
Utilizing Code Coverage Density
to Enhance Software Quality

Management Decisions

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Patrick Fleck
Matrikelnummer 01025484

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 10. Mai 2022
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Utilizing Code Coverage Density
to Enhance Software Quality

Management Decisions

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Patrick Fleck
Registration Number 01025484

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig

Vienna, 10. Mai 2022
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Utilizing Code Coverage Density
to Enhance Software Quality

Management Decisions

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Patrick Fleck
Matrikelnummer 01025484

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 10. Mai 2022

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Patrick Fleck

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Mai 2022
Patrick Fleck

vii

Danksagung

Ich möchte mich bei meiner Familie und meinen Freunden für ihre Unterstützung während
meines gesamten Studiums bedanken. Ganz speziell möchte ich mich bei meiner Ehefrau
bedanken, da sie während meiner Studienzeit und der Durchführung dieser Diplomarbeit
sehr viel Geduld für mich aufbringen musste.

Außerdem möchte ich mich bei meinem Arbeitgeber und meinen Arbeitskolleg/innen
bedanken, welche mir einen idealen Rahmen für die Kombination aus Studium und
Berufsstätigkeit schafften.

Zu guter Letzt möchte ich ganz besonders die Unterstützung meiner Betreuer im Zuge
dieser Diplomarbeit hervorheben, ohne die ein erfolgreicher Abschluss der Arbeit nicht
möglich gewesen wäre.

ix

Acknowledgements

I want to thank my family and friends for their support and encouragements that carried
me through my studies. A special acknowledgement goes to my wife for having great
patience with me while conducting my studies and this master’s thesis.

Furthermore, I want to thank my employer and work colleagues that enabled a reasonable
balance between my professional activities and my studies.

Finally, I want to acknowledge the support and encouragement of my advisors, which
was an important factor for the success of this thesis.

xi

Kurzfassung

Aus heutiger Sicht sind Tätigkeiten und Entscheidungsprozesse in den Bereichen Software-
Qualitätsmanagement und -Qualitätssicherung zu essenziellen Bestandteilen gängiger
Software-Entwicklungsprozesse avanciert. Es existieren vielfältige Software-Metriken,
welche im Bereich der Software-Entwicklung tätigen Personen als Grundlage für Ent-
scheidungen im Rahmen von Maßnahmen zur Verbesserung und Aufrechterhaltung der
Qualität eines Software-Produkts dienen.

Obwohl erwähnte Metriken bereits sehr gut in bestehende praxisorientierte Werkzeuge
(z.B.: Code Coverage Tools) integriert wurden, zeigt diese Diplomarbeit, dass dennoch zahl-
reiche schwer erfüllbare Informationsbedürfnisse im Bereich Software-Qualitätsmanagement
und -Qualitätssicherung existieren. Im Speziellen werden im Zuge dieser Arbeit promi-
nente Informationsbedürfnisse in diesem Kontext gesammelt, diskutiert und aktuell
verfügbaren Code Coverage Tools gegenübergestellt, welche auf deren Erfüllung abzielen.
Diese Recherche in Bezug auf den aktuellen Stand der Technik zeigt, dass derzeit eklatante
Informationslücken in den Bereichen Risikoanalyse von Codeänderungen und Refactorings,
Wartung von Test Suites und der Analyse von Testredundanzen bestehen.

Auf dieser Basis wird in dieser Diplomarbeit die Metrik Code Coverage Density einge-
führt, welche klassische Code Coverage um die Beschreibung der Verteilung der Testfälle
über ein bestimmtes Software-Artefakt erweitert. Des Weiteren umfasst diese Arbeit die
Implementierung eines Prototyps, welcher auf dieser Metrik basierende Features bzw.
Visualisierungen zur Verfügung stellt und auf die Erfüllung der identifizierten Informa-
tionsbedürfnisse abzielt. Zudem wird eine szenariobasierte Expertenevaluierung unter
Zuhilfenahme eines vom Prototyp generierten Coverage Density Reports durchgeführt.
Die Ergebnisse dieser Evaluierung zeigen, dass die eingeführte Metrik und die darauf
aufbauenden Visualisierungen ein bemerkenswertes Potenzial zur Unterstützung bei
Tätigkeiten in den Bereichen Risikoanalyse von Codeänderungen und Refactorings und
Wartung von Test Suites mit sich bringen. Es wird außerdem gezeigt, dass das eingeführte
Konzept im Rahmen der Analyse von Testredundanzen bei detaillierteren Untersuchungen
von vorab als potentielle Redundanzen identifizierten Tests beitragen kann, jedoch nicht
zur Auffindung von ebendiesen geeignet ist.

Keywords: Software-Qualitätsmanagement, Software-Qualitätssicherung, Software-Testen,
Code Coverage, Coverage-Metriken, Coverage-Visualisierung, Software-Wartung

xiii

Abstract

From today’s perspective, activities and decision-making processes in software quality
management and assurance have become an inevitable element of current software
engineering processes. There exists a variety of software metrics that serve software
engineers as a decision basis during actions that aim at enhancing and maintaining a
software product’s quality.

This master’s thesis shows that though such metrics have been gracefully transferred into
practical tools (i.e., code coverage tools), there are information needs in the context of
software quality management and assurance that are still hard to satisfy. In fact, popular
unsatisfied information needs are gathered, discussed and reflected concerning scientific
approaches and currently available code coverage tools that try to satisfy them. This
research on the state of the art shows that there are significant information gaps in the
areas of risk assessment concerning code changes and refactorings, test suite maintenance
and test redundancy analysis.

On this basis, this thesis introduces the novel software metric code coverage density, which
enhances classical code coverage by the notion of describing how test cases distribute
over a software product’s artifacts. Furthermore, the thesis includes the implementation
of a prototype that utilizes the latter and provides features and visualizations that are
concentrated on fulfilling the found unsatisfied information needs. Moreover, a scenario-
based expert evaluation is conducted with the aid of a coverage density report generated
by the implemented prototype. The results of the latter show that the introduced metric
along with the proposed visualizations has a significant potential for filling the identified
information gaps in the areas of risk assessment concerning code changes and refactorings
and test suite maintenance. Concerning the field of test redundancy analysis, it is shown
that the presented concept rather establishes assistance for further analysis of potential
test redundancy suspects than providing support for discovering those.

Keywords: Software Quality Management, Software Quality Assurance, Software Test-
ing, Code Coverage, Coverage Metrics, Coverage Visualization, Software Maintenance

xv

Contents

Kurzfassung xiii

Abstract xv

Contents xvii

1 Introduction 1
1.1 Problem Description and Motivation . 1
1.2 Expected Results . 3
1.3 Methodology . 3
1.4 Contributions . 5
1.5 Structure . 5

2 Fundamentals 7
2.1 Software Quality Assurance . 7
2.2 Software Metrics . 10
2.3 Software Testing . 11
2.4 Refactoring . 16

3 State of the Art 19
3.1 Related Work . 19
3.2 State of the Art Tools . 24
3.3 Summary . 32

4 Metric Definition 35
4.1 Line Coverage Density . 35
4.2 Method Coverage Density . 36
4.3 Class Coverage Density . 37
4.4 Higher Granularity Levels . 38

5 Concept 39
5.1 Concept Proposal . 39
5.2 Expert Interviews . 47
5.3 Adaptions . 55

xvii

5.4 Final Requirements . 57

6 Implementation 59
6.1 Execution Phases . 59
6.2 Technical Concept . 61
6.3 Results . 65

7 Evaluation 73
7.1 Fundamental Considerations . 73
7.2 Example Project . 74
7.3 Procedure . 75
7.4 Participants . 76
7.5 Scenarios . 76
7.6 Results . 85
7.7 Discussion . 96

8 Conclusion 101
8.1 Future Work . 102

A Appendix 105
A.1 Expert Interview Questionnaires . 105
A.2 Evaluation Interview Questionnaires 118
A.3 Listings . 124

List of Figures 127

List of Tables 131

Listings 131

Acronyms 133

References 135

Online References 139

CHAPTER 1
Introduction

Software quality management is a crucial discipline of today’s software engineering
processes. Engineers make use of diverse metrics in this context to establish statements
about software artifacts and make decisions based on them. Code coverage is a metric
that states the percentage of implemented code which is covered by test cases [1]. There
are numerous tools available that, on the one hand, establish the metric itself for a given
test run and, on the other hand, generate high sophisticated test reports which support
decision-making. Some of those tools show how often a Line of Code (LOC) is covered by
tests. In blogs and forums [51], [52], the aggregated line coverage frequency of multiple
test cases for a given source code has been referred to as code coverage density. However,
this term is neither common in the field of software quality management, nor officially
standardized or scientifically acknowledged.

1.1 Problem Description and Motivation
Prior to this master thesis, research on currently available code coverage tools was made.
The target was to find out if there are tools that already implement computations and
visualizations following the notion of code coverage density. The observations showed the
following:

• Only half of the analyzed tools visualize how often a piece of code was covered (see
Section 3.2).

• The visualizations concerning how often a part of the code was covered is only
given on the lowest level (i.e., on line level), but not in broader scopes (i.e., on class
or package level).

• The color visualizations for covered code do only state whether a line has been
covered or not, e.g., by highlighting covered lines green and uncovered ones red.

1

1. Introduction

• Though there are visualizations that show which test cases run through which
LOCs (and also higher-level artifacts, see Section 3.2), the analyzed tools do no
put enough emphasis on imparting a clear understanding between source code and
test cases.

• In analogy to the latter, the tools do not provide enough support for finding and
analyzing test case duplicates.

From a practical point of view, there are certain scenarios that would benefit from
focusing more towards the idea and analysis of code coverage density:

• Impact of code changes and refactorings: Developers often fear these actions,
as they contain a certain risk that parts of the program may be altered in a
non-expected way. Unit test coverage often relieves the worries about a planned
refactoring because it clearly shows which parts of the code are tested and which
are not. However, 100% unit test coverage may not be sufficient if we assume that
certain parts of a program or application may have functionality in an integrated
or system-scoped way (e.g., communicate with other program units, components
or services). Therefore, integration and system testing is needed to additionally
cover this behavior. With today’s tools and visualizations, it may be very hard to
state which and how many tests run through a given program code and if a piece
of code is tested considering multiple scopes. Code coverage density along with
further analysis and visualization of this metric could give more insight in this area.
Namely, it could give better insight on how risky a code change or refactoring may
be.

• Critical program parts: The prior also leads to the idea that code coverage
density could state to which extent critical parts of the code are tested in a proper
way, especially when thinking about the integration of the program components and
their mutual interactions with each other. Analyzing and visualizing code coverage
density could state that e.g., integration tests for a certain part of the application
may be missing.

• Test suite maintenance: The idea of code coverage density could have a positive
impact on test suite maintenance, e.g., when trying to find test duplicates. Based
on current tool support, such duplicates can only be found by searching for tests
that call a certain part of the program and analyzing it. If it is clearly stated which
tests run through which artifact, it would be much easier to identify them, as well
as deciding if there are test duplicates or not.

2

1.2. Expected Results

1.2 Expected Results
At a glance, the main objective of this thesis is to explore how the novel metric code
coverage density helps software engineers in their daily work processes. In detail, the
investigations focus on how the metric could support in the following areas:

• Risk assessment of code changes and refactorings

• Code coverage and coverage distribution assessment, i.e., the identification of critical
program part coverage, with reference to coverage scope (e.g., integration tests,
system tests)

• Identification of test redundancies and overlaps

The derived research questions that are pursued and answered during this thesis are,
therefore, as follows:

RQ 1: How does code coverage density support software engineers in deciding how risky
a code change or refactoring is?

RQ 2: How does code coverage density support software engineers in assessing the
coverage distribution of a project?

RQ 3: How does code coverage density support software engineers in identifying test
redundancy and overlaps?

Note that the term “software engineers” includes software developers, testers, as well as
quality managers.

1.3 Methodology
In the following, the methodological approaches that are employed during this thesis
are depicted in detail. In general, the overall procedure of the thesis is divided into
four phases, which are depicted in Figure 1.1 and described in detail in the following
subsections.

Figure 1.1: Methodology outline

3

1. Introduction

1.3.1 Literature Research
Phase 1 consists of a scientific research in the field of information needs in software
engineering. The target is to identify and summarize important findings of scientific
surveys and investigations in the context of hardly satisfiable information needs that are
in touch with the initial ideas and notions of this thesis.

As a second step, further research concerning scientific approaches that attempt to
satisfy the identified information needs is conducted. Moreover, currently available code
coverage tools are evaluated with a focus on the question if, on the one hand, they offer
relevant features for fulfilling the identified information needs, and on the other hand,
the encountered scientific approaches have been transferred into practice-oriented tools.

The outcome of this phase is a reflection and interpretation of those findings and states
which information needs are still not fulfilled by scientific approaches and code coverage
tools. This furthermore emphasizes the relevance of this thesis and especially the defined
research questions.

1.3.2 Concept Evaluation
The second phase concentrates on the question how the unfulfilled information needs
gathered in phase 1 could be satisfied by the novel metric code coverage density and
possible visualizations that build upon it. For this target, the first step is to establish a
complete and sound definition of the metric. Secondly, requirements for a prototype of a
potential novel code coverage analysis tool are defined, which aims at fulfilling the found
information needs with the help of the defined metric. Moreover, concrete realization
proposals in the form of visualization drafts and mockups are established.

On this basis, interviews with selected experts are conducted. The intention of those
is, on the one hand, to verify the completeness, soundness and understandability of the
metric itself and, on the other hand, to present and evaluate the visualization and feature
proposals, as well as ranking them according to their relevance. Moreover, the target is
to gather further ideas and information needs in this context and to validate the idea and
notion of this thesis. The outcome is a final list of ranked requirements for the planned
prototype, which form the basis for phase 3.

1.3.3 Prototype Implementation
In phase 3, a concrete prototype, which generates a static coverage density report, is
implemented based on the concepts and requirements established in phase 2. The process
follows an iterative approach whereby after each iteration, the currently available version
of the prototype is examined and encountered problems/difficulties, as well as potential
adoptions and extensions of the initial requirements are documented. Furthermore, the
process is documented with regard to the technical and architectural concept.

The final outcome is a working prototype, which generates a static analysis report
satisfying the requirements defined phase 2.

4

1.4. Contributions

1.3.4 Evaluation
In phase 4, a scenario-based expert evaluation is conducted with the aid of a coverage
density report generated by the established prototype for a provided software project.
The participants are solving pre-defined scenarios and problems in this context. Moreover,
the process is supported by both qualitative and quantitative questions, which aim at
investigating on the degree of support that the report (and therefore also the defined
metric) gives while acting out the scenarios. Moreover, general discussions on further
remarks and possible improvements are conducted.

The outcomes are afterwards analyzed, evaluated and finally interpreted in order to
answer the defined research questions in Section 1.2. As a final step, the results retrieved
through the thesis are reflected and summarized.

1.4 Contributions
Firstly, this thesis establishes a confrontation of unsatisfied information needs in software
engineering with scientific approaches and features in currently available code coverage
and testing tools. Secondly, fundamental research on the notion of code coverage density is
conducted by showing how an extension of coverage data by the means of this notion could
fill the information gaps encountered and help engineers with their daily work. In the big
picture, the thesis shall also motivate further research in this field by building awareness
that enhanced processing and visualization of coverage data, in particular concerning the
notion of code coverage density, is sensible and may support decision-making in various
areas.

1.5 Structure
The rest of this thesis is structured as follows.

Chapter 2 imparts basic fundamental definitions needed in the context of this thesis. In
Chapter 3, the findings and results of the conducted scientific research are presented.
A definition of the novel metric code coverage density is given in Chapter 4. Further
outcomes of the concept evaluation are discussed in Chapter 5. Chapter 6 depicts the
architectural and technical concept for the implementation phase and furthermore the
actual implemented prototype. The evaluation phase is handled in Chapter 7. Finally,
a summary of the findings and a discussion on potential future work is presented in
Chapter 8.

5

CHAPTER 2
Fundamentals

In this chapter, fundamental definitions and principles that are relevant for this thesis
are given. The main areas that are covered are the principles and basics of software
quality assurance and management (Section 2.1), software metrics (Section 2.2) and
software testing (Section 2.3). Finally, Section 2.4 imparts basic knowledge in the area of
refactoring activities.

2.1 Software Quality Assurance
The upcoming sections present the fundamental definitions for the terms software quality,
software quality assurance and software quality management.

2.1.1 Definition of Software Quality
The official standard ISO 9000 [2] specifies the basic term quality as follows:

“Quality: degree to which a set of inherent characteristics of an object fulfills specified
quality requirements.”

In the context of software products, organizations such as the Institute of Electrical and
Electronic Engineers (IEEE) and the International Organization for Standardization (ISO)
established corresponding standards that form the basis for software quality assessment.
The most recent one is the standard ISO/IEC 25010 [3], which defines software quality
more specifically as follows:

“The quality of a system is the degree to which the system satisfies the stated and implied
needs of its various stakeholders, and thus provides value.”

The stated needs are furthermore represented by defined quality models that categorize
product quality into well-defined characteristics and subcharacteristics. At a glance, the
standard states the following characteristics groups (Figure 2.1) [3]:

7

2. Fundamentals

Figure 2.1: Software Product Quality [3]

• Functional suitability describes to which degree the product provides functional-
ity that suffices stated and implied needs when used under specified conditions. The
term is furthermore divided into the more detailed subcharacteristics functional
completeness, correctness and appropriateness.

• Performance efficiency describes a group of characteristics that state the per-
formance relative to the amount of resources used under certain conditions, i.e.,
time behavior, resource utilization and capacity.

• Compatibility is a characteristic defined within two different scopes. Co-existence
describes the degree to which a product is able to perform its functions efficiently
while sharing its environment and resources with other products. Interoperability
describes the degree to which two or more systems, products or components can
exchange information and process the information that has been exchanged.

• Usability is defined as the degree to which the product can be used by users in
order to reach specified goals with a certain level of effectiveness, efficiency and
satisfaction. Usability is furthermore divided into more detailed sub-characteristics
such as learnability, user interface aesthetics or user error protection.

• Reliability is the degree to which a product performs particular functions under
specified conditions within a defined period of time and is further divided into the
characteristics maturity, availability, fault tolerance and recoverability.

• Security is described as the degree to which a product protects information and
data so that other entities only have access to data that their types and levels of
authorization correspond to.

• Maintainability is defined as the degree of effectiveness and efficiency with
which a product can be maintained, which moreover includes the characteristics
modularity, reusability, analyzability, modifiability and testability.

8

2.1. Software Quality Assurance

• Portability is, in analogy to maintainability, the degree of effectiveness and
efficiency with which a product can be transferred from one environment (e.g., hard-
ware, software, etc.) to another and is moreover classified with the corresponding
terms adaptability and installability.

2.1.2 Software Quality Assurance
The IEEE defines Software Quality Assurance (SQA) as a set of activities that define and
assess the adequacy of software processes in order to provide evidence that the processes
are appropriate and produce software products with suitable quality for their intended
purposes [4]. Common literature usually simplifies this definition and states that SQA
is the collectivity of all activities that aim at ensuring a proper quality of a software
product (i.e., with respect to defined quality requirements as described in 2.1.1) [5]–[7].
Those activities can furthermore be divided into constructive and analytical methods:

• Constructive SQA includes all quality ensuring activities during the development
of software. This includes i.a. the agreement on specific methods, tools, design
principles and process models that ensure that the product can achieve a certain
level of quality [5], [7].

• Analytical SQA checks if the quality requirements are fulfilled by the product
and tries to identify faults and deficits that impede the correspondence to those
[5]–[8]. The methods employed are moreover distinguished as static and dynamic
analytical methods. Static methods do not execute the object to analyze and
consist of activities like static code analysis, code reviews, walkthroughs and inspec-
tions. In contrast, dynamic methods analyze and monitor a products behavior with
respect to the specified behavior. Activities conducted in this area are i.e., software
testing and dynamical analysis (i.e., assessing the run time behavior of the software
with reference to performance or resource usage) [5], [7], [8].

2.1.3 Software Quality Management
Software Quality Management (SQM) is a discipline which is situated on top of SQA. The
term describes a collection of all processes that ensure that software products, services
and life cycle process implementations meet an organizations software quality objectives
and lead to stakeholder satisfaction [9]. In addition to SQA, SQM includes the following
three subcategories [9]:

• Software Quality Planning (SQP), which includes deciding which quality standards
to target, defining quality goals and estimating the effort and schedule of software
quality ensuring activities

• Software Quality Control (SQC), which includes the analysis and evaluation of
specific project artifacts in order to determine whether they comply with the
established quality standards (i.e., requirements, designs, contracts and plans)

9

2. Fundamentals

• Software Process Improvement (SPI), which includes improving the software process
effectiveness, efficiency and other characteristics with a special target on improving
the software quality

2.2 Software Metrics
Based on the standard IEEE 1061 [10], a software metric is defined as follows:

“A function whose inputs are software data and whose output is a single numerical value
that can be interpreted as the degree to which software possesses a given attribute that
affects its quality.”

Such a metric is therefore measurable in a quantitative way and allows the interpretation
of software quality. In general, there is a variety of software metrics which are usually
classified either as process metrics or product metrics [1], [8]. Note that in the context of
this thesis, the latter are of higher importance and therefore described in more detail in
the following.

Process metrics deal with data of the software engineering process in general and
therefore describe the characteristics of the process that leads to a software product [8],
[10], [11].

Product metrics measure the artifacts and deliverables that result from a process
activity without respect to the latter [8], [10], [11]. In contrast to process metrics, product
metrics are specifically used for analytical SQA activities which is of special interest in
the context of this thesis.

In the context of static analytical SQA, there exist a variety of code metrics that can be
established without executing the object to analyze. Examples for such metrics are i.a.:

• Size metrics, such as LOC or Number of Statements (NOS), which are employed
to estimate and limit the size of artifacts in order to, e.g., calculate prices for a
product [8]

• Object oriented metrics, such as Coupling between Object (CBO), Depth of
Inheritance Tree (DIT) or Lack of Cohesion in Methods (LCOM), which describe
the relations between objects within the software [1], [8]

• Complexity metrics, such as function point metrics, the Halstead metric or the
McCabe metric [8], [12]

In contrast, there also exist numerous dynamic product metrics which require that the
product itself is available in an executable state for dynamic analytical SQA purposes.
Examples for such metrics are i.a.:

10

2.3. Software Testing

• Mean Time to Failure (MTTF), which measures the time between two consec-
utive failures [13]

• Defect Density, which describes the number of defects relative to a products size
(i.e., with respect to formerly described size metrics) [13]

• Test Case Defect Density, which describes the relation of tests that revealed
defects with the total number of executed test cases [1]

• Coverage Metrics, which state the percentage of implemented code covered by
test cases (see also Section 2.3.4) [1]

Note that all of the mentioned metrics are just examples out of the tremendous variety
of available metrics. Hence, code coverage metrics in the context of dynamic analytical
SQA, i.e., during testing activities, are of special interest for this thesis. Therefore, the
following section will give more detailed fundamental knowledge in the field of software
testing and corresponding metrics measured during this process.

2.3 Software Testing
The process of software testing includes all actions and activities conducted in order to
execute a software system with the aim of comparing the observed behavior with its
expected behavior [5]–[7]. More precisely, software testing means executing a program
with the intention of finding errors. A successful software test is therefore a test that
finds an error in the system [8], [14]. Tests that do not find any errors are considered as
unsuccessful software tests [14]. Though this is the common definition of successful and
unsuccessful tests in literature, those terms are usually used differently in practice. It
emerged that tests that found errors are rather classified as unsuccessful tests and those
that did not find any errors are referenced to as successful tests in practice [14]. For
this reason the rest of this thesis will henceforth follow the latter, more practice-oriented
understanding. In fact, an even more distinctive nomenclature will be used in order to
have a clearer delimitation to the terms used in literature. Tests that did not detect
errors will be referred to as passed, whereas tests that found errors will be stated as failed
tests.

If tests do not find any errors, it is in general not implied that the system is error-free.
For proving that a program does not have any errors or bugs, it would be necessary to
test it under all possible system states and input variables, which is usually not possible
in finite time (e.g., if the input variables are integers or strings of arbitrary length) [6], [8].
Furthermore, software tests are not intended to locate and resolve bugs. These activities
are rather defined as debugging activities [6], [15]. In the upcoming section, a more
specific definition of the terms error, fault and failure is given.

11

2. Fundamentals

2.3.1 Errors, Faults and Failures

Figure 2.2: Errors, faults and failures [6]

An error is typically a human action that leads to incorrect outputs of a program, e.g.,
incorrect code due to a typing mistake. An error leads to a fault, which is an incorrect
step, process or data definition in the program. A fault in a software system is often
called a bug. A fault finally induces a failure, which is a deviation of the behavior of
a software system from its expected behavior [6], [8], [15], [16]. Figure 2.2 shows the
relation between those terms and states prominent examples for errors and failures.

More precisely speaking, software testing aims at finding errors in a software component
or system in order to prevent faults and failures [6].

2.3.2 Test Levels

An important strategy for governing and maintaining software tests is dividing them into
meaningful sets following to their concerns. The most common method is a breakdown
of the tests into the following groups:

• Component tests are tests that try to find errors in separately testable compo-
nents [8]. Those components are the smallest building blocks of the software that
can reasonably be tested (e.g., classes, objects) [7]. Depending on the programming
paradigm and language used (e.g., Java), component tests are often referred to as
unit tests [6]. “Separately testable” means that the component under test must be
isolated from other components in the software system, s.t. the behavior of the
component can be tested completely without the influence of other components
it depends on. This is achieved by establishing mock objects and stubs, which
are placeholders for dependent components and simulate their behavior [6], [8].
Component tests are mostly written by the software developers themselves as they
are developed at the same time as the components they should cover. Another very
common strategy is writing the test code before the actual implementation of the
component. The actual implementation of the component is driven by those tests

12

2.3. Software Testing

that actually assume and ensure an expected behavior. This strategy is known as
test-driven development [7], [8].

• Integration tests are intended to test the interfaces between previously tested
software components, the interactions between different system layers (e.g., oper-
ating system or file system) or cross-system interfaces [8]. The target is therefore
to integrate components into larger subsystems and test the interaction with each
other [6], [7]. Interfaces to foreign systems, the operating system or file system may
need to be simulated, as they might not be available when the tests have to be
executed. This is usually achieved similarly as in component testing by establishing
mock objects [6].

• System tests focus on testing the specified behavior of the overall system with
respect to customer requirements and expectations [6], [8]. Simulating other
components is usually not necessary in this context, since all components and their
interactions are available and tested through unit and integration tests. Hence,
simulating interfaces to foreign systems (e.g., web services) could still be necessary
[6]. The test environment should be set up and behave as close as possible to the
production environment of the customer [8].

• Acceptance tests form the fourth level, are usually executed by customers or users
of a system [8] and aim at verifying the implemented software system according to
the requirements it must fulfill [6], [8]. In addition, acceptance tests may target
non-functional requirements by e.g., executing performance or stress tests [5].

• Regression tests are a special form of software tests which get executed when
extensions or changes are implemented in the system. The systems behavior may be
changed through these actions and therefore it is necessary to re-run all or certain
unit, integration and system tests [6], [8]. Regression tests are usually automated,
as changes in the system (e.g., refactorings, code changes) are rather frequent.
Automating those tests for the regular execution in the software life cycle saves
time and is therefore economical [8].

13

2. Fundamentals

2.3.3 Testing Strategies

(a) Black-Box strategy (b) White-Box strategy

Figure 2.3: Comparison of black-box and white-box testing strategies [6]

Testing strategies are distinguished between white-box and black-box strategies in
literature [5], [8], [15], [17]. Figure 2.3 shows a schematic comparison of those two
concepts. White-box testing considers the inner structure of the concrete implementation
which is the strategic basis for test case selection and implementation [8], [17]. The
detailed knowledge of the implemented code and structure is therefore necessary and the
target is to cover code sequences considering different coverage levels (see also Section
2.3.4). White-box testing therefore also offers the capability of locating errors in the
source code as the concrete statements, conditions and paths in the program are tested
[6]. Black-box tests, on the other hand, do not consider the inner structure of a program
and are usually derived from a system’s or program’s specifications or requirements [15],
[17]. Test objects are therefore tested independently from their implementation and get
called with defined input parameters. The outputs are then compared with the expected
output of the test object [6].

Due to the high relevance for this thesis, the following Chapter 2.3.4 will especially
describe white-box testing methods, which are also referred to as structural testing
methods [17].

2.3.4 Structural Testing Methods
The main target of structural testing methods is identifying paths in the program’s
control flow graph and establishing tests that cover them [1], [8]. A possible control flow
graph for a given Java method is depicted in Figure 2.4.

The term coverage is defined as the percentage of source code that has been reached by
tests in relation to the code that is available [1]. Structural testing distinguishes between
5 levels of coverage, that are connected to the control flow graph of a program:

• Statement Coverage or C0-Coverage means that all nodes in the control flow
graph are covered at least once, which implies that every statement of the program
is executed at least once. This level is considered as the weakest level because
important branches or paths in the control flow graph may be missed. [1], [8], [15].

14

2.3. Software Testing

Figure 2.4: Control flow graph example [6]

• Branch Coverage or C1-Coverage aims at covering each branch and therefore
all possible ways in the control flow graph. This means in particular, that all
conditions (e.g., if-conditions) in the program flow must be evaluated at least
once both to true and false. Furthermore, all case- and switch-statements need
to be tested in all variations, as well as exception handling blocks. Note that if a
condition is composed of atomic conditions and logical operators (e.g., the condition
x == 4 || y == 5), only the composed condition must be considered and therefore
evaluate to true and false [6], [15].

• Simple Condition Coverage or C2-Coverage enhances C1-Coverage to the
extent that also the atomic conditions of each branch need to be evaluated at least
once to true and false. This is a much more detailed coverage than the latter,
but considers specifically the atomic operations without any respect to the overall
condition for a branch. This could lead to the effect that not all branches get
covered. Furthermore, C2-Coverage leads to error masking in certain cases, e.g., if
conditions composed with OR- or AND-operators are considered. OR-conditions
evaluate to true if one side evaluates to true. If the other side is e.g., a method call
which leads to an error, this would not be recognized by the test case [6], [8], [15].

• Branch Condition Combination Coverage or C3-Coverage tries to evaluate
all combinations of the atomic conditions and the composed conditions. This results
in a very high testing effort, as n conditions result in 2n test cases. A weakened
variation of this level is Modified Branch Condition Testing, which only considers
combinations of atomic conditions that result in a different result for the overall
conditions [6], [8], [15].

• Path Coverage or C4-Coverage aims at covering all possible paths in the control
graph. A path is a unique sequence of conditions and statements. In addition to
other coverage levels, this leads to the ability to also consider loops in the program.

15

2. Fundamentals

Hence, this results in a rapid growth of the possible paths. Loops without a fixed
iteration boundary may even result in infinitely many execution paths. Therefore,
the practical value of C4-Coverage is per se very low, but may also bring a surplus
if its usage is well considered (e.g., if the program can be feasibly tested in this
way) [1], [6], [8], [15].

2.4 Refactoring
A refactoring is characterized as a change made to the internal structure of a software
with the intention of making it easier to understand and cheaper to modify without
changing its external and observable behavior [18], [19]. The process therefore involves
activities like the removal of code duplication, the simplification of complex logic and the
clarification of unclear code [20]. The following abstract example will give a more precise
definition.

(a) System S (b) Untangled system S

Figure 2.5: Refactoring: Abstract Example [19]

Consider a software system S, which inner structure is heavily tangled up and has defined
inputs I and outputs O [19] (Figure 2.5a). Refactoring activities would now aim at
transferring the system S to a successor S , which inner structure is untangled, but hence
delivers the same outputs O for given inputs I and therefore has the same expected
behavior from a consumer’s view [19] (Figure 2.5b).

In order to ensure that the system behaves the same after refactoring activities have been
conducted (i.e., that the outputs O stay the same for given inputs I), it is an essential
precondition to have solid and automated tests [18], [20]. The latter will furthermore
lead to more courage to refactor and more willing to try experimental designs as they
establish confidence that the refactored system still behaves equally to the initial version
[20].

In the following sections, the benefits and problems of refactoring activities are further
enlightened.

2.4.1 Benefits of Refactoring
In the first place, regular refactorings support in maintaining, preserving and improving
a programs design, as well as keeping the code understandable [18]–[20]. As software
evolves and code is added or changed, the code will lose its structure, which makes it

16

2.4. Refactoring

harder to understand, extend and maintain. In more detail, continuous refactorings
especially provide i.a. the following benefits.

Refactoring typically includes eliminating duplicated code, which is very important
for future modifications. The more code there is, the harder it is to understand and
modify. Furthermore, eliminating the duplicates ensures that the code says everything
once and only once, which is an inevitable factor of a good design [18].

Apart from the fact that good design leads to better maintainability of code, refactoring
activities support the process of design preserving feature and code enhancements.
In detail, refactoring in this scope includes the analysis and execution of changes in an
existing software that enable better accommodation of new features and code instead of
implementing an enhancement without regard to how well it fits with an existing design
[20].

Moreover, a well-maintained codebase can significantly decrease the effort and time needed
for identifying bugs [18], [19]. On the one hand, breaking up complex statements
into smaller pieces and extracting logic into new functions can both imply a better
understanding of what the code is doing and isolate potential bugs. On the other hand,
regular refactorings during the development process can make it easier to spot and avoid
bugs as early as possible [19].

Summarized, refactoring and its positive impacts as described in this section lead to
higher productivity in the software development process [18], [19]. Though refactoring
activities are additional efforts taken, a good design is essential for rapid software
development. Without a good design, it may be the case that developers can progress
quickly in the beginning. Hence, they will spend more time later on during the previously
described activities if the design is bad. In addition, refactoring stops the design of a
system from decaying and can even improve it [18].

2.4.2 Problems of Refactoring
First, it needs to be repeated that in the context of a refactoring it has to be ensured,
that the behavior of the system remains identical. The confidence that this is the case can
be increased by establishing a suite of tests with sufficient coverage before a refactoring
is conducted. Hence, even with thoroughly implemented test cases, there is still the
chance that there are certain edge cases not covered by the tests [19]. In worst
cases, refactorings may also unintentionally reveal dormant bugs in the system [18].

Moreover, there are also refactoring activities that come along with changes concerning
external interfaces (e.g., renaming a method). If developers have access to all spots
where the interface is used, then this is not a problem in the first place. Nevertheless,
there is a problem if the interface is used by consumers and systems that are out of scope
of the system to refactor. Such refactoring steps are therefore more complicated and need
special attendance in order to not impair the observable behavior of the system (e.g., by
keeping the old and the new interface until consumers reacted to the change) [18].

17

CHAPTER 3
State of the Art

The following sections include the main outcomes of the conducted research phase of this
thesis. In Section 3.1, current research concerning information needs in software engi-
neering, as well as scientific approaches for fulfilling them are summarized. Furthermore,
this section reviews scientific work in the area of the assessment of test suite quality and
effectiveness. Section 3.2 presents features in currently available code coverage and unit
testing tools that support stakeholders with fulfilling the found information needs by
transferring the stated scientific approaches into tools that are used in practice. Finally,
Section 3.3 consolidates the findings.

3.1 Related Work
Researchers have been conducting numerous surveys in order to identify prominent
information needs of different stakeholders in software projects and to make statements
about the extent to which they are fulfilled. Section 3.1.1 summarizes diverse surveys
and studies that had a significant influence on this thesis and lead to the initial ideas
and considerations. Section 3.1.2 reviews scientific approaches for fulfilling the found
information needs in Section 3.1.1. Moreover, Section 3.1.3 summarizes the work of
Bowes et al., who did important research on inevitable testing principles and how they
can be quantified in order to assess a test suite’s quality and effectiveness.

3.1.1 Information Needs in Software Engineering

Begel and Zimmermann came up with a ranked list of 145 questions that software engineers
want to have answered by data scientists in software projects [22]. The following two
questions, which were ranked beneath the top 20, indicate that there is a high interest
concerning the impact and risks of code changes, as well as tool support in this area:

19

3. State of the Art

• “What is the impact of a code change or requirements change to the project and
tests?”

• “What tools can help us measure and estimate the risk associated with code
changes?”

Another study conducted by Kim et al., which specifically dealt with analyzing refactoring
challenges and benefits, affirms the latter perception [23]. In particular, the researchers
asked their participants to state what the challenges associated with a refactoring are
in their perspective, whereby 28% of the participating developers mentioned inherent
challenges such as the difficulty of ensuring program correctness after a refactoring.
Furthermore, 29% of the participants also mentioned that there is a lack of tool support
for refactoring change integration and code review tools targeting refactoring edits. As a
conclusion, the researchers proposed further research in this direction, as there is the
need for various types of refactoring support that goes beyond the given automated
refactoring mechanisms within an Integrated Development Environment (IDE) [23].

Tao et al. furthermore investigated on the practices used in order to determine a change’s
risk and which information needs developers have during those tasks. In the context of
this thesis, the following three questions that aroused during the conducted survey are of
interest [24]:

• “Which test cases should be run to verify this change?”

• “Is any additional test case needed to cover this change?”

• “Which part of the change may cause the test case(s) to fail?”

In addition, the researchers concluded that two approaches are typically used to check
whether a change breaks the applications functionality or not, namely unit and regression
testing and manual code reviews and inspections [24]. The first one is considered as
highly time consuming and furthermore dependent on the adequacy and quality of the
established test suite. The second one requires tremendous manual effort (e.g., for
checking all dependencies of changed parts) and good support of the compiler, debugger
and static analysis tools. Most remarkably, one of the survey’s participants explicitly
stated the following [24]:

“None of those (practices) are really very satisfying, though, as my confidence level in the
change is not as high as I would like.”

The participants therefore called for explicit features that detect code portions impacted
by a change and the affected test cases.

Hence, the surveys found during the research phase of this thesis not only covered
information needs in the field of code changes and refactorings. The researches conducted
by Begel and Zimmermann, Fritz and Murphy and Bowes et al. furthermore revealed

20

3.1. Related Work

interesting questions that deal with information needed for understanding the correlation
between source code and tests, as well as for evaluating and assessing the quality of test
suites [21], [22], [25]:

• “How do test cases relate to packages/classes?”

• “How should we handle test redundancy and/or duplicate tests?”

• “How good are our tests?”

Concerning the latter question, Bowes et al. furthermore presented important testing
principles and guidelines, that will also be reflected later in Section 3.1.3.

Moreover, it needs to be held that various surveys also revealed that (apart from code-
and test-specific information) co-worker awareness and process-oriented information are
very prominent areas in which it seems to be hard to gain desired information reasonably.
Specifically, the examined surveys stated recurring questions as follows [25]–[27]:

• “What have my co-workers been doing?”, “Who is working on what?”, “Who is
working on the same file as I am?”

• “How have resources I depend on changed?”, “What is the recent activity on a plan
item?”, “Which features and functions have been changing?”

• “How is the team organized”, “Which conversations in work items have I been
mentioned?”, “Whom to talk to regarding a particular project or file?”

3.1.2 Fulfilling Information Needs
Researchers have also been trying to fulfill information needs stated in the latter section
by establishing various concepts and tools. During the research phase of this thesis,
especially contributions in the areas of co-worker awareness, code change understanding
and test redundancy detection have been found. The following sections consolidate those
approaches.

Co-worker Awareness

When considering information needs in the context of co-worker awareness, there has
been remarkable work both in research and prototype development in order to relieve
the high communication effort in this area.

For example, Fritz and Murphy introduced an information fragment model [25] that
supports composition and presentation of information from various source areas in order
to answer those types of questions. Furthermore, Sharma and Kaulgud presented the
Project Insights and Visualization Toolkit (PIVoT) [28], which classifies in-process data

21

3. State of the Art

coming from different tools, overlays relationships between the data elements and provides
a rich set of analysis which can provide composite metrics and insights in the dimensions
of the process and activities, development quality and team dynamics. Other remarkable
examples for tools that focus especially on building co-worker awareness during software
development processes are FASTDash [29] and Palantír [30].

Code Changes

Apart from research in supporting developers in the area of co-worker awareness, there
are also attempts to satisfy information needs in the context of code changes. In fact,
there are certain researchers that investigate especially on the concepts of change impact
analysis and change-driven testing.

Change impact analysis tries to estimate what the affected artifacts of a software will be
if a software change is made [31]. It consists of a collection of techniques for determining
the effects of source code modifications, which allows programmers to experiment with
different edits and find the code fragments and tests that they affect [32].

Change-driven testing is related to the latter and leverages the concepts of test-impact
analysis and test-gap analysis [33]. The first is intended to automatically find the relevant
tests for any given code change, as well as sorting them in a way that increases the
possibility of finding mistakes introduced early on. The second one should identify test
gaps, i.e., code changes that lack tests.

The time and effort needed for augmenting test suites may therefore be remarkably
reduced as the information can be used to determine which test cases should be added in
order to cover a respective change. Furthermore, the time needed for running regression
tests can be shortened as it can be determined which test cases are definitely not affected
by the change [32]. Researchers therefore proposed and evaluated various tools that
make use of those concepts and try to assist developers and testers in gaining higher
productivity by relieving regression testing and test suite augmentation effort.

For example, Amann and Jürgens illustrated the use of change-driven testing by aug-
menting the Continuous Integration (CI) pipeline for a specific software product with
additional profilers and test-gap tree maps [33]. Furthermore, Wloka et al. presented
the change-aware unit testing tool JUnitMX, which is an extension to the JUnit Eclipse
plugin and leverages change impact analysis to guide developers in writing more effective
unit tests. Ren et al. moreover proposed and evaluated Chianti, which is a remark-
able change-impact analysis tool for Java implemented in the context of the Eclipse
environment [32], [35].

Test Redundancy Discovery and Test Suite Reduction

Moreover, there exist works that address test redundancy measurement and discovery in
particular. Test redundancy may be either of syntactic or semantic nature. Syntactic
test redundancy is similar to normal code duplication and may be discovered through

22

3.1. Related Work

simple static code analysis tools and eliminated by refactoring methods (e.g., method
extraction, etc.) [36]. Semantically redundant tests are characterized as such when they
do not improve the fault detection capability of the test suite [36], [37]. The latter are
harder to detect, which is why developers and testers need special assistance in order to
discover them.

Researchers have therefore been working extensively on test redundancy discovery and
especially on test suite reduction. Most approaches in this research field build upon
the idea of finding a subset of test cases (i.e., a representative test set) that still fulfills
all test requirements of the original test suite. This problem is in theory classified as
finding the minimum cardinality hitting set [38], [39] which is an NP-complete problem
[40]. The research works encountered therefore propose different variations of heuristics
and coverage criterions in order to find an optimal minimum test set. The most notable
approaches are those of Harrold et al. [38], Rothermel et al. [39], Wong et al. [41], Jones
and Harrold [42] and Offutt et al. [43].

Hence, it has been shown that approaches of this type generally reduce the fault detection
effectiveness [37]. Fraser and Wotawa have therefore proposed a different approach by
using model-checker techniques and Kripke structures, which does not have a negative
influence on the fault detection ability of a test suite [44]. Moreover, Koochakzadeh et
al. also stated that redundancy detection could be improved by applying more coverage
criteria and by using more precise coverage tools [37].

In addition, Koochakzadeh et al. have found an interesting feature for identifying test
redundancies in the coverage tool CodeCover, which will be presented later in Section
3.2.

3.1.3 Assessing Test Suite Quality and Effectiveness
Testing by itself is a very important activity in ensuring software quality as software tests
form safety nets when modifying productions code [21], [36]. However, their quality is
usually taken for granted and overlooked. It is definitely possible to fulfil certain criteria
(e.g., a certain level of code coverage) and still not having high quality tests that are able
to verify and/or break the system in a sufficient and effective way [21].

Bowes et al. did important research on this topic that aimed at identifying important
testing principles and discussing how they can be quantified for assessing the goodness
of tests. They conducted workshops with industry partners, where they discussed and
brainstormed ways to address and evaluate the quality of tests. Afterwards, they merged
the outcome with their experience and existing literature and came up with a final list
of 15 best practices for unit test design [21]. The following listing summarizes selected
practices with a high correlation to one of the key ideas of this thesis, namely the question
on how further processing of coverage metrics and coverage density can help assessing
the code coverage and coverage distribution of a project (i.e., a test suites quality). Note
that the principles are also related to common test smells, e.g., as analyzed by Deursen
et al. in their research work on this topic [36].

23

3. State of the Art

Testing behavior (not implementation)
Bowes et al. proposed that there should be more focus on testing the expected behavior
of a program rather than its implementation. Testing implementation details makes tests
more dependent on a particular implementation of specifications, which implies a higher
effort for updating a test implementation on a new program implementation [21]. On the
other hand, keeping focus on the expected behavior and utilizing public interfaces of the
System under Test (SUT) would avoid such problems. The researchers also stated that it
is relatively easy to reach high coverage without testing expected behavior. Therefore,
the interpretation of coverage metrics as a sign of test quality should be avoided, as there
is research questioning the relation with test effectiveness [45]–[47]. Nevertheless, high
coverage yet will be achieved with a focus on testing behavior [21].

Single Responsibility
One test should have a single reason to fail, which implies that it should always be
possible to locate the root cause of a test fail [21]. Bowes et al. defined this principle in
the context of the number of assertions per test and propose to strictly enforce verification
of one condition per test. In a broader sense, this principle also refers to the fact, that
e.g., one unit test case should not test more than one unit at the same time, which gets
also emphasized by their proposal of using the count of unique method calls for the
assessment [21]. If there are calls to multiple methods in the class under test, this might
indicate that the test is testing more than it should in a single case.

Importance of Maintainability of Test Code
As production code evolves, it is inevitable that test code will evolve too [21]. Maintain-
ability of test code should therefore always be a key goal and especially duplicated and
redundant test cases should be avoided at all costs.

Tests should not dictate the Code
This principle suggests that there should not be any modifications in production code
for the purpose of testing [21]. Examples for such modifications are to update access
modifiers of production code methods in order to reach them from the test code (e.g.,
from private to public) or to write methods that only get accessed by test code to get
internal states of the class under test.

3.2 State of the Art Tools
In this section, currently available tools for measuring and visualizing code coverage that
are in touch with the related work of this thesis are presented. Note that the focus is
especially on the question whether and how they fulfill the revealed information needs
summarized in Section 3.1.1 and support developers for reaching compliance of testing
suites with the testing principles presented in Section 3.1.3. Note that only code coverage
tools for software implemented in Java and tested with the JUnit framework have been
reviewed as its environment offers a comprehensive set of testing tools. Moreover, testing
tools for other popular programming languages do not reinvent the wheel and mostly
offer similar features to those in common tools for Java.

24

3.2. State of the Art Tools

3.2.1 JaCoCo
JaCoCo1 is a free code coverage tool for Java, which generates both HTML and XML
reports. The latter can be easily integrated and reused in other tools, such as build
servers (e.g., Jenkins). Furthermore, many common IDEs such as Eclipse and IntelliJ
provide integration of the reports in their platforms. The generated reports consist of
visualizations on different abstraction layers. On the one hand, coverage information is
presented per package and class in tabular form (Figure 3.1). On the other hand, the
information can be viewed on the level of LOC for each class (Figure 3.2).

Figure 3.1: JaCoCo HTML Report: Coverage Information

As depicted in Figure 3.1, the tool lists and presents the reached coverage on different
levels, such as instruction, branch, line and method coverage. Note that in JaCoCo,
instruction coverage refers to Java byte code instructions and provides information about
the amount of code that has been executed or missed. Line coverage refers to implemented
LOCs, which may compile to multiple byte code instructions [53].

Figure 3.2: JaCoCo HTML Report: Class View

1https://www.jacoco.org/

25

3. State of the Art

Figure 3.2 shows a method in JaCoCo’s class view, which is accessible from the coverage
information list (i.e., by clicking on the respective element in the first column). In this
visualization, code coverage information is highlighted using two different methods. On
the one hand, the line colors state whether the respective line is covered (green) or
uncovered (red). A yellow line highlighting indicates that the line has been covered, but
not all byte code instructions of that line have been hit. On the other hand, branch
coverage is indicated by using diamonds with different colors, whereby a green diamond
indicates that all branches have been covered. In analogy, yellow and red diamonds
indicate partial or no branch coverage.

3.2.2 Cobertura

Cobertura2 is a similar tool to JaCoCo, but hence outdated and no longer actively
maintained [54]. Furthermore, it does not support current Java versions. It visualizes
coverage information very similar to JaCoCo in separate tabular listings for classes and
packages (Figure 3.3), as well as class views.

Figure 3.3: Cobertura Coverage Report

Though this tool is outdated and cannot be used with newer Java versions, it provides one
important extension that its competitor JaCoCo does not offer. In fact, while JaCoCo
only states whether a line is (partially) covered by unit tests or not, Cobertura also
visualizes how often a LOC is covered in its class view (Figure 3.4).

Figure 3.4: Cobertura Coverage Report: Class View

2https://cobertura.github.io/cobertura/

26

3.2. State of the Art Tools

3.2.3 CodeCover
CodeCover3 is also very similar to JaCoCo and Cobertura in its basic functionality. Hence,
as also stated by Koochakzadeh et al., it offers a very interesting additional feature for
inspecting tests concerning possible test case duplication [37]. For this, the tool provides
a correlation view as depicted in Figure 3.5.

The visualization is separated into a tree view on the left side and a test case matrix
on the right side. The first displays similar test cases for each test case in a hierarchy,
whereby “similar” means that those tests cover the same parts of the code that the initial
test case covers [55]. The matrix provides information about the extent to which the test
cases resemble each other pairwise. This is emphasized by colors for each pair, whereby
the colors state resemblance categories (e.g., red = 0%-33% resemblance, blue = 33% -
66% resemblance, etc.).

Figure 3.5: Correlation View in CodeCover [55]

Moreover, the tool provides source code highlighting based on the coverage frequency
measured (Figure 3.6). On the one hand, the degree to which a line is covered is visualized
in a similar way to other tools (i.e., green = covered, red = uncovered). On the other
hand, the hot path of the program is depicted on the left side of the editor with small
colored rectangles, whereby the more often a statement was executed, the redder the
rectangle becomes [55]. In addition, there is the possibility to show test cases that cover
a certain part of the code.

Though those features provide real added value to classical coverage analysis, the downside
is that CodeCover has not been updated since 2011 and does not seem to be maintained
anymore. Furthermore, it is rather usable as a command line tool because IDE integration
is only given for Eclipse. Hence, due to the lack of maintenance, it seems that the
integration does not work with current versions of Eclipse as encountered while evaluating
the tool for this thesis.

3http://codecover.org/

27

3. State of the Art

Figure 3.6: Code Highlighting and Hot Path in CodeCover [55]

3.2.4 OpenClover

OpenClover4 is another open-source tool, which was created as a fork from Atlassian’s
formerly commercial tool Clover. Apart from similar basic features that also JaCoCo
and other tools provide (i.e., visualization of code coverage metrics in tabular listings and
class views), its main strength lies in combining static code metrics, complexity metrics
and code coverage metrics in order to provide high sophisticated dashboards for assessing
the quality of the test suite.

One of those dashboards is the overview of the project’s top risks (Figure 3.7). The
visualization is a tag cloud, whereby the tags state classes within the project. The cloud
highlights those, that are most complex but least covered by the implemented test cases.
The font size represents the average method complexity metric and the color states the
total coverage (whereby red means 0% and green 100% coverage). The classes that
represent the greatest risks for the project in terms of complexity and their respective
coverage are therefore those that have the biggest font sizes and are colored in red.

4https://openclover.org/

28

3.2. State of the Art Tools

Figure 3.7: OpenClover Top Risks

Moreover, the tool provides a tag cloud with different semantics in order to identify
quick wins for the projects code coverage (Figure 3.8). The font size represents the total
number of elements the respective class has (number of statements + number of branches
+ number of methods), while the color represents the number of tested elements - again
with color gradations from red (low coverage) to green (high coverage). The greatest
increase in code coverage may therefore be achieved by covering the largest and reddest
classes first, as they contain the highest number of untested elements.

Figure 3.8: OpenClover Quick Wins

Another visualization that stands out is the provided coverage tree map, which enables
simultaneous comparison of classes and packages by their complexity and reached code
coverage (Figure 3.9). The clusters state packages, whereby the sections within those
represent their classes. The size of the sections states the measured complexity of the
respective class. Similar to the latter visualizations, the colors indicate the reached code
coverage.

29

3. State of the Art

Figure 3.9: OpenClover Coverage Tree Map

In addition and similar to other tools described earlier, the code coverage can be analyzed
in a class view, where the LOCs are highlighted in green/red for stating that the respective
line is covered/uncovered. The counter next to the line numbers indicates how often the
line is covered by tests. By clicking on the line counter, it is also possible to view which
tests cover the respective line.

Figure 3.10: OpenClover Class View

30

3.2. State of the Art Tools

It also needs to be held that clover offers high sophisticated and highly reusable XML
reports which contain the recorded coverage data for a project in machine readable format.
Furthermore, a database is generated during code instrumentation and test execution,
which contains structured information on which tests cover which LOC. The latter can
specifically be read and reused for further processing with the aid of OpenClover’s Java
library5, which provides functionality for accessing and reading the instrumentation
database.

3.2.5 Parasoft Jtest

The tool Parasoft Jtest6 is a commercial tool that stood out in particular during the
research phase of this thesis due to its specialized features for change-driven testing and
test implementation guidance. In particular, the tool offers the following functionality:

• Static code analysis, e.g., pattern-based analysis, code metrics (i.e., code complexity
analysis) and code duplication analysis, as well as analysis of compliance with
security standards

• Artificial Intelligence (AI) assisted features such as

– Automatic unit test creation

– Test suite maintenance recommendations

– Automatic identification of code gaps (untested code) and suggestions on how
to cover them

• Code coverage information collection during unit testing and runtime of real
applications

• Code coverage reporting, which also provides traceability between unit tests and
source code

• Test impact analysis, i.e., identifying and executing tests that need to be run in
order to validate code changes

• Association of tests with requirements (by relating them with data gathered from
external systems, e.g., Jira) for verifying which capabilities of the software have
been tested and understanding the impact of test failures across requirements and
user stories

• Integration in various other tools, such as build tools, IDEs and CI servers
5https://github.com/openclover/clover/tree/master/clover-core
6https://www.parasoft.com/products/parasoft-jtest/

31

3. State of the Art

Note that the provided features and functionalities listed above were not examined during
the research phase. The reason for that was, that a free trial of the software cannot
be obtained via Parasofts homepage and it would have been necessary to contact the
distributor in order to get a trial license. Therefore, information in this section is based
solely on the service description and fact sheets offered on Parasofts homepage [56], [57].

3.3 Summary
As described in Section 3.1.1, there are various information needs that have been revealed
through diverse studies and investigations. Summarized, it emerged that participants
need support for fulfilling those especially during the following activities (note that
henceforth the identified information needs will be referenced to as IN1 - IN7):

• Information Need 1 (IN1): Gaining a general understanding on the impacts of code
changes

• Information Need 2 (IN2): Identifying tests that need to be run to verify a code
change

• Information Need 3 (IN3): Deciding whether there are additional test cases needed
in order to cover a code change

• Information Need 4 (IN4): Assessing the risk of code changes

• Information Need 5 (IN5): Analyzing how tests and source code are related

• Information Need 6 (IN6): Assessing the quality of a test suite

• Information Need 7 (IN7): Identifying test redundancies

The revealed information needs in the area of co-worker awareness were not pursued any
further, as the context and idea of this thesis is clearly of technical nature and deals with
implementation and testing activities rather than software development processes and
interpersonal communication.

3.3.1 Reflection of the Findings

This section will now once more reflect at a glance how scientific approaches and currently
available tools fulfill those information needs and furthermore state where support is
clearly missing.

32

3.3. Summary

Impact of Code Changes (IN1-3)

The conducted research showed that there already has been remarkable scientific work in
this area by investigating on approaches like change impact analysis and change-driven
testing, that, on the one hand, assist in gaining more understanding on the impacts of
code changes (IN1) with reference to which other code fragments and especially tests are
affected by a code change (IN2) and, on the other hand, in deciding if there are additional
test cases needed (IN3). Furthermore, the concepts and ideas have been transferred into
features offered by tools implemented for scientific (e.g., JUnitMX and Chianti) and
practice-oriented (industrial) intentions (e.g., the commercial testing tool Jtest).

Assessment of the Risk of Code Changes (IN4)

The found concepts and features in the context of change impact analysis and change-
driven testing do not state a valuable support for assessing the risk of a code change.
The approaches and tools rely on the fact that the change to be analyzed has already
been made and investigations are conducted after this activity. Hence, assessing the risk
of a change after it has been made is especially not reasonable for refactorings (which is
a special form of a code change) as they usually need a prior estimation on whether they
can be done safely or further test cases need to be added (see also Section 2.4).

Understanding the Relation between Code and Tests (IN5)

Some of the evaluated code coverage tools offer fundamental support in this area by
showing how often a line is covered and which tests cover them (e.g., Cobertura, CodeCover
and OpenClover). Hence, this information is given only on the lowest level (i.e., on the
level of LOC in class views), has rather low importance in contrast to other features
offered and is not reused in further computations and visualizations on higher abstraction
levels. Nevertheless, reusing this information in other scopes could further support in
understanding how the test cases spread across classes or packages.

Assessing the Quality of a Test Suite (IN6)

Providing support concerning the decision where code coverage should be increased as
provided by the high sophisticated tag cloud visualizations in OpenClover is only one side
of the coin concerning the assessment of a test suites quality. In relation to the testing
principles depicted in 3.1.3, it is furthermore inevitable to clearly understand how tests
and code relate in order to gain consistency with those principles. The evaluated code
coverage tools do not attribute enough importance to this, though it would be desirable
that such tools put more emphasis on the semantic relationships between test cases and
covered code.

33

3. State of the Art

Identifying Test Redundancies (IN7)

As described in Section 3.1.2, there has been extensive research effort on the topics
test suite reduction and identifying test redundancies. All of the encountered scientific
approaches deal with those problems on a theoretical level by trying to reduce test
suites and find redundancies with test suite minimization algorithms and model-checker
techniques. On the one hand, it is proven that especially methods of the first type
generally reduce the fault detection effectiveness. On the other hand, test redundancy
analysis does not seem to be a key aspect of currently available code coverage tools. The
only tool that provides visualizations in this area, but hence is outdated, was CodeCover.
Nevertheless, it is questionable if knowing which test cases intersect is enough information
for deciding whether there is a redundancy or not. As for assessing the quality of a
test suite, understanding semantic relationships between tests and source code is also a
crucial factor for deciding whether tests are redundant or not.

3.3.2 Interpretation
The findings in this chapter clearly emphasize the necessity of further enhancements
of classical code coverage analysis and visualizations as proposed in the introduction
of this thesis (Chapter 1) and furthermore affirm the relevance of the defined research
questions (Section 1.2). The notion of the novel metric code coverage density, which
describes how test cases are distributed over specific parts of a software, as well as putting
more emphasis on how tests and source code are related could fill the encountered gaps
concerning information needs in the area of refactorings, test suite quality assessment
and the process of finding and analyzing test redundancies.

34

CHAPTER 4
Metric Definition

In this chapter, the definition of the novel metric code coverage density is given. The
definition is made strictly according to the basic definition of a software quality metric,
which is given in Section 2.2. The definition is provided using a bottom-up approach for
the specific granularity levels of a program written in an object-oriented programming
language. This means, that the definition is first given for finer granularity levels (e.g.,
LOCs, methods) and afterwards for coarser levels (e.g., classes, packages).

4.1 Line Coverage Density
The Line Coverage Density (LineCovDens) is a value, that states how many tests of a
given test set cover a specific LOC. The set of tests to be considered can either be a
predefined subset of the test suite (e.g., which are of interest or form a logical unit) or
the test suite in its entirety.

The inputs for the metric are a specific line LOCj and a set of n tests T = {T1, ..., Tn}. The
computed LineCovDens for LOCj , which is denoted as LineCovDensLOCj , is therefore
the number of tests in T that cover LOCj :

LineCovDensLOCj =
n

m=1
isCoveredBy(LOCj , Tm) (4.1)

The function isCoveredBy is defined as follows:

isCoveredBy(LOCj , Ti) := 1, if LOCj is covered by Ti

0, if LOCj is not covered by Ti

(4.2)

Note that “is covered/not covered” refers to the concept of statement coverage as described
in Section 2.3.4.

35

4. Metric Definition

The Relative Line Coverage Density (%LineCovDens), which states how many percent of
the tests considered cover the respective line, is defined as follows:

%LineCovDensLOCj =
LineCovDensLOCj

|T | × 100 (4.3)

Example: Table 4.1 shows the coverage for four LOCs (LOC1 - LOC4) of a test set
T = {T1, ..., T4}. It holds that two tests (T2 and T3) are covering LOC1, which is denoted
with 1 in the table. The remaining tests do not cover the LOC. Therefore, two out of
four tests cover the line, which results in a LineCovDens of 2 and a %LineCovDens of
50,00%. LOC2 has a LineCovDens of 4 and a %LineCovDens of 100,00%, which means
that all tests of the given test set cover this line. The values for LOC3 and LOC4 are
computed analogously.

T1 T2 T3 T4 LineCovDens %LineCovDens

LOC1 0 1 1 0 2 50,00%
LOC2 1 1 1 1 4 100,00%
LOC3 1 0 1 1 3 75,00%
LOC4 0 1 0 0 1 25,00%

Table 4.1: LineCovDens example

4.2 Method Coverage Density
The Method Coverage Density (MethodCovDens) is defined as the arithmetic mean
value of the coverage density values for the lines that form the method. The inputs are
therefore a method Mj = {LOC1, ..., LOCm} and a set of n tests T = {T1, ..., Tn}. The
computation formula is defined as follows:

MethodCovDensMj = 1
|Mj | ×

m

k=1
LineCovDensLOCk

(4.4)

The Relative Method Coverage Density (%MethodCovDens) is defined analogous to
%LineCovDens:

%MethodCovDensMj =
MethodCovDensMj

|T | × 100 (4.5)

Note that the reason why the arithmetic mean was chosen for aggregating the LineCovDens
on higher abstraction levels is that there are several accompanying statistical values (e.g.,
minimum, maximum and standard deviation) that support further interpretation on the
accuracy of the mean value. Those easily understandable additional values impart a
feasible evaluation of the meaningfulness of the coverage densities on higher levels.

36

4.3. Class Coverage Density

Example: Table 4.2 shows the coverage of four LOCs similar to Table 4.1. The
depicted lines form the method M1, which has a computed MethodCovDens of 2.5 and a
%MethodCovDens of 62.50%. This means, that on average 62.50% of the considered test
cases cover the method. The computed minimum and maximum values, as well as the
standard deviation, state how the concrete values spread around the mean value.

M1 T1 T2 T3 T4 LineCovDens %LineCovDens

LOC1 0 1 1 0 2 50.00%
LOC2 1 1 1 1 4 100.00%
LOC3 1 0 1 1 3 75.00%
LOC4 0 1 0 0 1 25.00%

MethodCovDensM1 2.5 62.50%
Min 1 25.00%
Max 4 100.00%
Std. Deviation 1.1180

Table 4.2: MethodCovDens example

4.3 Class Coverage Density
A class Cj can be considered as a set of k methods (Cj = {M1, ..., Mk}). Therefore,
for calculating the Class Coverage Density (ClassCovDens) for a given set of n tests
T = {T1, ..., Tn}, the MethodCovDens over the union of all methods of that class needs
to be calculated. Note that this results in calculating the arithmetic mean value of the
coverage density values for the lines that form the class:

ClassCovDensCj = MethodCovDens k

l=1 Ml
(4.6)

The corresponding Relative Class Coverage Density (%ClassCovDens) is computed as
follows:

%ClassCovDensCj =
ClassCovDensCj

|T | × 100 (4.7)

Example: Consider a class C1 = {M1, M2}. The methods of this class are formed by
seven LOCs, s.t. M1 = {LOC1, LOC2, LOC3, LOC4} and M2 = {LOC5, LOC6, LOC7}.
Given the preliminary definitions of ClassCovDens and MethodCovDens the following
equations hold for this example:

ClassCovDensC1 = MethodCovDens{M1,M2} (4.8)

MethodCovDens{M1,M2} = 1
7 ×

7

k=1
LineCovDensLOCk

(4.9)

37

4. Metric Definition

Therefore, for computing the ClassCovDens and the respective %ClassCovDens, the
LineCovDens values for each LOC needs to be calculated beforehand as depicted in Table
4.3.

M1 T1 T2 T3 T4 LineCovDens %LineCovDens

LOC1 0 1 1 0 2 50.00%
LOC2 1 1 1 1 4 100.00%
LOC3 1 0 1 1 3 75.00%
LOC4 0 1 0 0 1 25.00%

M2 T1 T2 T3 T4 LineCovDens %LineCovDens

LOC5 0 0 0 0 0 0.00%
LOC6 0 0 0 1 1 25.00%
LOC7 1 0 1 1 3 75.00%

Table 4.3: ClassCovDens example: computation of LineCovDens values

Given the above values and the equations 4.8 and 4.9, the ClassCovDens of C1 is therefore
computed as follows:

ClassCovDensC1 = 2 + 4 + 3 + 1 + 0 + 1 + 3
7 = 2 (4.10)

Simplified, computing the ClassCovDens for a class results in calculating the mean value
of the line coverage density values for all LOCs of all methods that form the respective
class. As for the MethodCovDens, the minimum and maximum coverage densities, as
well as the standard deviation are considered as depicted in Table 4.4.

ClassCovDensCj 2 50.00%
Min 0 0.00%
Max 4 100.00%
Std. Deviation 1.3093

Table 4.4: ClassCovDens example: values for class C1

4.4 Higher Granularity Levels
The coverage density calculations on higher granularity levels such as packages and
modules can be done in analogy to the computations on class level.

The calculation for a package Pj , which is usually composed of a set of k classes s.t.
Pj = {C1, ..., Ck}, would be made through calculating the ClassCovDens over the union
of all classes that form the package Pj . This leads to computing the MethodCovDens
over the union of all methods that form those classes.

The same holds for modules and higher granularity levels.

38

CHAPTER 5
Concept

This chapter summarizes the activities conducted during the conceptional phase of this
thesis (see Section 1.3.2). In Section 5.1, the proposed requirements that have been
established based on the outcomes of the research phase (Section 3.3) and the scenarios
given in the initial problem description (Section 1.1) are described. Section 5.2 describes
the conduction of the expert interviews and the outcomes of those. Finally, Section 5.3
documents needed adaptions of the initially defined requirements and summarizes the
final set of requirements that form the basis for the implementation phase (see Section
1.3.3.

5.1 Concept Proposal
This section proposes the basic concept for the planned prototype. This includes, on
the one hand, a definition of fundamental requirements on the basis of the identified
information needs as stated in Section 3.3. On the other hand, concrete realization
proposals, which form the basis for the expert interviews described in Section 5.2, are
presented and explained.

5.1.1 General Overview on Test Distribution (R1)
The metric Code Coverage Density should be visualized for the artifacts of an entire
application. This means in detail, that for typical object-oriented programs, the metric’s
higher abstraction levels (i.e., ClassCovDens and higher levels) should be visualized with
respect to the artifacts (i.e., classes, packages, etc.) they correspond to.

39

5. Concept

Realization Proposal: Figure 5.1 shows a possible visualization approach that satisfies
this requirement. The ClassCovDens, as well as higher granularity levels (i.e., on package,
module and project level), are visualized in a sunburst diagram, which is created in
accordance to the typical structure of object-oriented programs/applications. The inner
sections denote modules and packages. The outer sections denote concrete classes. The
color gradient visualizes the coverage density of the respective section, where a darker
blue tone means a higher emergence of test cases. A brighter tone on the contrary means
that there are less covering tests.

Corresponding Information Needs: The target of this requirement is to give an
appropriate insight concerning the distribution of the test cases over the entire project
and, moreover, to achieve a better understanding concerning the relation between test
cases and source code on higher abstraction levels (IN5).

Figure 5.1: Realization Proposals: Sunburst Diagram

40

5.1. Concept Proposal

5.1.2 Overall Statistics (R2)
The metric’s dispersion measures (i.e., the mean, minimum and maximum coverage
density, as well as the standard deviation) should be presented together with classical
coverage metrics (i.e., overall, statement, method and branch coverage) for the various
abstraction levels of an application (i.e., classes, packages, etc.).

Realization Proposal: Considering the previously presented sunburst diagram, it
should be possible to open a detail view for each diagram section which shows the needed
overall statistics about coverage and coverage density (Figure 5.2).

Corresponding Information Needs: Presenting detailed metric data about a specific
artifact is a de-facto standard feature in all available coverage tools and, moreover,
necessary and helpful in the context of all identified information needs in Section 3.3.

Figure 5.2: Realization Proposals: Sunburst Details

41

5. Concept

5.1.3 Relation of Test Cases and Higher-Level Artifacts (R3)
The relation between source code and tests should be pointed out on higher abstraction
levels by stating which test cases cover which artifacts of a program (i.e., classes and
packages).

Realization Proposals: As shown in Figure 5.2, the sunburst’s details also show which
tests cover the selected section. In addition, there is a listing which shows the coverage
contribution of the tests concerning the respective section.

Corresponding Information Needs: The requirement mainly aims at a clearer under-
standing of the relation between test cases and software artifacts, which could henceforth
support in assessing the quality of a test suite (IN5, IN6).

5.1.4 Test Distribution for a Specific Class (R4)
The distribution of test cases should be presented for a specific class with reference to
the LOCs it is composed of. More specifically, the LineCovDens should be visualized for
all LOCs of the class in order to highlight parts of the code that are covered through
more/less tests. Furthermore, it should also be visible which concrete test cases cover
which LOC.

Realization Proposal: Figure 5.3 shows a possible class visualization which visualizes
the LineCovDens in the context of a Java class rest.device.domain.Device. Each line of
code gets an assigned number, which states how many tests cover the respective line.
The color gradient visualizes these values. A line with a darker blue tone denotes that
there are more tests covering it. A brighter tone denotes a lower emergence of test cases.
Figure 5.4 furthermore shows an extension of the class view previously described. For
each line of code, it is possible to view a detailed listing about the covering tests and
their state.

Corresponding Information Needs: The intention for proposing this requirement
was to give potential users more information about how test cases spread over the
inner structure of a class in detail. This means that, in contrast to existing tools, the
visualizations do not only show whether lines are covered or not but also how many test
cases hit them and how they distribute across the class. Together with the information
about which test cases cover a specific line in the class view details, this could significantly
support the process of assessing the risk of refactorings and code changes (IN4).

42

5.1. Concept Proposal

Figure 5.3: Realization Proposals: Class View

Figure 5.4: Realization Proposals: Class View Details

43

5. Concept

5.1.5 Test Set Configuration (R5)
In the context of requirement R4, it should also be possible to evaluate the distribution of
test cases over a specific class with respect to a user-defined test set. This means especially,
that the test set considered for computing the LineCovDens should be configurable by
the user.

Realization Proposal: Figure 5.5 shows a possible extension of the class view presented
in Figure 5.3. Within this dialog, a potential user would be able to select the tests that
should be considered for visualizing the LineCovDens within the respective class view.

Corresponding Information Needs: This requirement targets at establishing support
in various areas. On the one hand, the feature would provide a possibility to filter tests
with specific characteristics (e.g., visualizing the coverage density and covering tests only
for unit, integration or system tests), which could furthermore be helpful for assessing the
quality of the test suite (IN5). On the other hand, filtering test cases in this context could
also support during the process of identifying test redundancies, as the visualizations
enable a fine-grained analysis of the coverage of specific test cases (IN7).

Figure 5.5: Realization Proposals: Test Set Filter

44

5.1. Concept Proposal

5.1.6 Test Distribution Comparison (R6)
It should be possible to compare the computed MethodCovDens, as well as the mean,
minimum and maximum coverage density, for a selected set of methods and covering
tests.

Realization Proposal: The mockup presented in Figure 5.6 visualizes the distribution
of four test cases over the methods M1 - M5 in a radar chart. The visualization states the
mean coverage density (blue line), as well as the minimum and maximum coverage density
(orange and grey lines) for the depicted methods. The visualization is customizable,
which means that it is possible to select the considered tests and methods. Alternatively,
a comparison of the test distribution could also be achieved by a bar chart similar to the
radar chart (Figure 5.7). For each method in the radar/bar chart, it is also possible to
open a detail view, which states overall statistics of the method and lists the covering
tests (Figure 5.8). Furthermore, there is a listing of all lines of code that form the
respective method, together with their computed coverage density values.

Corresponding Information Needs: The intention behind this requirement was to
establish further support for assessing the quality of a test suite (IN6). With the proposed
visualizations, the evenness of the distribution of test cases that cover a set of methods
could be analyzed very easily, as a not evenly distribution would, i.e., generate a graph
with outlying edges in the radar chart (e.g., method M4 in Figure 5.6). On the contrary,
it holds that the more evenly the graph spreads, the more evenly the test cases are
distributed. The bar chart visualization would show similar behaviors in such situations.

Figure 5.6: Realization Proposals: Radar Chart

45

5. Concept

Figure 5.7: Realization Proposals: Bar Chart

Figure 5.8: Realization Proposals: Radar Chart Details

46

5.2. Expert Interviews

5.1.7 Test Details (R7)
For each test case, it should be possible to identify the classes covered by the respective
test case.
Realization Proposal: The mockup shown in Figure 5.9 shows a listing of classes that
are covered by a specific test case. In addition, the listing shows the respective coverage
contribution of the test.
Corresponding Information Needs: In combination with all other requirements, this
shall in the first place give even denser insights concerning how test code and source
code is related in order to support test suite maintenance and the identification of test
redundancies (IN5, IN7).

Figure 5.9: Visualization Proposals: Test Details

5.2 Expert Interviews
The following sections describe how the conducted expert interviews were planned,
executed and evaluated. The concrete intentions of those interviews were as follows:

• Evaluating the metric definition as described earlier in Chapter 4

• Obtaining a relevance ranking for the abstraction levels of the metric

• Presenting the feature and visualization proposals as presented in Section 5.1

• Obtaining a relevance ranking for the presented drafts

• Gathering further ideas and information needs in this context

• Discussing the idea, the metric and the realization proposals

The outcomes of those interview sessions formed the basis for the definition of the final
set of functional and non-functional requirements (Section 5.3).

47

5. Concept

5.2.1 Interview Sessions
The interviews were conducted in three separate online video sessions (one session per
participant). At the beginning of each session, the interviewee was first introduced
into the overall topic of the thesis and the concern of the interviews. Afterwards, the
conductor went through a questionnaire together with the participant, which was created
with an online questionnaire tool. The form was filled by the conductor, who shared his
screen to the interviewee and went through the questions step by step. The answers were
filled following to the answers and instructions of the participant. At the end of each
session, there was a short closing discussion.

The interview procedure and the questionnaire itself were furthermore evaluated through
a preceding pilot interview. The intention was in the first place to check whether the
questions have been formulated in a suitable fashion and were not misleading or lacking
of important information in order to get a consistent set of answers. Based on this pilot
session, the questionnaire was adopted respectively.

Each session was audio-recorded in order to recapitulate the discussions and remarks
that aroused. Note that the recordings were not used for further processing of the data
(e.g., transcription), as all the remarks and discussion outcomes that have aroused were
instantly logged and written down. The only purpose of the audio records was to be able
to rehear the interviews if necessary.

5.2.2 Participants
The participants were three experts from the domain of software engineering. All
interviewees were between 25 and 34 years old and had experience in the industrial area.
One of the participants had less than five, one between five and ten and one between
eleven and 20 years of experience in the industrial sector. Furthermore, two of the
participants were also working in the scientific area, whereas one had less than five and
the other one between five and ten years of experience.

5.2.3 Questionnaire
The interviews followed a semi-structured approach with both quantitative (closed) and
qualitative (open) questions. The questionnaire consisted of two distinct parts. The first
one was directed at questions concerning the metric evaluation, while the second one
included questions concerning the visual drafts and feature proposals. The following
sections describe the questions asked in detail and summarize the overall outcomes. A
full list of all questions can be found in the appendices (Section A.1).

Metric Evaluation

During the first part of the interview, the participants received an overall introduction to
the metric calculation. Specifically, the conductor explained each level of abstraction of
the metric (LineCovDens, MethodCovDens, ClassCovDens and higher) and presented the

48

5.2. Expert Interviews

calculation steps through a speaking example, whereby each level got a separate question.
In addition, the possible dispersion measures were presented. For each of the examples,
the interviewees were asked how relevant this information is to them and whether they
had additional remarks on the shown concept. For the relevance rating, a 5-point scale
was used which reached from 1 = not relevant to 5 = highly relevant. Those questions
are shown in the appendix in Figure A.2 and A.3. Furthermore, the participants were
asked to give a ranking on how important the metric on each level of abstraction (LOC,
method, class and package level) is in their opinion (Figure A.4). Finally, they were
enquired whether the metric is clearly defined and understandable and if they had any
further remarks on the presented concept.

Mockup Presentation and Evaluation

In the second part, the realization proposals as documented in Section 5.1 were presented
to the participants. For each of the presented visualizations, the conductor explained
what the concrete idea and intention behind the feature is, as well as how it is connected
to the metric calculation presented earlier. For each of the mockups, the participants
were asked to give a relevance rating on how important such a feature is in their opinion
(again on a 5-point scale) and whether they have additional remarks or further ideas.
Summarizing, the target of this procedure was mainly to evaluate these first visualization
ideas, extend or discard them if necessary, and perceive a requirement/feature ranking
based on the participants importance ranking.

5.2.4 Outcomes
The evaluation of the questionnaire was conducted as follows. For each quantitative
question (i.e., all relevance ratings), the mean value of all given ratings was considered
for further analysis. For each qualitative question (i.e., further ideas and remarks, as well
as the closing discussion), the statements given by the participants were logged as plain
text. This additional information will just be stated and summarized in the following.

Metric Relevance

Concerning the metric, all participants stated that it is clearly defined and understandable
in their opinion. Regarding the introductory explanation of the coverage density calcula-
tions, MethodCovDens and LineCovDens got the highest relevance ratings, followed by
ClassCovDens and the dispersion measures (Figure 5.10a).

Concerning the relevance of coverage density on the different abstraction levels, the
calculation on method level was rated as most important (Figure 5.10b). The relevance
on class and line level was equally rated, whereas the relevance on package level was
rated as less important.

49

5. Concept

(a) Relevance rating of coverage density calculation

(b) Relevance rating of coverage density on different abstraction levels

Figure 5.10: Metric relevance ratings (1 = not relevant, 5 = highly relevant)

All three participants stated that they had problems to imagine what a good or bad value
of the indicator is. When they were introduced to LineCovDens, they remarked that they
are missing a baseline or a reference value to decide whether the actual value computed
can be seen as desired or undesired. One participant noted that making decisions or
conducting further steps based on the metric may also depend highly on the context
of the considered LOC, method or class. For example, if the LOC considered is a log
statement, it may be ok if the coverage density is low. On the other hand, if the LOC is,

50

5.2. Expert Interviews

e.g., part of a loop (or “actual” code in general) a low density may indicate that further
testing is needed. Furthermore, another participant noted that a high density may also
imply that there are test duplicates. The latter is a train of thought that was nevertheless
a base idea of the metric and the visualizations.

Though the dispersion values were rated as the least important indicators in the question-
naire, two participants stated that the minimum and maximum coverage density may be
useful to a certain extent, e.g., for finding out that there are lines that are covered very
often, but also those which are not covered at all. Both remarked, that they would not
use the standard deviation for any further analysis or make decisions based on this value.

Concerning the importance of the metric on the various levels of granularity (LOC,
method, class, package, etc.), there was one participant explicitly stating that in his
opinion, the relevance mainly depends on the use case that drives a user to use the metric.
The coverage density on the level of LOCs may be interesting if the test suite quality
is already quite high and further improvements are pursued. But if a user wants to get
an initial overview in a project, where test suite quality may not have been assessed
until now and first actions need to be taken, higher abstraction levels may be of higher
interest.

Feature Relevance

The mean ratings for the proposed features of the visualization prototype are depicted in
Figure 5.11a. Note that for the feature Test Details, there was no single relevance rating
in the questionnaire and therefore the mean value of the mean rating for the questions
about the relevance of the detail view for different test levels was used. The features
Class View, Test Details and Sunburst Diagram were rated as most appealing (together
with their detail views), whereas Radar Chart and Bar Chart were considered as not
relevant to the participants. Concerning the relevance of the test details visualization,
the participants found that it is of high importance if the test considered is a unit test or
an integration test but less important if the test is a system test (Figure 5.11b).

Similar to the remarks concerning the metric definition, one participant explicitly noted
that it is hard to decide whether a dark/light blue tone in the diagrams is something that
can be considered as good/bad and that this is highly context dependent. Regarding
the sunburst diagram, one participant stated that the usefulness of this visualization
also depends on the customizability and the data in scope. The interviewee explicitly
remarked that it would be useful to tell the tool “how” the sunburst should behave.

For certain use cases, it may not be wishful to see the whole architecture of the software
and sections should be expendable one after the other. For other use cases, it may
be necessary to get an overview over the whole architecture and all sections should
be expanded per default. Furthermore, a participant remarked that the usefulness is
absolutely dependent on the user’s domain knowledge.

51

5. Concept

(a) Relevance rating of proposed features/mockups

(b) Relevance rating of the test details mockup for different test levels

Figure 5.11: Feature/Mockup relevance ratings (1 = not relevant, 5 = highly relevant)

52

5.2. Expert Interviews

Concerning the detail views, one participant asked why failed tests appear and what the
intention behind this information is. It should be overthought whether those tests need
to be included and what the advantages/disadvantages could be. Another participant
stated that showing details (and implicitly the data that drives the indicators) is always
good and wishful. Hence, in the opinion of the interviewee, such detailed information
may not be used very often in industrial projects due to lack of time and resources.

The radar chart and the bar chart were least appealing to the interviewees. Though,
two participants stated that (if it was available) they would rather prefer the bar chart
over the radar chart, as it seems more intuitive. Furthermore, one participant remarked
that the radar chart may be tempting towards comparing methods that are not intended
to be compared. The bar chart visually separates the methods from each other, which
is considered to be a better way of presentation as in the opinion of the interviewee,
methods should not be compared based on their coverage density. In addition, one
participant stated that he would not use the radar chart or the bar chart at all and that
the class view would be the most preferred visualization.

Regarding the test details, one participant remarked that the coverage contribution value
is confusing in this visualization. The interviewee stated that this metric would make
more sense in the context of tests that cover a specific class, but not for classes that are
covered by a specific test.

General Discussions

During the closing discussions, there were various additional and interesting statements
that needed to be captured. One participant explicitly stated that in his opinion (as
it is the case for many software metrics), it may only be reasonable to make decisions
based on coverage density in combination with other metrics (e.g., code coverage, code
complexity, etc.). Regarding maintenance and refactoring tasks, one participant stated
that MethodCovDens and the visualizations based on this indicator may be the most
important ones, as those tasks usually deal with this level of abstraction.

Summarizing, the participants stated that they think that the following factors highly
influence the usefulness and relevance of the metric and the visualizations:

• What is the user’s intention?

• What is an adequate value to aim for? Is there a possibility to generate recommen-
dations?

• In order to give reasonable statements about the artifacts under review, high domain
knowledge is needed.

• Who is the target audience? The relevance may be different for each interest group
(software developers, testers, managers, etc.).

53

5. Concept

In addition, the following enhancing ideas and features were proposed during the closing
discussions:

• Integration in other tools like common IDEs, SonarQube etc.

• A ranking list of classes/tests due to their coverage density they have/contribute

• An intersection visualization where classes and test cases can be compared con-
cerning the covered LOCs, which would help to find possible intersections between
tests

5.2.5 Summary
At a glance, the following drafts and proposals were most appealing to the experts and,
therefore, important candidates for a feature set of the implemented prototype. The list
is already sorted by the importance of the feature:

1. Class view (with respective detail view)

2. Test details

3. Sunburst diagram (with respective detail view)

Both the radar chart, as well as the bar chart will be neglected due to their low relevance
ratings and the qualitative feedback of the questionnaires.

Furthermore, the following takeaways were captured for the next phase of the thesis:

• All visualizations must be highly customizable.

• Further graphical user interface (GUI) design in the requirement analysis and
definition phase should consider the feedback stated in this section.

• The dispersion measures had low relevance ratings, hence the minimum and maxi-
mum coverage density values could be of use in certain cases.

• The factors that influence the usefulness of the metric and the enhancing ideas for
further features should be kept in mind in further phases - as summarized earlier
based on the general discussions.

54

5.3. Adaptions

5.3 Adaptions
In this section, necessary adaptions of the initially defined functional requirements and
realization proposals presented in Section 5.1 that were made based on the outcomes of
the expert interviews (Section 5.2) are documented. Furthermore, the non-functional
requirements are defined. Last but not least, a summarizing list of the final requirements
for the planned prototype is given.

5.3.1 Additional Requirements
Ignoring Failed Tests (R8): It should be customizable, whether failed tests are taken
into account for the coverage density computations or not.

Ranking of Tests (R9): There should be a list of tests that are ranked due to the
coverage density they contribute (i.e., how many LOCs they cover). The list should be
sorted in descending order, s.t. tests that cover the most LOCs are listed first.

Ranking of Classes (R10): There should be a list of classes that are ranked due to
the coverage density they exhibit. The list should be sorted in descending order, s.t.
classes that have a high coverage density are listed first.

5.3.2 Realization Proposal Enhancements
Customizability of the Sunburst Diagram: With respect to the realization proposal
in Subsection 5.1.1, users must be able to configure how the presentation of the test
distribution over the project behaves. For the sunburst visualization, this means in
particular that per default, only the first three sections should be visible. If a user clicks
on a section, the next outermost section should be expanded. Alternatively, the user
should be able to configure an immediate rendering of all sections of the diagram.

Base Coloring: The base coloring (default = blue) of the visualizations should be
customizable.

Test Details: The test code (simple code view) should be available in the test details
to immediately evaluate what the test executes. The code view should be expandable
and hidden by default. Tests that failed should be highlighted in red, all passed tests
should be highlighted in green (Figure 5.12).

5.3.3 Non-Functional Requirements
Reusability of Underlying Data (N1): The underlying data (e.g., coverage data)
should be easily reusable, s.t. the implementation of a visualization in common IDEs or
other tools is possible

Integration in other Tools (N2): The generated visualizations should be implemented
in such a way that they could easily be integrated into CI-Tools (e.g., Jenkins)

55

5. Concept

Figure 5.12: Test Details with Test Code

5.3.4 Neglected Realization Proposals

In particular, two of the notions presented in the realization proposals and captured in
the expert interviews were omitted in the context of this thesis.

First, displaying the coverage contribution as proposed for the requirements R3 and R7
(Figures 5.2 and 5.9) was an idea that arouse from the analysis of existing code coverage
tools (esp. OpenClover), as they also display such values. Hence, this value is very vague
in the existing tools and also not scientifically based. Therefore, it may be unclear to the
user what the actual meaning is, whereby it was finally neglected in the context of this
thesis.

Second, visualizing similar tests as proposed by some participants during the expert
interviews (see Section 5.2.4) was also neglected as it would have been necessary to do
further research whether tests can be considered as similar based on the percentage of
covered lines. This was clearly out of the scope of this thesis, whereby the feature had to
be neglected.

56

5.4. Final Requirements

5.4 Final Requirements
The final set of functional (F) and non-functional (NF) requirements that form the
basis for the following phases of this thesis are summarized and depicted in Table 5.1.
In addition, all requirements were classified as either must-have requirements (MH) or
nice-to-have requirements (NTH). Note that requirements denoted as NTH were decided
to be marked as such as they are common additional features, that would not essentially
enhance the prototype in order to satisfy the identified information needs captured in
Section 3.3. Nevertheless, those requirements are documented in this section for future
work.

ID Requirement Classification Type
R1 General Overview on Test Distribution MH F
R2 Overall Statistics MH F
R3 Relation between Test Cases and Higher-Level Artifacts MH F
R4 Test Distribution for a Specific Class MH F
R5 Test Set Configuration MH F
R7 Test Details MH F
R8 Ignoring Failed Tests NTH F
R9 Ranking of Tests NTH F

R10 Ranking of Classes NTH F
N1 Reusability of Underlying Data MH NF
N2 Integration in other Tools MH NF

Table 5.1: Final Requirements

57

CHAPTER 6
Implementation

In this chapter, the implementation phase as implied in Section 1.3.3 is described. Section
6.1 gives fundamental information concerning the execution workflow of the planned
prototype. Section 6.2 depicts the technical concept in detail. Finally, the resulting
reports and visualizations generated by the prototype are discussed in Section 6.3.

6.1 Execution Phases
The basic idea of the implemented prototype was to gather coverage data from existing
code coverage tools, rearrange the gathered data, calculate the metric code coverage
density on various levels and present the outcomes in a human-readable report (with
reference to the derived requirements in Section 5.4). The report itself should be a static,
self-contained HTML report, which does not need any connections to foreign systems
(e.g., databases). For the scope of this thesis, the decision was to provide a working
version of the prototype which supports Java projects tested with the JUnit framework.

Beforehand, it was necessary to define which information was required for the metric
calculation and which tools could provide those. In fact, the following information was
needed:

• Project Structure: How is the project structured, i.e., what is the package and
class structure?

• Test Results: Which test cases have been executed and what was their execution
status, i.e., did they pass or fail?

• Code Coverage: What are the general coverage metrics for packages and classes,
i.e., statement coverage, method coverage, branch coverage and overall coverage?

59

6. Implementation

• Relation between Tests and Code: Which test cases cover which LOCs (and
therefore, which methods, classes and packages)?

The most promising existing tool for gathering this information was OpenClover (see
Section 3.2.4), as it has the most evolved and structured output data of all analyzed
coverage tools during the thesis. Coverage data can not only be visualized in the form of
PDF or HTML reports but may also be output into reusable XML files, which contain
the recorded coverage data for the whole project structure in machine readable format.
Furthermore, the tool generates a reusable database during code instrumentation and test
execution. Specifically, the database contains structured information on which tests cover
which LOC. Summarized, the XML files together with the database form the perfect
basis for answering the questions above.

After deciding what the base coverage tool for the planned prototype was, it was necessary
to define how the rearrangement of the given data should work and how to pass it to the
report. Figure 6.1 shows the overall execution phases of the prototype.

Figure 6.1: Prototype Execution Phases

Phase 1 consists of the execution of the unit tests for the target project and coverage
analysis with OpenClover. The outputs are the XML files mentioned earlier (clover.xml),
together with the generated database (clover.db).

In phase 2, this data gets pre-processed and rearranged. As it was planned to implement
an independent report which therefore must also include its underlying data source, the
idea was to generate a JSON file, which follows a predefined structure and contains the
generated relevant data on the basis of OpenClover’s output sources. Note that this
JSON array does not include the concrete metric values, as the calculation itself depends,
e.g., on the test set to be considered, which is configurable by the user (see Section 5.1.5).
As calculating the coverage density values on each level for each possible test set in a
project would have formed a tremendous overhead, the decision was to do the calculation
on the fly within the report, i.e., with client-side business logic.

60

6.2. Technical Concept

The final phase 3 takes the processed data and generates the necessary files for the
coverage density report. Concerning the report itself, the choice was to generate static
HTML files for each view in the report and deliver the business logic in separate JavaScript
files, which get included by all the templates. The JSON array should be delivered
through a single JavaScript file, which can be accessed through the business logic.

6.2 Technical Concept
Implementation activities were in fact only necessary in the context of phases 2 and 3,
as phase 1 only consists of running JUnit tests of the target project and OpenClover’s
coverage analysis in order to get the necessary outputs. The actual implemented program
then takes the XML files and OpenClover’s database as inputs for further processing.
The following subsections will describe the technologies used for the latter, as well as the
data structure for the JSON file and the directory structure of the final HTML report.
Nevertheless, Subsection 6.2.4 will also give an overview on how the overall process
(including phase 1) was automated, s.t. the user does not need to execute JUnit tests
and OpenClover analysis manually in order to run the prototype.

6.2.1 Technologies
The concrete program is a command line tool implemented in Java. Besides the built-in
features like classes for reading XML files and loading them into a Document Object
Model (DOM), the following third-party libraries were used:

• OpenClover Plugin1, which provides functionality for accessing and reading the
coverage database

• FasterXML/jackson-databind2, which provides Java object serialization to JSON
objects and documents

• Apache Velocity3, which provides a template engine for generating the report files

Concerning the front-end (i.e., the report files), the front-end development framework
Bootstrap4 was used. Furthermore, the report relies on the following JavaScript libraries
and tools:

• JQuery5, which provides functionality for DOM navigation and manipulation

• HighlightJS6, which is used for syntax highlighting of the displayed code
1https://openclover.org/downloads
2https://github.com/FasterXML/jackson-databind
3https://velocity.apache.org/
4https://getbootstrap.com/
5https://jquery.com/
6https://highlightjs.org/

61

6. Implementation

• vasturiano/sunburst-chart7, which is used for generating the sunburst charts

6.2.2 Data Structure
In the following, the data structure of the JSON array which is generated by the
implemented program will be described. A concrete example of a possible data file can
be found in the appendix (Section A.3).

The top level of the JSON array describes the project in general. The data structure is
therefore composed of the following properties:

• projectName: the name of the project

• coverageMetrics: the coverage metrics calculated by OpenClover (overall, method,
statement and branch coverage)

• packages: the contained packages

• testCases: a listing of the implemented test cases, along with their class names,
package names, execution states, file paths and a flag for stating whether the test
case is abstract or not

• numTestCases: the total number of test cases

• coveringTests: a listing of all tests that cover the project, given by their qualified
names

• numCoveringTests: the number of test cases that cover the project

• size: the size of the project, which is the total count of line numbers

An example of this structure is given in Listing A.1. Note that in this snippet, the
property “packages” is collapsed and in succession contains all packages of the project
along with their sub packages, classes, methods and LOCs. In particular, packages are
composed of the following properties:

• pacakgeName: the name of the package

• qualifiedName: the fully qualified name of the package8

• classes: the classes contained in the package

• packages: the sub packages of the package
7https://github.com/vasturiano/sunburst-chart
8denoted in java package syntax, e.g., “at.tuwien.ac.at.main” for a package “main”

62

6.2. Technical Concept

Classes are defined similar to packages along with their contained methods (property
methods). Methods are composed of LOCs (property lines), which are identified by
properties for the respective line number and line spans (for statements covering more
than one line). In analogy to the project structure, each sub element has the two
properties coveringTests and numCoveringTests. Packages, classes and methods also have
properties for their fully qualified name and the computed coverage metrics (analogous
to the properties used for the project structure). An example of such a detailed structure
is given in Listing A.2.

Note that especially the properties coveringTests and numCoveringTests are deliberately
redundant in order to minimize the computing effort in the business logic. On higher
levels (e.g., packages), those properties simply state the union of covering tests of their
lower-level elements (e.g., classes, methods and LOCs).

6.2.3 Report Directory Structure
The generated report itself consists of the file index.html (which is the actual entry point)
and five sub-directories. Figure 6.2 depicts the structure for an example project.

Figure 6.2: Example report directory structure

The directory data includes a single file data.js containing the JSON data structure
described earlier in Subsection 6.2.2.
The folder js contains JavaScript files with the business logic for the sunburst, code and test
views (e.g., for manipulating the DOM). Furthermore, the file coverage-density-functions.js
contains all the necessary logic for computing the coverage density metrics on various

63

6. Implementation

levels (based on the underlying JSON data). In detail, the actual metric computation
steps as defined in Section 4 are conducted only in this file through independent JavaScript
functions.
The folders codeview and testview contain sub-folders for every single package (identified
by their fully qualified names) and furthermore HTML files for every possible view of a
class or unit test.
The folder css contains the CSS definitions for the respective views.

6.2.4 Execution Automation

As described so far, the common method for generating the coverage density report for a
given project is executing the JUnit tests, running OpenClover’s coverage analysis and
feeding the implemented program with the output files as well as the database. For Java
projects built with Maven, this would mean that a potential user has to carry out the
following steps manually before running the report generator:

1. Include the Maven plugin for OpenClover in the projects pom.xml

2. Run the unit tests and coverage analysis via Maven

3. Execute the report generator with the given output artifacts

Figure 6.3: Prototype Execution Automation

Especially the step of altering the projects pom.xml is not reasonable at all, as an
execution of the prototype should not be dependent on changes within the project to
analyze. Furthermore, the regeneration of the report for a given project is cumbersome
and needs a manual repetition of the above steps. As analytical tools should in the
first place be easy to use [48], the idea was to automate the whole process with Docker
containers. In fact, exactly two containers are provided for this purpose (see Figure 6.3).
Both were built on the basis of the official OpenJDK containers9.

9https://hub.docker.com/_/openjdk

64

6.3. Results

Clover Executor Container

This container executes the unit tests along with the coverage analysis for a given input
project. In detail this is done via the execution of Maven and the OpenClover plugin via
the command line. The plugin itself does not need to be included in the initial projects
pom.xml, as it can also be called from the command line externally. To achieve this, the
container executes the shell script depicted in Listing 6.1. In order to signal that the
container finished with the execution, a file cd_sync is written to the target folder of
the input project. This file gets removed on line 3 and created on line 7. The concrete
Maven execution is triggered on line 6.

1 #! / bin / bash
2
3 rm −f / input−p r o j e c t / t a r g e t /cd_sync
4
5 cd / input−p r o j e c t
6 mvn c l e a n org . o p e n c l ov e r : c l o v e r −maven−p l u g i n : 4 . 4 . 1 : setup t e s t org . o p e n c l ov e r : c l o v e r −

maven−p l u g i n : 4 . 4 . 1 : a gg re ga te org . o p e n c l o v e r : c l o v e r −maven−p l u g i n : 4 . 4 . 1 : c l o v e r −
Dmaven . c l o v e r . generateXml=t r u e −Dmaven . c l o v e r . generateHtml=f a l s e −Dmaven . t e s t .
f a i l u r e . i g n o r e

7 echo " ready " > / input−p r o j e c t / t a r g e t /cd_sync

Listing 6.1: clover-executor.sh

Coverage Density Container

This container waits until the file cd_sync is available and afterwards executes the report
generator. Furthermore, it starts an Apache web server and publishes the generated
report, which is in the end available for the user on http://localhost:8080.

By following this approach, the (re-)execution of the prototype for a given project is
completely automated and does not need any manual intervention of the user.

6.3 Results
In the following sections, the different views available in the final coverage density report
for an example project (which was also the basis for the evaluation in Chapter 7) are
described. Note that this is not a detailed hand-book for the usage of the prototype.
The focus is, on the one hand, on showing how the requirements in Section 5.4 were
implemented with respect to the realization proposals enhancements (Section 5.3.2) and,
on the other hand, on stating which additional features had to be implemented due to
perceptions that arouse during the actual implementation phase.

6.3.1 Sunburst View
The Figures 6.4a and 6.4b show the final version of the sunburst diagram within the
generated report, which fundamentally covers requirement R1.

65

6. Implementation

(a) with configuration Show All

(b) with configuration Focusable

Figure 6.4: Coverage Density Report: Sunburst Diagrams
66

6.3. Results

Sunburst Configuration

Figure 6.5 shows how the customization of the sunburst view was realized. It is possible
to choose two Sunburst Behaviors with the given dropdown input:

• Focusable, which means that only the first three layers of the sunburst diagram are
shown

• Show all Levels, which means that the whole sunburst diagram is rendered immedi-
ately

Figure 6.5: Coverage Density Report: Sunburst Diagram Configurations

In addition, the behavior configuration has been expanded with two additional range
controls. Those configurations were not defined in the initial requirements and were
added during the implementation process as several visualization problems aroused with
the example project. In the following, the two range controls, along with the justification
why they had to be added, will be described.

Scale Factor
This control allows the user to scale the diagram, which is especially helpful in behavior
mode Show all Levels. If the diagram has a specific size, not all sections can be labelled
with their respective package and class names due to the lack of space (see also Figure
6.4a). Therefore, a possibility was needed to upscale the diagram in order to receive
more space within the sections and label them where possible.

67

6. Implementation

Coloring Factor
The control Coloring Factor intensifies the coloring of the sections. This means, that the
coloring factor (which is calculated on the basis of the coverage density for the respective
section) gets multiplied by the configured factor. In detail, this has two very important
effects for the diagram. At the one hand, it holds that for large projects with many test
cases, the coverage density values may become very low for specific sections. Imagine
a project with hundreds of test cases and a class that only gets touched by a few of
them. This would lead to a very low relative coverage density, which implies a very light
(and often hardly visible) color tone. This may give the impression, that there are no
tests covering this section. On the other hand, it may be very difficult to differentiate
between sections, that have similar relative coverage densities which result in a nearly
equal color tone. The effect is, that those different color tones may not be distinguishable
for the user. Scaling the coloring factor is therefore inevitable in order to gain as much
information as possible with the sunburst diagram.

Detail View

In order to fulfill the requirements R2 and R3, a detail view was implemented as shown
in Figure 6.6. The view appears as the user clicks on a section in the diagram. This
requirement has also been slightly adapted for the behavior mode Focusable, where a
click on a section should also zoom into the clicked section. This would have resulted in a
contradiction when this mode is configured, as one user interaction would have triggered
two events. Therefore, a mouse click triggers a context menu which enables the user to
choose whether to focus on the respective section or to show the details dialog. Note
that the info buttons in the list of covering tests lead to the respective test view, whereas
the info button in the right corner of the view leads to the class view. The status of
each covering test has been visualized through green (passed) and red (failed) thumbs up
signs.

Figure 6.6: Coverage Density Report: Sunburst View Details

68

6.3. Results

Further Adaptions

Furthermore, there were marginal adaptions and additions concerning the standard
reference test set for coverage density calculations within the diagram. In earlier versions
of the prototype, the reference test set for the calculations (which affects, on the one
hand, the color tone for the sections and, on the other hand, the shown metrics in the
details dialog) was always the test set that covers the root of the sunburst diagram (i.e.,
the whole project). Especially when navigating through the diagram in mode Focusable,
this resulted in very small coverage density values when focusing, e.g., on a package on
lower layers (which resulted in similar issues as described earlier concerning the coloring
factor). It also felt unnatural that the reference test set contains tests that do not even
cover the currently focused section. Therefore, it came out to be wiser to always select the
test set covering the currently innermost section of the diagram as the current reference.
This leads to the effect, that the metric calculations are always different depending on
the currently focused package and specifically only the tests covering the latter are taken
into account.

6.3.2 Code View
Figure 6.7 shows the implemented code view for a class at.simianarmy.service.
MembershipService within an example project, which satisfies requirement R4. The
view is divided into two areas. The left side shows the actual code of the current class
together with a number indicating how many test cases cover the respective line. Each
line is highlighted with a color tone corresponding to the coverage density on LOC level,
whereby the reference test set is always the sum of tests covering the shown class. The
right side is reserved for the detail popup dialog, which contains a list of the covering
test cases and appears when the user clicks on a specific LOC. The info buttons lead to
the respective test views.

Figure 6.7: Coverage Density Report: Code View

69

6. Implementation

By clicking on the button Choose Test-Cases... the user may adapt the reference test set,
which is taken into account (requirement R5). This is done via a modal dialog, which
offers the possibility to add or remove test classes and test methods (Figure 6.8). Note
that the dialog got enhanced with additional filter possibilities during the implementation
phase. In detail, search bars for test classes and test methods were added to enable
filtering and easier navigation through the possible test cases.

Figure 6.8: Coverage Density Report: Test Selection

6.3.3 Test View
Figure 6.9 shows the test view for a test class at.simianarmy.web.rest.
MembershipResourceIntTest within an example project (requirement R7). The view
presents the classes and methods covered by the respective test class, as well as its
source code. Furthermore, the overall status of the test class is visualized through green
(passed) or red (failed) thumbs up signs. In addition, the number of passed (referred to
as Successful Tests in this visualization) and failed tests is displayed. In the source code
view, the execution status for each test method is also displayed individually. The info
buttons in the list of covered classes lead to the respective class view.

70

6.3. Results

Figure 6.9: Coverage Density Report: Test View

6.3.4 Reusability and Integration
Concerning the non-functional requirements N1 and N2, which are defined in Section
5.3.3, it needs to be held that they are fulfilled implicitly by the chosen architecture of
the prototype.

Concerning N1, the files data/data.js and js/coverage-density-functions.js can be re-
used independently from the rest of the report’s files as they contain all the necessary
information and computation steps for the coverage density metrics on all levels (see also
Section 6.2.3). Therefore, it is possible to extract those two files and use them as a basis
for visualizing the metric in other tools and reports.

Furthermore, as the report is an independent and static HTML website, it can easily be
re-used by build servers that offer HTML report embedding. For example, Jenkins and
Atlassian Bamboo provide this functionality by publishing generated HTML reports in
their build job results [58], [49].

71

CHAPTER 7
Evaluation

This chapter describes the conducted evaluation of the ideas and concepts established
during this thesis. To achieve this, a scenario-based expert evaluation was conducted with
the aid of a coverage density report for an example project generated by the prototype
described in Section 6. Section 7.1 states fundamental aspects that were considered
before the actual evaluation was planned and the scenarios were designed. In Section 7.2,
the example project which formed the basis for the generated coverage density report
used during the evaluation will be presented. The Sections 7.3 and 7.4 describe the
overall procedure and the demographic information about the participants. The designed
scenarios are presented in Section 7.5, whereas the results of the conducted evaluation
will be depicted in Section 7.6. Finally, those results will be interpreted in regard to the
research questions in Section 7.7.

7.1 Fundamental Considerations
When evaluating concepts or metrics through an implemented visualization prototype,
the participants should conduct predefined tasks using the latter, get observed by a
supervisor in order to record how it aids in fulfilling those and get interviewed about
their experiences. For the actual evaluation in this thesis, a coverage density report
generated by the prototype as described in Chapter 6 was used for achieving this. As such
a report is always generated for exactly one specific software project, it was necessary
to investigate on how to choose this base project in order to ensure a consistent and
expedient form of evaluation.

In fact, there were two possibilities concerning the election of base projects for the report
generation. The participants either could have chosen the project to analyze themselves
or been given a pre-generated report for a fixed project. The main aspect to keep in mind
when making the decision for one of the above possibilities was that the participants
could not conduct realistic tasks without a certain level of knowledge of the base project

73

7. Evaluation

for which the report was generated. A simplified example for this would be a task where a
participant needs to state if a class is covered by unit tests in an effective and appropriate
way. If the participants do not have any knowledge about the actual requirements and
functionalities of an implementation, they may be incapable of stating whether the tests
covering the code are sufficient.

The natural intention would be to let participants choose a project which they are
currently working on and have enough expert knowledge about. Hence, this heavily
impedes the definition of the scenarios and tasks to conduct as it implies that each of
them must be as general as possible, s.t. it can be fulfilled with every possible software
project. As the defined research questions were defined around very specific tasks (such
as assessing the risk of a refactoring), this was not feasible in the context of this thesis.
Furthermore, the results of the evaluation would not be comparable as they are based on
different projects that the report was generated for.

Generating the coverage density report for a fixed project would, on the one hand, ease
the construction of scenarios and ensure the comparability of the results but, on the
other hand, contradict the previously stated fact that participants need project-related
knowledge to fulfill the tasks within the defined scenarios. Nevertheless, the decision
was to choose a fixed project as a basis and give the participants the necessary insider
knowledge in order to understand the scenarios. The respective project will be briefly
described in the following section.

7.2 Example Project
The software project used as a basis for the coverage density report was the open-source
software Walter1, which is a management platform for music societies and has been
developed by a group of students at the University of Technology in Vienna in the course
of several classes. The reason why exactly this project was chosen is that the author of
this thesis was one of those students and, therefore, also highly involved in the whole
development process. Therefore, designing reasonable scenarios for the evaluation was
easily possible with the available expert knowledge the author had. The software was
developed for a real customer and is of reasonable size, which makes it a realistic and
comprehensive base project for the evaluation (approx. 55k LOC and 950 test cases in the
backend; overall effort of approx. 9 person months). Furthermore, the used technology
stack corresponds to the current state of the art, which also makes it comparable to other
small to medium sized Java projects.

1https://gitlab.com/fonkwill/walter

74

7.3. Procedure

The main features of Walter are as follows:

• person and membership management

• inventory management

• cashbook management

• appointment management

• serial letter generation

• document management (with cloud platform integration)

The software is based on the following technologies:

• Java 8 and Spring Boot (backend)

• Maven as the primary build tool for the backend

• AngularJS and Twitter Bootstrap (frontend)

• PostgreSQL (database)

The architecture is a modern web architecture, meaning that the backend acts as a pure
REST server, which provides business logic for the business processes and states the main
interface for the browser application. The latter is realized as a Single Page Application
(SPA) which consumes/sends data from/to the REST endpoints.

Note that for the evaluation only the backend was taken into account. In particular, the
coverage density report was generated for the REST server along with its corresponding
test suite.

7.3 Procedure
The evaluation sessions were conducted in six separate online video sessions (one session
per participant). As it was necessary to investigate on remarks and trains of thought
of the participants while acting out the scenarios, the sessions were both audio- and
screen-recorded. In addition, the whole process was supported by an online questionnaire
created with an online tool beforehand (see Section A.2).

At the beginning of each session, the metric code coverage density on the different metric
levels (LOC, method, class, package and higher levels) was explained by reasonable
examples (Figure A.16). Afterwards, an overview of the main features and the usage
of the generated HTML report was given. The focus of the latter was, on the one
hand, on drawing lines between the defined metric and the coverage density report (i.e.,

75

7. Evaluation

showing how the metric gets visualized in different views) and, on the other hand, on
instructing the participants on how to navigate through the report and use it in general.
Subsequently, the scenarios were acted out, whereby all the questions defined in Section
7.5 were handled with the online questionnaire (Figures A.17, A.18, A.19 and A.20). In
the end, there was a final discussion about general remarks and further special realizations
that the participants gained from the visualizations of the report.

Note that in each session, the conductor shared his screen to the participant and allowed
remote control on his own computer. The report, as well as the online questionnaire,
were therefore both running and accessed on the conductor’s device and did not have to
be forwarded to the participants. This approach supported the process in an optimal way
as the actions within the report had to be taken by the conductor (i.e., the introduction
of the prototypes functionalities) as well as the participants (i.e., the usage of the report
during the scenarios).

The overall procedure, the presented scenarios and the questionnaire were furthermore
evaluated through a preceding pilot session. The intention was to check, if on the one
hand, the scenarios are reasonable and well-defined and, on the other hand, if the given
introductions concerning the metric definition and the report usage were adequate for
acting them out. Nevertheless, the target was also to verify the accompanying questions,
i.e., to check whether they were misleading or lacking important information in order to
get a consistent set of answers. Based on this pilot session, the overall procedure, the
scenarios and questions were adopted respectively.

7.4 Participants

The participants were six experts from the domain of software engineering. Four of them
were between 25 and 34 and the other two between 35 and 50 years old. All interviewees
had experience in the industrial area and half of them was also working in the scientific
area. The respective research fields of those three participants were Software Engineering,
Machine Learning and Agile Distributed Software Development. Five participants had
five to ten years of experience in the industrial area, whereas one participant had eleven
to 20 years of experience. Concerning the participants with experience in the scientific
area, one had less than five years and two between five and ten years of experience.

7.5 Scenarios

In the following, the designed scenarios are explained in detail. Within each scenario, the
participants were asked a set of quantitative and qualitative questions. As the outcomes
of the evaluation of those questions should in the end support the answering of the
defined research questions, the scenario questions were additionally categorized by their
corresponding research question.

76

7.5. Scenarios

7.5.1 Frame Story
In order to achieve a suitable factor of realism during the conduction of the evaluation, the
scenarios were designed around an accompanying frame story. The participants should
imagine that they are software engineers and supporters of the music society Stadtkapelle
Hainburg/Musikverein Wolfsthal and contribute on their management application Walter.
They were told that during the last team meeting with their colleagues, it was discussed
that the software quality in the backend should be analyzed and increased concerning
maintainability, code quality and test suite quality. For supporting this intention, they
were provided a prototype of a novel coverage analysis tool which generates a static
HTML report and visualizes the metric Code Coverage Density on different abstraction
layers. For the current version of the backend, the respective report has already been
generated with this tool and should be used for further analysis (i.e., for acting out the
scenarios).

7.5.2 Scenario 1
In the first scenario, the participants should get a first overview of the general coverage
of the software, as well as the distribution of the test cases. For this, they should use the
sunburst diagram with the setting Show all Levels. It was also pointed out that they
may change the configurations (i.e., scaling and coloring factor) individually such that
they get an optimal overview of the project and the coverage. The questions asked were
as follows (the corresponding research questions are stated in square brackets):

Q1: Are there any packages or classes, that stand out most, e.g., because of an
unbalanced test coverage or their coverage density values? [RQ2]

Q2: How evenly are the test cases distributed within the package at.simianarmy.service
in your opinion (on a 5-point scale, where 1 = not evenly distributed and 5 = evenly
distributed)? [RQ2]

Q3: How well do the data and the visualizations support you for getting a first overview
over the test case distribution (on a 5-point scale, where 1 = very poor support and 5 =
very good support)? [RQ2]

7.5.3 Scenario 2
In the second scenario, the target was to weight up the risk of a refactoring of a specific
class within the project (at.simianarmy.letter.SerialLetterWorker). The participants were
first given the necessary information about the requirements that the implementation of
the class covers. They were told that the code is highly complex and not maintainable
in the current state. Therefore, it should undergo a refactoring in order to increase the
maintainability, whereby concrete refactoring steps have not been defined yet. It was
clarified that the focus is not on stating how to refactor the class but on assessing the
potential risk of a refactoring. Furthermore, the conductor presented and re-explained
the visualizations given on package level (i.e., the sunburst diagram for the package

77

7. Evaluation

at.simianarmy.letter) and on code level (i.e., the code view for the respective class). The
questions asked were as follows:

Q4: What is your estimate concerning the code coverage of this class (on a 5-point
scale, where 1 = very bad coverage and 5 = very good coverage)? [RQ2]

Q5: How evenly are the test cases distributed across the class in your opinion (on a
5-point scale, where 1 = not evenly distributed and 5 = evenly distributed)? [RQ2]

Q6: How well do the data and the visualizations support you concerning the assessment
of the risk of a refactoring (on a 5-point scale, where 1 = very poor support and 5 = very
good support)? [RQ1]

Q7: Based on the results shown in the report: Is it necessary to write further test
cases before a refactoring can be performed in your opinion? If yes, please give concrete
proposals where code coverage should be increased (i.e., which lines of code or methods
should be assessed by further tests). Please do not only consider lines which are covered
or uncovered, but also regard the test case distribution. [RQ2]

Concerning question Q7, the participants were furthermore asked to reflect the coverage
of the method createPageEventHandler (Figure 7.1). The intention was to let them
investigate on the significantly differing coverage density measured within this method.

Figure 7.1: Method “createPageEventHandler” in class view for “SerialLetterWorker”

78

7.5. Scenarios

7.5.4 Scenario 3
In scenario 3, the target was to give an assessment concerning the coverage of a specific
package at.simianarmy.service.specification (Figure 7.2) through unit, integration and
system tests. As a first step, the participants got a brief explanation about what the
implemented classes within this package are intended for.

Figure 7.2: Sunburst view for package “at.simianarmy.specification”

In fact, the developers of the project Walter implemented complex data queries within
the system with Springs Data Repositories2 and Specifications3. The target of the latter
is to capsule query-specific code into specification classes which are therefore separated
from calls to Springs data repositories. The specification classes follow the builder pattern
and therefore, act like query builders. The clear advantage of this feature is that such
classes can be tested easier than plain queries (e.g., JPQL) within repository classes,
as they follow an object-oriented implementation style. The conductor also introduced
this feature to the participants by showing and explaining one specific specification class
within the example project (Figure 7.3).

2https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
3https://spring.io/blog/2011/04/26/advanced-spring-data-jpa-specifications-and-querydsl/

79

7. Evaluation

Figure 7.3: Example specification class (code snippet)

The participants were furthermore told that the package under review in this scenario
contains exclusively such specification classes. In addition, the conductor clarified that
one main target is that as much coverage as possible for those classes should be received
through unit tests and that coverage through integration and system tests is secondary.
This means in more detail that a specification class should be considered as covered in an
appropriate way if it is effectively covered by unit tests. In order to be able to distinguish
between unit, integration and system tests, the participants got the information that
unit tests always reside in the same package as the unit under test (i.e., within the
package at.simianarmy.service.specification), whereas integration or system tests may
reside in other packages (e.g., in packages that contain service classes). First of all, the
participants were asked the following two questions:

Q8: What is your estimate concerning the code coverage of this package (on a 5-point
scale, where 1 = very bad coverage and 5 = very good coverage)? Please do not only
consider the coverage on statement level, but also regard different test levels (unit,
integration and system tests). [RQ2]

80

7.5. Scenarios

Q9: How evenly are the test cases distributed across the package in your opinion (on a
5-point scale, where 1 = not evenly distributed and 5 = evenly distributed)? [RQ2]

As a second step, specific analysis steps were proposed by the conductor. The participants
attention was first drawn to the detail views for the following classes:

• CompositionSpecification (Figure 7.4a)

• ClothingSpecification (Figure 7.4b)

• InstrumentSpecification (Figure 7.4c)

Afterwards, the conductor pointed out that CompositionSpecification was covered through
unit test cases within the package at.simianarmy.service.specification and the test
class CompositionSpecificationTest. The other two classes are not covered through
concrete unit tests. Hence, they are covered through integration tests (i.e., tests imple-
mented in the package at.simianarmy.service and at.simianarmy.repository) or indirectly
through tests of the REST endpoint (i.e., through tests implemented in the package
at.simianarmy.web.rest.InstrumentResourceIntTest).

Based on this analysis, the conductor proposed two conclusions to the participants and
asked them whether they agreed with the statements made.

Conclusion A was that the classes ClothingSpecification and InstrumentSpecification do
not have a sufficient test coverage, as the implementation just “gets touched” indirectly
through integration tests (in contrast to CompositionSpecification).

Conclusion B was that the classes ClothingSpecification and InstrumentSpecification
should be covered by separate and independent unit tests.

The question asked per conclusion was as follows:

Q10/Q11: How far do you agree with this conclusion (on a 5-point scale, where 1 =
no agreement and 5 = high agreement)? [RQ2]

In the end of scenario 3, the participants were asked the following two concluding
questions:

Q12: How well do the data and the visualizations support you concerning the discovery
of insufficiently covered code parts (i.e., concerning unit, integration and system tests;
on a 5-point scale, where 1 = very poor support and 5 = very good support)? [RQ2]

Q13: How well do the data and the visualizations support you concerning the question
which types of test cases (unit, integration or system tests) should be added (on a 5-point
scale, where 1 = very poor support and 5 = very good support)? [RQ2]

81

7. Evaluation

(a) Details for class “CompositionSpecification”

(b) Details for class “ClothingSpecification”

(c) Details for class “InstrumentSpecification”

Figure 7.4: Details for various specification classes

82

7.5. Scenarios

7.5.5 Scenario 4
The last scenario focused on finding and eliminating test case redundancies with the
provided report. For this purpose, the class VerificationLinkQualifier within the package
at.simianarmy.service.mapper.qualifier was considered. It contains a single method veri-
ficationLinkForPersonId which generates a verification link for a given user identification
with respect to further system configuration (e.g., the servers base URL or whether SSL
should be used or not). The reports class view for this class is shown in Figure 7.5.

Figure 7.5: Class view for the class “VerificationLinkQualifier”

As in scenario 3, the conductor led the participants through different analysis steps and
proposed a conclusion for which the participants should state whether they agree or not.
Following to the detail view in the sunburst diagram, the class has a code coverage of
100% and is covered by exactly four test cases (Figure 7.6):

83

7. Evaluation

• testVerificationLinkForPersonId

• testVerificationLinkForPersonIdWithSSL

• testVerificationLinkForPersonIdWithTenant

• testVerificationLinkForPersonIdWithTenantAndSSL

Figure 7.6: Detail view for the class “VerificationLinkQualifier”

The conductor emphasized that the naming of the fourth test leads to the premonition
that it might be a duplicate of the test cases testVerificationLinkForPersonWithSSL
and testVerificationLinkForPersonWithTenant. Therefore, the participants attention was
drawn to the code view in Figure 7.5 in order to do further investigation on how those
tests cover the code exactly. The conductor showed that by adding and hiding test cases
within this code view (i.e., by choosing the test cases to be highlighted as described in
Section 6.3.2) it gets visible that 100% statement coverage is already reached through
the first three test cases. Therefore, the following conclusion was proposed:

Conclusion C: The test case verificationLinkForPersonWithTenantAndSSL should be
further analyzed concerning test redundancy, as the LOCs of this class are already covered
by other tests that cover this class.

Note that when presenting this conclusion, the conductor emphasized in particular that
the conclusion does not state that the fourth test case is indeed redundant. It rather
expresses that interest on the findings has been awakened and further analysis has to be
conducted. The accompanying question was as follows:

Q14: How far do you agree with this conclusion (on a 5-point scale, where 1 = no
agreement and 5 = high agreement)? [RQ3]

Finally, the following concluding question was asked:

Q15: How well do the data and the visualizations support you concerning the search
and discovery of test redundancies and duplicates (on a 5-point scale, where 1 = very
poor support and 5 = very good support)? [RQ3]

84

7.6. Results

7.6 Results
In the following, the outcomes of the evaluation are analyzed. The data extracted from
the conduction of the evaluation phase can be subdivided into the following groups:

Group A: Pure qualitative data, which was extracted from the open questions Q1,
Q7, remarks and trains of thoughts that were recorded while acting out the
scenarios as well as the final discussion.

Group B: Quantitative data concerning the assessment of facts by the participants,
such as giving an estimate on the code coverage of a package or class (questions
Q2, Q4, Q5, Q8 and Q9).

Group C: Quantitative data concerning the agreement on conclusions proposed by
the conductor (questions Q11, Q12 and Q14).

Group D: Quantitative data concerning the degree of given support of the visual-
izations and the data given by the coverage density report (questions Q3,
Q6, Q12, Q13 and Q15, henceforth referred to as support questions)

The reason why such a distinction was made is that the data must be interpreted in
different ways with respect to the intention of the underlying question it was gathered
through.

The qualitative data established for group A was mainly emphasizing and justifying
answers and ratings that have been given for questions in all other groups. For the data
in group B, the main point of interest was on comparing the estimations given by the
participants in order to interpret the similarities of those and imply findings on whether
there is a common sense about the results the metric calculation gives and the report
visualizes. The same holds for the data in group C. In contrast, for group D it was
meaningful to interpret the aggregated data (i.e., the mean ratings) by establishing a
ranking of the support level with regards to the different use cases addressed by the asked
support questions.

The upcoming sections 7.6.1 - 7.6.4 firstly analyze the gathered data in high detail per
scenario. A ranking of the support questions is given in Section 7.6.5. The Sections 7.6.6
and 7.6.7 summarize the remaining qualitative data from group A (i.e., improvement
suggestions and further remarks).

85

7. Evaluation

7.6.1 Scenario 1

Concerning question Q1, at.simianarmy.service, at.simianarmy.dto and at.simianarmy.rest
were identified most frequently as noticeable packages. It also emerged that there is a
common sense that those three packages should be analyzed further. The participants
mainly mentioned packages, which stood out because the classes within the packages
had highly alternating coloring tones. All of them captured very well that there are
significant differences concerning the test case distribution.

Figure 7.7 shows the answers given by the participants for question Q2. The given ratings
result in a mean rating of 2.33, whereby it needs to be held that interviewees rather
estimated a moderate to bad test case distribution. As there were no participants rating
the distribution with a higher value than 3 it can be deducted that they shared this
perception.

Figure 7.7: Answers for question Q2 in scenario 1

Concerning the question on how well the data and the visualizations support the partic-
ipants for getting a first overview over the test case distribution (Q3), the calculated
mean rating was 4. Nevertheless, the concrete ratings for this question reached widely
from 2 to 5 (Figure 7.8), whereby the lower rankings were justified by the following
recorded incidents and trains of thoughts of the participants.

Figure 7.8: Answers for question Q3 in scenario 1

86

7.6. Results

Some participants had problems with finding an optimal setting for the coloring factor
and found sections that seemed equal because of a visually equal color tone but had
significantly different coverage density values. Therefore, it appeared that, e.g., sections
with a dark color tone should not be considered as equal in the first place. Moreover,
one participant explicitly stated that visualizing this metric with one color and different
tones may be problematic for two reasons. First, it simply decreases the accessibility for
users who suffer from color blindness. Second, it is definitely harder to spot differences
in the metric values if color gradations are preferred over using distinct colors.

Two participants especially proclaimed some of their thoughts concerning the test set that
is taken into account per default when navigating through the sunburst diagram. One
of them stated that the coverage density on package level is hard to assess because the
value taken into account for the color tone is accumulated and based on the underlying
classes, methods and LOCs. In the interviewee’s opinion, it is inevitable to additionally
investigate the class and code views to get a more precise insight. The other one claimed
that considering the coverage density on project level may be suboptimal because there
are certainly many small classes, which are naturally covered by less tests than bigger
classes. Furthermore, the respective participant stated that navigating through the
diagram in mode the focusable makes more sense as the reference test set is always the
sum of tests that cover the currently focused (innermost) section of the diagram and not
the whole test suite.

In addition, some participants also tried to estimate the general code coverage. One
interviewee tried to increase the coloring factor as high as possible, searched for sections
that were still not colored, and concluded that those may not be covered at all. It
came out that spotting uncovered parts of a program may be easier in classical coverage
tools. Another participant took this thought even further and claimed that the sunburst
diagram visualization is mainly helpful for judging the test case distribution, but not for
estimating the general code coverage.

7.6.2 Scenario 2

In scenario 2, the participants showed a good ability to recognize uncovered LOCs with
the support of the report’s class view. The Figures 7.9 and 7.10 depict the given answers
to the questions Q4 and Q5.

The participants rated the code coverage of the respective class with values between 2
and 4, which results in the fact that from the participant’s view the coverage is neither
very bad (1) nor very good (5). The mean value is exactly 3 and there were no remarkable
outliers. Concerning the test case distribution, most of the participants rated the test
cases as not evenly distributed (1). Two participants did not share this drastic opinion
and rated the distribution with 2 and 3. Nevertheless, the calculated mean value of 1.5
and the fact that there were also no significant outliers show that the estimations are
rather towards a non-even test case distribution.

87

7. Evaluation

Figure 7.9: Answers for question Q4 in scenario 2

Figure 7.10: Answers for question Q5 in scenario 2

Concerning question Q7, the participants stated that they would write further tests at
least for uncovered exception handling and uncovered methods in general. Furthermore,
it stood out that there are many LOCs that are covered by 13 test cases. The interviewees
remarked that they would conduct further analysis on what those test cases are intended
for, as they assumed that this either means that there is a high amount of black box tests
or that those 13 test cases are testing the same specifications. The review of the method
createPageEventHandler also awoke the participants’ interests. They wondered especially
why there was a sudden decrease of test cases from 13 to four on line 312 (Figure 7.1)
and said that they would definitely do further analysis in this area.

Concerning the degree of support that the data and visualization gives, the evaluation
of the ratings for question Q6 showed that the participants found it very helpful for
assessing the risk of a refactoring (Figure 7.11, mean value = 4.5). One participant
furthermore emphasized that, in the context of a refactoring, it is very useful to know how
the test cases are distributed across the code and especially which test cases cover which
LOC. Nevertheless, it seems that the concentration is more towards the test case counter
than on the color tone for each LOC. In addition, one participant pointed out that giving
a highly qualified estimate on the risk of a refactoring for the class under review is hard
as it is unknown (not visualized) whether a specific test is a unit, integration or system
test.

88

7.6. Results

Figure 7.11: Answers for question Q6 in scenario 2

7.6.3 Scenario 3
Similar to scenario 1, the participants tried to give an estimation about the code coverage
and test case distribution of the package at.simianarmy.service.specification by relying
on the sunburst visualization’s color highlighting of the different sections. In order to
characterize the test levels (unit, integration and system tests), they reviewed the listed
test cases in the detail views for each section (class) within the diagram.

The Figures 7.12 and 7.13 show the given answers for the questions Q8 and Q9. As in
the latter scenarios, the participants had similar perceptions concerning the coverage and
test case distribution within the analyzed package. The code coverage was rated with a
mean value of 2.17 and the distribution with a mean value of 1.67, whereas there were
no remarkable outliers, e.g., ratings with the values 4 or 5. While the participants were
estimating the code coverage and test case distribution, most of them remarked that
they are missing a concrete visualization for distinguishing between unit, integration and
system tests. Even though the conductor gave the needed domain knowledge in order to
fill this gap (i.e., by clarifying that test levels can be characterized by the tests naming
convention), the interviewees still had problems to classify the test cases and therefore to
give highly valuable estimates for questions Q8 and Q9.

Figure 7.12: Answers for question Q8 in scenario 3

89

7. Evaluation

Figure 7.13: Answers for question Q9 in scenario 3

Concerning the analysis steps proposed by the conductor, the participants mostly agreed
with the conclusions stated (Figures 7.14 and 7.15). Nevertheless, for both conclusions A
and B, there was one participant who did not consent at all due to the lack of test level
visualization. Given the fact that a concrete estimation and analysis was only possible
with the domain knowledge deliberately brought in by the conductor, the interviewee felt
that those conclusions could not have been drawn on one’s own and therefore disagreed.
Concerning conclusion B, there was one participant who rated the degree of agreement
with 4, stating that further tests should only be established if it is clear what the code is
intended for and additional unit tests make sense.

Figure 7.14: Agreements on conclusion A in scenario 3

Figure 7.15: Agreements on conclusion B in scenario 3

90

7.6. Results

The Figures 7.16 and 7.17 depict the given ratings for the questions Q12 and Q13, which
were focused on the support concerning the discovery of insufficiently tested code parts
and the question, which types of tests should be added. The ratings for both topics spread
from 1 to 4 (1 = very poor support, 5 = very good support), whereas all the participants
argued their ratings with the circumstance that the test levels are not visualized. The
interviewees therefore mostly stated that support is either poor or at least impaired by
this missing feature. One participant proclaimed that apart from the missing test level
classification, also a filtering mechanism was missing in order to automatically view only
tests of a certain type in the sunburst and detail view.

Figure 7.16: Answers for question Q12 in scenario 3

Figure 7.17: Answers for question Q13 in scenario 3

7.6.4 Scenario 4
Concerning the presented analysis steps and the conclusion provided by the conductor,
the participants agreed that the suspected test case could be a redundancy but hence
should be further analyzed before it is deleted. Figure 7.18 shows the concrete agreement
ratings for conclusion C in this scenario.

Figure 7.19 furthermore depicts the given ratings for the support level concerning the
search and discovery of test redundancies and duplicates. Though the participants agreed
with the presented conclusion C, the ratings concerning the degree of support in this

91

7. Evaluation

context range widely from 2 to 5 (1 = very poor support and 5 = very good support). The
ratings of 2 and 3 were generally justified with the statement that the given showcase
was rather obvious. The interviewees stated that the presented report is lacking some
feature for searching such redundancies, which could be achieved by, e.g., analyzing the
control flows of the test cases. Nevertheless, all of them clarified that if there is a concrete
redundancy suspect, then the report’s visualization features definitely support further
analysis steps (as it is the case in this concrete scenario).

Figure 7.18: Agreements on conclusion C in scenario 4

Figure 7.19: Answers for question Q15 in scenario 4

7.6.5 Ranking of Support Questions
Figure 7.20 shows the mean values for each support question in a bar chart (1 = very
poor support, 5 = very good support).

The analysis shows that the participants found the report and the data presented most
useful for the assessment of the risk of a refactoring (mean rating of 4.5), followed by
getting a general overview over the test case distribution (mean rating of 4.0). The use
case finding test redundancies has a mean rating of 3.17, which can be explained by
the fact that the visualizations and data used in scenario 4 rather give good support
in analyzing redundancy suspects and not in searching for redundant test cases (see
also Section 7.6.4). Furthermore, the participants seemed to find the visualizations and
data less helpful for answering the question which types of tests should be added and for

92

7.6. Results

Figure 7.20: Rating per support question (1 = very poor support, 5 = very good support)

identifying insufficiently tested code parts (mean ratings of 2.67 and 2.50). As already
described in Section 7.6.3, those lower rankings can be explained by the circumstance
that the report does not visualize the test levels yet and therefore distinguishing between
unit, integration and system tests is not possible without any domain knowledge in the
analyzed software project.

7.6.6 Improvement Suggestions

In this section, the improvement suggestions brought in by the participants for the
calculations and visualizations in the report are summarized and discussed.

Sunburst Diagram

Apart from the already discussed qualitative feedback in the previous sections, the
participants gave the following inputs for improving the sunburst diagram.

The coverage density of a class in the sunburst diagram could be visualized in more
detail considering the underlying coverage density values on LOC level. The idea is
to use a color gradient instead of a single-color tone for each class section in order to
visualize how the tests distribute over the LOCs within this class. An example of such a
possible enhancement is given in Figure 7.21. By following this approach, the user could
extract even more information out of the diagram without investigating each section’s
class diagram.

Establishing categories and subdivisions based on the section’s coverage density values
(e.g., < 10%, between 10% and 30%, etc.) would furthermore provide additional visual-
ization possibilities in the sunburst diagram. Based on the categorization, the sections
could, on the one hand, be labelled by their categories. On the other hand, the sections
could be colored with different colors based on their categories instead of a single base
color and color tones for the whole diagram.

93

7. Evaluation

Figure 7.21: Improvement Suggestion: Color Gradients for Class Sections

Additionally, some participants called for features like filtering and excluding packages
and classes. Furthermore, one participant stated that it would be useful if the concrete
coverage density value would be visible in a tool tip per section (which gets visible, e.g.,
on mouse-over). Another participant stated that a legend concerning the color tones
would be helpful (e.g., which values correspond to the darkest and lightest color tones).

Class View

For the class view, the participants proposed that stating the sum of tests that cover
the currently viewed class would be a good enhancement. Furthermore, one participant
mentioned that it would be very helpful if there was the possibility to invert the highlighted
LOCs, such that the uncovered lines are marked instead of the covered ones. Another
participant remarked that an investigation on the standard deviation of the ClassCovDens
for the respective class would be very helpful in order to know whether the calculated
mean value is reliable, or the underlying values scatter significantly. The latter statement
is very interesting, as in the requirement analysis phase the visualization of this dispersion
measure was originally proposed. Hence, during the initial expert interviews it came out
that most experts did not estimate this measure as helpful (see Section 5.2). During
the evaluation conducted here, it surprisingly emerged that in the context of real world
scenarios, there may be a certain degree of additional support that dispersion measures
may bring.

Test Level Visualization

As already stated in the latter sections, all the participants called for a visualization
that states whether a depicted test case is a unit, integration or system test. Such an
automatic classification was suggested for every report view that shows a list of test cases.
Nevertheless, the participants also remarked that such an automatic classification is
difficult due to several reasons. On the one hand, the developers of the project to analyze
may not have followed any guidelines while implementing the tests, which means that

94

7.6. Results

test levels could maybe not be distinguished at all. On the other hand, as for the example
project, it is usually the case that unit, integration or system tests are implemented in
separate packages or at least follow some predefined naming conventions. Therefore, the
participants remarked that at least a classification per configuration through the user
should be possible (e.g., by configuring the packages, naming conventions or prefixes that
classify the different test levels).

On this basis, several participants also suggested that a mechanism for filtering the test
levels within all presented report views would be very useful. Especially in scenario 3, it
came out that a high coverage density (and a dark color tone) suggests that there is a
high occurrence of tests and that everything seems fine. Nevertheless, such a high density
could also be provided through a high coverage through integration and system tests. In
the context of this scenario, it would have been helpful to visualize the data only for unit
tests in order to immediately recognize where such tests are missing.

Finding Test Redundancies

In order to enhance the prototype with a possible feature for also finding test redundancies
(and not only analyzing them), the interviewees suggested that the control flow of the tests
could be recorded and taken into account. This basis would then open new possibilities,
such as establishing intersection diagrams for execution paths and rankings of test
cases based on the similarities of their respective paths. Furthermore, the discussed
enhancement concerning test level filtering would also be useful in this context as, e.g.,
the overlap of tests of a specific test level could be analyzed independently.

7.6.7 General Remarks

In the following, interesting additional general remarks and trains of thoughts that have
not already been stated in the latter sections are presented.

Experience with the Metric

Most of the participants emphasized that though they agree that the metric code coverage
density would in fact establish a useful enhancement of classic code coverage, they simply
have not enough experience with it. In detail, this means that many interviewees were
not able to distinguish between “good”, “bad” and moreover “desirable” metric values
(which already had turned out earlier during the requirement analysis phase and the
corresponding expert interviews, see Section 5.2). For other common and long-living
metrics, there are, on the one hand, usage guidelines and, on the other hand, so called
“good practice values” available that provide support in deciding whether certain quality
gates are fulfilled or not. For code coverage density, this is simply not the case as the
research on this topic is very basic and fundamental. Hence, this established finding
builds a good starting point for further research in the future.

95

7. Evaluation

Dispersion Measures

As mentioned in Section 7.6.6, one participant especially proclaimed that analyzing
dispersion values for the calculated metric would be interesting. In detail, the interviewee
stated, that it would be interesting to establish a visualization of the LineCovDens for
the LOCs of a class together with the minimum, maximum and mean coverage density
values in order to conduct more detailed investigations on the distribution of the test
cases. On this basis, it would be possible to recognize, on the one hand, whether the
values tend towards the minimum or maximum and, on the other hand, how the values
spread around the mean value.

Further Thoughts

In addition to the findings described so far, there were also recognitions that go beyond
improvement suggestions, opinions and trains of thought. Some participants also looked
at the big picture and thought about what would additionally be possible with the metric
and how further research could proceed on this topic.

Referring to the preceding section about the analysis of dispersion measures, the respective
participant questioned if the probability of test redundancies is higher when the mean
value is close to the maximum value. In other words, the participant thought about
whether there is a correlation between the existence of test redundancies and the mean,
maximum, as well as the dispersion measures. Another participant stated that from the
visualizations it is clearly visible that a high coverage does not mean a high coverage
density, which lead to the question whether there is any correlation between those two
metrics.

Both ideas should be kept in mind and could form a basis for future work on this topic.

7.7 Discussion
In this section, the results are interpreted in regards to the defined research questions
defined in Chapter 1.2. For the sake of traceability, those questions are revised in the
following.

RQ 1: How does code coverage density support software engineers in deciding how risky
a code change or refactoring is?

RQ 2: How does code coverage density support software engineers in assessing the code
coverage and coverage distribution of a project?

RQ 3: How does code coverage density support software engineers in identifying test
redundancy and overlaps?

Before answers for those questions are given, some general interpretations of the results
are given beforehand.

96

7.7. Discussion

7.7.1 Similarities of Assessments and Agreements

Summarizing, the answers given by the participants on questions that dealt with the
assessment of facts, such as estimating the code coverage or test distribution on given
artifacts, were mostly similar in the big picture. Also, the trains of thoughts and
justifications, that lead to those ratings, had significant intersections. Those findings
lead to the conclusion, that the metric and the presented data, as well as the established
visualizations built upon those, lead to highly similar perceptions, considerations and
conclusions along all the participants of the evaluation. Moreover, the participants mostly
agreed with the analysis steps and conclusions proposed during the scenarios 3 and 4.
Hence, there was one participant who absolutely disagreed with the analysis steps and
conclusions drawn in scenario 3. Hence, this single outlier can be neglected as those
circumstances were clearly traced back to the missing visualization of the test levels,
which was nevertheless also remarked by all the other participants, which despite agreed
on the conclusions. Therefore, it can be concluded that there was a common sense about
the metric code coverage density itself, as well as the meaning of the generated data and
visualizations.

7.7.2 Support Questions

An aggregation of the support ratings has already been depicted in Section 7.6.5 and
Figure 7.20. This bar chart and ranking can be further aggregated in order to match
the initial research questions by considering that the questions Q3, Q12 and Q13 dealt
with the same research question RQ 2. Therefore, for the final interpretation, the mean
value of the mean ratings for those were calculated and a summarizing support rating
per research question was established as shown in the bar chart in Figure 7.22.

Figure 7.22: Rating per research question (1 = very poor support, 5 = very good support)

97

7. Evaluation

Therefore, the support levels can be ranked as follows:

1. Support for assessment of the risk of a refactoring (mean value = 4.5)

2. Support for assessment of the test coverage and distribution (mean value = 3.44)

3. Support for finding test redundancies (mean value = 2.50)

7.7.3 Answering the Research Questions

Finally, the following conclusions can be drawn concerning the initial research questions.

RQ 1: The metric code coverage density supports the process of deciding how risky a code
change is very well, as it got the highest mean support level rating of 4.5. Furthermore,
the participants stated that the knowledge gained about the test distribution of a class is
very helpful in the context of a refactoring. In addition, it emerged that all participants
shared similar perceptions about the class presented in scenario 2, which further affirms
this interpretation.

RQ 2: The evaluation showed that the metric code coverage density has a significant
potential for supporting software engineers in assessing code coverage and coverage
distribution. The support rating on this topic yielded a mean value of 3.44, which is in
the mid-range. Hence, participants argued that the proposed visualizations of the metric
need to be enhanced in order to unleash more potential in this area. Furthermore, the
metric would need further research concerning “good practice” and “desirable” values.

RQ 3: The evaluation showed that the metric itself rather supports the analysis of
already suspected test duplicates, but not finding and identifying those. The support
rating on this topic therefore yielded a mean value of 2.50, which is also in the mid-range.
Hence, the evaluation yielded an interesting consideration concerning the statistical values
computed by the metric. In detail, further research could deal with the question whether
there is a correlation between certain constellations of those values and the possibility of
test redundancies, which could give further findings on the level of support the metric
provides in actually finding and identifying those.

7.7.4 Threats to Validity

Number of Participants

The evaluation of this thesis only used six participants and had both a quantitative and
qualitative character. This sample may be too small for generalizing the quantitative
results of the evaluation, as this would in general require a larger number of randomly
selected participants [50].

98

7.7. Discussion

Participant Selection

The evaluations participants were mostly members of Industrial Software (INSO), which
is a scientific research institution of the University of Technology in Vienna. This
could possibly present a selection bias and future research with adopted versions of the
established prototype should extend the selection of participants to the industry sector
and other organizations.

Example Project

The evaluation was conducted with a coverage density report generated for a specific
software project, which therefore could limit the representative character of the results.
When considering further evaluation and research with the established prototype, the
report should be generated for other and more diverse projects, e.g., for popular open-
source projects.

Scenario Design

As described in Section 7.1, it was necessary for certain scenarios to give the participants
a reasonable amount of domain knowledge in order to enable them to give suitable
assessments. Furthermore, scenario 3 and 4 were constructed in a way such that the
conductor led the participants through analysis steps and proposed conclusions, for which
the level of agreement was queried. This was necessary, as from the current state of
the prototype, it would not have been possible to derive those without the necessary
knowledge and proposals. For future work, especially after the proposed enhancements
of the prototype, scenarios could be more generalized and designed in a less striking
fashion.

99

CHAPTER 8
Conclusion

This master’s thesis showed that though there exists a variety of metrics and tools that
support software engineers in the decision-making process during activities in the field
of software quality management and assurance, there are still unsatisfied information
needs in this context. Therefore, the thesis introduced the novel metric code coverage
density together with a visualization prototype, that aims at filling those gaps. In the
following, the concrete findings and outcomes of this thesis are summarized. Furthermore,
an outlook on possible feature work is given.

During the initial scientific research conducted in the first phase, important findings of
scientific surveys and investigations in the context of hardly satisfiable information needs
have been analyzed and summarized. Furthermore, scientific approaches and tools that
try to satisfy them have been discussed. On this basis, currently available coverage tools
have been analyzed with respect to the question which of those theoretical findings and
concepts have been transferred into tools that are used in practice. The outcome was that
from the perspective of the current state of the art (both from a theoretical and practical
view), it is still hard to assess the risk of refactorings. Furthermore, currently available
coverage tools do not put enough emphasis on imparting a suitable understanding on the
relation between source code and test code. This impedes the support of such tools in the
area of quality assessment of test suites and identification of test redundancies.

Based on those outcomes, it was concluded that further enhancements of classical code
coverage analysis and visualizations are needed. For this purpose, the novel metric code
coverage density which describes how test cases are distributed over specific parts of a
software, has been introduced together with feature and visualization proposals that aim
at fulfilling the unsatisfied information needs gathered in the first phase. The metric, as
well as the feature proposals, were evaluated during expert interviews. The outcomes of
those interviews affirmed the relevance of the gathered information needs and confirmed
that the metric was well defined and understandable. Furthermore, a set of requirements

101

8. Conclusion

for a potential visualization prototype that aims at satisfying the found information
needs was established.

Afterwards, the respective prototype which firstly gathers code coverage data from output
artifacts generated by OpenClover and rearranges it for the purpose of computing the
novel metric code coverage density and establishing static HTML reports which satisfy
the requirements defined earlier, was implemented.

As a last step, the ideas and concepts introduced within this thesis were evaluated. This
was achieved by conducting a scenario-based expert evaluation with the aid of a coverage
density report generated beforehand with the implemented prototype. The results showed
that such an extension of classical code coverage provides significantly better support
than existing code coverage tools when it comes to assessing the risk of refactorings.
Moreover, the established metric and the visualizations built upon it state a significant
potential for imparting a clearer understanding on the relation between source code and
test code, which aids in assessing a test suite’s quality. Hence, it has been revealed that in
the context of test redundancy analysis, those concepts rather support in further analysis
of potential redundancy candidates, but not in detecting and locating those.

8.1 Future Work
Last but not least, the evaluation conducted also revealed that the prototype needs
some further enhancements in order to unleash more potential. In addition, interesting
assumptions and questions aroused which would need further scientific research in the
respective context. Potential future work could therefore proceed with the topic of this
thesis as follows.

8.1.1 Enhancements of the Prototype
As found during the evaluation, the prototype would definitely need further enhancements
with respect to the improvement suggestions summarized in Chapter 7.6.6. A special
focus should be kept on a clearer visualization of the test levels (unit, integration or
system test) in order to better support the distinction between those. Moreover and
though statistical values such as the standard deviation were rated with rather low
importance during the expert interviews in the requirements analysis phase, analyzing
dispersion values still seems to be interesting.

8.1.2 Reference Values
Moreover, the evaluation showed that concerning the metric code coverage density,
participants were not able to distinguish between “good”, “bad” and moreover “desirable”
metric values. The reason for that is, that there is simply not enough experience with
the metric and especially so called “good practice values” are definitely missing as the
research conducted in this thesis is very basic and fundamental. Future work could

102

8.1. Future Work

therefore focus on investigating on desirable reference values for the metric in order to
further improve its usability.

8.1.3 Test Redundancy Detection
As found during the evaluation phase of this thesis, the current prototype rather gives
support for analyzing test redundancy suspects and is not able to explicitly detect those.
Future work could therefore attach to this idea by extending the prototype with features
for uncovering duplicated test cases (e.g., by analyzing test execution paths and their
similarities).

8.1.4 Integration in other Tools
As the prototype’s generated data and established visualizations are easily reusable,
potential future work could also engage in incorporating with other tools, such as build
servers and continuous integration/build tools in general. In particular, this would enable
the generation and evaluation of trend reports in order to gain knowledge about the
evolution of the metric values over time and could therefore offer further support in
decision-making processes.

8.1.5 Correlations
Finally it needs to be held that some participants stated further thoughts about the
correlations of the metric with other facts and circumstances. On the one hand, future
work could focus on the question how code coverage density relates to classical code
coverage and whether there is a correlation between those two metrics. On the other hand,
one participant especially thought about the correlation between dispersion measures of
the metric (i.e., minimum, maximum, mean and standard deviation) and the probability
of test redundancies. In detail, the question that aroused was whether this probability
is higher when the mean value is close to the maximum. Future work could therefore
draw on this notion and do further scientific investigations in this context. From a
more abstract point of view, further research on possible combinations and aggregations
with various other metrics (e.g., complexity metrics) could definitely lead to further
perceptions on the metric in general (e.g., concerning good practice values).

103

APPENDIX A
Appendix

A.1 Expert Interview Questionnaires

Figure A.1: Expert Interviews - General Demographic Questions

105

A. Appendix

(a) Line Coverage Density

(b) Method Coverage Density

Figure A.2: Metric evaluation questions (1)
106

A.1. Expert Interview Questionnaires

(a) Dispersion Measures (b) Class Coverage Density

Figure A.3: Metric evaluation questions (2)

107

A. Appendix

Figure A.4: Metric evaluation questions (3)

108

A.1. Expert Interview Questionnaires

Figure A.5: Mockup evaluation questions - Sunburst (1)

109

A. Appendix

Figure A.6: Mockup evaluation questions - Sunburst (2)

110

A.1. Expert Interview Questionnaires

Figure A.7: Mockup evaluation questions - Class View (1)

111

A. Appendix

Figure A.8: Mockup evaluation questions - Class View (2)

112

A.1. Expert Interview Questionnaires

Figure A.9: Mockup evaluation questions - Class View (3)

113

A. Appendix

Figure A.10: Mockup evaluation questions - Radar Chart (1)

114

A.1. Expert Interview Questionnaires

Figure A.11: Mockup evaluation questions - Radar Chart (2)

115

A. Appendix

Figure A.12: Mockup evaluation questions - Bar Chart

116

A.1. Expert Interview Questionnaires

(a) Test Details (b) Relevance Rating

Figure A.13: Mockup evaluation questions - Test Details

117

A. Appendix

A.2 Evaluation Interview Questionnaires

Figure A.14: Evaluation - General Demographic Questions

Figure A.15: Evaluation - Introduction

118

A.2. Evaluation Interview Questionnaires

(a) Line Coverage Density

(b) Method Coverage Density and Dis-
persion Measures (c) Class Coverage Density

Figure A.16: Introduction to Coverage Density Metric

119

A. Appendix

Figure A.17: Evaluation - Scenario 1

120

A.2. Evaluation Interview Questionnaires

Figure A.18: Evaluation - Scenario 2

121

A. Appendix

(a) General Questions and Conclusions

(b) Support Questions

Figure A.19: Evaluation - Scenario 3

122

A.2. Evaluation Interview Questionnaires

Figure A.20: Evaluation - Scenario 4

123

A. Appendix

A.3 Listings
{

" projectName " : "EXAMPLE 1 . 0−SNAPSHOT" ,
" c o v e r a g e M e t r i c s " : {

" o v e r a l l C o v e r a g e " : . . . ,
" methodCoverage " : . . . ,
" statementCoverage " : . . . ,
" branchCoverage " : . . .

} ,
" packages " : { . . . } ,
" t e s t C a s e s " : {

" example . ExampleClassTest . testA " : {
" className " : " ExampleClassTest " ,
" name " : " testA " ,
" packageName " : " example " ,
" t e s t S u c c e s s " : t r u e ,
" lineNumber " : 10 ,
" c l a s s F i l e P a t h " : "\\ input−p r o j e c t \\ s r c \\ t e s t \\ java \\ example \\ ExampleClassTest .

java " ,
" a b s t r a c t " : f a l s e

} ,
" example . ExampleClassTest . testB " : {

" className " : " ExampleClassTest " ,
" name " : " testB " ,
" packageName " : " example " ,
" t e s t S u c c e s s " : t r u e ,
" lineNumber " : 20 ,
" c l a s s F i l e P a t h " : "\\ input−p r o j e c t \\ s r c \\ t e s t \\ java \\ example \\ ExampleClassTest .

java " ,
" a b s t r a c t " : f a l s e

} ,
} ,
" numTestCases " : 2 ,
" c o v e r i n g T e s t s " : [

" example . ExampleClassTest . testA " ,
" example . ExampleClassTest . testB "

] ,
" numCoveringTests " : 2 ,
" s i z e " : 20

}

Listing A.1: JSON Structure (Top Level)

124

A.3. Listings

{
. . .
" packages " : {

" example " : {
" packageName " : " example " ,
" qual i f iedName " : " example " ,
" s i z e " : 20 ,
" c o v e r a g e M e t r i c s " : { . . . } ,
" packages " : {} ,
" c o v e r i n g T e s t s " : [

" example . ExampleClassTest . testA " ,
" example . ExampleClassTest . testB "

] ,
" numCoveringTests " : 2 ,
" c l a s s e s " : {

" ExampleClass " : {
" className " : " ExampleClass " ,
" qual i f iedName " : " example . ExampleClass " ,
" s i z e " : 20 ,
" c o v e r a g e M e t r i c s " : { . . . } ,
" methods " : {

" ExampleClass " : { . . . } ,
" methodA " : { . . . } ,
" methodB " : {

" lineNumber " : 10 ,
" methodName " : " methodB " ,
" qual i f iedName " : " exmple . ExampleClass . methodB ,
" l i n e s " : {

" 11 " : {
" lineNumber " : 11 ,
" l ineSpan " : 1 ,
" c o v e r i n g T e s t s " : [" example . ExampleClassTest . testB "] ,
" numCoveringTests " : 1

} ,
" 12 " : {

" lineNumber " : 12 ,
" l ineSpan " : 1 ,
" c o v e r i n g T e s t s " : [" example . ExampleClassTest . testB "] ,
" numCoveringTests " : 1

}
} ,
" c o v e r i n g T e s t s " : [] ,
" numCoveringTests " : 0

}
} ,
" c o v e r i n g T e s t s " : [. . .] ,
" numCoveringTests " : 2

}
}

}
} ,
. . .

}

Listing A.2: JSON Structure (Class Level)

125

List of Figures

1.1 Methodology outline . 3

2.1 Software Product Quality [3] . 8
2.2 Errors, faults and failures [6] . 12
2.3 Comparison of black-box and white-box testing strategies [6] 14
2.4 Control flow graph example [6] . 15
2.5 Refactoring: Abstract Example [19] . 16

3.1 JaCoCo HTML Report: Coverage Information 25
3.2 JaCoCo HTML Report: Class View . 25
3.3 Cobertura Coverage Report . 26
3.4 Cobertura Coverage Report: Class View 26
3.5 Correlation View in CodeCover [55] . 27
3.6 Code Highlighting and Hot Path in CodeCover [55] 28
3.7 OpenClover Top Risks . 29
3.8 OpenClover Quick Wins . 29
3.9 OpenClover Coverage Tree Map . 30
3.10 OpenClover Class View . 30

5.1 Realization Proposals: Sunburst Diagram 40
5.2 Realization Proposals: Sunburst Details . 41
5.3 Realization Proposals: Class View . 43
5.4 Realization Proposals: Class View Details 43
5.5 Realization Proposals: Test Set Filter . 44
5.6 Realization Proposals: Radar Chart . 45
5.7 Realization Proposals: Bar Chart . 46
5.8 Realization Proposals: Radar Chart Details 46
5.9 Visualization Proposals: Test Details . 47
5.10 Metric relevance ratings (1 = not relevant, 5 = highly relevant) 50
5.11 Feature/Mockup relevance ratings (1 = not relevant, 5 = highly relevant) 52
5.12 Test Details with Test Code . 56

6.1 Prototype Execution Phases . 60
6.2 Example report directory structure . 63
6.3 Prototype Execution Automation . 64

127

6.4 Coverage Density Report: Sunburst Diagrams 66
6.5 Coverage Density Report: Sunburst Diagram Configurations 67
6.6 Coverage Density Report: Sunburst View Details 68
6.7 Coverage Density Report: Code View . 69
6.8 Coverage Density Report: Test Selection 70
6.9 Coverage Density Report: Test View . 71

7.1 Method “createPageEventHandler” in class view for “SerialLetterWorker” 78
7.2 Sunburst view for package “at.simianarmy.specification” 79
7.3 Example specification class (code snippet) 80
7.4 Details for various specification classes . 82
7.5 Class view for the class “VerificationLinkQualifier” 83
7.6 Detail view for the class “VerificationLinkQualifier” 84
7.7 Answers for question Q2 in scenario 1 . 86
7.8 Answers for question Q3 in scenario 1 . 86
7.9 Answers for question Q4 in scenario 2 . 88
7.10 Answers for question Q5 in scenario 2 . 88
7.11 Answers for question Q6 in scenario 2 . 89
7.12 Answers for question Q8 in scenario 3 . 89
7.13 Answers for question Q9 in scenario 3 . 90
7.14 Agreements on conclusion A in scenario 3 90
7.15 Agreements on conclusion B in scenario 3 90
7.16 Answers for question Q12 in scenario 3 . 91
7.17 Answers for question Q13 in scenario 3 . 91
7.18 Agreements on conclusion C in scenario 4 92
7.19 Answers for question Q15 in scenario 4 92
7.20 Rating per support question (1 = very poor support, 5 = very good support) 93
7.21 Improvement Suggestion: Color Gradients for Class Sections 94
7.22 Rating per research question (1 = very poor support, 5 = very good support) 97

A.1 Expert Interviews - General Demographic Questions 105
A.2 Metric evaluation questions (1) . 106
A.3 Metric evaluation questions (2) . 107
A.4 Metric evaluation questions (3) . 108
A.5 Mockup evaluation questions - Sunburst (1) 109
A.6 Mockup evaluation questions - Sunburst (2) 110
A.7 Mockup evaluation questions - Class View (1) 111
A.8 Mockup evaluation questions - Class View (2) 112
A.9 Mockup evaluation questions - Class View (3) 113
A.10 Mockup evaluation questions - Radar Chart (1) 114
A.11 Mockup evaluation questions - Radar Chart (2) 115
A.12 Mockup evaluation questions - Bar Chart 116
A.13 Mockup evaluation questions - Test Details 117
A.14 Evaluation - General Demographic Questions 118

128

A.15 Evaluation - Introduction . 118
A.16 Introduction to Coverage Density Metric 119
A.17 Evaluation - Scenario 1 . 120
A.18 Evaluation - Scenario 2 . 121
A.19 Evaluation - Scenario 3 . 122
A.20 Evaluation - Scenario 4 . 123

129

List of Tables

4.1 LineCovDens example . 36
4.2 MethodCovDens example . 37
4.3 ClassCovDens example: computation of LineCovDens values 38
4.4 ClassCovDens example: values for class C1 38

5.1 Final Requirements . 57

Listings

6.1 clover-executor.sh . 65
A.1 JSON Structure (Top Level) . 124
A.2 JSON Structure (Class Level) . 125

131

Acronyms

%ClassCovDens Relative Class Coverage Density. 37, 38

%LineCovDens Relative Line Coverage Density. 36

%MethodCovDens Relative Method Coverage Density. 36, 37

AI Artificial Intelligence. 31

CBO Coupling between Object. 10

CI Continuous Integration. 22, 31

ClassCovDens Class Coverage Density. 37–40, 48, 49, 94, 131

DIT Depth of Inheritance Tree. 10

DOM Document Object Model. 61, 63

GUI graphical user interface. 54

IDE Integrated Development Environment. 20, 25, 27, 31, 54, 55

IEEE Institute of Electrical and Electronic Engineers. 7, 9

ISO International Organization for Standardization. 7

LCOM Lack of Cohesion in Methods. 10

LineCovDens Line Coverage Density. 35, 36, 38, 42, 44, 48–50, 96, 131

LOC Line of Code. 1, 2, 10, 25, 26, 30, 31, 33, 35–38, 42, 49–51, 54, 55, 60, 62, 63, 69,
74, 75, 84, 87, 88, 93, 94, 96

MethodCovDens Method Coverage Density. 36–38, 45, 48, 49, 53, 131

MTTF Mean Time to Failure. 11

133

NOS Number of Statements. 10

PIVoT Project Insights and Visualization Toolkit. 21

SPA Single Page Application. 75

SPI Software Process Improvement. 10

SQA Software Quality Assurance. 9–11

SQC Software Quality Control. 9

SQM Software Quality Management. 9

SQP Software Quality Planning. 9

SUT System under Test. 24

134

References

[1] Y. Singh, Software Testing. Cambridge University Press, 2012, isbn: 9781139196185.
[2] ISO 9000:2015. Quality management systems - Fundamentals and vocabulary,

4th ed. Geneva, Switzerland, 2015.
[3] ISO/IEC 25010:2011. Systems and sotware engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - System and software quality
models, 1st ed. Geneva, Switzerland, 2011.

[4] IEEE Standard for Software Quality Assurance Processes. 2014, isbn: 9780738191683.
[5] P. Rechenberg and G. Pomberger, Informatik-Handbuch, 4th ed. Hanser, 2006,

isbn: 3446401857.
[6] A. Schatten, M. Demolsky, D. Winkler, S. Biffl, E. Gostischa-Franta, T. Östreicher,

and A. Schatten, Best Practice Software-Engineering: Eine praxiserprobte Zusam-
menstellung von komponentenorientierten Konzepten, Methoden und Werkzeugen.
Heidelberg: Spektrum Akademischer Verlag, 2010, isbn: 9783827424877.

[7] S. Wagner, Software Product Quality Control. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, isbn: 9783642385711.

[8] T. Grechenig, M. Bernhart, R. Breiteneder, and K. Kappel, Softwaretechnik: Mit
Fallbeilspielen aus realen Entwicklungsprojekten. Pearson Studium, 2010, isbn:
9783868940077.

[9] Guide to the Software Engineering Body of Knowledge Version 3.0 (SWEBOK
Guide V3.0). 2014, isbn: 9780769551661.

[10] IEEE Standard For A Software Quality Metrics Methodology Revision And Reaffir-
mation. 2005, isbn: 1559375299.

[11] N. E. Fenton and J. Bieman, Software metrics: a rigorous and practical approach,
3rd ed., ser. Chapman & Hall/CRC Innovations in Software Engineering and
Software Development. Boca Raton: CRC Press, 2015, isbn: 042910622X.

[12] A. Abran, Software Metrics and Software Metrology, 1st ed. Hoboken: Wiley, 2010,
isbn: 0470597208.

[13] S. H. Kan, Metrics and models in software quality engineering, 2nd ed. Boston:
Addison-Wesley, 2003, isbn: 0201729156.

135

[14] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing, 3rd ed.
Hoboken, N.J: John Wiley & Sons, 2012, isbn: 1118133137.

[15] A. Spillner, T. Linz, H. Schaefer, M. Barabas, J. Flynn, and H. Kraus, Software
testing foundations : a study guide for the certified tester exam : foundation level,
ISTQB compliant, 4th ed. Santa Barbara, California: Rocky Nook, 2014, isbn:
1306807603.

[16] P. C. Jorgensen, Software Testing: A Craftman’s Approach. Auerbach Publications,
2018, isbn: 1466560681.

[17] “IEEE/ISO/IEC International Standard - Software and systems engineering–Software
testing–Part 4: Test techniques,” ISO/IEC/IEEE 29119-4:2021(E), pp. 1–148, 2021.

[18] M. Fowler, Refactoring: Improving the Design of Existing Code, eng, 2nd ed.
Addison-Wesley Professional, 2018, isbn: 9780134757681.

[19] M. Lemaire, Refactoring at Scale. Sebastopol: O’Reilly Media, Incorporated, 2020,
isbn: 9781492075530.

[20] J. Kerievsky, Refactoring to patterns, 1st ed., ser. Addison-Wesley signature series.
Boston: Addison-Wesley, 2005, isbn: 0321630017.

[21] D. Bowes, T. Hall, J. Petrić, T. Shippey, and B. Turhan, “How Good Are My
Tests?” International Workshop on Emerging Trends in Software Metrics, WETSoM,
pp. 9–14, 2017, issn: 23270969.

[22] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data scientists
in software engineering,” in Proceedings of the 36th International Conference on
Software Engineering - ICSE 2014, 2014, pp. 12–23, isbn: 9781450327565.

[23] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring challenges
and benefits,” in Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, FSE 2012, 2012, isbn: 9781450316149.

[24] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software engineers
understand code changes?: an exploratory study in industry,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, ser. FSE ’12, New York, NY, USA: ACM, 2012, 51:1–51:11, isbn:
9781450316149.

[25] T. Fritz and G. C. Murphy, “Using information fragments to answer the questions
developers ask,” in Proceedings - International Conference on Software Engineering,
vol. 1, 2010, pp. 175–184, isbn: 9781605587196.

[26] A. J. Ko, R. DeLine, and G. Venolia, “Information Needs in Collocated Software
Development Teams,” in 29th International Conference on Software Engineering
(ICSE’07), 2007, pp. 344–353.

[27] V. S. Sharma, R. Mehra, and V. Kaulgud, “What do developers want? An advisor
approach for developer priorities,” in Proceedings - 2017 IEEE/ACM 10th Inter-
national Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE 2017, IEEE, 2017, pp. 78–81, isbn: 9781538640395.

136

[28] V. S. Sharma and V. Kaulgud, “PIVoT: Project insights and Visualization Toolkit,”
in 2012 3rd International Workshop on Emerging Trends in Software Metrics,
WETSoM 2012 - Proceedings, IEEE, 2012, pp. 63–69, isbn: 9781467317627.

[29] J. Biehl, M. Czerwinski, G. Smith, G. Robertson, and B. Bailey, “FASTDash:
A Visual Dashboard for Fostering Awareness in Software Teams,” in CHI 2007
Conference on Human Factors in Computing Systems, San Jose, California, USA:
Association for Computing Machinery, 2007, pp. 1313–1322, isbn: 9781595935939.

[30] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantír: Raising Awareness among
Configuration Management Workspaces,” in Proceedings of the 25th International
Conference on Software Engineering, ser. ICSE ’03, USA: IEEE Computer Society,
2003, pp. 444–454, isbn: 076951877X.

[31] S. A. Bohner and R. S. Arnold, Software Change Impact Analysis. Los Alamitos,
California: IEEE Computer Society Press, 1996, isbn: 9780818673849.

[32] X. Ren, F. Shah, B. Ryder, O. Chesley, and J. Dolby, “Chianti: A Prototype Change
Impact Analysis Tool for Java,” Rutgers University Department of Computer
Science, Tech. Rep., 2003.

[33] S. Amann and E. Jürgens, “Change-Driven Testing,” in The Future of Software
Quality Assurance, S. Goericke, Ed., Cham: Springer International Publishing, 2020,
isbn: 978-3-030-29509-7.

[34] J. Wloka, B. G. Ryder, and F. Tip, “JUnitMX - A change-aware unit testing
tool,” in Proceedings - International Conference on Software Engineering, 2009,
pp. 567–570, isbn: 9781424434527.

[35] X. Ren, B. G. B. Ryder, M. Stoerzer, F. Tip, F. Shah, F. Tip, B. G. B. Ryder, and
O. Chesley, “Chianti: A Tool for Change Impact Analysis of Java Programs,” in
Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, ser. OOPSLA ’04, New York, NY,
USA: Association for Computing Machinery, 2004, pp. 432–448, isbn: 1581138318.

[36] A. van Deursen, L. Moonen, A. van Den Bergh, and G. Kok, “Refactoring test
code,” Extreme Programming Perspectives, no. November, pp. 141–152, 2002.

[37] N. Koochakzadeh, V. Garousi, and F. Maurer, “Test redundancy measurement
based on coverage information: Evaluations and lessons learned,” Proceedings - 2nd
International Conference on Software Testing, Verification, and Validation, ICST
2009, pp. 220–229, 2009.

[38] M. J. Harrold, R. Gupta, and M. L. Soffa, “A Methodology for Controlling the
Size of a Test Suite,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 2, no. 3, pp. 270–285, 1993, issn: 15577392.

[39] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An Empirical Study of
the Effects of Minimization on the Fault Detection Capabilities of Test Suites,”
Conference on Software Maintenance, pp. 34–43, 1998.

137

[40] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness. USA: W. H. Freeman & Co., 1990, isbn: 0716710455.

[41] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of Test Set Mini-
mization on Fault Detection Effectiveness,” Proceedings of the 17th International
Conference on Software Engineering (ICSE’95), vol. 2, pp. 1–16, 1995.

[42] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization for mod-
ified condition/decision coverage,” IEEE International Conference on Software
Maintenance, ICSM, vol. 29, no. 3, pp. 92–103, 2001.

[43] A. J. Offutt, J. Pan, and J. M. Voas, “Procedures for Reducing the Size of Coverage-
based Test Sets,” International Conference on Testing Computer Software, pp. 1–11,
1995.

[44] G. Fraser and F. Wotawa, “Redundancy based test-suite reduction,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 4422 LNCS, no. March, pp. 291–305,
2007, issn: 16113349.

[45] L. Inozemtseva and R. Holmes, “Coverage is Not Strongly Correlated with Test
Suite Effectiveness,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014, New York, NY, USA: Association for Computing
Machinery, 2014, pp. 435–445, isbn: 9781450327565.

[46] Y. Wei, B. Meyer, and M. Oriol, “Is branch coverage a good measure of testing
effectiveness?” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7007
LNCS, pp. 194–212, 2011, issn: 03029743.

[47] D. Tengeri, Á. Beszédes, T. Gergely, L. Vidács, D. Hávas, and T. Gyimóthy,
“Beyond code coverage - An approach for test suite assessment and improvement,”
2015 IEEE 8th International Conference on Software Testing, Verification and
Validation Workshops, ICSTW 2015 - Proceedings, no. April, 2015.

[48] R. P. Buse and T. Zimmermann, “Information needs for software development
analytics,” in Proceedings - International Conference on Software Engineering,
ser. ICSE 2012, Piscataway, NJ, USA: IEEE Press, 2012, pp. 987–996, isbn:
9781467310673.

[49] J. F. Smart, Jenkins. Sebastopol: O’Reilly Media, Incorporated, 2011, isbn: 9781449305352.
[50] K. Yilmaz, “Comparison of Quantitative and Qualitative Research Traditions:

epistemological, theoretical, and methodological differences,” eng, European journal
of education, vol. 48, no. 2, pp. 311–325, 2013, issn: 0141-8211.

138

Online References

[51] E. Dietrich, A Better Metric than Code Coverage, [Online; visited on 01/04/2021].
[Online]. Available: https://daedtech.com/a-better-metric-than-
code-coverage/.

[52] Parasoft, Code Coverage Density and Test Overlap, [Online; visited on 01/04/2021].
[Online]. Available: https://www.parasoft.com/code-coverage-density-
and-test-overlap/.

[53] JaCoCo, Coverage Counters, [Online; visited on 01/05/2022]. [Online]. Available:
https://www.eclemma.org/jacoco/trunk/doc/counters.html.

[54] A. Altvater, The Ultimate List of Code Coverage Tools: 25 Code Coverage Tools
for C, C++, Java, .NET, and More, [Online; visited on 01/05/2022]. [Online].
Available: https://stackify.com/code-coverage-tools/.

[55] CodeCover, HOWTO Use CodeCover: From code to report, a complete walkthrough,
[Online; visited on 01/05/2022]. [Online]. Available: http://codecover.org/
documentation/tutorials/how_to_complete.html.

[56] Parasoft, Parasoft Jtest Capabilities, [Online; visited on 01/14/2022]. [Online].
Available: https://www.parasoft.com/products/parasoft-jtest/.

[57] Parasoft, Parasoft Jtest: Data Sheet, [Online; visited on 01/14/2022]. [Online].
Available: https://www.parasoft.com/wp-content/uploads/2021/02/
datasheet-jtest.pdf.

[58] Atlassian, Configuring a job’s build artifacts, [Online; visited on 10/27/2021]. [On-
line]. Available: https://confluence.atlassian.com/bamboo/configuring-
a-job-s-build-artifacts-289277071.html.

139

https://daedtech.com/a-better-metric-than-code-coverage/
https://daedtech.com/a-better-metric-than-code-coverage/
https://www.parasoft.com/code-coverage-density-and-test-overlap/
https://www.parasoft.com/code-coverage-density-and-test-overlap/
https://www.eclemma.org/jacoco/trunk/doc/counters.html
https://stackify.com/code-coverage-tools/
http://codecover.org/documentation/tutorials/how_to_complete.html
http://codecover.org/documentation/tutorials/how_to_complete.html
https://www.parasoft.com/products/parasoft-jtest/
https://www.parasoft.com/wp-content/uploads/2021/02/datasheet-jtest.pdf
https://www.parasoft.com/wp-content/uploads/2021/02/datasheet-jtest.pdf
https://confluence.atlassian.com/bamboo/configuring-a-job-s-build-artifacts-289277071.html
https://confluence.atlassian.com/bamboo/configuring-a-job-s-build-artifacts-289277071.html

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Description and Motivation
	Expected Results
	Methodology
	Contributions
	Structure

	Fundamentals
	Software Quality Assurance
	Software Metrics
	Software Testing
	Refactoring

	State of the Art
	Related Work
	State of the Art Tools
	Summary

	Metric Definition
	Line Coverage Density
	Method Coverage Density
	Class Coverage Density
	Higher Granularity Levels

	Concept
	Concept Proposal
	Expert Interviews
	Adaptions
	Final Requirements

	Implementation
	Execution Phases
	Technical Concept
	Results

	Evaluation
	Fundamental Considerations
	Example Project
	Procedure
	Participants
	Scenarios
	Results
	Discussion

	Conclusion
	Future Work

	Appendix
	Expert Interview Questionnaires
	Evaluation Interview Questionnaires
	Listings

	List of Figures
	List of Tables
	Listings
	Acronyms
	References
	Online References

