
A Lightweight and Integrated Software Repository
Mining and Visualisation Approach for Software

Engineering Education

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Matthias Weiß
Matrikelnummer 01627775

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 6. Mai 2022
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Lightweight and Integrated Software Repository
Mining and Visualisation Approach for Software

Engineering Education

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Matthias Weiß
Registration Number 01627775

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig

Vienna, May 6, 2022
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Lightweight and Integrated Software Repository
Mining and Visualisation Approach for Software

Engineering Education

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Matthias Weiß
Matrikelnummer 01627775

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 6. Mai 2022

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Matthias Weiß

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. Mai 2022
Matthias Weiß

vii

Kurzfassung

Ein bekanntes Problem von Softwareprojekten ist, dass es für Außenstehende oft schwer
ist, den aktuellen Fortschritt sowie die Arbeitsverteilung einzusehen. Das gilt insbesondere
für Projekte in der Software-Engineering-Lehre, da Lehrpersonen üblicherweise mehrere
Projekte gleichzeitig betreuen.

Eine Möglichkeit Softwareprojekte transparenter zu machen ist der Einsatz von Software-
visualisierungen, welche aber in der Praxis noch nicht weit verbreitet sind. Um den Nutzen
solcher Tools festzustellen, wird das Forschungsprojekt Binocular1 im akademischen Kon-
text evaluiert. Im Zuge dieser Evaluierung werden ebenfalls die Informationsbedürfnisse in
der Software-Engineering-Lehre erhoben. Ein Grund, warum sich Softwarevisualisierungen
noch nicht in der breiten Masse etabliert haben, könnte deren hohe Eintrittsschwelle sein.
Praktisch alle beliebten Tools benötigen entweder eine externe Infrastruktur oder zusätz-
liche Integration, bevor sie einsatzbereit sind. Um diesem Problem entgegenzuwirken,
und um Softwareprojekte im akademischen Kontext transparenter zu machen, wird ein
integriertes und kostengünstiges Lösungskonzept für Software Repository Mining und
Softwarevisualisierung vorgestellt.

Im Rahmen der Evaluierung von Binocular wurden vier semistrukturierte Interviews mit
Expert_innen der Software-Engineering-Lehre durchgeführt. Teil dieser Evaluierung ist
ebenfalls die Erhebung der Informationsbedürfnisse in der Software-Engineering-Lehre.
Diese werden in der Literatur, trotz zahlreicher Forschungsbeiträge zu den Informations-
bedürfnissen im Software Engineering im Allgemeinen, fast vollständig vernachlässigt.

Um die Anforderungen für das Lösungskonzept zu definieren, werden Hypothesen einer
geeigneten Architektur für prozessinternes Software Repository Mining und Softwarevi-
sualisierung aufgestellt, welche wiederum von Defiziten existierender Lösungen abgeleitet
werden. Durch die Umsetzung dieser Anforderungen im Proof of Concept wird die Rea-
lisierbarkeit des Lösungskonzepts gezeigt. Die Validität der Hypothesen, als auch die
Zweckmäßigkeit des Lösungskonzepts für prozessinternes Software Repository Mining und
Softwarevisualisierung, werden im Rahmen einer Evaluierung mit sechs Expert_innen
des Forschungsbereichs bestätigt.

Keywords: Software Repository Mining, Softwarevisualisierung, Software-Engineering-
Lehre, Softwarearchitektur, Softwaremetriken

1https://github.com/INSO-TUWien/Binocular, zuletzt aufgerufen am 06.05.2022

ix

https://github.com/INSO-TUWien/Binocular

Abstract

Software projects are often intransparent to stakeholders who are not directly involved in
the development. Student projects are especially challenging, since course instructors
and tutors often have to supervise multiple, often identical, projects simultaneously.
To address this issue, the research project Binocular2 is evaluated in an educational
software engineering setting. As part of this evaluation, the information needs specific
to software engineering education are identified. Moreover, software repository mining
and visualisation tools have not been adopted by the mainstream. One reason for this
could be that practically all popular solutions either require external infrastructure or
additional integration before they become applicable. To address this issue an integrated,
low-cost software repository mining and visualisation solution is introduced. It aims at
making software projects, especially in an educational context, more transparent for all
stakeholders.

The evaluation of Binocular through four semi-structured interviews with experts of
the field illustrates its limitations for use in software engineering education. Moreover,
although there exists lots of research on information needs in software engineering, none
of it is specific to software engineering education. These information needs are also
gathered as part of the interviews.

The requirements for the proposed solution are based on various hypotheses about a
suitable architecture for in-process software repository mining and visualisation, which in
turn have been derived from the shortcomings of existing solutions. These requirements
are implemented in a proof of concept, which shows that the proposed architecture
is indeed feasible. The evaluation through six experts of the field confirms that the
presumed hypotheses are valid and that the proposed solution is purposeful.

Keywords: Software Repository Mining, Software Visualisation, Software Engineering
Education, Software Architecture, Software Metrics

2https://github.com/INSO-TUWien/Binocular, last accessed on 06.05.2022

xi

https://github.com/INSO-TUWien/Binocular

Contents

Kurzfassung ix

Abstract xi

1 Introduction 1
1.1 Problem Description . 1
1.2 Contributions . 2
1.3 Structure . 3

2 Methodology 5
2.1 Literature Review . 5
2.2 Semi-structured Expert Interviews . 6
2.3 Requirement Analysis . 6
2.4 Proof of Concept . 7
2.5 Evaluation . 7

3 State of the Art 9
3.1 Definitions . 9
3.2 Current State of Research . 10
3.3 Distinction From Current Research . 19

4 Information Needs in Software Engineering Education 21
4.1 Semi-Structured Expert Interviews . 21
4.2 Information Needs . 39

5 Requirement Analysis 43

6 Implementation 47
6.1 Adaptation of Binocular . 47
6.2 Architecture . 50
6.3 Administration . 51

7 Evaluation 57
7.1 Goals . 57

xiii

7.2 Method . 57
7.3 Results . 58
7.4 Summary . 61
7.5 Discussion . 62
7.6 Threats to Validity . 63

8 Conclusion 67
8.1 Future Work . 68

Bibliography 71

Appendix 77
Questionnaire: Information Needs in Software Engineering Education . . . 78
Questionnaire: Evaluation of a Software Repository Mining and Visualisation

Approach . 97

CHAPTER 1
Introduction

The following chapter serves as an introduction to the thesis. Initially the problem
description is illustrated. This is followed by the contributions that were made. Lastly,
the structure of the thesis is described.

1.1 Problem Description
Software projects are often non-transparent for stakeholders that are not directly involved
in the development. This is especially true for projects in software engineering education,
since course instructors and tutors must supervise multiple projects simultaneously.
Software engineering education typically is not amongst the most popular research topics
as well. For example, even though there exist multiple studies [37, 10, 59, 7, 12] on
software engineering information needs, none of them are specific to software engineering
education.

Software repository mining and visualisation tools aid in superior understanding of
software projects, and thus help in better satisfying the information needs in software
engineering education. Current solutions require an external infrastructure and are not
integrated into existing software engineering tools, particularly continuous integration
(CI), which is ubiquitous in modern software projects. This also holds true for Binocular
[25], a research project that visualises the combined, time-oriented data from the version
control system (VCS), issue tracking system (ITS) and continuous integration. It is still
under active development and currently offers six different visualisations. An integrated
architecture and process for offline visualisation artefacts, based on Binocular and using
existing software engineering tools, would improve upon the aforementioned issues and
better satisfy the information needs in software engineering education. Automatically
generated offline artefacts are easily shareable and portable, thus the entry barrier to
these artefacts and their associated insights is lowered. Providing a suitable solution to
this problem requires building onto the current state of the research areas of software

1

1. Introduction

repository mining, software engineering information needs, software engineering education
and visualisations.

Software engineering education deviates from traditional software engineering in a few key
aspects. An obvious one is that course instructors and tutors usually supervise multiple,
often identical, projects. As a result, the information needs of the various stakeholders
differ as well. Identifying these deviations will be beneficial to improve the experience for
course instructors, tutors and students. The design and development of the proposed
architecture and process, following the successful identification and validation of these
information needs, will provide further insights into the software engineering process and
quality, for the benefit of all stakeholders. Furthermore, the proposed solution aims to
enable continuous, individual insights into the student projects. As a result, the tasks of
giving ongoing feedback to students, as well as drawing comparisons between students, is
simplified for course instructors and tutors. While the proposed architecture and process
will be employable in most software engineering environments, its applicability and impact
in an educational context is the focus of this thesis. Formalising these challenges results
in the following research questions:

• RQ1: What are the current limitations of MSR tools and software visualisations?

• RQ2:

1. What information needs exist in software engineering education?
2. What are the current limitations of Binocular [25] in educational software

engineering environments?

• RQ3: What is a suitable process and architecture for in-process software repository
mining and visualisation?

• RQ4:

1. How purposeful do the stakeholders rate the proposed architecture and process?
2. How do the stakeholders rate its ability to satisfy the information needs in

software engineering education?

1.2 Contributions
The contributions of this thesis are twofold. Firstly, an evaluation of Binocular, which
aims at identifying its shortcomings, the better understanding of the information needs
in software engineering education, is presented. Four semi-structured interviews have
been conducted to gain these insights. Secondly, an integrated, low-cost architecture
and process for software repository mining and visualisation is introduced. Although
this solution has been designed with an education context in mind, it can be applied
in any non-education setting as well. In order to be able to define requirements for the

2

1.3. Structure

architecture, various hypotheses about a suitable architecture for software repository
mining and visualisation had to be constructed. These requirements are educated guesses
based on the shortcomings of existing solutions, which have been identified in the literature
review. Based on these requirements, a proof of concept has been implemented to show
the feasibility of the approach. To conclude, an expert evaluation, which was performed
to validate the hypotheses that the architecture is based and to assess the purposefulness
of the architecture, is described.

1.3 Structure
Subsequently, Chapter 2 describes the methodologies used. Chapter 3 provides an
overview of the related literature. The information needs in software engineering, as well
as the semi-structured interviews, which were used to derive these information needs,
are presented in Chapter 4. Chapter 5 defines a set of requirements for the proposed
architecture. The implementation of the proof of concept is illustrated in Chapter 6.
Chapter 7 describes the evaluation of the proposed architecture and process. Lastly,
Chapter 8 summarises the results and takes a look at potential future work.

3

CHAPTER 2
Methodology

The following chapter describes the different methodologies that were used to obtain
the results of this thesis. Initially, the literature review, which surveys the current state
of the art and aims at finding potential research gaps, is illustrated. Subsequently, the
semi-structured interviews, which were conducted to identify the information needs in
software engineering education, are mentioned. Afterwards, the requirement analysis
for the proposed architecture is depicted. These requirements are realised in a proof of
concept, which is described next. The section concludes with the expert evaluation of
the proposed solution.

2.1 Literature Review
The research field of this thesis is an overlap of four research fields: information needs
(of software engineers), mining software repositories (MSR), software visualisation and
software engineering education. To get an overview of the current state of research in
these fields a literature review was performed. Since one aim of this thesis is to provide
the visualisations of Binocular as offline visualisation artefacts, its original publication
[25] served as a good starting point for literature. Moreover, it is noteworthy that the
contributions can often be associated with multiple fields. For example, many of the
mentioned visualisation tools also perform MSR tasks or vice versa.

Multiple studies on information needs in software engineering are mentioned in the
Binocular paper and its corresponding references. These publications are highly relevant to
this thesis as well. Moreover, the ACM Digital Library1 and IEEE Xplore2 were surveyed
to find further publications of this research area. Both platforms offer advanced search
functionality, which allows for more complex searches, such as papers containing both the

1https://dl.acm.org/, last accessed on 02.03.2022
2https://ieeexplore.ieee.org/Xplore/home.jsp, last accessed on 02.03.2022

5

https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp

2. Methodology

keywords "information needs" and "software engineering" in their abstract. Combining
multiple keywords into an advanced search was also used to search for publications related
to the information needs in software engineering education. Unfortunately, neither of the
aforementioned libraries yielded any results.

The Binocular publication also contained various references to MSR platforms, which
were used as a basis for further exploration. Furthermore, the GitHub topic for mining
software repositories3 too provided multiple software repository mining (and visualisation)
approaches.

Again, the obvious starting point for literature was the Binocular publication. A source for
multiple other publications was the IEEE Working Conference on Software Visualisation4

(VISSOFT). Moreover, several popular non-scientific tools are listed.

The last surveyed research field is software engineering education. The IEEE Conference
on Software Engineering Education and Training5 (CSEE&T) served as solid foundation
for publications. The ACM Digital Library and IEEE Xplore were additionally surveyed
for further papers of this research area. As mentioned before, explicit searches for
contributions related to the information needs in software engineering education were
performed.

2.2 Semi-structured Expert Interviews
The goals of the semi-structured expert interviews were to identify the information needs
in software engineering education and the current limitations of Binocular in educational
software engineering settings. Initially the four interviewees, all of which were involved
in the undergraduate software engineering course at TU Wien6, were asked to rate the
usefulness of various insights that were presumed to be beneficial in software engineering
education. Moreover, all six visualisations of Binocular were showcased. After a short live
demo, the participants were asked to rate the purposefulness of the shown visualisation for
their particular role and whether or not they believe it is helpful for software engineering
education in general.

2.3 Requirement Analysis
The insights gained through the literature research were used to construct hypotheses of
a suitable architecture for in-process software repository mining and visualisation. These
hypotheses were then formalised into requirements for the proposed solution.

3https://github.com/topics/mining-software-repositories, last accessed on
02.03.2022

4https://vissoft.info/, last accessed on 02.03.2022
5https://conferences.computer.org/cseet/, last accessed on 02.03.2022
6https://www.tuwien.at/en/, last accessed on 04.03.2022

6

https://github.com/topics/mining-software-repositories
https://vissoft.info/
https://conferences.computer.org/cseet/
https://www.tuwien.at/en/

2.4. Proof of Concept

2.4 Proof of Concept
Once the requirements for the proposed architecture were defined, a proof of concept
was implemented to show the feasibility of the approach. The proof of concept was
implemented using the GitLab7 platform, since it is utilised in the undergraduate software
engineering course at TU Wien.

2.5 Evaluation
To rate the purposefulness of the proposed approach, an expert evaluation with six
members of the course staff of the undergraduate software engineering course at TU Wien
was performed. Each participant received a short introduction, which included a live
demo of several features of the proposed architecture, before answering a questionnaire.
This questionnaire contained a section about the hypotheses that were derived during the
requirement analysis and how well the final architecture actually meets these requirements.

7https://about.gitlab.com/, last accessed on 04.03.2022

7

https://about.gitlab.com/

CHAPTER 3
State of the Art

The following chapter takes a look at the current state of research in the fields of software
engineering information needs, software repository mining and software visualisation. Ini-
tially some essential concepts are explained to aid in better comprehension. Subsequently,
a look at the current state of research of the aforementioned fields is given. Lastly, the
contributions of this thesis and how they are distinct from the current state of research
are described.

3.1 Definitions
The following section contains definitions of some recurring concepts of this thesis. Know-
ing and understanding these concepts is essential for comprehending the contributions of
this thesis.

Continuous Integration (CI)
Continuous Integration is the practice of automating the compilation, build, tests
and deployment of software [29]. Vasilescu et al. [62] state that it is viewed as
a paradigm shift in software engineering. They continue that in absence of CI,
software is typically considered broken until a testing or integration stage verifies
that it is functioning properly.

Issue Tracking System (ITS)
Stakeholders of a software project use issue tracking systems to keep track of the
bug reports and feature requests of a software project, the so-called issues [5]. It
is very common to reference these issues, which typically have a unique identifier,
from the VCS.

Mining Software Repositories (MSR)
The field of software repository mining, often called mining software repositories,

9

3. State of the Art

evolves methods that use the data stored in software repositories (not only from
the VCS, but from CI/CD and ITS too) to improve the understanding of software
development and its associated practices [28].

Software Repository
Hassan, Holt and Mockus describe the data held in a software repository as the
data of the VCS, defect tracking systems and archived communications explaining
the rationale for decisions between project stakeholders [28]. In the context of this
thesis a software repository is the storage location of a software project and its
corresponding data, including its VCS, ITS and CI.

Software Visualisation
De Pauw, Reiss and Stasko [14] describe software visualisation as "the use of
pictures for looking at and understanding software systems". Furthermore, they
argue that, due to humans being an inherently visual species, it is only natural
that we try to create such pictures in order to understand our software systems.

Version Control System (VCS)
Version control systems are used to record the changes of a set of files, typically
source code files, over time [11]. It enables users to revert files or even the entire
project to a past state, view the changes of given files over time and countless other
tasks. Typically, there is a server (or sometimes multiple servers) holding the entire
repository, which clients can check out locally. In the context of this thesis the
term version control system actually refers to a distributed version control system
(DVCS). In a DVCS the clients do not only mirror the repository, but its entire
history as well. This is especially helpful if any server dies, since any of the clients
can restore the content of the repository on the server.

3.2 Current State of Research
The subject area of this thesis can be described as an intersection of the following fields:
information needs (of software engineers), MSR tools, software visualisation and software
engineering education. This section first provides a look at the current state of research
of these subject areas and subsequently describes how the proposed architecture and
process deviates from these approaches.

3.2.1 Information Needs
A better grasp of the information needs of software engineers yields many benefits, such
as a better understanding of the decision-making-process. The following section takes a
look at several contributions of this field.

Ko et al. [37] derived information needs through observations of typical work of developers.
During these roughly 90 minute long sessions, 21 information needs were abstracted from
334 total instances of information seeking. For each of these information needs the time

10

3.2. Current State of Research

spent searching, search frequencies, search outcomes (whether the needed information
was acquired, deferred with the intention of resuming the search or if the developer gave
up with no intention of resuming) and their source frequency were recorded. The most
common information needs were "Did I make any mistakes in my new code?" and "What
have my coworkers been doing?". Furthermore, the observations show that coworkers
were the most common source of information, 13 of the 21 information needs accessed
coworkers as a source at least once.

Buse and Zimmermann [10] studied the information needs of 110 developers and managers.
One of their findings shows that managers rated data and metrics as the most important
factor for decision making. Developers on the other hand rated their personal experience
as the most crucial factor, even though they had 6 years less experience on average.
They furthermore survey the importance of different artefacts, such as features, bug
reports and classes. They infer that all of the artefacts are important and emphasise their
simultaneous importance. An example showing the latter would be the need to find the
classes, functions and teams connected to the code churn of a project, which a manager
may wish to measure. Lastly, the developers and managers were asked about metrics
that use to make decisions or would use, if they were available. It is noteworthy that a
majority of these metrics, such as code churn or failure models, would have been used by
developers and managers, but are not available. Based on the information needs identified
in this study, they additionally propose a set of characteristics for software analytics
tools, as well as a set of suitable analysis types for the information needs identified in the
study.

Tao et al. [59] presented a quantitative and qualitative study that explores the importance
of understanding code changes during software development, questions about related
information needs and requirements for potential tools that developers may use during
this process. The survey comprised a quantitative and a qualitative part. The former
rates the importance and difficulty scores for 15 potential information needs that were
inferred from research. It is noteworthy that the rationale for a code change, which was
rated the highest for importance, also was the most easily obtainable, according to the
survey. The qualitative part of the survey, a single open question asking for further
information needs related to code changes, showed that current practices deviated from
the true needs of developers. Amongst others, the risk of a code change and the quality
of a code change did not have proper tool support.

Begel and Zimmermann [7] introduced a set of 145 questions, grouped into 12 categories,
that software engineers would like data scientists to explore. An initial survey was sent
out to 1,500 software engineers at Microsoft, asking them to list five questions they would
like data scientists to answer, as well as why they would want to know that and what they
would do with the answers. This was followed by a second survey to rank and prioritise
the questions that were collected in the initial survey. 2,500 engineers were invited to the
second survey, none of which have been part of the initial one. One interesting finding is
that not only the top-rated question, "How do users typically use my application?", is
concerned with customers, but in total 8 of the 20 questions with the highest percentage

11

3. State of the Art

of "Essential" ratings are.

In [26], Haenni et al. explored the information needs of developers in software ecosystems.
A software ecosystem, as described in [41], is "a collection of software projects which are
developed and which co-evolve together in the same environment". They discovered that
there typically are two perspectives in the context of a software ecosystem. The upstream,
usually a framework or library, provides its source code to the downstream. Furthermore,
they show that the information needs of upstream and downstream developers differ.
The downstream needs typically correspond to the various stages of their relation with
an upstream: the selection, adoption and co-evolution with an upstream project. The
upstream needs on the other hand can be grouped into two categories: project statistics
and code usage. In [27], they confirm these findings through a quantitative survey of 75
software developers and, moreover, conclude that there is no adequate tool support for
developers working in the context of a software ecosystem.

Codoban et al. [12] investigated the reasons why software engineers inspect software
history, how they do it and what obstacles exist when doing so. After interviewing 14
developers, a survey with 217 participants was conducted to quantify the observations
from the interviews. They mention that, even though 61% of survey respondents needed
to inspect the history of their software project(s) up to a couple of times a day, software
history tools did not provide support for the needs that the developers have. They
furthermore found that developers often have needs related to uncommitted changes, but
existing tools typically do not take these into account. Lastly, they introduce a novel
software history model, namely "3-LENS HISTORY", which provides the foundation to
give identity to software history in the future.

Pascarella et al. [47] studied the information required to perform code reviews, as well as
to improve the understanding of the code review process. They identified seven high-level
information needs of reviewers in code reviews through manual analysis of 900 code review
comments from the three open-source projects OpenStack1 (nowadays called OpenDev),
Android2 and QT3. Based on their results they made several suggestions for possible code
review tools, such as detection of dividable code changes or real-time communication.

In [32], Josyula et al. aimed at determining the information needs of software practitioners,
the sources used to satisfy these information needs, as well as the perceived usefulness
of the various sources. They identified that software practitioners have nine types of
information needs, that are satisfied using thirteen different types of sources. While
the information sources deviate from practitioner to practitioner, some sources (e.g.
discussion with colleagues) appeared much more frequently than others (e.g. social
networking sites and groups).

Kortum et al. [38] identified the information needs of agile software development teams
through a survey with 90 international software engineers. In particular they described

1https://review.opendev.org/q/status:open+-is:wip, last accessed on 04.12.2021
2https://android-review.googlesource.com/, last accessed on 04.12.2021
3https://codereview.qt-project.org/, last accessed on 04.12.2021

12

https://review.opendev.org/q/status:open+-is:wip
https://android-review.googlesource.com/
https://codereview.qt-project.org/

3.2. Current State of Research

which team-related problems (e.g. lacking communication) emerge most frequently
amongst the participants, as well as the information usually used to address these issues.

In [1], Ahmad et al. identified the information needs in continuous integration and
delivery (CI/CD) through a study with 34 participants from five different companies.
They catalogued 27 information needs, categorised into five different groups (testing, code
& commit, confidence level, bug, and artefacts) and associated with various stakeholders
(developers, testers, project managers, release team, and compliance authority).

3.2.2 Mining Software Repositories (MSR)
Researchers have been interested in the available data of source code repositories ever
since they exist [30]. This interest only has increased once distributed version control
systems, in particular Git4, have become increasingly popular [9, 33]. These days, source
code repositories are typically hosted on platforms such as GitHub5 or GitLab. While
these platforms offer countless more features and integrations, therefore a lot of additional
information can be extracted through the process of mining, there also arise various new
pitfalls when looking at this newly available data [34]. Since the amount of information
in software repositories is further increasing, the contributions of this field are especially
diverse. For example, Luijten et al. [40] extracted information about issue handling
efficiency from the GNOME issue database. Moreover, Robles [51] investigated the
replicability of published MSR papers. Kovalenko et al. [39] highlight the importance of
branches and merge commits when mining software repositories. Gold and Krinke [24]
on the other hand, presented various ethical issues that emerge during the process of
extracting information from software repositories.

MSR Tools

While there exist various solutions for software repository mining, most of them either
require external infrastructure or further integration before they become applicable. The
following subsection looks at some popular contributions.

PyDriller [57] is a Python6 framework designed to extract information from Git repos-
itories in significantly fewer lines of code with less complexity than past solutions. It
is a wrapper around the popular GitPython7 package. While GitPython offers almost
all features of Git, PyDriller’s features have been narrowed down to the ones which are
essential when doing MSR tasks.

Boa [18, 19] is a domain-specific language and infrastructure to simplify the extraction
of data from large source code repositories such as GitHub or SourceForge8. It not only
significantly reduces the necessary programming efforts and majorly improves scalability

4https://git-scm.com/, last accessed on 04.12.2021
5https://github.com/, last accessed on 04.12.2021
6https://www.python.org/, last accessed on 14.09.2021
7https://github.com/gitpython-developers/GitPython, last accessed on 14.09.2021
8https://sourceforge.net/, last accessed on 14.09.2021

13

https://git-scm.com/
https://github.com/
https://www.python.org/
https://github.com/gitpython-developers/GitPython
https://sourceforge.net/

3. State of the Art

(without the need of writing explicitly parallelised code), performed experiments are also
very straightforward to reproduce by re-running the already existing Boa programs. A
summary of Boa’s infrastructure is shown in Figure 3.1. While Boa has many upsides,
there certainly are some shortcomings as well. To address some of these problems, Hung
and Dyer [31] introduced the concept of materialised views into Boa’s language and
infrastructure. A view in the Boa language is similar to the concept of a view in relational
databases. Moreover, a materialised view is a static and cached snapshot of a view.
Therefore, it is usable in future queries as well as shareable across different users.

In [60], Tiwari et al introduced Candoia, a platform and ecosystem dedicated to building
and sharing MSR tools. The Candoia platform makes these tools, which are built as
apps, easily portable and highly customisable. Candoia applications consist of four
parts: the MSR logic, which is an extension of the Boa language, a JSON file containing
the structure description, an HTML and CSS file with the layout for the visualisation
and glue code for interactions located in a JavaScript file. Furthermore, the Candoia
ecosystem enables sharing of these MSR tools by acting as an app store.

Figure 3.1: Overview of the Boa infrastructure

Crossflow [2] is a framework designed to support the creation of so-called ”workflows”,
which are distributed (and optionally polyglot), multi-step software repository mining
programs. The scalability of both parallel and distributed execution shows promising
results, which can be attributed to its use of asynchronous, message-based communication,
job-level caching and locality scheduling. Workflows can be either be deployed and
executed manually or through an accompanying web application, which aids in simplifying
these tasks. The architecture of Crossflow is shown in Figure 3.2.

In [50], Reza et al. noted that mining tools are typically tailored towards analysis and

14

3.2. Current State of Research

Figure 3.2: Architecture of the Crossflow framework

data extraction of textual artefacts. To address this issue they introduce ModelMine, a
tool specifically built to mine model-based artefacts and designs. It outperformed the
state-of-the-art PyDriller [57] in both performance and usability analyses, while also
offering the ability to search repositories, which PyDriller does not.

Müller et al. [45] identified various issues concerning data acquisition in software analysis,
such as integration and storage of heterogeneous data. Based on their findings they intro-
duced jQAssistant an extendable open-source stack for software analysis and visualisation.
Eventually, they showed the applicability of their solution through implementation of a
proof of concept, which analyses and visualises JUnit9.

3.2.3 Software Visualisation

While the field of software visualisation has been ever-present since its inception, some
challenges still remain today. In the 2005 paper [49], Reiss described software visualisation
as a paradox. While, even back then, there were obvious benefits to the concept,
mainstream adoption had not yet succeeded. This still holds true today. In [42], Mattila
et al. present the results of a systematic literature review they performed in 2016, which
comprised the literature of the previous six years. They identified the adoption of software
visualisation tools in the industry as a future research topic. Moreover, it suggests that
the adoption in software engineering education too is a viable research topic.

9https://junit.org/, last accessed on 04.12.2021

15

https://junit.org/

3. State of the Art

Software Visualisation Tools

The following section introduces various software visualisations. While some of these
solutions also perform mining tasks, thus would be appropriate in the previous section, all
of them offer one or multiple visualisations of information related to software repositories.

Binocular [25] offers visualisations that combine time-oriented data from the VCS, ITS
and CI. The project is still under active development, contributions to the project can be
seen at the corresponding GitHub repository10, and has seen some major changes and
additions ever since its original publication. It currently offers six interactive visualisations,
each of which offering several different options for customisation. All visualisations are
described in detail in Section 4.1.2.

In [52], Dal Sasso et al. introduced a blended approach to software visualisation, which
combines the data of several sources, with the aim of finding out, what has happened to a
software system in the last few days. The three ingredients, as they call the sources, are
the source code changes, stack traces, and IDE interaction data. Combining these three
ingredients with the software city metaphor, a concept originally used in [63], results in
the blended city visualisation.

Through the introduction of their tool Hunter, Dias et al. [16] aimed at easing the process
of software comprehension. Their contribution complements the established views of
integrated development environments (IDEs), where a list on the left shows the files
and folders, in combination with a large text field in the centre displaying the currently
selected file. The purposeful visualisations of Hunter, such as the File Dependencies
View, enable more complex comprehension tasks of JavaScript applications. The File
Dependencies View, which visualises dependencies between JavaScript files, their size,
interaction between macro-components, as well as references to external libraries, was
the most used pane in Hunter, as determined through analysis of the eye-tracking data
of the controlled experiments. When compared to Visual Studio Code11, Hunter, on
average, achieves a higher percentage of correct answers, using fewer editor panels, and
in less time on non-trivial tasks such as determining the most invoked JavaScript file.

Moreover, Schreiber et al. [54] extracted and visualised the provenance information of
software development projects, to gather insights on software development processes.
Provenance in the context of the web, as defined by Moreau and Groth [43], is a computer-
processable record containing a description of the events that led to a document or piece
of data being in a given state. Provenance can be conceptualised as a graph consisting
of nodes, representing the factors that contributed to the state change, and edges,
representing their relations. Schreiber et al. visualised the provenance information by
integrating a graph visualisation, metrics representation, and development timelines into
a web-based dashboard.

Fiechter at al. [21] proposed the concept of an issue tale, which is a (visual) representation
10https://github.com/INSO-TUWien/Binocular, last accessed on 14.09.2021
11https://code.visualstudio.com/, last accessed on 05.12.2021

16

https://github.com/INSO-TUWien/Binocular
https://code.visualstudio.com/

3.2. Current State of Research

of an issue and all of its accompanying actors and events. Moreover, two visualisations
of issue tales were introduced in their contribution. The coarse-grained view gives an
overview of all issue tales, including their size and duration, for a given project. Further-
more, the fine-grained, timeline-based visualisation illustrates the internal structure of a
single issue tale.

In [36], Kim et al. introduced Coding Time-Machine, a tool that associates and visualises
development tasks and their corresponding elements (e.g. classes, methods). Coding
Time-Machine identifies causal relations between development tasks and its element in
commits through comparisons with previous versions. It comprises four different views:
a list of all commits of the repository, a list of development tasks present in a single
commit, a view visualising the causal relations between the elements of a development
task, and a diff view for displaying the updated code. This enables the inspection of
development tasks, as well as their causal relationships, at any point in time.

Tamer et al. [58] noted that, even though there exist various contributions on the visual
analysis of component-based frontend-frameworks, research typically does not regard the
specifics of these systems. They address this issue by introducing a tool to visualise code
quality metrics and dependencies of React12 applications. Their approach consists of four
panels: a panel displaying various quality metrics (e.g. lines of code, parameter count), a
source code panel, a file tree, and a node-link diagram visualising the structure of the
project.

SonarQube13 is an open-source platform for continuous static code analysis. It supports
various programming languages and can be extended through plugins. Moreover, Sonar-
Qube can not only detect bugs in the source code, but known vulnerabilities as well. It
provides thousands of automated rules and can easily be integrated into existing tools
like GitLab CI/CD14 or Jenkins15.

Gitinspector16 is a used to analyse Git repositories. It visualises the statistics for each
contributor, as well as a timeline illustrating the workload and activity of each author.
Gitinspector was originally developed to fetch statistics for student project statistics at a
course at Chalmers University of Technology17 and Gothenburg University18. By default
only source files are included in the statistics, the list of source file extensions can be
customised. The results can be output to HTML, JSON, XML or plain text and multiple
languages are supported.

Hercules19 is a Git repository analysis engine that comprises the two (cohesive) command
line tools hercules and labours. These tools can be used to create highly customised

12https://reactjs.org/, last accessed on 05.12.2021
13https://www.sonarqube.org/, last accessed on 05.12.2021
14https://docs.gitlab.com/ee/ci/, last accessed on 05.12.2021
15https://www.jenkins.io/, last accessed on 05.12.2021
16https://github.com/ejwa/gitinspector, last accessed on 04.12.2021
17https://www.chalmers.se/en/, last accessed on 05.12.2021
18https://www.gu.se/en, last accessed on 05.12.2021
19https://github.com/src-d/hercules, last accessed on 3.12.2021

17

https://reactjs.org/
https://www.sonarqube.org/
https://docs.gitlab.com/ee/ci/
https://www.jenkins.io/
https://github.com/ejwa/gitinspector
https://www.chalmers.se/en/
https://www.gu.se/en
https://github.com/src-d/hercules

3. State of the Art

Figure 3.3: Code Ownership of the Ember.js repository21 repository

analyses and corresponding plots of Git repositories. hercules is a program written in
Go20, which extracts data of a given Git repository by performing analysis tasks over
the commit history. This data can then be used by labours, a Python script, to show
various predefined plots. An example of the code ownership diagram can be seen in
Figure 3.3.

3.2.4 Software Engineering Education
Researchers have been interested in improving software engineering education, as well
as its associated processes, for decades [22, 56, 8, 17, 4]. The Conference on Software
Engineering Education and Training22 (CSEE&T), for example, dates back to the late
1980s. The following section highlights various contributions from different sub-fields of
the software engineering education literature.

Xie et al. [65] described software engineering education as an intersection of software
engineering, education and gaming. They argue, that, for educational tasks, gaming
technologies frequently play a vital role alongside software engineering technologies. These
gaming technologies, often educational games, can further be extended to dedicated
events, such as Hackathons, which have seen quite some popularity in the literature
[48, 23].

Aligning software engineering education with industry practices has been an ongoing
20https://golang.org/, last accessed on 14.09.2021
21https://github.com/emberjs/ember.js, last accessed on 11.10.2021
22https://conferences.computer.org/cseet/, last accessed on 03.02.2022

18

https://golang.org/
https://github.com/emberjs/ember.js
https://conferences.computer.org/cseet/

3.3. Distinction From Current Research

challenge for decades [6, 64]. Vanhanen et al. [61] described how software engineering is
taught through real-world projects at Aalto University23. Teams of seven to ten students,
guided by a mentor, implement projects for real customers. Students consistently rank
the course amongst the best of the computer science curriculum, even though course
feedback suggests that the required effort per credit unit is higher than most other courses.
Dagnino [13] introduced a method to improve the graduate software engineering course
at NC State University24, by focusing on how software engineering theory applies to
practice and through emphasis on industry experiences. The paper introduces eleven non-
traditional elements of software engineering curricula, which were gradually implemented
in the course. Incorporating these techniques has resulted in an improvement in the
course evaluation performed by the students. Devadiga [15] illustrated existing gaps in
software engineering education when it comes to startups. Due to the limited resources,
software engineers working in startups often take up multiple roles. Therefore, a wide
range of skills, including testing, deployment, cloud computing and DevOps, amongst
others, are required. Shortcomings of current software engineering curricula, as identified
in the paper, are application design, code structure and testing of distributed systems.
Eddy et al. [20] presented a study on introducing CI/CD into an undergraduate software
engineering course. An example pipeline was used to help instructors establish the
concepts of continuous integration and delivery in existing courses. Furthermore, it
allowed students to visualise and understand the accompanying processes. The study
not only showed that their understanding of the studied concepts (e.g. version control,
branching, static code analysis) improved, but also that the CI/CD pipeline was useful
in understanding the concepts.

Moreover, there are various contributions that aim at improving software engineering
courses at universities. Sedelmaier and Landes [55] introduced an active and inductive
learning approach for software engineering, focusing on understanding the need of software
engineering and its associated methods and techniques. Nytrø et al. [46]. compared
two different pedagogical approaches, one of which emphasises systematic guidance and
education, while the other one focuses on innovation and inspiration, for an undergraduate
software engineering course.

Lastly, since distance learning (and therefore also distance teaching), due to COVID-19,
has become as widely spread as ever, contributions addressing its accompanying challenges
have also become increasingly popular [3, 35, 53, 44].

3.3 Distinction From Current Research
One aim of this thesis is to identify the information needs in software engineering
education. Even though there exist multiple studies on information needs in software
engineering, as mentioned in Section 3.2.1, and the field of software engineering education

23https://www.aalto.fi/en, last accessed on 10.12.2021
24https://www.ncsu.edu/, last accessed on 10.12.2021

19

https://www.aalto.fi/en
https://www.ncsu.edu/

3. State of the Art

is very substantial, as shown in Section 3.2.4, there currently are no studies on the
information needs specific to software engineering education.

Once these information needs are collected, a suitable process and architecture for in-
process software mining and visualisation will be implemented. Current MSR tools and
visualisations typically either require external infrastructure or additional integration
before they become applicable. The contribution of this thesis is a lightweight and
integrated architecture and process for offline visualisation artefacts using existing software
engineering tools (e.g. GitLab, Git). The proposed solution will deliver the visualisations
of Binocular [25], which typically requires an external infrastructure, as offline artefacts
through the integration of Binocular into existing and established software engineering
tools, GitLab CI/CD in particular. Lastly, the proposed architecture and process is used
to better satisfy the information needs in software engineering education.

20

CHAPTER 4
Information Needs in Software

Engineering Education

The following section illustrates the information needs in software engineering education.
In the beginning, the semi-structured interviews performed to determine these information
needs are described. Subsequently, the data gathered in these interviews is used to derive
the information needs in software engineering education.

4.1 Semi-Structured Expert Interviews
While there exist multiple studies on software engineering information needs, as described
in Section 3.2.1, none of them are specific to software engineering education. To gain in-
sights on this topic, as well as to find out the shortcomings of Binocular [25] in educational
software engineering settings, four semi-structured expert interviews were conducted. At
the time of writing, all of the participants were involved in the undergraduate software
engineering course at TU Wien. Furthermore, in order to achieve the most objective
results, it was made sure that the roles of the participants in the given course varied.
The interviews were held remotely via Zoom1 and lasted approximately 90 minutes each.

4.1.1 Interview Design

The interviews were guided by a questionnaire consisting of nine sections and a mixture
of quantitative and qualitative questions. All quantitative questions used a 5-point scale
to rate the usefulness/helpfulness/purposefulness of a given concept, ranging from 1 (not
useful/helpful/purposeful) to 5 (very useful/helpful/purposeful).

1https://zoom.us/, last accessed on 07.01.2022

21

https://zoom.us/

4. Information Needs in Software Engineering Education

Demographics

The opening section contains demographic questions. Initially, the participants are asked
about their age. The possible answers start from 18 years old and, apart from the first
and last bucket, which are "18-24 years old" and "65 years or older" respectively, are
grouped into buckets of 10 years, i.e. "25-34 years old". Subsequently, a question about
gender of the participant follows. The possible options here are "Female", "Male", "Prefer
not to say" and "Other", a free text option called to add any gender the participant may
identify with. The third question aims at determining how long the interviewees have
been working in software engineering education. The options are illustrated in Figure
4.1. Lastly, an open question asks which role the participants are performing in the
undergraduate software engineering course at TU Wien. This information is vital in
identifying potential differences in information needs between the various roles.

Figure 4.1: Question #3 and its possible options

Concepts

Up next were questions about the usefulness of several insights that were considered
valuable after reviewing the literature (e.g. code ownership over time). This section serves
as the main source for the identification of the information needs in software engineering
education. Therefore, the information derived from this section lays the foundation to
the answer of RQ2.1. The insights that are described in this section either are insights
that Binocular already aims at providing, or aims at providing in the future (e.g. through
additional visualisations). How well Binocular actually provides these insights will also
be evaluated during the interviews.

Initially, the participants are asked to rate the usefulness of insights on large spikes
in work contributions in software engineering education. Binocular, in particular its
Dashboard and HotspotDials visualisations, both of which will be described later in this
section, already aims at providing this insight.

22

4.1. Semi-Structured Expert Interviews

The interviewees are then asked about the usefulness of insights on work distribution
between students in software engineering education. Again, Binocular already aims at
providing this information through its Dashboard visualisation.
The next two questions aim at determining the usefulness of insights on the number of
active conflicts, as well as the history of conflicts, within the source code. These insights
are currently not provided by Binocular, but are considered for future work.
Lastly, the participants are asked to rate the usefulness of insights on code ownership over
time by each student. Binocular, in particular its Code Ownership River visualisation,
already aims at providing this information.

Dashboard

Subsequently, one section for each of the six visualisations of Binocular follows. Before
the participants get to answer these questions, a live demo of the given visualisation was
performed.
The first of the six sections was about the Dashboard visualisation. It gives an overview
of the number of code changes, the number of open and closed issues as well as the
number of succeeded and failed CI/CD builds of a given time frame (year, month, week
or day). The "Changes" chart has an option to show or hide individual contributors.
Moreover, the changes can be shown as the number of changed lines (split into additions
and deletions) or the number of commits. The "Issues" chart has an option to either show
the number of open, closed or total issues. An example of the Dashboard visualisation
can be seen in Figure 4.2. Hereafter, all of the screenshots of Binocular display data from
the Binocular project2 itself, as well as its associated ITS and CI/CD data. The state of
the repository illustrated in these screenshots is stored in a Docker image made available
on the Dockerhub3

The section about the Dashboard visualisations opens with the following five questions:

• How purposeful is the Dashboard visualisation for your role in this course?
• How could it be improved to ease your role?
• How helpful is the Dashboard visualisation for software engineering education?
• How can this visualisation be utilised in software engineering education?
• What are its shortcomings in software engineering education?

It should be noted that all sections about the visualisations of Binocular begin with
similar questions. The aim of these questions is to identify the limitations of Binocular in
an educational software engineering setting, which corresponds to the answer to RQ2.2.

2https://github.com/INSO-TUWien/Binocular, last accessed on 20.01.2022
3https://hub.docker.com/layers/insotuwien/binocular-database/develop-1c03

d823/images/sha256-1bfd1f162f8dab1fba574aa7a8b8fff2df9060174981957057a482e53
d48f095, last accessed on 09.03.2022

23

https://github.com/INSO-TUWien/Binocular
https://hub.docker.com/layers/insotuwien/binocular-database/develop-1c03d823/images/sha256-1bfd1f162f8dab1fba574aa7a8b8fff2df9060174981957057a482e53d48f095
https://hub.docker.com/layers/insotuwien/binocular-database/develop-1c03d823/images/sha256-1bfd1f162f8dab1fba574aa7a8b8fff2df9060174981957057a482e53d48f095
https://hub.docker.com/layers/insotuwien/binocular-database/develop-1c03d823/images/sha256-1bfd1f162f8dab1fba574aa7a8b8fff2df9060174981957057a482e53d48f095

4. Information Needs in Software Engineering Education

Figure 4.2: Example of the Dashboard visualisation

The section about the Dashboard visualisation contains six additional questions. These
questions should be seen as groups of two related questions, since the follow-up question
is optional. These questions also aim at answering RQ2.2 and look as follows:

• How purposeful is the dashboard visualisation to gain insights about large spikes
in work contributions?

– How could it be improved to gain the relevant insights?

• How purposeful is the Dashboard visualisation to gain insights about work distri-
bution between students?

– How could it be improved to gain the relevant insights?

• How purposeful is the Dashboard visualisation to gain insights about the amount
of added/deleted source code by each student?

– How could it be improved to gain the relevant insights?

Code Ownership River

The interviews continue with the section regarding the "Code Ownership River" visualisa-
tion. Depending on the setting, the Code Ownership River either displays the aggregated
lines of code over time or the code ownership over time. Moreover, there is the possibility
to select one of three different overlays. These overlays either highlight an issue and its

24

4.1. Semi-Structured Expert Interviews

accompanying commits, the open and closed issues over time, or the successful and failed
CI/CD builds over time. A screenshot of the Code Ownership River visualisation, in this
case illustrating the code ownership over time in conjunction with the open and closed
issues over time, is shown in Figure 4.3.

Figure 4.3: Example of the "Code Ownership River" visualisation

Apart from the five questions that exist for every visualisation, the section about the
Code Ownership River visualisation does not contain any additional questions. The
purpose of this visualisation, as well as its ability to gain insights on the code ownership
over time by each student, is obvious. Since there are no additional questions, the section
looks as follows:

• How purposeful is the Code Ownership River visualisation for your role in this
course?

• How could it be improved to ease your role?

• How helpful is the Code Ownership River visualisation for software engineering
education?

• How can this visualisation be utilised in software engineering education?

• What are its shortcomings in software engineering education?

Issue Impact Visualisation

Next up, the section about the "Issue Impact" visualisation follows. This visualisation
focuses on a particular issue, thus it is much more fine-grained than the previous two. For

25

4. Information Needs in Software Engineering Education

a given issue, it lists its corresponding commits on the horizontal time axis in the middle
of the circle. The top half of the circle shows the files a given commit has changed, the
size of the arcs represents the amount of changes. The bottom half of the circle shows
the contributors for each commit. If CI/CD data for a given commit exist, the arc is
coloured in green or red, depending on the pipeline status. Moreover, the commits and
files to be shown in the visualisation can be customised through filters. Figure 4.4 shows
an example of the Issue Impact visualisation.

Figure 4.4: Example of the "Issue Impact" visualisation

Similar to the last visualisation, the section about the Issue Impact visualisation does not
contain any additional questions. Thus, the section comprises the following questions:

• How purposeful is the Issue Impact visualisation for your role in this course?

• How could it be improved to ease your role?

• How helpful is the Issue Impact visualisation for software engineering education?

• How can this visualisation be utilised in software engineering education?

• What are its shortcomings in software engineering education?

HotspotDials Visualisation

The interviews continue with questions about the "HotspotDials" visualisation. The
HotspotDials visualisation shows the total number of commits and the total number of
issues. The commits are shown on the outside of the circle, whereas the issues are located

26

4.1. Semi-Structured Expert Interviews

on the inside. Moreover, it offers the option to show the issues by creation or closing
data and to split commits into "good" and "bad" ones (a commit is "good" if it has at
least one successful CI/CD build). Moreover, it is a cyclic visualisation, which means
that it aggregates the data over a given timeframe, for example for a given day of the
week. This timeframe can be customised by changing the granularity of the visualisation,
for example to the hours of a day. An example of the HotspotDials visualisation using
aggregation over the different days of the week is shown in Figure 4.5.

Figure 4.5: Example of the "HotspotDials" visualisation

The section about the HotspotDials visualisation contains two additional questions.
Therefore, the questions of this section look as follows:

• How purposeful is the HotspotDials visualisation for your role in this course?

• How could it be improved to ease your role?

• How helpful is the HotspotDials visualisation for software engineering education?

• How can this visualisation be utilised in software engineering education?

• What are its shortcomings in software engineering education?

• How purposeful is the HotspotDials visualisation to gain insights about large spikes
in work contributions?

– How could it be improved to gain the relevant insights?

27

4. Information Needs in Software Engineering Education

While the HotspotDials visualisation is a cyclic visualisation, thus spikes will most likely
not be visible, the author assumes that it could aid in identifying specific timeframes of
increased work contributions, such as certain days of the week or certain hours of the
day. Therefore, these questions have also been included.

Code Hotspots Visualisation

Up next are questions regarding the "Code Hotspots" visualisation. The Code Hotspots
offers the possibility to see the changes of a given file. More specifically, a heat map
overlay representing the history of changes is shown over the source code of the selected
file. There is the opportunity to show the changes per version, per developer or per
issue. Each of these options shows how frequently and to what extent the given file
has been changed. Furthermore, the visualisation offers various filters to customise
what information shall be shown. Figure 4.6 features an example of the Code Hotspots
visualisation.

Figure 4.6: Example of the "Code Hotspots" visualisation

Once again, the section about this visualisation only contains the five questions that all
sections about the six visualisations have in common, which look as follows:

• How purposeful is the Code Hotspots visualisation for your role in this course?

• How could it be improved to ease your role?

• How helpful is the Code Hotspots visualisation for software engineering education?

• How can this visualisation be utilised in software engineering education?

28

4.1. Semi-Structured Expert Interviews

• What are its shortcomings in software engineering education?

Language-Module River Visualisation

To conclude the sections about the visualisations Binocular comprises, questions about
the "Language River" and "Module River" visualisations follow. Both visualisations show
the additions and deletions by a given contributor over time. Contrary to the Dashboard
visualisation, more specifically its "Changes" chart, these changes are not centred on the
x-axis. Instead, a so-called "build trend", which rewards consecutively successful CI/CD
builds, is calculated and used to determine the vertical position of the given contribution.
Another difference to the Dashboard visualisation is the distinction of changes. While the
additions and deletions in the Dashboard visualisation are simply grouped per contributor,
the Language-River and Module-River visualisations additionally distinguish changes by
their file type or module respectively. This is illustrated through the use of two colours:
one for the contributor and another one for the given file type or module. Furthermore,
both visualisations add the ability to only show changes for a given file type or module.
An example of the Language-River visualisation is shown in Figure 4.7. Due to their
similarity, an example for the Module-River visualisation was omitted.

Figure 4.7: Example of the "Language River" visualisation

This section, again, does not contain any additional questions. Therefore the questions
look as follows:

• How purposeful is the Language-Module River visualisation for your role in this
course?

29

4. Information Needs in Software Engineering Education

• How could it be improved to ease your role?

• How helpful is the Language-Module River visualisation for software engineering
education?

• How can this visualisation be utilised in software engineering education?

• What are its shortcomings in software engineering education?

Additional Insights

Eventually, an open question about other additional insights that software engineering
education could benefit from concludes the questionnaire. The full questionnaire can be
found in the Appendix.

4.1.2 Results
Demographics

The introductory section of the interviews contained demographic questions. All four
participants marked their age as 25-34 years old. One of the four participants identified
as female, the other three as male. Their experience in software engineering varied: one of
the interviewees had been working in software engineering education for 1-2 years, one for
5-10 years and the remaining two for 10-15 years. Moreover, the roles of the participants
can be clustered into three categories: course administrators, course assistants and tutors.
The participants consisted of two course administrators, one course assistant and one
tutor. The distribution of roles and their associated experience is illustrated in Figure
4.8 (the age was omitted, since all participants selected the "25-34 years" bucket).

Course Administration Course Assistant Tutor

1-2

2-5

5-10

10-15

Ex
pe

rie
nc

e
in

so
ftw

ar
e

en
gi

ne
er

in
g

ed
uc

at
io

n
(y

ea
rs

)

Female
Male

Figure 4.8: Responses to the "Demographics" section, grouped by role performed in the
course

30

4.1. Semi-Structured Expert Interviews

Concepts

The following section consisted of five questions regarding the usefulness of insights in
software engineering education. These concepts were referenced in later sections as well,
where the participants were asked if certain visualisations of Binocular are purposeful to
gain these insights. Thus, it was important to find out if these pieces information were
useful in the first place. The participants were asked to give ratings one a scale of 1 (not
useful) to 5 (very useful). Insights on the work distribution between students had the
highest median rating. This is followed by code ownership over time, insights on large
spikes in work contribution and the number of active conflicts within the source code of
the project (e.g. on different branches). Insights on the history of conflicts within the
source code received the lowest median rating. The distributions of the responses are
shown in Figure 4.9.

1
Not useful

2 3 4 5
Very useful

How useful are insights about large
spikes in work contributions in
software engineering education?

How useful are insights about work
distribution between students in
software engineering education?

How useful are insights about
the number of active con-

flicts within the source code,
e.g. on different branches?

How useful are insights about the
history of conflicts within the source

code, e.g. on different branches?

How useful are insights
about the code ownership
over time by each student?

Figure 4.9: Responses to the questions of the "Concepts" section

Dashboard Visualisation

The next section contained questions about the Dashboard visualisation. The participants
gave its purposefulness for their role a median rating of 4 out of 5, with two of the

31

4. Information Needs in Software Engineering Education

participants rating it "very purposeful". Moreover, the helpfulness for software engineering
education even scored a median and mean rating of 4.5 out of 5. The distribution of the
answers to these two questions can be seen in Figure 4.10.

The participants were mostly interested in the chart showing the code changes. The
interviewees suggested that it would aid in grading, that it could be used as a consistent
Dashboard for all stakeholders, and to better explain software metrics to students. The
participants did not regard the "Issues" chart as useful as the code changes. This was due
to the nature of student projects, where issues are typically created in the beginning of
the semester or in periodic planning meetings. Moreover, the participants considered the
number of CI/CD builds, especially over time, as not really meaningful, since these builds
are not triggered for each commit, but every push to the repository. Thus, there could be
multiple failed builds, or even none, solely depending on how frequently students decide
to push their contributions to the repository. Additionally, the number of failed CI/CD
builds typically is irrelevant, once the build has turned green again. Nevertheless, the
interviewees suggested that the issues and CI/CD charts should visualise who created
or closed and issue, as well as who triggered a given CI/CD job, as it is done in the
"Changes" chart.

Moreover, a common suggestion amongst the participants was a method to obtain detailed
information on changes, since there currently is no way to find out what kind of code
students add or delete. An obvious shortcoming would be that, even though one student
might have written the most lines of code, most of these contributions could come from
auto-generated files, libraries or templates. An obvious solution to this problem would
be a filter to show/hide files of a given file format or matching a given file name.

In addition, the participants were asked questions to determine the purposefulness of the
Dashboard visualisation to gain three of the insights covered in the "Concepts" section.
Three of the four interviewees scored its ability to obtain information on large spikes
in work contributions with rating of 5 out of 5, resulting in a median rating of 5 out of
5 ("very purposeful"). It was once again noted by the participants that a possibility to
show/hide certain groups of files would be beneficial. The next question determined how
purposeful the visualisation is to attain information on the work distribution between
students. The participants gave the Dashboard a median rating of 3.5 out of 5. They
noted that there is no way to determine if students have made a similar amount of
contributions, and that artefacts such as the wiki or documentation are not considered at
all. The former issue could be addressed by adding the total number of contributions per
student. Furthermore, the lines of code do not necessarily correspond with the amount
of work done, since for example setting up a project can be hard to figure out, which
may result in code being scrapped and re-written entirely. Moreover, the participants
were asked to rate the ability of the visualisation to gain insights on the amount of
added/deleted source code by each student. Two of the interviewees gave rating of 4
out of 5, while the other two even rated it 5 out of 5 ("very purposeful"). Once again it
was mentioned that a way to show/hide certain groups of files and an absolute number
of contributions per student would valuable. To conclude, Figure 4.10 illustrates the

32

4.1. Semi-Structured Expert Interviews

distributions of the ratings given by the participants.

1
Not purposeful

2 3 4 5
Very purposeful

(a) How purposeful is the Dashboard visualisation for your role in this course?

1
Not helpful

2 3 4 5
Very helpful

(b) How helpful is the Dashboard visualisation for software engineering education?

1
Not purposeful

2 3 4 5
Very purposeful

(c) How purposeful is the Dashboard visualisation to gain insights about large spikes in work contributions?

1
Not purposeful

2 3 4 5
Very purposeful

(d) How purposeful is the Dashboard visualisation to gain insights about work distribution between
students?

1
Not purposeful

2 3 4 5
Very purposeful

(e) How purposeful is the Dashboard visualisation to gain insights about the amount of added/deleted
source code by each student?

Figure 4.10: Responses to the questions of the "Dashboard Visualisation" section

33

4. Information Needs in Software Engineering Education

Code Ownership River Visualisation

Subsequently, questions about the Code Ownership River followed. Three of the four
participants rated its purposefulness for their role with 5 out of 5 ("very purposeful"),
resulting in a median rating of 5 out of 5. The interviewees gave identical ratings when
asked about the helpfulness of the visualisation in software engineering education in
general. The participants thought that it is very well-suited to determine how much each
student has contributed and how the project came to be. Moreover, it was noted that
the overlays are confusing and do not add any value. The interviewees also mentioned
that zooming should also work for a single axis, during the interviews the x and y axis
zoomed in simultaneously. Furthermore, it was stated that the possibility to only show a
certain student would be helpful, as well as the ability to show/hide certain groups of
files. Lastly, participants noted that the colour selection was irritating. This had to do
with the project used to demonstrate Binocular, which was the Binocular project itself.
Due to the nature of the project there are dozens of contributors, thus it required a lot
of different colours to show all of their contributions in the river. This resulted in similar
colours being used for different contributors, which confused some of the interviewees.
However, this should not be an issue, since the number of contributors in student projects
are limited.

The distributions of the responses are shown in Figure 4.11.

1
Not purposeful

2 3 4 5
Very purposeful

(a) How purposeful is the Code Ownership River visualisation for your role in this course?

1
Not helpful

2 3 4 5
Very helpful

(b) How helpful is the Code Ownership River visualisation for software engineering education?

Figure 4.11: Responses to the questions of the "Code Ownership River Visualisation"
section

Issue Impact Visualisation

The third section was about the Issue Impact visualisation. The participants gave it a
median rating of 2 out of 5 for its purposefulness for their role. However, it is noteworthy
that one of the interviewees, more specifically the only tutor amongst the participants,
rated it 5 out of 5 ("very purposeful"). The interviewees gave slightly higher ratings

34

4.1. Semi-Structured Expert Interviews

when determining its helpfulness in software engineering education in general, resulting
in a median rating of 3 out of 5. Again, the only tutor amongst the participants gave
a 5 out of 5 rating ("very useful"). While one of the participants rated both questions
identically, the remaining two (a course administrator and a course assistant) thought
that the visualisation was more helpful for software engineering in general than it was
purposeful for their role. This would suggest that the visualisation is more applicable
for tutors, which is supported by the fact that the only tutor amongst the participants
rated both questions 5 out of 5. The participants noted that the visualisation is very
fine-grained, which is not relevant for course administrators and course assistants, since
a broad overview is more helpful for these roles. Nevertheless, it can be well-suited for
reviewing a concrete problem, for example if a person has been working on the same
issue for a very long time. Apart from its applicability, the participants noted that the
labels are not easily distinguishable if a certain issue touches too many files. However,
this could also be a sign of an issue that should have been split up into smaller ones.

Figure 4.12 exemplifies the distributions of ratings given by the interviewees.

1
Not purposeful

2 3 4 5
Very purposeful

(a) How purposeful is the Issue Impact visualisation for your role in this course?

1
Not helpful

2 3 4 5
Very helpful

(b) How helpful is the Issue Impact visualisation for software engineering education?

Figure 4.12: Responses to the questions of the "Issue Impact Visualisation" section

HotspotDials Visualisation

Up next were questions about the HotspotDials visualisation. The interviewees rated
the purposefulness of the HotspotDials visualisation for their particular role with a
median rating of 3 out of 5. The ratings improve slightly for the helpfulness in software
engineering in general, where it received a median rating of 3.5 out of 5. The participants
thought it is useful to determine when students are working. This can be helpful in
various ways, for example to see if the development process is healthy or to schedule
meetings in times when students are not working as actively. However, this information
should be handled with a grain of salt, since the data obviously only knows the commit
timestamp. Furthermore, the interviewees noted the chosen granularities were not ideal.
For example, the hour granularity aggregates over the AMs and PMs (e.g. 1AM and

35

4. Information Needs in Software Engineering Education

1PM) of each day, a with a dedicated arc for each hour would be better. In addition, a
granularity on the basis of a sprint was also considered useful. Lastly, the interviewees
suggested that filters for a timeframe or even per developer would be beneficial.

Afterwards, the participants were asked to rate the purposefulness of the HotspotDials
visualisation to gain insights about large spikes in work contributions. The interviewees
gave a median rating of 3 out of 5. They noted that the correlation of work and commits
is not as strong as for example work and lines of code. Moreover, there are typically less
contributions in the beginning of a sprint, since developers often have to read up on the
subject. Thus, an accumulation of contributions typically occurs towards the end of a
sprint.

The distributions of responses to these three questions is shown in Figure 4.13.

1
Not purposeful

2 3 4 5
Very purposeful

(a) How purposeful is the HotspotDials visualisation for your role in this course?

1
Not helpful

2 3 4 5
Very helpful

(b) How helpful is the HotspotDials visualisation for software engineering education?

1
Not purposeful

2 3 4 5
Very purposeful

(c) How purposeful is the HotspotDials visualisation to gain insights about large spikes in work contribu-
tions?

Figure 4.13: Responses to the questions of the "HotspotDials Visualisation" section

Code Hotspots Visualisation

The second to last section was about the Code Hotspots visualisation. The participants
rated gave the Code Hotspots visualisation a median rating of 4 out of 5, when asked
about its purposefulness for their role. The median rating for its helpfulness in software
engineering education was even higher, at 4.5 out of 5. The participants noted that
the visualisation is very complex and, even though there exist tooltips and a help page,

36

4.1. Semi-Structured Expert Interviews

would require an introduction. Moreover, they noted that it could be used to get detailed
information on the history of a given file. This could be beneficial when disputes occur,
whether that might be due to grading or within a group. Shortcomings mentioned by
the participants were the performance and stability, as well as the naive diff algorithm.
The rating distributions can be seen in Figure 4.14.

1
Not purposeful

2 3 4 5
Very purposeful

(a) How purposeful is the Code Hotspots visualisation for your role in this course?

1
Not helpful

2 3 4 5
Very helpful

(b) How helpful is the Code Hotspots visualisation for software engineering education?

Figure 4.14: Responses to the questions of the "Code Hotspots Visualisation" section

Language-Module River Visualisation

To conclude the sections about the six visualisations of Binocular, questions about the
Language- and Module-River visualisations followed. The two aforementioned visualisa-
tions produced the most polarising results. Two participants rated its purposefulness for
their role with 1 out of 5 ("not purposeful"), while the other two gave the visualisation a 5
out of 5 rating ("very purposeful"). These distributions are illustrated in Figure 4.15. The
interviewees gave the same ratings when asked about the helpfulness of the visualisation
in software engineering education in general. The two interviewees gave the 1 out of 5
ratings justified their answers by stating that they are rating the visualisation itself, not
the filters. Moreover, all of the participants found the "build trend" metric irritating.
However, it is noteworthy that all of the participants found the file type and module
filters helpful and would think it is beneficial, if they would exist in other visualisations.
The interviewees stated that these filters would enable them to identify what type of code
the students contribute. This would be helpful in many ways, for example if students
are only adding code in templates or configuration files. Additionally, contributions in
auto-generated files or libraries could easily be hidden in the visualisation.

Additional Insights

The last section of the interviews contained a single open question. The interviewees
were asked for any additional insights that software engineering education could benefit

37

4. Information Needs in Software Engineering Education

1
Not purposeful

2 3 4 5
Very purposeful

(a) How purposeful is the Language-Module River visualisation for your role in this course?

1
Not helpful

2 3 4 5
Very helpful

(b) How helpful is the Language-Module River visualisation for software engineering education?

Figure 4.15: Responses to the questions of the "Language-Module River Visualisation"
section

from. One participant mentioned that the integration of time tracking data would be
beneficial. Moreover, code ownership on a file- or module-level was suggested. This
would enable the course staff to see, for example, if the top 10 contributions of a student
were in the template files. Lastly, it was mentioned that conversations with students are
indispensable, and, that visualisations, like the ones offered by Binocular, are secondary
at best when it comes to grading.

4.1.3 Threats to Validity

The first obvious threat to validity is the number of participants that took part in the
semi-structured interviews. The small sample size of four interviewees cannot be seen as
representative for the entirety of people working in software engineering education.

Furthermore, due to the nature of the thesis, the participants needed to have experience in
software engineering education. This narrowed down the number of possible interviewees
significantly, basically only leaving the members of the course staff of the undergraduate
and graduate software engineering courses at TU Wien as candidates. As a result, all
interviewees were from the immediate work environment of the advisor of this thesis,
which introduces bias. Some of the participants have even seen a prototype of Binocular
before, which additionally increases this bias.

Lastly, the live demo of each visualisation was performed by the author. This introduces
additional bias, since the author already knows the strengths and weaknesses of each
visualisation of Binocular.

38

4.2. Information Needs

4.2 Information Needs
One main goal of this thesis is the identification of the information needs in software
engineering education. A proper understanding of these information needs could also aid
in identifying requirements for the proposed architecture for software repository mining
and visualisation. The main purpose of the semi-structured expert interviews, which are
described in Section 4.1, was to better comprehend these information needs. Moreover,
the limitations of Binocular [25] in educational software engineering environments shall
be highlighted. The responses provide a good starting point to answer both of these
questions.

While the participants were also asked open questions to potentially gather additional
information needs, the main focus was to validate the presumed ones. After reviewing
the literature, and additional consultation with experts of the field, five different insights,
which were assumed to be useful in software engineering education, emerged. The main
purpose of the "Concepts" section was to see whether or not these assumptions were
correct. Moreover, if a given visualisation was assumed to be purposeful to gain insights on
one of these information needs, its corresponding section in the questionnaire contained
a question to rate this ability. For example, it was presumed that the "Dashboard"
visualisation is well-suited to give insights on large spikes in work contribution, since the
number of added and deleted lines of code is shown in the "Changes" chart. Therefore, its
section contained a question to determine its purposefulness to satisfy this information
need. These questions were specifically asked to find out the limitations of Binocular in
educational software engineering environments.

The results, as described in Section 4.1.2, show that each of the mentioned insights
was rated at least 4 out of 5 by at least half of the participants. This suggests that
the presumed information needs are indeed useful in software engineering education.
Furthermore, apart from insights on the history of conflicts within the source code, which
was rated 4 out of 5 by two of the interviewees, every insight received at least one 5
out of 5 ("very useful") rating. Ranking the usefulness of the insights according to their
median rating, which is shown in Figure 4.9, would result in the following order:

1. Work distribution between students

2. Code ownership over time by each student

3. Large spikes in work contributions

4. Number of active conflicts within the source code

5. History of conflicts within the source code

Even though a lot of information can be derived from just the quantitative questions, the
open questions additionally aided in specifying the information needs of the interviewees,

39

4. Information Needs in Software Engineering Education

as well as the current shortcomings of Binocular. For example, insights on the work
distribution between students were regarded as the most useful by the participants. The
"Dashboard" visualisation was assumed to be useful to obtain these insights, since its
"Changes" chart shows the amount of added and deleted code per student. However,
the interviewees noted that it would be beneficial to see what these contributions are.
Moreover, the "Issues" and "CI builds" charts lack user information, and therefore do not
aid in determining the work distribution. Artefacts, such as the Wiki or documentation,
as well as time tracking data, are also not reflected in any of the visualisations of Binocular.
Lastly, it is noteworthy that, while it may be a good indicator, lines of code should not
be the exclusive metric to measure productivity. Setting up a project or committing
auto-generated files may result in lots of added lines of code, but could take far less time
than implementing a complex algorithm or database query that may only end up being
a few lines of code. Using this reasoning, one participant even thought that it is not
obvious whether or not students have contributed approximately the same.

Insights on the code ownership over time by each student were regarded as the second
most useful of the mentioned insights. The "Code Ownership" river illustrates exactly
that. The participants gave it the highest ratings with regards to its purposefulness for
their role, as well as its usefulness in software engineering education in general. The
responses to the questions asking about the purposefulness of a given visualisation for
the role of an interviewee can be seen in Figure 4.16.

1
Not purposeful

2 3 4 5
Very purposeful

Dashboard

Code Ownership River

Issue Impact

HotspotDials

Code Hotspots

Language-Module River

Figure 4.16: Responses to the "How purposeful is the [...] visualisation for your role in
this course?" questions

As it turned out, the different roles in software engineering education have different

40

4.2. Information Needs

information needs. A good example for this is are insights on large spikes in work
contribution. Both participants who are responsible for the course administration rated
it "very useful" (5 out of 5), whereas the tutor gave a 3 out of 5 rating. The only course
course assistant amongst the interviewees even gave the insight a "not useful" (1 out of
5) rating. It was assumed that the information needs of the different roles in software
engineering education would differ. Therefore, each of the six sections with questions
about the visualisations of Binocular contained one question about the purposefulness
of a given visualisation for their role, in addition to one tasking about its usefulness in
software engineering education in general. The responses to the latter, which are shown
in Figure 4.17, turned out to be slightly different. This too suggests that the information
needs of the different roles deviate.

1
Not helpful

2 3 4 5
Very helpful

Dashboard

Code Ownership River

Issue Impact

HotspotDials

Code Hotspots

Language-Module River

Figure 4.17: Responses to the "How helpful is the [...] visualisation for software engineering
education?" questions

The usefulness of insights on the number of active conflicts received the second-worst
median rating by the interviewees. The only participant who classified their role as tutor
still rated it "very useful" (5 out of 5). Moreover, it is quite obvious that tutors are
more concerned with source code than course administrators or course assistants. This
additionally indicates that the information needs of the different roles vary.

The participants thought insights on the history of conflicts within the source code are
the least useful, according to the median rating. Again, it is noteworthy that the only
tutor amongst the interviewees rated it the highest, with a 4 out of 5 rating. This
substantiates the argument that tutors are more concerned with the source code than
course administrators or course assistants.

41

CHAPTER 5
Requirement Analysis

The following chapter describes a set of requirements for the proposed in-process software
repository mining and visualisation approach. The shortcomings of existing solutions,
which were described in Section 3.2.2 and Section 3.2.3, in combination with assumptions
by the author, are used to construct hypotheses about a suitable architecture for in-process
software repository mining and visualisation. These hypotheses have to be validated later
on. Concrete requirements are then derived from these hypotheses. The final architecture
should meet these requirements, while simultaneously providing improved satisfaction of
the information needs in software engineering education.

The proposed solution should improve upon existing solutions, which have been surveyed
in the literature review. Current software repository mining and software visualisation
tools almost entirely require external infrastructure or additional integration before
they become applicable. In order to solve this issue, the following hypothesis can be
constructed:

H1) A software repository mining and visualisation architecture for software engineering
education should be integrated in the existing infrastructure (e.g. GitLab CI/CD)

Moreover, the educational context of this thesis has to be kept in mind. Tutors, course
assistants and course administrators typically have to supervise multiple, often similar
projects, simultaneously. Thus, it is assumed that being able to quickly access, and
optionally share, the produced artefacts is vital. This results in the following hypotheses:

H2) Visualisation artefacts should be viewable offline (i.e. without being hosted on a
server)

H3) Visualisation artefacts should be portable and cross-platform

43

5. Requirement Analysis

Additionally, it should not be necessary for students to add mining and visualisation
logic to their projects. This allows the course staff to enable or disable the mining of any
student project at any time, while simultaneously not cluttering the student projects.
Therefore, the following assumption is made:

H4) A software repository mining and visualisation architecture for software engineering
education should require no additional configuration

In order to make the project as transparent as possible, all stakeholders should have
access to the visualisation artefacts. Since the architecture is designed and developed in
an educational context, the following hypothesis emerges as a result:

H5) Both students and course staff should be able to access the visualisations of their
projects

Due to the complex nature of the architecture, various administration tasks will be
necessary during setup and maintenance. These may include setting up, updating and
deleting projects, or even building its required artefacts. Apart from the initial setup of
the project, which is not possible, it should be possible to setup and maintain the entire
architecture through the existing infrastructure. It should, for example, not be necessary
to have additional scripts to do certain tasks. Therefore, the following assumption is
made:

H6) The administration of the architecture should be possible within the existing
infrastructure

Since the architecture has at least one external dependency, in particular the GitHub
repository1 of Binocular [25], it should not be necessary to access these dependencies
each time a repository is indexed. One the one hand this enables offline operation (after
the architecture has successfully been set up), on the other hand performance can be
improved significantly. Since the initial setup is required anyhow, the following hypothesis
can be derived:

H7) After the initial setup, a software repository mining and visualisation architecture
for software engineering education should be operable without external dependencies

It should once again be noted that these hypotheses are based on the findings of the
literature review, as well as assumptions by the author. These hypotheses are validated
later on. The following requirements are derived from the hypotheses that have been
described in this section. Each requirement is associated with a set of hypotheses, which
are suffixed in brackets.

1https://github.com/INSO-TUWien/Binocular

44

https://github.com/INSO-TUWien/Binocular

Use of existing CI/CD infrastructure (H1)
Integrating the proposed architecture in the existing CI/CD infrastructure, in this
case GitLab CI/CD, yields many advantages. Primarily no new hardware has
to be set up, thus minimising the additional costs. This is an obvious benefit,
especially in educational context, where resources are typically more restricted than
in the private sector. Furthermore, introducing an additional tool to provide and
access the visualisation artefacts seems very cumbersome. To make the solution
as universally usable as possible, the architecture shall only use features of the
community edition of GitLab CI/CD.

Visualisations as offline artefacts (H2, H3)
The architecture should deliver visualisations, in particular the visualisations
produced by Binocular, as offline artefacts. Additionally, the artefacts should be
easily shareable and platform independent. Providing tools, such as Binocular,
that would otherwise require an external infrastructure, in offline artefacts greatly
reduces the entry barrier to their visualisations.

Applicability without additional configuration (H4)
The proposed architecture should be as non-invasive as possible. Student groups
should be able to view visualisations of their projects without the need of adding
mining or visualisation logic themselves. This not only allows the course staff
to enable or disable to mining and visualisation of any project at any time, it
also does not clutter the student projects with code unrelated to their specific
project. Moreover, the architecture should be designed in a way that the mining
and visualisation of projects is performed by default, i.e. student groups do not
need to opt in.

Flexible permissions (H5)
Both students and course staff should have access to the visualisation artefacts
produced by the architecture. Students could improve their understanding of
the software engineering process through the additional insights illustrated in the
visualisations. Moreover, the visualisations aid the course staff in guiding, as well
as grading the students. Even though both the course staff and students should be
able to view the artefacts produced by the proposed architecture, only the course
staff should be allowed to enable or disable the mining of a given project. Thus,
the architecture requires flexible permissions. GitLab offers predefined permissions
and roles2, which shall be used to address this challenge.

Administration within the existing infrastructure (H6, H7)
The administration of any projects related to the proposed architecture should be
possible within the existing infrastructure. Therefore, an administration project
should be created, which contains all logic require to set up and maintain the
architecture. Once this project has been cloned, the entire administration of the

2https://docs.gitlab.com/ee/user/permissions.html, last accessed on 02.03.2022

45

https://docs.gitlab.com/ee/user/permissions.html

5. Requirement Analysis

architecture should be possible through this project (or projects created by this
administration project). Scripts that are used to set up or maintain projects related
to the architecture should be made available as jobs3 in the CI/CD pipeline of this
project. Furthermore, the architecture should be able to build all of its required
artefacts, such as custom Docker4 images.

3https://docs.gitlab.com/ee/ci/jobs/, last accessed on 02.03.2022
4https://www.docker.com/, last accessed on 03.02.2022

46

https://docs.gitlab.com/ee/ci/jobs/
https://www.docker.com/

CHAPTER 6
Implementation

The following chapter describes the implementation of the proof of concept. Initially,
Section 6.1 describes the technologies that were used. Next up, Section 6.2 takes a look at
the final architecture, as well as some other options that were considered in the process.
Lastly, Section 6.3 covers the repositories dedicated to the administrative purposes.

6.1 Adaptation of Binocular
Binocular utilises a client-server-based architecture. More specifically, the back-end is
a Node.js1 application responsible for gathering and persisting the data from the VCS,
ITS and CI/CD into ArangoDB2. Furthermore, Express3 is used to host the precompiled
front-end over HTTP and installs the GraphQL4 service, which the front-end uses to
query the data stored in ArangoDB. The front-end is a single-page web application using
React5, D3.js6 and Redux7. How these technologies work together is shown in Figure 6.1.

As mentioned in Section 3.2.2, it is still under active development and currently offers
six different visualisations: the "Dashboard", "Code Ownership River", "Issue Impact"
(originally called "Change Impact Wheel"), "HotspotDials" (originally called "Activity
Peak Dial"), "Code Hotspots" and the "Language-Module River" visualisation. Porting all
of these visualisations would be out of the scope of this thesis. To proof the feasibility of
the concept the Dashboard visualisation has been adapted to work in the offline artefacts
produced by the designed architecture.

1https://nodejs.org/, last accessed on 15.09.2021
2https://www.arangodb.com/, last accessed on 15.09.2021
3http://expressjs.com/, last accessed on 09.03.2022
4https://graphql.org/, last accessed on 15.09.2021
5https://reactjs.org/, last accessed on 15.09.2021
6https://d3js.org/, last accessed on 15.09.2021
7https://redux.js.org/, last accessed on 15.09.2021

47

https://nodejs.org/
https://www.arangodb.com/
http://expressjs.com/
https://graphql.org/
https://reactjs.org/
https://d3js.org/
https://redux.js.org/

6. Implementation

Figure 6.1: Client-server architecture used by Binocular

Before creating the mining pipeline it was necessary to adjust the behaviour of Binocular.
The first step was to stop the services started by the back-end after the indexing and
data export has been finished. Moreover, it was quite obvious that the data stored in
ArangoDB had to be exported and bundled with the front-end in one way or another.
While there exist tools to mock GraphQL servers (e.g. json-graphql-server8), as
well as tools to fake REST servers (e.g. FakeRest9), they are not sufficient on their
own. The offline artefacts would require to run in-browser GraphQL queries against a
fake REST server, thus a combination of both would be necessary. Exporting the data
to JSON files using arangoexport10 and bundling it with the client code seemed more
straightforward. Lastly, the GraphQL queries that are used to fetch the data in the
front-end had to be replaced.

To stop the services started by the back-end, in particular the web server hosting the
front-end and the GraphQL service, a -no-server command line option was introduced.
Whenever it is present all services are stopped immediately after the data has been
indexed and stored into ArangoDB.

Before the data can be bundled with the front-end, it needs to be exported using
arangoexport. One command suffices to export all collections to corresponding JSON

8https://github.com/marmelab/json-graphql-server, last accessed on 16.09.2021
9https://github.com/marmelab/FakeRest, last accessed on 16.09.2021

10https://www.arangodb.com/docs/stable/programs-arangoexport.html, last accessed
on 16.09.2021

48

https://github.com/marmelab/json-graphql-server
https://github.com/marmelab/FakeRest
https://www.arangodb.com/docs/stable/programs-arangoexport.html

6.1. Adaptation of Binocular

files. PouchDB11 is then used in the front-end to replicate the graph data model from
ArangoDB. The adapted version of Binocular assumes that the ArangoDB collections
have already been exported to the directory of the front-end. These JSON files are then
used to create two document stores in PouchDB. The first document store stores all
documents that are located in non-relational collections, e.g. commits or issues. The
second one acts as a triplestore to store all relations between these documents. It stores
the entries of all documents that store relations. For example, the documents in the
ArangoDB relation commits-files, which stores the relationships between commits
and files, contains (amongst others) two attributes: _from (holding the ID of the file)
and _to (holding the ID of the associated commit). This entry would be stored in the
triplestore by adding a name attribute with the value of its relation name, in this case
commits-files. This way all collections and relations can be reproduced using just
two documents, which are created during the initialisation of the Dashboard visualisation
component.

Figure 6.2: Architecture of the adapted version of Binocular

Mango queries12 were used to replace the GraphQL queries to fetch the relevant data.
The Dashboard visualisation uses four different queries to fetch all of the necessary data.
The query getBounds retrieves the Git signatures of all committers, the first and last
issue as well as the first and last commit to the repository. The other three queries,
getBuildData, getCommitData and getIssueData return all builds, commits and
issues respectively. While the getCommitData and getIssueData simply return all
records of the given document, the records returned by getBuildData also include a

11https://pouchdb.com/, last accessed on 15.09.2021
12https://pouchdb.com/guides/mango-queries.html, last accessed on 15.09.2021

49

https://pouchdb.com/
https://pouchdb.com/guides/mango-queries.html

6. Implementation

stats object, which holds the number of succeeded, failed, pending and cancelled builds
up to that point.

Eventually, some minor changes, such as hiding the progress bar of the data import or
disabling the web socket connection that checks the current status of the import, were
done to tidy up the offline artefacts. Figure 6.2 illustrates how the individual components
of the adapted version work together.

6.2 Architecture
An integral part of the implementation was coming up with a suitable architecture, based
on the requirements defined in Section 5. The goal was to integrate Binocular into GitLab
CI/CD by making its visualisations available as offline artefacts in the job artefacts13 of
each CI/CD build.

The initial idea was to write a custom GitLab Runner14 that automatically executes the
mining logic and outputs the offline artefacts as job artefacts in GitLab CI/CD. This
could be possible by creating one or more runners with a given tag, as well as adding
dedicated a mining job to the .gitlab-ci.yml file of each project. Furthermore, it
would also be necessary to add the tag of the custom runners and the directory of the
job artefacts to the configuration. This is not desirable for many reasons, one of the
most significant ones being that students could simply decide not to include the given
configuration, thus not utilising the architecture at all. This directly conflicts with the
requirements that were identified in Section 5.

The second approach that was considered is an architecture comprising not only the
student projects, but also projects solely responsible for mining. Each student project
has an associated shadow project, as these projects are called, with the single purpose
of performing the mining. The shadow projects are created using a template, which
too is hosted on the same GitLab instance. This project, which is called Minocular,
contains the entire mining logic. In addition to the CI/CD pipeline, which is defined in
the .gitlab-ci.yml file, the project also contains the script being executed inside the
pipeline. Since the mining logic is located in the shadow projects, the offline visualisations
produced by the pipeline are also provided there. Therefore, students need read access
to their corresponding shadow project. It is noteworthy that, due to the mining pipeline
being relatively resource-intensive, it definitely should not be triggered every time students
push changes to their student project. While the pipelines in the proof of concept, due
to simplicity of the implementation, have to be triggered manually, mining each student
project once per day seems reasonable.

The mining pipeline itself is straightforward. It is based on a custom Docker image and
consists of a single job. It adds the arangodb:3.7 image as a service, since the main

13https://docs.gitlab.com/ee/ci/pipelines/job_artifacts.html, last accessed on
15.09.2021

14https://docs.gitlab.com/runner/, last accessed on 15.09.2021

50

https://docs.gitlab.com/ee/ci/pipelines/job_artifacts.html
https://docs.gitlab.com/runner/

6.3. Administration

container needs access to an instance of ArangoDB. A custom image is used to eliminate
the need of re-building the adapted version of Binocular each time a mining pipeline is
triggered within a shadow project. The job executes a single script that contains the
entire mining logic, which looks as follows: after a couple of variable declarations the
target repository is cloned into the main container. This is followed by the creation
of the main configuration file, which is done using the existing environment variables.
Afterwards, the target repository is indexed using the adapted version of Binocular, which
was described in Section 6.1. Subsequently, the data stored in the ArangoDB container is
exported to JSON files using the arangoexport tool, which is provided by ArangoDB.
Once the JSON files are ready, the front-end is build using npm run build, which
uses webpack to create the offline visualisations. Eventually, the artefacts are moved to
the job artefacts folder, which is defined in the .gitlab-ci.yml file. By doing so an
archive of the offline visualisations can be downloaded directly for each build.

To simplify the administration of the student projects (and their corresponding shadow
projects) there exist two additional projects for administrative purposes. The first one,
called Labocular, is used set up to manage the entire architecture. It hosts a CI/CD
pipeline that can be used to clone the necessary projects, update them and to create
shadow projects. The other project, called Visocular, contains a CI/CD pipeline that can
be used to build the Docker image used by the shadow projects. These two projects are
described in detail in Section 6.3. The final architecture, and how students the course
staff interact with it, is shown in Figure 6.3.

6.3 Administration
Two additional projects were created to make the accompanying processes of obtaining the
offline visualisations, in particular the creation and maintenance of the shadow projects,
easier. Labocular offers functionality to set up and maintain the entire architecture.
Furthermore, it aids in the creation of the shadow projects. Visocular contains logic to
build the custom Docker image used by the shadow projects.

6.3.1 Labocular
Once the Labocular project has been cloned into a GitLab group, it can be used to set up
and maintain the proposed architecture. It offers six different, jobs, all of which can only
be manually triggered. Figure 6.4 displays these six jobs and their corresponding stages.
These stages, i.e. "build", "setup" and "maintenance", are not representing stages in the
traditional sense of CI/CD, where jobs need to run subsequently for each pipeline, but
rather an indication in which order these jobs should be triggered when the infrastructure
is first set up. Once the setup is finished, these jobs may be triggered independently from
each other.

The first of the six jobs, namely build_labocular_image, is very straightforward.
It is responsible for building the Docker image used by all other jobs in its CI/CD

51

6. Implementation

pipeline. Therefore, it needs to be run at least once before all other jobs. The script
logs authenticates with the local container registry15 using predefined CI/CD variables16.
Then the image is built using the Dockerfile17 located in the Labocular project.
Subsequently, the image is pushed it to the local container registry, so it can be used by
the other jobs. The image is based on the python:alpine3.13 image, since some of
the scripts are written in Python. Afterwards, git is installed via apk18. Lastly, the
Python dependencies listed in requirements.txt are installed via pip19.

At this point the Docker image is present in the local container registry. Before shadow
projects can be created, the setup_required_projects job has to be executed. It
is responsible for setting up the Minocular and Visocular for the current group. If one
of these projects already exists for a given group, this setup is skipped. Otherwise, the
given project is cloned from the INSO-TUWIEN group20, where these repositories are
maintained.

Since manually creating shadow projects for all student projects would be very cumber-
some (there typically are dozens of projects per semester), Labocular offers logic to simplify
this task. This logic can be used once the Docker image has been built and the required
projects have been set up using the aforementioned jobs. The create_shadow_projects
job can automatically create shadow projects for selected repositories or for all repos-
itories of a group that match a given prefix (e.g. 21ws-xyz for a given semester and
course name). It creates these repositories by creating a new GitLab project through
the GitLab REST API21, importing the Minocular template, adding all members of the
student project as guests (i.e. they have read access to the artefacts) and setting various
environment GitLab CI/CD variables, such as the GitLab access token and the name of
the student project.

The behaviour of the script depends on the set environment variables. Authentication
happens through personal access tokens22. Therefore, a variable called GITLAB_TOKEN
with a valid access token has to be set. If SELECTED_REPOSITORIES, which should
contain a comma separated list of repository names, is set, shadow projects will only be
created for repositories of the current group matching these names. If PROJECT_PREFIX
is set to a prefix, shadow projects are only created for repositories of the current group
matching the given prefix. By default, shadow projects add a -shadow suffix to the
name of the student projects, e.g. a student project 21ws-xyz would get a corresponding

15https://docs.gitlab.com/ee/user/packages/container_registry/, last accessed on
09.03.2022

16https://docs.gitlab.com/ee/ci/variables/predefined_variables.html, last
accessed on 09.03.2022

17https://docs.docker.com/engine/reference/builder/, last accessed on 09.03.2022
18https://wiki.alpinelinux.org/wiki/Package_management, last accessed on 09.03.2022
19https://pip.pypa.io/en/stable/, last accessed on 09.03.2022
20https://gitlab.com/INSO-TUWien, last accessed on 09.03.2022
21https://docs.gitlab.com/ee/api/api_resources.html, last accessed on 29.09.2021
22https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html, last

accessed on 29.09.2021

52

https://docs.gitlab.com/ee/user/packages/container_registry/
https://docs.gitlab.com/ee/ci/variables/predefined_variables.html
https://docs.docker.com/engine/reference/builder/
https://wiki.alpinelinux.org/wiki/Package_management
https://pip.pypa.io/en/stable/
https://gitlab.com/INSO-TUWien
https://docs.gitlab.com/ee/api/api_resources.html
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

6.3. Administration

shadow project called 21ws-xyz-shadow. This suffix can be overwritten by setting
the SHADOW_PROJECT_SUFFIX variable. To aid in executing this job with the correct
variables, all of the relevant variables are shown when the pipeline is triggered manually,
as shown in Figure 6.5.

The three jobs in the "maintenance" stage are very similar. Each of the three relevant
projects, i.e. Labocular, Minocular and Visocular, can be updated to their latest version,
or any specific commit. By default the projects located in the INSO-TUWIEN group23,
are used as the source. However, the URL to clone from can be overwritten if necessary.

6.3.2 Visocular
There are multiple reasons why a custom Docker image is used in the CI/CD pipelines of
the shadow projects. The most obvious one is that the adapted version of Binocular does
not have to be built every time a mining pipeline is triggered within a shadow project.
By putting the finished build into an image it suffices to build Binocular once every time
the image is re-built. This not only uses far less resources, but also improves performance
significantly. Moreover, it enables the pipeline to run without additional dependencies
once the images have been built. How the actual images are built is described at the end
of this section.

The Visocular project, which is responsible for building the custom Docker image, is
very straightforward. Apart from the README.md file, it only contains the CI/CD
configuration within .gitlab-ci.yml. The CI/CD pipeline contains a single job. The
job logs in to the local container registry, clones the Minocular project, builds an image
using its Dockerfile and eventually pushes the built image to the local container registry.
The proof of concept publishes the finished image under the latest tag. Even though
this may be convenient for development, it should definitely be be adapted to work with
different tags before the architecture is deployed in a real-world setting.

While it may seem excessive to have an entire project dedicated to building a single image,
this decision was made with expandability in mind. Different software repository mining
and visualisation tools may require different images (or different artefacts altogether).
Having a dedicated project for managing these artefacts has multiple benefits. The
CI/CD pipeline of the Labocular project does not get bigger, every time the architecture
is extended with a new tool. Moreover, there exists a clearer separation of concerns.
The Labocular project is responsible for setting up and maintaining the projects of the
infrastructure, while Visocular is solely responsible for the required artefacts.

The custom image for the mining pipeline is based on the node:14 Docker image.
Since the mining script needs access to the arangoexport executable, an ArangoDB
installation is downloaded and extracted manually, thus making it available to use. This
at first requires wget24 to be installed. Once both of these tasks are finished, the adapted

23https://gitlab.com/INSO-TUWien, last accessed on 09.03.2022
24https://www.gnu.org/software/wget/, last accessed on 16.09.2021

53

https://gitlab.com/INSO-TUWien
https://www.gnu.org/software/wget/

6. Implementation

version of Binocular is cloned (the adapted version is located on branch feature/30
of the GitHub repository25). Subsequently, the dependencies of the adapted version of
Binocular are installed.

25https://github.com/INSO-TUWien/Binocular, last accessed on 16.09.2021

54

https://github.com/INSO-TUWien/Binocular

6.3. Administration

Figure 6.3: The final architecture

55

6. Implementation

Figure 6.4: Available CI/CD jobs in the Labocular project

Figure 6.5: "Run pipeline" screen in the Labocular project

56

CHAPTER 7
Evaluation

This chapter describes the evaluation of the proposed architecture. Initially the goals of
the evaluation round are described. Afterwards, the method used to evaluate the approach,
the expert interviews, is illustrated. Subsequently, the results of these interviews are
presented, summarised and discussed. Lastly, potential threats to validity are mentioned.

7.1 Goals
Section 3.2.2 and Section 3.2.3 highlighted the current limitations of software repository
mining and visualisation tools. The information needs in software engineering education,
as well as the current limitations of Binocular [25] were derived from the semi-structured
interviews mentioned in Section 4.1. As a consequence RQ3, RQ4.1 and RQ4.2 remain
open. The goal of the evaluation is to get answers to these research questions.

7.2 Method
To gain the aforementioned insights, six semi-structured interviews with experts of the
field in software engineering education were conducted. More specifically, all interviewees
were part of the undergraduate software engineering course at TU Wien at the time
of writing this thesis. While there is some overlap with the interviewees of the first
interview round, not all four were available for the second round. The interviews started
with an introduction to the topic and the proposed architecture. Afterwards, a live
demo of the architecture was performed to provide a better understanding. An in-
depth look at the three projects, in particular Labocular, Minocular and Visocular,
was given. Moreover, the process of creating shadow projects and obtaining the offline
visualisation artefacts produced by the architecture was showcased. The interviews
concluded with a questionnaire consisting of four sections. The first of the four sections
contained demographic questions, which were identical to the introductory section of the

57

7. Evaluation

questionnaire described in Section 4.1. Subsequently, a section about hypotheses of a
suitable architecture for software repository mining and visualisation, independently of
the proposed solution, followed. An example would be "a software repository mining and
visualisation architecture for software engineering education should be integrated in the
existing infrastructure". The participants were asked to give ratings from 1 ("strongly
disagree") to 5 ("strongly agree"). These hypotheses were constructed based on the
current limitations of MSR tools and software visualisations. Rating the purposefulness
of the designed architecture and process was the aim of the third section. It contained
statements about the architecture fulfilling the aforementioned hypotheses, e.g. "the
proposed architecture is integrated in the existing infrastructure". Once again, the
interviewees were asked to rate their acceptance of these statements from 1 ("strongly
disagree") to 5 ("strongly agree"). Lastly, a section with a single open question for any
further improvements or suggestions concluded the interviews. The full questionnaire
can be seen in the Appendix of this thesis.

7.3 Results
The following section describes the results of the expert evaluations. Its structure is
identical to the individual sections of the evaluation questionnaire. The initial subsection
highlights the demographic information of the participants. Subsequently, the acceptance
of the various hypotheses is illustrated. The results of the evaluation of the proposed
architecture is described next. Lastly, additional inputs provided by the interviewees are
mentioned.

7.3.1 Demographics
The first section of the evaluation interviews contained demographic questions. Three of
the six interviewees picked the 25-34 years bucket, while the other three chose 35-44 years.
One of the participants identified as female, the remaining five as male. The experience in
software engineering education varied all the way from 2-5 years up to 15-20 years. Four
of the six participants described their role to be course assistant in the undergraduate
software engineering course at TU Wien, with the other two interviewees being course
administrator. The demographic information of the interviewees is illustrated in Figure
7.1. It should be noted that, even though it was omitted from the plot, the interviewee
who identified as female is the course assistant aged 25-34 with 10-15 years of experience
in software engineering education.

7.3.2 Hypotheses
One main goal of the evaluation was to determine a suitable architecture for software
repository mining and visualisation. Various shortcomings of current solutions were
identified after reviewing the literature. As a consequence, multiple hypotheses of a
suitable architecture were constructed. The acceptance of these hypotheses is shown in
Figure 7.2.

58

7.3. Results

25-34 35-44

2-5

5-10

10-15

15-20

Age (years)

Ex
pe

rie
nc

e
in

so
ftw

ar
e

en
gi

ne
er

in
g

ed
uc

at
io

n
(y

ea
rs

)
Course Administrator

Course Assistant

Figure 7.1: Responses to the "Demographics" section of the evaluation questionnaire

The first hypotheses was that a software repository mining and visualisation architecture
for software engineering education should be integrated in the existing infrastructure.
Four of the six interviewees gave a 5 out of 5 rating ("strongly agree"). The other two
participants rated it 4 out of 5. Moreover, they noted that, while an integration into
existing tools is favourable, setting up an external infrastructure would not be a major
downside to them.

The next hypothesis was that visualisation artefacts should be viewable offline. The
participants gave a median rating of 3.5 out of 5, which was the lowest among all
hypotheses. One interviewee, in particular one of the course administrators, even rated it
5 out of 5 ("strongly agree"). The phrasing of this hypothesis may have not been ideal,
since multiple interviewees stated that they do not care whether or not it an artefact is
located online. While this information is useful, the question, in conjunction with the
next one, actually aimed at finding out whether or not offline artefacts, i.e. artefacts
that do not require an infrastructure to be viewable, are favourable over solutions that
require additional setup.

Subsequently, it was asked whether or not visualisation artefacts should be portable and
cross-platform. Five of the six interviewees gave a 5 out of 5 rating ("strongly agree").
The remaining participant gave a 4 out of 5 rating. As stated before, the former and this
question a have not been formulated ideally gain the desired insights. The process of
drafting the questions was done across multiple iterations, both questions were rephrased
multiple times. Therefore, the phrasing may have not been ideal.

The next hypothesis was that a software repository mining and visualisation architecture
for software engineering education should require no additional configuration. Four of the
six interviewees strongly agreed with this hypothesis, i.e. gave a 5 out of 5 rating. All six
participants noted that the wording "no additional configuration" was mediocre and that

59

7. Evaluation

something along the lines of "minimal additional configuration" would have been better.
The ratings were given under the assumption that this was the actual phrasing of the
question.

The fifth of the seven hypotheses was that both students and course staff should be able
to access the visualisations of their projects. All six interviewees gave a 5 out of 5 rating
("strongly agree"). It was noted that, in addition to the course staff, the students would
also benefit from these visualisations. Moreover, several participants emphasised the
importance of transparency in software engineering education, both from the view of a
student and the course team.

The second to last hypothesis aimed at finding out whether or not the administration
of the architecture should be possible within the existing infrastructure. Three of the
six participants strongly agreed with this hypothesis, i.e. gave a 5 out of 5 rating. The
remaining three interviewees all gave a 4 out of 5 rating, resulting in a median acceptance
of 4.5 out of 5 for this hypothesis.

The last of the seven hypotheses was that a software repository mining and visualisation
architecture for software engineering education should be operable without external
dependencies, once it has been set up. The median rating of this hypothesis was 4 out
of 5. The only participant who strongly agreed with this hypothesis was one of the two
course administrators.

7.3.3 Evaluation

After rating the constructed hypotheses, the interviewees were asked to evaluate the
proposed architecture. This section of the questionnaire contained statements about
the final solution and its core concepts and processes. The responses to the statements
of this section are illustrated in Figure 7.3. It is noteworthy that, apart from one, all
propositions received a median rating of 5 out of 5 ("strongly agree").

The first statement was that the concept of shadow projects, which is an essential part
of the architecture, is easy to grasp. Five of the six interviewees strongly agreed with
this proposition, i.e. gave a 5 out of 5 rating. It should be noted that the concept was
explained in detail in the introduction of the interview. However, every single participant
found the name "shadow project" confusing. Suggestions for alternative namings are
discussed in Section 7.3.4.

Then the participants were asked whether or not the proposed architecture is integrated
in the existing infrastructure. Again, fix of the six interviewees rated this statement with
5 out of 5 ("strongly agree"). The remaining participant, who gave a 4 out of 5 rating,
noted that automatic updates and the renovates1 would improve the level of integration
even further. Moreover, there could be an option for automatic exploration of projects to
create shadow projects for.

1https://docs.renovatebot.com/, last accessed on 13.03.2022

60

https://docs.renovatebot.com/

7.4. Summary

The third thesis was that visualisation artefacts produced by the infrastructure are easily
viewable offline, i.e. without being hosted on a server. Four of the six interviewees
strongly agreed with this statement, i.e. gave a rating of 5 out of 5. The remaining two
participants gave a 4 out of 5 rating.

Afterwards, the participants were asked to rate the statement "the visualisation artefacts
are portable and cross-platform". Five of the six interviewees gave a 5 out of 5 rating
("strongly agree"), with an additional 4 out of 5 rating from the sixth participant.

The only statement with a median rating less than 5 out of 5 followed next. The
participants rated the proposition that the proposed architecture requires no additional
configuration with a median rating of 4.5 out of 5. Again, it was noted that the phrasing
was not ideal.

The next statement was that both students and course staff can access the visualisations
of their projects. All six participants strongly agreed with this statement, i.e. gave a 5
out of 5 rating.

The second to last proposition was that the process of creating shadow projects for
existing projects is straightforward. Four of the six participants gave a 5 out of 5 rating
("strongly agree"). The remaining two interviewees rated it 4 out of 5.

To conclude this section, the participants where asked to rate whether or not the proposed
architecture is operable without external dependencies, once it has been set up. Once
again, all six participants strongly agreed with this proposition, i.e. gave a 5 out of 5
rating.

7.3.4 Additional Inputs
The interviews concluded with an open question asking for any further suggestions or
possible improvements. The most common feedback was that the name "shadow project"
was confusing. Some notable suggestions were "mining project", "visualisation project",
"vault" and "mine".

Once participant suggested that commands executed in the Dockerfile should be chained
to avoid creating a new intermediary image for each command. Moreover, it was discussed
whether or not putting the mining script in the Docker image would make sense. However,
since GitLab automatically clones the repository when starting a CI/CD job, and the
mining script has to live in some repository anyway, the author decided against it.

Lastly, it was noted that an additional option to support mining within an existing
repository, i.e. without a shadow project, would be desirable.

7.4 Summary
All in all, the hypotheses about a suitable architecture for software repository mining
and visualisation seem valid. Looking at the distributions of ratings to the hypotheses,

61

7. Evaluation

as shown in Figure 7.2, further supports this argument. Each hypothesis had at least
one expert who rated it 5 out of 5, i.e. strongly agreed with it. Moreover, even the
lowest rated hypothesis had a median rating of 3.5 out of 5, which indicates that the
participants rather agree than disagree.

The evaluation of the architecture also yielded very pleasant results. The participants gave
a median rating of 5 out of 5 ("strongly agree") on seven of the eight propositions, with an
additional median rating of 4.5 out of 5 on the final statement. In addition, the qualitative
feedback given by the interviewees resembled these ratings. Multiple participants even
asked when the architecture would become operational in the undergraduate software
engineering course at TU Wien. Even though the architecture has only been realised as
a proof of concept, therefore is far from being applicable, that is probably the best praise
imaginable.

7.5 Discussion
As mentioned in Section 7.1, the goal of the evaluation interviews was to answer the
remaining research questions. RQ3 is concerned with determining a suitable architecture
for in-process software repository mining and visualisation. After reviewing the literature,
seven hypothesis about such an architecture were constructed. All of these hypotheses
were validated during the evaluation interviews, as described in Section 7.3.2. As
a consequence, a suitable architecture for in-process software repository mining and
visualisation should implement all ideally implement all seven of them.

RQ4.1 aims at answering how purposeful the stakeholders rate the proposed architecture
and process. The ratings presented in Section 7.3.3 show that the stakeholders involved
in software engineering education think that the proposed architecture and process fulfils
the characteristics identified in RQ3. It can therefore be concluded that the stakeholders
see the proposed architecture and process as purposeful for in-process software repository
mining and visualisation.

Lastly, RQ4.2 asks how the stakeholders rate its ability to satisfy the information needs
in software engineering education, which have been identified in Section 4.2. While the
proposed architecture and process does not directly satisfy these information needs, the
visualisations of Binocular do, it allows the stakeholders in software engineering education
to easily access these visualisations. Since the conclusion of RQ4.1 was that stakeholders
see the proposed architecture and process as purposeful for in-process software repository
mining and visualisation, the purposefulness to satisfy the information needs in software
engineering education is tied to Binocular’s ability to satisfy these information needs. The
most useful insight, according to the interviewees, were insights on the work distribution
between students. The participants rated Binocular’s ability, more specifically the ability
of its "Dashboard" visualisation, to gain these insights with a median rating of 3.5 out
of 5. Code ownership over time was rated as the second most important insight. This
information is illustrated in the "Code Ownership River" visualisation. Insights on
large spikes in work contributions received the third highest rating. Its "Dashboard"

62

7.6. Threats to Validity

visualisation was rated "very purposeful" (5 out of 5) by three of the four interviewees.
Moreover, purposefulness of the "HotspotDials" to gain these insight received a median
rating of 3 out of 5, with one participant even rating it 5 out of 5 ("very purposeful"). As
for the remaining two information needs, Binocular currently neither offers visualisations
to see the number of active conflicts, nor the history of conflicts within the source code.

7.6 Threats to Validity
The threats to validity of the evaluation round are very similar to those of the semi-
structured interviews, which are described in Section 4.1.3. The results of the evaluation
round cannot be seen as representative, due to the small sample size of six participants.
Again, bias is introduced, since all participants were from the immediate professional
environment of the advisor of this thesis. Moreover, the live demos introduced further
biased, since they were performed by the author of this thesis.

The aims of the evaluation round were to determine characteristics of a suitable architec-
ture for software repository mining and visualisation and to assess the purposefulness of
the proposed architecture. The former was done by validating various hypotheses that
were constructed. Due to the complexity of the proposed architecture, an introduction
had to be done at some point during the evaluation interviews. This introduction made
the most sense in the beginning, since it was required before the live demo. Moreover, by
placing it at this point in the interview, the questionnaire could be filled out in one go.
As a result the final architecture was introduced before hypotheses were validated, which
could have additional further bias.

63

7. Evaluation

1
Strongly Disagree

2 3 4 5
Strongly Agree

A software repository mining and
visualisation architecture for soft-
ware engineering education should

be integrated in the existing in-
frastructure (e.g. GitLab CI/CD)

Visualisation artefacts should
be viewable offline (i.e. with-
out being hosted on a server)

Visualisation artefacts should
be portable and cross-platform

A software repository mining and
visualisation architecture for soft-
ware engineering education should
require no additional configuration

Both students and course staff
should be able to access the vi-

sualisations of their projects

The administration of the ar-
chitecture should be possible

within the existing infrastructure

After the initial setup a software
repository mining and visualisation
architecture for software engineer-
ing education should be operable

without external dependencies

Figure 7.2: Responses to the questions of the "Hypotheses" section

64

7.6. Threats to Validity

1
Strongly Disagree

2 3 4 5
Strongly Agree

The concept of shadow
projects is easy to grasp

The proposed architec-
ture is integrated in the
existing infrastructure

The visualisation artefacts
are easily viewable offline (i.e.

without being hosted on a server)

The visualisation artefacts are
portable and cross-platform

The proposed architecture requires
no additional configuration

Both students and course
staff can access the visu-

alisations of their projects

Creating shadow projects for
existing projects is straightforward

After the initial setup the
proposed architecture is operable

without external dependencies

Figure 7.3: Responses to the questions of the "Evaluation" section

65

CHAPTER 8
Conclusion

This thesis compasses two main contributions. Firstly, the research project Binocular[25]
was evaluated to identify its limitations in educational software engineering settings and to
better understand the information needs in software engineering education. Secondly, an
integrated software repository mining and visualisation approach was introduced. While
the solution was designed and implemented in an educational setting, its applicability is
not limited to software engineering education.

A literature review has shown that, while there exists lots of research on the information
needs in software engineering, none of it is specific to software engineering education.
Moreover, current software repository mining and visualisation tools either require
external infrastructure or further integration before they become applicable. This would
be the essence of an answer to RQ1.

To better understand the information needs in software engineering education, semi-
structured interviews with four members of the undergraduate software engineering
course at TU Wien were conducted. Moreover, the limitations of Binocular in educational
software engineering environments should be identified. The interviews gave lots of
awareness on these shortcomings, as described in Section 4.1.2. The information needs
that were derived from these interviews are mentioned in Section 4.2. These insights
were used to answer RQ2.1 and RQ2.2 respectively.

Before a solution could be designed and implemented, requirements had to be defined.
In order to define these requirements, various hypotheses of a suitable architecture for in-
process software repository mining and visualisation were constructed. These hypotheses
were then used to derive requirements for the proposed solution. The final requirements
are listed in Section 5.

To proof that the proposed architecture and process is indeed feasible, a proof of concept
based on GitLab CI/CD was implemented. Moreover, Binocular was adapted to produce

67

8. Conclusion

portable, offline visualisation artefacts. The implementation of this proof of concept is
described in Section 6.

To evaluate the solution, six interviews with members of the undergraduate software
engineering course at TU Wien were conducted. The goal was to validate the hypotheses
about a suitable architecture for in-process software repository mining and visualisation
and to rate the purposefulness of the proposed solution. Section 7 describes the goals,
method and results of these six interviews. The insights from these evaluation interviews
were used to answer RQ3, RQ4.1 and RQ4.2.

8.1 Future Work
Due to the limited scope of this thesis, not all ideas that were explored could be realised.
This section lists possibilities for future work in this field.

Since the architecture was implemented as a proof of concept, it is quite far from being
applicable in practise. First of all, the mining pipeline within the shadow projects would
need to be scheduled in some way to be useful. GitLab’s scheduled pipelines1 would most
likely be the easiest solution for this. While this could be done manually on a project
basis, scheduling the pipelines through the API2 when initially creating the shadow
project would be favourable. Moreover, due to the prototypical implementation of the
proof of concept, there most likely is room for improvement within the source code. One
example would be the chaining of commands in the Dockerfile, as mentioned in Section
7.3.4.

Moreover, the proof of concept currently only supports the "Dashboard" visualisation of
Binocular. An obvious next step would be to port the five remaining visualisations. This
would the replacement of the GraphQL queries within the sagas folder of the various
visualisations. These queries would have to be replaced with Mango queries, as described
in Section 6.1.

Another logical next step is the integration of further software repository mining and
visualisation tools into the template project, thus made available in any subsequently
created shadow projects. Section 3.2.2 and Section 3.2.3 list various tools that could be
considered for integration into the architecture.

Furthermore, as mentioned in Section 7.3.4, an option to add the mining logic to a given
project, without the need of setting up shadow projects, would be desirable. While
the architecture was specifically chosen to work the way it does, more specifically a
non-invasive manner, there certainly are use cases where one might want the mining logic
within the existing project.

1https://docs.gitlab.com/ee/ci/pipelines/schedules.html, last accessed on
13.03.2022

2https://docs.gitlab.com/ee/api/pipeline_schedules.html, last accessed on
13.03.2022

68

https://docs.gitlab.com/ee/ci/pipelines/schedules.html
https://docs.gitlab.com/ee/api/pipeline_schedules.html

8.1. Future Work

Due to the nature of a software engineering course, where all students typically work on
identical, or at least similar projects, there were also conversations about anonymous
comparisons or rankings within a course. An example could be something along the lines
of "95% of groups have a higher test coverage than your team". This idea could also be
explored in the future.

69

Bibliography

[1] Azeem Ahmad, Ola Leifler, and Kristian Sandahl. Software professionals’ information
needs in continuous integration and delivery. pages 1513–1520. ACM, 2021.

[2] Konstantinos Barmpis, Patrick Neubauer, Jonathan Co, Dimitris Kolovos, Nicholas
Matragkas, and Richard F. Paige. Polyglot and Distributed Software Repository
Mining with Crossflow. pages 374–384. ACM, 2020.

[3] Matthew Barr, Syed Waqar Nabir, and Derek Somerville. Online Delivery of Intensive
Software Engineering Education during the COVID-19 Pandemic. pages 1–6. IEEE,
2020.

[4] Matthew Bass. Software Engineering Education in the New World: What Needs to
Change? pages 213–221. IEEE, 2016.

[5] Olga Baysal, Reid Holmes, and Michael W. Godfrey. Situational awareness: Person-
alizing issue tracking systems. pages 1185–1188. IEEE, 2013.

[6] Kathy Beckman, Neal Coulter, Soheil Khajenoori, and Nancy R. Mead. Collabora-
tions: closing the industry-academia gap. IEEE Software, pages 49–57, 1997.

[7] Andrew Begel and Thomas Zimmermann. Analyze this! 145 questions for data
scientists in software engineering. Proceedings - International Conference on Software
Engineering, pages 12–23, 2014.

[8] Mario Bernhart, Thomas Grechenig, Jennifer Hetzl, and Wolfgang Zuser. Dimensions
of software engineering course design. pages 667–672. ACM Press, 2006.

[9] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German,
and Prem Devanbu. The promises and perils of mining git. pages 1–10. IEEE, 2009.

[10] Raymond P. L. Buse and Thomas Zimmermann. Information needs for software
development analytics. pages 987–996. IEEE Press, 2012.

[11] Scott Chacon and Ben Straub. In Pro Git, pages 8–11. Apress, 2014.

[12] Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey. Software
history under the lens: A study on why and how developers examine it. pages 1–10,
2015.

71

[13] Aldo Dagnino. Increasing the effectiveness of teaching software engineering: A
university and industry partnership. pages 49–54. IEEE Computer Society, 2014.

[14] Wim de Pauw, Steven P. Reiss, and John T. Stasko. ICSE workshop on software
visualization. Proceedings - International Conference on Software Engineering, pages
758–759, 2001.

[15] Nitish M. Devadiga. Software Engineering Education: Converging with the Startup
Industry. pages 192–196. IEEE, 2017.

[16] Martin Dias, Diego Orellana, Santiago Vidal, Leonel Merino, and Alexandre Bergel.
Evaluating a Visual Approach for Understanding JavaScript Source Code. pages
128–138. ACM, 2020.

[17] Louwarnoud Van Der Duim, Jesper Andersson, and Marco Sinnema. Good practices
for Educational Software Engineering Projects, 2007.

[18] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories.
pages 422–431. IEEE, 2013.

[19] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: Ultra-
Large-Scale Software Repository and Source-Code Mining. ACM Transactions on
Software Engineering and Methodology, pages 1–34, 2015.

[20] Brian P. Eddy, Norman Wilde, Nathan A. Cooper, Bhavyansh Mishra, Valeria S.
Gamboa, Keenal M. Shah, Adrian M. Deleon, and Nikolai A. Shields. A Pilot Study
on Introducing Continuous Integration and Delivery into Undergraduate Software
Engineering Courses. pages 47–56. IEEE, 2017.

[21] Aron Fiechter, Roberto Minelli, Csaba Nagy, and Michele Lanza. Visualizing GitHub
Issues. pages 155–159. IEEE, 2021.

[22] Peter Freeman and Anthony I. Wasserman. A Proposed Curriculum for Software
Engineering Education. pages 56–62. IEEE Press, 1978.

[23] Gabriela Dorfman Furman and Zeev Weissman. On Adding Interdisciplinary Ele-
ments to the Classical Engineering Studies. pages 684–687. IEEE, 2020.

[24] Nicolas E. Gold and Jens Krinke. Ethical Mining: A Case Study on MSR Mining
Challenges. pages 265–276. ACM, 2020.

[25] Johann Grabner, Roman Decker, Thomas Artner, Mario Bernhart, and Thomas
Grechenig. Combining and Visualizing Time-Oriented Data from the Software
Engineering Toolset. pages 76–86. IEEE, 2018.

[26] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz. Categorizing
developer information needs in software ecosystems. pages 1–5. ACM Press, 2013.

72

[27] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz. A quantitative
analysis of developer information needs in software ecosystems. ACM Press, 2014.

[28] Ahmed E. Hassan, Richard C. Holt, and Audris Mockus. MSR 2004: International
Workshop on Mining Software Repositories. pages 770–771. IEEE Computer Society,
2004.

[29] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
Usage, costs, and benefits of continuous integration in open-source projects. pages
426–437. ACM, 2016.

[30] James Howison and Kevin Crowston. The perils and pitfalls of mining SourceForge.
Proceedings of the International Workshop on Mining Software Repositories (MSR
2004), 2004.

[31] Che Shian Hung and Robert Dyer. Boa Views: Easy Modularization and Sharing of
MSR Analyses. pages 147–157. ACM, 2020.

[32] Jitendra Josyula, Sarat Panamgipalli, Muhammad Usman, Ricardo Britto, and
Nauman Bin Ali. Software practitioners’ information needs and sources: A survey
study. pages 1–6. IEEE, 2019.

[33] Sascha Just, Kim Herzig, Jacek Czerwonka, and Brendan Murphy. Switching to Git:
The Good, the Bad, and the Ugly. pages 400–411. IEEE, 2016.

[34] Eirini Kalliamvakou, Leif Singer, Georgios Gousios, Daniel M. German, Kelly Blincoe,
and Daniela Damian. The promises and perils of mining GitHub, 2014.

[35] Tanjila Kanij and John Grundy. Adapting Teaching of a Software Engineering
Service Course Due to COVID-19. pages 1–6. IEEE, 2020.

[36] Taeyoung Kim, Suntae Kim, and Duksan Ryu. Coding™: Development Task
Visualization for SW Code Comprehension. pages 23–32. IEEE, 2021.

[37] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs in collocated
software development teams. pages 344–353, 2007.

[38] Fabian Kortum, Jil Klunder, Oliver Karras, Wasja Brunotte, and Kurt Schneider.
Which Information Help agile Teams the Most? An Experience Report on the
Problems and Needs. pages 306–313. IEEE, 2020.

[39] Vladimir Kovalenko, Fabio Palomba, and Alberto Bacchelli. Mining file histories:
should we consider branches? pages 202–213. ACM, 2018.

[40] Bart Luijten, Joost Visser, and Andy Zaidman. Assessment of issue handling
efficiency. pages 94–97. IEEE, 2010.

[41] Mircea Lungu. Towards reverse engineering software ecosystems. pages 428–431.
IEEE, 2008.

73

[42] Anna Liisa Mattila, Petri Ihantola, Terhi Kilamo, Antti Luoto, Mikko Nurminen,
and Heli Väätäjä. Software visualization today - Systematic literature review. pages
262–271. ACM, 2016.

[43] Luc Moreau and Paul Groth. In Provenance: An Introduction to PROV, pages 3–3.
Morgan & Claypool Publishers, 2013.

[44] Malte Mues and Falk Howar. Teaching a Project-Based Course at a Safe Distance:
An Experience Report. pages 1–6. IEEE, 2020.

[45] Richard Müller, Dirk Mahler, Michael Hunger, Jens Nerche, and Markus Harrer.
Towards an Open Source Stack to Create a Unified Data Source for Software Analysis
and Visualization. pages 107–111. IEEE, 2018.

[46] Oystein Nytro, Anh Nguyen-Duc, Hallvard Tratteberg, Madeleine Loras, and
Babak Amin Farschian. Unreined Students or Not: Modes of Freedom in a Project-
Based Software Engineering Course. 2020.

[47] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. Information Needs in Contemporary Code Review. Proceedings of the
ACM on Human-Computer Interaction, 2018.

[48] Jari Porras, Jayden Khakurel, Jouni Ikonen, Ari Happonen, Antti Knutas, Antti
Herala, and Olaf Drögehorn. Hackathons in software engineering education: Lessons
learned from a decade of events. pages 40–47. IEEE Computer Society, 2018.

[49] Steven P. Reiss. The paradox of software visualization. pages 59–63. IEEE, 2005.

[50] Sayed Mohsin Reza, Omar Badreddin, and Khandoker Rahad. ModelMine: A tool to
facilitate mining models from open source repositories. pages 441–450. Association
for Computing Machinery, Inc, 2020.

[51] Gregorio Robles. Replicating MSR: A study of the potential replicability of papers
published in the Mining Software Repositories Proceedings. pages 171–180. IEEE,
2010.

[52] Tommaso Dal Sasso, Roberto Minelli, Andrea Mocci, and Michele Lanza. Blended,
not stirred: Multi-concern visualization of large software systems. pages 106–115.
IEEE, 2015.

[53] Paul Schmiedmayer, Lara Marie Reimer, Marko Jovanovic, Dominic Henze, and
Stephan Jonas. Transitioning to a Large-Scale Distributed Programming Course.
pages 1–6. IEEE, 2020.

[54] Andreas Schreiber, Lynn von Kurnatowski, Annika Meinecke, and Claas de Boer.
An Interactive Dashboard for Visualizing the Provenance of Software Development
Processes. pages 100–104. IEEE, 2021.

74

[55] Yvonne Sedelmaier and Dieter Landes. Active and Inductive Learning in Software
Engineering Education. pages 418–427. IEEE Computer Society, 2015.

[56] Mary Shaw. Software engineering education: A roadmap. pages 371–380. ACM
Press, 2000.

[57] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. PyDriller: Python frame-
work for mining software repositories. pages 908–911. ACM, 2018.

[58] Hagen Tamer, Daniel van den Bongard, and Fabian Beck. Visually Analyzing the
Structure and Code Quality of Component-based Web Applications. pages 160–164.
IEEE, 2021.

[59] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. How do
software engineers understand code changes? - An exploratory study in industry.
pages 51:1–51:11. ACM, 2012.

[60] Nitin M. Tiwari, Ganesha Upadhyaya, Hoan Anh Nguyen, and Hridesh Rajan.
Candoia: A platform for building and sharing mining software repositories tools as
apps. pages 53–63. IEEE, 2017.

[61] Jari Vanhanen, Timo O. A. Lehtinen, and Casper Lassenius. Teaching real-world
software engineering through a capstone project course with industrial customers.
pages 29–32, 2012.

[62] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. Quality and productivity outcomes relating to continuous integration in
GitHub. pages 805–816. ACM, 2015.

[63] Richard Wettel and Michele Lanza. Program Comprehension through Software
Habitability. pages 231–240. IEEE, 2007.

[64] Claes Wohlin and Björn Regnell. Achieving industrial relevance in software engi-
neering education. pages 16–25. IEEE, 1999.

[65] Tao Xie, Nikolai Tillmann, and Jonathan De Halleux. Educational software engi-
neering: Where software engineering, education, and gaming meet. pages 36–39,
2013.

75

Appendix

77

1.

Mark only one oval.

18-24 years old

25-34 years old

35-44 years old

45-54 years old

55-64 years old

65 years or older

2.

Mark only one oval.

Other:

Female

Male

Prefer not to say

Demographics

Information Needs in Software
Engineering Education
A survey on information needs in software engineering education.

* Required

What is your age? *

What is your gender? *

Information Needs in Software Engineering Education about:blank

1 of 19 16.11.21, 18:22

Questionnaire: Information Needs in Software Engineering
Education

3.

Mark only one oval.

< 1 year

1-2 years

2-5 years

5-10 years

10-15 years

15-20 years

20+ years

4.

5.

Mark only one oval.

Not useful

1 2 3 4 5

Very useful

Concepts

How long have you been working in software engineering education? *

What is your role in this course? *

How useful are insights about large spikes in work contributions in software
engineering education? *

Information Needs in Software Engineering Education about:blank

2 of 19 16.11.21, 18:22

6.

Mark only one oval.

Not useful

1 2 3 4 5

Very useful

7.

Mark only one oval.

Not useful

1 2 3 4 5

Very useful

8.

Mark only one oval.

Not useful

1 2 3 4 5

Very useful

9.

Mark only one oval.

Not useful

1 2 3 4 5

Very useful

How useful are insights about work distribution between students in software
engineering education? *

How useful are insights about the number of active conflicts within the source
code, e.g. on different branches? *

How useful are insights about the history of conflicts within the source code, e.g.
on different branches? *

How useful are insights about the code ownership over time by each student? *

Information Needs in Software Engineering Education about:blank

3 of 19 16.11.21, 18:22

10.

Mark only one oval.

Not purposeful

1 2 3 4 5

Very purposeful

Dashboard Visualisation

How purposeful is the Dashboard visualisation for your role in this course? *

Information Needs in Software Engineering Education about:blank

4 of 19 16.11.21, 18:22

11.

12.

Mark only one oval.

Not helpful

1 2 3 4 5

Very helpful

13.

14.

How could it be improved to ease your role?

How helpful is the Dashboard visualisation for software engineering education?
*

How can this visualisation be utilised in software engineering education? *

What are its shortcomings in software engineering education? *

Information Needs in Software Engineering Education about:blank

5 of 19 16.11.21, 18:22

15.

Mark only one oval.

Not purposeful

1 2 3 4 5

Very purposeful

16.

17.

Mark only one oval.

Not purposeful

1 2 3 4 5

Very purposeful

18.

How purposeful is the dashboard visualisation to gain insights about large spikes
in work contributions? *

How could it be improved to gain the relevant insights?

How purposeful is the Dashboard visualisation to gain insights about work
distribution between students? *

How could it be improved to gain the relevant insights?

Information Needs in Software Engineering Education about:blank

6 of 19 16.11.21, 18:22

19.

Mark only one oval.

Not purposeful

1 2 3 4 5

Very purposeful

20.

Code Ownership River Visualisation

How purposeful is the Dashboard visualisation to gain insights about the amount
of added/deleted source code by each student? *

How could it be improved to gain the relevant insights?

Information Needs in Software Engineering Education about:blank

7 of 19 16.11.21, 18:22

21.

Mark only one oval.

Not purposeful

1 2 3 4 5

Very purposeful

How purposeful is the Code Ownership River visualisation for your role in this
course? *

Information Needs in Software Engineering Education about:blank

8 of 19 16.11.21, 18:22

22.

23.

Mark only one oval.

Not helpful

1 2 3 4 5

Very helpful

24.

25.

Issue Impact Visualisation

How could it be improved to ease your role?

How helpful is the Code Ownership River visualisation for software engineering
education? *

How can this visualisation be utilised in software engineering education? *

What are its shortcomings in software engineering education? *

Information Needs in Software Engineering Education about:blank

9 of 19 16.11.21, 18:22

26.

Mark only one oval.

Not purposeful

1 2 3 4 5

Very purposeful

How purposeful is the Issue Impact visualisation for your role in this course? *

Information Needs in Software Engineering Education about:blank

10 of 19 16.11.21, 18:22

27.

28.

Mark only one oval.

Not helpful

1 2 3 4 5

Very helpful

29.

30.

HotspotDials Visualisation

How could it be improved to ease your role?

How helpful is the Issue Impact visualisation for software engineering
education? *

How can this visualisation be utilised in software engineering education? *

What are its shortcomings in software engineering education? *

Information Needs in Software Engineering Education about:blank

11 of 19 16.11.21, 18:22

31.

Mark only one oval.

Not purposeful

1 2 3 4 5

Very purposeful

How purposeful is the HotspotDials visualisation for your role in this course? *

Information Needs in Software Engineering Education about:blank

12 of 19 16.11.21, 18:22

32.

33.

Mark only one oval.

Not helpful

1 2 3 4 5

Very helpful

34.

35.

How could it be improved to ease your role?

How helpful is the HotspotDials visualisation for software engineering
education? *

How can this visualisation be utilised in software engineering education? *

What are its shortcomings in software engineering education? *

Information Needs in Software Engineering Education about:blank

13 of 19 16.11.21, 18:22

36.

Mark only one oval.

Not purposeful

1 2 3 4 5

Very purposeful

37.

Code Hotspots Visualisation

How purposeful is the HotspotDials visualisation to gain insights about large
spikes in work contributions? *

How could it be improved to gain the relevant insights?

Information Needs in Software Engineering Education about:blank

14 of 19 16.11.21, 18:22

38.

Mark only one oval.

Not purposeful

1 2 3 4 5

Very purposeful

How purposeful is the Code Hotspots visualisation for your role in this course? *

Information Needs in Software Engineering Education about:blank

15 of 19 16.11.21, 18:22

39.

40.

Mark only one oval.

Not helpful

1 2 3 4 5

Very helpful

41.

42.

Language-Module River Visualisation

How could it be improved to ease your role?

How helpful is the Code Hotspots visualisation for software engineering
education? *

How can this visualisation be utilised in software engineering education? *

What are its shortcomings in software engineering education? *

Information Needs in Software Engineering Education about:blank

16 of 19 16.11.21, 18:22

43.

Mark only one oval.

Not purposeful

1 2 3 4 5

Very purposeful

How purposeful is the Language-Module River visualisation for your role in this
course? *

Information Needs in Software Engineering Education about:blank

17 of 19 16.11.21, 18:22

44.

45.

Mark only one oval.

Not helpful

1 2 3 4 5

Very helpful

46.

47.

Additional inputs

How could it be improved to ease your role?

How helpful is the Language-Module River visualisation for software engineering
education? *

How can this visualisation be utilised in software engineering education? *

What are its shortcomings in software engineering education? *

Information Needs in Software Engineering Education about:blank

18 of 19 16.11.21, 18:22

48.

This content is neither created nor endorsed by Google.

Are there any additional insights that software engineering education would
benefit from? *

Information Needs in Software Engineering Education about:blank

19 of 19 16.11.21, 18:22

1.

Mark only one oval.

18-24 years old

25-34 years old

35-44 years old

45-54 years old

55-64 years old

65 years or older

2.

Mark only one oval.

Other:

Female

Male

Prefer not to say

Demographics

Evaluation of a Software Repository
Mining and Visualisation Approach
Evaluation of a software repository mining and visualisation approach.

* Required

What is your age? *

What is your gender? *

Evaluation of a Software Repository Mining and Visualisation Approach https://docs.google.com/forms/u/0/d/13wjsSfU_iNwzCBqpa-iXJ0oAa...

1 von 7 29.01.22, 15:32

Questionnaire: Evaluation of a Software Repository
Mining and Visualisation Approach

3.

Mark only one oval.

< 1 year

1-2 years

2-5 years

5-10 years

10-15 years

15-20 years

20+ years

4.

5.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Hypotheses

How long have you been working in software engineering education? *

What is your role in this course?

A software repository mining and visualisation architecture for software
engineering education should be integrated in the existing infrastructure (e.g.
GitLab CI/CD) *

Evaluation of a Software Repository Mining and Visualisation Approach https://docs.google.com/forms/u/0/d/13wjsSfU_iNwzCBqpa-iXJ0oAa...

2 von 7 29.01.22, 15:32

6.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

7.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

8.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

9.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Visualisation artefacts should be viewable offline (i.e. without being hosted on a
server) *

Visualisation artefacts should be portable and cross-platform *

A software repository mining and visualisation architecture for software
engineering education should require no additional configuration *

Both students and course staff should be able to access the visualisations of their
projects *

Evaluation of a Software Repository Mining and Visualisation Approach https://docs.google.com/forms/u/0/d/13wjsSfU_iNwzCBqpa-iXJ0oAa...

3 von 7 29.01.22, 15:32

10.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

11.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

12.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Evaluation

The administration of the architecture should be possible within the existing
infrastructure *

After the initial setup, a software repository mining and visualisation
architecture for software engineering education should be operable without
external dependencies *

The concept of shadow projects is easy to grasp *

Evaluation of a Software Repository Mining and Visualisation Approach https://docs.google.com/forms/u/0/d/13wjsSfU_iNwzCBqpa-iXJ0oAa...

4 von 7 29.01.22, 15:32

13.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

14.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

15.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

16.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

The proposed architecture is integrated in the existing infrastructure *

The visualisation artefacts are easily viewable offline (i.e. without being hosted
on a server) *

The visualisation artefacts are portable and cross-platform *

The proposed architecture requires no additional configuration *

Evaluation of a Software Repository Mining and Visualisation Approach https://docs.google.com/forms/u/0/d/13wjsSfU_iNwzCBqpa-iXJ0oAa...

5 von 7 29.01.22, 15:32

17.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

18.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

19.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

20.

Additional inputs

Both students and course staff can access the visualisations of their projects *

Creating shadow projects for existing projects is straightforward *

After the initial setup, the proposed architecture is operable without external
dependencies *

How could the proposed approach be improved?

Evaluation of a Software Repository Mining and Visualisation Approach https://docs.google.com/forms/u/0/d/13wjsSfU_iNwzCBqpa-iXJ0oAa...

6 von 7 29.01.22, 15:32

This content is neither created nor endorsed by Google.

Evaluation of a Software Repository Mining and Visualisation Approach https://docs.google.com/forms/u/0/d/13wjsSfU_iNwzCBqpa-iXJ0oAa...

7 von 7 29.01.22, 15:32

	Kurzfassung
	Abstract
	Introduction
	Problem Description
	Contributions
	Structure

	Methodology
	Literature Review
	Semi-structured Expert Interviews
	Requirement Analysis
	Proof of Concept
	Evaluation

	State of the Art
	Definitions
	Current State of Research
	Distinction From Current Research

	Information Needs in Software Engineering Education
	Semi-Structured Expert Interviews
	Information Needs

	Requirement Analysis
	Implementation
	Adaptation of Binocular
	Architecture
	Administration

	Evaluation
	Goals
	Method
	Results
	Summary
	Discussion
	Threats to Validity

	Conclusion
	Future Work

	Bibliography
	Appendix
	Questionnaire: Information Needs in Software Engineering Education
	Questionnaire: Evaluation of a Software Repository Mining and Visualisation Approach

