
Rule Mining on
Knowledge Graph Embeddings

Making Implicit Knowledge Explicit and
Explainable

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Business Informatics

eingereicht von

Julian Vecera, BSc BSc
Matrikelnummer 01627770

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Dr. Emanuel Sallinger
Mitwirkung: Dipl.-Ing. Aleksandar Pavlović

Wien, 20. August 2024
Julian Vecera Emanuel Sallinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Rule Mining on
Knowledge Graph Embeddings

Making Implicit Knowledge Explicit and
Explainable

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Julian Vecera, BSc BSc
Registration Number 01627770

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Emanuel Sallinger
Assistance: Dipl.-Ing. Aleksandar Pavlović

Vienna, 20th August, 2024
Julian Vecera Emanuel Sallinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Julian Vecera, BSc BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. August 2024
Julian Vecera

v

Kurzfassung

Die Erklärbarkeit in maschinell gelernten Modellen, wie etwa bei der Verwendung von
Wissensgraphen, stellt nach wie vor ein Problem dar. Ansätze wie die Einbettung dieser
Modelle können implizites Wissen lernen, funktionieren jedoch oft wie Black-Box-Modelle.
Diese Arbeit zielt darauf ab, das latente Wissen explizit zu machen und dadurch eine
Form von Erklärbarkeit für die Schlussfolgerungen dieser Modelle zu schaffen, indem
intuitiv verständliche Regeln bereitgestellt werden.

Dies wird durch den neuartigen „Rule Mining“-Algorithmus ExpressivE RM erreicht,
der in dieser Arbeit vorgestellt wird. Der Algorithmus kombiniert die Vorteile von
Regelgenerierungsalgorithmen, wie etwa deren Erklärbarkeit, und das erlernte latente
Wissen und die hohe Vorhersagekraft von eingebetteten Wissensgraphen.

ExpressivE RM basiert auf dem zugrunde liegenden Modell ExpressivE und verwendet
eine zusätzliche Abstraktionsschicht, um Regeln aus dem Basismodell zu extrahieren.
Dies stellt einen bedeutenden Schritt auf dem Weg zu erklärbaren Schlussfolgerungen
des Basismodells und ähnlicher Modelle dar.

Die hier präsentierten Ergebnisse zeigen, wie ExpressivE RM explizite Regeln erstellt,
die zur Vervollständigung des Wissensgraphen verwendet werden können. Dabei erreicht
der Algorithmus eine vergleichbare Leistung wie der „State-of-the-Art“-Algorithmus
AnyBURL. Unser Algorithmus erzeugt zusätzlich Regeln, die fehlende Verbindungen im
Graphen ergänzen können, welche von AnyBURL nicht abgedeckt werden. Dies zeigt,
dass der Ansatz in der Lage ist, exklusive Regeln und zusätzliches latentes Wissen zu
liefern.

Die Leistungswerte von ExpressivE RM betragen hits@1, hits@3, hits@10 und einen MRR
von .3226 für das vollständige Set an Regeln und .2773 für das exklusive Set an Regeln.
Dies beweist, dass die geometrische Interpretation von ExpressivE verwendet werden
kann, um ein Set aus Regeln zu erzeugen, das fehlende Verbindungen im Wissensgraph
mit hoher Vorhersagekraft in kurzer Zeit herstellen kann.

vii

Abstract

Explainability in knowledge graph-based machine learning algorithms is a problem
because approaches such as knowledge graph embeddings can learn implicit knowledge
but act like black box models. This work aims to make the latent knowledge explicit
and, therefore, explainable by providing intuitive rules.

This is achieved through the novel ExpressivE RM algorithm, a unique approach that
combines the benefits of rule miners’ explainability and knowledge graph embeddings’
latent knowledge and high performance. The algorithm, named after its base KGE model
with an additional abstraction layer to mine rules from the embedding, is a significant step
towards making knowledge graph-based machine learning algorithms more explainable.

Our research shows that the ExpressivE RM algorithm performs at a comparable level to
the state-of-the-art rule miner AnyBURL, with its own distinct advantages. We created
a rule set of symmetry rules that competes with AnyBURL’s rules, and our evaluation
showed that our algorithm provides rules of strong performance in knowledge graph
completion tasks, which are not covered by AnyBURL. This indicates that our approach
can provide exclusive rules and additional (latent) knowledge, with scores of hits@1,
hits@3, hits@10 and MRR of .3226 for the complete rule set and .2773 for the exclusive
rule set.

ExpressivE RM proves that the geometric interpretation of ExpressivE can provide a
performant rule set for prediction tasks with latent knowledge available and it provides
explainability using rules in a short time.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Research Questions . 3
1.3 Methodological Approach . 3
1.4 Structure of the Work . 4

2 Background 5
2.1 Knowledge Graphs . 5
2.2 Knowledge Graph Embeddings . 5
2.3 Knowledge Graph Completion . 7
2.4 Inference Patterns . 7
2.5 Expressiveness . 8
2.6 Confidence of Rules . 9
2.7 Predictive Quality . 10
2.8 Datasets . 11
2.9 Open World Assumption/Closed World Assumption 12

3 Related Work 15
3.1 Early Approaches . 15
3.2 State-of-the-Art Rule Mining Approaches 16
3.3 State-of-the-Art Knowledge Graph Embedding Models 18
3.4 Rule Mining on Knowledge Graph Embedding Models 19
3.5 Summary . 19

4 Proposed Method 21
4.1 Challenge . 21
4.2 Proposed Method . 22

xi

5 Experimental Evaluation 35
5.1 Experimental Setup . 35
5.2 Objectives Derived from the Research Questions 36
5.3 Experimental Details . 36
5.4 Results . 43
5.5 Comparison . 45
5.6 Combination . 47
5.7 Summary . 48

6 Conclusion 49
6.1 Discussion . 49
6.2 Discussion of Research Questions . 51
6.3 Limitations . 52
6.4 Future Work . 53

List of Figures 57

Bibliography 59

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
In recent years, one topic has caused much attention in the car industry, finance, govern-
ments, and even the medical sector. It is said to be a topic that will make a big difference
in the following decades, yet the discipline is familiar, and scientists have been researching
it for years. The topic this work will address differs from the currently discussed climate
change, even though the technology can help in the fight. It can potentially find or
improve cures for many diseases in the medical domain. The following work will go deep
into computer science and statistics, addressing techniques essential for survival that are
older than humankind itself, namely learning and pattern recognition. The topic this
work will address is machine learning and artificial intelligence.

Two heavily used buzzwords in the last few years have arisen with the increasing computing
power of modern machines and the potential that comes with them. Even though machine
learning arose in the 1960s [Fra20], considerable interest is coming up in the discipline,
which is successfully used in self-driving cars [FHY19], image recognition, and even
healthcare [Kon01].

Modern machine learning algorithms are already capable of beating humans in various
games [GBP17], face-recognition, and even in detecting skin cancers based on images
[EKN+17], yet they are not perfect and often provide excellent results, but lack explain-
ability, which is crucial for interpreting the algorithms reasoning, especially when used in
critical situations.

This work focuses, in particular, on knowledge graphs. A knowledge graph consists
of nodes and edges. The edges connect nodes and represent relations [SGT+09]. This
straightforward concept is capable of holding different kinds of information. An example
is two people, each represented by a node, which have a relation to each other. They are
married (undirected edge, two-way-relationship), or one person is the child of the other

1

1. Introduction

(directed edge, one-way-relationship). This information is stored as triple, containing both
entities and their relationship. This method can also be used to represent other kinds of
information, like transactions in the finance sector, connections in social networks, and
knowledge generally because the information is basically always linked to any kind of
other information in a specific way.

The resulting graphs can be used to learn from and predict new triples that are not
already given but may exist in the real world. This is a valuable technique used in social
networks to recommend new friends [Liu13] or in medicine to find new treatments.

Finding new triples in this context is called knowledge graph completion (KGC). It builds
on the observation that knowledge graphs are often inherently incomplete [PS23]. For
example, only 25 % of the people modeled in the Freebase dataset have their nationality
assigned [WGM+14]. However, the knowledge graph offers information to predict it for
each person to a certain level of likeliness. The use of already-known information, such
as the language a person speaks, can help to fill in the missing information. A very
promising approach to make this latent coherence tangible is the use of knowledge graph
embedding models (KGEs), which embed entities and relations of a given knowledge
graph in a way that makes it possible to quantify the likelihood of the real-world-existence
of yet unknown triples by computing scores using the learned embedding [WMWG17].
However, machine learning models are black box models, and it is still more challenging
to explain the reasoning of the model in a way that logical reasoning-based models could
offer.

Another knowledge graph completion approach is called rule mining. The focus here
lies on explainability and overcoming the just-mentioned limitations of KGE models.
Nonetheless, the downside of rule mining models lies in not having available the latent
knowledge in a way that KGEs do, as seen by their usually weaker performance.

The two state-of-the-art models for the respective approaches are ExpressivE from
Pavlović and Sallinger and AnyBURL from Meilicke et al. The first is a recently developed
knowledge graph embedding model, which can capture various inference patterns jointly
and provide intuitive interpretations of the captured patterns. The latter, AnyBURL,
is a state-of-the-art rule mining approach that learns directly on a knowledge graph.
Nevertheless, ExpressivE performed better on the datasets for which both algorithms
were tested.

This thesis combines the advantages of both knowledge graph completion approaches
using the state-of-the-art KGE model ExpressivE and compares results to those of the
state-of-the-art rule miner AnyBURL. Furthermore, it will be investigated if combining
both approaches yields better results by combining AnyBURL rules mined from the
knowledge graph itself and ExpressivE’s rules from the latent knowledge in the model.

The model, released by Pavlović and Sallinger, offers graphical interpretations of patterns
through hyper-parallelograms and their spatial relations to each other. The resulting
geometric interpretation is used to build the proposed algorithm, which will be called
ExpressivE RM . ExpressivE RM stands for ExpressivE Rule Mining. Using the

2

1.2. Research Questions

geometric interpretation of the ExpressivE embedding, with its high knowledge-capturing
capabilities, we create a rule set, which can further be used for knowledge graph completion
(KGC) tasks, offering the ability to explain predictions while at the same time using
the promising performance of the base model to get high-quality rules. The goal is to
show that mining rules on ExpressivE is possible and to make latent knowledge learned
by the knowledge graph embedding explicit by adding another abstraction layer and
creating easily understandable and interpretable rules. This overcomes the problem of
the non-explainability of predictions in a knowledge graph and the problem of latent
knowledge not being available for state-of-the-art rule mining algorithms that mine
directly on the dataset. The work is considered a success if it can be shown that it
is possible to mine rules on ExpressivE, and the results compete with AnyBURL, the
best-performing rule mining algorithm as of now.

1.2 Research Questions

• (RQ1) Can the geometric interpretation of ExpressivE be used to mine rules with
prediction performance in knowledge graph completion?

• (RQ2) To what extent can the runtime of ExpressivE RM be improved while
maintaining practical applicability?

• (RQ3) In what ways do rule sets generated by ExpressivE RM differ from those
produced by state-of-the-art rule miners?

• (RQ4) Can combining rule sets from ExpressivE RM and the state-of-the-art rule
miner, boost overall performance in knowledge graph completion?

1.3 Methodological Approach
This thesis uses the following methodological approach:

1. Literature review
The first step is to conduct a literature review. The literature review will focus on
knowledge graphs, knowledge graph embeddings and rule mining algorithms. The
main target is to identify the best-performing state-of-the-art models and classify
these methods.

2. Development of rule mining algorithm
Based on the literature review, the most common techniques will be extracted to
mine rules, especially those on knowledge graph embeddings. The main step is the
development of an algorithm, which uses a knowledge graph embedding model as a
base for mining rules according to the model’s parameters.

3

1. Introduction

3. Implementation
The designed algorithm will be implemented. The evaluation of the state-of-the-art
model will be adapted to have comparable results.

4. Evaluation and interpretation
The hypothesises for the research questions are constructed. The experiments will
be evaluated and interpreted. Lastly, the research questions are answered.

1.4 Structure of the Work
This thesis is structured as follows:

• Background
Chapter 2 introduces essential concepts of knowledge graphs, knowledge graph
embeddings, and evaluation metrics. Details such as inference patterns, which are
crucial for the proposed method, are described in this chapter. Lastly, the dataset
that is used will be described here.

• Related work
Chapter 3 presents current state-of-the-art knowledge graph embedding models
and rule miners.

• Proposed approach
Chapter 4 introduces the developed algorithm to mine rules from the knowledge
graph embedding model ExpressivE. The standard approach will be presented, and
additionally, the extended algorithm, for more rules at the cost of resources and
speed.

• Evaluation
Chapter 5 describes the results and compares them to one of the best-performing
state-of-the-art rule mining algorithm AnyBurl 2.

• Conclusion
The final Chapter 6 answers the proposed research questions using the results
and outcomes of this thesis. Lastly, additional possible improvements and future
research directions are discussed.

4

CHAPTER 2
Background

2.1 Knowledge Graphs

A knowledge graph (KG) is a way of modeling and storing information using entities
and relations, which connect entities and, therefore, model a connection between the
items. Knowledge graphs have been used for storing different information as examples
like Freebase [lai16], and WordNet [Uni] show. They represent data useful for tasks
like providing recommendations, question answering, information retrieval and natural
language processing [PS23]. A knowledge graph can be represented as a set of triples
ri(eh, et) over relations ri ∈ R and entities eh, et ∈ E [PS23].

2.2 Knowledge Graph Embeddings

A knowledge graph embedding, called KGE, is a model in which entities and relationships
are modeled in vector spaces. A model tries to capture the semantic relations between
entities of a given KG. It enables simple manipulations of data and better interpretable
coherences. According to Wang et al. (2017), KGEs quickly gained attention in research
after the first approaches. The learned embeddings can be used for various tasks,
such as knowledge graph completion, relation extraction, entity classification and entity
resolution [WMWG17]. KGEs are, therefore, tools that represent KGs in the best possible
structure while simplifying various computations and permutations, which is especially
beneficial for large datasets. There are several popular KGE models, such as TransE
[BUG+13], RESCAL [NTK+11], DistMult [YYH+14], ComplEx [TWR+16], and many
others. Fundamental in this work are the KGE models BoxE [ACLS20] and ExpressivE
[PS23].

5

2. Background

Figure 2.1: Abstract representation of a knowledge graph with 4 entities and 4 relations

Figure 2.2: An example instance of a (heterogeneous) knowledge graph with 4 entities
and 4 relations

6

2.3. Knowledge Graph Completion

2.3 Knowledge Graph Completion

KGs store large amounts of structured data. However, there may still be missing parts
or incomplete information. This is where knowledge graph completion (KGC) comes
into play. The task of knowledge graph completion aims to fill the missing pieces of
information by using machine learning algorithms to predict new information based
on the known data in the KG [PS23]. West et al. (2014) point out that, for example,
the Freebase dataset lacks the nationality of 75 % of people represented in the dataset
[WGM+14]. Using already known information, such as the languages people speak, can
help to fill in the missing information. Significant progress has been made towards using
KGEs to do this task by embedding entities and relations to quantify the probability of
unknown triples before. According to Wang et al. (2017), this technique is up-and-coming,
providing good results [WMWG17].

Nevertheless, filling in missing data is not bound to KGEs, yet rule sets can help with
this task. For example, AnyBURL and AMIE3 are models that “complete” KGs using
rule sets. This thesis aims to find the rules which can be used for prediction tasks on a
KGE.

2.4 Inference Patterns

An inference pattern in the context of KGs refers to specific patterns that KGEs learn
to make predictions about missing entities or relationships in a KG. More scientifically
speaking, a model captures an inference pattern if a set of parameters satisfies the pattern
exactly and exclusively [SDNT19]. The patterns are learned from the structure and
information of the data stored in the respective KG. They are furthermore used to predict
missing information. So, inference patterns are a vital part of KGC tasks. Table 2.1
lists various inference patterns that KGE models can mine, yet not every KGE model
can capture all patterns [PS23]. A variety of KGE models can capture some inference
patterns. Challenging in this regard is the ability to capture multiple inference patterns
simultaneously in a model [ACLS20]. Even though there were many improvements made
to early models, no model could overcome all limitations until the release of ExpressivE,
which is able to capture all listed inference patterns, with which earlier or similar KGE
models were struggling [PS23].

The importance of inference patterns becomes clear when thinking of a dataset containing
entities of people being married to each other. Under the open world assumption (OWA;
see 2.9), a symmetry pattern may be learned, indicating that an entity A representing
a person and having a “married”-relationship to an entity, representing person B, also
implies a “married” relationship from B to A. Similarly, a person A having B as a parent
implies that B cannot be a parent of A in the real world. This is an example of an
anti-symmetric relationship. Figure 2.3 shows many prominent inference patterns and
their representation in a KG.

7

2. Background

Inference Pattern
Symmetry: r1(X, Y) ⇒ r1(Y, X)
Anti-symmetry: r1(X, Y) ⇒ ¬r1(Y, X)
Inversion: r1(X, Y) ⇔ r2(Y, X)
Compositional definition: r1(X, Y) ∧ r2(Y, Z) ⇔ r3(X, Z)
General composition: r1(X, Y) ∧ r2(Y, Z) ⇒ r3(X, Z)
Hierarchy: r1(X, Y) ⇒ r2(X, Y)
Intersection: r1(X, Y) ∧ r2(X, Y) ⇒ r3(X, Y)
Mutual exclusion: r1(X, Y) ∧ r2(X, Y) ⇒ ⊥

Table 2.1: This Table Lists Patterns That Several KGEs Can Capture (As Seen in
Pavlović and Sallinger [PS23])

Figure 2.3: The illustration shows many prominent patterns that several KGEs can
capture

2.5 Expressiveness
An exciting feature of KGEs is their expressiveness. According to Pavlović and Sallinger
(2023) [PS23], "a KGE is fully expressive if, for any finite set of disjoint true and false

8

2.6. Confidence of Rules

triples, a parameter set can be found such that the model classifies the triples of the set
correctly." A fully expressive model can represent a whole graph without information
loss. An essential difference to this is the inference capability of a KGE. Expressiveness
and inference capability do not come in hand with each other [ACLS20]. Fully expressive
KGE models can still lack generalisations among data sets [ACLS20]. However, not fully
expressive models can lead to significant underfits of training data to a model, according
to Abboud et al. (2020). Therefore, full expressiveness and support of essential inference
patterns are crucial for high-quality prediction tasks [PS23].

2.6 Confidence of Rules
As summarised by Lajus et al. (2020), confidence in rules can be represented by various
metrics such as the following. Let B⃗ ⇒ r(x, y) be a horn rule [LGS20].

2.6.1 Support and Head Coverage
Galárraga et al. (2013) [GTHS13] define support "as the number of distinct pairs of
subjects and objects in the head of all instantiations that appear in the knowledge base"
with z1, ..., zm being the variables of the rule apart from x and y:

A proportional version of support that does not need to know the absolute size of the
knowledge base is head coverage. It is "the proportion of pairs from the head relation
that are covered by the predictions of the rule":

2.6.2 PCA Confidence
The partial completeness assumption (PCA) is the assumption, that if r(x,y) is true in
the knowledge base for some x, y, then we know all r-attributes of x, which is represented
as follows [GTHS13]:

Under this assumption, the confidence is not normalised by the whole set of facts but
only by the facts "of which we know that they are true, together with the facts of which
we assume that they are false" [GTHS13]. The PCA confidence is defined as follows, with

9

2. Background

KBtrue being known true facts and NEWtrue being new facts that are yet unknown to
the knowledge base:

2.6.3 CWA Confidence
The closed world assumption confidence takes all facts that are non-existent in the
knowledge base as negative evidence, which makes it a ratio of its predictions that appear
in the knowledge base [GTHS13].

2.6.4 GPRO Confidence
The GPRO confidence is a refinement of the PCA confidence since it can "underestimate
the likelihood of a prediction in the presence of non-injective mappings" [GTHS13]. The
quality of a predicted fact can be rated by calculating the GPRO confidence on the first
and second variables of the head atom of the rule. The definition can be found in Graph
Pattern Entity Ranking Model for knowledge graph completion [EI19].

2.6.5 GRANK Confidence
The GRANK is another refinement. It uses the GPRO metric and takes the number
of instances of the variables of a rule into account that are not in the head atom
[GTHS13, EI19].

2.7 Predictive Quality
An appropriate form of quantitative metrics will be used for evaluation purposes to allow
comparison and interpretation of results. Literature provides many different metrics,
from which the following will be used to determine the quality of the proposed algorithm
and for a side-to-side comparison to similar approaches.

2.7.1 Hits@k
The metric and its description were taken from Bordes et al. (2013) [BUG+13]. According
to the paper, the hits@k metric is a performance metric used in many knowledge
base completion and rule mining models. It is a proportional measurement of correct
predictions in the first k positions of a ranked list. An evaluation algorithm first generates
a ranked list of predictions in ascending order. It stores the number of hits, so correctly

10

2.8. Datasets

predicted items in the top k positions of the resulting list. The number of correct
predictions is then divided by k, resulting in the respective hits@k score. The mean of
all hits@k scores will be used to evaluate a set of queries. The metric, therefore, tells the
effectiveness of predictions of a specific algorithm or model. The ranks are not present
in the metric; they are only the number of correct predictions and total predictions per
prediction query.

Hits@k for the rule set = Count of correct predictions in the top k positions
k

Overall Hits@k = 1
N

N�
i=1

Hits@k for rule set i

2.7.2 Mean reciprocal rank (MRR)
The metric and its description were taken from Bordes et al. (2013) [BUG+13]. According
to the paper, the mean reciprocal rank or MRR is a metric using the result lists of
prediction tasks. It takes the position of the first correctly predicted item in the result
list. Likewise, to hits@k, the result list is used to calculate this metric, but regardless of
the top k results. The first correctly predicted item for this metric will be determined in
a result list. The rank is then taken, and its inverse value is the final result. Again, the
mean of these results is the evaluation result for the whole prediction task.

RRi = 1
Position of first correct prediction in rule set i

MRR = 1
N

N�
i=1

RRi

2.7.3 Summary
For the evaluation, the metrics hits@k and MRR are used. These metrics are famous
for similar approaches, allowing easy comparison and interpretability. While the hits@k
metric describes how well predictions are in total, the MRR metric indicates how well
the algorithm ranks correct predictions at the top of the result lists. Both metrics are
beneficial for prediction tasks in the context of KGC and rule mining models. The metrics
provide valuable insight into the model’s performance and where optimizations can be
made. Additionally, they allow comparison across various algorithms.

2.8 Datasets
For evaluating the proposed algorithm, a dataset is needed, representing data in the form
of a knowledge graph, with facts being connected via relations to each other. A dataset

11

2. Background

in a relational database is, therefore, not necessarily sufficient. The literature proposes
many datasets. The one used for evaluation in this thesis is described here.

2.8.1 WN18RR
A typical dataset in similar approaches is WN18RR [PS23, ACLS20, SDNT19, MCFS20,
RBF+21]. It reaches back to WordNet, an extensive database of the English language.
Word types, such as nouns, verbs, adjectives, and adverbs, are categorised and grouped
into specific sets, addressing the word’s relations to other words and meanings [Uni].
Derived from this set is WN18 [BUG+13], a dataset following a strict hierarchical
structure. It consists of 18 relations, 40.943 entities and 151.442 triples. The authors
Dettmers et al. (2018) found similar drawbacks that FB15k-237 had before and, therefore,
introduced the WN18RR dataset [DMSR18]. The goal of this dataset is not simply to
offer the possibility for algorithms to complete missing information by single rules but
also to require the whole knowledge graph to be modeled and inspected. The final dataset
WN18RR, as found in the literature, consists of 93.003 triples, 40.943 entities and 11
relations. The words of the English language represent the entities. The relation set
includes relations such as also_see, interstance_hypernym or verb_group, a relation for
two verbs, similar in meaning [ABH19].

Triple
(00082563, _synset_domain_topic_of, 00612160)
(07803545, _hypernym, 07802417)
(00634472, _derivationally_related_form, 05651680)
(06488880, _hypernym, 06481320)
(00972621, _hypernym, 00955060)
(00631391, _also_see, 01878466)
(02461014, _member_meronym, 02461128)

Table 2.2: Some Triples as Seen in the WN18RR Training Set

2.8.2 Summary
This work uses WN18RR as a dataset for evaluation. We use it due to its correction,
which prevents inverse relation test leakage, and its wide usage across similar approaches
in the literature. This makes the here proposed algorithm comparable to other approaches,
especially AnyBURL.

2.9 Open World Assumption/Closed World Assumption
According to Galarraga et al. (2013) [GTHS13], the open world assumption (OWA) and
closed world assumption (CWA) are important assumptions which have to be considered
when designing KGC algorithms. While the open world assumption states that every

12

2.9. Open World Assumption/Closed World Assumption

entity, relation, or triple is known knowledge and missing information is just unknown,
meaning it can be true or false, the closed world assumption states that the information
in a knowledge graph is complete. This further implies that every triple which does not
exist is false. This results in KGs under the OWA assumption storing more data by
nature since negative examples are stored implicitly in KGs under the CWA by just not
providing a particular triple or fact.

13

CHAPTER 3
Related Work

This chapter overviews current state-of-the-art models and approaches. The strengths
and weaknesses of each model and approach will be determined to take them into account
for the next steps of this thesis.

3.1 Early Approaches
As predecessors and relevant approaches upon which current state-of-the-art knowledge
graph embedding models such as BoxE and ExpressivE build, models such as TransE,
DistMult and ComplEx can be named. These models are classified into Functional,
Bilinear, and Spatial (or Region-based) models [ACLS20, PS23]. TransE is the pioneering
functional model which influenced many other extensions, such as RotatE [SDNT19],
MuRP [BAH19a], RotH [CWJ+20], HAKE [ZCZW20], ConE [BYRL21], which embed
entities as points and relations as translations in a high-dimensional vector space. Im-
proved models such as RotatE emerged later on, trying to solve the limitations of TransE,
such as the issue that the model cannot capture symmetric relations.

Bilinear Models, on the other hand, embed knowledge graphs as bilinear products between
the entities and the relations. These models can be fully expressive, yet they cannot
capture all inference patterns proposed in this work. Models in this family are for example
RESCAL [NTK+11], DistMult [YYH+14], ComplEx [TWR+16], SimplE [KP18], and
TuckER [BAH19b] according to Pavlović and Sallinger (2024) [PS24].

Spatial or region-based models try to embed relations and entities in a graphical embedding
space, with certain representations indicating specific inference patterns [ACLS20, PS23].
This can be done with hyper-rectangles (boxes) that embed entity classes and show
their hierarchies through geometric subsumptions of the respective boxes, such as many
authors already showed [SC18, VLMM18, LVZ+19].

15

3. Related Work

Inspired by these predecessors, the state-of-the-art model ExpressivE [PS23] emerged,
having the just mentioned models as closely related approaches and using the advantages
of spatial and functional models to capture many inference patterns with the same model.
Pavlović and Sallinger (2024) [PS24] call it spatio-functional models.

3.1.1 BoxE
The 2020 released spacial model BoxE [ACLS20] by Abboud et al. uses a similar approach
in this work. BoxE embeds facts as triples, aiming to inject facts into the embedding
model. The model represents each entity using two vectors, where one represents the
base position of an entity and the other represents the so-called translational bump,
which translates all entities co-occurring in a fact with the entity from the base position
to the final embedding. Furthermore, every relation is embedded in hyper-rectangles.
The boxes define regions, and a fact holds when the final embeddings of certain entities
appear in the corresponding box. BoxE uses a scoring function supported by a distance
function that evaluates entity positions relative to the box positions. Like ExpressivE,
this offers easy interpretability by looking at the box configurations. Another common
factor with ExpressivE is the ability to be fully expressive. However, the model is not
capable of capturing composition patterns. Also, the way of embedding relations and
entities differs in BoxE and ExpressivE. The latter is influenced by spatial models, such
as BoxE and functional models, combining the advantages of both worlds.

3.2 State-of-the-Art Rule Mining Approaches
As seen in Lajus et al. (2020) [LGS20], Inductive Logic Programming (ILP) is the task of
learning rules from positive and negative samples. First-generation rules mining systems
were developed before the time of large knowledge bases. However, these systems do not
scale well to millions of facts and do not account for the Open World Assumption made
by current knowledge bases [LGS20]. For example, an approach called FOIL [Qui90]
cannot be used directly on a knowledge base since it needs explicit counter-examples for
rules provided by the user. On the other hand, WARMR [Han02] assumes the knowledge
base is complete by building on a closed world assumption (CWA), which generates
negative evidence. Based on this, there are similar approaches, such as creating negative
evidence from random facts. This strategy has been observed to work not as well on
knowledge bases as the partial completeness assumption (PCA), which was designed for
knowledge bases.

Second-generation rule mining systems explicitly target large knowledge bases and have
proven to be more efficient and faster than first-generation systems. However, the process
of rule mining can still take an extended amount of time, depending on the size of the
knowledge base. Approximation and parallelisation strategies tackle these problems in
recent approaches [LGS20]. RudiK [OMP18] uses the partial completeness assumption
(PCA) to generate semantically related counter-examples for data. Using a heuristic
approach, the strategies can be described as finding all the rules necessary to predict

16

3.2. State-of-the-Art Rule Mining Approaches

positive examples. The approach is non-exhaustive since it focuses on rules that make
good predictions and not all available rules above a certain threshold. However, AMIE
3 promises to outperform RudiK in runtime while being an exhaustive rule mining
algorithm.

3.2.1 AMIE 3
The 2013 proposed Association Rule Mining under Incomplete Evidence in Ontological
Knowledge Bases approach (short: AMIE) by Galarraga et al. [GTHS13] focuses on
generating rules by relying on the Open World Assumption trying to find true facts
unknown to the knowledge base (called NEWtrue) and false facts not known by the
knowledge base (called NEWfalse). AMIE’s challenge lies in predicting unknown facts
while dealing with the fact that semantic knowledge bases do not contain negative
evidence. The algorithm uses metrics such as support, which quantifies the number of
correct predictions, defined as the number of distinct pairs of subjects and objects in
the head of all instantiations appearing in the knowledge base. The second metric used
is head coverage, a proportion version of support. AMIE generates rules by iteratively
extending its rules using mining operators, namely "Add Dangling Atom" (OD), "Add
Instantiated Atom" (OI) and "Add Closing Atom" (OC). Rules are then pruned by
discarding rules that have a head coverage below a certain threshold or if they do not
have higher confidence than shorter rules.

AMIE was twice improved by its successors AMIE+ [GTHS15] and AMIE 3 [LGS20].
The latter introduces optimizations and pruning techniques, enabling the algorithm to
work on large Knowledge Bases. AMIEs strengths lie in the ability to mine rules without
parameter adjustment and without any other input data than the knowledge graph.

3.2.2 AnyBURL
According to Meilicke et al. (2019) [MCRS19], creating triples for incomplete knowledge
graphs can be done with the additional help of resources such as information from web
pages or databases, but also by using the triples in a given knowledge graph and inferring
new triples from it. The latter approach relies on statistics, patterns, distribution,
or other patterns in the knowledge graph’s data. For a long time, approaches tried
to learn symbolic representations, for example, in logic programming [MDR94] and
relational association rule mining [DT01]. Current approaches use low-dimensional, sub-
symbolic representations of knowledge graphs. Examples such as RESCAL [NTK+11]
and TransE [JGO22] lay the foundation for many similar models developed recently. This
underrepresents symbolic approaches. However, AnyBURL promises rule mining using
specific language bias and generalisation of sampled paths into rules.

Meilicke et al. (2019) [MCRS19] propose an anytime bottom-up technique for learning
logical rules from knowledge graphs. They generate rules by sampling paths from a given
knowledge graph, creating ground path rules (bottom rules), which can then be generalised
and used for knowledge graph completion. The AnyBURL algorithm was further improved

17

3. Related Work

in 2020 [MCFS20] by adding the so-called Object Identity, initially proposed by Semeraro
et al. (1994) [SEM+94] and adapted to the approach and reinforcement learning as
optimization for rule generation. The first is done by adding additional inequality
constraints to each rule, and the latter is a technique to speed up the path sampling
problem.

AnyBURL generates rules by sampling paths from the knowledge graph and then creating
a bottom rule for each path. Starting from every bottom rule, three constraints are used
to generate more general rules, making it a bottom-up rule learning approach. Each
rule gets a confidence score assigned to choose the best rule (meaning the one with the
highest confidence) in the knowledge graph completion task. The confidence, used by the
authors of AnyBURL, is based on the support metric (see 2.6.1) of the rule set, which
describes the explanatory quality by reconstructing triples of a given knowledge graph
using the rules of the set. This metric is also used in the reinforcement optimization.

AnyBURLs strengths lie in the predictive quality of rules, fast computation time with low
resources and explainability, and the ability to work on large knowledge graphs, making
the approach the most interesting to compare with in the evaluation of this thesis.

3.3 State-of-the-Art Knowledge Graph Embedding Models

3.3.1 ExpressivE

Pavlović and Sallinger (2023) presented a spatio-functional embedding model for knowl-
edge graph completion called ExpressivE [PS23] referencing the model’s expressiveness.
The approach overcomes challenges such as fully capturing vital inference patterns, cap-
turing prominent patterns jointly and offering an intuitive interpretation of the pattern
captured. ExpressivE embeds pairs of entities in a coordinate system and relations as
hyper-parallelograms in the so-called "virtual triple space". This technique allows a
graphical interpretation of entities and relations and their relationships. The model can
compete with state-of-the-art models and outperform them on specific datasets.

ExpressivE models are generated using a scoring function based on distances, which uses
the distance between an embedding of a triple and a hyper-parallelogram representing a
relation. Triples have to satisfy certain inequalities to be considered true in ExpressivE.
The properties of a knowledge graph are visualised in the virtual triple space, offering
a geometric interpretation of embeddings, making it the perfect candidate model for
applying rule mining on the model. Rules mined can then be used for the knowledge graph
completion task, offering the advantage of explainability and potentially high-quality
rules.

The strengths of ExpressivE lie in the ability to capture various patterns and offer full
expressiveness, meaning that an ExpressivE model can represent any given graph in its
geometric interpretation.

18

3.4. Rule Mining on Knowledge Graph Embedding Models

3.4 Rule Mining on Knowledge Graph Embedding Models
3.4.1 A Rule Mining Approach on Knowledge Graph Embeddings
Josang et al. (2022) [JGO22] evaluated the effectiveness of knowledge graph completion
using rule mining. In detail, they used different knowledge graph embedding approaches,
such as TransE, DistMult and ComplEx, together with three different selection methods:
least frequent, most frequent and random. The researchers used the above-mentioned
AMIE3 algorithm to generate rules on the incomplete knowledge graph using PCA
confidence (see 2.6) as a scoring function. Then, the authors used the respective KGE
models to predict triples with high confidence. These rules were then compared to the
rules of the completed knowledge graph using the KGE approaches. One extension of
each base dataset was created for each combination of KGE and entity selection method.
Tested on the datasets WN18RR and the family KG, the results showed that using
this technique, huge differences were found between extracted rules depending on the
KGC model used. However, the work demonstrates the potential of using rule mining
and knowledge graph embedding models. It highlights the significant difference in the
number and quality of rules depending on the selected base model. Nevertheless, the
experiments were run on relatively small datasets and need to be examined in future by
larger datasets, reducing the number of candidates generated.

3.5 Summary
This section shows on which basis state-of-the-art models are built. With continuous
improvements and a variation of embedding techniques, KGE models are promising for
knowledge graph completion. However, although some of these models offer a graphical
interpretation of facts, they still easily lack explainability. Nevertheless, having rules can
overcome this burden of "black box models" which are fed with data and return specific
new predictions. Rule mining models can use a bottom-up approach, such as AnyBURL
or a top-down approach, such as AMIE3 and its predecessors.

19

CHAPTER 4
Proposed Method

4.1 Challenge

Figure 4.1: Illustration of the proposed method to improve explainability by another
abstraction layer

As illustrated in Figure 4.1, the ExpressivE Model implicitly saves data by using abstrac-
tions as geometric models in multiple dimensions. This abstraction layer allows the use of
implicit data of the base knowledge graph to predict relations between entities. However,
it is possible to see the steps of the algorithm, but since data is embedded abstractly, it
is hardly interpretable. We aim to enhance explainability by adding another abstraction
layer that uses the geometric interpretations of the embedding model. This will create
clear rules to explicitly represent the information and knowledge that the model has
learned implicitly.

21

4. Proposed Method

4.2 Proposed Method

We chose the KGE model ExpressivE [PS23] for our methodology as it is a state-of-the-art
KGE model with many favorable properties:

First, the ExpressivE model is capable of capturing inference patterns, such as symme-
try, anti-symmetry, inversion, compositional definition, general composition, hierarchy,
intersection and mutual exclusion simultaneously. ExpressivE was the first model with
these capabilities.

Second, ExpressivE can capture prominent patterns jointly, such as hierarchy and
composition.

Third, ExpressivE achieves this while being fully expressive, so it can find a parameter
set that the model can classify all triples of the given set correctly to embed any training
data set.

The fourth point leading to the proposed model as a base model is that ExpressivE is
competitive with other state-of-the-art KGE models and outperforms them significantly
on specific datasets.

The model, released by Pavlović and Sallinger offers geometric interpretations of patterns
through hyper-parallelograms and their spatial relations to each other. The resulting
geometric interpretation is used to build the here proposed algorithm and method, which
will be further called ExpressivE RM . ExpressivE RM stands for ExpressivE Rule
Mining. Using the geometric interpretation of the ExpressivE embedding, having the
discussed high knowledge capturing capabilities, is used to create a rule set, which can
further be used for knowledge graph completion (KGC), offering the ability to explain
predictions while at the same time using the promising performance of the base model to
get high-quality rules.

The proposed algorithm ExpressivE RM will be evaluated on the WN18RR [DMSR18]
dataset. ExpressivE will use d=32 dimensions as seen in SpeedE [PS24], since it was
shown that ExpressivE can reach comparable results with fewer dimensions.

The resulting rule set will be compared to the embedding model of ExpressivE used
as a base for prediction quality. Furthermore, the results will be compared to the
well-performing rule mining model AnyBURL, particularly to prediction quality and
performance using the metrics seen in Chapter 2.7. The resulting rule sets will be
compared in detail to provide a deeper understanding of the similarities and differences
of the algorithms. This is done by comparing the sets rule by rule and grouping rules
by the inference patterns they cover. The rules that both approaches have in common
will be identified, and those that they do not have in common will be analyzed to find
differences and ways to improve the algorithm further. The comparison gives unique
insights because AnyBURL is not based on a KGE model but learns rules from a KG
directly, as discussed in Section 3.

22

4.2. Proposed Method

Inference Pattern ExpressivE BoxE RotatE TransE DistMult ComplEx
Symmetry: r1(X, Y) ⇒ r1(Y, X) ✓ ✓ ✓ ✗ ✓ ✓

Anti-symmetry: r1(X, Y) ⇒ ¬r1(Y, X) ✓ ✓ ✓ ✓ ✗ ✓

Inversion: r1(X, Y) ⇔ r2(Y, X) ✓ ✓ ✓ ✓ ✗ ✓

Comp. def.: r1(X, Y) ∧ r2(Y, Z) ⇔ r3(X, Z) ✓ ✗ ✓ ✓ ✗ ✗

Gen. comp.: r1(X, Y) ∧ r2(Y, Z) ⇒ r3(X, Z) ✓ ✗ ✗ ✗ ✗ ✗

Hierarchy: r1(X, Y) ⇒ r2(X, Y) ✓ ✓ ✗ ✗ ✓ ✓

Intersection: r1(X, Y) ∧ r2(X, Y) ⇒ r3(X, Y) ✓ ✓ ✓ ✓ ✗ ✗

Mutual exclusion: r1(X, Y) ∧ r2(X, Y) ⇒ ⊥ ✓ ✓ ✓ ✓ ✓ ✓

Table 4.1: This table lists patterns that several KGEs can capture. Specifically, ✓ repre-
sents that the pattern is supported and ✗ that it is not supported. Furthermore, “Comp.
def.” stands for compositional definition and “Gen. comp.” for general composition. (As
seen in Pavlović and Sallinger [PS23])

4.2.1 Prerequisites
As seen in the Proposition section of ExpressivE [PS23], the following patterns can be
captured.

Symmetry Symmetry patterns are represented by parallelograms, which can be perfectly
mirrored across the identity line, as seen in the following illustration. The relation
represented is considered symmetric if the pattern holds for every dimension. The
according proof and the interpretation of non-perfect inference patterns can be found in
Proposition F.1 (Symmetry (Exactly)) [PS23]

Figure 4.2: An example of a symmetric relation in a single dimension d with scores of
1.0 (left) and 0.53 (right)

Anti-symmetry An anti-symmetric relation is represented by a parallelogram, which is
not symmetric across the identity line. A relation is considered anti-symmetric if it is
not symmetric in at least one dimension. The according proof and the interpretation of

23

4. Proposed Method

non-perfect inference patterns can be found in Proposition F.2 (Anti-Symmetry (Exactly))
[PS23]

Figure 4.3: An example of an anti-symmetric relation in a single dimension d with scores
of 1.0 (left) and 0.47 (right)

Inversion Two inverse relations are represented by parallelograms, which overlap exactly
if mirrored across the identity line. For two relations to be inverse, they must fulfill
this requirement in every dimension. The according proof and the interpretation of
non-perfect inference patterns can be found in Proposition F.3 (Inversion (Exactly))
[PS23]

Figure 4.4: An example of two relations that are inverse to each other in a single dimension
d with scores 1.0 (left) and 0.72 (right)

24

4.2. Proposed Method

Hierarchy A relation is hierarchical with another one if the first one is entirely subsumed
by the other one in every dimension, as seen in the following illustration. The according
proof and the interpretation of non-perfect inference patterns can be found in Proposition
F.4 (Hierarchy (Exactly)) [PS23]

Figure 4.5: An example of hierarchical relationships in a single dimension d with scores
1.0 (left) and 0.75 (right)

Intersection For the intersection pattern, three relationships are involved, namely
two relationships creating an overlapping area. The third relation, represented by a
parallelogram is considered an intersection if it matches the area of the overlapping area
exactly in every dimension. The according proof and the interpretation of non-perfect
inference patterns can be found in Proposition F.5 (Intersection (Exactly)) [PS23]

25

4. Proposed Method

Figure 4.6: An example of the intersection pattern in a single dimension d with scores
1.0 (left) and 0.71 (right)

Mutual Exclusion We consider a mutual exclusion pattern of two relations that are
represented by parallelograms and do not have an intersection area in at least one
dimension, as illustrated for one dimension as follows. The according proof and the
interpretation of non-perfect inference patterns can be found in Proposition F.6 (Mutual
Exclusion (Exactly)) [PS23]

Figure 4.7: An example of mutual exclusion in a single dimension d with scores 1.0 (left)
and 0.98 (right)

General Composition The general composition inference pattern consists of three
relations, with two relations creating an area entirely subsumed by a third relation in
every dimension, as seen in the following illustration. The according proof and the

26

4.2. Proposed Method

interpretation of non-perfect inference patterns can be found in Proposition F.7 (General
Composition (Exactly)) [PS23]

Figure 4.8: An example of the general composition pattern in a single dimension d with
scores 1.0 (left) and no assigned score (right)

Compositional Definition The compositional definition is similar to the general
composition with three relations involved. However, in this definition, the presence of
the third relation also implies the presence of the other two relations, so the implication
works in both directions. The according proof and the interpretation of non-perfect
inference patterns can be found in Proposition F.8 (Compositional Definition (Exactly))
[PS23]

Introducing scores like these is necessary because the underlying model is not exact but
relies on approximations. The exact calculation of the scores for rule candidates can be
found in the Pre-processing Section 4.2.3. Both proposed approaches have four phases:
Import, Pre-processing, Rule Mining, and Post-Processing. This section shows every
phase in detail. The extended approach will additionally run the Rule Mining part using
the Largest Rectangle Algorithm.

4.2.2 Import and Configuration

The algorithm is built on top of an ExpressivE model. The first part provides the config
file and the checkpoint file, which includes the relations, entities, and the model. The
run1. profile file contains the according variables that need to be set: checkpoint_path
and config_path. After the embedding model with its entities and relations is ready, the
data is ready for pre-processing.

27

4. Proposed Method

4.2.3 Pre-Processing
In the pre-processing step, following the approach of [PS23], its inverse relation has been
added to the set of relations for each relation. Having double the relation count as a
result, the algorithm starts by creating a set of combinations between each relation with
each other than itself. Additionally, by combining them, they get a confidence score
assigned. The score calculation depends on the inference pattern. Some patterns require
their existence in at least one dimension; others need to be present in all dimensions.
Details can be seen in Section Prerequisites 4.2.1. Depending on the type, the score is
calculated as follows:

Score Calculation for Each Inference Pattern in a Single Dimension d

As discussed in Section Prerequisites 4.2.1, the inference patterns have specific properties
to count as exact (or perfect) patterns or might still count as patterns but with a reduced
certainty because not every captured triple in the certain form represents the inference
pattern. This is why certainty scores are calculated based on the patterns that fit in the
result model. The scores are calculated differently for each inference pattern. The exact
calculation is as follows:

Symmetry To calculate the score of the symmetry inference pattern, the relation r
is taken, and the embedding is inspected in each dimension. In each dimension d, the
hyper-parallelogram representing r is split at the identity line (the red line in Figure 4.2).
One of the cut sides will then be mirrored on the identity line. Then, the intersection
of both sides will be determined. The area of the intersection multiplied by 2 is then
divided by the sum of the area of both sides.

scored = 2 ∗ Intersection Area
Area of one side + Area of mirrored side

Anti-Symmetry For the calculation of the score for the anti-symmetry pattern, the
relation r is being taken and mirrored on the identity line. Then, one of the sides is
taken and inspected. The mirrored part of the side and the non-mirrored part of the
original embedding on the same side are taken, and their intersection is calculated. Then
the intersection area is divided by both of the pattern areas on the side respectively. The
mean of both sides is then taken as a result.

scored =
(Intersection Area

Original embedding on side + Intersection Area
Mirrored embedding on side)

2

Inversion The inversion pattern needs two relations: r1 and r2. The score is determined
by mirroring r2 on the identity line. Then, the intersection area will be determined. The
intersection area is then divided by the sum of the hyper-parallelogram of r1 and r2.
The result of the previous operation is multiplied by two.

28

4.2. Proposed Method

scored = 2 ∗ Intersection Area after mirroring r2
Area of r1 + Area of mirrored r2

General Composition For General Composition, no score calculation is available.

Hierarchy For calculating the score of the hierarchy pattern, the embedding of r1 and
r2 is inspected in each dimension. The intersection area is determined and divided by
the area of r2.

scored = Intersection Area
Area of r2

Intersection The score of the intersection inference pattern requires three relations r1,
r2 and r3 and is calculated as follows. First, the intersection of r1 and r2 is determined.
This pattern is now being taken, and the intersection of it and r3 is determined. The
area of this intersection is then divided by the area of the intersection of r1 and r2.

scored = Area of intersection of r1, r2 and r3
Area of intersection of r1 and r2

Mutual Exclusion For calculating the score of mutual exclusion of a relation r1 and
r2, the intersection of both is created. Then, the area of the intersection is divided by
the area being embedded by r1. The result will be subtracted from 1.

scored = 1 − Intersection Area
Area of r1

Final Score Calculation Across Dimensions

Score calculation for inference patterns that must be present in at least one
dimension

Score = Max(score1, score2, ..., scoren)

Score calculation for inference patterns that must be present in each dimension

s = 1
n

n�
d=1

scored

Score = s
1
n

�n
d=1(scored − s)2

29

4. Proposed Method

Vertical-Axis Algorithm

The following algorithm is being run for each dimension. Each relationship pair, with its
confidence score assigned, is being taken and filtered by a certain threshold that may
be set. For the first run, the threshold may be 0. This will return all potential results
but will need a very long computation time, depending on the dataset and hardware
used. The intersection areas above the threshold will be taken and cut by several vertical
lines in the coordinate system. The corner points of the intersection areas are inspected
individually. If an intersection point and its intersection line parallel to the ordinate
(y-axis) separate the intersection area into two areas, both having an area size greater
than 0, and the respective separated areas are added to a new result set. The algorithm
will also cut the resulting areas again, if possible until no cutting option fulfills the
requirements available anymore. Each pattern in the new result set is the score of the
parent relationship pair assigned. Finally, the whole coordinate system and its entities
are rotated by 90° and the process is repeated once.
In the Python code, the entities are translated into another data structure for optimization
purposes used by the ExpressivE RM extended approach. Additionally, the data is
separated in chunks by dimension for parallelism purposes (for both approaches).

Figure 4.9: An example of the cutting process of two relationships in a single dimension
d

4.2.4 Rule Mining
The rule mining process is being run for each dimension in parallel in the same way.
However, the standard approach and the extended approach vary in this step.

30

4.2. Proposed Method

4.2.5 ExpressivE RM Standard Approach
The standard approach will inspect each pattern of the previous step in the respective
dimension in a coordinate system. All the in-lying entity representations are taken for
each pattern to create a new rule candidate in dimension d. The rule candidate will look
as follows, depending on whether the rotated or un-rotated coordinate system was taken.

For the un-rotated coordinate system

Rule Candidate r1(e, Y) → r2(e, Y) for d

For the rotated coordinate system

Rule Candidate r1(X, e) → r2(X, e) for d

Figure 4.10: Standard rule mining process in a single dimension d with red points as
embedded entities

4.2.6 ExpressivE RM Extended Approach (Optional)
The ExpressivE RM extended approach will additionally run the Largest Rectangle
Algorithm at this stage.

Largest Rectangle Algorithm

In each result set from the pre-processing, every entity will be taken and used to create
a rectangle in the following way: to provide rule candidates with different entities in
the head and tail part, so as to extend the search space of rules. To achieve this, the
representing point for the entity is being taken, and again, the intersecting vertical line
parallel to the ordinate is being taken. This line will cut exactly two points from the
current pattern in the loop. These two points will be a newly created rectangle’s upper
and lower limit. Horizontally, the line will be expanded to get the maximum size while

31

4. Proposed Method

still being entirely contained by r2 of the relationship pair. Now, every entity b in the
entity set of the model will be checked if it is contained in the newly obtained rectangle.
If this is the case, the following Rule Candidate in the respective dimension will be added
to the Rule Candidate set.

For the un-rotated coordinate system

Rule Candidate r1(a, Y) → r2(b, Y) for b ∈ Ba

For the rotated coordinate system

Rule Candidate r1(X, a) → r2(X, b) for b ∈ Ba

Figure 4.11: Extended rule mining process in a single dimension d with the red point as
embedded entity

Note: As the extended algorithm increases the search space notably, the approach is
expected to take much longer than the standard approach. However, it promises to allow
us to mine rules in a more advanced form.

4.2.7 Post-Processing
The base for the post-processing is the completed rule mining part. The post-processing
will be the same regardless of the standard or extended approach. According to Section
F in the Appendix of Pavlović and Sallinger (2023) [PS23] and discussed in Section 4.2.1,
the final rules being created should be valid in every dimension, or at least one, depending
on the inference pattern. However, the model, in this sense, is an approximation of the
real data, so in practice, this theory does not fit. Therefore, all rule candidates in each

32

4.2. Proposed Method

dimension will be inspected and aggregated across the dimensions. The program allows
the setting of a minimal threshold for the number of dimensions a rule candidate must
be present to count as final rule. The rule candidates are aggregated as follows, with the
lowest of all rule candidate scores being the final score.

d Rule Candidate Confidence
1 r1(X, 00581891) → r2(00581891, X) 0.2
2 r1(X, 00581891) → r2(00581891, X) 0.4
3 r1(X, 00581891) → r2(00581891, X) 0.3
1 r3(02693319, Y) → r4(Y, 02693319) 0.6
2 r3(02693319, Y) → r4(Y, 02693319) 0.55
3 r3(02693319, Y) → r4(Y, 02693319) 0.4
4 r3(02693319, Y) → r4(Y, 02693319) 0.8

Table 4.2: An Example of a Rule Candidate Table in the Post-Processing Phase: Number
of Dimensions = 4

Final rules Confidence
r1(X, 00581891) → r2(00581891, X) 0.2
r3(02693319, Y) → r4(Y, 02693319) 0.4

Table 4.3: An Example of a Final Rule Table After the Post-Processing Phase: Number
of Dimensions = 4, Confidence Threshold = 3 Dimensions

The final rule set will be exported for knowledge graph completion tasks. The results
for applying the rules, mined from the ExpressivE model based on WN18RR, will be
presented in the next section, Evaluation 5.

33

CHAPTER 5
Experimental Evaluation

This section aims to assess the performance and effectiveness of ExpressivE RM, which
was introduced in the previous sections. The evaluation process involves training the
embedding model, rule mining with ExpressivE RM, and running the state-of-the-art
algorithm AnyBURL for comparison. To allow for a fair comparison, the algorithms are
executed on the same machine, with an Intel(R) Xeon(R) Silver 4314 CPU @ 2.40 GHz
with 64 available cores. The machine has 1008GB RAM and four GeForce RTX 2080 Ti
GPUs, which is sufficient to test the algorithms under realistic conditions. To measure
the prediction performance, the score metrics introduced in Section 2.7 are used and the
values in the objectives Section 5.2 will be used to answer the research questions.

5.1 Experimental Setup

5.1.1 Training ExpressivE
The training process involved optimizing a self-adversarial negative sampling loss using
the Adam optimizer, and during this phase, gradient descent was used to fine-tune
ExpressivE’s parameters [KB14]. The training was stopped early after 1000 epochs if
there was no improvement of at least 0.5% in the h@k k ∈ {1, 3, 5, 10} score for WN18RR.
For training, the four GPUs were used. For training ExpressivE, we use the parameters
of Pavlović and Sallinger (2024) [PS24] that lead to the best-published results for an
ExpressivE embedding with dimensionality d = 32.

5.1.2 Rule Mining with ExpressivE RM
For rule mining with the proposed algorithm ExpressivE RM, the experiments were run
with the following configuration file, which stops at the threshold of a minimum score of
40% and a minimum of 16 dimensions since there were no further improvements in any

35

5. Experimental Evaluation

scores at this point as observed in a pre-run. For mining the rules, we do not use GPUs,
but only CPUs.

5.1.3 Rule Mining with AnyBURL
For evaluating AnyBURL, we used the parameters from the original paper [MCRS19]
and a snapshot after 100 seconds with 16 worker threads. AnyBURL was run on the
same machine as the other evaluations for a fair comparison setting. AnyBURL uses
CPUs as well to mine rules.

5.1.4 Dataset
WN18RR

The WN18RR dataset (see 2.8.1) was used to evaluate the algorithm. The dataset is
divided into a train, validation and test set, with 86835 triples, 3034 triples and 3134
triples, respectively. The same train-validation-test-split was used to evaluate AnyBURL,
thus it makes results comparable.

5.2 Objectives Derived from the Research Questions
To answer the research questions by quantifiable parameters, the following hypotheses
need to be discarded, or the following criteria must be met.

• (RQ1) h0: hits@1, hits@3, hits@10 and MRR equal all 0.

• (RQ2) h0: The runtime of the algorithm lies not within the same time range of
either minutes, hours, days, or weeks compared to the state-of-the-art algorithm.

• (RQ3) Comparison by inference patterns and confidence scores.

• (RQ4) h0: Composed combined rule set hits@1, hits@3, hits@10 and MRR are
smaller or equal to state-of-the-art algorithms.

5.3 Experimental Details
The parameters and details of the experimental setup and evaluation are stated in this
section. Especially the model used and relevant parameters to reproduce the results.

5.3.1 Implementation Details and Reproducibility
Dependencies

The following dependencies must be available in either pip or in a conda environment to
execute the code of ExpressivE RM in Python 3.9.

36

5.3. Experimental Details

• Matplotlib 3.7.1
• Numpy 1.24.3
• Pandas 1.5.2
• Pykeen 1.7.0
• Python >= 3.9
• Pytorch 1.10.2
• Seaborn 0.13.0
• Shapely 2.0.1
• Tensorboard 2.8.0

For the evaluation, the following additional packages are needed:

• Reportlab

Furthermore, the evaluation needs to have the code of the evaluation of AnyBURL
ready. Detailed instructions can be found on the project’s homepage: https://web.
informatik.uni-mannheim.de/AnyBURL/. The folder of the evaluation needs to
be set in the profile file of ExpressivE RM. We used Java 20.0.1 2023-04-18 to run
AnyBURLs evaluation code and verify the results.

Installation

After installing the dependencies and cloning the code, a profile file needs to be created.
The source code provides a sample file which can be copied and adjusted. To use the
evaluation step, the respective dependencies must be installed. The working directory
should be set to a large drive since it will hold the raw rules and will save much temporary
data. With the cleanup parameter, these files can be automatically deleted after usage.
The caching option allows the persistence of all possible intermediate results to continue
the algorithm from every step in the configuration. Not using caching will result in a
high usage of RAM on the system. The result directory will hold the results, such as
the confidence matrices, a log of each run, a statistic file (if filtering is enabled) and the
generated rules.

Experiments

Base Model The base model ExpressivE is trained by running the run_experiments.py
Python script. Before that, the according config files must be provided. The source
code contains The best configuration files for WN18RR, which can be found in the
Best_Configurations directory.

According to Pavlović and Sallinger (2023) [PS23] and as done in our experiments, the
following parameters must be set:

• config contains the path to the model configuration

37

https://web.informatik.uni-mannheim.de/AnyBURL/
https://web.informatik.uni-mannheim.de/AnyBURL/

5. Experimental Evaluation

• train contains true if the model shall be trained, otherwise false.

• test contains true if the model shall be evaluated on the test set and otherwise
false

• expName contains the name of the experiment

• gpu contains the id of the GPU that should be used for training the base model.

• seeds contains the seeds for repeated runs of the experiment to ensure reproducibil-
ity

AnyBURL (for comparison) For training AnyBURL, we used the settings on the
project page. The number of WORKER_THREADS was set to 16 for both config-
learn.properties and config-apply.properties.

ExpressivE RM standard approach The algorithm of the implemented approach
provides profiles for usage. A profile is a text file separated into different stages, with the
possibility of turning single features on and off. Each stage can be optionally executed,
while some stages depend on others. The enabled = true or enabled = false runs or skips
the respective stage. The following parameters are available for each stage:

• Import

– checkpoint_path path to the checkpoint file of ExpressivE
– config_path path to the config file of ExpressivE

• Inference_Matrices

– Only contains the enabled parameter. This step will create inference pattern
matrices and save them to the results directory.

• Pre-Processing

– preselect_min_score Selects only patterns with a minimum native score of
a value between 0.0 and 1.0. The native score is not related to the score for
each inference pattern but an alternative scoring method.

– min_score Since the scores for each pair of relations are calculated beforehand,
the parameter’s method can skip patterns before further processing them. If
the score of the inference patterns or the native score will be used for the final
rules is decided in post-processing (see below).

• Mine_Rules

– extended_algorithm Set to true, if the ExpressivE RM extended approach
should be run additionally, otherwise false.

38

5.3. Experimental Details

• Post-Processing

– min_dims Select only rules that appear in a minimum of the hereby set
number of dimensions. The parameter must be an integer between 0 and the
total number of dimensions.

– min_score Select only rules that meet a minimum score of the hereby set
one.

– use_preselect_score Set to true, if the native score should be used for the
final rules. Set to false if the scores of the inference pattern matrix should be
used.

– inverse_relations_mode Must be set to an integer between 0-3, represent-
ing the following options:

∗ 0 reject all rules with inverse relations
∗ 1 accept all rules with inverse relations
∗ 2 exclusively accept rules with inverse relations
∗ 3 exclusively accept rules with both relations being inverse

• Filter

– min_dims Selects all rules that appear in at least as many dimensions as set
here. The value must be between 0 and the total dimensions count.

– max_dims Selects all rules that appear in at most as many dimensions as
set here. The value must be between 1 and the total dimensions count. The
parameter can be set to -1 to use the total dimensions count.

– min_score Selects all rules with a minimum score set here. The value must
be between 0.0 and 1.0.

– max_score Selects all rules with a maximum score set here. The value must
be between 0.0 and 1.0.

– filter_out_FULL_INVERSE If set to true, all rules where head and body
were inverted in the pre-processing will be removed. Otherwise, set to false.

– filter_out_PARTLY_INVERSE If set to true, all rules where either head
or body were inverted in the pre-processing will be removed. Otherwise, set
to false.

– filter_out_NON_INVERSE If set to true, all rules where head and body
were not inverted in the pre-processing will be removed. Otherwise, set to
false.

– filter_out_SYMMETRY If set to true, all rules that apply to the symmetry
inference pattern will be removed. Otherwise, set to false.

– filter_out_INVERSION If set to true, all rules that apply to the inversion
inference pattern will be removed. Otherwise, set to false.

39

5. Experimental Evaluation

– filter_out_HIERARCHY If set to true, all rules that apply to the hierarchy
inference pattern will be removed. Otherwise, set to false.

– filter_out_OTHERS If set to true, all rules that do not apply to the
symmetry, inversion or hierarchy inference pattern will be removed. Otherwise,
set to false.

– filter_out_ONE_CONSTANT If set to true, all rules that have exactly
one constant variable in head and body together will be removed. Otherwise,
set to false.

– filter_out_TWO_CONSTANTS all rules that have exactly two constant
variables in head and body together will be removed. Otherwise, set to false.

– filter_out_THREE_CONSTANTS all rules that have exactly three
constant variables in head and body together will be removed. Otherwise, set
to false.

– filter_out_FOUR_CONSTANTS all rules that have exactly four constant
variables in head and body together will be removed. Otherwise, set to false.

• Evaluation

– evaluation_mode Can be set to either of the following options:
∗ 0 uses group-by-group evaluation, which provides a fast, quick overview

of results by evaluating each group separately.
∗ 1 uses cumulative evaluation, which needs more time, yet provides the

probably best results for final evaluation by descending from a perfect
score (1.0) and descending from the maximum number of dimensions for
each iteration and adding more rules in each step.

– threshold_group_size Splits the rules by threshold with the hereby set
group size. A threshold of 1 will create a group for each score 0.00-0.01,
0.01-0.02,.... If set to 2, then the groups will contain rules of the scores
0.00-0.02, 0.02-0.04,....

– dim_cuts Further divides the groups of rules by the number of dimensions the
rules appear in. Provide the number of dimensions for separating the groups
and list by using a colon in between. For example, 0, 8, 16, 24 will create
four groups with rules appearing in 0-7, 8-15, 16-23, and 24+ dimensions.

• General (applies to all stages)

– caching If set to true, each data chunk and the intermediate result will be
saved to the hard disk instead of using RAM only. Use this to start an
experiment from a later stage without always having to run the previous
stages. Otherwise, set to false.

– threads Set to an integer between 0 and the number of available CPU cores.
The algorithm will use a maximum of now specified CPU cores.

40

5.3. Experimental Details

– cleanup Will delete intermediate results in the working directory after finishing
the execution if set to true. Otherwise, set to false.

– working_directory_path Provide a path to an empty directory for saving
intermediate results and other temporary files. If the directory does not exist,
it will be created.

– result_directory_path Provide a path to a directory for saving final results
and evaluations. If the directory does not exist, it will be created.

– evaluation_directory_path Provide a path to the AnyBURL evaluation
directory.

Reproducing the results

We used the following command for training the model:

python run_experiments.py gpu=0 train=true test=true seeds=2
config=Best_Configurations/ExpressivE/d32_WN18RR.json
expName=ExpressivE_d32_WN18RR

Furthermore, the following commands were used to train and evaluate AnyBURL:

java -Xmx12G -cp AnyBURL-23-1.jar de.unima.ki.anyburl.Learn
config-learn.properties
java -Xmx12G -cp AnyBURL-23-1.jar de.unima.ki.anyburl.Apply
config-apply.properties
java -Xmx12G -cp AnyBURL-23-1.jar de.unima.ki.anyburl.Eval
config-eval.properties

For running ExpressivE RM we used the following profile-file, named final.profile:

[Import]
enabled = true
checkpoint_path = /home/jvecera/ExpressivE/checkpoint.pt
config_path = /home/jvecera/ExpressivE/d32_WN18RR.json

[Inference_Matrices]
enabled = true

[Pre-processing]
enabled = true
preselect_min_score = 0.4
min_score = 0.0

41

5. Experimental Evaluation

[Mine_Rules]
enabled = true
extended_algorithm = false

[Post-processing]
enabled = true
min_dims = 0
min_score = 0.0
use_preselect_score = true
inverse_relations_mode = 1

[Filter]
enabled = true
min_dims = 0
max_dims = -1
min_score = 0.0
max_score = 1.0

filter_out_FULL_INVERSE = false
filter_out_PARTLY_INVERSE = false
filter_out_NON_INVERSE = false

filter_out_SYMMETRY = false
filter_out_INVERSION = false
filter_out_HIERARCHY = false
filter_out_OTHERS = false

filter_out_ONE_CONSTANT = false
filter_out_TWO_CONSTANTS = false
filter_out_THREE_CONSTANTS = false
filter_out_FOUR_CONSTANTS = false

[Evaluation]
enabled = trueevaluation)
evaluation_mode = 1
threshold_group_size = 1
dim_cuts = 0, 8, 16, 24

[General]
caching = true
threads = 16
cleanup = false

42

5.4. Results

working_directory_path = /home/jvecera/workdir_final
result_directory_path = /home/jvecera/resultdir_final

evaluation_directory_path = /home/jvecera/evaluation

The algorithm was started using the following command:

python3.9 ExpressivE_RM.py final.profile

5.4 Results
The executions of the algorithms resulted in the following output. The ExpressivE
standard approach successfully ran through its procedure with a runtime of less than
15 minutes. This result was made possible by many optimizations. However, the little-
optimized extended approach, although theoretically promising, timed out after one week.
We will optimize this approach in the future to leverage its theoretical benefits.

5.4.1 ExpressivE RM Standard Approach

Table 5.1: Results for the ExpressivE RM Standard Approach

Benchmark Score (min) Dimensions (min) Rules h@1 h@3 h@10 MRR
WN18RR 40 0 81118 .3226 .3226 .3226 .3226

Statistics
min max avg std

Score 0.40948 0.40948 0.40948 0.0
Constants 2 2 2 0.0

Dims 4 25 18.2244 3.17611

Table 5.2: Statistics

The ExpressivE RM standard approach had its best results at a cutoff confidence score
of 40 (see 4.2.3). Reducing the minimum threshold did not result in any better results
on the used dataset WN18RR, but only in more rules without effect. The final result is
as follows: ExpressivE RM creates a rule set with 81118 symmetry rules in its standard
version. The hits@1, hits@3, hits@10 and MRR are respectively 0.3226, 0.3226, 0.3226
and 0.3226. Although it was expected that rules must be present in all dimensions, the
results show that this is not the case. Each rule of the result rule set was inspected
regarding in how many dimensions it is satisfied. The statistics table shows that there
are rules that are satisfied in 4 dimensions. However, the largest number of dimensions in
which a rule is satisfied is 25 and not 32. These results are likely due to the base model’s
approximation nature, which we shall investigate in future work. This knowledge on the

43

5. Experimental Evaluation

approximation nature of ExpressivE may be used to implement further optimizations,
that reduce the runtime even more. Further inspection is necessary regarding the scores
that are equal for all rules in the resulting rule set. The result rule set has only rules of a
particular type, which needs to be analyzed in detail per rule. The following table shows
how many rule candidates were created per dimension.

RULES PRESENT IN DIMENSIONS
DIM 0 1 2 3 4 5 6

1758 72460 54180 65214 57514 55362 0
2.17% 89.33% 66.79% 80.39% 70.9% 68.25% 0%

DIM 7 8 9 10 11 12 13
77858 0 0 77736 30196 78074 0

95.98% 0% 0% 95.83% 37.22% 96.25% 0%
DIM 14 15 16 17 18 19 20

76414 37982 74118 0 61776 77000 72316
94.2% 46.82% 91.37% 0% 76.16% 94.92% 89.15%

DIM 21 22 23 24 25 26 27
64142 32524 0 72730 50786 0 57824

79.07% 40.09% 0% 89.66% 62.61% 0% 71.28%
DIM 28 29 30 31 32

48060 52554 78208 51546 0
59.25% 64.79% 96.41% 63.54% 0%

Table 5.3: Rules Present in Different Dimensions

The first integer shows the number of rule candidates in the respective dimension, and
below is the ratio of how big the set of rule candidates from the respective dimension is,
compared to the final rule set. The table shows that some dimensions do not contain any
rule candidates.

58s

Import

14s

Scores

30s

Pre-processing

7m31s

Rule Mining

3m41s

Post-processing

2s

Filter

18s

Evaluation

Table 5.4 shows the time taken for each processing step. As the timeline shows, rule
mining and post-processing account for more than 80% of the total runtime. These were
also the steps with the most optimizations and heavily depended on the hardware used
and the capabilities of storing larger amounts of data. In total, the execution took 13m
and 19s according to the log file output, making ExpressivE RM a very fast algorithm
and allowing the quick creation of predictive rule sets.

44

5.5. Comparison

Task Time
Importing base model 58s
Creating inference matrices (scores) 14s
Pre-Processing 30s
Rule Mining 7m 31s
Post-Processing 3m 41s
Filtering 2s
Evaluating 18s

Table 5.4: Time Taken for Different Tasks

5.4.2 ExpressivE RM Extended Approach
Although theoretically promising, the extended approach was not optimized to meet the
time constraints. The not-optimized extended approach reached the time out after one
week. In the future, we will optimize the approach to provide results in a feasible time.

5.5 Comparison
5.5.1 Overview

Table 5.5: KGC performance under low dimensionalities (d=32) as seen in Pavlović and
Sallingers work [PS24] compared to Rule Miners ExpressivE RM and AnyBURL

Family Model WN18RR

Ru
le

m
in

er H@1 H@3 H@10 MRR
ExpressivE RM standard .3226 .3226 .3226 .3226
ExpressivE RM extended - - - -
AnyBurl .449 .499 .557 .484

K
no

w
le

dg
e

G
ra

ph
Em

be
dd

in
g

ExpressivE .485 .442 .499 .571
TuckER .428 .401 - .474
MuRE .458 .421 .471 .525
RefE .455 .419 .470 .521
RotE .463 .426 .477 .529
AttE .456 .419 .471 .526
HAKE .416 .389 .427 .467
RotatE .387 .330 .417 .491
ComplEx-N3 .420 .390 .420 .460
MuRP .465 .420 .484 .544
RefH .447 .408 .464 .518
RotH .472 .428 .490 .553
AttH .466 .419 .484 .551
ConE .471 .436 .486 .537

45

5. Experimental Evaluation

5.5.2 ExpressivE RM Standard Approach and AnyBURL
ExpressivE RM standard approach mines symmetry rules based on the latent knowledge
of the underlying embedding model. The state-of-the-art rule miner AnyBURL, however,
also mines rules of other types, which raises the question of whether a combination of
ExpressivE RMs and AnyBURLs rules provides a benefit.

Firstly, the rule sets of both approaches will be analysed for further combination strategies.

Table 5.6: Number of Mined Rules per Inference Pattern

Pattern WN18RR
ERM Standard AnyBurl

Symmetry 81118 (100%) 14405 (22%)
Inversion 0 37 (<1%)
Hierarchy 0 29 (<1%)
Other 0 50743 (>77%)
Overall 81118 65214

As Table 5.6 shows, the ExpressivE standard approach mines 81118 symmetry rules,
whereas AnyBURL generates 14405 symmetry rules. The remaining 78% of rules of
AnyBURL consist of other rule types.

Figure 5.1: Result rule sets of ExpressivE RM standard approach, symmetry rules of
AnyBURL and rules both have in common

When analysing the rule sets in detail, it is possible to find 13710 rules both the rule
set of ExpressivE RM standard approach and the symmetry rule set of AnyBURL have
in common, which accounts for 17% of ExpressivE RMs rules and 95% of AnyBURLs
symmetry rules rule set. This means that ExpressivE RM standard covers 95% of the
rules of AnyBURL and AnyBURL only 17% of our rules. This raises the question of
whether our approach mines a more significant amount of predictive rules or whether

46

5.6. Combination

AnyBURL mines higher quality rules. Table 5.7 shows the results for evaluating the
exclusively mined rules for both approaches and the performance of the rules both
approaches have in common.

Table 5.7: Results for specific rule sets

Rule Set Rules h@1 h@3 h@10 MRR
Exclusive ExpressivE RM standard rules 67408 .2773 .2773 .2773 .2773
Exclusive AnyBURL symmetry rules 695 .3465 .3465 .3465 .3465
AnyBURL symmetry rules 14405 .3465 .3465 .3465 .3465
Common rules 13710 .2049 .2049 .2049 .2049

The numbers show that the rules that both approaches have in common reach a hits@1,
hits@3, hits@10 and MRR score of 0.2049, which is remarkably lower than the results
of both approaches individually. When we exclude these common rules from both rule
sets, the remaining 695 rules of AnyBURL have scores respectively of 0.3465, whereas
ExpressivE RM standards 67408 rules reach a score of 0.2773 for the used metrics. This
indicates that both approaches have exclusive rules with scores in the used hits@k metrics
in knowledge graph completion. It might be beneficial to inspect these rules and see how
they can be combined with the common rules.

5.6 Combination
The results of the previous sections raise the question of whether a combination of rule
sets might be beneficial. This section will use two combinations of rule sets, namely all
rules of ExpressivE RM standard and AnyBURLs rules, and in the second combination,
ExpressivE RM standards symmetry rules and all other rules from AnyBURL, to create
a rule set where AnyBURLs symmetry rules are replaced by ExpressivE RMs.

Table 5.8: Evaluation of combined rule sets of ExpressivE RM standard approach and
AnyBURLs rule set.

Rule set Metrics
Rules h@1 h@3 h@10 MRR

All (ExpressivE RM) 81118 .3226 .3226 .3226 .3226
All (AnyBURL) 65214 .4488 .4990 .5570 .4840
Overall 146332 .4488 .4990 .5570 .4840

Putting both rule sets together creates a result set of a total 146332 rules. These rules
were evaluated and led to scores as seen in Table 5.8. The numbers indicate that the
rules of the rule set of AnyBURL are dominating the knowledge graph completion task,

47

5. Experimental Evaluation

so a deeper analysis of the rules is necessary to decide whether combining the rule sets is
beneficial in regards to better results in knowledge graph completion.

Table 5.9: Combination of rule sets by inference patterns.

Rule set Metrics
Rules h@1 h@3 h@10 MRR

Symmetry (ExpressivE RM) 81118 3226. .3226 .3226 .3226
Hierarchy, Inversion, Other (AnyBURL) 50809 .1481 .2368 .3414 .2107
Overall 131927 .4221 .4807 .5420 .4618

Table 5.9 shows the evaluation result if ExpressivE RMs rules and all rules not being
symmetry rules of AnyBURL are combined. The numbers indicate that the approaches
complement each other well and both approaches contribute to high scores of the used
metrics.

A limitation of both combination approaches is that scores of AnyBURL rules and
ExpressivE RM rules are not equally scaled because the different scoring functions of the
respective approaches were used. Therefore, rules of a certain kind could be preferred
from one algorithm over the other.

5.7 Summary
This section describes the experimental setup of the developed algorithm in comparison
with other approaches or the combination of rule sets. We assess the performance of
the developed algorithm, ExpressivE RM, by training the embedding model and mining
rules with it and comparing the algorithm’s performance with the state-of-the-art rule
miner AnyBURL. First, we introduced the system setup and the parameters used. All
experiments are conducted on the same machine to ensure fairness. After that, we
presented the experimental results of various combinations of rule sets. To measure
performance, the hits@k and MRR scores were used, together with the runtime of the
algorithm.

Overall the ExpressivE RM standard approach can mine a rule set in less than 15 minutes.
These rules were successfully used in KGC prediction. The algorithm creates 81118
symmetry rules with scores of hits@1, hits@3, hits@10, and MRR of 0.3226 in an explicit
format, providing explainability and interpretability. Also, the explicit format allows
to add or to remove facts or knowledge from a rule set. Further refinement is needed
for the extended approach to realize its potential benefits and extend the search space
considerably.

48

CHAPTER 6
Conclusion

6.1 Discussion
Initially, the implementation started with the model of ExpressivE having 500 dimensions,
which quickly raised the question of how to optimize the algorithm due to its high
complexity. The ExpressivE RM standard approach was first implemented to show that
the geometric interpretation can be used to make the latent knowledge of the KGE
explicit by providing a rule set. However, for various reasons, the initial prototype took
long to mine these rules.

Firstly, the algorithm was built on Python as the libraries from ExpressivE could be
easily used. However, Python quickly showed its extravagant usage of resources, which
made several optimizations necessary.

Secondly, the initial algorithm without optimizations did not use multi-threading for its
advantage, which was implemented in the development process to drastically decrease
processing time (to less than 10% of the initial runtime). This raised another problem:
High RAM usage. Since then, RAM usage has been very high, and at first, SWAP space
was used to overcome this.

Thirdly, the RAM usage problem was solved by not having shared resources between
the threads but by splitting data into independent chunks in the pre-processing step,
saving them to the hard disk and then using the worker threads to process chunks. This
improvement allowed us to run the whole algorithm on an arbitrarily small system, as
small as one core and a few GB of RAM, with the ability to rescale for larger systems
automatically and use resources efficiently.

Eventually, the program was refactored and adapted to use 32 dimensions for higher
efficiency and to provide the ability to read easily understandable config files instead
of adjusting hardcoded values or using extended command line parameters, making
implementation of pipelines and parameter variations possible.

49

6. Conclusion

A post-processing step was also introduced to provide rules readable by AnyBURL
evaluation algorithms written in Java. Finally, a filtering step for collecting statistics as
well as improved evaluation of rules was implemented to explore the different kinds of
rules and rule sets depending on inference patterns and several entities/variables. This
provides insights into the result rule sets and has metrics to compare to state-of-the-art
algorithms in a more sophisticated way. All these improvements could minimize the
initial runtime of several days to less than 15 minutes on 16 threads and 128GB of RAM
for the standard approach.

After promising results, the ExpressivE RM extended approach was implemented to
extend the search space, which again led to the necessity of optimization. For example,
the data structures were prepared by sorting entities and limiting the search space by
considering specific parameters and configurations in the embedding. In future work, we
will optimize this extended approach further to make it applicable in prediction tasks.

Ultimately, by theoretically analysing ExpressivE and practically implementing the
algorithm to use these theoretical assumptions, we could make the knowledge of the KGE
explicit by adding another abstraction layer in the form of rule sets.

Geometrical Interpretation. We used the theoretical foundation of the base model
to create simple rules without further aggregations or generalisations of the rules them-
selves. We see that solely the geometrical representation of the relations and entities
provides the information needed to create such explicit rules, dramatically making results’
interpretability easier.

Prediction Performance. Furthermore, ExpressivE RM reaches comparable perfor-
mance as state-of-the-art rule miners, regarding the correctly predicted facts in the test
set. At the same time, there is potential to maintain this performance while decreasing
the number of rules by generalisation or aggregation. Although the model cannot beat
current algorithms, it shows the potential of the approach, which can be extended to
capture more advanced inference patterns in the future.

Explainability and Explicity. One main advantage of ExpressivE RM is that it
makes implicit knowledge from a KGE explicit and provides quickly understandable rules,
making reasoning easier and allowing the possibility to easily remove or add knowledge
to a rule set, which is used for prediction tasks.

Scalability and Efficiency. ExpressivE RM follows the principle of divide-and-conquer
wherever this is possible. Multi-threading and splitting data for parallelisation make
ExpressivE RM scalable and efficient. Due to its design, the algorithm can be run on a
personal computer and large computer systems. The standard approach is capable of
providing results in a few minutes. Also, it is possible to focus only on specific dimensions
to reduce the workload and processing time if only rough data or a first draft of a rule
set is needed.

Discussion of results. We have shown that ExpressivE RM is a valid approach for
creating rules with comparable performance to state-of-the-art algorithms while providing

50

6.2. Discussion of Research Questions

results in a short amount of time and making knowledge of a KGE explicit and explainable.

6.2 Discussion of Research Questions

• (RQ1) Can the geometric interpretation of ExpressivE be used to mine rules with
prediction performance in knowledge graph completion?

• (RQ2) To what extent can the runtime of ExpressivE RM be improved while
maintaining practical applicability?

• (RQ3) In what ways do rule sets generated by ExpressivE RM differ from those
produced by state-of-the-art rule miners?

• (RQ4) Can combining rule sets from ExpressivE RM and the state-of-the-art rule
miner, boost overall performance in knowledge graph completion?

6.2.1 (RQ1) Can the geometric interpretation of ExpressivE be used
to mine rules?

The short answer is yes. We could successfully mine rules on the ExpressivE embedding
that lead to meaningful predictions on the test dataset WN18RR. This proves that
the geometric interpretation can be used to create meaningful rules. However, some
adjustments to the initial assumptions had to be made, such as finding out that rules do
not necessarily need to be present in all dimensions. Also, the results show that some
dimensions do not contain a single rule candidate. By adjusting these assumptions, the
approach ExpressivE RM standard could mine 81118 rules on WN18RR with a hits@1
score of 0.3226, a hits@3 score of 0.3226, a hits@10 score of 0.3226 and an MRR score of
0.3226.

6.2.2 (RQ2) To what extent can the runtime of ExpressivE RM be
improved while maintaining practical applicability?

Compared to the original runtime of several days, the final algorithm could be optimized
to finish in approximately 13 minutes. This lies within the time range of minutes with
AnyBURL. This could be achieved by reducing the number of dimensions, adding the
support for processing data in parallel, optimizing RAM usage and organizing data more
efficiently in the pre-processing step.

6.2.3 (RQ3) In what ways do rule sets generated by ExpressivE RM
differ from those produced by state-of-the-art rule miners?

Compared with our state-of-the-art rule miner AnyBURL and its symmetry rules, the
result set of ExpressivE RM standard has 13710 rules in common, which covers 95% of
AnyBURLs rules and 17% of ExpressivE RMs rule set. ExpressivE RM is capable of

51

6. Conclusion

mining 67408 exclusive rules with hits@1, hits@3, hits@10 and MRR of 0.2773, indicating
the ability to correctly predict facts with these exclusively mined rules. However, these
rules need to be further inspected, and scoring functions need to be adjusted to reduce the
number of rules by removing the ones with low or no ability to predict correct outcomes
when used with the data in the test set.

6.2.4 (RQ4) Can combining rule sets from ExpressivE RM and the
state-of-the-art rule miner, boost overall performance in
knowledge graph completion?

The results show that performance cannot be boosted compared to the state-of-the-art
results. A combination of ExpressivE RMs and AnyBURLs rules shows that the metrics
do not improve compared to the state-of-the-art approach. Also, replacing the symmetry
rules of AnyBURL with ours does not improve the metrics. However, ExpressivE RM
showed that its rules are from strong predictive performance in KGC and have the
potential to contribute in an improving manner, especially the extended approach, which
extends the search space remarkably, promises to provide high-quality rules and uses
latent knowledge of an underlying embedding model.

In conclusion, rule mining on the embedding model ExpressivE shows remarkable results
and proves that predictive rules can be mined from the geometric interpretation of the
model. The rule set of ExpressivE RM standards approach covers 95% of the state-of-the-
art rule miner AnyBURL and provides exclusive rules with strong predictive performance
in KGC. These findings can be used to limit the search space in a way that provides fewer
rules with equal or stronger predictive performance in KGC by adjusting the scoring
function of the rules and by extending the search space to mine rules of different types,
thus making latent knowledge of underlying embedding models explicit. The assumption
that rules must be present in all dimensions should be further inspected in future work
since the results show that some dimensions do not even cover one rule candidate. The
approximating nature of the underlying model might cause this. However, this knowledge
can also be used to reduce the search space and exclude specific dimensions to decrease
processing time or get quick first results for new datasets with low computing power.

6.3 Limitations
ExpressivE RM proves that rule mining on embedding models leads to promising results
and rules of strong predictive performance in KGC. However, the results are limited by
the following factors.

6.3.1 Search Space
Firstly, the search space of ExpressivE RM is currently bound to symmetry rules on
datasets. However, the underlying model ExpressivE is capable of capturing a variety
of inference patterns. The geometric interpretation of this can be used to extend the

52

6.4. Future Work

search space and mine more rules that can be used to correctly predict missing facts in a
dataset.

6.3.2 Algorithm Efficiency
Secondly, ExpressivE RMs algorithms were written in Python since the base model could
be directly imported. However, Python is a very resource-intensive interpreting language,
which might not use resources efficiently enough, making many optimizations necessary.
By developing the algorithm more efficiently in another programming language, the
processing time could be reduced, and it could run on systems with fewer available
resources such as CPU cores, RAM and storage.

6.3.3 Scoring
Currently, the result rule set has only rules with the same score. This makes it especially
hard to combine the rules with other approaches that have ranked rules. Also, the scoring
function might be the reason for the large number of rules, which do not all have the
ability to correctly predict missing facts in the data. By adjusting the scoring function,
the rules could be ranked and better combined with other approaches, and their number
can be reduced, shifting the resulting rule set from a quantity of rules to qualitative rules.

6.4 Future Work
This work shows promising results in rule mining using embedding models and making
their latent knowledge explicit. ExpressivE RM can be considered as the foundation
for further improvements to mine qualitative rules in a reasonable amount of time and
by extending the algorithms and its search space to cover more rule types, which the
underlying embedding model provides.

6.4.1 Search Space
The geometric interpretations and scores of rules should be inspected in detail to derive
further improvements of the scoring function, limiting the search space so that fewer
rules with equal or better ability to correctly predict missing facts are mined.

Also, the number of dimensions a rule candidate is present should be taken into consider-
ation when assigning scores, as the results show that, unexpectedly, this is a metric that
influences the ability to correctly predict missing facts. This knowledge can also be used
to quickly exclude specific dimensions and gain rules by a trade-off of this capability,
which might be reasonable in specific scenarios where speed is more important than a
perfect rule set.

Furthermore, the search space can be extended by further optimizing and adjusting
the extended approach, providing rules of different types and covering more inference
patterns of the underlying embedding model. By optimizing the rule mining process,

53

6. Conclusion

the extended approach might follow the schema of the standard approach, which was
inefficient in its first draft and needed to be extensively optimized to mine rules efficiently
in a short time.

6.4.2 Datasets
To ensure robustness and generalisability, the algorithm should be tested on different
datasets. This will help to understand the performance and potential strengths and
weaknesses in different contexts and identify limitations or biases that might have been
present in WN18RR.

Testing the algorithm on various datasets could determine potential over- or under-fitting.
This will also give a better insight into the generalisability of our results. Topics that
can be addressed by validating the algorithm on other datasets include the ability to
test transfer learning capabilities between datasets and identify similar datasets. Also, a
wide variety of data for testing will ensure robustness to changes in the data distribution
or other factors. This will allow us to make more informed decisions and adoptions for
future versions of ExpressivE RM.

Overall, by using the algorithm on various datasets, its robustness, generalisability, and
applicability to real-world problems can be further evaluated.

6.4.3 Optimization
Optimization strategies such as introducing parallel processing, adjusting data chunks
according to system resources and preparing data in a pre-processing step to optimize
rule mining should be considered for further research. The resource-intense extended
approach can cleverly organize entities, relations, and dimensions to save resources and
improve processing speed.

Future work should also cover whether the algorithm can benefit from more efficient
programming languages and advanced programming techniques to decrease processing
time by efficiently allocating available resources.

Also, assigning scores beforehand, possibly due to the geometrical interpretation and the
derived scores, might help to optimize the rule mining process to limit the search space
reasonably.

6.4.4 State-of-the-Art Embedding Models
Future work can benefit from newer embedding models and optimized variants such
as SpeedE [PS24]. A parallel improvement of underlying embedding models and rule
miners, such as the proposed one, can benefit both sides, namely the embedding model,
by providing insights into the structure of information and type of inference patterns
being able to be captured and providing insights in how dimensions, entity, and relation
configuration might be further optimized. The rule miners profit by using the increased

54

6.4. Future Work

power of embedding models to more accurately capture rules and using nuances in
geometric compositions to adjust the scoring of rules and the search space overall.

55

List of Figures

2.1 Abstract representation of a knowledge graph with 4 entities and 4 relations 6
2.2 An example instance of a (heterogeneous) knowledge graph with 4 entities

and 4 relations . 6
2.3 The illustration shows many prominent patterns that several KGEs can capture 8

4.1 Illustration of the proposed method to improve explainability by another
abstraction layer . 21

4.2 An example of a symmetric relation in a single dimension d with scores of 1.0
(left) and 0.53 (right) . 23

4.3 An example of an anti-symmetric relation in a single dimension d with scores
of 1.0 (left) and 0.47 (right) . 24

4.4 An example of two relations that are inverse to each other in a single dimension
d with scores 1.0 (left) and 0.72 (right) . 24

4.5 An example of hierarchical relationships in a single dimension d with scores
1.0 (left) and 0.75 (right) . 25

4.6 An example of the intersection pattern in a single dimension d with scores 1.0
(left) and 0.71 (right) . 26

4.7 An example of mutual exclusion in a single dimension d with scores 1.0 (left)
and 0.98 (right) . 26

4.8 An example of the general composition pattern in a single dimension d with
scores 1.0 (left) and no assigned score (right) 27

4.9 An example of the cutting process of two relationships in a single dimension d 30
4.10 Standard rule mining process in a single dimension d with red points as

embedded entities . 31
4.11 Extended rule mining process in a single dimension d with the red point as

embedded entity . 32

5.1 Result rule sets of ExpressivE RM standard approach, symmetry rules of
AnyBURL and rules both have in common 46

57

Bibliography

[ABH19] Carl Allen, Ivana Balažević, and Timothy M Hospedales. On understanding
knowledge graph representation. arXiv preprint arXiv:1909.11611, 2019.

[ACLS20] Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso
Salvatori. Boxe: A box embedding model for knowledge base completion. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[BAH19a] Ivana Balažević, Carl Allen, and Timothy Hospedales. Multi-relational
poincaré graph embeddings. Advances in Neural Information Processing
Systems, 32, 2019.

[BAH19b] Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor fac-
torization for knowledge graph completion. arXiv preprint arXiv:1901.09590,
2019.

[BUG+13] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational
data. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and
Kilian Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States, pages 2787–2795, 2013.

[BYRL21] Yushi Bai, Zhitao Ying, Hongyu Ren, and Jure Leskovec. Modeling het-
erogeneous hierarchies with relation-specific hyperbolic cones. Advances in
Neural Information Processing Systems, 34:12316–12327, 2021.

[CWJ+20] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and
Christopher Ré. Low-dimensional hyperbolic knowledge graph embeddings.
arXiv preprint arXiv:2005.00545, 2020.

59

[DMSR18] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian
Riedel. Convolutional 2D Knowledge Graph Embeddings, July 2018.
arXiv:1707.01476 [cs].

[DT01] Luc Dehaspe and Hannu Toivonen. Discovery of relational association rules.
In Relational data mining, pages 189–212. Springer, 2001.

[EI19] Takuma Ebisu and Ryutaro Ichise. Graph pattern entity ranking model for
knowledge graph completion. arXiv preprint arXiv:1904.02856, 2019.

[EKN+17] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter,
Helen M. Blau, and Sebastian Thrun. Dermatologist-level classification of
skin cancer with deep neural networks. Nature, 542(7639):115–118, 2017.

[FHY19] Hironobu Fujiyoshi, Tsubasa Hirakawa, and Takayoshi Yamashita. Deep
learning-based image recognition for autonomous driving. IATSS Research,
43(4):244–252, 2019.

[Fra20] Alexander L. Fradkov. Early history of machine learning. IFAC-
PapersOnLine, 53(2):1385–1390, 2020.

[GBP17] Scoff R. Granter, Andrew H. Beck, and David J. Papke. AlphaGo, deep
learning, and the future of the human microscopist. Archives of Pathology
and Laboratory Medicine, 141(5):619–621, 2017.

[GTHS13] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian
Suchanek. Amie: Association rule mining under incomplete evidence in
ontological knowledge bases. In Proceedings of the 22nd International Con-
ference on World Wide Web, WWW ’13, page 413–422, New York, NY,
USA, 2013. Association for Computing Machinery.

[GTHS15] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek.
Fast rule mining in ontological knowledge bases with amie+. The VLDB
Journal, 24(6):707–730, dec 2015.

[Han02] David J Hand. Pattern detection and discovery. In Pattern Detection and
Discovery: ESF Exploratory Workshop London, UK, September 16–19, 2002
Proceedings, pages 1–12. Springer, 2002.

[JGO22] Johanna Jøsang, Ricardo Guimarães, and Ana Ozaki. On the Effectiveness
of Knowledge Graph Embeddings: a Rule Mining Approach, June 2022.
arXiv:2206.00983 [cs].

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

60

[Kon01] Igor Kononenko. Machine learning for medical diagnosis: History, state of
the art and perspective. Artificial Intelligence in Medicine, 23(1):89–109,
2001.

[KP18] Seyed Mehran Kazemi and David Poole. Simple embedding for link pre-
diction in knowledge graphs. Advances in Neural Information Processing
Systems, 2018-Decem(NeurIPS):4284–4295, 2018.

[lai16] lain. Freebase is dead, long live Free-
base. https://medium.com/@iainsproat/
freebase-is-dead-long-live-freebase-6c1daff44d19, May
2016. [Online; accessed 28-November-2023].

[LGS20] Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. Fast and exact rule
mining with amie 3. In European Semantic Web Conference, pages 36–52.
Springer, 2020.

[Liu13] Xiaozhong Liu. Full-Text Citation Analysis : A New Method to Enhance.
Journal of the American Society for Information Science and Technology,
64(July):1852–1863, 2013.

[LVZ+19] Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and Andrew
McCallum. Smoothing the geometry of probabilistic box embeddings. In
International Conference on Learning Representations, 2019.

[MCFS20] Christian Meilicke, Melisachew Wudage Chekol, Manuel Fink, and Heiner
Stuckenschmidt. Reinforced Anytime Bottom Up Rule Learning for Knowl-
edge Graph Completion, April 2020. arXiv:2004.04412 [cs].

[MCRS19] Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner
Stuckenschmidt. Anytime Bottom-Up Rule Learning for Knowledge Graph
Completion. In Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, pages 3137–3143, Macao, China, August
2019. International Joint Conferences on Artificial Intelligence Organization.

[MDR94] Stephen Muggleton and Luc De Raedt. Inductive logic programming:
Theory and methods. The Journal of Logic Programming, 19:629–679, 1994.

[NTK+11] Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel, et al. A three-way
model for collective learning on multi-relational data. In Icml, volume 11,
pages 3104482–3104584, 2011.

[OMP18] Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. Robust
discovery of positive and negative rules in knowledge bases. In 2018 IEEE
34th International Conference on Data Engineering (ICDE), pages 1168–
1179. IEEE, 2018.

61

https://medium.com/@iainsproat/freebase-is-dead-long-live-freebase-6c1daff44d19
https://medium.com/@iainsproat/freebase-is-dead-long-live-freebase-6c1daff44d19

[PS23] Aleksandar Pavlović and Emanuel Sallinger. Expressive: A spatio-functional
embedding for knowledge graph completion. In The Eleventh International
Conference on Learning Representations, 2023.

[PS24] Aleksandar Pavlović and Emanuel Sallinger. Speede: Euclidean geometric
knowledge graph embedding strikes back. In Findings of the North American
Chapter of the Association for Computational Linguistics, 2024.

[Qui90] J. Ross Quinlan. Learning logical definitions from relations. Machine
learning, 5:239–266, 1990.

[RBF+21] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata,
and Paolo Merialdo. Knowledge Graph Embedding for Link Prediction: A
Comparative Analysis. ACM Transactions on Knowledge Discovery from
Data, 15(2):1–49, April 2021.

[SC18] Sandeep Subramanian and Soumen Chakrabarti. New Embedded Represen-
tations and Evaluation Protocols for Inferring Transitive Relations. 2018.
Publisher: arXiv Version Number: 1.

[SDNT19] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. In 7th
International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[SEM+94] Giovanni Semeraro, Floriana Esposito, Donato Malerba, Clifford Brunk, and
Michael Pazzani. Avoiding non-termination when learning logic programs: A
case study with foil and focl. In Logic Program Synthesis and Transformation
- Meta-Programming in Logic, pages 183–198. Springer, 1994.

[SGT+09] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009.

[TWR+16] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. Complex embeddings for simple link prediction. In
International conference on machine learning, pages 2071–2080. PMLR,
2016.

[Uni] Princeton University. What is WordNet? https://wordnet.
princeton.edu. [Online; accessed 28-November-2023].

[VLMM18] Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew McCallum. Probabilistic
Embedding of Knowledge Graphs with Box Lattice Measures. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 263–272, Melbourne, Australia, 2018.
Association for Computational Linguistics.

62

https://wordnet.princeton.edu
https://wordnet.princeton.edu

[WGM+14] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul
Gupta, and Dekang Lin. Knowledge base completion via search-based
question answering. In Proceedings of the 23rd international conference on
World wide web, pages 515–526, 2014.

[WMWG17] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph
embedding: A survey of approaches and applications. IEEE transactions
on knowledge and data engineering, 29(12):2724–2743, 2017.

[YYH+14] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
Embedding entities and relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575, 2014.

[ZCZW20] Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. Learning
hierarchy-aware knowledge graph embeddings for link prediction. In Pro-
ceedings of the AAAI conference on artificial intelligence, volume 34, pages
3065–3072, 2020.

63

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Research Questions
	Methodological Approach
	Structure of the Work

	Background
	Knowledge Graphs
	Knowledge Graph Embeddings
	Knowledge Graph Completion
	Inference Patterns
	Expressiveness
	Confidence of Rules
	Predictive Quality
	Datasets
	Open World Assumption/Closed World Assumption

	Related Work
	Early Approaches
	State-of-the-Art Rule Mining Approaches
	State-of-the-Art Knowledge Graph Embedding Models
	Rule Mining on Knowledge Graph Embedding Models
	Summary

	Proposed Method
	Challenge
	Proposed Method

	Experimental Evaluation
	Experimental Setup
	Objectives Derived from the Research Questions
	Experimental Details
	Results
	Comparison
	Combination
	Summary

	Conclusion
	Discussion
	Discussion of Research Questions
	Limitations
	Future Work

	List of Figures
	Bibliography

