy
 (%

) Initial accuracy
RS
RVU
All-streaming accuracy
RAL

(a) Ping flood.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Initial-training-set size (%)

65

70

75

80

85

D
et

ec
tio

n
ac

cu
ra

cy
 (%

) Initial accuracy
RS
RVU
All-streaming accuracy
RAL

(b) UDP netscan.

Figure 5.10: Detection accuracy for RAL, RVU, and RS. For each of the tested datasets,
RAL outperforms both techniques. © IEEE 2021

0.5 1 2 5 10 15

Initial-training-set size (%)

0

20

40

60

80

100

#
 q

u
e

ri
e

s

Model uncertainty

ǫ-greedy

(a) Ping flood (RAL).

0.5 1 2 5 10 15

Initial-training-set size (%)

0

20

40

60

80

100

#
 q

u
e

ri
e

s

Model uncertainty

ǫ-greedy

(b) Netscan (RAL).

0.5 1 2 5 10 15

Initial-training-set size (%)

0

20

40

60

80

100

#
 q

u
e

ri
e

s

(c) Ping flood (RVU).

0.5 1 2 5 10 15

Initial-training-set size (%)

0

20

40

60

80

100

#
 q

u
e

ri
e

s

(d) Netscan (RVU).

Figure 5.11: Number of queries issued by RAL (top) and RVU (bottom). RAL achieves
better accuracy, while querying fewer samples. © IEEE 2021

120

5.3. Reinforcement Learning for in-Network Attack Detection with RAL

0 200 400 600 800 1000 1200 1400 1600 1800

observed streaming samples (time)

65

70

75

80

85

90

95

100

d
e

te
c
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

%
 q

u
e

ri
e

d
 s

tr
e

a
m

in
g

 s
a

m
p

le
s

detection accuracy

% queried samples

(a) Ping flood.

0 200 400 600 800 1000 1200 1400 1600 1800

observed streaming samples (time)

55

60

65

70

75

80

85

90

95

100

d
e

te
c
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

%
 q

u
e

ri
e

d
 s

tr
e

a
m

in
g

 s
a

m
p

le
s

detection accuracy

% queried samples

(b) UDP netscan.

Figure 5.12: RAL’s detection accuracy temporal convergence. © IEEE 2021

We also study the convergence of RAL’s attack-detection performance with respect to the
evolution of the streaming samples (i.e., time), for the two MAWILab attack datasets.
More precisely, we evaluate RAL on the validation set after a new sample is queried. We
set the initial training-set size to the first 0.5% of the data: according to Figure 5.10, such
a small initial training-set provides the best results. Figure 5.12 reports the accuracy
convergence for the ping-flood and netscan detection, along with the temporal evolution
of the number of queried samples. We observe that the detection accuracy is not clearly
converging in the two scenarios: the ping-flood-detection performance seems to converge
to 90%, while there does not seem to be any convergence for the netscan case. This is
not surprising, considering the fact that these datasets present multiple concepts drifts
and are very dynamic. We investigated the reasons behind the sharp accuracy increase
in both evaluations, and found that they are highly correlated with queries issued by
the committee – not the ε-greedy scenario. This analysis confirms that acquiring the
labels for which the models have a low confidence in their inference is indeed a good
strategy for active learning, and in particular also for RAL. The degradation of the
detection performance is likely due to the acquisition of noisy points in the dataset and
to the concept drifts. The significant decrease in accuracy is mostly caused by samples
queried by random exploration (ε-greedy) and not by RAL’s committee, even though
this mechanism also often provides performance boost by forcing RAL to explore the
data space.

Based on these results, one could wonder whether the performance gain by RAL is
worth the complexity of the system. Even though the accuracy gain might not be
very significant, RAL’s querying strategy has additional advantages over the two other
techniques. For instance, RS does not take into account the uncertainty of the model
nor the usefulness of the queries, meaning that there is a risk to miss interesting samples.

121

5.4. Conclusions

Indeed, querying the ground truth when the model is uncertain helps discover under-
explored regions where to learn from, and RAL is additionally guided by its reward
mechanism. In the specific case of the MAWILab datasets, RS would probably miss
interesting attack samples, while RAL has a higher chance of querying the ground truth
for these data samples and better learn how to detect attacks. When it comes to RVU,
another advantage of RAL over that algorithm, besides its better performance shown
above, is that the querying decisions are also influenced by the informativeness of all
past queries, not only by their sheer execution; RVU does not take that information
into account at all, and thus it risks querying unnecessary samples too often. This is
especially problematic if querying is very expensive, or if the oracle has only limited
budget/availability.

5.4 Conclusions
In this chapter, we introduced two frameworks for (adaptive) detection of network at-
tacks: BIGMOMAL and RAL.

With BIGMOMAL – Big Data Analytics for Mobile Malware Detection –, we identified
Android applications and malware on smartphones using tree-based ML models based
on resource-level features with the SherLock dataset. For both of these classification
targets, we obtained highly promising results in case the training sets are generated
randomly. Nevertheless, those same tasks remain challenging when performed on a
temporal basis as well as when relying on data instances from multiple users. There are
two main takeaways from this study: firstly, our results suggest that malware-detection
models using the set of features provided by the SherLock dataset can operate with
very high performance only in those cases where models are tailored on a per-user basis,
taking into account the statistical behavior of each user. Secondly, it seems hard to
build a model that generalizes well and can cover multiple users and longer time spans,
additionally due to the occurrence of concept drift.

With RAL – a novel Reinforced stream-based Active-Learning approach –, we tackle
challenges of stream-based active learning, i.e. selecting the most valuable sequentially
incoming samples, using reinforcement-learning principles. It does not only learn from
the data stream, but also from the relevance of its querying decisions. RAL provides
a completely different exploration-exploitation trade-off than existing algorithms, as it
queries fewer samples of higher relevance. We showed on two MAWILab datasets that
RAL provides promising results, outperforming the state of the art.

122

CHAPTER 6
Conclusions and Perspectives

In this thesis, we explored the field of machine learning, applied to Quality of Experience
(QoE) and cybersecurity. We investigated three research questions.

Can we accurately infer video QoE from network-layer traffic despite end-to-end
encryption?

We started with the inference of video QoE. In particular, we introduced two AI-based
monitoring solutions, one built on top of data collected from YoMoApp, an Android
application for session-based YouTube QoE measurements, and one integrated into
ViCrypt, a system for real-time sensing of QoE-relevant metrics of video streaming.

In the context of the YoMoApp project, we first analyzed the video sessions of the
YoMoApp users from 2014 to 2018. The data demonstrates that YouTube mobile has
experienced systematic performance improvements since the beginning of the measure-
ments, which also lead to an increase of the QoE and of user engagement. As a next step,
we applied ML to the data with the goal of inferring session-based QoE metrics such
as initial delay, quality-switch events, and stallings by relying exclusively on lightweight
network-layer features. Our results were very encouraging for each of the considered es-
timation targets, especially with random forests. Indeed, the initial-delay discrimination
as well as the quality-switching detection yielded a false positive rate below 5% for more
than 90% of the sessions. When it comes to the inference of the re-buffering ratio, the
random forest achieved an almost perfect performance for detecting bad-quality sessions
with a high stalling ratio. Nevertheless, estimating the exact number of stalling events
remains a very challenging task. The outcomes of our analyses pave the way for broader,
non-intrusive, and privacy-preserving approach for large-scale, QoE-based monitoring of
YouTube mobile.

With ViCrypt, we moved from session-based QoE-metric inference to real-time inference.
More precisely, ViCrypt estimates each considered KQI every second while the user is

123

watching a YouTube video. To the best of our knowledge, this is the finest granularity
so far used for quality inference in the context of encrypted traffic. We investigated a
diverse set of ML algorithms and found, as for YoMoApp, that tree-based models were
both fast, which is very important in a real-time setting, and accurate. For instance,
ViCrypt output a recall close to or above 80% for each considered video-resolution class
relying on the random-forest algorithm, and yielded absolute errors below 100 kbps for
almost 80% of the time slots in the context of the average-bitrate inference when coupled
with extremely randomized trees. Feature selection and importance analysis highlighted
that a small set of lightweight network-layer features, namely the ones summarizing the
characteristics of the session since the beginning of the streaming, is sufficient for achiev-
ing highly encouraging results in the context of real-time KQI inference for YouTube.

Can we accurately estimate Web QoE from network measurements? Are models
trained on data coming from a specific device type applicable in a heterogeneous

ecosystem?

We then moved from video to Web-QoE inference. In particular, we focused on the
estimation of the RUMSI of Web sessions as well as of the QoE range with in-network
traffic measurements on different device types, namely on a desktop machine, a tablet,
and a smartphone. Our analysis revealed that the ML models did not generalize well
across the different devices, i.e. that a model trained on data coming from a single
device yielded disappointing results when applied to data coming from any different
device. For example, when training and testing on data coming exclusively from a
desktop device, we obtained an MAE of approximately 600 ms, which increased to
more than 1000 ms when the model was trained on smartphone data instead of desktop
data points. Nevertheless, we showed that the lack of cross-device generalization can
be solved by properly training on data coming from a multitude of devices. Indeed,
the model trained on multi-device data provided an MAE of about 650 ms for desktop
samples. To the best of our knowledge, we are the first to unveil the strong impact that
the device type has on the quality of Web-QoE inference. As a last step, we used ML
models based on novel flow-level features, which also yielded highly promising results.
In particular, a multi-device model using these kinds of features output an MAE of less
than 630 ms for desktop data, which is even slightly better than the performance of
the packet-level model. The conception of models based on flow-level features can be
considered as another contribution of our work.

Can we rely on machine learning for security-related tasks on smartphones? In
particular, how can we handle scarce resources to uncover malicious application

behavior and network attacks?
After having extensively explored several topics of QoE, we shifted our focus to cyber-
security. We first introduced BIGMOMAL – Big Data Analytics for Mobile Malware
Detection –, whose aim is to identify running Android applications and to detect mal-
ware activity. For this part of our work, we relied on the SherLock dataset, which
contains valuable information about smartphone usage. For both inference tasks, BIG-
MOMAL achieved highly accurate results on a per-user basis and when the training

124

set was created randomly among all the data points. The accuracy for the application
identification and the recall for malware detection were close to 99% for the considered
users. Nevertheless, in the two cases of a training set that is chosen on a temporal basis
and of a multi-user environment, accurately identifying apps and malware remains very
challenging.

The last research direction we pursued was about stream-based active learning applied
to the detection of network attacks. Stream-based active learning is particularly chal-
lenging, as the ML models have to rapidly decide, for each sequentially incoming sample,
whether it is worth labeling or not. We proposed RAL – a novel Reinforced stream-based
Active-Learning approach –, which couples active learning with reinforcement-learning
principles. More precisely, the models do not only learn from the data, but also from
their decisions. We evaluated RAL on two MAWILab datasets, and demonstrated that
it outperformed the state of the art, not only in terms of estimation accuracy, but also
in terms of the number of necessary queries, as RAL asked for significantly fewer labels
than previously proposed approaches (on average 25% fewer).

Final remarks

Overall, we investigated multiple very important problems which we are confronted with
in today’s Internet and proposed accurate, deployable solutions for them. Our research
efforts in the broad domain of AI for Networks (AI4NETS) potentially pave the way for
other crucial research directions and solutions to make the Internet even more enjoyable
and safer than today.

Perspectives
We tackled multiple interesting research questions during this journey. Nevertheless,
there are still numerous topics worth to be explored. Some important directions that
are sparked by this work are:

Move from video-QoE inference to video-QoE prediction: we focused on perform-
ing video-QoE estimation, i.e. we inferred the metrics after the end of a video
session within the context of YoMoApp and during the current time slot with
ViCrypt. A logical extension would be to predict KQIs in advance, i.e. what the
video quality would look like in a couple of seconds, for instance. This would be
an important step towards proactive QoE-aware traffic management. Indeed, ISPs
could detect problems in advance and adjust network conditions in time to avoid
QoE degradations. We initiated the discussion about this kind of management
in [J2].

Generalize video-QoE inference to multiple video services: we concentrated ex-
clusively on YouTube for both our session-based and real-time inference tasks.
However, other services such as Netflix and Amazon Prime are also crucial in
the world of video streaming. We could bring our studies several steps further

125

by generalizing YoMoApp and ViCrypt to those video providers. Building such
frameworks is very challenging, as all the video providers behave differently on the
network level [180], which makes it very hard to design ML approaches yielding
highly accurate KQI inference for all of them. It would also be beneficial for the re-
search community and ISPs to look deeper into QoE estimation for live-streaming
services (Twitch, Vimeo, Periscope, Facebook, for instance), which become more
and more popular.

Predicting root causes of video-QoE degradations: besides predicting video-QoE
metrics themselves, it would be highly interesting to be able to also predict the root
cause of the quality degradation (issues with the caching policies on the provider’s
side, network-path changes, problems with the client’s video player, etc.). Indeed,
identifying the degradation and its cause in advance would allow the corresponding
stakeholder to remediate the situation as quickly as possible. This kind of root-
cause analysis ideally makes it possible to detect problems in the video provider’s
network, which is not necessary visible to the ISP. First steps into this direction
have been discussed in [181, 182, 183]. However, the proposed approaches do not
allow to make predictions in advance, before the QoE degradation happens. While
the systems presented in [182, 181] are quite lightweight, the black-box technique
introduced in [183] is very complex. Moreover, none of these frameworks has seen
its generalizability assessed on several different services. Our aim would be to
develop automatic, lightweight, generalizable, and explainable ML systems which
are able to accurately predict root causes in the context of encrypted traffic.

Advanced clustering for better Web-QoE inference: so far, we have built Web-
QoE estimation models on a device-type basis, and demonstrated that they provide
very promising results. Another direction we could investigate would be to rely on
models tailored to the type of content provided by the Websites (images, videos,
JavaScript, HTML, etc.). The rationale behind this idea is that pages hosting
similar content have a high chance of behaving similarly on the network level.
We could also go one step further and use clustering techniques to automatically
subdivide Webpages into clusters and train ML models on top of them.

Generalize BIGMOMAL to multiple types of devices: we applied BIGMOMAL
exclusively on data coming from one particular Android smartphone. However, IoT
devices are on the rise, and extending BIGMOMAL to work on different devices
would be a challenging yet strategically important task.

Density-based measures for RAL: RAL is so far relying on uncertainty measures
to determine whether it should ask for a label or not. An interesting alternative to
investigate would be density-based approaches, in a similar fashion to DBSCAN.

Semi-supervised learning for RAL: the current version of RAL is based on super-
vised learning. We could dive into the topics of semi-supervised learning, which
combines the advantages of both supervised and unsupervised learning, in order

126

to attempt to improve the performance of RAL. More precisely, RAL would not
only learn from the labeled data, but also from the unlabeled data points. This
learning paradigm is designed such that models are able to learn from a training
set composed of a small amount of labeled data and a large amount of unlabeled
samples. In [184, 185], the authors explored the semi-supervised learning applied to
active learning in the pool-based setting. However, RAL is tackling stream-based
problems, which comes with its own set of challenges.

127

List of Publications

Journals

[J5] Improving Web QoE Monitoring for Encrypted Network Traffic through Time Series
Modeling
N. Wehner, M. Seufert, J. Schüler, S. Wassermann, P. Casas, T. Hossfeld
ACM SIGMETRICS Performance Evaluation Review, vol. 48, no. 4, pp. 37-40,
2021
DOI: 10.1145/3466826.3466840

[J4] Adaptive and Reinforcement Learning Approaches for Online Network Monitoring
and Analysis
S. Wassermann, T. Cuvelier, P. Mulinka, P. Casas
IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 1832-
1849, 2021
DOI: 10.1109/TNSM.2020.3037486

[J3] ViCrypt to the Rescue: Real-Time, Machine Learning-Driven Video QoE Monitor-
ing for Encrypted Streaming Traffic
S. Wassermann, M. Seufert, P. Casas, G. Li, L. Kuang
IEEE Transactions on Network and Service Management, vol. 17, no. 4, pp. 2007-
2023, 2020
DOI: 10.1109/TNSM.2020.3036497

[J2] Considering User Behavior in the Quality of Experience Cycle: Towards Proactive
QoE-aware Traffic Management
M. Seufert, S. Wassermann, P. Casas
IEEE Communications Letters, vol. 23, no. 7, pp. 1145-1148, 2019
DOI: 10.1109/LCOMM.2019.2914038

[J1] Machine Learning Models for YouTube QoE and User Engagement Prediction in
Smartphones
S. Wassermann, N. Wehner, P. Casas
ACM SIGMETRICS Performance Evaluation Review, vol. 46, no. 3, pp. 155-158,
2018
DOI: 10.1145/3308897.3308962

128

Conference Papers

[C6] Mobile Web and App QoE Monitoring for ISPs – from Encrypted Traffic to Speed
Index through Machine Learning
P. Casas, S. Wassermann, N. Wehner, M. Seufert, J. Schüler, T. Hoßfeld
Wireless and Mobile Networking Conference, October 2021
DOI: 10.23919/WMNC53478.2021.9619058
Best Paper Award

[C5] Are you on Mobile or Desktop? On the Impact of End-User Device on Web QoE
Inference from Encrypted Traffic
S. Wassermann, P. Casas, Z. Ben Houidi, A. Huet, M. Seufert, N. Wehner, J.
Schüler, S. Cai, H. Shi, J. Xu, T. Hoßfeld, D. Rossi
International Conference on Network and Service Management, November 2020
DOI: 10.23919/CNSM50824.2020.9269095

[C4] ADAM & RAL: Adaptive Memory Learning and Reinforcement Active Learning
for Network Monitoring
S. Wassermann, T. Cuvelier, P. Mulinka, P. Casas
International Conference on Network and Service Management, October 2019
DOI: 10.23919/CNSM46954.2019.9012675

[C3] On the Analysis of YouTube QoE in Cellular Networks through In-Smartphone
Measurements
S. Wassermann, P. Casas, M.Seufert, F. Wamser
Wireless and Mobile Networking Conference, September 2019
DOI: 10.23919/WMNC.2019.8881828
Best Paper Award Runner Up

[C2] Beauty is in the Eye of the Smartphone Holder – A Data Driven Analysis of
YouTube Mobile QoE
N. Wehner, S. Wassermann, P. Casas, M. Seufert, F. Wamser
Conference on Network and Service Management, November 2018

[C1] Improving QoE Prediction in Mobile Video through Machine Learning
P. Casas, S. Wassermann
International Conference on Network of the Future, November 2017
DOI: 10.1109/NOF.2017.8251212
Best Paper Award Runner Up

Workshop Papers

[W3] RAL – Improving Stream-Based Active Learning by Reinforcement Learning
S. Wassermann, T. Cuvelier, P. Casas

129

European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases, Workshop on Interactive Adaptive Learning, Septem-
ber 2019

[W2] I See What You See: Real Time Prediction of Video Quality from Encrypted
Streaming Traffic
S. Wassermann, M. Seufert, P. Casas, L. Gang, K. Li
Workshop on QoE-based Analysis and Management of Data Communication Net-
works, October 2019
DOI: 10.1145/3349611.3355549

[W1] BIGMOMAL – Big Data Analytics for Mobile Malware Detection
S. Wassermann, P. Casas
Workshop on Traffic Measurements for Cybersecurity, August 2018
DOI: 10.1145/3229598.3229600

Extended Abstracts

[A2] How Good is your Mobile (Web) Surfing? Speed Index Inference from Encrypted
Traffic
S.Wassermann, P. Casas, M. Seufert, N. Wehner, J. Schüler, T. Hossfeld
SIGCOMM Posters, Demos, and Student Research Competition, August 2020
DOI: 10.1145/3405837.3411382

[A1] RAL – Reinforcement Active Learning for Network Traffic Monitoring and Anal-
ysis
S. Wassermann, T. Cuvelier, P. Casas
SIGCOMM Posters, Demos, and Student Research Competition, August 2020
DOI: 10.1145/3405837.3411390

Demo Papers

[D1] Let me Decrypt your Beauty: Real-time Prediction of Video Resolution and Bitrate
for Encrypted Video Streaming
S. Wassermann, M. Seufert, P. Casas, L. Gang, K. Li
Demonstrations of the Network Traffic Measurement and Analysis Conference,
June 2019
DOI: 10.23919/TMA.2019.8784589

Posters

[P4] Improving Stream-Based Active Learning with Reinforcement Learning
S.Wassermann, T. Cuvelier, P. Casas

130

presented during the poster session at the Women in Machine Learning Work-
shop co-located with the conference on Neural Information Processing Systems,
December 2019

[P3] Decrypting Video Quality from Encrypted Streaming Traffic
S.Wassermann, P. Casas
accepted to the poster session at the Women in Machine Learning Workshop co-
located with the conference on Neural Information Processing Systems, December
2019

[P2] ViCrypt: Real-time, Fine-grained Prediction of Video Quality from Encrypted
Streaming Traffic
S. Wassermann, M. Seufert, P. Casas
presented during the poster session at the Internet Measurement Conference, Early
Work, Tools, and Datasets Track, October 2019

[P1] BIGMOMAL – Big Data Analytics for Mobile Malware Detection
S.Wassermann, P. Casas
presented during the poster session at the Internet Measurement Conference, Novem-
ber 2017

131

Bibliography

[1] Kaspersky Lab, “Mobile Malware Evolution 2020,” March 2021. [Online].
Available: https://securelist.com/mobile-malware-evolution-2020/101029/

[2] M. H. Mazhar and Z. Shafiq, “Real-Time Video Quality of Experience Monitoring
for HTTPS and QUIC,” in INFOCOM – Conference on Computer Communica-
tions, April 2018.

[3] C. Gutterman, K. Guo, S. Arora, X. Wang, L. Wu, E. Katz-Bassett, and G. Zuss-
man, “Requet: Real-Time QoE Detection for Encrypted YouTube Traffic,” in
Multimedia Systems Conference, June 2019.

[4] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda, “Evolution,
Detection and Analysis of Malware for Smart Devices,” IEEE Communications
Surveys Tutorials, vol. 16, no. 2, pp. 961–987, 2014.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering
the Game of Go with Deep Neural Networks and Tree Search,” Nature, vol. 529,
no. 7587, pp. 484–489, 2016.

[6] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grandmaster Level in
StarCraft II Using Multi-Agent Reinforcement Learning,” Nature, vol. 575, no.
7782, pp. 350–354, 2019.

[7] R. W. Thomas, D. H. Friend, L. A. DaSilva, and A. B. MacKenzie, “Cognitive Net-
works: Adaptation and Learning to Achieve End-to-End Performance Objectives,”
IEEE Communications Magazine, vol. 44, no. 12, pp. 51–57, 2006.

[8] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-
Solano, and O. M. Caicedo, “A Comprehensive Survey on Machine Learning for
Networking: Evolution, Applications and Research Opportunities,” Journal of In-
ternet Services and Applications, vol. 9, no. 1, pp. 1–99, 2018.

[9] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Machine Learning in Wireless
Sensor Networks: Algorithms, Strategies, and Applications,” IEEE Communica-
tions Surveys & Tutorials, vol. 16, no. 4, pp. 1996–2018, 2014.

132

https://securelist.com/mobile-malware-evolution-2020/101029/

Bibliography

[10] M. Bkassiny, Y. Li, and S. K. Jayaweera, “A Survey on Machine-Learning Tech-
niques in Cognitive Radios,” IEEE Communications Surveys & Tutorials, vol. 15,
no. 3, pp. 1136–1159, 2013.

[11] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine Learning
Methods for Cyber Security Intrusion Detection,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[12] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani,
“State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomor-
row’s Intelligent Network Traffic Control Systems,” IEEE Communications Sur-
veys & Tutorials, vol. 19, no. 4, pp. 2432–2455, 2017.

[13] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A Survey of Machine
Learning Techniques Applied to Self-Organizing Cellular Networks,” IEEE Com-
munications Surveys & Tutorials, vol. 19, no. 4, pp. 2392–2431, 2017.

[14] T. T. T. Nguyen and G. Armitage, “A Survey of Techniques for Internet Traffic
Classification Using Machine Learning,” IEEE Communications Surveys & Tuto-
rials, vol. 10, no. 4, pp. 56–76, 2008.

[15] J. Saxe, R. Harang, C. Wild, and H. Sanders, “A Deep Learning Approach to Fast,
Format-Agnostic Detection of Malicious Web Content,” in Security and Privacy
Workshops, May 2018.

[16] G. Marín, P. Casas, and G. Capdehourat, “DeepSec Meets RawPower – Deep
Learning for Detection of Network Attacks Using Raw Representations,” ACM
SIGMETRICS Performance Evaluation Review, vol. 46, no. 3, pp. 147–150, 2019.

[17] B. J. Radford, L. M. Apolonio, A. J. Trias, and J. A. Simpson, “Network
Traffic Anomaly Detection Using Recurrent Neural Networks,” arXiv preprint
arXiv:1803.10769, March 2018.

[18] J. Zhao, S. Shetty, and J. W. Pan, “Feature-Based Transfer Learning for Network
Security,” in Military Communications Conference, October 2017.

[19] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “LEMNA: Explaining
Deep Learning Based Security Applications,” in Conference on Computer and
Communications Security, October 2018.

[20] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I.
Kim, “Applications of Deep Reinforcement Learning in Communications and Net-
working: A Survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4,
pp. 3133–3174, 2019.

[21] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource Management with
Deep Reinforcement Learning,” in Workshop on Hot Topics in Networks, Novem-
ber 2016.

133

Bibliography

[22] H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive Video Streaming with
Pensieve,” in Conference of the Special Interest Group on Data Communication,
August 2017.

[23] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“YoMoApp: A Tool for Analyzing QoE of YouTube HTTP Adaptive Streaming
in Mobile Networks,” in European Conference on Networks and Communications,
June 2015.

[24] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Stream-Based Machine
Learning for Real-Time QoE Analysis of Encrypted Video Streaming Traffic,”
in Conference on Innovation in Clouds, Internet and Networks and Workshops,
February 2019.

[25] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP – Standards and
Design Principles,” in Annual Conference on Multimedia systems, February 2011.

[26] Apple, “HTTP Live Streaming,” May 2009. [Online]. Available: https:
//developer.apple.com/streaming/

[27] ITU, “ITU-T Recommendation P.800: Methods for Subjective Determination of
Transmission Quality,” 1996.

[28] ——, “ITU-T Recommendation P.1203: Parametric Bitstream-based Quality
Assessmentof Progressive Download and Adaptive Audiovisual Streaming Ser-
vicesover Reliable Transport.” 2016.

[29] P. Meenan, “Real User Monitoring SpeedIndex (RUMSI) - SpeedIndex
Measurements from the Field using Resource Timings,” 2020. [Online]. Available:
https://github.com/WPO-Foundation/RUM-SpeedIndex

[30] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the Quality of Experience of
Web Users,” ACM SIGCOMM Computer Communication Review, vol. 46, no. 4,
pp. 37–42, 2016.

[31] G. Kessler and S. Shepard, “A Primer On Internet and TCP/IP Tools and
Utilities,” Internet Requests for Comments, RFC Editor, RFC 2151, June 1997.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2151.txt

[32] J. Postel, “Internet Control Message Protocol,” Internet Requests for
Comments, RFC Editor, RFC 792, September 1981. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc792.txt

[33] G. Malkin, “Traceroute Using an IP Option,” Internet Requests for
Comments, RFC Editor, RFC 1393, January 1993. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1393.txt

134

https://developer.apple.com/streaming/
https://developer.apple.com/streaming/
https://github.com/WPO-Foundation/RUM-SpeedIndex
http://www.rfc-editor.org/rfc/rfc2151.txt
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc1393.txt

Bibliography

[34] P. Goyal and A. Goyal, “Comparative Study of Two Most Popular Packet Sniffing
Tools – Tcpdump and Wireshark,” in International Conference on Computational
Intelligence and Communication Networks, September 2017.

[35] M. Mellia, A. Carpani, and R. L. Cigno, “TStat: TCP Statistic and Analysis
Tool,” in International Workshop on Quality of Service in Multiservice IP Net-
works, February 2003.

[36] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Simple Network
Management Protocol (SNMP),” Internet Requests for Comments, RFC Editor,
RFC 1157, May 1990. [Online]. Available: https://rfc-editor.org/rfc/rfc1157.txt

[37] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, vol. 1, no. 1, pp.
81–106, 1986.

[38] P. Geurts, A. Irrthum, and L. Wehenkel, “Supervised Learning with Decision Tree-
Based Methods in Computational and Systems Biology,” Molecular BioSystems,
vol. 5, no. 12, pp. 1593–1605, 2009.

[39] E. Fix and J. Hodges, “Discriminatory Analysis: Nonparametric Discrimination,
Consistency Properties,” USAF School of Aviation Medicine, Tech. Rep., 1951.

[40] H. Zhang, “The Optimality of Naive Bayes,” in International Florida Artificial
Intelligence Research Society Conference, May 2004.

[41] B. Boser, I. Guyon, and V. Vapnik, “A Training Algorithm for Optimal Margin
Classifiers,” in Workshop on Computational Learning Theory, July 1992.

[42] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain,” Psychological Review, vol. 65, no. 6, pp. 386–408,
1958.

[43] S. W. Kwok and C. Carter, “Multiple Decision Trees,” Uncertainty in Artificial
Intelligence, vol. 9, pp. 327–335, 1990.

[44] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140,
1996.

[45] T. Ho, “Random Decision Forests,” in International Conference on Document
Analysis and Recognition, August 1995.

[46] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely Randomized Trees,” Machine
Learning, vol. 63, no. 1, pp. 3–42, 2006.

[47] R. Schapire, “The Boosting Approach to Machine Learning: An Overview,” Non-
linear Estimation and Classification, pp. 149–171, 2003.

135

https://rfc-editor.org/rfc/rfc1157.txt

Bibliography

[48] Y. Freund and R. Schapire, “A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting,” in European Conference on Compu-
tational Learning Theory, March 1995.

[49] J. Friedman, “Greedy Function Approximation: a Gradient Boosting Machine,”
Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[50] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in In-
ternational Conference on Knowledge Discovery and Data Mining, August 2016.

[51] D. Wolpert, “Stacked Generalization,” Neural Networks, vol. 5, no. 2, pp. 241–259,
1992.

[52] I. Guyon, J. Weston, S. D. Barnhill, and V. Vapnik, “Gene Selection for Cancer
Classification using Support Vector Machines,” Machine Learning, vol. 46, no. 1,
pp. 389–422, 2002.

[53] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Ob-
servations,” in Berkeley Symposium on Mathematical Statistics and Probability,
1967.

[54] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise,” in International Con-
ference on Knowledge Discovery and Data Mining, August 1996.

[55] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation Forest,” in International Conference
on Data Mining, December 2008.

[56] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying Density-
Based Local Outliers,” ACM SIGMOD Record, vol. 29, no. 2, pp. 93–104, 2000.

[57] K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points in Space,”
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-
ence, vol. 2, no. 11, pp. 559–572, 1901.

[58] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT Press,
2018.

[59] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-Time Analysis of the Multiarmed
Bandit Problem,” Machine Learning, vol. 47, no. 2, pp. 235–256, 2002.

[60] P. Auer, “Using Confidence Bounds for Exploitation-Exploration Trade-offs,”
Journal of Machine Learning Research, vol. 3, no. 11, pp. 397–422, 2002.

[61] N. Abe and P. M. Long, “Associative Reinforcement Learning Using Linear Prob-
abilistic Concepts,” in International Conference on Machine Learning, June 1999.

136

Bibliography

[62] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A Contextual-Bandit Approach
to Personalized News Article Recommendation,” in International Conference on
World Wide Web, April 2010.

[63] Sandvine, “Global Internet Phenomena Report 2019,” September 2019. [Online].
Available: https://www.sandvine.com/global-internet-phenomena-report-2019

[64] ——, “2020 COVID Internet Phenomena Spotlight Report,” May 2020. [Online].
Available: https://www.sandvine.com/covid-internet-spotlight-report

[65] Futuresource Consulting, “The Sustainable Future of Video Entertainment,”
August 2020. [Online]. Available: https://www.interdigital.com/download/
5fa0694a8934bfdf5f00596a

[66] R. Schatz, T. Hoßfeld, and P. Casas, “Passive YouTube QoE Monitoring for ISPs,”
in International Conference on Innovative Mobile and Internet Services in Ubiq-
uitous Computing, July 2012.

[67] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A System for On-Line Moni-
toring of YouTube QoE in Operational 3G Networks,” ACM SIGMETRICS Per-
formance Evaluation Review, vol. 41, no. 2, pp. 44–46, 2013.

[68] Ericsson, “Ericsson Mobility Report November 2020,” November 2020. [On-
line]. Available: https://www.ericsson.com/4adc87/assets/local/reports-papers/
mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf

[69] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia, “A
Survey on Quality of Experience of HTTP Adaptive Streaming,” IEEE Commu-
nications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2014.

[70] D. Ghadiyaram, J. Pan, and A. C. Bovik, “A Time-Varying Subjective Quality
Model for Mobile Streaming Videos with Stalling Events,” in Applications of Dig-
ital Image Processing, September 2015.

[71] K. Zeng, H. Yeganeh, and Z. Wang, “Quality-of-Experience of Streaming Video:
Interactions Between Presentation Quality and Playback Stalling,” in International
Conference on Image Processing, September 2016.

[72] S. Egger, T. Hoßfeld, R. Schatz, and M. Fiedler, “Waiting Times in Quality of
Experience for Web Based Services,” in International Workshop on Quality of
Multimedia Experience, July 2012.

[73] C. Timmerer, M. Maiero, and B. Rainer, “Which Adaptation Logic? An Ob-
jective and Subjective Performance Evaluation of HTTP-Based Adaptive Media
Streaming Systems,” arXiv preprint arXiv:1606.00341, June 2016.

[74] H. Ott, K. Miller, and A. Wolisz, “Simulation Framework for HTTP-Based Adap-
tive Streaming Applications,” in Workshop on NS-3, June 2017.

137

https://www.sandvine.com/global-internet-phenomena-report-2019
https://www.sandvine.com/covid-internet-spotlight-report
https://www.interdigital.com/download/5fa0694a8934bfdf5f00596a
https://www.interdigital.com/download/5fa0694a8934bfdf5f00596a
https://www.ericsson.com/4adc87/assets/local/reports-papers/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf
https://www.ericsson.com/4adc87/assets/local/reports-papers/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf

Bibliography

[75] M. Seufert, N. Wehner, and P. Casas, “A Fair Share for All: TCP-Inspired Adapta-
tion Logic for QoE Fairness Among Heterogeneous HTTP Adaptive Video Stream-
ing Clients,” IEEE Transactions on Network and Service Management, vol. 16,
no. 2, pp. 475–488, 2019.

[76] International Standards Organization/International Electrotechnical Commission
(ISO/IEC), “23009-1:2012 Information Technology – Dynamic Adaptive Stream-
ing over HTTP (DASH) – Part 1: Media Presentation Description and Segment
Formats,” 2012.

[77] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner, “Assessing Effect Sizes of Influ-
ence Factors Towards a QoE Model for HTTP Adaptive Streaming,” in Interna-
tional Workshop on Quality of Multimedia Experience, September 2014.

[78] M. Seufert, T. Hoßfeld, and C. Sieber, “Impact of Intermediate Layer on Qual-
ity of Experience of HTTP Adaptive Streaming,” in International Conference on
Network and Service Management, November 2015.

[79] H. T. T. Tran, T. Vu, N. P. Ngoc, and T. C. Thang, “A Novel Quality Model for
HTTP Adaptive Streaming,” in International Conference on Communications and
Electronics, July 2016.

[80] F. Wang, Z. Fei, J. Wang, Y. Liu, and Z. Wu, “HAS QoE Prediction Based on
Dynamic Video Features with Data Mining in LTE Network,” Science China In-
formation Sciences, vol. 60, no. 4, pp. 1–14, 2017.

[81] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “YoMo: A YouTube
Application Comfort Monitoring Tool,” in New Dimensions in the Assessment and
Support of Quality of Experience for Multimedia Applications, June 2010.

[82] P. Casas, R. Schatz, and T. Hoßfeld, “Monitoring YouTube QoE: Is Your Mo-
bile Network Delivering the Right Experience to Your Customers?” in Wireless
Communications and Networking Conference, April 2013.

[83] H. Nam, K.-H. Kim, D. Calin, and H. Schulzrinne, “YouSlow: A Performance
Analysis Tool for Adaptive Bitrate Video Streaming,” SIGCOMM Computer Com-
munication Review, vol. 44, no. 4, pp. 111–112, 2014.

[84] H. Nam, K.-H. Kim, and H. Schulzrinne, “QoE Matters More Than QoS: Why
People Stop Watching Cat Videos,” in INFOCOM – Conference on Computer
Communications, April 2016.

[85] H. Nam, H. Schulzrinne, and K.-H. Kim, “YouSlow: What Influences User Aban-
donment Behavior for Internet Video?” Columbia University, Tech. Rep., Decem-
ber 2016.

[86] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illuminating the
Edge Network,” in Internet Measurement Conference, November 2010.

138

Bibliography

[87] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao, “Mobilyzer: An Open
Platform for Controllable Mobile Network Measurements,” in Annual International
Conference on Mobile Systems, Applications, and Services, May 2015.

[88] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni, and
K. Lau, “QoE Doctor: Diagnosing Mobile App QoE with Automated UI Control
and Cross-Layer Analysis,” in Internet Measurement Conference, November 2014.

[89] I. Ketykó, K. De Moor, T. De Pessemier, A. J. Verdejo, K. Vanhecke, W. Joseph,
L. Martens, and L. De Marez, “QoE Measurement of Mobile YouTube Video
Streaming,” in Workshop on Mobile Video Delivery, October 2010.

[90] G. Gómez, L. Hortigüela, Q. Pérez, J. Lorca, R. García, and M. C. Aguayo-Torres,
“YouTube QoE Evaluation Tool for Android Wireless Terminals,” EURASIP Jour-
nal on Wireless Communications and Networking, vol. 2014, no. 1, pp. 1–14, 2014.

[91] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “A Machine Learning
Approach to Classifying YouTube QoE Based on Encrypted Network Traffic,”
Multimedia Tools and Applications, vol. 76, no. 21, pp. 22 267–22 301, 2017.

[92] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan, “BUFFEST: Pre-
dicting Buffer Conditions and Real-Time Requirements of HTTP(S) Adaptive
Streaming Clients,” in Multimedia Systems Conference, June 2017.

[93] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki, “Measuring
Video QoE from Encrypted Traffic,” in Internet Measurement Conference, Novem-
ber 2016.

[94] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “eMIMIC: Estimating
HTTP-Based Video QoE Metrics from Encrypted Network Traffic,” in Network
Traffic Measurement and Analysis Conference, June 2018.

[95] T. Mangla, E. Halepovic, E. Zegura, and M. Ammar, “Drop the Packets: Using
Coarse-Grained Data to Detect Video Performance Issues,” in International Con-
ference on Emerging Networking Experiments and Technologies, November 2020.

[96] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan, “Prometheus:
Toward Quality-of-Experience Estimation for Mobile Apps from Passive Network
Measurements,” in Workshop on Mobile Computing Systems and Applications,
February 2014.

[97] P. Casas, R. Schatz, F. Wamser, M. Seufert, and R. Irmer, “Exploring QoE in
Cellular Networks: How Much Bandwidth do You Need for Popular Smartphone
Apps?” in Workshop on All Things Cellular: Operations, Applications and Chal-
lenges, August 2015.

139

Bibliography

[98] T. Hoßfeld, R. Schatz, E. Biersack, and L. Plissonneau, Internet Video Delivery
in YouTube: From Traffic Measurements to Quality of Experience, vol. 7754, pp.
264–301, 2013.

[99] T. Hoßfeld, L. Skorin-Kapov, P. E. Heegaard, M. Varela, and K.-T. Chen, “On
Additive and Multiplicative QoS-QoE Models for Multiple QoS Parameters,” in
Workshop on Perceptual Quality of Systems, August 2016.

[100] M. Dasari, S. Vargas, A. Bhattacharya, A. Balasubramanian, S. Das, and M. Fer-
dman, “Impact of Device Performance on Mobile Internet QoE,” in Internet Mea-
surement Conference, October 2018.

[101] S. S. Krishnan and R. K. Sitaraman, “Video Stream Quality Impacts Viewer Be-
havior: Inferring Causality Using Quasi-Experimental Designs,” in Internet Mea-
surement Conference, November 2012.

[102] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “YouTube QoE Estima-
tion Based on the Analysis of Encrypted Network Traffic Using Machine Learning,”
in Globecom Workshops, December 2016.

[103] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Stream-Based Machine
Learning for Real-Time QoE Analysis of Encrypted Video Streaming Traffic,”
in Conference on Innovation in Clouds, Internet and Networks and Workshops,
February 2019.

[104] ——, “Features that Matter: Feature Selection for On-line Stalling Prediction in
Encrypted Video Streaming,” in INFOCOM – Conference on Computer Commu-
nications Workshops, April 2019.

[105] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li, “I See What You See:
Real Time Prediction of Video Quality from Encrypted Streaming Traffic,” in
Internet-QoE Workshop on QoE-based Analysis and Management of Data Com-
munication Networks, October 2019.

[106] A. Schwind, M. Seufert, Ö. Alay, P. Casas, P. Tran-Gia, and F. Wamser, “Concept
and Implementation of Video QoE Measurements in a Mobile Broadband Testbed,”
in Network Traffic Measurement and Analysis Conference, June 2017.

[107] M. Seufert, “Quality of Experience and Access Network Traffic Management of
HTTP Adaptive Video Streaming,” Doctoral Thesis, University of Würzburg,
Germany, 2017. [Online]. Available: https://opus.bibliothek.uni-wuerzburg.de/
files/15413/Seufert_Michael_Thomas_HTTP.pdf

[108] T. Karagkioules, D. Tsilimantos, S. Valentin, F. Wamser, B. Zeidler, M. Seufert,
F. Loh, and P. Tran-Gia, “A Public Dataset for YouTube’s Mobile Streaming
Client,” in Network Traffic Measurement and Analysis Conference, June 2018.

140

https://opus.bibliothek.uni-wuerzburg.de/files/15413/Seufert_Michael_Thomas_HTTP.pdf
https://opus.bibliothek.uni-wuerzburg.de/files/15413/Seufert_Michael_Thomas_HTTP.pdf

Bibliography

[109] A. Strehl and M. Littman, “Online Linear Regression and its Application to Model-
Based Reinforcement Learning,” Conference on Neural Information Processing
Systems, December 2007.

[110] P. P. Pébay, “Formulas for Robust, One-Pass Parallel Computation of Covariances
and Arbitrary-Order Statistical Moments,” Sandia National Laboratories, Tech.
Rep., September 2008.

[111] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “SMOTE: Synthetic Minority
Over-Sampling Technique,” Journal of Artificial Intelligence Research, vol. 16,
no. 1, pp. 321–357, 2002.

[112] Cisco, “Cisco Annual Internet Report (2018-2023) White Paper, Updated March
2020,” Cisco, Tech. Rep., March 2020.

[113] D. N. da Hora, A. S. Asrese, V. Christophides, R. Teixeira, and D. Rossi, “Narrow-
ing the Gap Between QoS Metrics and Web QoE Using Above-the-Fold Metrics,”
in International Conference on Passive and Active Network Measurement, March
2018.

[114] E. Ibarrola, I. Taboada, and R. Ortega, “Web QoE Evaluation in Multi-Agent Net-
works: Validation of ITU-T G.1030,” in International Conference on Autonomic
and Autonomous Systems, April 2009.

[115] ITU, “G.1030 : Estimating End-to-end Performance in IP Networks for Data
Applications,” 2014.

[116] T. Hoßfeld, F. Metzger, and D. Rossi, “Speed Index: Relating the Industrial Stan-
dard for User Perceived Web Performance to Web QoE,” in International Workshop
on Quality of Multimedia Experience, May 2018.

[117] Q. Gao, P. Dey, and P. Ahammad, “Perceived Performance of Top Retail Webpages
in the Wild: Insights from Large-Scale Crowdsourcing of Above-the-Fold QoE,”
in Workshop on QoE-based Analysis and Management of Data Communication
Networks, August 2017.

[118] A. Sackl, S. Egger, and R. Schatz, “The Influence of Network Quality Fluctuations
on Web QoE,” in International Workshop on Quality of Multimedia Experience,
September 2014.

[119] A. Sackl, P. Casas, R. Schatz, L. Janowski, and R. Irmer, “Quantifying the Impact
of Network Bandwidth Fluctuations and Outages on Web QoE,” in International
Workshop on Quality of Multimedia Experience, May 2015.

[120] M. Varela, T. Mäki, L. Skorin-Kapov, and T. Hoßfeld, “Towards an Understanding
of Visual Appeal in Website Design,” in International Workshop on Quality of
Multimedia Experience, July 2013.

141

Bibliography

[121] M. Varela, L. Skorin-Kapov, T. Mäki, and T. Hoßfeld, “QoE in the Web: A Dance
of Design and Performance,” in International Workshop on Quality of Multimedia
Experience, May 2015.

[122] S. Baraković and L. Skorin-Kapov, “Survey of Research on Quality of Experience
Modelling for Web Browsing,” Quality and User Experience, vol. 2, no. 1, pp. 1–31,
2017.

[123] A. Saverimoutou, B. Mathieu, and S. Vaton, “A 6-Month Analysis of Factors
Impacting Web Browsing Quality for QoE Prediction,” Computer Networks, vol.
164, 2019.

[124] A. S. Asrese, S. J. Eravuchira, V. Bajpai, P. Sarolahti, and J. Ott, “Measuring Web
Latency and Rendering Performance: Method, Tools & Longitudinal Dataset,”
IEEE Transactions on Network and Service Management, vol. 16, no. 2, pp. 535–
549, 2019.

[125] M. Rajiullah, A. Lutu, A. S. Khatouni, M.-R. Fida, M. Mellia, A. Brunstrom,
O. Alay, S. Alfredsson, and V. Mancuso, “Web Experience in Mobile Networks:
Lessons from Two Million Page Visits,” in The World Wide Web Conference, May
2019.

[126] S. Ihm and V. S. Pai, “Towards Understanding Modern Web Traffic,” in Internet
Measurement Conference, November 2011.

[127] M. Trevisan, I. Drago, and M. Mellia, “PAIN: A Passive Web Performance Indi-
cator for ISPs,” Computer Networks, vol. 149, pp. 115–126, 2019.

[128] A. Balachandran, V. Aggarwal, E. Halepovic, J. Pang, S. Seshan, S. Venkatara-
man, and H. Yan, “Modeling Web Quality of Experience on Cellular Networks,” in
Annual International Conference on Mobile Computing and Networking, Septem-
ber 2014.

[129] P. Casas, M. Seufert, F. Wamser, B. Gardlo, A. Sackl, and R. Schatz, “Next
to You: Monitoring Quality of Experience in Cellular Networks From the End-
Devices,” IEEE Transactions on Network and Service Management, vol. 13, no. 2,
pp. 181–196, 2016.

[130] S. Wassermann, N. Wehner, and P. Casas, “Machine Learning Models for YouTube
QoE and User Engagement Prediction in Smartphones,” ACM SIGMETRICS Per-
formance Evaluation Review, vol. 46, no. 3, pp. 155–158, 2019.

[131] A. Nikravesh, Q. A. Chen, S. Haseley, X. Zhu, G. Challen, and Z. M. Mao, “QoE
Inference and Improvement Without End-Host Control,” in Symposium on Edge
Computing, October 2018.

142

Bibliography

[132] A. Huet, A. Saverimoutou, Z. Ben Houidi, H. Shi, S. Cai, J. Xu, B. Mathieu,
and D. Rossi, “Revealing QoE of Web Users from Encrypted Network Traffic,” in
Networking Conference, June 2020.

[133] A. Huet, Z. Ben Houidi, S. Cai, H. Shi, J. Xu, and D. Rossi, “Web Quality of
Experience from Encrypted Packets,” in SIGCOMM Posters and Demos, August
2019.

[134] P. Casas, J. Vanerio, and K. Fukuda, “GML Learning, a Generic Machine Learn-
ing Model for Network Measurements Analysis,” in International Conference on
Network and Service Management, November 2017.

[135] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Combining Diverse
Anomaly Detectors for Automated Anomaly Labeling and Performance Bench-
marking,” in International Conference on Emerging Networking Experiments and
Technologies, December 2010.

[136] T. Patel, “Worldwide Smartphone Sales Soared 47% in Q4,” Febru-
ary 2012. [Online]. Available: https://www.rcrwireless.com/20120217/devices/
worldwide-smartphone-sales-soared-in-q4-of-2011-with-47-growth

[137] Gartner, “Gartner Says Smartphone Sales Surpassed
One Billion Units in 2014,” March 2015. [On-
line]. Available: https://www.gartner.com/en/newsroom/press-releases/
2015-03-03-gartner-says-smartphone-sales-surpassed-one-billion-units-in-2014

[138] Ofcom, “The Communications Market Report,” December 2016. [On-
line]. Available: https://www.ofcom.org.uk/__data/assets/pdf_file/0026/95642/
ICMR-Full.pdf

[139] Juniper, “2011 Mobile Threats Report,” February 2012.
[Online]. Available: https://www.slideshare.net/junipernetworks/
juniper-networks-2011-mobile-threats-report

[140] Kaspersky Lab, “Mobile Malware Evolution 2016,” February 2017. [Online].
Available: https://securelist.com/files/2017/02/Mobile_report_2016.pdf

[141] R. Unuchek, “Rooting Pokémons in Google Play Store,” September 2016. [Online].
Available: https://securelist.com/rooting-pokemons-in-google-play-store/76081/

[142] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and Evo-
lution,” in Symposium on Security and Privacy, May 2012.

[143] S. Bhatt and P. R. Ragiri, “Security Trends in Internet of Things: a Survey,” SN
Applied Sciences, vol. 3, no. 1, pp. 1–14, 2021.

143

https://www.rcrwireless.com/20120217/devices/worldwide-smartphone-sales-soared-in-q4-of-2011-with-47-growth
https://www.rcrwireless.com/20120217/devices/worldwide-smartphone-sales-soared-in-q4-of-2011-with-47-growth
https://www.gartner.com/en/newsroom/press-releases/2015-03-03-gartner-says-smartphone-sales-surpassed-one-billion-units-in-2014
https://www.gartner.com/en/newsroom/press-releases/2015-03-03-gartner-says-smartphone-sales-surpassed-one-billion-units-in-2014
https://www.ofcom.org.uk/__data/assets/pdf_file/0026/95642/ICMR-Full.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0026/95642/ICMR-Full.pdf
https://www.slideshare.net/junipernetworks/juniper-networks-2011-mobile-threats-report
https://www.slideshare.net/junipernetworks/juniper-networks-2011-mobile-threats-report
https://securelist.com/files/2017/02/Mobile_report_2016.pdf
https://securelist.com/rooting-pokemons-in-google-play-store/76081/

Bibliography

[144] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The Evolution of
Android Malware and Android Analysis Techniques,” ACM Computing Surveys,
vol. 49, no. 4, pp. 1–41, 2017.

[145] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: Towards On-Device
Non-Invasive Mobile Malware Analysis for ART,” in Security Symposium, August
2017.

[146] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android Permissions
Demystified,” in Conference on Computer and Communications Security, October
2011.

[147] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the An-
droid Permission Specification,” in Conference on Computer and Communications
Security, October 2012.

[148] Y. Wang, J. Zheng, C. Sun, and S. Mukkamala, “Quantitative Security Risk As-
sessment of Android Permissions and Applications,” in Data and Applications Se-
curity and Privacy, July 2013.

[149] Y. Zhou, Z. Wang, W. Zhou, and J. Xuxian, “Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets,” in Network
and Distributed System Security Symposium, February 2012.

[150] S. Arshad, M. A. Shah, A. Khan, and M. Ahmed, “Android Malware Detection &
Protection: A Survey,” International Journal of Advanced Computer Science and
Applications, vol. 7, no. 2, pp. 463–475, 2016.

[151] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth, “Taint-
Droid: An Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones,” in Conference on Operating Systems Design and Implementation,
October 2010.

[152] M. Dimjašević, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Evaluation of Android
Malware Detection Based on System Calls,” in International Workshop on Security
And Privacy Analytics, March 2016.

[153] V. Afonso, F. Matheus, R. André, B. Glauco, and L. Paulo, “Identifying Android
Malware Using Dynamically Obtained Features,” Journal of Computer Virology
and Hacking Techniques, vol. 11, no. 1, pp. 9–17, 2015.

[154] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Automatic
Framework for Android Malware Detection Using Deep Learning,” Digital Inves-
tigation, vol. 24, pp. S48–S59, 2018.

[155] Y. Mirsky, A. Shabtai, L. Rokach, B. Shapira, and Y. Elovici, “SherLock vs Mo-
riarty: A Smartphone Dataset for Cybersecurity Research,” in Workshop on Arti-
ficial Intelligence and Security, October 2016.

144

Bibliography

[156] D. T. Wagner, A. Rice, and A. R. Beresford, “Device Analyzer: Large-scale Mobile
Data Collection,” ACM SIGMETRICS Performance Evaluation Review, vol. 41,
no. 4, pp. 53–56, 2014.

[157] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, “LiveLab: Measur-
ing Wireless Networks and Smartphone Users in the Field,” ACM SIGMETRICS
Performance Evaluation Review, vol. 38, no. 3, pp. 15–20, 2011.

[158] I. Žliobaitė, A. Bifet, B. Pfahringer, and G. Holmes, “Active Learning with Evolv-
ing Streaming Data,” in Machine Learning and Knowledge Discovery in Databases,
September 2011.

[159] ——, “Active Learning With Drifting Streaming Data,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 1, pp. 27–39, 2014.

[160] W. Xu, F. Zhao, and Z. Lu, “Active Learning Over Evolving Data Streams Using
Paired Ensemble Framework,” in International Conference on Advanced Compu-
tational Intelligence, February 2016.

[161] D. Ienco, A. Bifet, I. Žliobaitė, and B. Pfahringer, “Clustering Based Active Learn-
ing for Evolving Data Streams,” in International Conference on Discovery Science,
October 2013.

[162] B. Krawczyk, “Active and Adaptive Ensemble Learning for Online Activity Recog-
nition from Data Streams,” Knowledge-Based Systems, vol. 138, pp. 69–78, 2017.

[163] Y. Baram, R. El-Yaniv, and K. Luz, “Online Choice of Active Learning Algo-
rithms,” Journal of Machine Learning Research, vol. 5, pp. 255–291, 2004.

[164] W.-N. Hsu and H.-T. Lin, “Active Learning by Learning,” in Conference on Arti-
ficial Intelligence, January 2015.

[165] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The Nonstochastic Multi-
armed Bandit Problem,” SIAM Journal on Computing, vol. 32, no. 1, pp. 48–77,
2002.

[166] G. Contardo, L. Denoyer, and T. Artières, “A Meta-Learning Approach to One-
Step Active Learning,” September 2017.

[167] S. Ravi and H. Larochelle, “Meta-Learning for Batch Mode Active Learning,” in
International Conference on Learning Representations – Workshop Track, April
2018.

[168] L. Song, “Stream-Based Online Active Learning in a Contextual Multi-Armed
Bandit Framework,” arXiv preprint arXiv:1607.03182, July 2016.

[169] L. Song and J. Xu, “A Contextual Bandit Approach for Stream-Based Active
Learning,” arXiv preprint arXiv:1701.06725, January 2017.

145

Bibliography

[170] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “One-
Shot Learning With Memory-Augmented Neural Networks,” arXiv preprint
arXiv:1605.06065, May 2016.

[171] M. Fang, Y. Li, and T. Cohn, “Learning How to Active Learn: A Deep Reinforce-
ment Learning Approach,” arXiv preprint arXiv:1708.02383, August 2017.

[172] K. Pang, M. Dong, Y. Wu, and T. Hospedales, “Meta-Learning Transferable Active
Learning Policies by Deep Reinforcement Learning,” in International Conference
on Machine Learning – AutoML Workshop, July 2018.

[173] P. Bachman, A. Sordoni, and A. Trischler, “Learning Algorithms for Active Learn-
ing,” in International Conference on Machine Learning, August 2017.

[174] M. Woodward and C. Finn, “Active One-Shot Learning,” in Conference on Neural
Information Processing Systems – Deep Reinforcement Learning Workshop, De-
cember 2016.

[175] K. Konyushkova, R. Sznitman, and P. Fua, “Learning Active Learning From Data,”
Conference on Neural Information Processing Systems, December 2017.

[176] P. Casas, F. Soro, J. Vanerio, G. Settanni, and A. D’Alconzo, “Network Security
and Anomaly Detection with Big-DAMA, a Big Data Analytics Framework,” in
International Conference on Cloud Networking, September 2017.

[177] S. Wassermann, P. Casas, T. Cuvelier, and B. Donnet, “NETPerfTrace: Predicting
Internet Path Dynamics and Performance with Machine Learning,” in Workshop
on Big Data Analytics and Machine Learning for Data Communication Networks,
August 2017.

[178] C. Watkins, “Learning from Delayed Rewards,” Doctoral Thesis, King’s College,
England, 1989. [Online]. Available: http://www.cs.rhul.ac.uk/~chrisw/new_
thesis.pdf

[179] E. S. Page, “Continuous Inspection Schemes,” Biometrika, vol. 41, no. 1/2, pp.
100–115, 1954.

[180] F. Bronzino, P. Schmitt, S. Ayoubi, G. Martins, R. Teixeira, and N. Feamster,
“Inferring Streaming Video Quality from Encrypted Traffic: Practical Models and
Deployment Experience,” ACM on Measurement and Analysis of Computing Sys-
tems, vol. 3, no. 3, pp. 1–25, 2019.

[181] P. Casas, A. D’Alconzo, P. Fiadino, A. Bär, A. Finamore, and T. Zseby, “When
YouTube does not Work – Analysis of QoE-Relevant Degradation in Google CDN
Traffic,” IEEE Transactions on Network and Service Management, vol. 11, no. 4,
pp. 441–457, 2014.

146

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

Bibliography

[182] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, K. Papagiannaki, and P. Steenkiste,
“Identifying the Root Cause of Video Streaming Issues on Mobile Devices,” in
International Conference on Emerging Networking Experiments and Technologies,
December 2015.

[183] L. Bonniot, C. Neumann, and F. Taïani, “Towards Internet-Scale Convolutional
Root-Cause Analysis with DiagNet,” in International Parallel and Distributed Pro-
cessing Symposium, May 2021.

[184] X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining Active Learning and Semi-
Supervised Learning Using Gaussian Fields and Harmonic Functions,” in Interna-
tional Conference on Machine Learning Workshop on the Continuum From Labeled
to Unlabeled Data in Machine Learning and Data Mining, August 2003.

[185] S. T. Kong, S. Jeon, J. Lee, H. Lee, and K.-H. Jung, “Relieving the Plateau:
Active Semi-Supervised Learning for a Better Landscape,” arXiv preprint
arXiv:2104.03525, April 2021.

147

APPENDIX A
YoMoApp Features

This list indicates all the 275 network-related YoMoApp features we rely on for the
session-based video-QoE-metric inferences.

1. arbytes_avg

2. arbytes_diffTraffic_avg_avg1

3. arbytes_diffTraffic_avg_avg5

4. arbytes_diffTraffic_avg_avg10

5. arbytes_diffTraffic_avg_avg30

6. arbytes_diffTraffic_avg_avg60

7. arbytes_diffTraffic_avg_std1

8. arbytes_diffTraffic_avg_std5

9. arbytes_diffTraffic_avg_std10

10. arbytes_diffTraffic_avg_std30

11. arbytes_diffTraffic_avg_std60

12. arbytes_diffTraffic_std_avg1

13. arbytes_diffTraffic_std_avg5

14. arbytes_diffTraffic_std_avg10

15. arbytes_diffTraffic_std_avg30

16. arbytes_diffTraffic_std_avg60

17. arbytes_diffTraffic_std_std1

18. arbytes_diffTraffic_std_std5

19. arbytes_diffTraffic_std_std10

20. arbytes_diffTraffic_std_std30

21. arbytes_diffTraffic_std_std60

22. arbytes_max

23. arbytes_min

24. arbytes_std

25. arbytes_traffic_avg1

26. arbytes_traffic_avg5

27. arbytes_traffic_avg10

28. arbytes_traffic_avg30

29. arbytes_traffic_avg60

30. arbytes_traffic_max1

31. arbytes_traffic_max5

32. arbytes_traffic_max10

33. arbytes_traffic_max30

34. arbytes_traffic_max60

35. arbytes_traffic_min1

36. arbytes_traffic_min5

148

37. arbytes_traffic_min10

38. arbytes_traffic_min30

39. arbytes_traffic_min60

40. arbytes_traffic_std1

41. arbytes_traffic_std5

42. arbytes_traffic_std10

43. arbytes_traffic_std30

44. arbytes_traffic_std60

45. atbytes_avg

46. atbytes_diffTraffic_avg_avg1

47. atbytes_diffTraffic_avg_avg5

48. atbytes_diffTraffic_avg_avg10

49. atbytes_diffTraffic_avg_avg30

50. atbytes_diffTraffic_avg_avg60

51. atbytes_diffTraffic_avg_std1

52. atbytes_diffTraffic_avg_std5

53. atbytes_diffTraffic_avg_std10

54. atbytes_diffTraffic_avg_std30

55. atbytes_diffTraffic_avg_std60

56. atbytes_diffTraffic_std_avg1

57. atbytes_diffTraffic_std_avg5

58. atbytes_diffTraffic_std_avg10

59. atbytes_diffTraffic_std_avg30

60. atbytes_diffTraffic_std_avg60

61. atbytes_diffTraffic_std_std1

62. atbytes_diffTraffic_std_std5

63. atbytes_diffTraffic_std_std10

64. atbytes_diffTraffic_std_std30

65. atbytes_diffTraffic_std_std60

66. atbytes_max

67. atbytes_min

68. atbytes_std

69. atbytes_traffic_avg1

70. atbytes_traffic_avg5

71. atbytes_traffic_avg10

72. atbytes_traffic_avg30

73. atbytes_traffic_avg60

74. atbytes_traffic_max1

75. atbytes_traffic_max5

76. atbytes_traffic_max10

77. atbytes_traffic_max30

78. atbytes_traffic_max60

79. atbytes_traffic_min1

80. atbytes_traffic_min5

81. atbytes_traffic_min10

82. atbytes_traffic_min30

83. atbytes_traffic_min60

84. atbytes_traffic_std1

85. atbytes_traffic_std5

86. atbytes_traffic_std10

87. atbytes_traffic_std30

88. atbytes_traffic_std60

89. mrbytes_avg

90. mrbytes_diffTraffic_avg_avg1

91. mrbytes_diffTraffic_avg_avg5

92. mrbytes_diffTraffic_avg_avg10

93. mrbytes_diffTraffic_avg_avg30

94. mrbytes_diffTraffic_avg_avg60

95. mrbytes_diffTraffic_avg_std1

96. mrbytes_diffTraffic_avg_std5

97. mrbytes_diffTraffic_avg_std10

98. mrbytes_diffTraffic_avg_std30

99. mrbytes_diffTraffic_avg_std60

100. mrbytes_diffTraffic_std_avg1

101. mrbytes_diffTraffic_std_avg5

102. mrbytes_diffTraffic_std_avg10

103. mrbytes_diffTraffic_std_avg30

149

104. mrbytes_diffTraffic_std_avg60

105. mrbytes_diffTraffic_std_std1

106. mrbytes_diffTraffic_std_std5

107. mrbytes_diffTraffic_std_std10

108. mrbytes_diffTraffic_std_std30

109. mrbytes_diffTraffic_std_std60

110. mrbytes_max

111. mrbytes_min

112. mrbytes_std

113. mrbytes_traffic_avg1

114. mrbytes_traffic_avg5

115. mrbytes_traffic_avg10

116. mrbytes_traffic_avg30

117. mrbytes_traffic_avg60

118. mrbytes_traffic_max1

119. mrbytes_traffic_max5

120. mrbytes_traffic_max10

121. mrbytes_traffic_max30

122. mrbytes_traffic_max60

123. mrbytes_traffic_min1

124. mrbytes_traffic_min5

125. mrbytes_traffic_min10

126. mrbytes_traffic_min30

127. mrbytes_traffic_min60

128. mrbytes_traffic_std1

129. mrbytes_traffic_std5

130. mrbytes_traffic_std10

131. mrbytes_traffic_std30

132. mrbytes_traffic_std60

133. mtbytes_avg

134. mtbytes_diffTraffic_avg_avg1

135. mtbytes_diffTraffic_avg_avg5

136. mtbytes_diffTraffic_avg_avg10

137. mtbytes_diffTraffic_avg_avg30

138. mtbytes_diffTraffic_avg_avg60

139. mtbytes_diffTraffic_avg_std1

140. mtbytes_diffTraffic_avg_std5

141. mtbytes_diffTraffic_avg_std10

142. mtbytes_diffTraffic_avg_std30

143. mtbytes_diffTraffic_avg_std60

144. mtbytes_diffTraffic_std_avg1

145. mtbytes_diffTraffic_std_avg5

146. mtbytes_diffTraffic_std_avg10

147. mtbytes_diffTraffic_std_avg30

148. mtbytes_diffTraffic_std_avg60

149. mtbytes_diffTraffic_std_std1

150. mtbytes_diffTraffic_std_std5

151. mtbytes_diffTraffic_std_std10

152. mtbytes_diffTraffic_std_std30

153. mtbytes_diffTraffic_std_std60

154. mtbytes_max

155. mtbytes_min

156. mtbytes_std

157. mtbytes_traffic_avg1

158. mtbytes_traffic_avg5

159. mtbytes_traffic_avg10

160. mtbytes_traffic_avg30

161. mtbytes_traffic_avg60

162. mtbytes_traffic_max1

163. mtbytes_traffic_max5

164. mtbytes_traffic_max10

165. mtbytes_traffic_max30

166. mtbytes_traffic_max60

167. mtbytes_traffic_min1

168. mtbytes_traffic_min5

169. mtbytes_traffic_min10

170. mtbytes_traffic_min30

150

171. mtbytes_traffic_min60

172. mtbytes_traffic_std1

173. mtbytes_traffic_std5

174. mtbytes_traffic_std10

175. mtbytes_traffic_std30

176. mtbytes_traffic_std60

177. nb_handovers

178. nb_network_switches

179. network_type

180. rssis_avg

181. rssis_max

182. rssis_min

183. rssis_std

184. signals_avg

185. signals_max

186. signals_min

187. signals_std

188. trbytes_avg

189. trbytes_diffTraffic_avg_avg1

190. trbytes_diffTraffic_avg_avg5

191. trbytes_diffTraffic_avg_avg10

192. trbytes_diffTraffic_avg_avg30

193. trbytes_diffTraffic_avg_avg60

194. trbytes_diffTraffic_avg_std1

195. trbytes_diffTraffic_avg_std5

196. trbytes_diffTraffic_avg_std10

197. trbytes_diffTraffic_avg_std30

198. trbytes_diffTraffic_avg_std60

199. trbytes_diffTraffic_std_avg1

200. trbytes_diffTraffic_std_avg5

201. trbytes_diffTraffic_std_avg10

202. trbytes_diffTraffic_std_avg30

203. trbytes_diffTraffic_std_avg60

204. trbytes_diffTraffic_std_std1

205. trbytes_diffTraffic_std_std5

206. trbytes_diffTraffic_std_std10

207. trbytes_diffTraffic_std_std30

208. trbytes_diffTraffic_std_std60

209. trbytes_max

210. trbytes_min

211. trbytes_std

212. trbytes_traffic_avg1

213. trbytes_traffic_avg5

214. trbytes_traffic_avg10

215. trbytes_traffic_avg30

216. trbytes_traffic_avg60

217. trbytes_traffic_max1

218. trbytes_traffic_max5

219. trbytes_traffic_max10

220. trbytes_traffic_max30

221. trbytes_traffic_max60

222. trbytes_traffic_min1

223. trbytes_traffic_min5

224. trbytes_traffic_min10

225. trbytes_traffic_min30

226. trbytes_traffic_min60

227. trbytes_traffic_std1

228. trbytes_traffic_std5

229. trbytes_traffic_std10

230. trbytes_traffic_std30

231. trbytes_traffic_std60

232. ttbytes_avg

233. ttbytes_diffTraffic_avg_avg1

234. ttbytes_diffTraffic_avg_avg5

235. ttbytes_diffTraffic_avg_avg10

236. ttbytes_diffTraffic_avg_avg30

237. ttbytes_diffTraffic_avg_avg60

238. ttbytes_diffTraffic_avg_std1

151

239. ttbytes_diffTraffic_avg_std5

240. ttbytes_diffTraffic_avg_std10

241. ttbytes_diffTraffic_avg_std30

242. ttbytes_diffTraffic_avg_std60

243. ttbytes_diffTraffic_std_avg1

244. ttbytes_diffTraffic_std_avg5

245. ttbytes_diffTraffic_std_avg10

246. ttbytes_diffTraffic_std_avg30

247. ttbytes_diffTraffic_std_avg60

248. ttbytes_diffTraffic_std_std1

249. ttbytes_diffTraffic_std_std5

250. ttbytes_diffTraffic_std_std10

251. ttbytes_diffTraffic_std_std30

252. ttbytes_diffTraffic_std_std60

253. ttbytes_max

254. ttbytes_min

255. ttbytes_std

256. ttbytes_traffic_avg1

257. ttbytes_traffic_avg5

258. ttbytes_traffic_avg10

259. ttbytes_traffic_avg30

260. ttbytes_traffic_avg60

261. ttbytes_traffic_max1

262. ttbytes_traffic_max5

263. ttbytes_traffic_max10

264. ttbytes_traffic_max30

265. ttbytes_traffic_max60

266. ttbytes_traffic_min1

267. ttbytes_traffic_min5

268. ttbytes_traffic_min10

269. ttbytes_traffic_min30

270. ttbytes_traffic_min60

271. ttbytes_traffic_std1

272. ttbytes_traffic_std5

273. ttbytes_traffic_std10

274. ttbytes_traffic_std30

275. ttbytes_traffic_std60

The following feature explanations are extracted from the official YoMoApp documen-
tation1:

trbytes: the total number of bytes received by the device.

ttbytes: the total number of bytes transmitted by the device.

mrbytes: the number of bytes received by the device over the mobile network.

mtbytes: the number of bytes transmitted by the device over the mobile network.

arbytes: the number of bytes received solely by the application.

atbytes: the number of bytes transmitted solely by the application.

diffTraffic: the traffic difference (in terms of bytes) between two measurements.

signal: the signal strength of the mobile network.
1http://www.yomoapp.de/documentation.pdf

152

http://www.yomoapp.de/documentation.pdf

RSSI: the intensity of the received WiFi signal.

nb_network switches: the number of times the device changed its type of network
connection.

nb_handovers: the number of times the device changed the base transceiver station.

153

APPENDIX B
ViCrypt Features

In the following list, we indicate the features used by ViCrypt for the stream-based
inference of video-QoE metrics:

1. window

2. packets

3. u_packets

4. d_packets

5. packets_u_ratio

6. packets_d_ratio

7. volume

8. u_volume

9. d_volume

10. volume_u_ratio

11. volume_d_ratio

12. packets_tcp

13. packets_udp

14. packets_tcp_ratio

15. packets_udp_ratio

16. volume_tcp

17. volume_udp

18. volume_tcp_ratio

19. volume_udp_ratio

20. burst

21. u_burst

22. d_burst

23. until_first_packet

24. u_until_first_packet

25. d_until_first_packet

26. after_last_packet

27. u_after_last_packet

28. d_after_last_packet

29. throughput

30. u_throughput

31. d_throughput

32. burst_throughput

33. u_burst_throughput

34. d_burst_throughput

35. u_byte_mean

36. u_byte_var

37. u_byte_stddev

38. u_byte_cvar

39. u_byte_skew

154

40. u_byte_kurt

41. u_byte_min

42. u_byte_max

43. u_iat_mean

44. u_iat_var

45. u_iat_stddev

46. u_iat_cvar

47. u_iat_skew

48. u_iat_kurt

49. u_iat_min

50. u_iat_max

51. u_r_slope

52. u_r_intcpt

53. d_byte_mean

54. d_byte_var

55. d_byte_stddev

56. d_byte_cvar

57. d_byte_skew

58. d_byte_kurt

59. d_byte_min

60. d_byte_max

61. d_iat_mean

62. d_iat_var

63. d_iat_stddev

64. d_iat_cvar

65. d_iat_skew

66. d_iat_kurt

67. d_iat_min

68. d_iat_max

69. d_r_slope

70. d_r_intcpt

71. t_packets

72. tu_packets

73. td_packets

74. t_packets_u_ratio

75. t_packets_d_ratio

76. t_volume

77. tu_volume

78. td_volume

79. t_volume_u_ratio

80. t_volume_d_ratio

81. t_packets_tcp

82. t_packets_udp

83. t_packets_tcp_ratio

84. t_packets_udp_ratio

85. t_volume_tcp

86. t_volume_udp

87. t_volume_tcp_ratio

88. t_volume_udp_ratio

89. t_burst

90. tu_burst

91. td_burst

92. t_until_first_packet

93. tu_until_first_packet

94. td_until_first_packet

95. t_after_last_packet

96. tu_after_last_packet

97. td_after_last_packet

98. t_throughput

99. tu_throughput

100. td_throughput

101. t_burst_throughput

102. tu_burst_throughput

103. td_burst_throughput

104. tu_byte_mean

105. tu_byte_var

106. tu_byte_stddev

107. tu_byte_cvar

108. tu_byte_skew

155

109. tu_byte_kurt

110. tu_byte_min

111. tu_byte_max

112. tu_iat_mean

113. tu_iat_var

114. tu_iat_stddev

115. tu_iat_cvar

116. tu_iat_skew

117. tu_iat_kurt

118. tu_iat_min

119. tu_iat_max

120. tu_r_slope

121. tu_r_intcpt

122. td_byte_mean

123. td_byte_var

124. td_byte_stddev

125. td_byte_cvar

126. td_byte_skew

127. td_byte_kurt

128. td_byte_min

129. td_byte_max

130. td_iat_mean

131. td_iat_var

132. td_iat_stddev

133. td_iat_cvar

134. td_iat_skew

135. td_iat_kurt

136. td_iat_min

137. td_iat_max

138. td_r_slope

139. td_r_intcpt

140. c_packets

141. cu_packets

142. cd_packets

143. c_packets_u_ratio

144. c_packets_d_ratio

145. c_volume

146. cu_volume

147. cd_volume

148. c_volume_u_ratio

149. c_volume_d_ratio

150. c_packets_tcp

151. c_packets_udp

152. c_packets_tcp_ratio

153. c_packets_udp_ratio

154. c_volume_tcp

155. c_volume_udp

156. c_volume_tcp_ratio

157. c_volume_udp_ratio

158. c_burst

159. cu_burst

160. cd_burst

161. c_until_first_packet

162. cu_until_first_packet

163. cd_until_first_packet

164. c_after_last_packet

165. cu_after_last_packet

166. cd_after_last_packet

167. c_throughput

168. cu_throughput

169. cd_throughput

170. c_burst_throughput

171. cu_burst_throughput

172. cd_burst_throughput

173. cu_byte_mean

174. cu_byte_var

175. cu_byte_stddev

176. cu_byte_cvar

177. cu_byte_skew

156

178. cu_byte_kurt

179. cu_byte_min

180. cu_byte_max

181. cu_iat_mean

182. cu_iat_var

183. cu_iat_stddev

184. cu_iat_cvar

185. cu_iat_skew

186. cu_iat_kurt

187. cu_iat_min

188. cu_iat_max

189. cu_r_slope

190. cu_r_intcpt

191. cd_byte_mean

192. cd_byte_var

193. cd_byte_stddev

194. cd_byte_cvar

195. cd_byte_skew

196. cd_byte_kurt

197. cd_byte_min

198. cd_byte_max

199. cd_iat_mean

200. cd_iat_var

201. cd_iat_stddev

202. cd_iat_cvar

203. cd_iat_skew

204. cd_iat_kurt

205. cd_iat_min

206. cd_iat_max

207. cd_r_slope

208. cd_r_intcpt

We use the following abbreviations:

d: download.

u: upload.

c: cumulative/session.

t: trend.

tu/cu: trend/cumulative upload.

td/cd: trend/cumulative download.

157

APPENDIX C
Web-QoE Features

In the following list, we indicate the features used for the Web-QoE inference tasks, i.e.
the features we use for the quality estimation of each Web session:

101. CBDi=1...100, CBD features with ΔT = 50 ms

102. CBDi=101...200, CBD features with ΔT = 100 ms

103. CBDi=201...300, CBD features with ΔT = 500 ms

Session features:

301. web_session_duration

302. downlink_session_duration

303. uplink_session_duration

304. total_packets_down

305. total_packets_up

306. total_packets

307. total_bytes_down

308. total_bytes_up

309. total_bytes

310. mean_throughput_downlink

311. mean_throughput_uplink

158

APPENDIX D
BIGMOMAL Features

In the following table, we indicate the features used in the BIGMOMAL framework for
the Android-application identification and malware detection. The complete explana-
tions can be found on the Google Drive of the SherLock project1.

Feature Description
vsize virtual memory size in bytes

num_threads number of threads in this process
importance process priority level (foreground, background,

service, sleeping, etc.)
importanceReasonCode the reason for the process’ importance
importanceReasonPid for the specified values of

importanceReasonCode, the process ID of the
other process that is a client of this process

start_time the time the process started after the system
boot, in clock ticks

CPU_usage CPU utilization
lru ordering within a particular Android priority

category
cutime time the process children have been scheduled

in user mode, measured in clock ticks
utime time the process has been scheduled in user

mode, measured in clock ticks
1https://goo.gl/E7WiXd

159

https://goo.gl/E7WiXd

Feature Description
cstime time the process children have been scheduled

in kernel mode, measured in clock ticks
stime time the process has been scheduled in kernel

mode, measured in clock ticks
minflt number of minor page faults
majflt number of major page faults
cminflt number of minor page faults caused by the

children
cmajflt number of major page faults caused by the

children
nice process priority: value in the range 19 (low

priority) to -20 (high priority)
otherPrivateDirty number of private dirty pages used by

everything else besides the Dalvik and native
heap

dalvikPrivateDirty number of private dirty pages used by the
Dalvik heap

nativePrivateDirty number of private dirty pages used by the
native heap

dalvikSharedDirty number of shared dirty pages used by the
Dalvik heap

nativeSharedDirty number of shared dirty pages used by the
native heap

otherSharedDirty number of shared dirty pages used by
everything else besides the Dalvik and native

heap
rss current soft limit in bytes on the Resident Set

Size of the process
pid the process ID of this process
ppid the PID of the parent process
pgid the ID of the foreground process group of the

process
tgpid the ID of the foreground process group of the

controlling terminal of the process. -1 if the
process is not connected to a terminal

160

Feature Description
priority process kernel-level priority

dalvikPss the proportional set size for the Dalvik heap
nativePss the proportional set size for the native heap
otherPss the proportional set size for everything else

besides the Dalvik and native heap
uidRxPackets packets received by this application
uidTxPackets packets transmitted by this application
uidRxBytes bytes received by this application
uidTxBytes bytes transmitted by this application

endcode the address below which program code is
allowed to run

startcode the address above which program code is
allowed to run

sid the session ID of the process
guest_time guest time of the process (time spent running a

virtual CPU for a guest operating system), in
clock ticks

cguest_time guest time of the process’s children, in clock
ticks

exit_signal signal to be sent to parent when we die
Itrealvalue the time in jiffies before the next SIGALRM is

sent to the process due to an interval timer.
Since kernel 2.6.17, this field is no longer

maintained, and is hard coded as 0
rt_priority real-time scheduling priority, a number in the

range 1 to 99 for processes scheduled under a
real-time policy, or 0, for non-real-time

processes
processor CPU number last executed on

161

APPENDIX E
MAWILab Features

In the following list, we indicate the features describing one time slot that we used in
our two MAWILab datasets.

Field Feature Description

Total volume
pkts number of packets
bytes number of bytes

PKT size
pkt_h entropy PKT

pkt_{min,avg,max,std} min/avg/max/std PKT
pkt_p{1,2,5,...95,97,99} percentiles

IP protocol

ip_protocols number of different IP protocols
ipp_h entropy IPP

ipp_{min,avg,max,std} min/avg/max/std IPP
ipp_p{1,2,5,...95,97,99} percentiles IPP

% icmp/tcp/udp share of IP protocols

IP TTL
ttl_h entropy TTL

ttl_{min,avg,max,std} min/avg/max/std of TTL
ttl_p{1,2,5,...95,97,99} percentiles of TTL

IPv4/IPv6
% IPv4/IPv6 share of IPv4/IPv6 packets
IP_src/dst number of unique IPs

top_ip_src/dst most used IPs

TCP/UDP ports
port_src/dst number of unique ports

top_port_src/dst most used ports

162

Field Feature Description

TCP/UDP ports
port_h entropy PORT

port_{min,avg,max,std} min/avg/max/std PORT
port_p{1,2,5,...95,97,99} percentiles PORT

TCP flags (byte)

flags_h entropy TCP flag
flags_{min,avg,max,std} min/avg/max/std TCP flag
flags_p{1,2,5,...95,97,99} percentiles TCP flag

% SYN/ACK/PSH/... share of each TCP flag

TCP WIN size
win_h entropy WIN

win_{min,avg,max,std} min/avg/max/std WIN
win_p{1,2,5,...95,97,99} percentiles WIN

163

Index

above the fold time, see AFT
ABR, 28
accuracy, 20, 54, 58, 59, 68, 72, 118, 119
active learning, see AL
ADA, 18, 52, 58, 59, 63
AdaBoost, see ADA
adaptive bitrate, see ABR
AFT, 11, 74–77
AI, 2, 123
AI4NETS, 2, 4, 125
AL, 5, 23, 96, 98, 99, 109, 110, 114, see

also RAL
pool-based, 23, 98, 99, 127
stream-based, 6, 23, 96, 98, 99, 110,

116, 122, 125
Amazon, 27, 28
Android, 5, 6, 30, 38, 40, 72, 77, 79, 95–

97, 99, 100, 102, 103, 105, 122,
123, 126

anomaly detection, 3, 22, 53, 97, 101
application fingerprinting, 5, 6, 99, 103,

105, 106, 108, 122, 124
area under the ROC curve, see AUC
artificial intelligence, see AI
AUC, 21
averaging, 18, 52, see also bagging, see

also ERT, see also RF

bagging, 18, 52, 55, 59, 63, 84
bandit, 24, 99, 112
BI, 12, 76, 77, 80, 91
BIGMOMAL, 6, 96, 99, 100, 107, 122,

124, 126

bitrate, 8, 28, 41, 42, 46, 62, 63, 65, 68,
70, 124

boosting, 18, 52, 84, see also ADA, see
also gradient boosting, see also
XGB

ByteIndex, see BI

cellular network, 27, 29, 35, 45, 72, 95
chunk, 8, 28, 41, 43
classification, 5, 18, 20, 56, 75, 81, 85,

89, 111, 122
binary, 20, 53, 117

cluster, 22
codec, 9
concept drift, 3, 98, 111, 112, 116–119,

121, 122
confusion matrix, 20, 55
cross-validation, 19, 40, 52–55, 59, 62,

65, 85
cybersecurity, 1–5, 23, 96–99, 101, 109,

110, 123–125

DASH, 9, 28
data stream, 3, 5, 98, 113, 116, 119, 122
DBSCAN, 22
decision tree, see DT
deep packet inspection, see DPI
density-based spatial clustering of appli-

cations with noise, see DBSCAN
desktop, 5, 53, 74, 76–78, 80, 84, 86, 95,

124
dimensionality reduction, 22
DNS, 10, 45
DPI, 1, 27, 29, 76

164

Index

DT, 16, 21, 52, 59, 63, 84, 100, 103, 105,
106, 108

dynamic adaptive streaming over HTTP,
see DASH

encryption, 1, 2, 4, 27, 29, 42, 48, 74, 76,
81, 124, 126

ensemble method, 18, 89, see also aver-
aging, see also boosting, see also
stacking

ERT, 18, 52, 55, 56, 58, 59, 63, 66, 68,
84, 86, 88, 89, 124

extremely randomized tree, see ERT

F1 score, 20
FCP, 11
feature selection, 21, 41, 42, 52, 64, 124

embedded, 21, 41, 65, 105, 108
filter, 21
wrapper, 21

first contentful paint, see FCP

gradient boosting, 18

HAS, 8, 9, 28, 41, 43
HLS, 9
HTTP, 8, 10, 45, 76
hypertext transfer protocol, see HTTP

ICMP, 13
ping packet, 13, 116

initial delay, 28–30, 32, 40–42, 46, 54, 55,
123

Internet control message protocol, see ICMP
ISO, 22, 53, 55
isolation forest, see ISO
ITU-T G.1030, 75
ITU-T P.1203, 9, 33, 37

JavaScript, 9, 31, 45
onLoad, 10, 11

k-Means, 22
k-nearest neighbors, see kNN
key performance indicator, see KPI

key QoE indicator, see KQI
kNN, 16, 52, 58, 59, 85
KPI, 30, 39, 77
KQI, 4, 28–30, 32, 38, 40–42, 48, 53, 65,

71, 72, 123–126

latency, 10, 11, see also RTT
local outlier factor, see LOF
LOF, 23, 53, 55

machine learning, see ML
MAE, 19, 62, 63, 68, 85, 86, 124
malware, 95, 96, 122

detection, 5, 6, 95–97, 99, 107, 122,
124

manifest file, 8
mean absolute error, see MAE
mean opinion score, see MOS
mean relative error, see MRE
ML, 2, 15, 28, 29, 41–43, 48, 50, 53, 65,

72, 75, 76, 84, 96–101, 103, 105,
107, 112, 116, 123–126, see also
AL, see also ensemble method,
see also RL, see also supervised
learning, see also unsupervised
learning

evaluation, 19, see also cross-validation,
see also test set

evaluation metric, 19, see also accu-
racy, see also AUC, see also con-
fusion matrix, see also F1 score,
see also MAE, see also MRE,
see also PLCC, see also preci-
sion, see also recall, see also RMSE,
see also ROC curve, see also sen-
sitivity, see also specificity

mobile device, 5, 27, 34, 76, 79, 86, 90,
95, see also smartphone, see also
tablet

MOS, 9, 30, 75, 80
MRE, 20, 62, 63, 85, 86

naive Bayes, see NB
NB, 16, 52, 55, 58, 63, 85, 98

165

Index

Netflix, 9, 27, 28
network measurement, 12

active, 12, 29, 76, see also ping, see
also traceroute

passive, 12, 29–31, 45, 72, 77, see
also SNMP, see also tcpdump,
see also TStat, see also Wire-
shark

neural network, see NN
NN, 17, 52, 54, 58, 59, 72, 99

ObjectIndex, see OI
OI, 12, 76
onLoad, see JavaScript onLoad

packet loss, 13, 77
page load time, see PLT
PCA, 23
Pearson linear correlation coefficient, see

PLCC
ping, 13
PLCC, 20, 62, 63, 82, 85, 86
PLT, 11, 74–80
precision, 20, 54, 55, 58, 59, 66, 67, 71,

85, 88, 90
principal component analysis, see PCA
protocol, see HTTP, see ICMP, see TCP,

see UDP

QoE, 1, 9, 28, 75, 76, 123, 124
model, 30, 37, 74, 75, 89
session-based, 5, 41, 54, 72, 123
stream-based, 5, 54, 72, 123
video, see video QoE
Web, see Web QoE

QoS, 3, 76
quality level, 8, 28–30, 34, 41, 42, 46, 56,

58, 59, 65, 67, 68, 70, 71, 124
quality of experience, see QoE
quality of service, see QoS
quality switch, 29, 30, 34, 40, 123
QUIC, 42, 45
quick UDP Internet connections, see QUIC

radio access technology, see RAT

RAL, 6, 96, 98, 99, 109–112, 115, 116,
118, 119, 121, 122, 125, 126

random forest, 40, 41, see RF
RAT, 31, 35
rate determination algorithm, 8
re-buffering, see stalling
re-buffering ratio, see stalling ratio
recall, 20, 54, 55, 58, 59, 66, 67, 71, 85,

88, 90, 107, 108, 118, 124
receiver-operating-characteristic curve, see

ROC curve
regression, 5, 18, 19, 62, 75, 81, 84, 89

linear, 16
reinforcement learning, see RL
resolution, see quality level
RF, 18, 50, 52, 55, 58, 59, 63, 67, 72, 84,

85, 123, 124
RL, 6, 24, 96, 98, 99, 110, 114, 122, 125,

see also bandit
RMSE, 19, 62, 63, 68
ROC curve, 20, 40
root mean squared error, see RMSE
round-trip time, see RTT
RTT, 13, 77, see also latency
RUMSI, 5, 12, 78–82, 84, 89, 93, 124

segment, see chunk
sensitivity, 20
SI, 5, 11, 74, 75, 77, 78, 80, 82, 91
simple network management protocol, see

SNMP
smartphone, 5, 29, 30, 34, 74, 76–78, 84,

86, 95, 97, 99, 100, 102, 106,
108, 122, 124

SNMP, 15
specificity, 20
SpeedIndex, see also RUMSI, see SI
stacking, 19, 89
stalling, 1, 28–30, 32, 40–42, 46, 54, 55,

65, 66, 69, 71, 123
stalling ratio, 32, 40, 41, 54, 55, 123
supervised learning, 5, 15, 38, 52, 76,

84, 96, 99, 101, 103, 109, 126,
see also ADA, see also bagging,

166

Index

see also DT, see also ERT, see
also gradient boosting, see also
kNN, see also NB, see also NN,
see also RF, see also SVM, see
also XGB

support-vector machine, see SVM
SVM, 16, 53, 58, 59, 63, 72

tablet, 30, 74, 76–78, 84, 86, 124
TCP, 14, 15, 42, 49
tcpdump, 14
test set, 19
time to first byte, see TTFB
time to first paint, see TTFP
time to interactive, see TTI
traceroute, 13
training set, 19
transmission control protocol, see TCP
TStat, 15
TTFB, 11
TTFP, 11, 78, 79
TTI, 11, 77

UDP, 13, 15, 49, 116
unsupervised learning, 22, 101, see also

DBSCAN, see also ISO, see also
k-Means, see also LOF, see also
PCA

ViCrypt, 6, 28, 41–43, 48, 50, 53–56, 59,
62–64, 67–69, 71, 72, 123, 125,
126

video
QoE, 4, 6, 8, 27, 30, 72, 123, 125

metric, 9, see also bitrate, see also
ITU-T P.1203, see also MOS, see
also quality level, see also stalling

quality level, see quality level
resolution, see quality level
session, 8, 41, 43, 45, 46, 59, 123
streaming, 7, 27, 125

adaptive, 8
progressive, 7

viewport, 10, 75

Web
browser, 9

functioning, 10
viewport, see viewport

browsing, 27, 74, 75, 86, 89, 90
QoE, 5, 11, 74–76, 80, 81, 84, 89, 93,

124, 126
metric, 75, 77, 78, see also AFT,

see also BI, see also FCP, see
also ITU-T G.1030, see also OI,
see also PLT, see also RUMSI,
see also SI, see also TTFB, see
also TTFP, see also TTI

session, 77, 78, 91, 124
Webpage, 10, 74, 75, 77, 79

rendering, 10, 76, 78
WebPageTest, see WPT
Website, 10, 11, 31, 76, 77, 93
Wireshark, 14
WPT, 76

XGB, 18, 84
XGBoost, see XGB

YoMoApp, 6, 28, 30, 31, 34, 35, 38, 40,
41, 72, 123–126

YouTube, 1, 9, 27–31, 37, 38, 42, 46, 56,
59, 62, 72, 123–125

167

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Overall Background in AI for Networks (AI4NETS)
	Contributions of the Thesis
	Outline of the Thesis

	Background
	Video Streaming
	Progressive Streaming
	HTTP Adaptive Streaming
	Video-Quality Assessment

	Web Browsing
	Loading of a Webpage
	Rendering of a Webpage
	Web-QoE Assessment

	Network Measurements
	Active Measurements
	Ping
	Traceroute

	Passive Measurements
	Tcpdump and Wireshark
	Simple Network Management Protocol

	Machine Learning
	Supervised Learning
	Algorithms
	Evaluation Strategies
	Evaluation Metrics
	Feature Selection

	Unsupervised Learning
	Active Learning
	Reinforcement Learning

	Video-QoE Monitoring and Analysis
	Related Work
	Session-Based Mobile Video-QoE Monitoring and Analysis
	YoMoApp – the YouTube Monitoring App
	YoMoApp Dataset
	Temporal YouTube QoE Analysis
	QoE Modeling and Assessment
	QoE Inference Through Machine Learning

	Stream-based Video-Quality-Metric Inference
	Introducing ViCrypt
	YouTube Dataset
	Dataset Acquisition
	Dataset Analysis

	ViCrypt Feature Extraction
	ML-Model Benchmarking
	ViCrypt in Action – Performance Evaluation
	Stalling Estimation
	Video-Resolution Estimation
	Average-Bitrate Estimation

	Feature-Importance Analysis
	Stalling
	Video Resolution
	Average Bitrate

	Practical Considerations for Real-Time Operation & Discussion
	ViCrypt vs. State of the Art

	Conclusions

	Web-QoE Monitoring and Analysis
	Related Work
	Web-QoE Datasets & Modeling Approach
	Data Characterization
	Subjective QoE Analysis
	Targets and Input Features

	Desktop Models' Lack of Generalization
	RUMSI Inference on Desktop
	QoE Classification on Desktop
	Lack of Generalization for Mobile Devices

	Multi-Device Models
	Multi-Device, Flow-Level Models
	Conclusions

	(Adaptive) Detection of Network Attacks
	Related Work
	In-Device Mobile Malware Detection with BIGMOMAL
	The SherLock Dataset
	Identifying Running Applications
	Feature Selection
	Temporal App Identification

	Malware Detection
	Feature Selection
	Temporal Malware Detection
	Malware Detection Across Multiple Users

	Reinforcement Learning for in-Network Attack Detection with RAL
	Overview of RAL
	Diving into RAL
	Learners as Experts
	Reinforcement-Learning-Based Controller

	Learning with a Committee of Learners
	Design of Update Rule
	Choice of Hyperparameters

	Learning with a Single Classifier
	RAL Evaluation
	Data Description
	Setup
	Results

	Conclusions

	Conclusions and Perspectives
	List of Publications
	Bibliography
	YoMoApp Features
	ViCrypt Features
	Web-QoE Features
	BIGMOMAL Features
	MAWILab Features
	Index

