
Study of 2D Representations of
Encrypted Network Traffic for
Attack Detection with Deep

Learning

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Martin Pichler, BSc
Matrikelnummer 01429133

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.-Ing. Tanja Zseby
Mitwirkung: Senior Scientist Dr.techn. Felix Vazquez Iglesias

Wien, 14. Mai 2022
Martin Pichler Tanja Zseby

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Study of 2D Representations of
Encrypted Network Traffic for
Attack Detection with Deep

Learning

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Martin Pichler, BSc
Registration Number 01429133

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.-Ing. Tanja Zseby
Assistance: Senior Scientist Dr.techn. Felix Vazquez Iglesias

Vienna, 14th May, 2022
Martin Pichler Tanja Zseby

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Martin Pichler, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. Mai 2022
Martin Pichler

v

Danksagung

Ich habe viel Unterstützung und Hilfe erfahren, ohne der ich es nicht geschafft hätte
diese Arbeit fertigzustellen.

Ich möchte mich bei meinem Betreuer Dr. techn. Félix Iglesias bedanken, der seine
Expertise, Einblicke und Ideen mit mir geteilt hat. Ohne deiner Hilfe hätte ich die Arbeit
nicht fertigstellen können. Ich möchte außerdem allen anderen aus dem Ïnstitute of
Telecommunications"die mich Unterstütz haben meinen Dank aussprechen. Insbesondere
möchte ich mich bei Professor Tanja Zseby und bei Fares Meghdouri bedanken.

Weiters möchte ich mich bei meinen Eltern für ihre andauernde Unterstützung in mei-
nem Studium bedanken. Ohne euch wäre es mir nicht möglich gewesen mein Studium
abzuschließen. Danke! Zudem möchte ich allen meinen Freunden und Kollegen danken,
die mir durch stressige Zeiten geholfen haben.

vii

Acknowledgements

I received a lot of support and assistance during the creation of this thesis, whithout
which I would not have been able to finish it.

First I want to thank my supervisor Dr. techn. Félix Iglesias, who shared his expertise,
insight and ideas with me. Your help during the thesis was invaluable for me and withouth
it I could not have finished the thesis. I also want to thank all the other helpful people
of the Institute of Telecommunications who offered their support, especially Professor
Tanja Zseby and Fares Meghdouri.

Additionally I want to thank my parents for constantly supporting me through all of my
studies. I would not be able to finish my thesis if it wasn’t for your help and patience.
Thank you! Also I want to thank all of my friends and colleagues who helped me through
stressful times.

ix

Kurzfassung

In einer immer vernetzteren Welt steigt die Menge an gesendeten Daten ständig an.
Gleichzeitig steigt auch der Bedarf an schnellen und robusten Systemen zur Erkennung
von Netzwerkangriffen. Solche Angriffe zu erkennen wird durch die hohe Menge an
verschlüsselten Daten erheblich erschwert. Deep Learning (DL) zeigt in vielen Anwen-
dungsbereichen herausragenden Ergebnisse, beim Erkennen von Netzwerkangriffen zeigt
sich allerdings kein signifikanter Unterschied zu bestehenden Machine Learning (ML)
Ansätzen. Wir schlagen eine neue bildbasierte Form zur Darstellung von Datenverkehr
vor, welche sich die starke Leistung in der Mustererkennung von Convolutional Neural
Networks (CNN) zu nutze machen kann. Dazu verwenden wir modernste synthetische Da-
tensätze und Datensätze welche aus echten Datenverkehr erstellt wurden. In Kombination
mit aktuellen Deep Learning Ansätzen wie Siamese Networks (SN) oder Few-Shot Lear-
ning untersuchen wir die Lesitung von Detektoren für eine binären Klassifikation und für
eine Klassifikation mit mehreren Klassen.. Wir berücksichtigen modernen Datenverkehr
in dem wir unsere Datensätze einschränken, und nur Attribute verwenden, welche auch
in verschlüsselter Kommunikation vorliegen. Wir kombinieren mehrere Granularitäten
von Netzwerkkommunikationen zu einem neuen Datensatz, welchen wir multikey nennen.
Mit diesen multikey Ansatz versuchen wir so viel Informationen wie möglich aus den
zur Verfügung stehenden Daten auszulesen. Es zeigt sich, dass verschiedene Modelle und
Architekturen nur wenig Einfluss auf die Erkennungsleistung haben. Bilder welche wir
aus multikey Daten generieren, verbessern die Resultate zu bestehenden Darstellungen
von Datenverkehr, liefern aber keine besseren Ergebnisse als andere Machine Learning
Modelle, welche auch mit multikey basierten Datensätzen trainiert wurden. Daraus schlie-
ßen wir, dass die Erkennungsleistung vor allem von der Qualität und Genauigkeit der
Daten abhängt. Als Resultat dieser Arbeit präsentieren wir eine bild-basierte Darstellung
von Datenverkehr zur Verwendung mit CNNs. Außerdem beschreiben wir einen Schritt
für Schritt Prozess zur Evaluierung von Modellen für Netzwerkangriffe und präsentieren
mehrere Optimierungen im Bezug auf Siamese Networks.

xi

Abstract

With an ever more connected world, volume of network traffic surges and so does the
need for fast and reliable Network Intrusion Detection Systems (NIDS). With most of the
Internet’s traffic being encrypted, detecting harmful activities becomes more and more
challenging. Deep Learning has shown exceptional results in many domains, but was
not able to significantly improve NIDS performance over traditional Machine Learning
ensembles. We propose new image based representations of network traffic that can utilize
the powerful pattern identification performance of Convolutional Neural Networks (CNN).
State of the art synthetic intrusion detection datasets and real world captures are used
in combination with modern Deep Learning techniques like Siamese Networks (SN) and
Few-Shot learning to investigate intrusion detection performance in binary and multiclass
classification tasks. To address modern day traffic, we limit ourself to only use network
traffic features which are also available in highly encrypted environments. A multikey
approach is used to capture as much information as possible in this limited feature space.
We show that different models and architectures have only little influence on the detection
performance. Using multikey based visual representations, we outperform state of the
art CNN-representations, yet equalizing ensembles that also work on multikey-based
vectors. From our experiments we can conclude that quality and granularity of data is
more important than its form of representation or the applied classification algorithm.
As a result we present an optimized way to represent network traffic for deep learning,
provide an end-to-end approach for generating datasets and evaluating models, and
present multiple performance optimizations for Siamese Networks.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Methodology and Goals . 3
1.4 Structure . 4

2 Background and Related Work 5
2.1 Network Traffic Analysis . 5

2.1.1 Intrusion, threat and attack detection 7
2.1.2 Challenges . 9
2.1.3 Feature Representations . 12
2.1.4 Anomaly Detection Methods 12

Image Based Intrusion Detection 14
2.2 Deep learning . 16

2.2.1 Artificial Neural Network . 17
2.2.2 Convolutional Neural Networks 20
2.2.3 Siamese Networks . 21

3 Methodology and Experiments 25
3.1 Datasets . 25

3.1.1 IDS2017 . 25
3.1.2 MAWI . 26

3.2 Network Traffic Representations . 26
3.2.1 Flow Key . 27
3.2.2 Baseline Representations . 28
3.2.3 Deep Learning Representations 31

FlowPic . 31
TUWpic . 33

xv

TUWpicA . 33
TUWpicB . 35
TUWpic-mk . 35

3.2.4 Handling image data . 41
3.3 Classification Tasks and Goals . 41
3.4 Classification Algorithms and Models 45

3.4.1 Baseline Model . 45
3.4.2 Neural Network Models . 45

FlowPic . 46
Seq2Img . 46
Vec2Img . 47
LeNet5 . 47
MobileNetV3 . 48
Siamese Neural Networks and Online Mining 48

3.5 Experimental Setup . 52
3.5.1 Flow Extraction . 52
3.5.2 Preprocessing and Labeling . 53
3.5.3 Train and Test Datasets . 53
3.5.4 Creating Feature Representations 54
3.5.5 Model Training . 55
3.5.6 Evaluation and Metrics . 57

4 Results and Discussion 59
4.1 Results . 59
4.2 Discussion . 77

5 Conclusions 79

List of Figures 83

List of Tables 85

List of Algorithms 87

Bibliography 89

CHAPTER 1
Introduction

The introduction chapter is the starting point of this thesis. In the background section,
the scientific and technical context covered by this thesis is explained and an overview
of applied methods and approaches is given to put the reader into context. A series of
opinions and observations is given in the motivations sections where we also elaborate on
what the main points of interest are and why we consider them as important. A more
detailed collection of methods, approaches, expected outcome and research questions is
given in the methodologies and goals section. Finally, the structure section shows an
outline of the remaining thesis with a brief description for the rest of the chapters.

1.1 Background
According to the 2021 ISRG Annual Report [32] 92% of web page loads in the U.S. are
encrypted and 83% worldwide. While the recent focus on data privacy is to be favoured,
this trend imposes new challenges in the domain of network security and traffic analysis.

Network Traffic Analysis (NTA) is the process of monitoring, storing and analysing traffic
in networks. It has many applications including performance optimization, maintaining
quality of service, and security and privacy [101]. Encryption makes it harder to inspect
and analyse this traffic. Typical methods like port inspection and Deep Packet Inspection
(DPI) can not be used with encrypted traffic [16][51]. New methods and approaches have
to be developed to guarantee the safety, stability and security of networks and data.

With the recent popularity of Machine Learning (ML) and Deep Learning (DL) a lot of
research focused on applying these techniques to NTA and Intrusion Detection (ID) [89].
Deep learning and especially Convolutional Neural Networks (CNNs) show outstanding
performance in pattern recognition and are applied in many domains [50][102][33]. In
NTA and ID one of the main problems is to create data representations from network
traffic which can be used to train such systems.

1

1. Introduction

First approaches used feature-vectors to train regular Neural Networks (NNs) [24][89].
Later several ways of converting these feature-vectors to Images were introduced [80][25].
The idea is to use CNNs to automatically detect important features and patterns on its
own without creating a fixed size feature-vector.

1.2 Motivation

Anomaly detection is a widely covered topic and a variety of different algorithms and
methods are already investigated [89]. In my opinion, many of these researches impose an
unnecessary limitation on themselves by focusing on the traditional 5-tuple key (source IP,
source Port, destination IP, destination Port, protocol identifier) to capture network-flows
[18]. This can results in systems not being usable in certain scenarios because higher
levels of encryption are used (e.g. IPSec) or systems not utilizing their full potential
because techniques like combining different flows are not considered [19][60].

Another area where I see a self imposed limitation is feature representation. Many
researches use the same feature-vectors for training DL models as they do for traditional
ML approaches. A powerful characteristic of CNNs is the ability to detect patterns that
humans and other ML algorithms can not see [50]. Using self defined feature-vectors
artificially limits the models to only learn from what we think is important. Instead we
should keep the representations as true to the original data as possible and let the CNNs
detect the features. Different researches have shown that images created from flows dont
lose information with respect to the feature vector they are created from and maintain
all or most characteristics of that flow [80][25].

When it comes to NTA data for the detection of attacks, most of the time the datasets are
heavily imbalanced and skewed towards the normal class [58]. Often this is compensated
with data-level approaches like resampling strategies or artificial data generation [20][43].
In my opinion creating authentic synthetic attack data is very hard and algorithm-
level approaches to handle the class imbalance problem might be the better solution.
Therefore, we investigate the use of Siamese Neural Networks which are know to show good
performance on imbalanced datasets by using distance metric learning [98][37][85][20][21].

Because we think it is important to have an IDS which is fast and easy to maintain we
investigate multiple optimization strategies like online pair mining and few-shot learning
to reduce training time and need of computational resources of the proposed DL models
[35][84].

We want to provide insights in the areas of siamese networks, optimization, and less
traditional feature representations like images, using approaches that have, to the best of
our knowledge, never been tried before.

2

1.3. Methodology and Goals

1.3 Methodology and Goals
In this thesis we aim to improve on existing image based feature representations, under
consideration of modern encryption techniques, by using the strong pattern detection
performance of CNNs and siamese networks. We aim for an end-to-end process covering
flow extraction from network captures, creating different feature representations and
evaluating different DL architectures.

The main goals of this thesis are as follows:

• propose novel 2D feature representations of network traffic flows that improve CNN
accuracy over current state of the art image representations

• find which DL architecture is more suitable for handling network traffic data, CNNs
or siamese networks

• investigate if approaches are consistent in terms of performance metrics, regardless
if synthetic or real-world data is used. Approaches should work independently of
the dataset with performance metrics following a similar trend across datasets.

In order to achieve these goals the following methodology is used:

• we create 4 novel feature representations (TUWPic-*) and compare them against a
state of the art image representation called FlowPic [80]:

1. TUWpicA
2. TUWpicB
3. TUWpic-mkA
4. TUWpic-mkB
5. FlowPic

, where A and B refer to different methods for generating the feature representations
and mk refers to multi-key.

• we provide a CNN architecture with adequate performance by comparing different
architectures from literature and other established sources and run preliminary test
to choose the best architecture for more in depth experiments

• we investigate the use of algorithm-level approaches like siamese networks, few-shot
learning and online-pair mining, to handle imbalanced data

• we provide a baseline model using a traditional Random Forest ML algorithm and
feature representations to compare the results and put them into a meanignful
context

3

1. Introduction

• we create a system that can be used to train and evaluate different combinations of
architectures, datasets and other configurable parameters

• we give a comprehensive quantitative comparison of the different feature-representations
and architectures proposed in this thesis

The outcome of the experiments is used to answer the following research questions:

• How does the novel feature representation TUWpic compare to state of the art
2D-flow representations with regard to standard ML performance metrics?

• Can siamese networks be used to improve performance in comparison to traditional
DL models and therefore offer an algorithmic approach of dealing with imbalanced
data? Do siamese networks offer any advantage over CNNs? Which architecture is
best suited for NTA?

• Can few-shot learning be used to lower training time and resource demands while
maintaining the same level of performance as full training?

• Can synthetic datasets be used for selecting ML/deep-learning approaches and
feature representations without having to change the architecture or parameters
when the same process is applied to real world data?

1.4 Structure
The remainder of the thesis is structured as follows. In Chapter 2 the foundations
and background knowledge about Network Traffic Analysis, Intrusion Detection and
Deep Learning are presented. Then in Chapter 3 we start by introducing the used
datasets. After that the feature extraction, pre-processing and transformation methods
are explained. At last we describe the used algorithms and performance metrics as well as
give an overview of the experimental setup. In Chapter 4 the outcome of the previously
presented experiments is shown. The results are analyzed and discussed in relation to
the above defined research questions. In Chapter 5 the gained knowledge is summarized
and possible improvements and future work is presented.

4

CHAPTER 2
Background and Related Work

In this chapter we present the needed background knowledge and cover related work
relevant to this thesis. First an overview of Network Traffic Analysis (NTA) and Intrusion
Detection (ID) is given. Objectives, different types of NTA, techniques, methods and
challenges are introduced. Further, an overview of image based NTA is given as well as
an overview of related research dealing with Machine Learning (ML) and Deep Learning
(DL) for ID. Finally we introduce the fundamental concepts of DL needed to understand
the applied methods and results of this thesis. Specifically Convolutional Neural Networks
(CNN), Siamese Neural Networks and online pair mining is covered in detail.

2.1 Network Traffic Analysis

Network Traffic Analysis (NTA) covers a wide range of topics each with different objectives,
applications and techniques [28]. The core idea is to monitor traffic at an appropriate
granularity so that meaningful information and characteristics can be extracted [101].
With the growing number of networked devices, NTA techniques are essential to maintain
stability and availability of communication systems. Abbasi et al. [16] outline a general
framework for NTA tasks as can be seen in Figure 2.1. Each task starts with the definition
of a goal or an objective, some of the most popular domains and use-cases are as follows:

• ISPs apply NTA techniques in resource planning and traffic routing (e.g. assigning
higher priority to time critical packets) to guarantee a base level of Quality of
Service (QoS) to an end user [67]

• NTA is used by network administrators to monitor network performance, detect
bottlenecks and effectively assign resources to network entities

5

2. Background and Related Work

• in network security, NTA is used for Intrusion Detection (ID). A variety of ap-
proaches and techniques exist that focus on detecting and preventing network
attacks [16].

Figure 2.1: NTA framework structure based on [16]

6

2.1. Network Traffic Analysis

2.1.1 Intrusion, threat and attack detection
Network intrusion detection systems continuously monitor traffic in a network or part of
it for malicious traffic and take an important roll in attack prevention [93]. IDS differ
from traditional firewalls by applying dynamic detection methods, while firewalls usually
only apply static rule based methods [87]. IDS can be categorized into signature-based
detection systems or anomaly-based detection systems. Further, they are differentiated
by their deployment and operation [20]. Depending on if they are intended to protect a
host or a network, we find:

Network based intrusion detection systems (NIDS) monitor all incoming and
outgoing traffic of any number of hosts. NIDS can be adjusted for each host allowing for
fine grained control of what to monitor [90]. NIDS must be capable of monitoring a large
amount of traffic in a time efficient manner and therefore are often resource demanding.

Host based intrusion detection systems (HIDS) monitor the incoming and outgoing
traffic of a single host. HIDS only have limited knowledge of the network topology in
which they are deployed [46]. Some HIDS can exchange information when deployed in
the same network. HIDS cannot detect attacks on other hosts in the network. Because
of its local characteristics HIDS have less traffic to monitor than for example NIDS and
therefore are less resources demanding.

In order for IDS to detect attacks, different approaches are used:

Signature based detection, sometimes referred to as misuse detection in literature, is
a very effective method of detecting and preventing well known attacks [63]. It is a static
method which uses predefined patterns of know attacks and can very quickly detect these
patterns in a network [87]. Signature based systems work similar to anti-virus programs
which also use signatures of malicious software for detection. Signature based systems
must maintain a database of well know attacks and their corresponding patterns which
results in the need for continuous updates to identify new attacks [90]. The development
of these patterns needs human expertise, data and time. Thus making signature based
systems vulnerable to zero-day attacks and preventing them from detecting unknown
attacks[46]. Snort is an example for a signature based IDS which can be deployed on
NIDS or HIDS level. Its detection engine uses rules and signatures to find suspicious
packets in traffic. Its architecture and rules were later used in a more advanced IDS
called Suricata which is multi-threaded and comes with many additional features not
present in Snort [70].

Anomaly detection is mainly used for unknown or novel attack detection using statistics,
supervised and unsupervised ML techniques. It is a dynamic method that continuously
monitors the network. It works by generating a network profile of "normal use" [52]. If
there is a significant difference between the generated normal profile and the current
behavior of the network the system will raise an alarm [57]. Anomaly detection based
systems are prone to have high false positive rates since they are unable to see the
difference between a new user and an attack. However, they are needed to detect novel
and zero-day attacks. An ongoing topic of research is to define and extract good features

7

2. Background and Related Work

that can be used to define such a baseline model. Supervised ML and DL models are the
most recent development in IDS. Supervised ML and DL models are trained to detect
attacks or create a model of normality [87]. This is the approach we focus on in this
thesis. While statistics and unsupervised approaches can also rely on well-know behaviors
and patterns, supervised techniques need labeled ground truth data which imposes a
challenge on its own. Labeled IDS datasets are often hard to get, outdated, incomplete
and heavily imbalanced [58]. While DL shows promising results in many domains, an
evaluation of different ML and DL models by Thapa et al. [87] showed that in the domain
of ID, DL models don’t outperform ML models.

Different approaches use different information, we can categorize them into 4 main groups:

Port-based approaches use well know ports of applications to classify traffic. They
extract the port numbers from TCP and UDP packet header and compare them against a
registered list of ports from the Internet Assigned Number Authority (IANA)[34][3]. This
was a very effective and simple solution in the early days of ID. Methods like dynamic
port assignment and the reuse of well know ports for multiple applications and use-cases
make this method obsolete nowadays [91].

Payload-based approaches make use of DPI [34]. Information specific to attacks or
malicious traffic is extracted from TCP and UDP packet payloads and headers. The
system has a database of attacks and checks each packet for attack patterns. Often
the terms signature-based and payload-based are used interchangeably however not all
signature based IDS make use of DPI. Payload-based methods tend to be very precise
but lack the possibility to inspect encrypted traffic[91]. With an ever increasing focus
on privacy and encryption this method becomes more and more obsolete. Most modern
approaches use statistics or flow based methods.

Flow-based approaches extract statistical features from network flows [91]. A network
flow is a series of packets that share common features in a given time-frame. The features
which are used to define a flow are called flow keys. Some commonly used flow keys are
source and destination IP, source and destination port and the protocol identifier[18].
Depending on the number of flow keys a network flow captures different behaviors. A
5-tuple key captures flows on application level, a 2-tuple key (“source IP”,”destination
IP”) captures flows on host level (host to host conversation) and a 1-tuple key (source
IP or destination IP) captures information of a specific endpoint [60]. These flow-based
approaches mostly use some form of supervised or unsupervised ML or DL for anomaly
detection [34][91].

Aggregated statistics are often used in time-series based approaches. Statistics of
packets are aggregated over time resulting in a time-series. These time-series can then
be used in a model or rule based system to check if its pattern corresponds to normal
behavior or differs at certain points [47].

8

2.1. Network Traffic Analysis

2.1.2 Challenges
Regardless of the approach or type of information that is used in an IDS, there are several
common challenges that are fundamental to NTA and need to be addressed.

Often the problem source is the data or the lack of it. As addressed by Sharafaldin et al.
data in the realm of NTA often is outdated, is missing explanations, has many duplicate
entries, is generated in unrealistic scenarios and suffers from information loss because
of privacy regualations [82][81]. To overcome these shortages, they created the IDS2017
dataset [2], which we also use in this thesis.

Related to the problem of data generation and collection, there is the problem of missing
labels or ground truth [82]. Some dataset come with inconsistent or no labeling at all.
In these cases the exact details of the attack like time, date, attacking hosts and ports,
victim hosts and ports and type of attack have to be reconstructed. That is why ID
dataset are often created in a simulated environment where a regular network is emulated
and the attack parameters can be controlled precisely [91]. Both datasets used in this
research come with labels and we do not have to use additional tools or methods to
create them ourselves.

A problem that is especially relevant in ML based approaches is feature selection. Not all
features have the same importance and some might even degrade performance of models
by introducing noise. Other features might be highly correlated to each other and yield
no additional information. Feature selection can help to mitigate these problems and
improve detection rate and lower computational difficulty. Choosing the right features
often requires human expertise and a lot of time and can be a research topic on its own
as discussed by Khraisat et al. [47]. In this thesis we rely on already established and
tested feature-vectors [60].

While all challenges are equally important, in this thesis we mainly focus on the problem
of imbalanced datasets and feature representations since they are inherently connected
to the research topic. Additionally we focus on encrypted network traffic, which impacts
the available features and flows.

Feature representations are heavily linked to the methodological approach used in an IDS.
In one way or another the recorded traffic has to be transformed into a representation
that can be used by an IDS [76]. ML and DL based approaches often need data in
numerical format, some models might be able to deal with time-series data while others
need to aggregate that kind of data into a single value. The goal is to maintain as
much of the original information of the network data as possible when transforming it
into a representation suitable for and IDS. In this thesis we use two different feature
representations, namely feature-vectors and images. Both are created from network flows.
A more detailed overview of different feature representations is given in Chapter 2.1.3.

Due to the nature of network traffic, ID datasets are often imbalanced in a way that
they are skewed towards benign (non-malicious) traffic [58] . Benign traffic often makes
up over 90% of such datasets. Depending on the size of the network there can be

9

2. Background and Related Work

thousands of web-page loads, VoIP calls, video streams and many other network based
actions. Malicious traffic only accounts for a small fraction in this network. To overcome
the problem of imbalanced data there are several methods to mitigate the impact of
it. Data-level techniques manipulate the dataset by increasing or decreasing samples
from specific classes. Algorithm-level techniques aim to implement algorithms that can
handle imbalanced data without previous manipulation of the dataset [20]. Dealing with
imbalanced data is a common problem in many domains and therefore a well studied
subject. Following are some common methods and approaches that can be used to handle
imbalanced data:

• A common data-level approach is resampling. Several resampling strategies exist.
[85]. The most common methods are oversampling, undersampling and Synthetic
Minority Oversampling Technique (SMOTE). Oversampling increase the number
of samples in minority classes by copying existing samples. Undersampling reduces
the number of samples in the majority classes by randomly eliminating samples.
SMOTE uses characteristic of the minority classes to create new artificial samples
of it. The main drawbacks of these re-sampling methods are as follows [20]:

– Oversampling can lead to over-fitting of minority classes.
– Undersampling may lead to loss of information in the majority classes.
– SMOTE may introduce noise, cover invalid information and generate overlap-

ping samples between classes.

• Recently DL based methods are gaining popularity for handling imbalanced data.
Iliyasu et al. [43] use a Deep Convolutional Generative Adversarial Network
(DCGAN) to create new samples from random noise. GANs consist of a generator
NN which creates samples from random noise. A second NN called discriminator
then takes samples from both the generator and the real dataset and determines if
its real or fake. The loss functions maximizes the probability for the generator to
create a sample which is classified as real by the discriminator. Thus the generator
is approaching the underlying distribution of the training data.

• Lee et al. [55] use a GAN to create new samples from the CICIDS-2017 dataset
[2] as depicted in Fig. 2.2. The same RF model trained with GAN outperforms
the non GAN RF model. It also outperforms a RF model trained with a SMOTE
manipulated dataset. They later applied the same method to other datasets and
achieved similar results [56].

• A Supervised Variational Auto-Encoder with Regularization (SAVAER-DNN) is
proposed by Yang et al. [100] to create new samples from the underlying distribution.
The system is tested on various datasets and shows improvement in detecting lower
frequency classes.

• Another DL based approach is using Siamese Neural Networks (S-NN). Siamese
Networks can handle datasets with only a few samples per class since it creates

10

2.1. Network Traffic Analysis

similarity based distance embeddings for each sample rather than predicting class
probabilities [98][48]. The approach we use in this thesis is also based on Siamese
Neural Networks. Several studies have tested the effectiveness of Siamese networks
to address the problem of imbalanced data and have shown optimistic results
[85][20]. Siamese networks are explained in detail in Chapter 2.2.3.

Figure 2.2: GAN used to generate new samples based on [56].

Encryption plays a vital role in modern day network communication. Most modern
browser warn the user if they visit a website without encryption. In web, the defacto
standard for encryption is SSL (Secure Sockets Layer) and its successor TLS (Transport
Layer Security). But also other means of encryption become more and more popular.
VPNs are used in a wide range of scenarios like:

• accesing work computers and networks from away

• circumventing geoblocking for specific contents on the internet

• reducing ones digital fingerprint on the internet

Most VPNs either use TLS or IPSec as encryption protocol. TLS is implemented on
transport layer level while IPSec offers network layer encryption. This allows IPSec to
operate either in transport mode, where it offers similar level of encryption as TLS, or in
tunneling mode, where also the original IP header is protected [49]. In this thesis we
consider a high level of encryption either using TLS or IPSec (transport mode) which
limits the features that can be extracted from captured network traffic to: IP addresses
and packet statistics like inter-arrival time and lengths.

11

2. Background and Related Work

2.1.3 Feature Representations
Feature selection, feature engineering and transformation is key to successfully train ML
and DL models for anomlay detection like we do in this thesis. Network traffic is usually
captured in PCAP files. A PCAP file contains all incoming and outgoing packets of the
host where it is deployed [76]. Every entry contains meta information of a packet such
as timestamp, protocol, protocol identifier,ip addresses and ports. Using these features,
network flows can be extracted [60]. Depending on the granularity, different types of
behaviors can be captured in network flows as described in Chapter 2.1.1.
Salman et al. [76] groups feature representations in the following categories:

• behavioral-based representations are used to built rule-based profiles and policies
as shown by Hu et al. [38]. It works similar to vector-based approaches with the
main difference being that feature-vectors are used as input to other processes and
behavior-based approaches simply work on the extracted flow and packet statistics.

• vectors are on of the most common forms of feature representations in NTA. They
are typically generated from network flows and provide statistical information about
incoming packages such as min, max, standard deviation, mean, etc. of flow packet
attributes. A 249 long feature vector was proposed by Moore et al. which is still
used today and is also one of the feature representations used in this thesis [62].

• time series are created by continuously monitoring and updating statistics of
incoming packets. One such approach was proposed by Conti et al. [27] where 4
time series have been created (1. outgoing bytes, 2. incoming bytes, 3. incoming
and outgoing bytes, 4. inter-arrival times) from network flows.

• word embeddings are most commonly used in web traffic classification. Strings
can be extracted from HTTP requests, URLs, DNS queries and packet payloads
(DPI). They can be further processed by techniques from Natural Language Pro-
cessing (NLP).[76]

• images are the latest addition to typical feature representations for network
traffic and also the main feature representation used in this thesis. With CNNs
achieving very good results in many computer vision applications multiple image
representations have been proposed [34][43][97]. We give a detailed overview of
image based feature representations in Chapter 2.1.4 and Chapter 3.

As mentioned before, in this thesis we focus on the extraction of network flows from
encrypted traffic and the creation of feature-vectors and images. The applied methods
and approaches are covered in detail in Chapter 3.

2.1.4 Anomaly Detection Methods
Methods for anomaly detection cover a broad spectrum of algorithms, techniques and
approaches [45][71]. At the highest level they can be separated into supervised and

12

2.1. Network Traffic Analysis

unsupervised approaches. Unsupervised approaches like clustering and outlier-detection
are often used because of missing labeled data which is a key challenge in NTA as we
have discussed before. Unsupervised methods have drawbacks in terms of validation and
evaluation and supervised methods are preffered if the data allows it.

Key focus of most suggested approaches and methods is improvement of detection rate or
reduction of complexity and the resulting gain in processing speed and ease of use. Kwon
et al. [52] have comprised a detailed overview of different methods used throughout the
time as can be seen in Fig. 2.3. Iglesias et al. [40] analyzed various papers and created a
list of proposed methods with most promising performance:

• Rule induction, decision trees, and random forests are robust methods but
the performance is affected by class imbalance

• Neural networks and support vector machines often yield very good results
but come with some drawbacks like high preprocessing complexity, computational
costs and lack of explainability (black boxes)

• Probabilistic and Bayesian methods are fast and simple and can be applied
to a variety of data, however these methods assume that features are independent
which is often not the case in network traffic data

• Clustering often is used as part of an analysis framework or as transformation
(dimensionality reduction) method

In the following we present examples of different approaches for anomaly and attack
detection. This should help the reader to be aware of existing approaches and help
him/her put this thesis into context. While most of these approaches are also suitable
for attack detection, there can be different goals in NTA. Some approaches try to classify
specific applications based on their traffic like described by Taylor et al. [86], while
others focus on specific functions within an app [27]. Others only differentiate between
malicious and non malicious traffic [69].

Taylor et al. apply [86] random forest to identify Android apps based on app fingerprints
generated from statistical flow features.

A rather exotic method is presented by Ali et al. [17], where Particle Swarm Optimization
(PSO) is combined with Fast Learning Network (FLN). However, PSO needs human
expertise to define an objective function for the model which might lead to undetected
zero-day attacks.

Support Vector machines (SVM) and Principal Component Analysis (PCA) are used
in [30] to for faster classification with reduced input dimensions. Using the NSL-KDD
dataset [8], they showed that their approach was faster and achieved better accuracy
compared to using SVM with the original 41 features.

13

2. Background and Related Work

Figure 2.3: Intrusion detection techniques based on [52].

A semi-supervised NT classification method is proposed in Rezaei et al. [72]. First a CNN
is trained with unlabeled data, then the learned weights are transferred to a larger CNN
which is re-trained with a smaller labeled dataset. They showed that the unsupervised
pre-training step significantly increased the performance of the CNN without increasing
the number of labeled samples.

In the next section we present image based intrusion detection approaches using CNNs.

Image Based Intrusion Detection

In 2011 Nataraj et al. [65] created so called Malware Images from executables. They
converted malware infected binary files into feature vectors of 8 bit unsigned integers.
Each integer represented a greyscale pixel in the resulting image. These images had fixed
width and variable height depending on the binary file size. They extracted information
from the images using image processing methods and applied a k-nearest neighbor
classifier for the classification task. Even if this method does not find use in the realm
of ID, it shows that the idea of creating images from malicious data has been around
for some time. With the growing popularity of DL, image based methods for ID were
developed.

Chen et al. [25] were one of the first to use image based feature representations for ID.
Their proposed feature representation Seq2Img is an image representation of network
traffic that uses Reproducing Kernel Hilbert Space (RKHS) embeddings. Packet length,

14

2.1. Network Traffic Analysis

packet inter arrial times and packet directions are mapped from their original space into
the RKHS space. The resulting 6 channel image approximately covers the probability
distribution of the underlying flow. A simple CNN model was used to classify the images.
For performance comparison, they extracted statistical features from the flows and traind
other ML models with them.

At the same time Wang et al. [94] proposed a different image based feature representation.
Flows are extracted from network captures and stored as single files (either PCAP or
BIN depending on which type of flow was extracted). Each flow is limited to a maximum
size of 784 bytes (zero padding is used if a flow is to short). They apply the same method
as described in Nataraj et al. [65] to convert these files into images. Because they use a
fixed file size they can generate same size (28x28) images which are needed in order to
train their CNN model. They used a LeNet-5 bsed CNN architecture for their model.
An almost identical method is later investigated by He et al. [34].

In Zhou et al. [103] the feature vector proposed by Moore et al. [62] is extracted from
network flows and then converted into a 16 × 16 pixel matrix. Each of the 249 features
contained in the feature vector is normalized. The normalized faetures are then filled into
the pixel matrix. The remaining pixels are zero padded. They then feed these images
into various LeNet-5 based CNN models for classification.

Shapira et al. [80] proposed a representation called FlowPic. It is a 2D payload-size
distribution histogram. Images of 1500x1500 pixels are created by plotting packet size
against scaled arrival time. They also use a LeNet-5 related CNN model for classification.
We use FlowPic as a comparison for the proposed feature representation in this thesis
and describe the algorithm to create FlowPics in detail in Chapter 3.2.3.

While above discussed methods all directly transform flow data to image data, Xiao et
al. [97] propose a different method. They first apply dimensionality reduction to reduce
noise and correlation from the flows and create images based on the resulting data. An
auto-encoder is used to generate the reduced feature set. An auto-encoder consist of an
input layer I, an output layer O and a hidden layer H. The goal of the auto-encoder is
to achieve L ≈ O going through the hidden layer H. The number of neurons n in the
hidden layer is choosen to satisfy n = m ∗ m where m ∗ m is target dimension of the
images to be generated. They then apply a CNN to do the classification task.

To overcome the problem of skewed datasets Iliyasu et al. [43] proposed a sampling
technique based on Generative Adversarial Networks (GAN). GANs train a NN model to
trick a classifier (discriminator) into thinking that the original sample and the sample
created by a generator network are the same. Thus the generator network learns the
underlying distribution of the original dataset. New samples are then generated by
showing original samples to the GAN and taking the ouput from the generator model.
They also propose a new feature representation based on random sampling of flow packets.
They define a feature vector for each packet (packet length, packet inter-arrival-time,
packet direction) and randomly take 20 packets from each flow. These packets are then
transformed into images of size 20x3 with the feature values being scaled to the range of

15

2. Background and Related Work

-1 to 1.

A different appraoch is taken by Khan et al. [46]. They extract 78 features per flow,
normalize and one-hot encode them and then apply Short-Time Fourier Transform
(STFT) to it. Based on the resulting STFT data they create histograms using a custom
algorithm. The result are images of size 28x28x3 that are then used to train a CNN
model.

The literature discussed above shows the most used approaches and feature representations.
Other research mostly tries to optimize named approaches or tries to combine feature
representations of one research with the classification approach of another research [33][59].
They might also vary in their goal, some are trying to classify types of traffic while others
focus on security. But hardly any research introduces new feature representations or
classification approaches.

In this thesis we use a traditional ML algorithm, namely random forest, as a baseline
model since it shows consistet results throughout the time and it is used across the field.
The performance of this baseline model is used as reference for evaluating DL based
approaches. The next section introduces the concepts of deep learning and CNNs which
is the base for the approach proposed in this thesis.

2.2 Deep learning
Deep Learning powers many modern applications and systems. It is applied in search
result optimization, e-commerce recommendation and speech recognition to just name
a few examples [53]. In our case, we want to use the pattern detection power of CNNs
to help identify malicious network traffic. The benefit of DL in contrast to regular ML
algorithms is the possibility to do representation learning. Representation learning allows
an algorithm to detect and extract important features on its own, without providing
additional information or context. Traditional ML algorithms are usually trained with
data that was extracted with complex rules and pre-processing steps [53] while Neural
Networks can learn complex non-linear function mappings without any prior feature
engineering steps [79]. ML and DL is categorized in supervised and unsupervised learning:

• Supervised learning uses labeled data to train models. A model can output one
or multiple scores depending on the task. An objective or loss function is used to
compute the error or distance between the models output and the labeled data.
The model then adjusts itself in a way so that the loss is minimized [53].

• Unsupervised learning algorithms use data without assigned labels. The labels or
classes of the data is discovered by the unsupervised learning algorithm. Clustering
is an example for an unsupervised algorithm [68].

DL has to be used with some considerations. When compared to other ML algorithms,
DL often needs more data, time and computational resources. One way to increase

16

2.2. Deep learning

performance and reduce training time is to use GPUs which implement fast and efficient
matrix calculations which favors NN architectures [96]. Another problem is explainability.
While ML algorithms like decision trees and random forests are more or less interpretable,
DL models are so called black-boxes. We do not know how and why outputs are generated
the way they are [77]. This is especially a problem in fields like medicine where the
outcome might decide about a certain drug to use or treatment to apply [88]. If we can
not explain why the medication is suggested, is it reasonable to use it?

Deep Learning is a special case of Machine Learning. Deep refers to the stacking of many
small binary classifiers, called perceptrons, on top of each other to create a multi-layer
interconnected network of machine learning units. Artificial Neural Network (ANN) are
models based on this layered design. By stacking many of these layers on top of each
other, a deep ANN can be created. These are the foundation for more complex models
like Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs).

2.2.1 Artificial Neural Network
An Artificial Neural Network (ANN) is made up of simple functional units that are
connected to each other [53]. These units are called neurons and can be grouped into
layers. Each of these layers can consist of hundreds of neurons. ANNs consist of stacks
of layers where neighboring layers are connected to each other. Each neuron is connected
to a subset (or all) neurons of the previous layer. This allows for data to be passed forth
and back in the network [79]. The output of a neuron is calculated by the weighted
sum of its inputs plus a bias and passed through an activation function [53]. Using
the backpropagation algorithm, the weights are adjusted to minimize the error of the
objective function [79]. This way the ANN will approach a state where the network
approximately learns the black box function that can map the inputs to its corresponding
outputs.

The perceptron learning algorithm in Fig. 2.4 shows how the output of a neuron is
calculated inside an ANN. The function is defined in Equation 2.1 where Xi+1 is the
output of the neuron, fi it the non-linear activation function, Wi and Xi are the weights
and inputs (vectors) from the previous layer and bi is the bias.

Xi+1 = fi(WiXi + bi) (2.1)

Using backpropagation and gradient decent [39][22] the parameters of each neuron can
be updated as defined in Equations 2.2 and 2.3 where Wnew and bnew are the updated
parameters, λ is the learning rate and Ei is the loss function.

Wnew = W − λ × δE

δW
(2.2)

bnew = b − λ × δE

δb
(2.3)

17

2. Background and Related Work

Figure 2.4: Perceptron algorithm based on [79].

Figure 2.5: Feed forward deep neural network based on [52].

Gradient descent is an optimization algorithm for finding the minimum of a function.
Since the goal of an ANN is to minimize the loss function, gradient decent can be applied

18

2.2. Deep learning

to find optimal parameters to minimize that function [68]. A gradient is defined as the
vector of partial derivatives of a function with respect to its input variables. It can be seen
as a vector pointing in the steepest direction from the current position. By iteratively
moving along this direction the gradient will approximate 0 and we will have reached a
minimum. This minimum does not have to be the global minimum of the function but
can also be a local minimum. A parameter named learning rate is introduced to control
the step size with which we move along the gradient. In 2.2 and 2.3 λ is the learning
rate which is multiplied by the gradient in respect to a variable. A generic definition can
be formulated as:

θnew = θ − λ × δE

δθ
(2.4)

This gradient is applied to each adjustable weight and bias in the network. To efficiently
calculate the gradient for each weight the backpropagation algorithm is used. Starting at
the output layer of the network the error of the loss function is calculated. This error is
then send back through the network so that each neuron can adjust its weights [53]. The
backpropagation algorithm can be recursively defined by the following equations. The
gradient in respect to weight wj,k is:

δE

δwl
j,k

= θl
j × yl−1

k (2.5)

with
θl

j = δE

δyl
j

× f ′
l (zl

j) (2.6)

if l is the output layer, else

(
q

i=1
θl+1

j × wl+1
i,j) × f ′

l (zl
j) (2.7)

where f ′
l is the activation function and zl

j being defined as the activation value of neuron
j in layer l:

k

i=0

wl
j,i × yl−1

i (2.8)

Where yl
j is the output of neuron j in layer l and q is the number of units in layer l + 1.

Although backpropagation is an efficient algorithm, too much computing power would be
needed to do it for every sample in a dataset [74]. Stochastic Gradient Decent (SGD),
and derivations of it, is commonly used to train networks. The dataset is shuffled and
grouped into batches of samples. The loss is calculated as an average of all the samples
in one batch and then backpropagation is used to adjust the weights with an average
error. While this method will not always find the perfect solution, it was shown that it
helps to prevent from getting stuck in local minima and decreases convergence time.

Activation functions serve multiple purposes in neural networks. They aid the learning
of high order polynomials and keep output values in a certain range [46]. The most

19

2. Background and Related Work

important aspect of activation functions is that they are differentiable and make sure
that backpropagation can be used for training [66]. Some common activation functions
are :

sigmoid(x) = 1
1 + e−x

(2.9)

tanh(x) = ex − e−x

ex + e−x
(2.10)

ReLU(x) = max(0, x) (2.11)

softmax(x) = exk�n
n=1 exi

(2.12)

Depending on the type of network, the classification task, and the input data, different
activation functions might lead to better results.

While ANNs work really well for numerical and statistical data, they fall short when we
want to work with visual data. If an ANN is trained with images it will learn the pixel
values at each input neuron. This does not make much sense since objects in images can
have different colors, be at different locations and can be recorded at different angels. To
overcome this problem Convolutional Neural Networks (CNNs) were developed. They
use a series of self-learned filters like edge detection, blur or sharpen to extract features
from images before feeding them into an ANN.

2.2.2 Convolutional Neural Networks
In recent years CNNs have shown excellent performance in the field of visual computing
and image processing [50][33]. CNNs are often applied to tasks where spatial or time
related data is used. However, Zhang et al. [102] showed that CNNs can also be applied
to traditional data which they define as data without spatial or time aware components
but with statistical correlation. CNNs work especially well for data in the form of
multi-dimensional arrays [53][46].

CNNs use convolutional layers and pooling layers to extract features from the input array.
A fully connected layer is used to flatten the generated feature maps to a fixed number
of neurons [64]. A visual representation of convolutional layers and pooling layers can be
seen in Fig. 2.6

Convolutional layers build the foundation of CNNs. A convolutional layer applies a series
of filters (convolutional kernels) to its input and creates a feature map for each filter.
The convolution is defined as the dot product between the input and the filter resulting
in a feature map as output. The output of the convolutional layer is calculated as follows.
Assume nl3 × 3 filters W l ∈ R3×3 in convolutional layer l with nl−1 being the number of
filters in the previous layer. The feature map Y l is defined as:

Y l = f(
nl

n=1
W l,n × Y l−1 + bl) (2.13)

20

2.2. Deep learning

Figure 2.6: CNN architecture based on [64].

where f() is a non-linear activation function [102][53][46].

Pooling layers are used to reduce the amount of features after convolutional layers.
Similar to the convolutional layer, the pooling layer is given a size. Assuming a pooling
layer of dimension 2 × 2, each feature map is divided into patches of 4 (2 × 2) values.
The resulting feature maps are down-scaled versions of the original feature maps. Two
methods are commonly used as pooling functions. Max-pooling uses the maximum value
in each patch. Average-pooling uses the average value of the patch [102][53][46].

The fully connected layer is used as a bridge between the multidimensional feature maps
and the one dimensional output layer. After the last pooling layer, the feature maps are
flattened to a 1-dimensional vector. This vector is the input of the fully connected layer.
[46]

The idea of an CNN is to extract features from the input in a stack of convolutional
layers and pooling layers. Then use these features as input for an ANN by flattening
them.

Traditional ANNs and CNNs work by mapping similar inputs to the same output class.
To achieve this, a lot of different training samples for each class have to be available.
Often this is not the case. Also other data related problems like heavily imbalanced
datasets can significantly impact the performance of NNs. With the help of Siamese
Neural Networks (SNNs) small and imbalanced dataset can also be used to train NNs
and use their benefits. Instead of learning class probabilities, vector embeddings are
created. A distance function tries to separate embeddings in the vector space by pushing
them apart if the they belong to different classes. In this thesis we use SNNs as a way to
overcome the data imbalance in traffic data.

2.2.3 Siamese Networks
Siamese Neural Networks were originally proposed as way of signature verification by
Bromley et al. [23]. A siamese neural network consist of twin networks that are joined by
an energy function (loss function) [48]. Both networks take separate inputs, called pairs,
but share the same weights which are adjusted together during training. By sharing the
weights, the output of of each network should be very similar [48].

21

2. Background and Related Work

In comparison to regular neural network architectures, siamese networks have no target
class in the usual sense. Rather than mapping input vectors to output classes, siamese
networks create vector embeddings for each sample. The loss function is utilized to train
the network so that similar input pairs are close together in the embedding space and
dissimilar pairs are pushed apart [61]. Sometimes this method is called deep metric
learning [95].

The first loss function used in siamese networks is called contrastive loss and is defined
as:

L = 1
2 lD2 + 1

2(1 − l)max(0, m − D)2 (2.14)

where l = 0 if input pairs are similar and l = 1 if the input pairs are dissimilar, m > 0 is
a margin term that prevents pairs with very large distances to impact the loss and D is
the distance between the emebeddings of the siamese networks.

Typical distance functions include euclidean distance, manhatten distance [61] and cosine
similarity [44]. The concept of pairs was extended by Schroff et al. [78], where they
proposed a loss function based on triplets that was quickly adopted by many researchers
[29][104]. The idea of triplet loss is to add an additional twin network creating a triplet
network. Instead of pairs the network is trained with triplets. Each triplet consists of an
anchor sample, a positive sample and a negative sample. The goal of triplet loss is to
maximize the distance between the anchor and the negative sample and minimize the
distance between the anchor and the positive sample. The triplet loss is defined as:

L(A, P, N) = max(∥f(A) − f(P)∥2 − ∥f(A) − f(N)∥2 + α, 0) (2.15)

where A is the anchor input, P is the positive input, N is the negative input and α is a
margin term to control the influence of the triplet. A visual representation of the triplet
loss concept can be seen in 2.7.

Figure 2.7: Triplet Loss embeddings based on[78].

Because siamese networks learn embeddings and not class mappings, they cannot be
directly used for classification. In order to classify samples with siamese networks the
embeddings of the training set must be used as input for a classification algorithm like

22

2.2. Deep learning

k-nearest neighbors (KNN) [92]. Then the network can be used to create embeddings for
the test data and classify these embeddings with the classification algorithm.

Siamese networks come with their own disadvantages and advantages. One of the benefits
introduced by SNNs is few-shot and one-shot learning. SNNs need significantly less
training data to create embeddings than regular NNs would need to create class mappings
[33][37]. Depending on the scenario, often only a couple of samples per class are needed
to successfully train a SNN. This is called few-shot learning. In rare cases this can be
even improved to one-shot learning, where only one sample per class is used. Low-end
and mobile devices often utilize this technique to energy-efficiently train models.

A problem of siamese networks is sampling of pairs and the volume of training data.
According to Wang et al. [95] deep metric learning has to consider all possible combina-
tions of training samples and therefore has to deal with much more training samples in
comparison to regular classification tasks. This results in quadratically larger samples for
contrastive loss and cubically larger samples for triplet loss. This increase the problem of
models having slow convergence and getting stuck in local optima because many samples
don’t contribute to the loss function.

Multiple sampling strategies have been proposed but generating pairs beforehand (offline)
always results in possible loss of information and is a long and tedious data pre-processing
step [73]. Pairs or triplets are categorized in hard, moderate and easy triplets. Hermans
et al. [35] give a very intuitive description of the problem: "Intuitively, being told over
and over again that people with differently colored clothes are different persons does not
teach one anything, whereas seeing similarly-looking but different people (hard negatives),
or pictures of the same person in wildly different poses (hard positives) dramatically
helps understanding the concept of "same person". On the other hand, being shown only
the hardest triplets would select outliers in the data unproportionally often and make fθ
unable to learn "normal" associations, [...]"

With the proposed online learning method by Wang et. Al [95] two problems are solved
at once. Using this method, samples of pairs and triplets do not have to be generated
beforehand but rather are generated as part of the network. Additionally, since the
samples are generated inside the network the need for twin or triplet networks is removed
because there are no longer pairs and triplets that are used as input. Since then multiple
online mining algorithms were proposed [84].

The combination of online learning [95] and a good sampling strategy leads to Online
(Semi-)Hard Mining [35][84]. Given a batch of training data consisting of c classes and
w images. Both hard and semi-hard mining calculate the pairwise distances between
the samples resulting in an cw pairwise distance matrix. For each sample a we can then
select the hardest positive and the hardest negative sample within the batch. Because
they are only the hardest samples in the batch they can be seen as moderate sample in
the complete dataset. If both hardest positive and hardest negative samples are used
for training we call it hard loss. If only the hardest negative sample is used we call it
semi-hard loss [35][84].

23

2. Background and Related Work

The mathematical definition of these losses is as shown in 2.16 and 2.17 as defined by
Hermans et al. [35] and Sikaroudi et al. [84].

LBSH :=
c

i=1

w

a=1

w

p=1
p ̸=a

�
m + D

yi

a, yi
p

�

− min
j∈{1,...,c}\{i}

n∈{1,...,w}

�
D

yi

a, yj
n

�
| D

yi

a, yj
n

�
> D

yi

a, yi
p

��
+

.

(2.16)

LBH :=
c

i=1

w

a=1

m + max
p∈{1,...,w}\{a}

D

yi

a, yi
p

�
− min

j∈{1,...,c}\{i}
n∈{1,...,w}

D

yi

a, yj
n

�
+

(2.17)

24

CHAPTER 3
Methodology and Experiments

In this chapter we first introduce the reader to the datasets used in the experiments,
then we go over the different feature representations that are used as input for multiple
Machine Learning and Deep Learning models, finally we show the experimental setup
that was used to conduct the experiments.

3.1 Datasets
In this thesis, we use two datasets that cover synthetic and real-world data. The Intrusion
Detection Evaluation Dataset (CIC-IDS2017) [2] is a synthetic dataset created by the
Canadian Institute for Cybersecurity [81][83]. The second dataset is collected from
real traffic by the Measurement and Analysis on the WIDE Internet (MAWI) Working
Group. Both datasets come as raw PCAP files which allows for full control of flow
definition and feature extraction. The PCAP [9] file format contains a timestamp which
marks the capture time, the size of the packet and the packet itself. For the rest of the
thesis, the first dataset is referred to as IDS2017 and the second dataset is referred to as
MAWI. Following, the origin, collection and characteristics of the datasets are described.
Statistical information like class distribution are presented in Chapter 3.5.

3.1.1 IDS2017
The IDS2017 dataset is designed in accordance to a paper by Sharafalding et al. [81].
The dataset was created with an emphasis on the following eleven characteristics which to
them are critical for a comprehensive IDS dataset namely, Attack Diversity, Anonymity,
Available Protocols, Complete Capture, Complete Interaction, Complete Network Config-
uration, Complete Traffic, Feature Set, Heterogeneity, Labeling, and Metadata[83].

The dataset was collected in a lab environment over the course of a week. The following
protocols are captured in the dataset HTTP, HTTPS, FTP, SSH and email. The research

25

3. Methodology and Experiments

group simulated attacks of the following categories Web based, Brute force, DoS, DDoS,
Infiltration, Heart-bleed, Bot and Scan. The dataset is made available in the PCAP file
format, with one file for each day [2].

Labels for this dataset are provided as time-ranges. Each time-range specifies the type of
attack, the attacker machine and the victim machines.

3.1.2 MAWI

WIDE is a Japan based research consortium that runs their own internet testbed and is
in charge of multiple internet operations including backbone networks and name servers.
It collects anonymized traffic data from its backbone at multiple sample points [26]. Data
is collected every day for 15 minutes. With the data being sampled from a backbone
network, these 15 minutes cover a large amount of traffic. A PCAP file containing the
data worth of one day is around 10 gigabytes. In this thesis the data from samplepoint-f
on May 1st 2021 is used [6].

MAWILab is an ensemble of network traffic anomaly detectors developed by the MAWI
working group [31]. They developed a classification strategy based on similarity estimation
and association rule mining. The traffic is categorized into benign, anomalous, and
suspicious, with 10 subcategories of the last two [7]. The subcategories and benign are
used as labels in this thesis. These 10 labels are other, http, alpha, tunneling, port scan,
icmp scan, udp scan, dos. When using this dataset, some flows need to be removed
because of ICMP probing caused by the USC ANT project.

Labels for this dataset are provided as tuples of (source IP, source port, destination IP,
destination port).

Before we can use the datasets as input for our models, we need to bring them into a
format which they understand. This is done by creating network traffic representations.

3.2 Network Traffic Representations

We have introduced different types of feature representations in Chapter 2.1.3 and
discussed how they are linked to specific algorithms and models. Following we describe
how flows are defined and extracted and how the different feature representations are
created. It is important to note that we specifically look at encrypted network traffic.
Encryption heavily limits the number of possible features. The encryption protocols
TLS and IPSec, as introduced in Chapter 2.1.2, both offer a high level of encryption.
IP address, packet direction, packet-(inter)-arrival time and packet length are the only
features that are guaranteed to be observed. This directly impacts the definition of the
extracted network flows.

26

3.2. Network Traffic Representations

3.2.1 Flow Key

Features which are used to define a flow are called flow keys. We discussed the different
types of flow keys and what type of traffic they capture in Chapter 2.1.1. The traditional
flow key is a 5-tuple key (srcIp, dstIp, srcPort, dstPort, protocolId) and captures traffic
on application level. When IPSec encryption is used, we have no access to ports or the
protocol identifier and are limited to 2-tuple and 1-tuple flow keys. In this thesis we
describe feature representations that should work regardless of the level of encryption
and therefore we onlylimit ourselfs to 2-tuple and 1-tuple flow keys.

We extract 2-tuple and 1-tuple flows from network traffic captures (PCAP files). With
these flow keys we can capture communication on host and endpoint level. Flows are
extracted with a maximum duration of 60 seconds by setting both, idle timeout and
active timeout to 60 seconds. In total, 3 different types of flows are extracted from each
dataset. The features of each vector are based on established feature vectors used in
other research [60].

• The 2-tuple key extracts the TA feature vector. Main information obtained from
the TA vector are patterns in backbone Internet traffic according to unidirectional,
straightforward time series footprints [60] [41].

• The 1-tuple key extracts the AGM feature vector: The AGM vector was designed for
discovering profiles in the Internet Background Radiation. It is based on observing
network devices rather than flows [60] [42].

Note that the TA feature vector covers bidirectional traffic and is only extracted once.
The AGM feature vector covers unidirectional traffic and is extracted twice. Once with
sourceIPAddress as flow key and once with destinationIPAddress as flow key. Table 3.1
shows a comparison of the different flow keys for each feature vector. Using these 3 types
of flows we can create all the feature representations we need.

Key Feature TA AGM s AGM d

sourceIPAddress • • .
destinationIPAddress • . •

Table 3.1: Flow keys of TA, AGMS and AGMD vectors

As proposed in [60], combining different feature vectors leads to deeper insights in the
analyzed traffic. By combining the 2-tuple TA vector and the two 1-tuple AGM vectors
we create a new vector which covers communication statistics, attacker statistics, and
victim statistics depending on the AGM vector direction. The new combined feature
vector is called multi-key feature vector. The multi-key feature vector dataset is created
similar to a left-join and is done in two steps:

27

3. Methodology and Experiments

1. An intermediary dataset is created by joining the TA dataset with the AGMS

dataset based on matching sourceIPAddress. For each feature vector fT A in the
TA dataset the closest feature vector fAGMS from the AGMS dataset, where
flowStartMilliseconds is less than or equal to flowStartMilliseconds of fT A, is
determined the matching pair.

2. The final multi-key dataset is created by repeating the previous step but instead of
the TA dataset the intermediary dataset is used and instead of the AGMS dataset
the AGMD dataset is used.

This is only one way of creating the multi-key feature vector and it is not guaranteed to
be the most optimal. Matching flows by closest timestamp may result in overlapping
combinations, where AGMS and AGMD flows can occur mutliple times in the multi-key
feature vector. However, the resulting feature vector shows robust performance and this
method of rigorously joining has been applied before [60].

Next we will discuss how we can use the extracted feature-vectors to create the represen-
tations that will serve as inputs to our models.

3.2.2 Baseline Representations
We use a random forest based approach to establish an evaluation baseline for our deep
learning based approaches. The performance of the baseline model is used as reference
against which we can compare our DL based approaches. Random forests need numeric
or categorical data as input. Using the TA, AGM and multi-key flows defined in the
previous section, we can create a fixed size feature-vector as input for our random forest
model. Because we want to investigate the impact of using a combined flow in comparison
to a single flow, two feature-vectors are created. One is based on the 2-tuple TA vector
and one is based on the multi-key vector. Table 3.2 shows the resulting 2-tuple and
multi-key feature vectors based on the extracted flows.

Table 3.2: 2-tuple and multi-key feature vector with features used for training the baseline
classifier. Features with the FK prefix are the flow keys that define the specific flow.

Vector Feature 2-tuple multi-key

TA

flowStartMilliseconds . .
flowDurationMilliseconds • •
FK sourceIPAddress . .
FK destinationIPAddress . .
packetTotalCount [forward] • •
min(ipTotalLength) [forward] • •
max(ipTotalLength) [forward] • •
median(ipTotalLength) [forward] • •
mean(ipTotalLength) [forward] • •

Continued on next page

28

3.2. Network Traffic Representations

Table 3.2 – continued from previous page
Vector Feature 2-tuple multi-key

mode(ipTotalLength) [forward] • •
stdev(ipTotalLength) [forward] • •
min(_interPacketTimeSeconds) [forward] • •
max(_interPacketTimeSeconds) [forward] • •
median(_interPacketTimeSeconds) [forward] • •
mean(_interPacketTimeSeconds) [forward] • •
variance(_interPacketTimeSeconds) [forward] • •
min(_interPacketTimeSeconds) [forward] • •
packetTotalCount [backward] • •
min(ipTotalLength) [backward] • •
max(ipTotalLength) [backward] • •
median(ipTotalLength) [backward] • •
mean(ipTotalLength) [backward] • •
mode(ipTotalLength) [backward] • •
stdev(ipTotalLength) [backward] • •
min(_interPacketTimeSeconds) [backward] • •
max(_interPacketTimeSeconds) [backward] • •
median(_interPacketTimeSeconds) [backward] • •
mean(_interPacketTimeSeconds) [backward] • •
variance(_interPacketTimeSeconds) [backward] • •
min(_interPacketTimeSeconds) [backward] • •
min(_interPacketTimeSeconds) • •
max(_interPacketTimeSeconds) • •
median(_interPacketTimeSeconds) • •
mean(_interPacketTimeSeconds) • •
variance(_interPacketTimeSeconds) • •
packetTotalCount . .
accumulate(_ipTotalLength) . .
accumulate(_interPacketTimeMicroseconds) . .
accumulate(flowDirection) . .
accumulate(protocolIdentifier) . .

A
G

M
S

flowStartMilliseconds . .
flowDurationMilliseconds . •
FK sourceIPAddress . .
packetTotalCount . .
distinct(destinationIPAddress) . •
mode(destinationIPAddress) . .
modeCount(destinationIPAddress) . •
min(_interPacketTimeSeconds) . •
max(_interPacketTimeSeconds) . •

Continued on next page

29

3. Methodology and Experiments

Table 3.2 – continued from previous page
Vector Feature 2-tuple multi-key

median(_interPacketTimeSeconds) . •
mean(_interPacketTimeSeconds) . •
variance(_interPacketTimeSeconds) . •
mode(_interPacketTimeSeconds) . •
min(ipTotalLength) . •
max(ipTotalLength) . •
median(ipTotalLength) . •
mean(ipTotalLength) . •
variance(ipTotalLength) . •
distinct(ipTotalLength) . •
mode(ipTotalLength) . •
accumulate(ipTotalLength) . .
accumulate(_interPacketTimeMicroseconds) . .

A
G

M
D

flowStartMilliseconds . .
flowDurationMilliseconds . •
FK destinationIPAddress . .
packetTotalCount . .
distinct(sourceIPAddress) . •
mode(sourceIPAddress) . .
modeCount(sourceIPAddress) . •
min(_interPacketTimeSeconds) . •
max(_interPacketTimeSeconds) . •
median(_interPacketTimeSeconds) . •
mean(_interPacketTimeSeconds) . •
variance(_interPacketTimeSeconds) . •
mode(_interPacketTimeSeconds) . •
min(ipTotalLength) . •
max(ipTotalLength) . •
median(ipTotalLength) . •
mean(ipTotalLength) . •
variance(ipTotalLength) . •
distinct(ipTotalLength) . •
mode(ipTotalLength) . •
accumulate(ipTotalLength) . .
accumulate(_interPacketTimeMicroseconds) . .

30

3.2. Network Traffic Representations

3.2.3 Deep Learning Representations
CNNs use filters to extract features and information from images. By providing 2D
representations or images constructed from flow features, the CNN can extract information,
patterns and statistical correlations in the training data. Thus, we eliminate the need for
creating large and complex feature vectors. We expect the CNN models to only learn
features that are relevant for the classification task, eliminating variance from features
that yield little to no information and find features that were not considered (or could
not be considered) in the baseline feature vectors. Additionally, a visual representation
can also help humans to better understand the data and flow behaviors.

Following we first present a state of the art image representation called FlowPic. Then
we introduce our own image representation called TUWpic. Both can be generated from
the flows extracted in Chapter 3.2.1.

FlowPic

FlowPic is a state of the art 2d-feature representation proposed by Shapira et al. [80]. It
is based on only two features, which makes it a perfect candidate for comparison because
the features are available in encrypted traffic.

FlowPics can be seen as arrays of Payload Size Distributions (PSD) with one PSD for
each interval between packets [80]. The final image is a histogram with packet inter-
arrival-time (iat) on the X-axis and packet length on the Y-axis. To create these images
a list of tuples (IP packet length, time of arrival) has to be constructed for each flow.
The maximum length of an IP packet is 1500 bytes as defined by the Ethernet Maximum
Transmission Size (MTU) value. Packets larger than 1500 bytes are not considered during
image construction. In order to create square images, the packet inter-arrival-time also
has to be scaled to the same dimension. In the FlowPic paper, flows are limited to 60
seconds. Using a 60 to 1500 mapping, the inter-arrival-times are scaled to the range of
0 to 1500. Now the normalized list of pairs of a flow can be mapped to a 1500 × 1500
histogram. The value in each cell is equal to the number of pairs assigned to that cell.
Each of these histograms is then converted to a pixel matrix, exported as an image and
called a FlowPic. The algorithm for creating a FlowPic is defined in Algorithm 3.1. The
classification problem in [80] includes many traffic intense categories such as video calls or
VoIP. After some initial tests with the IDS2017 dataset, it showed that most flows have
sparse packets which resulted in many images being almost black. To resolve this issue
we modified the FlowPic method so that the value in the histogram is not based on the
count of matching tuples but rather is set to 255 (white) if there is any matching tuple
or 0 (black) if there is no matching tuple. This idea was already used in [80] to visualize
the images but was not used for classification. Additionally, instead of scaling only the
inter-arrival-times to a range of 0 to 1500, we scale both packet inter-arrival-time and
packet size to the range of 0-127 to create smaller 128x128 size images. This is done to
significantly increase training time and reduce the image size.

Examples of generated adapted FlowPics can be seen in Figure 3.1.

31

3. Methodology and Experiments

(a) Adapted FlowPic (Benign) (b) Adapted FlowPic (Botnet)

Figure 3.1: Adapted FlowPic with x-Axis showing packet inter-arrival-times and y-axis
showing packet length. White pixels indicate existing packets.

Algorithm 3.1: FlowPic
Input: A feature-vector flow
Output: A FlowPic F

1 F ← init zero matrix [128,128];
2 foreach tuple t (iplen, iat) ∈ flow do
3 if tiplen ≤ 1500 then
4 iats ← map tiat from range(1,60000000) to range(0,127);
5 iplens ← map tiplen from range(1,1500) to range(0,127);
6 F [iats, iplens] ← 255;
7 end
8 end
9 return F ;

32

3.2. Network Traffic Representations

TUWpic

TUWpic is a dynamic size 2D feature representation designed for use with bidirectional
2-tuple flows using packet length, packet inter-arrival-time, and packet direction for
construction. TUWpic tries to keep as much information of the original flow as possible
using available features (packet length, packet inter-arrival-time, and packet direction)
that have shown meaningful results in NTA classification problems. By keeping the
sequentiality of the flow, we also encode temporal information into the resulting represen-
tation. In FlowPic, this information is lost. In TUWpic, we draw variable packet features
in a consistent way resulting in repeating patterns. Using convolutional layers in CNNs
we can train kernels to detect these generic patterns across the resulting images.

The dimension of TUWpic is defined by the maximum number of packets pktsMx
that should be considered from each flow. The packets are sorted by arrival time and
if a flow has more packets than pktsMx, the additional packets are discarded. The
parameter pktsMx can be choosen freely and is set to 128 in this thesis. Choosing the
number of packets to include is not trivial and limitations impossed by the target feature
representation have to be considered. Most of the image based feature representations
presented in Chapter 2.1.4 use all available packets in a flow or as many as possible.
Chen et al. [25] state that they achieved better performance using more packets but only
used 10 in the final experiments to guarantee on-the-fly detection without performance
issues. We have choosen 128 packets because pktsMx also defines the resulting image
size and we wanted to generate images having the same size as the FlowPic images. In
this thesis, all TUWpic based generated images have a size of 128x128. Starting from
top-left, each row in the matrix represents a packet. The contents of each row are split
into two sections vbins, where each section is vbin = pktsMx

2 (image half size). Each half
represents one direction of the flow resulting in a matrix where the left half of the matrix
covers all incoming packets and the right side covers all outgoing packets. This matrix is
converted into a gray-scale image and called TUWpic.

From each packet within a flow (row in the resulting image) the row-value f and the
row-value-span l are calculated, where f is a value between 0 and 1 determining the
resulting greyscale pixel color and l is the number of columns (pixels) it spans. We
propose two methods to calculate the row-value and row-value-span for each packet. We
refer to them as method A and method B and the resulting image representations are
called TUWpicA and TUWpicB respectively.

TUWpicA

Using method A, the row-value fA is based on the packets inter-arrival-times, and the
row-value-span lA is based on the packet length. The value fA is close to 1 when the
packet inter-arrival-time is low and close to 0 when the inter-arrival-time increases. With
fA being at least 0.1 indicating that a packet arrived. We do this to avoid black or
near black rows that could appear in the middle of the flow if the inter-arrival-time is
very high. By introducing a minimum pixel value for existing packets we make a clear

33

3. Methodology and Experiments

separation between packet and no packet. The mathematical expression for fA is given in
Equation 3.1. The row-value-span lA is based on the ratio of packet length to maximum
packet length. The equation for lA is given in Equation 3.2.

The row-value fA is calculated as:

fA = max(1 − log(iat)/log(iatMx), 0.1) (3.1)

where iat is packet inter-arrival-time of the current packet and iatMx is the inter-
arrival-time in microseconds at which fA becomes 0. In this thesis iatMx is set to
iatMx = 5000000. The log function is used to better cover the scale of the inter-arrival-
times. We are interested in algorithmic patterns in the flow and inter-arrival-times can
contain such information. Using log the resulting value will be mapped to a certain range
inside 0 to 1 depending on the magnitude (microseconds, milliseconds, seconds) of the
inter-arrival-time. If the inter-arrival-time is small and therefore the packet was received
shortly (microseconds) after the previous packet fA will be high. If the difference is in
the millisecond range, fA will be in the vicinty of 0.5. If there are seconds between two
packets, meaning a high inter-arrival-time, fA will be close to 0.

The row-value-span or column span lA is calculated as:

lA = int(vbins ∗ len/lenMx) (3.2)

where vbins = pktsMx
2 , len is the current packet length and lenMx is the packet length

at which lA = vbins.

Examples of generated TUWpicA can be seen in Figure 3.2.

(a) TUWpicA (Benign) (b) TUWpicA (Botnet)

Figure 3.2: TUWpicA

34

3.2. Network Traffic Representations

TUWpicB

Method B swaps the features on which fB and lB are based. The row-value fB is now
defined by the packet size. lB is 1 when the packet size is the same as the maximum
packet size pktsMx and decreases with smaller packet size. As before, the value is
capped at 0.1 to indicate the existence of a packet. The row-value-span lB increases if
the inter-arrival-time of a packet is low and decreases if the inter-arrival-time-is-high.
The row-value-span is at least 1. The equations for above calculations are given in
Equation 3.3 and Equation 3.4.

The row-value fB is calculated as:

fB = 0.9 ∗ (len/lenMx) + 0.1 (3.3)

where len is the current packet length and lenMx is the packet length at which fB = 1.

The row-value-span or column span lB is calculated as:

lB = int(max(1 − log(iat)/log(iatMx), 1/vbins) ∗ vbins) (3.4)

where iat is packet inter-arrival-time of the current packet and iatMx is the packet
inter-arrival-time in microseconds at which lB = 1. In this thesis iatMx is set to
iatMx = 5000000.

Examples of generated TUWpicB can be seen in Figure 3.3.

(a) TUWpicB (Benign) (b) TUWpicB (Botnet)

Figure 3.3: TUWpicB

TUWpic-mk

TUWpic-mk is based on TUWpic and tries to improve on it by not only considering a
single 2-tuple flow but utilizing the multi-key flow format introduced in Chapter 3.2.1.

35

3. Methodology and Experiments

This gives us more information to encoded than what similar approaches in the literature
usually have to disposal. Since the multi-key feature vector consists of 3 different flows
(TA, AGMS , AGMD), an intuitive way of transforming it into an image is to assign each
feature vector to a different color channel. Each channel then represents a different type
of communication. We can reuse the definitions of TUWpic from above and assign it to
the red color channel. Following we present two ways for transforming a 1-tuple AGM
flow into a 2D matrix. We then use these transformations to build TUWpic-mkA and
TUWpic-mkB by assigning the transformed AGMS and AGMD matrices to the green
and blue color channels.

Calculating row-value and row-value-span for 1-tuple flows use the same equations as
described in the 2-tuple flow scenario. The resulting images differ in two ways. First, the
starting index is not defined by the flow direction. Instead, each row is filled from the
start, up to the calculated row-value-span. Second, a new variable related to the number
of source and destination IP addresses (depending on the AGM vector) is introduced.
The value of this variable f2 is always 1, and the starting index within each row is pktsMx

2 .
The length of the row-value-span l2 is calculated as follows.

Given the number of distinct destination or source IP addresses of a flow distIPs and a
user defined variable hostMX representing the maximum number of IP addresses, the
length l2 of row-value f2 can be calculated as shown in Equation 3.5

l2 = int(vbins ∗ min(1,
distIPs

hostMX
)) (3.5)

where vbins = pktsMx
2 . The row-value-span l2 becomes larger as distIPs is getting closer

to hostMX. In this thesis hostMX is set to hostMX = 500.

Examples of generated TUWpic-mkA and TUWpic-mkB can be seen in Figure 3.4
and Figure 3.5.

The algorithms for TUWpicA, TUWpicB, TUWpic-mkA and TUWpic-mkB are
shown in Algorithms 3.2, 3.3,3.4 and 3.5. Table 3.3 shows the main differences of the
image representations. Since we are dealing with large datasets, we have to efficiently
handle the creation and storage of image representations. In the next section, we discuss
how some of the problems imposed by large image datasets can be mitigated.

36

3.2. Network Traffic Representations

(a) TUWpic-mkA (Benign) (b) TUWpic-mkA (Botnet)

Figure 3.4: TUWpic-mkA. The first channel (red) is the most prominent as it covers
bidirectional flow data. The green channel is the second most prominent as it shows
data sent from the source to the destination, this is expected as more data is typically
downloaded than uploaded. The blue channel covers outgoing traffic from the victim to
the attacker and has the least amount of packets. We can see that the amount of blue
lines increases in the botnet image, probably due to communication between the remote
botnet master.

(a) TUWpic-mkB (Benign) (b) TUWpic-mkB (Botnet)

Figure 3.5: TUWpic-mkB

37

3. Methodology and Experiments

Algorithm 3.2: TUWpicA
Input: A feature-vector X; a scalar pktsMx, a scalar vbins, a scalar lenMx, a

scalar iatMx
Output: A TUWpicA TA

1 TA ← init zero matrix [pktsMx, 2 ∗ vbins];
2 foreach index i, tuple t (iat, iplen, flowdir) ∈ X do
3 v ← zero vector of size 2 ∗ vbins;
4 if i ≥ pktsMx then
5 break for;
6 end
7 f ← max(1 − log(tiat)/log(iatMx), 0.1);
8 l ← int(vbins ∗ tiplen/lenMx);
9 i ← tflowdir ∗ vbins;

10 v[i : i + l] ← f ;
11 TA[j, :] ← v;
12 end
13 return TA;

Algorithm 3.3: TUWpicB
Input: A feature-vector X; a scalar pktsMx, a scalar vbins, a scalar lenMx, a

scalar iatMx
Output: A TUWpicB TB

1 TB ← init zero matrix [pktsMx, 2 ∗ vbins];
2 foreach index i, tuple t (iat, iplen, flowdir) ∈ X do
3 v ← zero vector of size 2 ∗ vbins;
4 if i ≥ pktsMx then
5 break for;
6 end
7 f ← 0.9 ∗ (tlen/lenMx) + 0.1;
8 l ← int(max(1 − log(tiat)/log(iatMx), 1/vbins) ∗ vbins);
9 i ← tflowdir ∗ vbins;

10 v[i : i + l] ← f ;
11 TB[j, :] ← v;
12 end
13 return TB;

38

3.2. Network Traffic Representations

Algorithm 3.4: 1-tuple image method A
Input: A feature-vector X; a scalar pktsMx, a scalar vbins, a scalar lenMx, a

scalar iatMx, a scalar hostMx
Output: An image I

1 I ← init zero matrix [pktsMx, 2 ∗ vbins];
2 foreach index i, tuple t (iat, iplen, distIPs) ∈ X do
3 v ← zero vector of size 2 ∗ vbins;
4 if i ≥ pktsMx then
5 break for;
6 end
7 f ← max(1 − log(tiat)/log(iatMx), 0.1);
8 l ← int(vbins ∗ tiplen/lenMx);
9 l2 ← int(vbins ∗ min(1, tdistIP s/hostMx));

10 v[vbins : vbins + lp] ← 1;
11 v[: l] ← f ;
12 I[j, :] ← v;
13 end
14 return I;

Algorithm 3.5: 1-tuple image method B
Input: A feature-vector X; a scalar pktsMx, a scalar vbins, a scalar lenMx, a

scalar iatMx, a scalar hostMx
Output: An image I

1 I ← init zero matrix [pktsMx, 2 ∗ vbins];
2 foreach index i, tuple t (iat, iplen, distIPs) ∈ X do
3 v ← zero vector of size 2 ∗ vbins;
4 if i ≥ pktsMx then
5 break for;
6 end
7 f ← 0.9 ∗ (tlen/lenMx) + 0.1;
8 l ← int(max(1 − log(tiat)/log(iatMx), 1/vbins) ∗ vbins);
9 l2 ← int(vbins ∗ min(1, tdistIP s/hostMx));

10 v[vbins : vbins + lp] ← 1;
11 v[: l] ← f ;
12 I[j, :] ← v;
13 end
14 return I;

39

3. Methodology and Experiments

Name x-axis y-axis W R G B
FlowPic iat size packet

TUWpicA dir + size packet iat
TUWpicB dir + iat packet size

TUWpic-mkA dir + size packet iat iat + IP addresses iat + IP addresses
TUWpic-mkB dir + iat packet size size + IP addresses size + IP addresses

Table 3.3: Comparison of image based feature represenations. IATs are packet inter-
arrival-times and size refers to packet length and dir refers to the direction of the packet
(incoming or outgoing).

40

3.3. Classification Tasks and Goals

3.2.4 Handling image data
Using large image datasets imposes some challenges that need to be addressed. Generating
images for all samples beforehand leads to a lot of single files. Dealing with hundreds
of thousands single image files quickly becomes very messy and hard to manage. Also,
reading and writing single files can lead to performance bottlenecks during training.
Depending on the training environment the data could be stored in the cloud or on slow
hard drives.

One way to address the storage problem is to generate the images during training and
testing in memory, rather then permanently storing them. This addresses the problem of
handling a lot of files but depending on the image generation method, it could be even
slower than reading and writing them.

Both problems can be addressed by using a data format specifically developed for storing
deep learning data. All deep learning experiments in this thesis are conducted using
Python and Keras [5]. Keras is a high level deep learning framework for Tensorflow.
Using Tensorflow we can utilize their custom file format TFRecord[14]. TFRecord uses
Googles Protocol Buffers[10] serialization technology to efficiently store sequences of
binary data. The TFRecord file format allows us to store the generated images in a
single compressed file. A TFRecord dataset not only is an efficient data storage format,
but since it is specifically developed for deep learning, it supports things like splitting
a dataset in shards and storing them on different servers, shuffling data, caching data,
creating batches, and a lot of other useful functions.

We now have showed a way to create and store feature representations that can be used
as inputs to our ML and DL models. Before we go over these models, we need to define
which experiments we want to conduct and how we are going to evaluate them.

3.3 Classification Tasks and Goals
In order to evaluate the performance of the proposed representations, we evaluate our
models using binary and multiclass classification. Both datasets provide ground truth
data that allows for easy labeling of flows with different anomalous categories or as benign
traffic. Anomalous traffic can be a multitude of categories depending on the dataset.
When doing binary classification, all non-benign labels are replaced by a single Attack
label.

Typical problems of IDS and in anomaly detection are high False-Positive (FPR) rates
and low True-Positive-Rates (TPR) [63]. The goal is to maximize TPR and minimize
FPR [18]. This is especially a challenge in IDS, because most samples belong to the
benign class. This is one of the main reasons accuracy is not a significant evaluation
metric for imbalanced data or data that is skewed towards one class [43]. It will always
result in a high score because benign traffic is classified as such, but the metric ignores
the skewness of the data. We therefore use the following metrics that are also common
in the field and in imbalanced classification, e.g., confusion matrix, fale-positive-rate,

41

3. Methodology and Experiments

precision, recall, f1, auc-roc and average precision [87][18][91][69]. The most promising
and interesting metrics to look at are F1 and average-precision. They tend to deliver the
most reliable results in imbalanced binary classification tasks [75].

Following we describe the individual metrics that ared used for evaluation, before going
over the individual models and architectures used for evaluation in the next section.

Confusion Matrix

A confusion matrix is a n × m matrix with n and m being the number of classes. For
a binary classification task a confusion matrix would be of size 2 × 2, for a multiclass
classification task with 7 different classes the confusion matrix would be of size 7 × 7.
The rows of a confusion matrix indicate the true label, the columns the predicted labels.
Based on the value in each element the following statistics can be retrieved for each class:
True-Positive (TP), True-Negative (TN), False-Positive (FP), False-Negative
(FN). In a 2 × 2 confusion matrix this would look like depicted in Figure 3.6.

Figure 3.6: Example of a binary confusion matrix C with TN = C0,0, FN = C1,0,
TP = C1,1 and FP = C0,1. [12].

42

3.3. Classification Tasks and Goals

Accuracy

Accuracy is an indicator that shows how many samples are correctly classified. It is not
very expressive for skewed datasets for the reasons we talked about above. Accuracy is
defined as:

Accuracy = TP + TN

TP + FP + TN + FN
(3.6)

False-Positive Rate

The False-Positive Rate (FPR) is an indicator for how many negative samples the model
predicted positive. It is complementary to recall and defined as:

FPR = FP

TN + FP
(3.7)

Precision

Precision is an indicator that measures how often a model is correct about its positive
predictions. Precision is defined as:

Precision = TP

TP + FP
(3.8)

Recall (True-Positive Rate)

Recall or True-Positive Rate (TPR) is a measure of how well a model recognizes positive
samples. The metric needs to be evaluated together with other metrics since it can be
easily manipulated by just classifying everything as positive:

Recall = TP

TP + FN
(3.9)

F1-Score

The F1-Score (F1) is the harmonic mean of precision and recall. It is a combined metric
that gives precision and recall the same importance. It is defined as:

F1Score = 2 × (Precision × Recall)
Precision + Recall

(3.10)

ROC-AUC

Receiver Operator Characteristic (ROC) curve is a plot of FPR against recall at multiple
thresholds. Computing the AUC (Area Under the Curve) is an indicator for how well a
model performs. An AUC of 1 is a perfect classifier, an AUC of 0.5 is a purely random
classifier. Figure 3.7 show an example of an ROC curve.

Average Precision

43

3. Methodology and Experiments

Figure 3.7: ROC curve with AUC [11]

Average Precision (AP) can only be used to evaluate binary scores (or per class scores).
“AP summarizes a precision-recall curve as the weighted mean of precisions achieved
at each threshold, with the increase in recall from the previous threshold used as the
weight.” [11] The Precision-Recall Curve (PRC) is not a metric on its own but a way
to show the relation (trade-of) between Precision and Recall. To do this, precision and
recall values are plotted against each other at different thresholds. A good classifier has
both, high precision and high recall.

AP =
n

i=0
(Ri − Ri−1) × Pi (3.11)

where n is the number of thresholds.

44

3.4. Classification Algorithms and Models

3.4 Classification Algorithms and Models
The main focus of this thesis is to investigate DL models and associated feature represen-
tations. Since we are using only 2-tuple flows and a relatively new dataset there is little
to none comparable work that can be used for performance comparison. We therefore
propose a random forest ensemble as a baseline evaluation model, so that we can put the
DL results into context.

3.4.1 Baseline Model
Random Forests (RF) are used in IDS and traffic classification across the literature and
have shown to be the best option many times [40]. We use an ensemble of 100 estimators
and apply halving grid search [13] with 5-fold cross validation.
The halving grid search iteratively removes parameters that do not perform well. This is
done by testing every parameter pair on a model with reduced resources. When used
with RF, the resource is the number of estimators. This way, all possible parameter
combinations are tested with a fast model. With every iteration the resource is increased
while the number of parameters decreases.
Cross Validation (CV) is used to validate a model’s performance without evaluating it
on the test data. This is needed when searching for the best hyperparameters in a grid
search. Without CV an additional validation dataset is needed in order to evaluate the
models performance since it is not good practice to tune a model on the test set. The
train set also cannot be used to estimate the model’s performance, because the model
has already seen all the samples in the dataset. With CV, we can overcome this problem
by splitting the training data equally into n-folds. Each training must now be done n
times. During each cycle, 1 of the n folds is left out and used as a validation set. The
average of the performance across all folds is then the final performance metric and can
be used for hyperparameter selection.
In summary the baseline model can be described as follows. The baseline model is a RF
ensemble of 100 estimators. The hyperparameters max_depth and min_samples_split are
tuned using halving grid search and 5 − fold CV. The halving grid search uses a factor of
2 as halving parameter. The halving parameter defines the proportion of hyperparameters
to keep for the next iteration. With a halving parameter of 2, half of the hyperparameters
are selected, a parameter of 3 would keep a third of the hyperparameters. The number
of resources per hyperparameter pair is limited to a maximum of 20. Meaning during the
grid search, each combination uses an ensemble of 20 estimators.
The RF model is needed in order to have a valid baseline to which we can compare the
DL models which are presented next.

3.4.2 Neural Network Models
Deep Learning (DL) and Convolutional Neural Networks (CNNs) are used in different
studies for network traffic classification and intrusion detection [25][98][80]. Choosing

45

3. Methodology and Experiments

the right CNN architecture is a key factor in optimizing model performance. In some
preliminary tests we compare 5 CNN architectures against each other using the IDS2017
dataset. Because all of these models are rather “shallow”, we also include an additional,
efficient, state-of-the-art model - MobileNetV3. The used architectures are described
below. We tried to keep the models as close to the literature as possible and only adjusted
the input layers to work with the proposed feature representations. If more adjustments
where made, it will be described in the corresponding models section.

Feature images are stored with color values in the range of 0-255 to save space, each input
layer is at the same time a re-scaling layer that normalizes the color values. This layer
is ignored in the following descriptions of the CNN architectures. Also, the activation
function is always assumed to be ReLu.

FlowPic

In Shapira et al. [80], not only a novel image based feature representation is proposed
but also a CNN architecture. The proposed architecture is based on the famous LeNet-5
CNN architecture [54].

The model has a 1500x1500x1 size input layer. The first convolutional layer consists of
10 10x10 filters with a stride of 5. Following, a max-pooling layer with the size of 2x2 is
applied. Then another convolutional layer with 20 filters of size 10x10 and stride of 5,
followed by another 2x2 max-pooling layer are used. The max-pooling layer is followed
by a flatten layer and then a fully-connected layer with 64 units. The 64 dense layer is
connected to the output layer.

Because we are working with smaller images of size 128x128 the input layer was adjusted
and also the stride of the second convolutional layer cannot be applied and a stride of 2
is used instead. The architecture can be seen in Figure 3.8

Figure 3.8: FlowPic CNN architecture

Seq2Img

Similar to FlowPic, Seq2Img is an image based feature representation and a CNN
architecture at the same time. The architecture is based on 6 channel images and
adapted accordingly to be used with images of size 128x128x1 and 128x128x3. The first

46

3.4. Classification Algorithms and Models

convolutional layer consists of 32 5x5 filters with size 5, followed by a max-pooling layer.
The same two layers are repeated except that the number of filters is increased to 64.
Then, a flatten layer and two fully-connected layers with 1024 and 128 units follow before
ending at the output layer.

The architecture can be seen in Figure 3.9

Figure 3.9: Seq2Img CNN architecture

Vec2Img

In Moustakidis et al. [63], an image based feature representation and an accompanying
CNN architecture is proposed. The CNN starts with a single convolutional layer with 16
2x2 filters followed by a flatten layer and 3 fully-connected layers with size 1028 before
reaching the output layer. The documentation of the architecture in the cited work is not
very precise, and it is not clear if there was a pooling layer used after the convolutional
layer. Following best-practice and other architectures a max-pooling layer was used.
Additionally, the original input layer of 7x7x1 was changed to 128x128x1 and 128x128x3.

The architecture can be seen in Figure 3.10

Figure 3.10: Vec2Img CNN architecture

LeNet5

A CNN using the original LeNet5 architecture with some modern features is proposed
here. Instead of average-pooling, max-pooling is used. Also, the amount of filters in the

47

3. Methodology and Experiments

convolutional layers is increased as well as the number of neurons in the fully connected
layers.

The adapted LeNet5 architecture starts with a convolutional layer with 32 5x5 filters
followed by a max-pooling layer, another convolutional layer with 48 filters of size 5x5 and
a final max-pooling layer. This is continued with a flatten layer and two fully-connected
layers with 256 and 84 neurons each. This architecture is similar to Seq2Img but uses
different combinations.

The architecture can be seen in Figure 3.11

Figure 3.11: Adapted LeNet5 CNN architecture

MobileNetV3

Nowadays, the above architectures would be considered small. The original LeNet5
architecture only has 60000 trainable parameters. With more computing power we
can use deeper networks with more parameters to retrieve better classification results.
ID is a time and resource demanding area therefore we propose a CNN optimized for
mobile devices which has similar requirements. MobileNetV3Small [36] with 2.4
million trainable parameters, has significantly more parameters than the original LeNet5
architecture. To use that many parameters in a mobile device, special mobile CNN
building blocks were created (bneck). These building blocks are considered layers on
their own when describing the architecture. MobileNetV3Small consists of 16 layers
in total. Figure 3.12 shows the structure of such a bneck block, the overall structure can
be seen in Table 3.4.

Siamese Neural Networks and Online Mining

We now have defined various feature represenations and models but are yet to address one
of the main challenges of IDS dataset, imbalanced data. As we stated in Chapter 2.1.2,
one way of handling imbalanced datasets is using distance metric learning [99]. In this
thesis, this is implemented using siamese neural networks. We also discussed how online
mining can be used to reduce the computational costs by creating pairs and triplets
of samples during training (online) inside the loss functions. Applying online mining
removes the need for twin or triplet networks, since they are only needed when pairs and
triplets are generated beforehand and need to be processed at the same time.

48

3.4. Classification Algorithms and Models

Figure 3.12: MobileNetV3 building block (bneck)
based on [36]

Input Operator exp size #out SE NL s

2242 × 3 conv2d,3x3 − 16 − HS 2
1122 × 16 bneck, 3x3 16 16 ✓ RE 2
562 × 16 bneck, 3x3 72 24 − RE 2
282 × 24 bneck, 3x3 88 24 − RE 1
282 × 24 bneck, 5x5 96 40 ✓ HS 2
142 × 40 bneck, 5x5 240 40 ✓ HS 1
142 × 40 bneck, 5x5 240 40 ✓ HS 1
142 × 40 bneck, 5x5 120 48 ✓ HS 1
142 × 48 bneck, 5x5 144 48 ✓ HS 1
142 × 48 bneck, 5x5 288 96 ✓ HS 2
72 × 96 bneck, 5x5 576 96 ✓ HS 1
72 × 96 bneck, 5x5 576 96 ✓ HS 1
72 × 96 conv2d, 1x1 − 576 ✓ HS 1
72 × 576 pool, 7x7 − − − − 1
12 × 576 conv2d 1x1, NBN − 1024 − HS 1
12 × 1024 conv2d 1x1, NBN − k − − 1

Table 3.4: MobileNetV3Small CNN architecture

The goal of this learning method is to create embeddings that minimize the distance
between the same class and maximize the distance to other classes. These embeddings
are then used to categorize new samples based on their embeddings. This method of
learning is referred to as distance metric learning. In order for a network to learn such
embeddings, special loss functions are needed. These loss functions expect the class
labels and the embeddings of the feature as inputs whereas traditional loss functions use
class labels and predicted labels. The last hidden layer is usually a fully-connected layer
returning a vector also called embeddings of the size of neurons in that layer. In order to
effectively measure the distance between two embeddings, they need to be normalized. In
this thesis the L2 norm is used for normalization. This can be achieved by replacing the

49

3. Methodology and Experiments

output layers of the above described CNNs with a normalization layer. Inside the loss
function we can create a pairwise distance matrix of size n × n where n is the number of
samples in the batch. From this distance matrix we can calculate the loss functions as
described in Chapter 2.2.

Two loss functions and two online mining techniques are used in this thesis. Using matrix
operations, the losses and online mining techniques can be implemented very efficiently.

Contrastive loss is implemented using the L2 norm (euclidean distance) and batch-all
online mining. Batch-all mining calculates the loss for all available pairs in a batch.
Pseudocode for the loss function is given in Algorithm 3.6 and works as follows. First
a pairwise distance matrix d is created from the embeddings. Then a pairwise binary
adjacency matrix adjacency is created using the labels. This matrix contains 1 for
elements where the labels are equal and 0 for elements where the labels are different.
These same size matrices that can be used to calculate the contrastive loss as defined in
the following equation:

l = adjacency ∗ d2 + (1 − adjacency) max(margin − d, 0)2 (3.12)

where margin is a regularization term indicating a minimum distance between negative
pairs.

Algorithm 3.6: Contrastive loss with batch-all online mining
Input: A list of class labels labels, a list of embeddings embeddings, a scalar

margin m
Output: Contrastive loss l

1 d ← pairwisedistancematrix(embeddings);
2 adjacency ← pairwisebinaryadjacencymatrix(embeddings);
3 l ← adjacency ∗ d2 + (1 − adjacency) ∗ max(m − d, 0)2;
4 l ← sum(l)

len(labels) ;
5 return l;

Triplet loss also uses the euclidean distance as a metric but uses online hard mining
instead of batch all mining. Pseudocode for the triplet loss is given in Algorithm 3.7.
The loss for a triplet (a, p, n) is defined as:

l = max(d(a, p) − d(a, n) + m, 0) (3.13)

where d(a, p) is the distance between the anchor and the positive pair, d(a, n) is the
distance between the anchor and the negative pair and m is a margin term.

As for the contrastive loss d and adjacency are created. Additionally, the inverted version
of adjacency is also computed adjacencynot. To compute hard negative samples we take
the row-wise maximums from dist and subtract them from d. This results in a matrix

50

3.4. Classification Algorithms and Models

where 0 indicates elements that are far apart. Pairs are closer to each other the larger
the negative number is, with the largest negative in each row being the negative row-wise
maximum. By multiplying with adjacencynot we eliminate positive pairs. Taking the
row-wise minimum from this new matrix gives us the hardest negative pair for each
sample. We then need to add the row-wise maximums back to get the original values. In
order to calculate hard positives we set the diagonal of adjacency to 0 to mask out pairs
of the same samples. Then we multiply the adjusted mask adjacency with d and take
the row-wise maximums. The triplet loss can now be calculated using Equation 3.13.

Algorithm 3.7: Triplet loss with batch-hard online mining
Input: A list of class labels labels, a list of embeddings embeddings, a scalar

margin m
Output: Triplet loss l

1 d ← pairwisedistancematrix(embeddings);
2 adjacency ← pairwisebinaryadjacencymatrix(embeddings);
3 adjacencynot ← invert(adjacency);
4 rowmaximums ← rowmax(pairwisedistance);
5 hardnegatives ← (pdistmatrix − axismaximums) ∗ adjacencynot;
6 hardnegatives ← rowmin(hardnegatives) + rowmaximums;
7 adjacencymask ← adjacency − diagonalmatrixones(len(labels));
8 hardpositives ← pdistmatrix ∗ adjacencymask;
9 hardpositives ← rowmin(hardpositives);

10 l ← max(hardpositives − hardnegatives + m, 0.0);
11 l ← mean(l);
12 return l;

51

3. Methodology and Experiments

3.5 Experimental Setup

The previous chapters and sections introduced the needed background knowledge, related
work and descriptions of specific techniques and methods used in this thesis. In this
chapter we want to focus on the actual implementation and execution of the experiments.

We designed and end-to-end process starting with network traffic captures and ending
with the evaluation of trained models, this process can be split into the following logical
steps:

1. flow extraction

2. preprocessing and labeling

3. creating train and test datasets

4. creating feature representations

5. model training

6. model evaluation

All data and scripts used during the experiment are stored in an accompanying repository.
For reproducibility, all methods that involve random number generators are used with
the same seed value. When not stated otherwise, all programming was done in Python
[15] on Windows 10. The repository contains a step-by-step instructions file to reproduce
the experiments.

3.5.1 Flow Extraction

We start the process by extracting the flows defined in Chapter 3.2.1 from the respective
dataset PCAP files. Go-flows [1] is a flow extraction tool developed by the Institute
of Telecommunications, TU Vienna which we can use for that job. Go-flows allows us
to extract, compute statistics and aggregate features based on the IANA IPFIX (IP
Flow Information Export Entities) [4] specification. The resulting flows are then stored
in CSV files. Three different config files were created to extract the flows. One for
2-tuple bidirectional flows (TA feature vector), one for 1-tuple unidirectional source
flows (AGMS feature vector) and one for 1-tuple unidirectional destination flows (AGMD

feature vector).

For each dataset we end up with 3 CSVs files containing TA, AGMS and AGMD

feature-vectors.

52

3.5. Experimental Setup

3.5.2 Preprocessing and Labeling
In the next step, unwanted flows are removed and labels are assigned. This only has to
be done for the 2-tuple TA dataset. The AGM datasets are only used as part of the
multi-key feature-vector and never as a stand alone dataset.

The following preprocessing is applied to the datasets:

• IDS2017: The dataset does not need any further preprocessing.

• MAWI: As described on the MAWI website, the data suffers from ICMP ANT
probing [31]. Thus, flows where data is sent/received by the top 2 IP addresses
that send/receive the most ICMP traffic are removed.

After preprocessing, the labels are assigned using custom labeling scripts.

3.5.3 Train and Test Datasets
After the flows are labeled, the 2-tuple dataset is split into a train and a test set where
70% is used as train data and 30% is used as test data. The data is split in a stratified
manner. The MAWI dataset contains significantly more flows than the IDS2017 dataset.
Using the whole dataset would be infeasible for the scope of this thesis, training time and
computational complexity would be too high. Therefore, MAWI dataset is downsampled
to 500.000 flows before splitting. This is also done in a stratified manner so that the
original class distribution stays the same.

Some statistical information of the datasets are given in Tables 3.5 and 3.6. As can be
seen, the datasets are heavily imbalanced and skewed towards the Normal (benign) class.
The MAWI dataset consists of 75% Normal traffic. In the IDS2017 dataset as much as
99.7% is non-malicious traffic.

Datasets

Class Original Train Test

Normal 407813 (99.7%) 285468 (99.7%) 122345 (99.7%)
Infiltration 1098 (0.3%) 769 (0.3%) 329 (0.3%)
Botnet 163 (<0.1%) 114 (<0.1%) 49 (<0.1%)
DDoS 57 (<0.1%) 40 (<0.1%) 17 (<0.1%)
Portscan 26 (<0.1%) 18 (<0.1%) 8 (<0.1%)
Web Attack 23 (<0.1%) 16 (<0.1%) 7 (<0.1%)
Brute Force 11 (<0.1%) 8 (<0.1%) 3 (<0.1%)
Total 409191 286433 122758

Table 3.5: IDS2017 dataset class distributions

53

3. Methodology and Experiments

Datasets

Class Original Train Test

Normal 372687 (74.5%) 260881 (74.5%) 111806 (74.5%)
Multipoint 78180 (15.6%) 54726 (15.6%) 23454 (15.6%)
TCP Scan 26077 (5.2%) 18254 (5.2%) 7823 (5.2%)
UDP Scan 21234 (4.2%) 14864 (4.2%) 6370 (4.2%)
ICMP Scan 1217 (0.2%) 852 (0.2%) 365 (0.2%)
HTTP 414 (0.1%) 290 (0.1%) 124 (0.1%)
Alpha 164 (<0.1%) 115 (<0.1%) 49 (<0.1%)
Other 12 (<0.1%) 8 (<0.1%) 4 (<0.1%)
DoS 10 (<0.1%) 7 (<0.1%) 3 (<0.1%)
Tunneling 5 (<0.1%) 3 (<0.1%) 2 (<0.1%)
Total 500000 350000 150000

Table 3.6: MAWI dataset class distributions

3.5.4 Creating Feature Representations

After the data is split into train and test sets, we can create the needed feature represen-
tations.

A random forest ensemble with halving grid search and cross-validation is used as a
baseline model for evaluation. We want to evaluate our models using 2-tuple flows and
multi-key flows. Using the merging strategy described in Chapter 3.2 we can combine the
2-tuple key train and test set with the 1-tuple source and 1-tuple destination datasets
resulting in two new multi-key train and test sets. These datasets contain the full
TA and AGM features. In Chapter 3.2.2 we showed the relevant features for training
the random forest model. These features are directly selected in the training script,
no additional feature vector datasets have to be generated. These approaches are not
directly comparable since the random forest model is trained with many aggregated flow
features and the image representations are created from 3 individual packet features.
However, the features used to train the RF model are all based on the same 3 packet
features that are also used for the image based methods. Thus, both methods use the
same information. The following Table ?? shows the main differences of the undelying
data of the different feature represenations.

In Chapter 3.2.4 we discussed the problems that occur when dealing with large image
datasets and how they can be addressed. We use the algorithms described in Chapter 3.2.3
and create TFRecord datasets of each feature representation. Similar to the feature
vector representations, the TUWpic-mkA and TUWpic-mkB representations first need to
create a multi-key dataset. This is done in-memory during the image dataset generation.

Ealier, we described how few-shot learning can be used to deal with imbalanced datasets.

54

3.5. Experimental Setup

Feat. Type Features Sequ. Pres. Compl. Flow

TA FV aggregated flow 32 no yes
Multi-Key FV aggregated flow 64 no yes
FlowPic per packet 2 no yes
TUWpicA per packet 3 yes no
TUWpicB per packet 3 yes no
TUWpic-mkA per packet 3 yes no
TUWpic-mkB per packet 3 yes no

Table 3.7: Packet/Flow information preserved in the different feature representations.
Type indicates if data is represented per packet or as aggregated flow statistics. Sequ.
Pres. refers to preservation of sequentiality or time characteristics. Compl. Flow indicates
if the complete flow (all packets) were used to derive the features or create the feature
representations.

In order to evaluate the performance of few-shot learning, we create additional image
datasets containing reduced number of samples. The assumption is, that when using
only a small amount of samples from each class, we can create embeddings that capture
the distribution of the original dataset well enough to successfully classify the test data.
New samples don’t have to match the training embeddings exactly, they just have to be
nearby. Undersampling is used to limit the number of samples in each class to at most
40 samples. Then image datasets for these new datasets are created. Few-shot learning
is only investigated in multiclass classification tasks.

In total, we create 29 sub-datasets for training and testing for each of IDS2017 and
MAWI. Where 4 datasets contain feature vectors and 25 datasets are used to store image
representations. An overview of the generated datasets is given in Table 3.8. In the next
step we show how these datasets are used to train the models.

3.5.5 Model Training
After the different training and test dataset are created, the models can be trained.
The baseline RF model and a series of different CNN architectures were presented in
Chapter 3.4. Training all proposed architectures would be out of scope for this work and
we decided to run preliminary tests to find the CNN architecture most suitable for this
task.

In order to select the best CNN architecture for our problem, preliminary tests are
conducted. For each CNN architecture a model is trained for 50 epochs on the FlowPic,
TUWpicA and TUWpicB IDS2017 datasets in a multiclass classification task. To
select the best architecture among them, True-Positive (TP), False-Negative (FN) and
False-Positive (FP) metrics are used. In Table 3.9 the results of each model and dataset
is shown. By calculating the average performance, we found that the best performing
model was the adapted LeNet-5 architecture. The best performing feature representation

55

3. Methodology and Experiments

Name Task F. Rep. Res. Train/Test

2tuple-train.csv both feature vector - test
2tuple-test.csv both feature vector - train
multikey-train.csv both feature vector - train
multikey-test.csv both feature vector - test

binary-FlowPic-train.tfrecord binary FlowPic - train
binary-FlowPic-test.tfrecord binary FlowPic - test
binary-TUWpicA-train.tfrecord binary TUWpicA - train
binary-TUWpicA-test.tfrecord binary TUWpicA - test
binary-TUWpicB-train.tfrecord binary TUWpicB - train
binary-TUWpicB-test.tfrecord binary TUWpicB - test
binary-TUWpic-mkA-train.tfrecord binary TUWpic-mkA - train
binary-TUWpic-mkA-test.tfrecord binary TUWpic-mkA - test
binary-TUWpic-mkB-train.tfrecord binary TUWpic-mkB - train
binary-TUWpic-mkB-test.tfrecord binary TUWpic-mkB - test
multiclass-FlowPic-train.tfrecord multiclass FlowPic - train
multiclass-FlowPic-test.tfrecord multiclass FlowPic - test
multiclass-TUWpicA-train.tfrecord multiclass TUWpicA - train
multiclass-TUWpicA-test.tfrecord multiclass TUWpicA - test
multiclass-TUWpicB-train.tfrecord multiclass TUWpicB - train
multiclass-TUWpicB-test.tfrecord multiclass TUWpicB - test
multiclass-TUWpic-mkA-train.tfrecord multiclass TUWpic-mkA - train
multiclass-TUWpic-mkA-test.tfrecord multiclass TUWpic-mkA - test
multiclass-TUWpic-mkB-train.tfrecord multiclass TUWpic-mkB - train
multiclass-TUWpic-mkB-test.tfrecord multiclass TUWpic-mkB - test
multiclass-FlowPic-train-few.tfrecord multiclass FlowPic u train
multiclass-TUWpicA-train-few.tfrecord multiclass TUWpicA u train
multiclass-TUWpicB-train-few.tfrecord multiclass TUWpicB u train
multiclass-TUWpic-mkA-train-few.tfrecord multiclass TUWpic-mkA u train
multiclass-TUWpic-mkB-train-few.tfrecord multiclass TUWpic-mkB u train

Table 3.8: Training and test sets for each of IDS2017 and MAWI. Name is the filename
of the dataset. Task refers to the classification task, either binary, multiclass or both. R.
Rep. is the name of the feature representation. Res. indicates if a resampling technique is
applied (u = undersampling) and Train/Test refers to the type of dataset, either training
or testing.

was TUWpicA. The results of the RF classifier are also included for comparison. Based
on these preliminary tests, the adapted LeNet-5 architecture is used in all further
experiments.

Different training tasks need different model configurations. We store the configurations
in JSON files, which increases reusability and reproducibility instead of submitting them
as command line arguments or hardcoding them into the training script. The following
Table 3.10 shows the most relevant parameters and their values in different training
configurations. All models are trained using Adam optimizer and implement an early
stopping mechanism. When using few-shot learning, the batch size is reduced and the
number of epochs is increased. Additionally, the early stopping patience is adjusted for
the larger number of epochs. The RF based experiments are listed in Table 3.11.

Models that do not use contrastive loss or triplet loss use binary-crossentropy and
categorical-crossentropy as loss functions. The trained models are stored in the H5 file
format for later evaluation.

Random Forest training was done on an AMD Ryzen 7 1700 CPU. The CNN models

56

3.5. Experimental Setup

FlowPic TUWpicA TUWpicB Average
Architecture TP FN FP TP FN FP TP FN FP TP FN FP

FlowPic 80 332 35 69 343 47 53 359 66 67.3 344.6 49.3
Seq2Img 90 322 34 68 344 28 75 337 70 77.6 334.3 44.0
LeNet5 82 330 27 76 336 39 77 335 34 78.3 333.6 33.3
Vec2Im 84 328 34 76 336 32 62 350 62 74.0 338.0 42.6
MobileNetV3 0 412 0 74 338 50 76 336 75.0 50.0 362.0 41.6

Average 67.2 344.8 26 70.8 339.4 39.2 68.6 343.4 61.4 199 213 9399
Random Forest

Table 3.9: Preliminary test results. TP samples of the Normal class were removed in
order to make the results easier comparable. They would result in very high TP values
which makes it less intuitive to compare. Because the TP values of the other classes are
kept and FN and FP values of all classes are shown, the TP values of the normal class
can be left out with no information loss. The most important information (how many
attacks are classified correctly and how many benign sample are classified as attacks) is
directly visible.

were trained on Nvidia GTX 1060 6GB and/or Nvidia V100 GPUs. Each datasets yields
17 trained models, 15 of which are CNN models and 2 of which are RF models. With
the trained models we can proceed to the last part of the experiment, evaluation.

3.5.6 Evaluation and Metrics
For each model, we compute the performance metrics defined in Chapter 3.3. Each model
produces two files, a JSON file containing the calculated performance metrics, and a
CSV file containing ground-truth labels, predicted labels and predicted probabilities.

Evaluation of RF models and crossentropy based CNN models is done by using the train
datasets as inputs. The models predict classes which can be directly used to calculate
performance metrics. Evaluation of embedding based models is a bit more complex.

In order to evaluate models that use distance metric learning, the following approach is
used.

1. the trained model is loaded

2. embeddings for both, training and test datasets are generated (predicted)

3. a K-Nearest-Neighbor (KNN) classifier is trained with the training embeddings

4. the trained KNN is used to predict the class labels of the test embeddings

5. performance metrics are generated based on the KNN results

It intuitively shows that KNN aligns very well with this method. A KNN with K = 3 is
used for nearest neighbors classification. Using K = 1 could lead to false classifications
because of outliers, using too many neighbors on the other hand could include classes

57

3. Methodology and Experiments

Parameters

Model Dataset Epochs Batch LR ESP ES-Delta Img. Channels

Cross. bin/cat-FlowPic 200 512 0.001 20 0.0005 1
Contr. bin/cat-FlowPic 200 512 0.001 20 0.0005 1
Triplet bin/cat-FlowPic 200 512 0.001 20 0.0005 1
Cross. bin/cat-TUWpicA 200 512 0.001 20 0.0005 1
Contr. bin/cat-TUWpicA 200 512 0.001 20 0.0005 1
Triplet bin/cat-TUWpicA 200 512 0.001 20 0.0005 1
Cross. bin/cat-TUWpicB 200 512 0.001 20 0.0005 1
Contr. bin/cat-TUWpicB 200 512 0.001 20 0.0005 1
Triplet bin/cat-TUWpicB 200 512 0.001 20 0.0005 1
Cross. bin/cat-TUWpic-mkA 200 512 0.001 20 0.0005 3
Contr. bin/cat-TUWpic-mkA 200 512 0.001 20 0.0005 3
Triplet bin/cat-TUWpic-mkA 200 512 0.001 20 0.0005 3
Cross. bin/cat-TUWpic-mkB 200 512 0.001 20 0.0005 3
Contr. bin/cat-TUWpic-mkB 200 512 0.001 20 0.0005 3
Triplet bin/cat-TUWpic-mkB 200 512 0.001 20 0.0005 3
Contr. cat-FlowPic-few-shot 1000 64 0.001 200 0.0005 1
Triplet cat-FlowPic-few-shot 1000 64 0.001 200 0.0005 1
Contr. cat-TUWpicA-few-shot 1000 64 0.001 200 0.0005 1
Triplet cat-TUWpicA-few-shot 1000 64 0.001 200 0.0005 1
Contr. cat-TUWpicB-few-shot 1000 64 0.001 200 0.0005 1
Triplet cat-TUWpicB-few-shot 1000 64 0.001 200 0.0005 1
Contr. cat-TUWpic-mkA-few-shot 1000 64 0.001 200 0.0005 3
Triplet cat-TUWpic-mkA-few-shot 1000 64 0.001 200 0.0005 3
Contr. cat-TUWpic-mkB-few-shot 1000 64 0.001 200 0.0005 3
Triplet cat-TUWpic-mkB-few-shot 1000 64 0.001 200 0.0005 3

Table 3.10: Training and test sets for the different classification approaches. The CNN
based approaches are applied to each of IDS2017 and MAWI. Model indicates the type of
DL model that was used. ESP (Early Stopping Patience) is the number of epochs with
no improvement over ES-Delta (Early Stopping Min-Delta) after which the training is
stopped.

Parameters

Model Dataset Task CV Ensemble GridSearch

RF ta bin/cat 5-fold 100 Halving
RF mk bin/cat 5-fold 100 Halving

Table 3.11: List of experiments based on RF models. Dataset refers to the type of feature-
vector that was uesd to train. CV indicates if cross-validation was applied. Ensemble is
the number of decision trees used in the RF model, and GridSearch indicates if and what
type of GridSearch is applied.

from far apart samples. The euclidean distance was used as distance metric in the KNN
classifier.

58

CHAPTER 4
Results and Discussion

In this chapter we present the data obtained from the experiments, interpret them and
discuss their meaning in regards to the research questions formulated in Chapter 1

4.1 Results
Several Neural Network models with different combinations of feature representations
and network architectures were trained. In addition, a Random Forest model used as a
baseline for performance evaluation is also trained. We use the obtained performance
data and compare it to help us answer the following questions "How does the novel
feature representation TUWpic compare to state of the art 2D-flow representations?",
"Are siamese networks a viable solution for dealing with imbalanced data?", "Can few-shot
learning be used to lower training time and resource demands while maintaining the same
level of performance as full training?" and "What are the limitations and implications of
using real or synthetic data for training and evaluation?".

As described in Chapter 3, each model was trained on a train dataset and evaluated
on a test dataset. We group the results logically by dataset (MAWI or IDS2017) and
classification task (binary or multiclass). Tables 4.1,4.3,4.2 and 4.4 show the performance
metrics obtained from test dataset evaluation. The first two columns indicate the
combination of network architecture and feature representation. The "MODEL" column
contains the used ML and DL models:

• RF: Random Forest baseline model

• CROSS: NN model using binary or categorical crossentropy

• CONTR: Siamese model using contrastive loss

• TRIPLE: Siamese model using triplet loss

59

4. Results and Discussion

• CONTR (fs): Siamese model using contrastive loss and few-shot learning

• TRIPLE (fs): Siamese model using triplet loss and few-shot learning

whereas the "FEAT." column contains the used feature representation:

• MK: multi-key feature vector (vector based)

• TA: 2-tuple key feature vector (vector based)

• FP: FlowPic (image based)

• A: TUWpicA (image based)

• B: TUWpicB (image based)

• mkA: TUWpic-mkA (image based)

• mkB: TUWpic-mkB (image based)

The remainder of the columns contain the observed performance metrics as defined in
Chapter 3.3. We sort the tables by F1 score since the metric is available across all results
and robust in terms of imbalance. Macro averaging was used in the multiclass cases to
obtain a single value. Macro averaging is more resistant to imbalanced data than other
forms of averaging since it treats the score of each class with the same importance.

Figures 4.14.24.3 and 4.4 visualize the performance for each model-representation pair
per performance metrics as bar charts. The sorting of the bars is kept the same across
all subplots and is based on the F1 score.

Figures 4.5,4.6,4.7 and 4.8 show the performance of feature representations as swarm plots
for each performance metric. Each figure represents one performance metric with the
corresponding values on the y-axis. The x-axis is split into sections based on the different
feature representations. Within each section, dots show the performance of models using
this feature representation. Using these figures we can easily compare different feature
representations against each other. The same approach is used to compare models against
each other. Figures 4.9,4.10,4.11 and 4.12 show the performance of models as swarm
plots. Instead of feature representations, the x-axis is split into sections based on different
loss functions. Within each section, dots show the performance of models using this loss
function.

Looking at these plots some interesting insights can be gained. The bar plots show
a clear difference between multi-key based approaches and approaches where datasets
without multi-key data was used. As expected, the FPR scores behave inverse to the
other performance metrics. Showing low values for multi-key based approaches. The bar
plots also demonstate well why accuracy is not a good metric when applied to imbalanced
data. Especially in the binary classification tasks, there is very little difference between

60

4.1. Results

the outcomes. The swarm plots also give some interesting per-model insights. For both
types of swarm plots, feature-representation and loss representation based, we can see
clustering happen in binary classification tasks. The performance difference between
multi-key and non-multi-key based approaches seems to be especially strong in these
cases. Swarm plots of multiclass classification tasks show that the individual models are
scattered across the metric range.

Based on the reported values we can now find objective answers to the stated research
questions. The metrics show no indication that the proposed image based feature
representations TUWpicA and TUWpicB significantly improve performance over the
state-of-the-art representation flowpic. Only in combination with multi-key based data,
the proposed representations TUWpic-mkA and TUWpic-mkB consistently perform
better than flowpic. When we only look at results that are not using a multi-key
based approach, the data is not so clear. In binary classification tasks, most image
representations outperform the baseline approach. However, in multiclass classification
tasks, the RF model achieves better scores than most image based representations. Using
Siamese networks does not significantly improve performance over traditional CNNs
using crossentropy loss. The top perfoming models vary greatly in each evaluation group.
The best perfoming model overall was the baseline random forest model, leading the
evaluation groups in 3 out of 4 cases. Few-shot learning based approaches consistently
performed worse than most of the other approaches. Only when used in combination
with multi-key based feature representations and only using the MAWI dataset, few-shot
learning managed to outperform some other approaches. It showed that approaches tend
to behave the same regardless of if they are using synthetic data (IDS2017) or real world
data (MAWI). Approaches that perform well in synthetic data show similar performance
in real world data. In the binary classification task, the top perfoming model of the
MAWI dataset achieves a higher F1 score than the top perfoming model of the IDS2017
dataset. In the multiclass scenario this behaviour swaps and the top perfoming MAWI
model falls behind the top performing IDS2017 model.

In this section we have shown the experimental results and presented objective answers
to the research questions. In the next section we interpret our findings and try to find
reasons for the outcome.

61

4. Results and Discussion

model feat. F1 Prec. Rec. AP FPR AUC Acc.
contr mkB 0.978 0.997 0.96 0.916 0.04 0.96 1.0
triplet mkB 0.977 0.999 0.956 0.911 0.044 0.956 1.0
cross mkA 0.973 0.992 0.955 0.896 0.045 0.955 1.0
rf mk 0.973 0.986 0.96 0.894 0.04 0.96 1.0
triplet mkA 0.966 0.992 0.943 0.872 0.057 0.943 1.0
contr mkA 0.966 0.996 0.939 0.872 0.061 0.939 1.0
cross mkB 0.964 0.998 0.935 0.867 0.065 0.935 1.0
cross fp 0.684 0.84 0.627 0.176 0.373 0.627 0.997
contr B 0.681 0.841 0.623 0.172 0.377 0.623 0.997
contr fp 0.68 0.853 0.621 0.174 0.379 0.621 0.997
cross A 0.677 0.866 0.617 0.175 0.383 0.617 0.997
triplet A 0.674 0.864 0.615 0.171 0.385 0.615 0.997
cross B 0.674 0.861 0.615 0.169 0.385 0.615 0.997
contr A 0.67 0.861 0.611 0.164 0.389 0.611 0.997
triplet fp 0.654 0.883 0.597 0.152 0.403 0.597 0.997
triplet B 0.647 0.868 0.592 0.139 0.408 0.592 0.997
rf ta 0.505 0.512 0.731 0.015 0.269 0.731 0.928

Table 4.1: IDS2017 binary test dataset evaluation (sorted by F1)

model feat. F1 Prec. Rec. AP FPR AUC Acc.
rf mk 0.996 0.997 0.995 0.99 0.005 0.995 0.997
cross mkB 0.991 0.992 0.989 0.977 0.011 0.989 0.993
contr mkB 0.99 0.991 0.988 0.974 0.012 0.988 0.992
cross mkA 0.989 0.99 0.987 0.972 0.013 0.987 0.991
contr mkA 0.988 0.989 0.987 0.97 0.013 0.987 0.991
triplet mkB 0.979 0.982 0.976 0.948 0.024 0.976 0.984
triplet mkA 0.964 0.966 0.963 0.911 0.037 0.963 0.973
cross B 0.651 0.793 0.632 0.409 0.368 0.632 0.799
cross fp 0.646 0.771 0.628 0.396 0.372 0.628 0.794
contr B 0.636 0.756 0.62 0.383 0.38 0.62 0.788
contr fp 0.63 0.775 0.616 0.385 0.384 0.616 0.79
triplet fp 0.627 0.767 0.613 0.379 0.387 0.613 0.788
cross A 0.609 0.728 0.599 0.354 0.401 0.599 0.776
triplet B 0.607 0.799 0.599 0.374 0.401 0.599 0.787
rf ta 0.582 0.633 0.671 0.349 0.329 0.671 0.594
contr A 0.566 0.733 0.571 0.328 0.429 0.571 0.769
triplet A 0.561 0.727 0.567 0.323 0.433 0.567 0.767

Table 4.2: MAWI binary test dataset evaluation (sorted by F1)

62

4.1. Results

model feat. F1 Prec. Rec. FPR AUC Acc.
rf mk 0.863 0.988 0.792 0.013 0.998 1.0
triplet mkA 0.752 0.938 0.676 0.016 0.814 1.0
cross mkA 0.736 0.921 0.67 0.016 0.944 1.0
rf ta 0.686 0.708 0.769 0.077 0.968 0.906
contr mkB 0.641 0.856 0.592 0.014 0.76 1.0
triplet mkB 0.603 0.738 0.538 0.013 0.745 1.0
contr mkA 0.603 0.671 0.565 0.013 0.78 1.0
contr fp 0.574 0.758 0.526 0.108 0.746 0.997
contr B 0.571 0.78 0.512 0.109 0.724 0.997
cross fp 0.566 0.698 0.517 0.11 0.904 0.997
cross A 0.559 0.677 0.508 0.109 0.853 0.997
triplet A 0.553 0.68 0.51 0.111 0.723 0.997
triplet fp 0.513 0.633 0.5 0.115 0.74 0.997
contr A 0.51 0.749 0.451 0.11 0.68 0.997
cross mkB 0.493 0.713 0.433 0.029 0.865 0.999
triplet B 0.476 0.625 0.448 0.115 0.744 0.997
cross B 0.449 0.547 0.404 0.112 0.742 0.997
contr (fs) mkB 0.152 0.162 0.683 0.071 0.815 0.686
contr (fs) fp 0.147 0.163 0.88 0.104 0.948 0.61
triplet (fs) fp 0.132 0.15 0.851 0.104 0.929 0.693
contr (fs) mkA 0.125 0.156 0.747 0.093 0.852 0.54
triplet (fs) mkA 0.121 0.148 0.76 0.074 0.863 0.632
contr (fs) A 0.113 0.154 0.689 0.108 0.82 0.477
triplet (fs) mkB 0.109 0.148 0.7 0.082 0.826 0.521
contr (fs) B 0.109 0.153 0.64 0.111 0.79 0.449
triplet (fs) B 0.108 0.15 0.66 0.108 0.806 0.491
triplet (fs) A 0.105 0.147 0.746 0.106 0.853 0.513

Table 4.3: IDS2017 multiclass test dataset evaluation (sorted by F1)

63

4. Results and Discussion

model feat. F1 Prec. Rec. FPR AUC Acc.
rf mk 0.72 0.836 0.685 0.002 0.927 0.989
cross mkB 0.577 0.62 0.55 0.002 0.873 0.992
contr mkB 0.538 0.581 0.517 0.002 0.758 0.992
cross mkA 0.533 0.558 0.516 0.002 0.82 0.992
contr mkA 0.516 0.529 0.507 0.003 0.739 0.99
triplet mkB 0.509 0.573 0.485 0.005 0.761 0.983
triplet mkA 0.493 0.557 0.475 0.007 0.744 0.973
cross B 0.311 0.412 0.28 0.075 0.743 0.786
rf ta 0.301 0.284 0.485 0.046 0.841 0.479
contr B 0.295 0.467 0.267 0.082 0.629 0.778
triplet B 0.291 0.441 0.267 0.082 0.654 0.78
triplet (fs) mkB 0.264 0.279 0.544 0.054 0.746 0.562
contr (fs) mkA 0.26 0.267 0.522 0.055 0.741 0.534
contr (fs) mkB 0.258 0.26 0.561 0.053 0.756 0.576
cross A 0.249 0.423 0.217 0.086 0.739 0.767
triplet (fs) mkA 0.247 0.257 0.559 0.062 0.755 0.492
cross fp 0.23 0.37 0.201 0.076 0.663 0.781
triplet A 0.226 0.435 0.198 0.092 0.595 0.761
contr A 0.223 0.446 0.195 0.092 0.585 0.761
contr fp 0.216 0.375 0.183 0.08 0.583 0.778
triplet fp 0.201 0.372 0.174 0.08 0.588 0.776
triplet (fs) fp 0.177 0.212 0.306 0.081 0.674 0.671
contr (fs) fp 0.173 0.212 0.354 0.082 0.686 0.669
contr (fs) A 0.151 0.151 0.419 0.093 0.756 0.397
triplet (fs) A 0.15 0.15 0.383 0.093 0.758 0.397
triplet (fs) B 0.13 0.148 0.337 0.088 0.733 0.273
contr (fs) B 0.127 0.148 0.428 0.09 0.741 0.252

Table 4.4: MAWI multiclass test dataset evaluation (sorted by F1)

64

4.1. Results

Figure 4.1: IDS2017 performance metrics per model/feature-representation (Binary)
65

4. Results and Discussion

Figure 4.2: IDS2017 performance metrics per model/feature-representation (Multiclass)
66

4.1. Results

Figure 4.3: MAWI performance metrics per model/feature-representation (Binary)
67

4. Results and Discussion

Figure 4.4: MAWI performance metrics per model/feature-representation (Multiclass)
68

4.1. Results

Figure 4.5: IDS2017 performance metrics per feature-representation (Binary). Each dot
represents a model trained with the corresponding feature representation listed on the
x-axis. The y-axis shows the performance metric for each model.

69

4. Results and Discussion

Figure 4.6: IDS2017 performance metrics per feature-representation (Multiclass). Each
dot represents a model trained with the corresponding feature representation listed on
the x-axis. The y-axis shows the performance metric for each model.

70

4.1. Results

Figure 4.7: MAWI performance metrics per feature-representation (Binary).
71

4. Results and Discussion

Figure 4.8: MAWI performance metrics per feature-representation (Multiclass)
72

4.1. Results

Figure 4.9: IDS2017 performance metrics per model (Binary). Each dot represents a
model trained with the corresponding loss function (crossentropy, contrastive, triplet)
listed on the x-axis. The y-axis shows the performance metric for each model.

73

4. Results and Discussion

Figure 4.10: IDS2017 performance metrics per model (Multiclass). Each dot represents a
model trained with the corresponding loss function (crossentropy, contrastive, triplet)
listed on the x-axis. The y-axis shows the performance metric for each model.

74

4.1. Results

Figure 4.11: MAWI performance metrics per model (Binary)
75

4. Results and Discussion

Figure 4.12: MAWI performance metrics per model (Multiclass)
76

4.2. Discussion

4.2 Discussion
Looking at the results, the main takeaway here is that approaches based on our proposed
feature representations could not outperform the baseline multi-key approach. We need
to keep in mind that feature vectors and images don’t cover the same data. In our case
the feature vectors contain aggregated statistics while the images can be seen as time
series representation of a flow containing per packet information. Although the images
are based on similar data as the feature vectors, they perform worse. There are several
reasons why this could be:

1. The image representation itself might store too little information or too much
information is lost in the transformation process. This is also directly connected to
the parameters used to create TUWpics. Aggregated feature-vectors use all of the
flows information, TUWpic (in this thesis) only uses the first 128 packets.

2. The used model/architecture is not capable of learning all the features that are
theoretically stored in the representation. This might be a valid reason since the
used model is rather shallow. A very deep model on the other hand performed
worse in the preliminary test than the LeNet-5 model.

3. The architecture is fine but its hyperparameters are wrongly tuned. No hyperpa-
rameter tuning was done in this thesis, all hyperparameters are typical values used
across the literature and selected by manual testing. A perfectly tuned model can
increase the detection rate.

4. The representations contain no additional information that is useful for this classifi-
cation task, which is not also contained in the feature vectors.

If enough time and resources are available, points 2 and 3 could be checked with
hyperparameter tuning and dynamic model generation using a grid-search like approach.
Points 1 and 4 on the other hand are hard to evaluate since they impose basically the
same questions that we are trying to answer in this thesis.

A promising result is that both datasets show similar results. This is good because it
indicates that we can use synthetic datasets and still achieve high performance in real
world data. It also strengthens the approach proposed by Sharafaldin et al. [81] in which
they show how good IDS datasets can be constructed. But we need to keep in mind that
the MAWI dataset might not be labeled perfectly and performance could be different if
we knew the actual ground truth data of MAWI captures.

It also can be seen that few-shot learning scenarios tend to perform not as good as the
other scenarios. A reason for why few-shot learning did not achieve better results, could
be in the nature of network traffic itself. Benign network traffic covers a wide field of
different types of communications. VoIP, games, streams, messengers and Email are
just a selection of different areas of application where network traffic is generated. By

77

4. Results and Discussion

undersampling the data to only a fraction of the original amount, a lot of this information
is lost. It is possible that there is benign traffic that looks similar to malicious traffic. If
the network was not trained with such a sample, there is no way for it to know which
class it belongs to. This problem needs to be addressed when samples are selected during
undersampling. In the best case, undersampling chooses samples that cover a great
variety of different traffic types. In the worst case, all the traffic is of the same kind.
If only samples of video streaming traffic are chosen for example, then the model will
perform poorly. Multiple approaches can be taken to reduce the problem. Data with
a lot of variance could be clustered and then samples from each cluster can be taken.
Additional Principal Component Analysis (PCA) could be used to identify the biggest
variance in the features.

Looking at the swarm plots we can see that in multiclass scenarios, the points are much
more scattered than in binary scenarios. In the binary case they are often grouped in
two clusters, the multiclass cases show no clear pattern. This might be related to the
problem we addressed using few-shot learning. Attack classes might look similar in some
cases and are therefore hard to distinguish from each other. Especially when dealing
with attacks that belong to the same attack family. But also attack from different attack
families can look similar, especially when there is a lot of benign traffic in the same flow
and attack packets only make up a small part of the total packets. In the binary scenario
this has no impact because they are all treated as the same attack. In the multiclass
scenario, this might lead to attacks misclassified as other attacks. While you could argue
that it still was detected, the task was to find the correct class and not just a class.

When comparing different algorithms and feature representations one also has to consider
the time and the resources that are needed to train these models or create and manage
the feature representations. As well as the overall ease of use. Training a RF classifier
with HalvingGridSearch and 5-fold CV takes less than 5 minutes on a Ryzen 1700 system.
At the same time training a deep learning model takes over 1 hour on a data center
grade GPU (V100) and more than 3 hours on a consumer GPU (GTX 1060 6GB). When
distance metric learning is used, also the prediction part of deep learning based models
becomes a time consuming task. If hyperparameter tuning is added to the deep learning
model, time and resource requirements can get very expensive. Additionally, using images
as feature representations comes with the problem of data management and storage.
Feature vectors on the other hand have to be designed by hand.

While having failed to increase performance over vector based approaches, the proposed
multi-key based image representations show better performance than the state-of-the-art
competitor. In the next chapter we will summarize our findings and draw a conclusion.

78

CHAPTER 5
Conclusions

We have proposed multiple novel image feature representations for network traffic analysis
and intrusion detection. Two of which are based on the concepts of multi-key feature
vectors. By combining multiple feature vectors that cover different types of network
communications (application level, host level, network level) a more comprehensive view
of the network traffic behavior can be created. To achieve this a 2-tuple flow representing
application level communication and 2 1-tuple flows representing host (attacker and
victim) level communication are combined.

In addition to these 4 image representations called TUWpicA, TUWpicB, TUWpic-mkA
and TUWpic-mkB, a state of the art image feature representation called FlowPic is used
as comparison.

We trained 3 different types of CNNs models using these image feature representations.
A traditional CNN with classification outputs for binary and multiclass scenarios and
two CNNs using distance metric learning based on contrastive loss and triplet loss. The
distance metric based CNNs create embeddings which are then used to train a KNN
classifier. Additionally we use a random forest model as a baseline model for performance
comparison. Lastly we also use distance metric learning to investigate the possibility of
few-shot learning.

It was shown that multi-key based feature representations significantly outperform feature
representations that only use a single flow including FlowPic. It was also shown that
performance is largely dependent on the type of flow and less on the actual form of
representation. In 3 out of 4 test scenarios, the random forest classifier performed best.
A clear winner between DL algorithms could not be found. Results largely depend on
the type of classification task (binary vs. multiclass), dataset and feature-representation.
Considering the long training time and additional effort to create image datasets, there
is no benefit in using CNNs or image based representations over traditional machine
learning algorithms and feature vectors. There is no evidence that the distance metric

79

5. Conclusions

based CNN models could improve performance on the imbalanced dataset in comparison
to a traditional CNN using crossentropy loss. Few-shot learning has significantly worse
results than the other algorithms, independent of the dataset.

All experiments were done using two datasets. The synthetic IDS2017 dataset and the
MAWI dataset, consisting of real traffic captured on a backbone network. In the binary
classification task, performance of the best models in each dataset is very similar, with
the MAWI dataset getting a slightly better F1 score. In the multiclass classification
task the performance in both datasets drops significantly. The best model trained on
the IDS2017 dataset achieves an F1 score of 0.978 in the binary case, and only 0.863 in
the multiclass case. For the MAWI dataset the data looks similar. The best model in
the binary scenario achieves a F1 score of 0.996, while the best performing model in the
multiclass case only achieves 0.72. As the binary results show, the performance is not
purely based on the type of data but also on the classification task.

With the gained knowledge and results we can answer the research questions formulated
in Chapter 1 based on the IDS2017 and MAWI dataset.

How does the novel feature representation TUWpic compare to state of the
art 2D-flow representations with regard to standard ML performance metrics?

Using data from a single flow, TUWpic based image representations show no significant
improvement over FlowPic. In comparison to FlowPic, TUWpic also supports multi-key
based representations, which significantly outperformed FlowPic.

Can siamese networks be used to improve performance in comparison to
traditional DL models and therefore offer an algorithmic approach of dealing
with imbalanced data? Do siamese networks offer any advantage over CNNs?
Which architecture is best suited for NTA?

All CNN types investigated in this thesis (with the exception of few-shot based approaches)
showed similar results. In our experiments, large differences in the results are mainly
related to the used feature representation and not to the type of CNN used.

Can few-shot learning be used to lower training time and resource demands
while maintaining the same level of performance as full training?

In our experiments, few-shot learning performed significantly worse in every tested
scenario and is no alternative to full training.

Can synthetic datasets be used for selecting ML/deep-learning approaches
and feature representations without having to change the architecture or
parameters when the same process is applied to real world data?

Performance of different methods showed to be constant across the IDS2017 and MAWI
datasets. This leads to the conclusion that synthetic datasets can be used to develop
ID models. Using synthetic dataset yields many benefits like precise control over attack
types and scenarios, attack and benign traffic distribution, or data integrity.

80

During the course of the thesis some points of improvement and possible future work
were considered. Few-shot learning fails to cover the variances in normal learning. Using
more sophisticated sampling strategies based on clustering and PCA should result in
better performing models.

In this thesis the datasets were used as they are. No resampling strategies were applied.
In recent works GANs are often used to generate new samples [43] for imbalanced datasets.
Generating new samples could especially help in multiclass classification tasks to achieve
better scores.

The proposed TUWpic feature representation is a dynamic image format. Meaning height,
width, feature values and length can be controlled with parameters. Different parameters
for different scenarios and dataset might lead to better results. In combination with
few-shot learning, which allows for fast training and testing, grid search can be used to
evaluate the performance of different hyperparameters applied to the same dataset.

In my opinion, feature-vectors are the best feature-representation at the moment. The
long and resource demanding training and preprocessing that is involved in CNN based
approaches support this argument. Nonetheless, CNN based approaches already show
good results and with improving NN technology, deeper networks, faster preprocessing
and better optimization techniques this method might be able to outperform the more
traditional approaches in the future.

81

List of Figures

2.1 NTA framework structure based on [16] 6
2.2 GAN used to generate new samples based on [56]. 11
2.3 Intrusion detection techniques based on [52]. 14
2.4 Perceptron algorithm based on [79]. 18
2.5 Feed forward deep neural network based on [52]. 18
2.6 CNN architecture based on [64]. 21
2.7 Triplet Loss embeddings based on[78]. 22

3.1 Adapted FlowPic with x-Axis showing packet inter-arrival-times and y-axis
showing packet length. White pixels indicate existing packets. 32

3.2 TUWpicA . 34
3.3 TUWpicB . 35
3.4 TUWpic-mkA. The first channel (red) is the most prominent as it covers

bidirectional flow data. The green channel is the second most prominent as
it shows data sent from the source to the destination, this is expected as
more data is typically downloaded than uploaded. The blue channel covers
outgoing traffic from the victim to the attacker and has the least amount of
packets. We can see that the amount of blue lines increases in the botnet
image, probably due to communication between the remote botnet master. 37

3.5 TUWpic-mkB . 37
3.6 Example of a binary confusion matrix C with TN = C0,0, FN = C1,0,

TP = C1,1 and FP = C0,1. [12]. 42
3.7 ROC curve with AUC [11] . 44
3.8 FlowPic CNN architecture . 46
3.9 Seq2Img CNN architecture . 47
3.10 Vec2Img CNN architecture . 47
3.11 Adapted LeNet5 CNN architecture . 48
3.12 MobileNetV3 building block (bneck) . 49

4.1 IDS2017 performance metrics per model/feature-representation (Binary) . 65
4.2 IDS2017 performance metrics per model/feature-representation (Multiclass) 66
4.3 MAWI performance metrics per model/feature-representation (Binary) . . 67
4.4 MAWI performance metrics per model/feature-representation (Multiclass) 68

83

4.5 IDS2017 performance metrics per feature-representation (Binary). Each dot
represents a model trained with the corresponding feature representation
listed on the x-axis. The y-axis shows the performance metric for each model. 69

4.6 IDS2017 performance metrics per feature-representation (Multiclass). Each
dot represents a model trained with the corresponding feature representation
listed on the x-axis. The y-axis shows the performance metric for each model. 70

4.7 MAWI performance metrics per feature-representation (Binary). 71
4.8 MAWI performance metrics per feature-representation (Multiclass) 72
4.9 IDS2017 performance metrics per model (Binary). Each dot represents a

model trained with the corresponding loss function (crossentropy, contrastive,
triplet) listed on the x-axis. The y-axis shows the performance metric for each
model. 73

4.10 IDS2017 performance metrics per model (Multiclass). Each dot represents a
model trained with the corresponding loss function (crossentropy, contrastive,
triplet) listed on the x-axis. The y-axis shows the performance metric for each
model. 74

4.11 MAWI performance metrics per model (Binary) 75
4.12 MAWI performance metrics per model (Multiclass) 76

84

List of Tables

3.1 Flow keys of TA, AGMS and AGMD vectors 27
3.2 2-tuple and multi-key feature vector with features used for training the baseline

classifier. Features with the FK prefix are the flow keys that define the specific
flow. 28

3.3 Comparison of image based feature represenations. IATs are packet inter-
arrival-times and size refers to packet length and dir refers to the direction of
the packet (incoming or outgoing). 40

3.4 MobileNetV3Small CNN architecture . 49
3.5 IDS2017 dataset class distributions . 53
3.6 MAWI dataset class distributions . 54
3.7 Packet/Flow information preserved in the different feature representations.

Type indicates if data is represented per packet or as aggregated flow statistics.
Sequ. Pres. refers to preservation of sequentiality or time characteristics.
Compl. Flow indicates if the complete flow (all packets) were used to derive
the features or create the feature representations. 55

3.8 Training and test sets for each of IDS2017 and MAWI. Name is the filename
of the dataset. Task refers to the classification task, either binary, multiclass
or both. R. Rep. is the name of the feature representation. Res. indicates if
a resampling technique is applied (u = undersampling) and Train/Test refers
to the type of dataset, either training or testing. 56

3.9 Preliminary test results. TP samples of the Normal class were removed in
order to make the results easier comparable. They would result in very high
TP values which makes it less intuitive to compare. Because the TP values of
the other classes are kept and FN and FP values of all classes are shown, the
TP values of the normal class can be left out with no information loss. The
most important information (how many attacks are classified correctly and
how many benign sample are classified as attacks) is directly visible. . . . 57

3.10 Training and test sets for the different classification approaches. The CNN
based approaches are applied to each of IDS2017 and MAWI. Model indicates
the type of DL model that was used. ESP (Early Stopping Patience) is
the number of epochs with no improvement over ES-Delta (Early Stopping
Min-Delta) after which the training is stopped. 58

85

3.11 List of experiments based on RF models. Dataset refers to the type of
feature-vector that was uesd to train. CV indicates if cross-validation was
applied. Ensemble is the number of decision trees used in the RF model, and
GridSearch indicates if and what type of GridSearch is applied. 58

4.1 IDS2017 binary test dataset evaluation (sorted by F1) 62
4.2 MAWI binary test dataset evaluation (sorted by F1) 62
4.3 IDS2017 multiclass test dataset evaluation (sorted by F1) 63
4.4 MAWI multiclass test dataset evaluation (sorted by F1) 64

86

List of Algorithms

3.1 FlowPic . 32

3.2 TUWpicA . 38

3.3 TUWpicB . 38

3.4 1-tuple image method A . 39

3.5 1-tuple image method B . 39

3.6 Contrastive loss with batch-all online mining 50

3.7 Triplet loss with batch-hard online mining 51

87

Bibliography

[1] Github - cn-tu/go-flows: Flow exporter implementation in go. cn contact: Gv.

[2] Ids 2017 | datasets | research | canadian institute for cybersecurity | unb.

[3] Internet assigned numbers authority.

[4] Ip flow information export (ipfix) entities.

[5] Keras: the python deep learning api.

[6] Mawi samplepointf-f may 1st.

[7] Mawilab samplepointf-f may 1st.

[8] Nsl-kdd | datasets | research | canadian institute for cybersecurity | unb.

[9] Pcap capture file format.

[10] Protocol buffers | google developers.

[11] Scikit-learn average precision score — scikit-learn 1.0.2 documentation.

[12] Scikit-learn confusion matrix — scikit-learn 1.0.2 documentation.

[13] Scikit-learn halvinggridsearch — scikit-learn 1.0.2 documentation.

[14] Tfrecord and tf.train.example | tensorflow core.

[15] Welcome to python.org.

[16] M. Abbasi, A. Shahraki, and A. Taherkordi. Deep learning for network traffic
monitoring and analysis (ntma): A survey. Computer Communications, 170:19–41,
3 2021.

[17] M. H. Ali, B. A. D. A. Mohammed, A. Ismail, and M. F. Zolkipli. A new intrusion
detection system based on fast learning network and particle swarm optimization.
IEEE Access, 6:20255–20261, 3 2018.

89

[18] R. Alshammari and A. N. Zincir-Heywood. Investigating two different approaches
for encrypted traffic classification. Proceedings - 6th Annual Conference on Privacy,
Security and Trust, PST 2008, pages 156–166, 2008.

[19] A. Alshamsi and T. Saito. A technical comparison of ipsec and ssl. Proceedings -
International Conference on Advanced Information Networking and Applications,
AINA, 2:395–398, 2005.

[20] P. Bedi, N. Gupta, and V. Jindal. Siam-ids: Handling class imbalance problem
in intrusion detection systems using siamese neural network. Procedia Computer
Science, 171:780–789, 1 2020.

[21] P. Bedi, N. Gupta, and V. Jindal. I-siamids: an improved siam-ids for handling
class imbalance in network-based intrusion detection systems. Applied Intelligence,
51:1133–1151, 2 2021.

[22] L. Bottou. Stochastic gradient learning in neural networks. undefined, 1991.

[23] J. BROMLEY, J. W. BENTZ, L. BOTTOU, I. GUYON, Y. LECUN, C. MOORE,
E. SÄCKINGER, and R. SHAH. Signature verification using a “siamese” time
delay neural network. International Journal of Pattern Recognition and Artificial
Intelligence, 07:669–688, 8 1993.

[24] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta. Analysis
of the impact of sampling on netflow traffic classification. Computer Networks,
55:1083–1099, 4 2011.

[25] Z. Chen, K. He, J. Li, and Y. Geng. Seq2img: A sequence-to-image based approach
towards ip traffic classification using convolutional neural networks. volume 2018-
Janua, pages 1271–1276. IEEE, 12 2017.

[26] K. Cho, K. Mitsuya, and A. Kato. Traffic data repository at the wide project.

[27] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde. Analyzing android encrypted
network traffic to identify user actions. IEEE Transactions on Information Forensics
and Security, 11:114–125, 1 2016.

[28] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas. A survey on big
data for network traffic monitoring and analysis. IEEE Transactions on Network
and Service Management, 16:800–813, 9 2019.

[29] X. Dong and J. Shen. Triplet loss in siamese network for object tracking. 2018.

[30] H. F. Eid, A. Darwish, A. E. Hassanien, and A. Abraham. Principle components
analysis and support vector machine based intrusion detection system. Proceedings
of the 2010 10th International Conference on Intelligent Systems Design and
Applications, ISDA’10, pages 363–367, 2010.

90

[31] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda. Mawilab : Combining diverse
anomaly detectors for automated anomaly labeling and performance benchmarking.
2010.

[32] I. S. R. Group. 2021 isrg annual report, 2021.

[33] M. He, X. Wang, J. Zhou, Y. Xi, L. Jin, and X. Wang. Deep-feature-based
autoencoder network for few-shot malicious traffic detection. 2021, 2021.

[34] Y. He and W. Li. Image-based encrypted traffic classification with convolution
neural networks. pages 271–278. IEEE, 7 2020.

[35] A. Hermans, L. Beyer, and B. Leibe. In defense of the triplet loss for person
re-identification. 3 2017.

[36] A. Howard, M. Sandler, B. Chen, W. Wang, L. C. Chen, M. Tan, G. Chu, V. Vasude-
van, Y. Zhu, R. Pang, Q. Le, and H. Adam. Searching for mobilenetv3. Proceedings
of the IEEE International Conference on Computer Vision, 2019-October:1314–
1324, 5 2019.

[37] S. C. Hsiao, D. Y. Kao, Z. Y. Liu, and R. Tso. Malware image classification using
one-shot learning with siamese networks. Procedia Computer Science, 159:1863–
1871, 1 2019.

[38] Y. Hu, D. M. Chiu, and J. C. Lui. Application identification based on network
behavioral profiles. IEEE International Workshop on Quality of Service, IWQoS,
pages 219–228, 2008.

[39] S. ichi Amari. Backpropagation and stochastic gradient descent method. Neuro-
computing, 5:185–196, 6 1993.

[40] F. Iglesias, D. C. Ferreira, G. Vormayr, M. Bachl, and T. Zseby. Ntarc: A data
model for the systematic review of network traffic analysis research. Applied Sciences
2020, Vol. 10, Page 4307, 10:4307, 6 2020.

[41] F. Iglesias and T. Zseby. Time-activity footprints in ip traffic. 2016.

[42] F. Iglesias and T. Zseby. Pattern discovery in internet background radiation. IEEE
Transactions on Big Data, 5:467–480, 7 2017.

[43] A. S. Iliyasu and H. Deng. Semi-supervised encrypted traffic classification with
deep convolutional generative adversarial networks. IEEE Access, 8:118–126, 2020.

[44] N. Inoue and K. Goto. Semi-supervised contrastive learning with generalized con-
trastive loss and its application to speaker recognition; semi-supervised contrastive
learning with generalized contrastive loss and its application to speaker recognition,
2020.

91

[45] M. Joshi and T. H. Hadi. A review of network traffic analysis and prediction
techniques. 7 2015.

[46] A. S. Khan, Z. Ahmad, J. Abdullah, and F. Ahmad. A spectrogram image-based
network anomaly detection system using deep convolutional neural network. IEEE
Access, 9:87079–87093, 2021.

[47] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman. Survey of intrusion
detection systems: techniques, datasets and challenges. Cybersecurity, 2:1–22, 12
2019.

[48] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot
image recognition. 11 2015.

[49] I. Kotuliak, P. Rybár, and P. Trúchly. Performance comparison of ipsec and tls
based vpn technologies. ICETA 2011 - 9th IEEE International Conference on
Emerging eLearning Technologies and Applications, Proceedings, pages 217–221,
2011.

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60:84–90, 5 2017.

[51] S. Kumar, J. Turner, and J. Williams. Advanced algorithms for fast and scalable
deep packet inspection. ANCS 2006 - Proceedings of the 2006 ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems, pages 81–92,
2006.

[52] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim. A survey of deep
learning-based network anomaly detection. Cluster Computing, 22:949–961, 1 2019.

[53] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 5 2015.

[54] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86:2278–2323, 1998.

[55] J. H. Lee and K. H. Park. Gan-based imbalanced data intrusion detection system.
Personal and Ubiquitous Computing, 25:121–128, 2 2021.

[56] W. H. Lee, C. S. Lim, and B. N. Noh. Generation of similar traffic using gan for
resolving data imbalance, 2020.

[57] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung. Intrusion detection system: A
comprehensive review. Journal of Network and Computer Applications, 36:16–24, 1
2013.

[58] L. Liu, P. Wang, J. Lin, and L. Liu. Intrusion detection of imbalanced network
traffic based on machine learning and deep learning. IEEE Access, 9:7550–7563,
2021.

92

[59] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian. Deep packet:
a novel approach for encrypted traffic classification using deep learning. Soft
Computing, 24:1999–2012, 2020.

[60] F. Meghdouri, F. I. Vazquez, and T. Zseby. Cross-layer profiling of encrypted
network data for anomaly detection. Proceedings - 2020 IEEE 7th International
Conference on Data Science and Advanced Analytics, DSAA 2020, pages 469–478,
2020.

[61] I. Melekhov, J. Kannala, and E. Rahtu. Siamese network features for image
matching. Proceedings - International Conference on Pattern Recognition, 0:378–
383, 1 2016.

[62] A. Moore, D. Zuev, M. Crogan, A. W. Moore, and M. L. Crogan. Discriminators
for use in flow-based classification discriminators for use in flow-based classification
*. 2005.

[63] S. Moustakidis and P. Karlsson. A novel feature extraction methodology using
siamese convolutional neural networks for intrusion detection. Cybersecurity, 3:16,
12 2020.

[64] J. Nagi, F. Ducatelle, G. A. D. Caro, D. Cireşan, U. Meier, A. Giusti, F. Nagi,
J. Schmidhuber, and L. M. Gambardella. Max-pooling convolutional neural networks
for vision-based hand gesture recognition. 2011 IEEE International Conference on
Signal and Image Processing Applications, ICSIPA 2011, pages 342–347, 2011.

[65] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. Malware images.
pages 1–7. ACM Press, 2011.

[66] C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation functions:
Comparison of trends in practice and research for deep learning. 11 2018.

[67] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar. Towards
the deployment of machine learning solutions in network traffic classification: A
systematic survey. IEEE Communications Surveys and Tutorials, 21:1988–2014, 4
2019.

[68] J.-O. Palacio-Niño and F. Berzal. Evaluation metrics for unsupervised learning
algorithms. 5 2019.

[69] E. Papadogiannaki and S. Ioannidis. A survey on encrypted network traffic analysis
applications, techniques, and countermeasures. ACM Computing Surveys, 54:1–35,
7 2021.

[70] W. Park and S. Ahn. Performance comparison and detection analysis in snort and
suricata environment. Wireless Personal Communications, 94:241–252, 5 2017.

93

[71] S. Rezaei and X. Liu. Deep learning for encrypted traffic classification: An overview.
arXiv, pages 76–81, 2018.

[72] S. Rezaei and X. Liu. How to achieve high classification accuracy with just a few
labels: A semi-supervised approach using sampled packets. arXiv, 2018.

[73] R. Riad, C. Dancette, J. Karadayi, N. Zeghidour, T. Schatz, and E. Dupoux. Sam-
pling strategies in siamese networks for unsupervised speech representation learning.
Proceedings of the Annual Conference of the International Speech Communication
Association, INTERSPEECH, 2018-September:2658–2662, 4 2018.

[74] S. Ruder. An overview of gradient descent optimization algorithms.

[75] T. Saito and M. Rehmsmeier. The precision-recall plot is more informative than
the roc plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE,
10, 3 2015.

[76] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab. A review on machine learn-
ing–based approaches for internet traffic classification. Annales des Telecommuni-
cations/Annals of Telecommunications, 75:673–710, 2020.

[77] W. Samek, T. Wiegand, and K.-R. Müller. Explainable artificial intelligence:
Understanding, visualizing and interpreting deep learning models. 8 2017.

[78] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face
recognition and clustering. 3 2015.

[79] S. Sengupta, S. Basak, P. Saikia, S. Paul, V. Tsalavoutis, F. Atiah, V. Ravi,
and A. Peters. A review of deep learning with special emphasis on architectures,
applications and recent trends. 194:105596, 2020.

[80] T. Shapira and Y. Shavitt. Flowpic: Encrypted internet traffic classification is as
easy as image recognition. pages 680–687. IEEE, 4 2019.

[81] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. A detailed analysis of the
cicids2017 data set. Communications in Computer and Information Science, 977:172–
188, 1 2018.

[82] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward generating a new
intrusion detection dataset and intrusion traffic characterization. 2018.

[83] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward generating a new
intrusion detection dataset and intrusion traffic characterization. 2018.

[84] M. Sikaroudi, B. Ghojogh, A. Safarpoor, F. Karray, M. Crowley, and H. R. Tizhoosh.
Offline versus online triplet mining based on extreme distances of histopathology
patches. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 12509 LNCS:333–345,
7 2020.

94

[85] D. Sun, Z. Wu, Y. Wang, Q. Lv, and B. Hu. Risk prediction for imbalanced data
in cyber security : A siamese network-based deep learning classification framework.
pages 1–8. IEEE, 7 2019.

[86] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. Robust smartphone
app identification via encrypted network traffic analysis. IEEE Transactions on
Information Forensics and Security, 13:63–78, 1 2018.

[87] N. Thapa, Z. Liu, D. B. KC, B. Gokaraju, and K. Roy. Comparison of machine
learning and deep learning models for network intrusion detection systems. Future
Internet, 12:167, 9 2020.

[88] E. Tjoa and C. Guan. A survey on explainable artificial intelligence (xai): Towards
medical xai. IEEE Transactions on Neural Networks and Learning Systems, 32:4793–
4813, 7 2019.

[89] P. Velan, M. Čermák, P. Čeleda, and M. Drašar. A survey of methods for encrypted
traffic classification and analysis. International Journal of Network Management,
25:355–374, 9 2015.

[90] D. P. Vinchurkar, A. Reshamwala, and M. Tech. A review of intrusion detection
system using neural network and machine learning technique. Certified International
Journal of Engineering Science and Innovative Technology (IJESIT), 9001:54, 2008.

[91] L. Vu, C. T. Bui, and Q. U. Nguyen. A deep learning based method for handling
imbalanced problem in network traffic classification. volume 2017-Decem, pages
333–339. ACM, 12 2017.

[92] B. Wang and D. Wang. Plant leaves classification: A few-shot learning method
based on siamese network. IEEE Access, 7:151754–151763, 2019.

[93] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu. Hast-
ids: Learning hierarchical spatial-temporal features using deep neural networks to
improve intrusion detection. undefined, 6:1792–1806, 12 2018.

[94] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng. Malware traffic classification using
convolutional neural network for representation learning. International Conference
on Information Networking, pages 712–717, 4 2017.

[95] X. Wang, Y. Hua, E. Kodirov, G. Hu, and N. M. Robertson. Deep metric learning
by online soft mining and class-aware attention. 11 2018.

[96] Y. Wang, G.-Y. Wei, D. Brooks, and J. A. Paulson. Benchmarking tpu, gpu, and
cpu platforms for deep learning. 7 2019.

[97] Y. Xiao, C. Xing, T. Zhang, and Z. Zhao. An intrusion detection model based on
feature reduction and convolutional neural networks. IEEE Access, 7:42210–42219,
2019.

95

[98] L. Xu, D. Dou, and H. J. Chao. Etcnet: Encrypted traffic classification using
siamese convolutional networks. NAI 2020 - Proceedings of the 2020 Workshop on
Network Application Integration/CoDesign, pages 51–53, 2020.

[99] X. Yang, P. Zhou, and M. Wang. Person reidentification via structural deep
metric learning. IEEE Transactions on Neural Networks and Learning Systems,
30:2987–2998, 10 2019.

[100] Y. Yang, K. Zheng, B. Wu, Y. Yang, and X. Wang. Network intrusion detec-
tion based on supervised adversarial variational auto-encoder with regularization.
undefined, 8:42169–42184, 2020.

[101] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu. Robust network traffic
classification. IEEE/ACM Transactions on Networking, 23:1257–1270, 8 2015.

[102] X. Zhang, F. Wu, and Z. Li. Application of convolutional neural network to
traditional data. Expert Systems with Applications, 168:114185, 4 2021.

[103] H. Zhou, Y. Wang, X. Lei, and Y. Liu. A method of improved cnn traffic classifica-
tion. Proceedings - 13th International Conference on Computational Intelligence
and Security, CIS 2017, 2018-Janua:177–181, 2018.

[104] M. Zhou, Y. Tanimura, and H. Nakada. One-shot learning using triplet network
with knn classifier.

96

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Motivation
	Methodology and Goals
	Structure

	Background and Related Work
	Network Traffic Analysis
	Intrusion, threat and attack detection
	Challenges
	Feature Representations
	Anomaly Detection Methods
	Image Based Intrusion Detection

	Deep learning
	Artificial Neural Network
	Convolutional Neural Networks
	Siamese Networks

	Methodology and Experiments
	Datasets
	IDS2017
	MAWI

	Network Traffic Representations
	Flow Key
	Baseline Representations
	Deep Learning Representations
	FlowPic
	TUWpic
	TUWpicA
	TUWpicB
	TUWpic-mk

	Handling image data

	Classification Tasks and Goals
	Classification Algorithms and Models
	Baseline Model
	Neural Network Models
	FlowPic
	Seq2Img
	Vec2Img
	LeNet5
	MobileNetV3
	Siamese Neural Networks and Online Mining

	Experimental Setup
	Flow Extraction
	Preprocessing and Labeling
	Train and Test Datasets
	Creating Feature Representations
	Model Training
	Evaluation and Metrics

	Results and Discussion
	Results
	Discussion

	Conclusions
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

		2022-05-15T15:43:33+0200
	Tanja Zseby
	Signature verification at http://www.signature-verification.gv.at

