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Kurzfassung

Die Sicherheit von Bauwerken hängt von Einwirkungen und Widerständen ab, welche dem
Zufall unterliegen. Berechnungsingenieure tragen diesen Zufälligkeiten üblicherweise mittels
Sicherheitsfaktoren Rechnung. Obwohl sich diese Vorgehensweise in der Praxis bewährt hat, ist
sie eher ungeeignet für den Entwurf eines Bauwerks gemäß einer vorgegebenen Zuverlässigkeit
im Sinne einer Schadens- oder Versagenswahrscheinlichkeit bezogen auf einen Zeitraum. Das
liegt daran, dass das Zusammenspiel aller Einwirkungen und Widerstände bei einem realen
Bauwerk viel komplizierter ist als jegliche Situation, die von einem allgemeinen Normenwerk
genau abgedeckt werden kann. Jeder Bauingenieur, der schon einmal (z.B. von einem Laien)
gefragt wurde, unter welcher Last eine Brücke mit Lastbeschränkung denn nun wirklich einstürtzt,
wird dies leicht nachvollziehen können.

Dem Ziel, eine genaue Aussage über die Versagenswahrscheinlichkeit (bzw. über die exakte
maximale Tragfähigkeit) treffen zu können, kommt man näher, indem man eine probabilistische
Berechnung vornimmt. Dabei gehen die Wahrscheinlichkeitsverteilungen der Einwirkungen und
Widerstände direkt in die Tragwerksberechnungen ein. Dadurch, dass Tragwerksberechnungen
heute vorwiegend mit numerischen Methoden durchgeführt werden, erfolgt auch die eigentliche
probabilistische Analyse numerisch. Das entsprechende Verfahren heißt Monte-Carlo-Simulation
(MCS). Dabei wird eine Stichprobe mit unterschiedlichen Parametersätzen untersucht. Die
Verteilung der resultierenden Antwortgrößen, insbesondere die Anzahl der Grenzzustandsüber-
schreitungen, gibt Aufschluss über Schadens- und Versagenswahrscheinlichkeiten bzw. über die
exakte Traglast.
Diese Dissertation beginnt mit einer Darstellung der Zuverlässigkeitstheorie. Es werden die

Hintergründe des semiprobabilistischen Sicherheitskonzepts an einem einfachen Beispiel erläutert.
Darauf aufbauend erfolgt der Übergang auf immer allgemeinere und kompliziertere Systeme,
wobei auf die sich daraus ergebenden Einschränkungen eingegangen wird. Dies führt schließlich
zur MCS, welche die universalste Methode der Zuverlässigkeitsberechnung darstellt.
Das Thema des darauffolgenden Abschnitts ist die Abschätzung sehr kleiner Versagenswahr-

scheinlichkeiten. Hierbei stößt die herkömmliche MCS bisweilen an Grenzen, da die hohe Anzahl
an erforderlichen Simulationen den Berechnungsaufwand unerschwinglich macht. Diesem Unstand
kann man in vielen Fällen mittels Asymptotic Sampling entgegentreten. Das Zuverlässigkeitspro-
blem, d.h. die multivariate Verteilungsfunktion und die Grenzzustandsbedingung, wird dabei
zunächst in den Standardnormalraum transformiert. Dann werden Monte-Carlo-Schätzungen für
die Versagenswahrscheinlichkeiten einiger künstlich gestreckter (skalierter) Systeme durchgeführt.
Der Berechnungsaufwand ist hierfür wesentlich geringer, weil die Versagenswahrscheinlichkeiten
höher sind. Die Versagenswahrscheinlichkeit des Originalsystems ergibt sich dann aus Extrapolati-
on der Ergebnisse für die gestreckten Systeme. Dabei werden gewisse asymptotische Eigenschaften
im Standardnormalraum genutzt, welche in dieser Arbeit detailliert erklärt werden.
Es werden Verfahren zur Optimierung der Asymptotic-Sampling-Methode präsentiert. Insbe-

sondere wird ein Verfahren entwickelt, das im Falle einer sehr hohen Anzahl an Zufallsvariablen
verbesserte Ergebnisse liefert. Zudem werden Empfehlungen für die optimale Anzahl von Skalie-
rungsstufen und Einzelauswertungen gegeben. Darüber hinaus wird die Methode erweitert, sodass
sie Überschreitungswahrscheinlichkeiten für eine Bandbreite von Werten der Antwortgrößen
ergibt. Anhand von Beispielen werden die Vorzüge der (weiter-)entwickelten Methoden aufgezeigt.
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Im nächsten Abschnitt wird die Erdbebensicherheit einer Gewölberstaumauer untersucht.
Die dabei auftretenden Herausforderungen ergeben sich nicht nur aus der Erweiterung um den
komplizierten Lastfall Erdbeben, sondern auch aus der Anwendung auf ein Finite-Element-
Modell eines realistischen Bauwerks. Es werden vier Schadensszenarien sowie das Versagen der
Staumauer untersucht. Da Versagen als Folge von sukzessiver Betonschädigung eintritt, ist hierfür
die Anwendung eines speziellen Materialmodells für den Beton erforderlich.
Im Zentrum der Untersuchung der Schadensszenarien und des Versagens steht die Entwick-

lung jeweiliger Fragilitätskurven, welche die Auftrittswahrscheinlichkeiten als Funktionen der
Bebenintensität angeben. Da auch hierzu MCSs zum Einsatz kommen (und zwar in Verbindung
mit einem aufwändigen nichtlinearen Finite-Element-Modell) ist man wieder an einer Reduktion
des Berechnungsaufwands interessiert. Hierzu werden zwei Ansätze erfolgreich getestet und
weiterentwickelt, welche von einer Lognormalverteilung der Fragilitätskurven ausgehen.

Schließlich werden die Fragilitätskurven mit dem seismischen Risiko von drei ausgewählten
Standorten kombiniert. Dabei kann insbesondere gezeigt werden, dass genaue Untersuchungen
für schwächere Erdbeben entbehrlich sind und eine MCS für eine einzelne Intensitätsstufe nicht
zu brauchbaren Ergebnissen führt.



Abstract

The safety of structures depends on loads and resistances which both eventually have to be
considered as random by nature. The conventional approach to handle uncertainties in engineering
is to use safety factors. Although this approach has proven its worth in practice, it is rather
inappropriate for designing a real structure such as to match a target reliability level, in the
sense of a damage/failure probability referring to a given period of time. This is because, in
a real situation, the interaction of all kinds of resistances and prospective loads is much more
complicated than any situation that can be covered by a general framework of design rules. These
considerations will be easy to understand for any civil engineer who has ever been asked, e.g. by
a non-expert person, under which load a bridge provided with a load limitation is eventually
going to collapse.
To get one step closer to the aim of predicting the exact failure probability (respectively, the

exact bearing capacity), one may adopt a (full) probabilistic analysis. Hereby, the probability
distributions of loads and resistances enter the structural calculations directly. Since, nowadays,
structural calculations are primarily performed by numerical methods, also the actual probabilistic
analysis is performed numerically. The appropriate method is Monte-Carlo simulation (MCS).
Thereby, a sample with different parameter sets is analysed. The distributions of the resulting
response quantities - especially the number of limit state exceedances - give information about
the damage and failure probabilities, respectively about the exact bearing capacity.
This thesis starts with a presentation of reliability theory. The background of the semiprob-

abilistic safety concept is explained using a simple example. Based in this, transition takes
places to more and more general and complicated systems, whereas the resulting limitations are
elaborated. This leads to MCS, which is the most universal method of reliability calculation.

The topic of the subsequent chapter is the estimation of small failure probabilities. In that case,
conventional MCS may become unaffordable since the high number of necessary simulation runs
increases the computational effort substantially. The problem may be addressed by the asymptotic
sampling technique. Thereby, first, the reliability problem, i.e. the multivariate probability
distribution and the limit state condition, is transformed to standard normal space. Then, some
MCS estimates are performed for the failure probabilities of some artificially stretched (scaled)
systems. The computational effort is thereby much smaller because the failure probabilities are
higher. The failure probability of the original system is obtained by extrapolation of the results
of the stretched systems. This can be accomplished by exploiting some asymptotic properties in
standard normal space, which are explained in detail in this work.
Strategies to optimize the asymptotic sampling technique are presented. In particular, a

method is developed that yields better results in cases where the number of random variables is
very high. Furthermore, recommendations concerning the optimal number of scale levels and
simulation runs are provided. Moreover, the technique is extend such that it yields exceedance
probabilities for a range of values of the response quantities. By means of several examples, the
advantages of the methods developed or refined are shown.
In the next chapter, the seismic safety of an arch dam is analysed. The associated challenges

arise not only from the extension to the complicated earthquake load case, but also from the fact
that a finite element model of a realistic structure is analysed. Four damage mechanisms as well
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as failure of the dam are analysed. Since failure occurs as a consequence of progressive concrete
deterioration, the implementation of a special material model for concrete is necessary.
At the centre of the analyses of damage and failure is the development of fragility curves,

which indicate the occurrence probabilities as functions of the seismic intensity. Since this is
accomplished by means of MCSs (involving, furthermore, a complex nonlinear finite element
model), one is particularly interested in a reduction of the computational effort. In this regard,
two approaches are successfully tested and refined, which are based on the assumption of a
lognormal distribution of the fragility curves.

Finally, the fragility curves are combined with the seismic risk of three selected locations. As a
result of that it can be shown that an additional investigation of smaller earthquakes in greater
detail is expendable, and that MCS for a single intensity level is inappropriate for seismic safety
analysis.
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Chapter 1

Motivation

The most basic duty of a structural engineer is to design and to build structures that are safe.
This might seem an obvious requirement. In practice however, the engineer will face challenges
and difficulties, just like any other practitioner. Even the engineer with the best training and the
highest experience will inevitably be constrained to make decisions in situations where she/he
is in doubt about the specific situation. The doubts may arise from the incompleteness of
informations, e.g. about the bearing capacity of the ground underneath the structure, as well as
from the fact that all properties of materials and structures on one hand, and all phenomena
which act on the structure on the other hand, are random, to a greater or lesser degree.

Furthermore, one has to consider that the safety of a structure does not depend only on the
structural engineer, but on the work of many other people. At this point, as a trivial fact, natural
fallibility of human beings will readily come to one’s mind. However, the special circumstances
and requirements of a construction site cause that deviations from the plan will effectively occur
quite regularly. This specific nature of a construction process, which maybe distinguishes it
considerably from other production processes, arises from the fact that mostly unique products
(prototypes) are built in a given environment.

An aspect of growing importance is ageing of civil structures. Especially in Europe and in the
United States, a considerable part of the infrastructure is older than several decades. Time, or
more specifically, long lasting environmental actions cause deterioration of structures, e.g. in
the form of corrosion. As a consequence, the risk of malfunction and failure increases with time.
Especially, design errors and careless construction may develop fatal consequences as temporal
effects are exacerbating the situation. Hence, it is increasingly important to conduct inspections,
maintenance works or even replacement of the structure. Omission or inadequate implementation
of these measures may lead to a substantially worsened condition, which requires even more
expensive repair afterwards, (partial) operational interruption, or, in the worst case, lead to
collapse (fig. 1.1).
Next to the duty to build safe structures, the engineer faces additional economic, ecological

and aesthetic necessities and objectives in her/his practical work. As for economic efficiency, it
is logical that a saving in material will go with cost saving, in general. However it should be
noted that, in civil engineering, the objective to save material has become less important since,
nowadays, building materials are cheap compared to workforce. In contrast, saving material is
of outstanding importance in other engineering fields, like aircraft construction, whereby the
objective is not primarily to save material costs but to reduce the weight of the product. In
modern civil engineering, on the other hand, economic safety can be greatly associated with an
optimal maintenance strategy. Costs for inspections and maintenance works should be minimized,
downtimes possibly avoided and reconstruction delayed as long as possible while keeping the
structure safe.

Nevertheless, material saving in civil engineering has a major impact on climate protection. In
particular the cement production is known to be a major source of carbon dioxide emission.
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Fig. 1.1: On the 14th of August 2018 the motorway bridge "Ponte Morandi" in Genoa, Italy,
collapsed (from http://press24.net)

In addition to that, material consumption is associated with aesthetic aspects. While, in general,
a generous usage of material makes a structure more robust, a massive design compromises
elegance and beauty.
So, engineers finds themselves constantly in between conflicting objectives. Next to their

education, they rely on experience and on their ingenious mind whenever facing situations of
doubt and uncertainty.
Nevertheless, it must be the ambition of a modern society to provide a formal framework

for rational treatment of uncertainties, at least as basis for decisions. Attempts to formalize
uncertainty treatment date back to the establishment of structural engineering as a scientific
discipline. Traditionally, safety factors are being used. Nowadays, design in civil engineering is
regulated by detailed (national) codes.
The Eurocodes are based on the semi-probabilistic safety concept with partial safety factors.

The idea thereby is to perform calculations using conservative estimates of actions and resistances
by considering their variabilities. Specifically, for material properties the 5% fractile, and for
actions the 95% fractile is adopted, in general. These values are referred to as characteristic
values. Additionally, they are modified by safety factors, whereby, in general, each load is
increased by multiplication with an individual (partial) safety factor and each resistance quantity
is decreased by division. This is done to take account of the different variances of the variables
and to take account for inaccuracy in modelling. Different loadings are then combined to load
cases - again using factors, which take account of the probability of coincident occurrence of
different actions. Finally, it must be made sure that resulting design values of actions do not
exceed design values of resistances.
There are considerable differences in the variabilities of different resistances and loads. One

need only think of the fact that material properties scatter much more for inhomogeneous
materials like concrete or soil than for the homogeneous material steel. The semi-probabilistic
safety concept takes account of this circumstance since it is (widely) based on fractiles and partial
safety factors.
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However, the verification is eventually based on discrete values - the characteristic values -,
omitting the actual probability distributions of the parameters. Although this procedure has
shown to be a convenient way for practical design purposes, as a matter of fact, it fails to yield a
numerical estimate for the safety of the structure, or, in other words, for the failure probability.
By contrast, a numerical estimate requires full mathematical consideration of the probability

distributions of the uncertain parameters - thus, theoretically, of all parameters. The probability
distributions enter directly the limit state calculations, which may be given as analytic equations
or be performed by numerical procedures, such as the finite element method. Approaches of this
kind are referred to as (full) probabilistic methods/calculations/analyses. Obviously, the outcome
is still a failure probability estimate, since nobody can be absolutely sure about the probability
distributions itself and, furthermore, no model can ever represent reality perfectly.
As an example, imagine that during a construction process, samples of the concrete used are

tested for compressive strength. However, the testing machine is defective. Then, one will obtain
wrong statistics about the samples, primarily a biased mean value. Consequently, the error will
also be present in any probabilistic calculation regarding limit states. Moreover, the consequences
of such a systematic error will not be quantifiable anyhow. Thus, in such a case, the indication
of confidence intervals for probability estimates seems pointless.
On the other hand, if one was able to perfectly determine the compressive strength of all the

concrete used for a building, and to do so in every point of the building and even for every point
in its life time, there would be no doubt about this parameter and any stochastic consideration
of it would be obsolete.

Anyway, reality, and especially engineering needs, will be somewhere in between. The benefit
of full probabilistic calculations is that all available informations can be integrated. Only they
are able to yield an estimate for the probability of exceeding a limit state. Hence, they can be
deployed when the task is to optimize a system, e.g. in terms of material consumption or costs,
while matching a defined target safety level.

Furthermore, full probabilistic calculations are particularly suitable in cases involving uncer-
tainties of aleatoric type. An uncertainty is defined as aleatoric if it originates from a random
physical process and is thus not reducible by more elaborate testing or investigation. Wind
actions and earthquake excitations can clearly be put into this category. They are contrasted by
the epistemic uncertainties, which are somehow subjective, originate from incomplete knowledge
and can be reasonable reduced by humans. This category has already been illustrated above in
the example of the concrete strength testing.
The Eurocode leaves it up to the user to adopt full probabilistic calculations instead of the

semi-probabilistic safety concept. Because of the increased effort, full probabilistic calculations
are rather performed for some special structures and in cases where the verification cannot be
accomplished otherwise.
Moreover, referring to codes, one has to be aware that the safety factors required in the

semi-probabilistic safety concept have to be determined somehow. This can be made on the basis
of calibration to a long experience of building tradition. Alternatively, the calibration may be
done on the basis of statistical evaluation of experimental data. In fact, this needs to be carried
out within the framework of probabilistic reliability theory.

This thesis is dedicated to full probabilistic methods. It is far away from being a comprehensive
manual of the topic where a beginner could look up an explanation of interest. After the
introduction, the focus is rather on selected methods and applications.
Chapter 2 constitutes a general introduction to probability concepts and reliability analysis

methods. In section 2.1 some distribution functions are presented that are widely used in
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engineering. In particular, the transformation of (normally distributed) variables to the standard
normal distribution is explained. This transformation is a pivotal concept in reliability theory
since some (classical) methods are based on it. Section 2.2 is about the basics of reliability theory.
The semi-probabilistic safety concept is illustrated by means of a simple example. Proceeding from
that, more complicated and more general cases are introduced, where the previous probabilistic
concepts do not hold anymore exactly. So, alternative calculation methods (and their respective
limitations) are presented. Eventually, the Monte-Carlo simulation is presented, which is the
most versatile method. It is also used in the subsequent chapters.

Chapter 3 is dedicated to the estimation of small (failure) probabilities by means of Monte-Carlo
simulation. Section 3.1 outlines the computational difficulties associated with the estimation
of small failure probabilities. Section 3.2 describes an algorithm to efficiently address these
difficulties: asymptotic sampling. In section 3.3 various strategies to optimize the algorithm are
proposed. The validation is done in section 3.4 by means of numerical examples. In section 3.5 a
modified asymptotic sampling strategy is shown and tested.
Chapter 4 covers the probabilistic seismic analysis of an arch dam. The solution strategies

required for that task differ considerably from the ones discussed in the previous chapters. This
is because, here, a realistic structure is analysed, and particularly because a very complicated
load case - seismic action - is involved. The peculiarities of probabilistic seismic analysis are
outlined in section 4.1. Section 4.2 is an introduction to seismic analysis of dams, where also
the state of the art is presented. In section 4.3 the model of the arch dam, which is studied in
this thesis, is described in detail. Section 4.4 describes the seismic modelling. In section 4.5 the
parameters that are considered as random variables are described. In section 4.6 four realistic
damage mechanisms are identified. Besides, failure is assumed to occur if cracking is so extensive
and widespread that equilibrium does not subsist anymore. Therefore, an appropriate damage
material model has to be implemented for the concrete. Section 4.7 is about sampling methods
- they have to be modified entirely in the case of seismic action. In section 4.8 the results are
presented as structure-specific fragility curves for the damage mechanisms, respectively for failure.
In section 4.9 the fragility curves are combined with the location-referred seismic hazard. That
way, interesting findings about the damage/failure risk distribution over the range of seismic
intensities are obtained, and conclusions for Monte-Carlo analysis can be drawn.
It is important to realize that full probabilistic methods build upon models of the physical

reality - just as conventional safety assessment methods. This means that it is of utmost
importance that the engineer is first of all able to understand the problem and to translate it into
a physically appropriate model. This need existed also here in the modelling of the dam example.
As a consequence, this work deals also with a number of other engineering disciplines, such as
dam engineering, dynamics of structures, earthquake engineering, and material modelling.



Chapter 2

Introduction
"The safety, respectively the reliability, of a structure is endangered on one hand by the dispersions
in loads and capacities, and, on the other hand, by errors in design, construction and usage -
hence, by human error. Human error may hardly be captured by any safety concept, but has
rather to be excluded as far as possible by appropriate measures, such as by checking the static
analysis, quality checks in the construction process and by appropriate maintenance. Only the
stochasticity of the input variables may be reasonably treated by probabilistic methods - provided
that the uncertainties are quantified." [Zilch and Zehetmaier, 2006]
For that purpose, statistics are made for the material properties and loads of interest. These

observations are then translated to stochastic distributions, amenable to mathematical treatment.
In practical design, the determination of the statistics of the used materials and the expected
loads is mostly too expensive. Instead, the engineer refers to safety factors in codes, which are
calibrated according to the variabilities of the specific materials, respectively loading situations.

2.1 Stochastic distributions 1

A random variable or random quantity is a property of an event that assumes random values.
One can also say that a random variable is a function of chance. As an example, take the
compressive strength fc of a test specimen made of concrete. This random variable 2 X(= fc)
attains different values xi. The entirety of all possible values is referred to as (basic) population.
The results of the testings, say the values of the random variables, can be arranged in a number
of classes, and for each class, the relative frequency can be determined. The relative frequency
indicates how often a sample has fallen into a certain class. The result can be represented in
a histogram, see fig. 2.1. If the frequencies are summed up from the left side, one obtains the
cumulative frequency of the sample. The cumulative frequency describes the frequency of all
sample values smaller than or equal to x.

The larger the size of a sample, the more accurate the classification can be done and the more
reliable statements can be made about the probability distribution of the random variable. For an
increasing number of tested specimens, the (discrete) distribution of the histogram, respectively
of the cumulative frequency, approaches the (continuous) probability density function (PDF) 3

fX(x), respectively the cumulative distribution function (CDF) FX(x). The two functions are
interconnected by the relation [Zilch and Zehetmaier, 2006]

FX(xi) =
xi∫
−∞

fX(x)dx , 0 ≤ FX(xi) ≤ 1 (2.1)

1 To some extend, this section follows [Zilch and Zehetmaier, 2006, Feix and Walkner, 2010, Schneider, 1997].
2 Notation: Capital letters (e.g. X) are used for random variables, i.e. for the property itself (e.g. compressive
strength); the realizations of the properties are lowercase (e.g. x). Greek letters represent quantities of the
basic population (e.g. µX for mean value)

3 The total area under any PDF curve equals 1.
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Fig. 2.1: Relative frequency, probability density function, cumulative frequency, cumulative
distribution function, from [Zilch and Zehetmaier, 2006] with modifications

Here, FX(xi) describes the probability P that the value of the property of interest is smaller
or equal xi. It is equal to the area under the respective PDF in the interval (−∞, xi] [Zilch and
Zehetmaier, 2006],

FX(xi) = P (x ≤ xi) =
xi∫
−∞

fX(x)dx (2.2)

Important properties of a PDF are (cf. [Zilch and Zehetmaier, 2006]):

µX =
∞∫
−∞

x · fX(x)dx = E[X] mean value (2.3)

σ2
X =

∞∫
−∞

(x− µX)2 · fX(x)dx variance (2.4)

σX =
√
σ2
X standard deviation (2.5)

VX = σX
µX

coefficient of variation (2.6)
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The mean value µX is equal to the expected value of the random variable, E[X]. For symmetric
density functions, it is equal to the median. The variance and the standard deviation describe
the dispersion of the values around the mean value. The smaller the variance, the higher is the
probability that a random variable of a sample assumes a value near the mean value.
The coefficient of variation corresponds to the standard deviation divided by the mean value.

By this standardization it becomes a more expressive measure of the dispersion of a PDF. The
coefficient of variation is only meaningful for measurement series with only positive (or only
negative) values.
There is a multitude of PDFs to describe the stochasticity of quantities. In science and

engineering, the normal distribution, the lognormal distribution and the uniform distribution
are widely used. Additionally, there exist special distributions for extreme events, i.e. for the
distribution of the peaks of a time history.

2.1.1 Normal distribution and standard normal distribution
Many random variables in science and engineering can be described best by the normal distribution.
Moreover, not only single random variables are often normally distributed. The central limit
theorem states that also the distribution of a random quantity that is composed by the sum of n
arbitrary (but positive) random variables tends toward the normal distribution for growing n.
The PDF of the normal distribution is given by:

fX(x) = 1
σX
√

2π
e−(x−µX)2/2σ2

X for −∞ < x <∞ (2.7)

The cumulative distribution function (CDF) is given by:

FX(x) = 1
σX
√

2π

x∫
−∞

e−(x−µX)2/2σ2
Xdt for −∞ < x <∞ (2.8)

Any normally distributed random variable X characterized by the parameters µX and σX may
be transformed to a random variable U such that mean value and standard deviation assume
the values µU = 0 respectively σU = 1, see fig. 2.2. This special kind of normal distribution is
called standard normal distribution. The linear transformation, respectively, the substitution, is
performed as follows:

u− µU
σU

= x− µX
σX

with µU = 0 and σU = 1 ⇒ u = x− µX
σX

(2.9)

The PDF of the standard normal distribution is given by:

fU (u) = ϕU (u) = 1√
2π
e−

1
2u

2 for −∞ < u <∞ (2.10)

and the CDF is given by:

FU (u) = ΦU (u) = 1√
2π

u∫
−∞

e−
1
2 t

2
dt for −∞ < u <∞ (2.11)

Frequently, one is interested in a value that is not exceeded with a predefined probability p. Such
a value xp is called p-fractile [Feix and Walkner, 2010]:

p = PX(X ≤ xp) = FX(xp) = PU (U ≤ up) = ΦU (up) (2.12)
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Fig. 2.2: Normal distribution and standard normal distribution; from [Feix and Walkner, 2010]
with modifications

In the Eurocodes, e.g., characteristic material properties, such as the characteristic concrete
compressive strength fck, are defined as 5%-fractiles.

The relation between the fractiles of the normal distribution and the fractiles of the standard
normal distribution follows from equation (2.9) [Feix and Walkner, 2010]:

xp = µx + upσx (2.13)

where up is also called fractile factor Kp. For the 5% fractile, respectively for the 95% fractile it
assumes the values K0.05 = -1.645, respectively K0.95 = 1.645.

2.1.2 Other probability distributions
Additionally to the normal distribution, there are some more distribution types commonly used
in civil engineering. Some important ones are shown in fig. 2.3.
One should be aware of the fact that, in practice, it is not sufficient to know which type of

distribution fits best a quantity of interest. Moreover, obviously, also the distribution parameters
have to be identified. Especially in cases where little data are available, or where informations
are not given by numbers but rather by expert opinions, it might be convenient just to define a
lower limit and an upper limit, and to assume equal probability of all the values between them.
This approach leads to the uniform distribution, see fig. 2.3 (b).
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Fig. 2.3: Some types of probability distributions, shown as probability density functions (PDFs)

A number of phenomena follow a distribution whose logarithm is normally distributed, see
fig. 2.3 (c). In fact, yield strength and and tensile strength of steel are rather lognormally
distributed. It is a asymmetric distribution, defined just for positive values. Indeed, the fact
that the domain of definition is positive, is mostly a clear advantage since, physically, resistance
parameters and many other parameters cannot be negative. The significance of this distribution
originates also from the fact that the product of random variables that take only positive values
approaches a lognormal distribution. Theoretically, this is justified by considering the central
limit theorem in the log domain.
For loads that are characterized by a high variability in time, such as traffic and wind loads,

asymmetric extreme value distributions are commonly applied, see fig. 2.3 (d), which shows a
Gumbel extreme value distribution defined by parameters β and µ. For these distributions, only
the extreme values in defined time intervals are gathered, see fig. 2.4. Specifically for traffic
and wind, the load quantities indicated in codes do not constitute characteristic values of the
population, but rather characteristic values of relative extremes. Usually a Gumbel distribution
as assumed for the maximum values.

2.2 Basics of reliability theory
Consider the very simple case of a beam that is loaded by a single force F in the middle, see
fig. 2.5. In the following, the limit state is analysed at which the acting bending moment equals
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l
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h

Fig. 2.5: Beam subjected to single load at midspan

the resisting bending moment 4. The maximum bending moment occurs in the middle of the
beam,

F

2
l

2 = Fl

4 := E (2.14)

For the verification, the acting moment is interpreted as the effect of action E, whereby the
action is constituted here only by the single force F .
By defining the limit state as initiation of yielding, the resisting bending moment is equal to

Welfy = bh2

6 fy := R (2.15)

where Wel is the elastic section modulus and fy is the yield strength of the material. This
resisting bending moment is interpreted as the resistance R.
Failure is given by

E > R (2.16)

or one can write it as a function:

G = R− E , failure: G < 0 (2.17)

The limit state is described by

G = R− E = 0 (2.18)

which is called limit state equation.
4 This means that the verification is done at the level of the cross section. Naturally, the verification could also
be done in terms of stresses, by comparing the maximum acting stress with the (resisting) yield strength of the
material.
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In a hypothetical deterministic case it is quite easy do design a safe structure. One only has to
select such a combination of the basic variables (F, l, b, h, fy) that E < R.

Imagine now that the force F and the yield strength fy are uncertain parameters. Consequently,
also the effect of action E and the resistance R are random variables, or, in other words, functions
of chance. It is assumed that these quantities can be described by two independent normal
distributions - characterized by (µE , σE), respectively (µR, σR), see fig. 2.6. Since both PDFs
are not limited, there is always an overlapping of the respective curves. Of course this is not just
a theoretical or academic problem. Rather it reflects reality where there is always a chance that
the effects of actions are greater than the resistances. Hence, strictly speaking, safety cannot be
guaranteed. The overlapping increases as the mean values come closer together and, also, as the
variances of the PDFs increase. 5

Although the size of the overlapping area is obviously an apparent indicator for the failure
probability, numerically it does not correspond to the failure probability. For that purpose, it is
most straightforward (and more convenient in anticipation of subsequent more difficult examples)
to work with the state function G, which is now a random variable as well. In the present case,
where both variables E and R are normally distributed, also G (which is a linear combination of
these variables) is normally distributed. It can be represented in the same diagram, see fig. 2.6.
Its mean value is

µG = µR − µE (2.19)

Its standard deviation is

σG =
√
σ2
R + σ2

E (2.20)

5 This is a typical situation encountered in ageing structures, where resistances decrease due to fatigue and
environmental attacks in general. Also, the uncertainties of the resistance parameters increase with time, and
furthermore, there is often a rise in loads due to more traffic and heavier vehicles.
Time-variant reliability problems are not addressed in this work. General information and reviews about
the topic are given in [Frangopol and Soliman, 2016, Frangopol and Maute, 2003, Biondini and Frangopol,
2016], applications can be found in [Bucher and Frangopol, 2006] (optimization of lifetime maintenance; silane
application), [Sudret et al., 2005] (durability of cooling towers), [Wang et al., 2013] (seismic safety of arch
dams with ageing effects), [Dolen et al., 2003] (concrete deterioration at dams), [Strauss et al., 2008] (use of
monitoring extreme data; Bayesian updating), [Barone et al., 2014] (maintenance of bridges; cost optimization).
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The failure probability PF can clearly be identified in fig. 2.6 as the area under the curve of the
PDF of G in the negative range,

PF =
0∫

−∞

fG(g)dg (2.21)

where g is the value (realization) of the random variable G. Remember that, for any PDF,

PF =
∞∫
−∞

fX(x)dx = 1 (2.22)

2.2.1 The semi-probabilistic safety concept 6

Within the framework of the reliability theory, the basic aim of the designer is to select the basic
variables, i.e. material strength parameters and cross section values 7, such that the overlapping
is sufficiently small, say, the failure probability does not exceed a defined acceptable value. In
the Eurocodes and many other codes, this is assured by adoption of the semi-probabilistic safety
concept.

The concept is shown in fig. 2.7. As in fig. 2.6, it is assumed that the system can be described
by two normally distributed independent random variables, E and R, and that failure occurs if
the realization of E is greater than the realization of R. The PDF of the resulting state function
G is shown in the central diagram. The diagram on the bottom shows the transformation of the
state function G to the standard normal distribution ϕU (u) by means of

u = g − µG
σG

(2.23)

The advantage of this is that, for the standard normal distribution, the integral values - and
hence the failure probabilities - can be retrieved from integral tables or from many computer
programs. The possibility to avoid tedious integration is particularly useful in case of many
random variables (as will be explained later). The upper bound of integration is obtained by
setting g equal to 0 in equation (2.23). Its absolute value is called reliability index β [Hasofer
and Lind, 1974].

β = µG
σG

(2.24)

Using the standard normal distribution, the probability of failure can then be calculated as

PF =
−β∫
−∞

ϕU (u)du = ΦU (−β) (2.25)

Usually, the index U is omitted,

PF = Φ(−β) (2.26)

In this equation, Φ(.) is the standardized normal distribution function. Conversely, the reliability
index β is obtained by

6 To some extend, this subsection follows [Zilch and Zehetmaier, 2006, Feix and Walkner, 2010, Schneider, 1997].
7 Of course, loads are as well parameters subjected to high variability, however their values can hardly be
influenced by the designer.
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β = Φ−1(1− PF ) (2.27)

Table 2.1 shows the values of β for some values of PF .

Tab. 2.1: Relation between β and PF ; from [EN1990, 2013]

PF 10−1 10−2 10−3 10−4 10−5 10−6 10−7

β 1.28 2.32 3.09 3.72 4.27 4.75 5.20

In the following it will be shown how partial safety factors may be calculated for given PDFs
of the variables and a prescribed reliability level, cf. [EN1990, 2013, Feix and Walkner, 2010].
The idea of designing by means of partial safety factors is to find a design point Ed = Rd which,
in reality, will not be reached with a defined probability. The partial safety factors γE and γR
should be greater than 1. They refer to the nominal safety zone and hence to the characteristic
values Ek and Rk, see fig. 2.7. Consequently the design point is obtained by

Ed = γEEk
!= Rd = Rk

γR
(2.28)

However, the starting point is the central safety zone, i.e. the distance between the mean
resistance and the mean effect of action:

µG = µR − µE (2.29)

With equation (2.24):

µR − µE = βσG (2.30)

and equation (2.20) [Hasofer and Lind, 1974]:

µR − µE = β
√
σ2
R + σ2

E (2.31)

The right side is now split in a part for E and a part for R.

= β
σ2
R + σ2

E√
σ2
R + σ2

E

= β
σ2
R + σ2

E

σG
(2.32)

= β
σR
σG︸︷︷︸
αR

σR + β
σE
σG︸︷︷︸
αE

σE , αR,E being weighting factors (2.33)

µR − µE = βαRσR + βαEσE (2.34)

µR − βαRσR︸ ︷︷ ︸
Rd

= µE + βαEσE︸ ︷︷ ︸
Ed

(2.35)

Finally, the partial safety factors are obtained with equations (2.28) and (2.35):

γE = Ed
Ek

= µE + βαEσE
µE +Kp,EσE

and γR = Rk
Rd

= µR +Kp,RσR
µR − βαRσR

(2.36)
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Fig. 2.7: The semi-probabilistic safety concept. Upper diagram: PDF of effect of action E and
PDF of resistance R. Central diagram: PDF of state function G. Bottom diagram:
PDF of state function G transformed to standard normal space; not true to scale; from
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Apparently, the partial safety factors depend on the mean values and standard deviations of
the PDFs of E and R - from which the reliability index β and the weighting factors αE and αR
follow from - as well as from the defined fractiles.

Example
Consider the beam example shown in fig. 2.5. The maximum acting moment and the maximum
resisting moment are now given as (primary) random variables. In order to stay with the notation
of equation (2.18), we refer to effect of action E and resistance R.

Effect of action E

µE = 80 Nm
σE = 25 Nm

VE = σE
µE

= 0.3125

Resistance R

µR = 200 Nm
σR = 20 Nm
VR = σR

µR
= 0.1

In the following, the failure probability is calculated first. Then the partial safety factors γE
and γR are searched for which are to be applied to the two given PDFs so that exactly that
failure probability is attained.

Mean value and standard deviation of the state function G = R−E are obtained by equations
(2.19) and (2.20):

µG = µR − µE = 200− 80 = 120 Nm (2.37)

σG =
√
σ2
R + σ2

E =
√

202 + 252 = 32.0156 Nm (2.38)

Then the reliability index β and the failure probability can be calculated:

β = µG
σG

= 120
32.0156 = 3.748 ⇒ PF = Φ(−β) = 8.9125 · 10−5 (2.39)

Then the characteristic values are calculated. Rk shall be defined as 5% fractile and Ek as 95%
fractile:

Ek = µE + Kp,E σE =
= 80 + 1,645 · 25 = 121.125 Nm

Rk = µR + Kp,R σR =
= 200 - 1,645 · 20 = 167.1 Nm

Then the weighting factors αE and αR, the design values Ed and Rd and finally the partial safety
factors are calculated:

αE = σE
σG

= 25
32.0156 = 0.7809

Ed = µE + βαEσE =

= 80 + 3.748 · 0.7809 · 25 = 153.17 Nm

γE = Ed
Ek

= 153.17
121.125 =1.2646

αR = σR
σG

= 20
32.0156 = 0.6247

Rd = µR − βαRσR =

= 200− 3.748 · 0.6247 · 20 = 153.17 Nm

γR = Rk
Rd

= 167.1
153.17 = 1.0909

In practice, it is up to the engineer to design a structure such that the target safety level is
achieved, in compliance with the safety factors. This is accomplished by selection of appropriate
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materials with sufficient strengths as well as by appropriate dimensioning of the structural
components.
At this point it is absolutely legit to ask: Why do we need (partial) safety factors if they are

eventually deduced from a failure probability? Why don’t we determine the design point based
on a target safety level directly? The answer is that the calculation of failure probabilities is
straightforward just in very simple cases. In a real-life situation, the exact determination of
failure probabilities is hardly a reasonable task for a practitioner. This is why engineers rather
resort to safety factors to take account of the uncertainties (approximately). The subsection
2.2.2 addresses the problem in detail.

2.2.2 Generalizations
In the example given above, the state function G = R− E is a linear expression of two normally
distributed random variables. The limit state equation is G = R − E = 0. As already stated
above - given this case - the reliability index β can simply be calculated by dividing the mean
value µG by the standard deviation σG [Hasofer and Lind, 1974],

β = µG
σG

(2.40)

The same equation holds exactly also in cases where the state function G is a linear combination
of more than two random variables, as long as they are each normally distributed:

G = c0 + c1X1 + c2X2, . . . , cnXn (2.41)

In this case, β can be calculated as follows (cf. e.g. [Ditlevsen and Madsen, 2007]):
With equation (2.3):

µG = E[G] = c0 + c1E[X1] + c2E[X2], . . . , cnE[Xn] (2.42)

and

σG =
√
c2

1σ
2
1 + c2

2σ
2
2, . . . , c

2
nσ

2
n (2.43)

→ β = µG
σG

(2.44)

Furthermore, equation (2.40) can be used as an approximation in cases where the state function
G is a linear combination of not normally distributed random variables. This is due to the
central limit theorem, which states that the a linear combination of any independent positive
distributions asymptotically approximates the normal distribution as their number increases.

However, the limit state is often nonlinear and, furthermore, in modern engineering practice it
is rarely available as an explicit equation. In these cases, things become more complicated.

As starting point for the illustration the respective difficulties and solution strategies consider
fig. 2.8. In the e-r-plane, the limit state separates the safe region from the failure region. The
vertical axis indicates the probability density of the random variables E and R. In principle,
the diagram shows a similar situation as the one shown in fig. 2.6, however the distributions are
now shown as joint PDF. It can clearly be seen that the peak of this distribution lies in the safe
zone, while a minor part lies beyond the limit state. This resembles a real situation, where a
structure will usually be "safe". Additionally, it is pointed out that the random variables may be
correlated.
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Fig. 2.8: Joint PDF of two normally distributed variables with linear limit state

The problem may be transformed to the standard normal space, as can be seen in fig. 2.9
[Zilch and Zehetmaier, 2006]:

ẽ = e− µE
σE

(2.45)

r̃ = r − µR
σR

(2.46)

fE(e) and fR(r) are now (uncorrelated) standard normal distributions. The peak of the joint
PDF is in the origin; curves of identical probability appear as concentric circles around the origin,
in the projection. The transformation changes the position of the limit state, however, it is still
linear.8 The design point is the point on the limit state with the shortest distance to the origin
- and at the same time the most probable point on the limit state. The distance between the
origin and the design point is again β. The coordinates of the design point correspond to the
value of β scaled by the weighting factor of the respective variable.

Typically, the limit state equation will comprehend more than two random variables. The
limit state is then characterized by a hypersurface, which separates the failure region from the
safe region. Anyway, in standard normal space, the distance to the origin corresponds always to
the reliability index β, which can be converted to the failure probability straightforwardly.

While high-dimensional problems (i.e. problems involving many random variables) do not pose
any difficulty to the approach, things get more complicated when the limit state is nonlinear, see
fig. 2.10. Then, in standard normal space, see fig. 2.11, the proportionality of the exact failure
probability to the distance to any distinct point of the limit state does not hold anymore. Of
course, however, one can still identify the point of the limit state with the shortest distance to the
origin, i.e. the point of maximum value of the PDF, and use this distance as an approximation
for β. This procedure corresponds to a linearization of the limit state in the design point. As
this is equivalent to a first-order Taylor series approximation, it is called First-Order Reliability
Method (FORM). A better approximation of the limit state in the design point may be achieved

8 In principle, the transformation to the standard normal space is feasible for all kinds of reliability problems, i.e.
also for non-normal and correlated distributions as well as for nonlinear limit state equations. In these cases,
Rosenblatt’s or Nataf’s transformation is adopted, see [Nataf, 1962, Ditlevsen and Madsen, 2007, Papaioannou
et al., 2015]. There exist, however, many theoretical PDFs which cannot be represented exactly by such
transformations [Schuëller et al., 2004].
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Fig. 2.9: Joint PDF in standard normal space (projections) with linear limit state; from [Zilch
and Zehetmaier, 2006] with modifications

by a curved approximation (Second Order Reliability Method, SORM). For further information,
the reader is referred to [Bucher, 2009b, Ditlevsen and Madsen, 2007].

There is naturally the possibility to calculate the integral analytically. It should be remembered
that, basically, it is all about integrating over a (multidimensional) solid section confined by a
(nonlinear) (hyper)surface.

However the main problem is, as stated above, that the limit state is often not given as an
analytic function. In modern engineering, design commonly relies on numerical computations,
especially on the finite element method (FEM). This means that, in general, a specific set of
input quantities is converted to a set of output quantities by numerical procedures. These output
quantities (e.g. stresses) can then be compared with respective admissible values (e.g. strength
values). So, the method dispenses with any analytic expression of the output quantity in terms
of the basic variables. Hence, for a reliability problem such as illustrated in fig. 2.10, there would
be no confinement available for the multidimensional integral.
As an approximation, one may try to find the design point. Since the design point is

characterized as the one point on the limit state associated with the maximum value of the PDF,
this can be thought of as an optimization problem. The approach requires repeated evaluation of
the numerical model and calculation of gradients, whereby one tries to get closer to the (global)
maximum in each step. Subsequently, the unknown limit state is approximated by a linear
(FORM) or curved (SORM) function in the design point. It should be noted that especially
the calculation of the gradients respective to the basic variables is not straightforward and,
furthermore, computationally very expensive if the number of basic variables is high. In general,
this kind of reliability calculation is reserved to highly specialized companies and institutions.
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As a conclusion, it can be stated that the rigorous solution 9 of a general reliability problem is
hardly achievable. However, it must be stated that, in practice, it is even difficult to find an
approximate solution (FORM and SORM). This comes especially due to the fact that engineering
calculations are nowadays performed numerically rather than analytically with explicit limit
state equations.

It is therefore comprehensible that for (everyday) engineering practice another design method
is necessary. Indeed, this is the limit state design with (partial) safety factors, which has been
presented before. In case of a (known) linear limit state equation and normal random variables,
this safety concept is - in theory 10 - suitable for the designing structures such as to match
a defined reliability level exactly. The relations between the failure probability (respectively
the reliability index β) and the safety factors γE and γR and weighting factors αE and αR are
shown in fig. 2.7 and fig. 2.9. In all other cases the application of safety factors constitutes an
approximation for the target reliability level.

The determination of safety factors provided in codes is done either by empirical methods or by
calibration with the results of fully probabilistic analyses. "Empirical" here means that the safety
factors are based in expert opinion and long construction experience [EN1990, 2013]. In general,
high safety factors are provided for quantities with (empirically) high dispersion. For example,
safety factors for the strength of concrete are higher than the ones for the strength of steel
because there is higher uncertainty about the strength of concrete than of steel. Alternatively
(or complementarily), safety factors may be calibrated by comparison with fully probabilistic
analyses, i.e. by the solution (respectively the approximation) of the reliability integral.

This necessity immediately leads back to the need to find a method by which one can evaluate
the reliability integral. The desire to solve the integral does not only arise for calibration of
respective appropriate safety factors, which are to be used for everyday calculations, but also for
special applications, and moreover, for academic reasons.
A straightforward method to evaluate arbitrary integrals is Monte Carlo simulation (MCS).

Thereby, the integral is evaluated by repeated random sampling. The failure probability is then
expressed as

PF = nfail
neval

(2.47)

9 By the term rigorous solution the solution of the reliability integral for given PDFs of the basic variables and
given limit state equation is understood.

10 In fact, all of the above presented "exact" methods actually require that the PDFs of all random variables are
exactly known. Strictly speaking, only in that special case, the calculated failure probability is the "true" one.
However, the idea of exact knowledge of the distribution of a random variable implicates some conceptional
contradiction: The more knowledge one gains about a property of part of a system the smaller becomes the
uncertainty about it. Mathematically speaking, the variance decreases. In principle, the examination of the
property could continually be improved and, furthermore, the examination could also be refined in space (and
in time), i.e. the properties of ever smaller parts could be examined. The distinction between epistemic and
aleatoric uncertainties would be vanishing (see also [Kiureghian and Ditlevsen, 2009]). The overlapping as
shown in fig. 2.6 would become smaller and smaller. In the limit case eventually, one would not attain perfect
knowledge about the parameters’ PDFs, but perfect knowledge about the system itself. Hence it would be
possible to make a deterministic assertion about the safety of the system - the failure probability would be
either 0 or 1.
For that reason, in a realistic situation, one should correctly speak of failure probability based on the knowledge
and the assumptions of the analyst.
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Here neval is the number of evaluations of the state function G and nfail is the number of
evaluations that resulted in failure. The method is conceptually shown in fig. 2.12 and in fig. 2.13
11.

The high versatility of MCS comes from the fact that it is independent of the dimension of the
problem. However, the major drawback is that the method becomes evermore expensive as the
failure probability to estimate becomes smaller. The reason is that then a very high number of
simulation runs 12 is required to obtain a representative number of results in the failure region.
This might become computationally prohibitive if already a single evaluation of the model is
expensive.
There are basically two methods to reduce the computational effort:

• The use of a metamodel. Hereby, a (small) number of simulation runs are performed with
the original model (with alternating parameter sets). The responses can be used as support
points for a response surface, i.e. for an analytical expression for exactly these response
quantities. Substituting the real model by the easy to evaluate metamodel - which might
be, e.g. a polynomial expression - makes it possible to explore also very unlikely regions of
the variable space with reasonable computational effort. The reader is referred to [Bucher
and Bourgund, 1990, Bucher and Most, 2008, Bucher, 2018, Sudret et al., 2017].

• The other option is to adopt the original model but to modify the sampling in such a way
to explore the failure region by a reduced number of simulation runs. 13

The next chapter is entirely dedicated to the latter kind of evaluation strategies. Since it was
published in form of two articles [Gasser and Bucher, 2018, Gasser and Bucher, 2017a] (only
minor modifications were made here), some concepts will be repeated.

11 It should be noted that integral calculation by means on MCS does not require any transformation of the basic
variables.

12 Throughout this thesis, by the term (simulation) run, the evaluation of a single state function or finite element
model is understood.

13 Also combinations of both approaches are possible.
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Chapter 3

Asymptotic sampling

3.1 Estimation of small failure probabilities 1

The safety of structures depends on resistances and loads, which both eventually have to be
considered as random by nature. All parameters which influence the resistance of the structure
(cross-section values and material properties) as well as all kinds of loads acting on the structure
can be considered as random variables described by their respective probability density functions.
In this way, one obtains a multidimensional joint probability density function (cf. [Bucher,
2009b]):

fX1,...,Xn(x1, ..., xn) (3.1)

in which Xi are the random variables and n is the dimension. Failure is typically denoted in
terms of a scalar state function G(.) attaining negative values. The failure probability PF can
then be expressed as an integral, bounded by the limit state function (cf. [Bucher, 2009b]):

PF =
∫
· · ·
∫
G(x1,...,xn)≤0

fX1,...,Xn(x1, ..., xn)dx1, ..., dxn (3.2)

The challenge in calculating this integral lies in evaluating the limit state function, which for
nonlinear systems usually requires an incremental/iterative numerical approach [Bucher, 2009b].
Since usually just a very small region contributes to the value of the integral, it is difficult to
place integration points for numerical integration procedures appropriately [Bucher, 2009b]. This
is particularly true for high-dimensional integrals.

One method to overcome this difficulty is Monte Carlo simulation (MCS). Thereby, the integral
is evaluated by repeated random sampling. The failure probability is then expressed as

PF = nfail
neval

(3.3)

Here neval is the number of evaluations of the state function G and nfail is the number of
evaluations which resulted in a failure.
The (generalized) reliability index β is defined by (cf. [Ditlevsen and Madsen, 2007])

β = Φ−1(1− PF ) (3.4)

In this equation, Φ−1(.) is the inverse standardized normal distribution function. In the following,
it will be assumed that the random variables Xi are independent and identically distributed (i.i.d.)
normal variables with zero mean and standard deviation σ. Not normally distributed variables
and possible correlations among them may be introduced using marginal transformations and

1 Sections 3.1 - 3.4 have been published as [Gasser and Bucher, 2018]. The text here contains just minor
modifications.
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joint probability density function models such as the Nataf-model [Nataf, 1962, Liu and Der
Kiureghian, 1986, Bucher, 2009b].

The major advantage of MCS for integral calculation lies in its independence of the dimension.
This means that the efficiency of the method is not impaired by the number of variables the
state function G depends on. However, since a representative number of failures is needed, the
number of function evaluations becomes prohibitively large when small failure probabilities are
to be calculated. For example, to calculate a failure probability of the order of 10−5, the number
of evaluations should be larger than 106. Hence, one can easily imagine, that MCS becomes
impracticable when a complicated finite element model is to be analysed.
Different strategies have been developed to reduce the number of necessary function/model

evaluations. Importance sampling methods [Bucher, 2009b] aim at obtaining more failures
by shifting the sampling to the small region in n−dimensional space that actually contributes
significantly to the failure probability. An alternative approach is to express the failure probability
as a product of larger conditional probabilities by introducing intermediate failure levels. Thereby,
the samples are drifted closer to the failure space in each level. This method is known as subset
simulation [Au and Beck, 2001]. Recently, another method, called asymptotic sampling (AS),
has been presented in [Bucher, 2009a].

3.2 Concept of asymptotic sampling
Similarly to the previously mentioned approaches, AS aims at obtaining a representative number
of failures out of a moderate number of function evaluations. However, the method relies on a
certain asymptotic property of the failure probability in the n−dimensional i.i.d. normal space.
AS exploits the asymptotic behaviour of the failure probability expressed in terms of the

reliability index β when changing the standard deviation of the basic random variables. If the
original standard normally distributed random variables are replaced by variables with non-unit
standard deviations σ = 1

f , then the computed reliability index will depend on the choice of f .
As a first simple case, consider a linear function of the basic random variables Xk, say [Bucher,
2013]

G(X) =
N∑
k=1

akXk (3.5)

with arbitrary real-valued coefficients ak. The random variable Y = G(X) will then be normally
distributed with a zero mean and a variance [Bucher, 2013]

σ2
Y =

N∑
k=1

a2
k (3.6)

The distribution function FY (ξ) of this variable will therefore be given by [Bucher, 2013]

FY (ξ) = Φ
(
ξ

σY

)
= Φ

ξ/
√√√√ N∑
k=1

a2
k

 (3.7)

Upon changing the standard deviation of all basic variables from unity to a value of 1/f , the
standard deviation of Y changes by the same amount. Thus, the distribution function changes
to [Bucher, 2013]

FY (ξ) = Φ

ξf/
√√√√ N∑
k=1

a2
k

 (3.8)
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Fig. 3.1: Basic concept of asymptotic sampling (AS)

from which the generalized reliability index (with respect to scale factor f) is immediately found
as (cf. [Bucher, 2013])

β(f) = ξf√
N∑
k=1

a2
k

→ β(f)
f

= ξ√
N∑
k=1

a2
k

= const. (for fixed ξ) (3.9)

This means that for a linear function of normally distributed variables, the expression β(f)/f is
invariant with respect to the choice of f . Geometrically, β is the minimum distance of the origin
from the limit state surface G(X) = 0.

Equation (3.9) is not true for the general, i.e. nonlinear, case. There is, however, an asymptotic
property which ensures similar behaviour for many nonlinear cases. Equation (15b) of [Breitung,
1984] states that the reliability index asymptotically converges to the minimum distance of the
origin from the limit surface as β → ∞. Hence the above relation holds asymptotically as f
approaches infinity [Bucher, 2013]:

lim
f→∞

β(f)
f

= const. (3.10)

This asymptotic property is exploited to construct a regression model which allows to determine
the reliability index for extremely small failure probabilities. Figure 3.1 shows this concept. By
increasing the standard deviation of the basic variables, a representative number of failure events
can be obtained out of a moderate number of simulation runs. The scaled reliability indices
obtained in that way are used as support points for the regression. The reliability index of the
original system, i.e. β(f = 1), is then obtained by extrapolation.
For the fitting process the functional dependence is chosen as

β(f)
f

= A+ B

fC
(3.11)
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Assuming C to be positive, this approach ensures asymptotic convergence to a constant value
(here to A) as f →∞ (which is equivalent to σ → 0). Thus, the asymptotic property given in
equation (3.10) is satisfied. Of course, any other approach maintaining the asymptotic behaviour
could be chosen as well. The coefficients A, B and C can be determined from a regression
analysis, typically by a least-squares fitting [Bucher, 2009a].

3.3 Optimizing the algorithm
In [Bucher, 2009a] it has been shown that AS is independent of the dimensionality. However,
accuracy of the approach depends on several other factors, namely:

• accuracy of support points

• number of support points

• collocation of support points

• regression parameters

• particular geometrical shape of the limit state surface.

Obviously, the geometrical shape of the limit state surface of a specific problem in standard
normal space cannot be influenced by the analyst. Thus, a substantial part of this chapter focuses
on strategies to increase the accuracy of the support points. Furthermore, advices concerning
number and collocation of the support points are given. As compared to the original paper on
AS [Bucher, 2009a], the regression function is augmented by an additional parameter, C (see
equation (3.11)), which ensures general applicability of the approach, independently of the shape
of the limit state.

3.3.1 Low-discrepancy sampling
The accuracy of the support points is primarily determined by the number of sample evaluations
they are based on. This is evident, since the support points are basically MCS estimates for
scaled systems. Anyway, in general, low-discrepancy sampling methods can be applied in order
to populate the variable space more uniformly and, as a result, get support points which are
more stable. There are several low-discrepancy sampling methods, such as Latin Hypercube
sampling [Olsson et al., 2003], Halton Sequences [Halton, 1960, Wang and Hichernell, 2000] or
Good lattice point (GLP) sets [Fang and Wang, 1994]. Here, Sobol sequences are applied, using
an algorithm as discussed in [Bratley and Fox, 1988, Hong and Hickernell, 2003].
As an example consider the function

G(X) = t− 10 · (X/2.8)2 (3.12)

Here, X is a standard normally distributed variable. As the function depends on just one variable,
it is suitable for showing the advantages of applying low-discrepancy sampling. The parameter t
could be a threshold parameter (representing, e.g., an acceptable deflection), and is chosen as
t = 30. As a consequence, G could be interpreted as safety margin, which indicates the difference
between a sample evaluation and the threshold t. Note that equation (3.12) constitutes a state
function, cf. equations (2.17) and (3.5), however it is nonlinear. Failure is indicated be negative
function values.
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Fig. 3.2: CDFs created with (left) and without (right) Sobol sequences

In order to obtain three support points, three different scale factors f (0.5, 0.35 and 0.2) are
adopted. For every scale factor f , several hundreds of samples are evaluated. More specifically,
the number of evaluations is 500, 350 and 200 for scale factors 0.5, 0.35 and 0.2, respectively. An
explanation regarding the number of sample evaluations follows in subsection 3.3.3.
The outcomes of the simulations are represented as cumulative distribution functions (CDFs)

FX(x) expressed as the reliability index, β = Φ−1(FX(x)), see fig. 3.2. In the case of the left
picture, the samples have been generated with Sobol sequences. Because of that, the CDF in
the left diagram has a very even distribution. In a second experiment, the samples are purely
random. Hence, the respective results in the right diagram are more scattered.
As mentioned before, the failure probability of the system can be estimated by a regression

and extrapolation technique based on the support points. In the present case, the positions of
the three support points can be deduced from the diagrams in fig. 3.2, namely from the values of
β at safety margin = 0. Obviously, these values of β are a measure of how many failures occurred
for the respective scale level f . It is clear, that the support points deduced from the left picture
will be more reliable, since the number of failures of an experiment based on Sobol sequences is,
in general, statistically more stable.

This fact can be seen in fig. 3.3. It shows the support points corresponding to the experiment
just described, executed 20 times. Again, the diagram on the left side shows the case where the
input samples have been generated by Sobol sequences. As a result, the support points at all
three scale levels lie close together. This means that they are relatively stable and, hence, also
the extrapolated reliability index will be more accurate.
On the other hand, the right diagram shows the support points for the experiments without

applying Sobol sequences. As expected, the support points at all three scaling levels feature
a high variability. Obviously, as a consequence, also the extrapolated reliability index will be
affected.

Unfortunately, low-discrepancy sampling methods such as Sobol sequences (and, hence, also the
so called Quasi-Monte Carlo sampling methods, QMCS) are hardly applicable in high-dimensional
problems. Dai and Wang [Dai and Wang, 2004] have tested different low-discrepancy sampling
methods in the context of structural reliability. It is stated that the efficiency of all of them
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Fig. 3.3: Support points and regression curves created with (left) and without (right) Sobol
sequences

decreases rapidly as the number of dimensions increases. Sobol and Asotsky [Sobol and Asotsky,
2003] have demonstrated that the efficiency of QMCS methods also highly depends on whether
the input variables are equally important and on whether there is a strong interaction between
them. In [Kucherenko et al., 2011] functions are classified into three types:

• Type A: Functions with not equally important variables

• Type B: Functions with equally important variables and with dominant low order terms
(this means that there is little interaction between the variables)

• Type C: Functions with equally important variables and with dominant interaction terms.

It is stated that for type C functions the "effective dimension" (see [Caflisch et al., 1997]) is
equal or nearly equal to the nominal dimension. For this type of functions, QMCS would lose its
advantage over MCS in high dimensions. By studying their expected discrepancies, it is stated
that, in general, QMCS methods outperform MCS up to some threshold value of N∗,

N∗ ≈ exp(n) (3.13)

in which N∗ is the number of samples and n is the (effective) dimension of the problem. According
to this equation, for a problem depending on twelve variables, the required number of samples
should be at least around 160.000 to gain any benefit from the application of low-discrepancy
sequences. That would mean that even for problems of moderate dimensionality (for instance,
n = 12), QMCS offers no practical advantage over MCS.
To verify this statement, a single-degree-of-freedom (SDOF) oscillator excited by a random

force was studied by the author. In case of a random excitation, the excitation force at every time
step constitutes a single variable. It can be assumed that all variables have similar importance
and that the response depends throughout on multiple variables, i.e. on the excitation in some
time before the considered response. Thus, such an example represents a high-dimensional
problem belonging to type C. It was found that the relationship stated in equation (3.13) holds
for that example.
There may be, however, situations in which the effective number of variables can be reduced.

This is possible if the state function G does not depend on a large number of variables at all, or
if the dependence is very weak except for a small number of variables. Such a situation can in
principle be detected by a preliminary sensitivity analysis. In the context of reliability analysis,
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there is frequently a situation in which only one specific combination of the basis variables is
most likely to lead to failure. This is closely related to cases in which the First-Order Reliability
Method (FORM) yields highly accurate estimates for the failure probability. In these cases, one
specific linear combination of basic variables (i.e. the design point) provides the most relevant
contributions to the failure probability. Introducing multiples of this specific combination as a
new variable and transforming the remaining variables such that orthogonality is maintained
(e.g. using a Gram-Schmidt scheme) can lead to substantial improvement of QMCS methods by
reducing the effective dimensionality of the problem.
By way of illustration, a simple high-dimensional example is considered, i.e. the equivalent

stiffness k∗ of a series system consisting of n springs with individual stiffnesses ki , i = 1 . . . n.
The equivalent stiffness of the spring assembly is given by the relation

k∗ = 1
n∑
i=1

1
ki

(3.14)

Assume ki, i = 1 . . . n, to be i.i.d. random variables with a lognormal distribution with a mean
value of 1 and a standard deviation of 0.1. The probability of having an equivalent stiffness larger
than a given threshold Kn is computed for different values of n. Herein Kn is defined implicitly
such that P [k∗ > Kn] = 1.35 · 10−3 or, equivalently, a reliability index β = 3. MCS is compared
to QMCS, in which both methods use 3000 samples. For each value of n, 500 repetitions of
samplings were carried out and the mean values and standard deviations of the reliability indices
were estimated using a fixed value of Kn. The results are shown in fig. 3.4. The label "MCS"
refers to Monte Carlo simulation (mere random samples), "QMCS" refers to Quasi-Monte Carlo
simulation (Sobol sequences). The comparison of these two results clearly shows that QMCS
loses its advantage as the number of variables increases and approaches MCS.

Additionally, this figure contains results labelled "QMCS/T". These results were obtained using
a linear variable transformation such that the most important linear combination of variables ki
(as obtained e.g. from FORM, or even from simple linear regression analysis on a small number
of MCS samples) is introduced as a new variable, and all the others are transformed accordingly
using a Gram-Schmidt orthogonalization scheme. This concept basically introduces a rotation of
the coordinate system, and in its effect it is quite similar to line sampling ([Pradlwarter et al.,
2007, de Angelis et al., 2015]). In this way, the effective dimension of the problem is substantially
reduced such that QMCS/T performs much better than standard QMCS.

However, in order to avoid the necessity to detect the most important direction in the standard
normal space, an alternative approach is sought for, which is presented in the next subsection.

3.3.2 Stabilizing the CDF
Dynamical systems excited by random forces are a subject of high interest in structural reliability.
In the previous subsection it has been explained that for such systems, low-discrepancy sampling
methods are not applicable in a straightforward way. However, for AS it would be highly desirable
to have support points as stable as when obtained using Sobol sequences (see fig. 3.3, left).

For this purpose a new approach was tested. In order to get a similar effect as when using Sobol
sequences, the CDFs corresponding to the example specified by equation (3.12) are stabilized
by regression curves (see fig. 3.5). This means that the reliability index β is determined by the
regression function, instead of the CDF itself. That way, random local deviations of the CDF
can be avoided and the support points derived thereby are statistically much more stable.
There is another advantage of the stabilizing technique. Imagine, for a (relatively high) scale

factor f , the MCS yields just one or two failures. Normally, this estimate should be rejected,
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because a reliability index β based on just one or two failures cannot be considered very reliable.
But if β is based on the proposed regression function, it is much more reliable and it can be used
as a support point. Hence, this stabilizing approach is particularly useful for the support point
based on the highest scale factor f . As for the other support points, they are usually based on a
more representative number of failures and, hence, can be considered more reliable anyway.
The regression function chosen is:

β = A ln[B(Safety margin) + C] +D (3.15)

The logarithmic approach guarantees monotonicity. The four coefficients A,B,C and D enable
the regression curve to be flexible enough to retrace the regression points. The coefficients have
to be determined by an optimization algorithm. Here, the nonlinear optimization algorithm
CONMIN [Vanderplaats and Moses, 1973] implemented in the software package slangTNG
[Bucher and Wolff, 2013] is used.
It is pointed out that the stabilizing approach is intended to be used for problems for which

low-discrepancy sampling can hardly be applied effectually, namely for systems with a high
effective dimensionality. This is certainly the case for systems excited by a force which consists of
a series of random variables in time domain. For other systems, the effective number of random
variables may be determined by performing a sensitivity analysis. However, it is recommended
to generate the samples by Sobol sequences (or an other low-discrepancy sampling technique)
anyway. Even though these techniques may loose their strengths compared to mere random
sampling in high dimensions, they at least do not perform worse than mere random sampling, as
can be seen in fig. 3.4.

3.3.3 Number of sample evaluations and support points
Just as is traditional MCS, a higher number of sample evaluations will result in a higher number
of failures, making the scaled reliability indices β(f) more reliable. As a result, also the support
points will be more stable. Obviously, more evaluations need more computation time. So, this
is a tradeoff between accuracy and efficiency. However, it was observed that the accuracy of
the resulting failure probability depends primarily on the accuracy of the support point for
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Fig. 3.5: CDFs with stabilizing regression curves

the highest scale factor. This means that it is worth spending more computation effort for the
simulation with the highest scale factor. Hence, an adaptive number of evaluations is proposed:

nsim = ninitf (3.16)

Thus, the number of evaluations decreases as the scale factor f decreases. The initial number of
evaluations (ninit) will actually never be executed, unless there would be a simulation with scale
factor f = 1.

Of course, the appropriate number of evaluations depends essentially on the complexity of the
model as well as on the available computational power. However, as a minimum, it is suggested
to choose ninit such that the number of evaluations for the highest scale factor f is in the order
of 1000. The estimates for the lower scale factors will then rely on some hundreds of single
evaluations.

In general, the number of support points should be at least three, when using equation (3.11)
for the regression. Four or more support points can help making the regression more stable,
but the computation effort increases. For the spacing between the support points, 0.10 or 0.15
may be a good choice (this means that f is reduced by 0.10 or 0.15 each time). However, if one
support point has been found to lie in the negative range of β(f)/f , no more support points
should be added by reducing the scale factor f , cf. fig. 3.1. Instead, an additional support point
can be chosen between the existing ones.

These suggestions are based on extensive testings carried out by the author. It was found that
the optimal number of sample evaluations and support points as well as the collocation of the
support points very much depend on the specific problem. Clear general (or also problem-specific)
rules for optimal choices could not be identified. Hence, it was decided to present the empirical
findings here in the form of general, but rather "loose" suggestions.
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Fig. 3.6: Basic procedure for estimation of threshold exceedance probabilities

3.3.4 Probability of exceedance as function of threshold level
In the previous subsections, the probability of a specific failure state, which can be indicated by a
certain scalar value, was studied. Such a failure state could be, for instance, a certain deflection
that must not be exceeded. However, it might be more interesting and instructive to determine
the probability of exceedance as a function of a threshold level. Having that information, one
could not just indicate the probability of exceeding a certain deflection level, but express the
probability of exceedance over a whole range of deflection levels.

In fact, AS can also be used to gain this type of information without any additional computa-
tional effort for simulation. For that purpose, the state function is slightly modified such that it
does not simply indicate failure when being negative, but it indicates the performance over a
range of threshold values. Equation (3.12), e.g., could be modified to

Y (X) = 10 · (X/2.8)2 (3.17)

where Y could indicate a deflection directly (instead of the corresponding safety margin).
The general procedure is shown in fig. 3.6. From the CDFs of the simulations, multiple sets

of support points (for four threshold levels, in this case) are deduced. Then, from each set
of support points, the reliability index for the respective threshold level is extrapolated using
equation (3.11).
The results can then be represented in a diagram with the threshold level on the x-axis and

the probability of exceedance on the y-axis, as shown in fig. 3.7 for 100 different threshold levels.
Figure 3.8 shows also the results obtained without applying Sobol sequences. Since this problem
has a theoretical solution, that one can serve as a reference. It is evident that the accuracy of
the results can be increased significantly when generating the samples by Sobol sequences.
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3.4 Further numerical examples
3.4.1 Linear SDOF oscillator
Consider a linear SDOF oscillator (see e.g. [Ziegler, 1998]) with mass m = 2 kg, stiffness k =
7 N/m and damping ratio ζ = 0.02. The excitation is given by a random force with normal
distribution with zero mean and standard deviation σ = 1. This means that the excitation is
constituted by a sequence of independent and identically distributed (i.i.d.) random variables.
These are assumed to be constant values spaced at the time interval ∆t = 0.05 s. In total a
period of 20 seconds is considered. Hence, the total number of steps (as well as the number of
dimensions of the system n) is equal to 401.

For this calculations, four support points (scale factors f : 0.7, 0.55, 0.4 and 0.25) are used. The
number of evaluations is 1050, 825, 600 and 375, respectively, giving a total of 2850 evaluations.

Figure 3.9 shows the upper part of the CDFs with logarithmic stabilizing curves. As explained
in section 3.3.2, the stabilizing approach is particularly useful for the higher scale factors f , as
they yield fewer failures for the higher threshold levels. Naturally, for lower threshold levels
they yield more failures and, hence, the respective CDFs have there a smoother shape anyway.
Therefore, the regression has only be adopted for half of the evaluations, namely for the ones
which have resulted in the highest displacements (which corresponds to the part of the CDF
with positive values of β). Furthermore, the stabilizing curves were only applied to the CDFs of
the two higher scale factor f , as the other ones offer representative numbers of failures in the
threshold range of interest anyway.
Figure 3.10 shows the threshold crossing probabilities. As reference, the results of a crude

MCS based on 105 evaluations are shown. Evidently, AS allows for estimates even at lower
probability levels with a significantly reduced number of evaluations. Furthermore, it can clearly
be seen that the results based on stabilized CDFs are more accurate. Obviously, results can just
be gained for that threshold range that is covered by all CDFs. To obtain exceedance probability
estimates for higher threshold levels, the support point belonging to the highest scale factor f
could be replaced by an additional one for a lower scale factor f .
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Fig. 3.11: Stress strain behaviour of nonlinear SDOF oscillator

3.4.2 Nonlinear SDOF oscillator
This example is a nonlinear SDOF oscillator. It is taken from [Bamer, 2014]. The nonlinearity is
given by an elastoplastic material behaviour, which is shown in fig. 3.11. The parameters are
chosen as mass m = 4 kg, pre-yield elastic stiffness k1 = 80 N/m, post-yield plastic stiffness k2
= 40 N/m, yield force Fyd = 1 N and damping ratio ζ = 0.05. The excitation is the same as in
the previous example.

Three support points are used (scale factors f : 0.75, 0.6 and 0.45). The number of evaluations
is 900, 720 and 540, respectively, giving a total of 2160 evaluations. The CDFs obtained for these
scaling levels are shown in fig. 3.12. They are all stabilized by regression curves based on 50% of
the CDF points, just as in the previous example.
The results are represented in fig. 3.13 as probability of exceedance over the threshold level.

As reference, the results of a crude MCS based on 105 evaluations are shown. It is demonstrated
that failure probabilities up to approximately 10−7 can be estimated by a moderate number of
evaluations. The stabilizing technique provides a remarkable increase in accuracy, especially for
higher threshold levels.
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3.5 Asymptotic sampling using regression surface 2

In this section, asymptotic sampling (AS) is combined with an alternative approach to estimate
small (failure) probabilities: extrapolation of the CDF. First, the two approaches are shortly
explained. Subsequently they are combined to a joint regression function. Since the quantity
of interest is then a function of two variables (threshold level and scale factor), this regression
function is a surface.

3.5.1 Asymptotic sampling
Due to a result by Breitung [Breitung, 1984] it is known that for an arbitrary reliability
problem the reliability index β as computed from the First-Order Reliability Method (FORM) is
asymptotically exact as the reliability tends to infinity, or alternatively, as the standard deviation
of the basic variables in normal space tends to zero. Introducing the scale factor f , which is
simply the inverse of the standard deviation, f = 1/σ, it can thus be stated that the reliability
index asymptotically depends linearly on f , or, in scaled notation [Breitung, 1984, Gollwitzer
and Rackwitz, 1988]

lim
f→∞

β(f)
f

= const. (3.18)

This asymptotic property can be exploited when extremely small failure probabilities are to
be estimated. In that case, a conventional MCS would be unaffordable, since too many single
simulation runs would be necessary in order to obtain a representative number of failure events.
However, if the standard deviation of the basic variables is increased, a representative number of
failure events can be obtained out of a moderate number of simulation runs. The scaled reliability
indices obtained in that way are then used as support points for a regression as shown in fig. 3.1.
The reliability index of the original system, i.e. β(f = 1), is then obtained by extrapolation.

In order to exploit this asymptotic relation, [Bucher, 2009a] suggested to utilize the formulation

β̂(f)
f

= A+ B

f2 (3.19)

This choice is motivated in order to satisfy the asymptotic property in equation (3.18), according
to which the second term in equation (3.19) has to vanish for f →∞. However, it was observed
that the regression approach should be made more flexible to make it suitable for a broad range
of applications. Hence, a third parameter is introduced, which constitutes the exponent of the
denominator:

β̂(f)
f

= A+ B

fC
(3.20)

Assuming C to be positive, also this approach ensures asymptotic convergence to a constant
value (here to A) as f →∞ (which is equivalent to σ → 0). The coefficients A, B and C can be
determined from a optimization algorithm.

It is pointed out that the asymptotic properties, on which the approach relies, are only valid if
the random variables are independent and identically distributed (i.i.d.) with zero mean and
standard deviation σ = 1. Not normally distributed variables and possible correlations among
them can easily be introduced using marginal transformations and joint probability density
function models such as the widely used Nataf-model [Nataf, 1962, Liu and Der Kiureghian,
1986].

2 This sections has been published as [Gasser and Bucher, 2017a]. The text here contains some modifications.
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Fig. 3.14: Estimation of small failure probabilities by extrapolation of the CDF

3.5.2 Extrapolation of the cumulative distribution function
A different, but in principle very simple method is presented in this subsection. The basic concept
is shown in fig. 3.14. The outcomes of a MCS are represented as cumulative distribution function
(CDF) FX(x) expressed as the reliability index, β = Φ−1(FX(x)). These outcomes could be,
e.g., the maximum displacements of a dynamical system excited by a random force. A MCS
result representation as in fig. 3.14 is very useful as it indicates the exceedance probabilities for a
whole range of threshold levels. For instance, the reliability index for not exceeding the threshold
level x = 0.10 apparently is approximately β = 1.2. By using equation (2.26), the probability of
exceedance follows therefore as PF = 0.115.
However, it is evident that this representation is not suitable for the estimation of very small

exceedance probabilities, since for a limited number of simulation runs, higher threshold levels are
rarely or never reached. To overcome this limitation it is proposed to approximate the CDF with
a regression function, which is then extrapolated to the threshold level of interest. In fig. 3.14
this approach yields reliability index β ≈ 4.5 for threshold level x = 0.25. For the approximation
shown in fig. 3.14 the following function was used:

β̂ = A ln(Bx+ C) +D (3.21)

The logarithmic approach guarantees monotonicity. The four coefficients A,B,C and D are
obtained by an optimization algorithm. It is evident that the regression curve retraces the
MCS results very well. It can be assumed that the failure probabilities can be estimated quite
accurately with this simple technique, especially for threshold levels not too far away from the
range covered by MCS results. This approach was applied to estimate small failure probabilities
resulting from earthquakes of moderate intensity in [Gasser and Bucher, 2017b].

However, this technique is not able to really predict the actual behaviour of the system in the
probability tails. For instance, referring to fig. 3.14, a sudden change of boundary conditions
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occurring at displacement level x = 0.15 remains entirely undiscovered because no simulation
run yielded such a large displacement.

3.5.3 Probability estimation by regression surface
On the other hand, the AS technique is in principle suitable to explore the system’s behaviour
in the probability tails, as it is based on a scaling of the standard deviations of uncorrelated
normally distributed variables. Hence, it is proposed to combine both approaches described in
subsections 3.5.1 and 3.5.2.

For that purpose, for the reliability index β, a regression function is proposed that depends on
both variables, the threshold level x und the scale factor f :

β̂(x, f)
f

= a0 + a1x+ a2 ln x+ a3
fC

+ a4x

fC
+ a5 ln x

fC
(3.22)

A similar approach has successfully been applied in [Bucher, 2015]. The approach is chosen such
that the six parameters a0 ... a5 can be obtained by linear regression. The optimal exponent
C is found by executing the linear regression with a series of exponents and selecting then the
exponent for which the approximation was best in terms of least squares.
In this way, a regression surface is constructed. The exceedance estimates are obtained as a

function of the threshold level x when the scale factor is fixed to f = 1.

3.5.4 Numerical example
The presented approach is tested on a well-known benchmark example [Schuëller and Pradlwarter,
2007], which is described in the following. It is a MDOF system with Duffing type nonlinearity.
This system is driven by an earthquake excitation a(t) which is defined as the output of a 4th

order linear filter driven by non-stationary white noise w(t). The noise is defined by its covariance
function

E[w(t)w(t+ τ)] = Iδ(τ) · h(t); h(t) =


t
2 , 0s ≤ t ≤ 2s
1 , 2s ≤ t ≤ 10s
exp

(
− 0.1(t− 10)

)
, t ≥ 10s

(3.23)

with I = 0.08 m2/s3. The linear filter is given by the equations

Ẋ(t) = AEQX(t) + BEQw(t); a(t) = CEQX(t) (3.24)

AEQ =


0 1 0 0
−Ω2

1g −2ζ1gΩ1g 0 0
0 0 0 1

Ω2
1g 2ζ1gΩ1g −Ω2

2g −2ζ2gΩ2g

 BEQ =


0
1
0
0

 (3.25)

CEQ =
[

Ω2
1g 2ζ1gΩ1g −Ω2

2g −2ζ2gΩ2g
]

(3.26)

The numerical values chosen are Ω1g =15 rad/s, ω2g = 0.3 rad/s, ζ1g = 0.8 and ζ2g = 0.995. The
MDOF system is governed by the equations

Mü(t) + Cu̇(t) + K
(
u(t)

)
u(t) = ma(t) (3.27)
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in which the matrices are given as

M =


m1 0 . . . 0
0 m2 . . . 0
...

... . . . ...
0 0 0 m10

 ; m =


m1
m2
...

m10

 (3.28)

C =


c1 + c2 −c2 . . . 0
−c2 c2 + c3 . . . 0
...

... . . . ...
0 0 . . . c10

 K =


k̄1 + k̄2 −k̄2 . . . 0
−k̄2 k̄2 + k̄3 . . . 0
...

... . . . ...
0 0 . . . k̄10

 (3.29)

k̄i = ki

(
1 + ε

(
ui(t)− ui−1(t)

δuref

)2)
; i = 1, · · · , 10 (3.30)

The system parameters are chosen as δuref = 0.02 m, ε = 0.1, m1 = · · · = m10 = 10,000 kg,
k1 = k2 = k3 = 40 MN/m, k4 = k5 = k6 = 36 MN/m, k7 = k8 = k9 = k10 = 32 MN/m,
ci = 2ζi

√
miki and ζi = 0.04 for i = 1, · · · , 10. The time duration is T = 20 s and the time step

is chosen as ∆t = 0.005 s 3. Therefore the load discretization requires 4000 random variables.
The failure criterion is the relative displacement between stories 9 and 10 exceeding a threshold
level x.
The AS procedure is carried out for five different scale factors f equally spaced between 0.4

and 1. It has been observed that, in order to save computation time, the number of simulation
runs may be reduced as the scale factor is reduced, cf. subsection 3.3.3. The reason is that
for smaller scale factors, high threshold levels are covered well anyway, even at a significantly
reduced number of runs. Hence, the number of simulation runs per scale factor level was chosen
as nruns(f) = ninitf . The initial number of runs was chosen as ninit = 800, thus in total 2800
runs are performed. For the construction of the regression surface according to equation (3.22),
only support points with a positive reliability index β are used, see fig. 3.15. Furthermore,
samples above threshold level x = 0.05 m are truncated.
Eventually, the estimation of exceedance probability as function of the threshold level is

obtained by fixing the scale factor to f = 1 (which corresponds to the original system), see
fig. 3.16. In this graph, also the reference results from the benchmark study are indicated. These
were obtained by conventional MCS with 74,700,000 runs, evaluating the exceedance probabilities
for the threshold levels x = 0.024 and x = 0.028. It is evident that the agreement with the
proposed approach, which is based on 2.800 runs, is very good.

3.6 Summary and conclusions
Asymptotic sampling is a novel Monte Carlo based simulation technique for calculating small
failure probabilities. It has been shown that very small probabilities can be estimated with
sample sizes between 1000 and 3000. The method is suitable for a wide range of applications,
including highly nonlinear problems.
The results have been represented as threshold exceeding probabilities, providing the analyst

comprehensive information about the systems expected behaviour. It has been explained how
these additional informations can be easily educed from the CDFs resulting from the simulations.

3 The smallest natural period of the system equals 0.0532 s.
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Fig. 3.15: Support points with regression surface

Fig. 3.16: Support points with resulting threshold exceedance probability curve, as well as
reference results (red dots) taken from [Schuëller and Pradlwarter, 2007]
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It has been shown that for low-dimensional problems, well known low-discrepancy sampling
methods can be applied effectually. For problems involving many variables, a new technique was
presented, which is able to increase the accuracy of the results by stabilizing the support points
for the regression.

The chosen regression function with three parameters has proven to be suitable for fitting the
support points and yielding the reliability index by extrapolation. Future research could focus
on how to determine the optimal exponent in this regression function.
In a second approach, a regression surface was constructed based in the generated samples,

and an extrapolation in two directions was performed. The approach was tested on a benchmark
example of a MDOF oscillator with Duffing-type nonlinearity. The results are in good agreement
with the reference results. However, the number of simulation runs necessary is smaller by several
orders and threshold range for which exceedance probabilities can be estimated is very wide.
Further research might focus on the approach used for the regression surface.



Chapter 4

Seismic safety analysis of an arch dam

4.1 Probabilistic seismic analysis
In seismic engineering practice, structures are usually designed to withstand earthquakes with a
certain intensity. For a given location, any intensity level may be associated with a certain return
period by means of seismological investigations. Additionally to the location of the structure, the
choice of the design intensity level depends obviously on its importance. The aim is to prevent
damages, respectively failure, whereby one seeks to stay always on the safe side by applying
safety factors. This is necessary because of the lack of exact knowledge about the resistances and
loadings and because of their inherent randomness in general. Furthermore, it is impossible to
represent a real structure by a model exactly. However, apart from certain analytical cases, any
safety factor concept is eventually inappropriate to design a structure such that damage/failure
will not occur during the lifetime with a given probability, cf. chapter 2.

Two methods for earthquake analysis used in practice are the response spectrum method
and the time history analysis. An advantage of the response spectrum method is that dynamic
analyses are avoided, hence making it practicable for most engineering companies. Furthermore,
response spectra for design purposes are available for wide areas of the world. The stochasticity
of ground accelerations is considered by these design spectra in the way that they are smoothened
median values (or other percentiles) of the spectral responses to a set of ground accelerations
which are to be expected in that location with a given return period. The major disadvantage of
this method is its incapacity of representing the real behaviour of the structure since it relies
on some superposition of responses of linear SDOF oscillators. In particular, this concerns the
material behaviour beyond linear elasticity, including the dissipative effects of ductile components,
which are of high relevance in earthquake engineering [Adam and Jäger, 2012]. Instead, these
effects may only be included in the dimensioning by some generic factors [Chopra, 2012a].
This shortcoming motivates to perform a time history analysis. The real performance of the

structure is studied by implementing inelasticities and nonlinear behaviour in general [Adam,
2001]. This approach constitutes the first step of the concept called performance-based earthquake
engineering (PBEE) [Deierlein et al., 2003]. Instead of using a design spectrum, one needs to
apply a ground motion time history pertinent to the location and the desired return period.
Although characteristics of the time history, such as intensity and frequency content, may be
chosen skilfully by considering the geophysics of the site, one has to keep in mind that it is an
inherently random signal. This kind of uncertainty is also referred to as aleatoric uncertainty,
which means not reducible by more elaborate investigation. Of course, this high degree of
randomness is then reflected in the response of the structure. On the other hand, uncertainties of
other model parameters, such as concrete strength parameters, are comparatively small and, in
principle, may be further reduced by more elaborate testing as well as by more exact production
processes (epistemic uncertainties).
In fact, consideration of both the real (nonlinear) behaviour and the stochasticity of ground

motions and other parameters call for an analysis framework that results in a probabilistic
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Fig. 4.1: Seismic hazard curve H(ag,max), probability density function of PGA, h(ag,max), and
fragility curve P (D|ag,max), conceptually

representation of a structure’s response given its seismic environment. Such an analysis framework
is called probabilistic seismic demand analysis (PSDA). In PSDA, certain quantities, so called
engineering demand parameters (EDPs), are selected which are representative for the structural
performance. These EDPs may be stresses, displacements, damage indices, energies or other
quantities which may be associated with defined limit states. PSDA has primarily been established
in the context of buildings, see e.g. [Carballo and Cornell, 2000, Shome, 1999].
The randomness of the ground motions, as well as of all other model parameters, may

be accounted for by means of Monte Carlo simulation (MCS). In the context of earthquake
engineering, one has to consider that it is not sufficient to calculate the probability of damage
just for a predefined intensity level (maybe the one with return period equal to expected life
time) since there is also some (lower) damage probability for lower intensity levels and some
(higher) damage probability for higher intensity levels.

Eventually, these reflections lead to the following equation for the calculation of the damage
probability (cf. [Cornell and Krawinkler, 2000])

PD =
∞∫

0

h(ag,max)P (D|ag,max)dag,max (4.1)

where the peak ground acceleration (PGA) level ag,max serves as intensity measure (IM).
Conceptually, the two terms of the integrand are shown in fig. 4.1.

The red curve shows h(ag,max), the probability density function of PGA, which is the negative
derivative of the seismic hazard curve H(ag,max):

h(ag,max) = −dH(ag,max)
d(ag,max) (4.2)

H(ag,max) gives the probability that the PGA at a site will equal or exceed level ag,max in a
given period of time. It is provided by seismological services. Consequently, PD then refers to the
same period of time, which is typically 50 years. The other term in equation (4.1), P (D|ag,max),
is a damage probability of the structure subjected to an earthquake with PGA equal to ag,max,
and it is called fragility curve. While the term h(ag,max) is merely location-referred, the fragility
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curves P (D|ag,max) refer to the structure itself. So, the two terms can conveniently be treated
separately. 1

In the following, focus will be on the efficient construction of the fragility curves. Indeed,
there is a single fragility curve for each limit state of a structure, especially for any damage or
failure mechanism which can be identified and defined by professional judgement. Naturally, in
the MCS, the simulation runs do not have to be performed separately for different limit states,
in general. However, as a fragility curve P (D|ag,max) for a damage - respectively P (F |ag,max)
for failure - represents a probability conditional on the PGA level, several MCS estimates (for
different PGA levels) are needed. Hence, the computational cost of a complete seismic safety
analysis resulting in damage probabilities PD - respectively in failure probability PF - may be
excessively high. Therefore, possibilities will be tested to reduce the number of simulation runs.

4.2 Seismic analysis of dams
In the past decades, special attention has been given to the evaluation of earthquake safety
of dams since failure would have catastrophic consequences. The challenges, which were faced
in modelling this kind of structures, regarded dam-reservoir interaction, proper modelling of
earthquake input [Hall, 1998], and consideration of the effects of radiation damping [Chopra,
2012b]. In the case of arch dams, a realistic modelling allows for opening of the contraction joints
[Hall, 1998] and, at best, includes a damage model for the concrete. Extensive research about all
of the mentioned topics has been done by Zhang and his research team at Tsinghua University.
A collection of their papers has been published in [Zhang et al., 2013].

Herein, a probabilistic approach is used for the seismic safety analysis of an arch dam. So far,
similar research work focused primarily on gravity dams [Kisliakov, 1997, de Araújo and Awruch,
1998, Tekie and Ellingwood, 2003, Ghanaat et al., 2012, Ju et al., 2015, Bernier et al., 2016],
where especially the sliding safety was investigated. Moreover, a number of recent publications by
Hariri-Ardebili and Saouma (and co-authors), see e.g. [Hariri-Ardebili and Kianoush, 2014, Hariri-
Ardebili et al., 2016, Hariri-Ardebili and Saouma, 2016a, Hariri-Ardebili and Saouma, 2016b], is
concerned with (nonlinear) dam behaviour and possible failure mechanisms. Mostly, probabilisitic
methods are involved and results are presented as fragility curves or surfaces. A review of these
and other relevant papers can be found in [Hariri-Ardebili and Saouma, 2016c]. Yet, analogous
research on arch dams has rarely been done [Varbanov et al., 2012, Hariri-Ardebili et al.,
2016, Wang et al., 2018]. This is maybe also because of the high effort of implementation and
computation since analysis of arch dams necessarily involves a three-dimensional model.

However, as earthquakes are highly stochastic processes, they are the main source of uncertainty
in the response of a structure (in an earthquake-prone region), cf. [Tekie and Ellingwood,
2003, Gasser and Bucher, 2017b]. Hence, it seems natural to investigate the response by
probabilistic means. Additionally to seismic excitation, the damping of a structure is a highly
uncertain mechanism. Moreover, in the case of a dam, the water level of the reservoir is subjected
to high variation. Besides, in principle, also all other loads and resistances constitute random

1 In modern PBEE - more specifically, within the framework of the PEER PBEE methodology, developed by
the Pacific Earthquake Engineering Research Center (PEER), - an extended integral is proposed, instead of
the one in equation (4.1), see e.g. [Deierlein et al., 2003], [Porter, 2003] (for summary), or [Krawinkler, 2005]
(for benchmark study). It involves in particular decision variables, "which translate damage measures into
quantities that relate to risk management decisions concerning economic loss and life safety" [Deierlein et al.,
2003]. This approach is not treated in this thesis. It would be beyond the scope: One only needs the think
about the fact that a (quantitative) assessment of life safety would require an estimation of the inundated area
if the dam fails.
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variables, which influence the safety of a structure to a greater or lesser extent. 2 The complete
list of parameters that are considered in a stochastic way in this study is presented in section 4.5.
To assess the safety of a structure, it is necessary to identify possible damage and failure

mechanisms. The damage mechanisms investigated in this work are concrete cracking, opening of
a block joint (exceeding a defined limit), cracking of the grout curtain, and sliding safety. These
mechanisms are described in detail in section 4.6. For each of them, a fragility curve will be
derived.

The most realistic scenario of a complete failure of an arch dam under earthquake excitation is
excessive tensile cracking of the concrete [Zhang et al., 2013, Chopra, 1992]. However, a localized
and temporary exceedance of the tensile strength will lead to a small crack but not to failure of
the dam. Hence, exceedance of a (strength) parameter cannot simply be used as an indicator for
total failure. This fact represents a challenge to the framework of probabilistic safety assessment
since it usually associates failure with a certain scalar limit state. Instead, the present work aims
to clarify if abortion of the numeric calculation can be used as an indicator for loss of equilibrium
and hence for failure. For that purpose, damage and stiffness degradation under cyclic loading
is modelled by implementing the plastic-damage model developed by Lubliner et al. [Lubliner
et al., 1989] and Lee and Fenves [Lee and Fenves, 1998b].

4.3 The arch dam model
The application object is an arch dam whose seismic behaviour was studied in the dissertation of
Goldgruber [Goldgruber, 2015]. The structure is fictitious, however its shape and properties are
typical for a real dam in a region with moderate seismicity, like the Alps. The finite element
model is shown in figs. 4.2 and 4.3.

The dam is 220 m high. The width of the valley is approximately 80 m at the bottom and 430
m at the crest. The total model, which includes also part of the reservoir and of the foundation,
has a quadratic ground plan of 1000 m length and a height of 500 m.

Simulations are performed in Abaqus. The number of finite elements is approximately 20,000
(depending on the reservoir level). For the solids, linear brick elements with reduced integration
are used. They have eight nodes and one integration point, and are labelled C3D8R. The water
is modelled by eight-node acoustic linear elements labelled AC3D8. Consequently, the acoustic
wave equation has only one degree of freedom - which is pressure. Compressibility is expressed
by the bulk modulus, Kw = 2200 MPa.
As for the sequence of the simulation steps, in the first second, the self weight of the dam is

applied gradually, followed by the hydrostatic load in the next second. During these two steps,
fixed boundary conditions are adopted at the outer boundaries of the foundation. Subsequently,
earthquake excitation is applied additionally for 10 seconds. For this, the fixed boundaries are

2 At this point, the author would like to emphasize once again the difference between aleatoric and epistemic
uncertainties. The relevance of the response uncertainty attributable to the earthquake excitation (record-to-
record variability) arises primarily by the fact that this is about an aleatoric uncertainty. As for the other
parameters’ uncertainties, they can be (quite clearly) classified as epistemic. This means that they are in
principle reducible. And, in fact, it should be the primary aim of the engineer to reduce the uncertainties of
the relevant parameters and to understand the essential mechanisms as best as possible, cf. the problem of
seismic input modelling described in subsection 4.3.3. The specification of a parameter as a random variable
(especially the specification of the dispersion) leads to the conceptional contradiction described in footnote 10
of chapter 2. This contradiction applies especially for cases where the dispersions of quantities can hardly be
estimated statistically - a statistical estimate would be possible, e.g., for strength parameters of a component
of a certain material produced in a certain factory -, but on expert opinions, experience and (unsystematic)
measurements. This is rather the case here, where a prototype (the arch dam) is built in a given and unique
environment (the river valley).
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Fig. 4.2: Finite element model of dam, reservoir and foundation [Goldgruber, 2015]

Fig. 4.3: Finite element model: detail [Goldgruber, 2015]
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Fig. 4.4: Shear keys and water stop between two blocks of an arch dam

replaced by acceleration time histories, which act in all three directions. A detailed description
of the seismic excitation is given in section 4.4.

4.3.1 Contact modelling
The acoustic fluid continuum approach enables for realistic fluid-structure interaction. For the
contact between the dam and the reservoir, a tie constraint is defined. This type of constraint
allows neither separation nor relative slip, which also applies to the acoustic fluid elements among
themselves. At the back-end boundary of the reservoir, a non-reflecting (viscous) boundary
condition is adopted, hence waves are absorbed. No boundary conditions are specified on the
valley sides, which results in total reflection [Goldgruber, 2015].

Arch dams are subdivided in vertical blocks in order to limit thermal stresses during hydration.
The blocks have shear keys on their edges which allow relative displacement in vertical direction
but not in radial direction, see fig. 4.4. In the finished state, the joints between the blocks are
grouted so that the dam behaves like a monolithic structure. However, during a strong earthquake
the grouting may break up, leading to a separation of the blocks and to some displacement
between them.
In the model, the dam is separated into 18 vertical blocks. Stresses may be transmitted

between the blocks. However, separation is allowed as well as relative displacement between the
blocks. To take account of the shear keys, an anisotropic contact formulation is chosen: In radial
direction, a very high friction coefficient (µ = 5) basically inhibits relative displacement, as long
as the joints are under pressure. An essentially smaller friction coefficient for the second surface
direction allows differential sliding of the blocks vertically. Because of the high uncertainty of
this contact behaviour it is implemented as a random variable, see table 4.1.
Similarly, also for the interface between dam and foundation, a modelling was chosen that

allows for separation as well as relative displacement. Here, the (isotropic) friction coefficient is
µ = 1.

4.3.2 Concrete modelling
The strength class of the concrete is C20/25 [EN1992, 2015] with mean compressive strength
fcm = 28 MPa and density ρ = 2400 kg/m3. The uniaxial compressive stress-strain behaviour is
modelled by three segments, see fig. 4.5. The initial linear branch ends at 0.4fcm. The second
ascending segment [fib, 2012] is quadratic and reaches fcm. The third (descending) segment
describes softening [Krätzig and Pölling, 2004]. It depends on the fracture energy and on the
characteristic length leq [Bažant and Oh, 1983]. The use of the fracture energy, a material
parameter, was originally derived for tension softening in the smeared crack idealization [Krätzig
and Pölling, 2004]. The fracture energy concept was transferred to softening under compression by
Feenstra [Feenstra, 1993]. The characteristic length leq, which originally refers to the dependency
on sample size observed in experiments, here depends on the finite elements, basically on their
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Fig. 4.5: Uniaxial compressive behaviour of concrete

size. The element size of the dam model is in the order of three meters, thus very large. As a
consequence, the descent of the third segment in fig. 4.5 is particularly steep. A mathematical
description of the three segments can be found in [Alfarah et al., 2017].

For the material damping, the Rayleigh model is used. Thereby, it is assumed that the damping
matrix is proportional to the mass and the (initial) stiffness matrix. The proportionality factors
are α for the mass and β for the stiffness. The intensity of the damping must be specified
by predefining the damping ratio for two (basically arbitrary) frequencies. In practice, the
fundamental frequency and the frequency at which the sum of effective modal masses reaches
90% of the total mass are used. For the dam under investigation, these frequencies are 1.54 Hz
and 2.29 Hz (fourth natural frequency of the deterministic model) [Goldgruber, 2015]. Since
damping mechanisms are inherently highly uncertain, the predefined damping ratios are treated
as random variables (see section 4.5).

4.3.2.1 Plastic-damage model

As mentioned earlier, it is of particular interest to study the ultimate capacity of the dam,
which will be reached when (cracking) damage of the concrete is so severe and extensive that
equilibrium between acting forces and resistances does not subsist anymore. For this purpose, the
modelling of the concrete has to be extended such that it can reproduce degradation of stiffness
and strength under dynamic loading (see e.g. [Hofstetter and Mang, 1995]).

Such a model has been developed by Lubliner and coauthors [Lubliner et al., 1989] and further
developed by Lee and Fenves [Lee and Fenves, 1998b]. In Abaqus it is called Concrete Damaged
Plasticity [Abaqus, 2014a], see fig. 4.6. It uses the concept of fracture-energy-based damage
[Hillerborg et al., 1976] to describe tension cracking and compression crushing. The effect of
different damage states on elastic stiffness is controlled by two damage variables, one for tensile
damage, dt, and the other for compressive damage, dc [Lee and Fenves, 1998b]. The yield function
(respectively, failure function, in the strain-softening regime) accounts for different evolution
of strength under tension and compression [Abaqus, 2014a]. Recovery of compression stiffness
upon crack closure as the load changes from tension to compression can be accounted for (by
parameters wc and wt) [Abaqus, 2014a].

Lee and Fenves have used their plastic-damage concrete model to study the response of Koyna
dam in India in the 1967 Koyna earthquake [Lee and Fenves, 1998a]. This concrete gravity dam
sustained several horizontal cracks at the upstream and downstream surfaces [Lee and Fenves,
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Fig. 4.6: Plastic-damage model: Uniaxial load cycle (tension-compression-tension) assuming
stiffness recovery factors wt = 0 and wc = 1, according to [Abaqus, 2014a]

1998a]. To date, it is one of few dams that have been damaged substantially by an earthquake.
An accelerograph in the inspection gallery recorded the transverse and vertical accelerations,
which, since having been registered in such a massive structure, can be considered representative
of the free-field ground motion. Because of these circumstances the crack formation at Koyna dam
has been an event that attracted many scientists to perform investigations, both numerically and
experimentally [Lee and Fenves, 1998a, Chopra and Chakrabarti, 1972, Chopra and Chakrabarti,
1973, Bhattacharjee and Léger, 1993, Ghrib and Tinawi, 1995, Cervera et al., 1996].

The seismic analysis of Koyna dam by means of the plastic-damage model is given as an
example problem in Abaqus Example Problems Guide [Abaqus, 2014b]. There, a two-dimensional
model of the gravity dam is excited by the Koyna earthquake and the crack formation is simulated.
Because of the similarity in problem type and mesh size, the concrete tensile properties used in
that investigation are adopted for the present dam study: Figure 4.7 (a) shows the response of
concrete to uniaxial post-failure loading in tension, which is commonly referred to as "tension
stiffening"; (b) shows the evolution of the tensile damage variable dt, which is a non-decreasing
variable ranging from 0 (no damage) to 1 (fully cracked). Both quantities are given as functions of
cracking displacement rather than strain. This is because in cases with little or no reinforcement,
the specification of a post-failure stress-strain relation introduces unreasonable mesh sensitivity
in the results. However, it is generally accepted that the fracture energy proposal by Hillerborg
[Hillerborg et al., 1976] is adequate to alleviate this handicap for many practical purposes.
Hillerborg defines the energy required to open a unit area of crack, Gf , as a material parameter.
With this approach, the brittle behaviour of concrete is specified by a stress-displacement response,
see [Abaqus, 2014a].
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Fig. 4.7: Concrete post-failure tensile properties; modified from [Abaqus, 2014b]

The mean tensile strength of C20/25 type concrete is 2.2 MPa. Yet, it is well known that
this value is higher if the load is applied rapidly. The dependence of strength parameters on
the strain rate is controversial. Zhang et al. [Zhang et al., 2013] suggest to increase the tensile
strength by 30% in the context of seismic excitation of dams. This value is also accepted in this
work, resulting in dynamic tensile strength ftm = 2.9 MPa 3.

As unreinforced structures, arch dams are susceptible to failure mechanisms caused by tensile
cracking, whereas compressive stresses will hardly exceed the compressive strength. Hence,
compressive damage (crushing) is not considered in this model (dc = 0). Full recovery of
compression stiffness upon crack closure is assumed (wc = 1), whereas recovery of tension stiffness
as the loading changes from compression to tension is neglected (wt = 0). This corresponds to
the default settings.
As for the plasticity parameters that are required in the plastic-damage model, the Abaqus

default values are chosen likewise, i.e. dilation angle ψ = 35◦, flow potential eccentricity ε =
0.1, ratio of initial equibiaxial compressive yield stress to initial uniaxial compressive yield stress
fb0/fc0 = 1.16, parameter for the deviation of yield surface in a deviatoric plane from circularity
Kc = 2/3, viscosity parameter µ = 0.
It should be noted here that for the Concrete Damaged Plasticity model, Abaqus calculates

the stiffness proportional damping stress based on the undamaged elastic stiffness. This may
introduce large artificial damping forces on elements undergoing severe damage [Abaqus, 2014a].
On the other hand, in this way, potential negative damping - which would increase the seismic
response, but would be physically nonsensical - is avoided.

4.3.3 Foundation modelling
Proper modelling of the foundation and the earthquake input mechanism is a topical research
field. The problem is conceptually shown in fig. 4.8. Since dams are relatively stiff structures,
their dynamic behaviour is considerably influenced by the surrounding rock foundation, which
hence should be included in the finite element model. The seismic excitation is then typically
applied as acceleration input at the rock foundation boundaries. As a consequence, however, the
signal will be altered in amplitude and frequency content as it travels through the ground. So,
as it reaches to the dam-foundation interface it will not correspond anymore to the signal which

3 Naturally, also resistance parameters could be considered as random variables. Here, however, deterministic
values are assumed. This is a requirement for some of the subsequent evaluation techniques.
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Fig. 4.8: The problem of modelling foundation, boundary conditions and seismic input

an accelerometer has registered on the surface of the ground. In this case, the object of interest,
i.e. the dam, would basically be excited arbitrarily.
To circumvent this problem, Clough [Clough, 1980] proposed to implement a massless foun-

dation. That approach, traditionally applied in seismic dam engineering, is also used in this
research work. For simplicity, the material damping for the foundation is defined just as for the
dam concrete, i.e. by the Rayleigh model, whereby the prescribed damping ratios are 10%. It
was observed that different damping ratios do not significantly influence the ground motions that
occur at the bottom of the dam (applying massless foundation); for a wide range of damping
ratios, they are almost identical to the free-field ground motions applied on the model boundaries
in terms of PGA and root-mean-square acceleration.
In recent years, this approach has been criticized, see e.g. [Chopra, 2012b], because of its

incapacity of simulating radiation damping. Conceptually, the argument is legitimate. If the
excitation is applied as acceleration at the model boundaries, waves are reflected at these artificial
boundaries instead of propagating to infinity, as they do in the real half-space. This may lead to
an overestimate of the response of the structure.
Several methods have been proposed to simulate radiation damping with finite elements

[Lysmer and Kuhlemeyer, 1969, Saouma et al., 2011, Zhang et al., 2009, Wang and Chopra,
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2010, Løkke and Chopra, 2018]. The strategy to apply in most commercial finite element codes is
to include the mass of the foundation rock and to use viscoelastic boundaries. In order that the
waves are absorbed by these boundaries, the seismic excitation has to be applied as forces instead
of accelerations. As reported by other authors, in general, the structural response resulting from
this method is lower than when using a massless foundation with fixed boundaries. According
to [Zhang et al., 2009] the reduction may reach 25-40% in terms of peak tensile stresses and
crest displacement. Penner et.al. [Penner et al., 2017] applied a sine-sweep input ground motion
and compared the resulting crest displacements. They observed higher responses in the massless
foundation model, however just for frequencies higher than 5 Hz. For lower excitation frequencies
both approaches yielded almost identical results.
It is important to underline that a seismic analysis employing absorbing boundaries in a 3D

model is associated with great difficulties. They primarily stem from the need to apply forces
at the model boundaries that lead to accelerations at the dam-foundation interface that are
consistent with the target free-field motions. The specification of these forces generally requires
a deconvolution procedure run before or in parallel to the actual finite element simulation (eight
auxiliary analyses for each of the three components of ground motion, according to [Løkke and
Chopra, 2018]). Since the canyon and the dam itself lead to complicated reflexions, in iterative
procedure may be necessary to match approximately the target intensity.

For the present study, which involves MCS, such a procedure would be impracticable and it is
furthermore beyond the scope. Since the main frequency content of the ground motions as well
as all relevant eigenfrequencies of the dam are below 5 Hz, the massless foundation approach is
applied.

4.4 Seismic modelling
Frequently, scaled records of real ground motions are used in stochastic seismic analysis, see e.g.
[Wang et al., 2018]. In this study, however, artificial ground accelerations serve as excitation for
the MCSs. They are applied on the finite element model as boundary conditions in all three
directions.
Their frequency content is controlled by a Kanai-Tajimi filter, cf. e.g. [Clough and Penzien,

1993, Bucher, 2009b]. Thereby, first, a raw acceleration b(t) is defined as a linear combination of
the displacement and velocity of a system with a SDOF. This SDOF system is characterized by
its natural frequency ωg and the damping ratio ζg, whereby these parameters represent some
characteristic frequency and damping ratio of the ground, respectively [Clough and Penzien,
1993]. The input w(t) to this filter is white noise with a power spectral density S0. The equation
of motion of this filter is

z̈ + 2ζgωg ż + ω2
gz = w(t) (4.3)

The (raw) acceleration b(t) is then defined as

b(t) = 2ζgωg ż + ω2
gz (4.4)

A realization for the values ζg = 0.6, ωg = 17 rad/s and S0 = 0.0372 m2/s is shown in fig. 4.9
(a). The time interval considered is 10 s, the time step dt = 0.01 s, giving a total of 1000 time
steps. The power spectral density for the random process defined by equation (4.4),

Sbb(ω) = S0
4ζ2
gω

2
gω

2 + ω4
g

(ω2
g − ω2)2 + 4ζ2

gω
2
gω

2 (4.5)
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Fig. 4.9: Generation of ground accelerations

is shown in fig. 4.9 (b). Afterwards, the random process is superposed by a deterministic time
intensity function

e(t) = 4[exp(−0.25t)− exp(−0.5t)] (4.6)

(see fig. 4.9 (c)) to take account of the non-stationary history of real earthquakes:

a(t) = e(t)b(t) (4.7)

Moreover, a baseline correction is applied in order to avoid permanent drift in displacement or
velocity. A sample realization of such a ground acceleration a(t) is shown in fig. 4.9 (d). The
excitation in vertical direction was reduced by factor 0.67 in time domain, cf. [EN1998, 2017].

For the construction of the fragility curves, MCSs have to be performed for different intensity
levels. However, in the present work, the ground motion intensity is not specified by the
PGA (directly). Instead, the input quantity is power spectral density S0, see equation (4.5).
More specifically, for each simulation run just the one power spectral density is chosen that
yields the desired PGA in the mean. The relationship between the two intensity quantities is
ag,max = const

√
S0. The specific value const (which applies to the seismic model specified here)

has been determined beforehand by simulating a large number of ground motions: const ≈ 28.28.
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As for the selection of the intensity measure (IM), there seems to be some consensus among
authors that PGA might be not the best choice, see e.g. [Deierlein et al., 2003, Hariri-Ardebili and
Saouma, 2016b] 4. Major concerns about representativity of PGA for the earthquake intensity
stem from the fact that a single very high peak in the acceleration time history might have
relatively little effect on the structural response. In this regard, a spectral IM (which may refer
to e.g. the structure’s fundamental period) would seem more appropriate, see. e.g. [Baker and
Cornell, 2005, Adam et al., 2017]. In general, researchers tend to assess the appropriateness
of an IM essentially based on its efficiency, where they call an IM parameter efficient if it will
reduce the EDP variability for a given IM value. However, the author has some doubts about the
consistency of that assessment criterion because, as a matter of fact, the probability of exceeding
a limit state depends on the variance of the respective sample results. Specifically for PSDA,
it is important to note that a high variability of EDP responses implies a higher probability of
exceeding a limit state, as long as the mean response is lower than that limit state.
Anyway, the author believes that specifying the earthquake intensity by means of power

spectral density seems appropriate, especially because it avoids the classification of a ground
motion merely based on a single peak value. As ("illustrating") abscissa quantity in subsequent
diagrams, however, PGA is used since it is an intuitively more accessible IM than a power
spectral density measure. As outlined above, these PGA values are just expected values - the
real PGA of a simulation run can (and will) actually be different.

4.5 Uncertain Parameters
Apart from the stochastic ground motions, the probabilistic nature of the present research arises
due to the fact that a number of selected parameters are considered as random variables. Their
distributions are listed in table 4.1. The selection is motivated by the fact that some parameters
of the model are associated with high inherent uncertainty or with some variability that may
affect the response of the system considerably. For other parameters this is not the case (e.g.
density of the concrete), hence they are defined deterministically, for simplicity. The actual
values of the distributions here are chosen freely and constitute typical values of the respective
quantities.

Tab. 4.1: Parameters of the model which are considered as random variables

Parameter unit Type of PDF Mean value C.o.V.
Elasticity modulus concrete Ec MPa Normal 27000 2000
Poisson’s ratio concrete νc - Normal 0.167 0.02
Elasticity modulus rock Er MPa Normal 45000 5000
Poisson’s ratio rock νr - Normal 0.25 0.02
Mass prop. damping factor α - Uniform 0.347 - 1.157 -
Stiffness prop. damping factor β - Uniform 0.0025 - 0.0083 -
Block friction coeff. (vertical) µ - Uniform 0.5 - 1 -
Natural frequency rock ωg rad/s Normal 17 2
Damping ratio rock ζg - Normal 0.6 0.1
Water level m Uniform 110 - 220 -

Following the recommendation of the International Commission on Large Dams [ICOLD, 2010],
a uniform distribution between 3 and 10% is assumed for the material damping of the concrete.
These damping ratios were converted to the factors α and β required for the Rayleigh model.

4 However, others have found that PGA is most suitable for many applications [Padgett et al., 2008].
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Fig. 4.10: Selected EDPs and associated damage mechanisms

Regarding computational implementation, the procedure is as follows: Each input file for the
finite element simulations is a text file which contains: (1) general informations about the model
which are equal in each text file, including the deterministic parameters; (2) an individually
generated ground acceleration time history according to the target PGA, which acts in all three
directions (values are reduced by 2/3 in vertical direction), and a sample of the ten variable
parameters listed in table 4.1. No correlation is assumed between the parameter values. The
input files are then sent to the solver (CAE Cluster of TU Wien). The results are saved in odb
output files. The informations of interest (e.g. maximum stresses) are extracted from these files
using purpose-built Python scripts.

4.6 Damage and failure mechanisms
Four damage mechanisms are investigated. They are described in the following subsections.
Usually, a damage mechanism can be characterized by the fact that a certain engineering demand
parameter (EDP), e.g. a stress or displacement value, exceeds a defined limit. The four EDPs
and the associated damage mechanisms are represented in fig. 4.10. By way of illustration, for
each damage mechanism, a time history of the corresponding EDP is presented in the following.
Hereby, the PGA of the earthquake excitation is equal to 0.556 g. Finally, the ultimate limit
state of the dam is explained.

4.6.1 Concrete cracking
As arch dams are in general unreinforced, they are designed such that all parts are under pressure
in normal conditions. However, strong ground motions may cause the concrete to be exposed
to tension. If the stresses exceed the tensile strength in some part, a crack will form. This
damage mechanism is defined as the maximum principal stress exceeding the dynamic tensile



4.6 Damage and failure mechanisms 67

0 2 4 6 8 10 12
-1
0
1
2
3
4
5
6
7
8
9

Time [s]

M
ax
im
u
m

p
ri
n
ci
p
al

st
re
ss

[M
P
a]

self weight

hydrostatic loading

seismic excitation

no damage

damage

Fig. 4.11: Maximum principal stress in an element of the downstream surface; PGA = 0.556 g

strength, ftm = 2.9 MPa, in any element of the dam surface anytime during the earthquake.
This means that the maximum value is determined by a double loop over all time steps and all
surface elements.
However, as long as such loadings are localized and of very short duration, forces will be

transferred to alternative load bearing paths, and cracks will remain superficial. Hence, a (single)
exceedance of the dynamic tensile strength can be defined as a damage mechanism that is clearly
tolerable for maximum credible earthquake.

As an illustrative example, fig. 4.11 shows the maximum principal stress in an element of the
downstream surface, situated at approximately 2/3 of the total height. The diagram shows that
there are no positive principal stresses in the first two seconds, which is to say that there are no
tensile stresses under normal loading conditions. However, during excitation, the dynamic tensile
strength is clearly exceeded many times.

4.6.2 Opening of a block joint
Arch dams are built in vertical blocks. The joints between them are sealed with elastic water
stops. It is known that strong motions may cause a separation of the blocks. As long as the gap
is not too wide, the water stops will prevent that water from the reservoir gets into the joints.
Such a penetration of water would cause also the inner faces of the blocks to be subjected to
hydrostatic pressure. Furthermore, if the opening is so wide to exceed the thickness of the shear
keys, the stability of the dam would be endangered. Hence, it is of interest to study whether a
separation of the blocks takes place during the ground excitation. Specifically, the limit state is
defined as an opening of 10 mm of any of the block joints. However, a block opening of that
magnitude should be classified as tolerable in a strong earthquake.
The opening at the top node of the central block joint is illustrated in fig. 4.12. The limit of

10 mm is exceeded once during the earthquake.



68 4 Seismic safety analysis of an arch dam

0 2 4 6 8 10 12
-2

0

2

4

6

8

10

12

14

16

Time [s]

O
p
en
in
g
[m

m
]

damage

no damage

Fig. 4.12: Opening of a block joint; PGA = 0.556 g

4.6.3 Cracking of the grout curtain
Mostly, underneath a dam, a grout curtain is installed, which inhibits undermining due to
constant water flow and reduces the uplift water pressure at the bottom of the dam. Usually, it
reaches some dozens of meters into the ground and is located some meters behind (i.e. in the
downstream direction) the (upstream) heel of the dam. Naturally, it is important that the grout
curtain stays permanently connected to the dam itself. This connection may crack open already
at the first impounding of the reservoir if the hydrostatic load is strong enough to cause a lift-off
of the heel. Then a re-grouting will be necessary. The same might occur during an earthquake.
Hence, here, this damage mechanism is defined as the occurrence of any loss of contact pressure
in the second finite element row (of four) at the dam-foundation interface behind the dam heel
during the ground motions.

The vertical normal stress (contact stress) in such an element is shown in fig. 4.13. It is evident
that the self weight of the dam causes contact pressure of approximately 3 MPa at the interface.
On the other hand, the impounding of the reservoir leads to reduction of the pressure, though
not to lift-off of the dam heel. However, during the ground motions, the normal stresses change
from pressure to tension temporarily, implying that cracks could form in the grout curtain.

4.6.4 Sliding safety
Additionally to hydrostatic pressure from the reservoir, ground accelerations exert horizontal
forces, which potentially endanger the sliding safety of the dam. The resistance against sliding
arises from the shear strength, which, according to the Mohr-Coulomb model,

τf = c+ σ tanφ (4.8)

depends on normal stress σ, friction angle φ and cohesion c. In practice, the sliding safety of an
arch dam depends considerably on its morphological anchorage in the valley rock and on the
schistosity of the rock, see, e.g., [Wittke, 2014, Kolymbas, 2011]). However, here a simplified
criterion is applied that assumes loss of sliding safety if the horizontal loads exceed the vertical
loads. This corresponds to the case where φ = 45◦ and c = 0.
The ratio of all vertical forces to all shear forces in valley direction at the dam-foundation

interface is shown in fig. 4.14. Since the self-weight acts vertically, the sliding safety increases



4.6 Damage and failure mechanisms 69

0 2 4 6 8 10 12
-4.5
-4

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0.5

Time [s]

N
or
m
al

st
re
ss

[M
P
a]

damage

no damage

Fig. 4.13: Contact stress at the interface between dam and grout curtain; PGA = 0.556 g
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Fig. 4.14: Sliding safety; PGA = 0.556 g

abruptly at the beginning of the simulation, whereas the ratio settles down to approximately
1.5 after application of the primarily horizontally acting water pressure. The ground motions
- which not only accelerate the dam vertically and horizontally, but also cause hydrodynamic
pressure - lead to strong oscillations of the sliding safety. The sliding safety criterion is violated
several times, leading to some horizontal displacement of the dam in the model.

4.6.5 Failure due to exceedance of material strength
As already explained, a single exceedance of material strength leads to a crack but not immediately
to failure. However, when a once damaged part is reloaded during the earthquake, the cracks
extend and gradually seize more and more parts of the dam. Eventually, the remaining strength
does not suffice to transfer the loads to the ground - equilibrium does not subsist anymore.
In this case a finite element simulation is aborted. This fact may potentially be utilized

in the MCSs as an indicator for failure. Hence, for this failure criterion, the plastic-damage
model is implemented, which is able the represent the progressive deterioration of the concrete.
Admittedly, it should be noted that non-convergence of a finite element simulation can also be
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(a) time = 2.12 s (beginning of cracking)

(b) time = 3.00 s

(c) time = 3.96 s (abortion of simulation)

Fig. 4.15: Evolution of tensile damage at downstream and upstream face; PGA = 0.556 g

due to other reasons, especially numerical problems. However, since in the earlier simulations
without the plastic-damage model (for the damage mechanisms described above) not a single
abortion was observed, there is considerable evidence that abortion is caused by material failure.
Further evidence is given by plausibility of subsequent results (fig. 4.15 and fig. 4.20).
The propagation of damaged areas can be observed in fig. 4.15. The pictures on the left

side show the downstream surface, the ones on the right side show the upstream surface. The
deformations are scaled 200 times. The red colour indicates fully cracked areas (tensile damage
variable dt ≈ 1). It can be seen that cracking starts in the upper part of the downstream surface
at about 2.12 seconds after beginning of the earthquake, while the upstream side is still intact at
this stage. After three seconds, damaged areas cover considerable parts of the downstream and
upstream surfaces. Finally, the simulation is aborted after 3.96 seconds, as the tensile strength
of concrete is exhausted in nearly the whole upper part of the dam.
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4.7 Sampling methods
Seismic fragility curves show probabilities of occurrence as functions of the ground motion
intensity, here represented by the PGA. In general, it is necessary to calculate these probabilities
for several different intensity levels so that a sufficient number of support points is available to
construct a fragility curve by regression. The single support points are conveniently obtained by
MCS: The number of simulation runs that result in damage (resp. failure) indicates the damage
(resp. failure) probability for the respective intensity level.

In terms of design of the experiment, the MCS should be adjusted to the particular problem.
Indeed, the fact that the fragility curves, and hence also the overall damage (resp. failure)
probabilities according to equation (4.1), depend on multiple single probability estimates, increases
the computation effort. On the other hand, the accuracy of a single MCS estimate becomes less
important, since it constitutes only one of several support points on which the fragility curve
(and hence the overall probability) is based. As a consequence, the number of runs of a single
MCS estimate may be kept rather small, here 100 was chosen.

Certainly, this arises the question if small occurrence probabilities can be estimated at all. In
the present case, this concerns the moderate ground motion intensity levels that rarely cause
damage or even failure. However they occur more frequently and, hence, might contribute
nevertheless considerably to the integral in equation (4.1). This question will be studied in
section 4.9.
In general, the accuracy of a MCS estimate can be increased by applying a low-discrepancy

sampling method like Latin Hypercube sampling [Olsson et al., 2003] or Sobol sequences [Hong
and Hickernell, 2003]. Though, for the present application any such method can hardly be
applied to advantage. The reason is called curse of dimensionality and lies in the number of
random variables. As in the generated ground accelerations, the value for each of the 1000 time
steps constitutes a random variable, the dimensionality of the present problem amounts to 1000
due to the earthquake excitation alone (and is slightly further increased by the random variables
listed in table 4.1). In fact, there are certain problems with high (nominal) dimensionality
that can be treated much more efficiently by applying low-discrepancy sampling [Caflisch et al.,
1997, Kucherenko et al., 2011], however this is not this case here. Specifically, the curse of
dimensionality cannot be allayed in case that the quantity of interest depends on a random
processes composed of nearly equally important and interacting input variables [Gasser and
Bucher, 2018, Sobol and Asotsky, 2003, Kucherenko et al., 2011], cf. subsection 3.3.1.
While conventional methods to reduce the cost of MCS estimates fail in case of random

time histories, some simulation cost reduction may be gained by addressing the fragility curve
construction directly. In the following, two methods will be tested in this regard.

Common to both methods is the assumption that the fragility curves are lognormally distributed
(cf. [Shome, 1999]). In fact, two-parameter lognormal distribution functions are traditionally
used for the construction of fragility curves [Shinozuka et al., 2000]. This can be justified as
reasonable because they can adequately represent the statistical variation of many material
properties and seismic response variables, provided one is not primarily interested in the tails
of the distribution [Office of Nuclear Regulatory Research, 1983]. 5 Moreover, it is well known
that the product of many positive, but apart from that arbitrary, random variables tends to be
lognormally distributed, cf. subsection 2.1.2.
For the purpose of higher representativeness, the two methods are described in detail in the

next section where also the respective results are presented.

5 As stated above, the impact of the tails of the distribution - which here means the very small damage/failure
probabilities in case of moderate earthquakes - will be studied in section 4.9.
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4.8 Results and discussion
4.8.1 Binary outcome regression
Here, MCS is modified such that the ground motion intensity is increased in each run, so to
cover the whole range of conceivable PGAs uniformly. The results of the single runs are either 0
(no damage/failure) or 1 (damage/failure). For that reason, this approach is here referred to
as binary (outcome regression) approach. The fragility curves are then fitted to these outcomes
by means of the maximum likelihood method. Shinozuka et al. [Shinozuka et al., 2000], who
proposed this approach, used it to derive empirical and analytical fragility curves for bridges.
In the present case, the lognormal distribution function has the form [Shinozuka et al., 2000]

F (ag,max) = Φ
[

ln(ag,max

c )
ζ

]
(4.9)

in which c and ζ are parameters that are chosen such as to maximize the likelihood function
[Shinozuka et al., 2000]

L =
N∏
i=1

[F (ag,max,i)]xi [1− F (ag,max,i)]1−xi (4.10)

in which N is the number of simulation runs and xi = 1 or 0 depending on whether or not the
EDP exceeds the limit value, i.e. damage occurs, under PGA = ag,max.
Computationally it is more convenient to maximize the natural logarithm of L, so that the

condition for determining c and ζ becomes

d lnL
dc

= d lnL
dζ

= 0 (4.11)

This calculation is solved by implementing a straightforward optimization algorithm.
Figures 4.16 to 4.20 show the fragility curves for the limit states defined in section 4.6. The

small (blue) dots represent the binary outcomes (limit state exceeded or not) of the simulations
with steadily increasing ground motion intensity. In total, 100 simulations runs are performed
which equally cover the intensities between 0.01 and 1 g, expressed in terms of PGA. The fragility
curves are then built by fitting lognormal distribution functions (blue lines) to these data points.
The (brown) circles show the occurrence probabilities, calculated by conventional MCS, for some
selected intensity levels. Each of these points - also they could be used as support points for
regression of fragility curves - is based on 100 simulation runs.
Figure 4.16 represents the probabilities that a crack forms, i.e. that the maximum principal

stresses exceed the dynamic tensile strength somewhere on the dam surface. This limit state is
reached at relatively moderate ground motion intensities; in the conventional approach, even the
MCS for PGA = 0.145 g indicates some small occurrence probability, while in the binary approach,
exceedance of this limit state is first encountered at PGA = 0.17 g. Eventually, an earthquake
with PGA = 0.4 g will lead to cracking almost certainly, according to what is predicted by both
approaches. By comparing the lognormal fragility curve fitted to the binary results with the
occurrence probabilities calculated by the conventional approach, a very satisfying accordance is
observable.
Figure 4.17 shows the probabilities that the opening of any block joint exceeds 10 mm. The

fragility curve is more stretched since there is no clear shift from no damage to damage. The
binary approach yields almost identical results as the conventional approach.
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Fig. 4.16: Fragility curve for exceedance of dynamic tensile strength (formation of a crack on
the surface of the dam)
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Fig. 4.17: Fragility curve for the opening of a block joint to exceed 10 mm
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Fig. 4.18: Fragility curve for cracking of the grout curtain

The probabilities that a crack forms at the interface of dam and grout curtain are shown in
fig. 4.18. As opposed to damage mechanism 1) (fig. 4.16), it is apparent that there are also some
extremely strong motion events that do not lead to exceedance of the limit state. Hence, the
fragility curve increases more slowly, similarly to the fragility curve in fig. 4.17. The physical
reason might be that the interface of dam and grout curtain is a small area (one element row).
Hence, there is some chance for it to escape tensions also during extreme ground motion. On the
other hand, the surface of the dam is a big area represented by some hundreds of elements which
is subjected to very inhomogeneous stress states even at one point of time. So, the chances are
low that each element stays below the tensile strength during the whole earthquake excitation.

Figure 4.19 shows the sliding probabilities. Especially for the binary approach, a quite sudden
jump is observable around PGA = 0.4 g. While the onset of occurrence probability is similar
for both approaches, apparently there is a divergence in the higher probability levels. For the
binary approach, a posterior increase of the sampling density in locations where a sudden shift
occurs might be advisable. This is done in the range between 0.3 and 0.6 g, see pink dots. The
dashed purple line shows the updated fragility curve, which apparently matches the reference
data points better.

Figure 4.20 shows the occurrence probability of failure due to exceedance of material strength,
which is defined by abortion of the simulation. According to the results, the failure probability is
nearly zero up to a PGA of almost 0.3 g. Then, it rises quite sharply. However, also for very
strong earthquakes, some probability of survival can be observed. Failure, evaluated by means of
the plastic-damage model for concrete, is a complex mechanism which occurs after ever-increasing
damage in vast parts of the dam. Hence, this mechanism does not depend merely on the intensity
of the ground motion, but also substantially on chance, or more technically speaking, on the
specific acceleration time history as well as on the other random parameters (table 4.1).

4.8.2 Cloud analysis
Although the binary outcome regression approach presented before yields satisfactory results, it is
clear that it ignores a lot of information actually contained in the results of the single simulation
runs. That is to say, by fitting a fragility curve to data points having value one or zero, the
actual value of the respective EDP is not considered.
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Fig. 4.19: Fragility curve for sliding safety < 1
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Fig. 4.20: Fragility curve for failure due to exceedance of material strength (abortion of simula-
tion)
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Fig. 4.21: EDP values versus PGA corresponding to damage mechanisms: 1) Cracking as
dynamic tensile strength is exceeded; 2) Maximum opening of a block joint > 0.01
m; 3) Cracking of the grout curtain; 4) Sliding safety < 1

Hence, a kind of corresponding cloud analysis, which here means an analysis involving all
available result data, is performed to compute the fragility curves. For that purpose, the values
of the four selected EDPs 6 are represented versus PGA, as scatter plots or "clouds" of result
data, see fig. 4.21. As for diagram 3), which shows the maximum stress at the dam heel, the
values have all been shifted to the positive range by adding a value of 1.5 MPa to each of them.
This was necessary since the MCS yielded a number of negative stress values (when the dam
heel is - so as it should be - under pressure throughout the ground motions), however, for the
subsequent approach just positive values are admissible. The corresponding damage criterion,
namely the occurrence of any tensile stress (i.e. any positive stress value), was therefore simply
changed to any value above 1.5 MPa.
The data points are then fitted by a power function [Hariri-Ardebili and Saouma, 2016b]:

ηEDP |ag,max
(ag,max) = u(ag,max)v (4.12)

where u and v are regression constants and ηEDP |ag,max
is the median value of EDP given ag,max.

6 This approach is applied to the four damage mechanisms only. Since "failure due to exceedance of material
strength" is characterized by binary outcomes, it is not amenable to cloud analysis.
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The lognormal fragility curve is then constructed by [Cornell et al., 2002]

P [EDP ≥ edp|ag,max] = 1− Φ
[

ln(edp)− ln(u(ag,max)v)
βEDP |ag,max

]
(4.13)

where Φ(.) is the standard normal cumulative distribution function and βEDP |ag,max
the logarith-

mic standard deviation (also called dispersion) of the EDP conditioned on the ag,max. It is given
by [Jalayer, 2003]

βEDP |ag,max
∼=

√∑ (ln(edpi)− ln(u(ag,max)v))2

N − 2 (4.14)

This approach has been used also by [Hariri-Ardebili and Saouma, 2016b] for the generation
of fragility curves for a gravity dam.
The resulting fragility curves are shown in fig. 4.22 (in green). For comparison purposes,

the diagrams contain also the previously calculated probabilities. Evidently, the quality of the
single results is varying for different damage mechanisms. As for damage mechanism 3), the
cloud analysis yields quite satisfactory results. Also the fragility curves for damage mechanisms
1) and 2) seem acceptable, although the consistently higher occurrence probabilities predicted
for damage mechanism 1) by the cloud analysis stand out. However, the results for damage
mechanism 4) must be considered as unacceptable.

In the following, it is attempted to find the reasons for the mismatches and solution strategies.
In the case of damage mechanisms 1) and 4), the transition from no damage to damage takes
place within a relatively narrow intensity range (according to the reference results). Similarly as
for the binary outcome regression, also for the cloud analysis this means that the two regression
parameters are substantially determined by EDP values for intensity levels outside the "crucial"
range.

Hence, the regression according to equation (4.12) is subsequently limited to the values within
the "crucial" range, i.e. the range where the transition occurs. Figure 4.23 shows the corresponding
regression curves, in fig. 4.24 the resulting fragility curves are shown as dashed green curves. In
the case of damage mechanism 1), the matching between cloud analysis and reference results is
now nearly perfect. For damage mechanism 4), the fragility curve has now a similar shape as the
one obtained by binary outcome regression. However, it indicates more conservatives results.
As for damage mechanism 2), the respective diagram in fig. 4.21 shows that the regression

curve evidently approximates the data points very well. However it stands out that the scatter of
results increases strongly as the PGA increases. The physical explanation for this result pattern is
that during weak ground motions, the blocks of the dam do not separate at all (so, the maximum
opening of the joints is equal to zero), while, for strong motions, there is a strong dependence of
this EDP on the specific ground motion time history. In contrast to that, a constant logarithmic
standard deviation is implied by equation (4.14).

Hence, the fragility curve is developed again by adopting a moving standard deviation. Instead
of calculating the standard deviation of all data points, it is now computed for each data point
separately based on ten neighbouring values. In fig. 4.25 the dashed green curve represents the
resulting fragility curve. It matches the reference results well.

Comprehensively, it can be concluded that cloud analysis may be used for constructing fragility
curves. However, the regression of the data points has to be carried out with care. Especially,
it should be made sure that the data points are fitted well near the limit value that indicates
damage. If the variance of results strongly depends on the intensity level, a moving standard
deviation should be adopted.
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Fig. 4.22: Fragility curves for the damage mechanisms: 1) Cracking as dynamic tensile strength
is exceeded; 2) Maximum opening of a block joint > 0.01 m; 3) Cracking of the grout
curtain; 4) Sliding safety < 1
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Fig. 4.23: "Crucial" EDP values versus PGA corresponding to damage mechanisms: 1) Cracking
as dynamic tensile strength is exceeded; 4) Sliding safety < 1
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Fig. 4.24: Updated fragility curves for damage mechanisms: 1) Cracking as dynamic tensile
strength is exceeded; 4) Sliding safety < 1
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Fig. 4.25: Updated fragility curves for damage mechanisms 2) Maximum opening of a block
joint > 0.01 m
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Fig. 4.26: Concept of limit exceedance estimation by means of EDP scatter plots "directly"
using the example of damage mechanism 4) Sliding safety < 1

Additionally, from a practical point of view, it is emphasized that the EDP versus intensity
plots in fig. 4.21 by themselves constitute a useful and expressive source of information about
the performance of a structure. Actually, it is difficult to associate a damage mechanism with a
certain metric, say an EDP exceeding a deterministic limit value. This is even more the case
for total failure of the structure [Gasser et al., 2019b] - though also for dams different damage
and failure indices have been proposed [Hariri-Ardebili and Saouma, 2014, Hariri-Ardebili and
Saouma, 2016a, Wang et al., 2018]. However, the assessment of the safety of a projected or
existing structure should be based on a comprehensive evaluation of its individual behaviour under
the given exposures, taking into account all conceivable risks and the uncertainties of the models
used. The author believes that this is especially true for dams and other infrastructures whose
structural properties can hardly be standardized, unlike for frame structures and buildings in
general, for which a wide PSDA toolset has been published in the last twenty years [Cornell et al.,
2002, Barroso and Winterstein, 2002, Ramamoorthy et al., 2006, Jalayer et al., 2007, Padgett
et al., 2008, Adam et al., 2017]. In that sense, it is believed that scatter plots, as in fig. 4.21,
showing the outcomes of different simulation runs including their variations can serve as useful
decision basis for dam experts.

Basically, it would even be possible to read off approximate damage probabilities from the scatter
plots directly. The concept is shown in fig. 4.26: One would only have to find the intersection
between the regression curve and the limit value for the respective damage mechanism. The
respective PGA value would then provide a direct estimate for the limit exceedance probability,
as, for a given site, each PGA level in turn may be associated with an exceedance probability in
terms of the seismic hazard curve H(ag,max).

For that purpose, naturally, any other suitable regression function could be used for fitting the
results - instead of equation (4.12) -, especially a three parameter power function,

ηEDP |ag,max
(ag,max) = u(ag,max)v + w (4.15)

In principle, it might also be used for the cloud analysis as presented before. However, this
function easily attains negative values when used for fitting data points near zero. Hence, it
could not be inserted directly in equations (4.13) and (4.14) - since the logarithm is not defined
for negative values. Instead, some artificial shift to the positive range would be necessary.
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Turning to fig. 4.26, the approach seems very appealing for its easiness. However, it totally
ignores the dispersion of results, which naturally influences the exceedance probabilities of
interest. Hence, this approach lacks consistency. Nevertheless, a numerical comparison of results
is presented in the next section.

4.9 Integration with local seismicity
In this section, the fragility curves will be combined with the site-referred seismic hazard, as
required to calculate damage occurrence probabilities in a given period of time, according to
equation (4.1), see also [Gasser et al., 2019a]. The aim is to see how the occurrence probabilities
are distributed over the intensity range. Naturally, this will depend on one hand on the structure
and on the damage mechanism of interest, and on the other hand on the local seismic hazard.
Hence, three locations in the Alps with different seismicity are selected. Their corresponding

seismic hazard is paired with the four fragility curves of the damage mechanisms of the arch dam.
The twelve resulting combinations are shown in fig. 4.27. The red curves show the probability
density functions of PGA, h(ag,max), which are the negative derivatives of the corresponding
exceedance probabilities H(ag,max), which refer to a period of 50 years and to rock foundation.
They are taken from [EFEHR, 2017]. The geographical coordinates of the three locations are
listed in table 4.2.

Tab. 4.2: Selected locations with coordinates

City name Bozen Innsbruck Tolmezzo
Seismic risk low moderate high
Longitude 11.38 11.38 12.98
Latitude 46.50 47.30 46.40

The blue curves are the fragility curves as obtained by the binary outcome regression. The
purple curves show the product of the probability density functions h(ag,max) and the fragility
curves P (F |ag,max), i.e. the integrand of equation (4.1). These curves, which for better illustration
are normalized to one, show how the occurrence probabilities are distributed over the intensity
range. Evidently, the relevant frequency range is very wide, for all locations and damage
mechanisms.

Of particular interest is the lower tail of the fragility curves, i.e. their left end, which indicates
the probabilities of limit exceedance in case of earthquakes with minor intensities. Although
these probabilities are very small, potentially, they might contribute considerably to the overall
probability according to equation (4.1) since the probability density values of the related small
ground motion intensities are very high (see red curves). Also, it is known that the lognormal
distribution used for the fragility curves is no appropriate distribution function for extremely
small probabilities [Office of Nuclear Regulatory Research, 1983]. Hence, it might be necessary to
use an advanced MCS sampling technique that is able to estimate these very small probabilities
with reasonable effort [Bucher, 2009b, Gasser and Bucher, 2018, Au and Beck, 2001], as it has
been proposed in [Au and Beck, 2003].

However, according to this research, it seems that such a procedure is not necessary, in general.
In fig. 4.27, the areas underneath the purple ("integrand") curves are shaded up to the intensities
where the respective fragility curves reach probabilities of 5%. This means, the areas shaded in
purple indicate the contribution of the small exceedance probabilities to the total exceedance
probability in 50 years (which according to equation (4.1) is the total area below the purple
curves). Evidently, these contributions are very small, for all locations and damage mechanisms.
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Fig. 4.27: Local probability density functions of PGA, h(ag,max), fragility curves P (D|ag,max)
and their products h(ag,max)P (D|ag,max)
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This implies that there is no need to employ a more sophisticated estimation of the tails of the
fragility curves.

Table 4.3 shows the occurrence probabilities referred to the four damage mechanisms and the
three locations considered, for a period of 50 years. Additionally, the values obtained from the
approach conceptually shown in fig. 4.26 are indicated in brackets.

Tab. 4.3: Occurrence probabilities in a period of 50 years

Bozen Innsbruck Tolmezzo
Damage mechanism 1) 0.0387 (0.0291) 0.1353 (0.1061) 0.3151 (0.2520)
Damage mechanism 2) 0.0122 (0.0030) 0.0501 (0.0166) 0.1206 (0.0450)
Damage mechanism 3) 0.0084 (0.0037) 0.0376 (0.0203) 0.0909 (0.0549)
Damage mechanism 4) 0.0099 (0.0084) 0.0449 (0.0398) 0.1070 (0.1048)

The simplified approach according to fig. 4.26 yields satisfying estimates for damage mechanism
4) and acceptable estimates for damage mechanism 1). However, this is certainly not the case for
damage mechanisms 2) and 3). At least for damage mechanism 2), this might be explained by
the "special" constellation of the corresponding EDP results, which not only are scattered more
and more as PGA increases, but are also confined in a very narrow zone between the minimum
possible value (0.00 m) and the respective limit value (0.01m) in the PGA range of interest.

However, in general, it should be emphasized that this method can never claim mathematical
rigour such as the probability estimate according to equation (4.1), which rests on the total
probability theorem. Especially, it completely ignores the dispersion of results, which naturally
is a key aspect in any probabilistic analysis.

Anyway the author is also very sceptical about any approach attempting to take account of the
dispersion of results at a single intensity level ("single-stripe analysis") with the aim of estimating
damage or failure probabilities. These concerns are motivated by two outcomes of this research:

1. The intensity ranges which contribute significantly to the exceedance probabilities (see
purple curves in fig. 4.27) depend on the specific location and damage mechanism. Obviously,
they are basically unknown prior to identification of the site-specific seismic hazard and
construction of the respective fragility curve. However, it should be noticed that the
"crucial" intensity ranges are consistently very wide.

2. The dispersion of the outcomes depends very much on the intensity level, see fig. 4.21.
Moreover, how the dispersion increases as the intensity increases depends on the specific
damage mechanism (or, in general, on the specific problem).

So at least for the (somehow "special") case of an arch dam, it seems that a "probabilistic"
seismic analysis for a single intensity level cannot be justified.

However, the author does not at all reject seismic analyses for single intensities in general. Given
the great difficulties of estimating damage probabilities - as has been demonstrated in this thesis
-, it is of course an option to evaluate a structure for a target earthquake intensity. Specifically,
the "Operating basis earthquake" (OBE) would be used for damage assessment and the "Safety
evaluation earthquake" (SEE), also called "Maximum credible earthquake" (MCE) - would be used
for failure assessment [ICOLD, 2010]; naturally, these denotations refer to acceptable risks and to
site-specific intensities. This approach is the deterministic counterpart to the methods presented
above, comparable to an ordinary (static) situation where an engineer designs a structure "for the
worst case". Needless to say that this simpler approach is primarily an option for practitioners
who want to avoid the difficult fragility curve generation. A further advantage of this approach
is that the analyst can inspect the finite element simulation results directly, instead of relying on



84 4 Seismic safety analysis of an arch dam

(a number of) summarized outcomes of MCS. However, as opposed to the static case where the
loads (and responses) are quite well known and the (small) uncertainties may be accounted for
by safety factors, in the seismic case, loads and responses are characterized by high variability.

4.10 Summary and conclusions
A general aim of this study was to learn about the challenges of performing a stochastic seismic
analysis of a sophisticated finite element model. It was found that the evaluation of a high
number of random samples is needed. Consequently, the computational cost of a (rigorous)
stochastic analysis is very high.
The main difficulty for the analyst, however, is to set up a proper model and, especially, to

identify the essential limit states. This is particularly true for the definition of the ultimate
limit state, i.e. failure due to exceedance of material strength, in the present case. While in
a deterministic analysis, one can apply her/his best engineering judgement by taking a closer
look at the results and evaluate them comprehensively, a probabilistic evaluation generally,
in the end, has to rely on automized numerical results. Hence, a realistic modelling of the
structure is necessary, including especially an appropriate material model. It was found that the
plastic-damage model is able to represent the behaviour of concrete under dynamic excitation
and that abortion of simulation may be used as an indicator for ultimate capacity in a MCS.

In particular, the seismic behaviour of an arch dam was studied by means of a nonlinear model
including fluid-structure-foundation interaction. Next to the ultimate limit state, four damage
mechanisms were identified und respective limit states were defined. Seismic fragility curves have
been generated for all five limit states.

The representation of the outcomes of seismic time history analyses as scatter plots of different
response values versus the intensity has shown that seismic behaviour strongly depends on the
specific ground motion time history. Especially for strong earthquakes, which cause nonlinear
behaviour of the structure, the variance in the response values for similar intensities is very high,
implying that the responses are highly subjected to randomness.
As a consequence, if one chooses to design a structure according to a target intensity level,

it is strongly recommended to perform a number of simulations with different ground motion
time histories. They can either be recorded ground motions scaled to the target intensity or
artificial ground motions, as used for this work. In any case, by performing several simulation
runs (maybe seven), it is rather unlikely to encounter a situation where a structure is fallaciously
considered safe only because the chosen time history - though matching the target intensity level
- does not cause exceedances of limit values which usually will be exceeded at that intensity level.

However, it is clear that this method widely used in engineering practice eventually yields just a
small sample out of a strongly scattering result population. A rigorous approach necessitates the
construction of fragility curves for the relevant damage (and failure) mechanisms. In general, this
requires several MCS estimates which cover the range of conceivable intensities adequately. This
is a very time consuming procedure since for one such estimate approximately 100 simulation
runs are necessary; for small estimation values, in principle, even considerably more.
One simulation run needs about eight hours on a single-core 1.8 GHz processor. If one MCS

estimate is based on 100 runs and a fragility curve is based on twelve such estimates, 1200
runs are needed for a fragility curve. This would result in 9600 hours of computation, whereby
parallelization is possible, of course.
However, it has been shown that the number of simulation runs can be reduced considerably

(to be exact to 100 in total) by changing the sampling such that the ground motion intensity is
increased each time and by adopting more elaborate approaches for processing of results.
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In the first approach, the fragility curves were obtained by fitting a lognormal distribution
function to binary data points indicating no damage or damage. The results obtained by this
technique were remarkably close to the reference results.

In the second approach, a cloud analysis was performed where the fragility curves were derived
based on the exact outcomes of the simulation runs and their variances. Admittedly, the result
quality was initially below the author’s expectations. However, if the regression of the data
points is performed carefully, also this approach yields adequate results. The author believes
that the capabilities of cloud analysis are much higher for (standard) buildings where positive
(and non-zero) continuous response quantities are studied, e.g. maximum inter-storey drift ratio.

Finally, the fragility curves were combined with site-specific PGA probability density functions.
The primary aim was to learn about the contributions of the different intensity levels to the
overall exceedance probability. It was found that, for a representative number of examples,
the contribution of frequently occurring moderate earthquakes is very small. Hence, it can be
concluded that closer examinations regarding minor or moderate earthquakes are not necessary.
Moreover, it has been shown that there is no "way in between" the simplified approach of

deterministically analysing the structure’s behaviour at a target intensity level, and calculating
fragility curves, i.e., determining threshold exceedance probabilities for all intensity levels. In
other words, MCS for a single intensity level (so called single-stripe analysis) is incorrect because
it neglects the behaviour at all other intensity levels, and especially the corresponding result
dispersions.





Chapter 5

Concluding remarks

The results of the studies on the estimation of small failure probabilities as well as on the seismic
safety of an arch dam have already been summarized in the corresponding chapters. Thus, here,
some general conclusions regarding probabilistic seismic safety are provided.
In principle, studies on seismic safety seem predestinated for involving probabilistic methods.

This is because:

• Response variability due to different ground motion time histories is very high. Hence, in
principle, these uncertainties should be considered, rather than relying on deterministic
results.

• The uncertainty about a (specific) ground motion time history is of aleatoric type. This
means that the only way to deal with this uncertainty is to include it in the calculations since
it is impossible to reduce or eliminate it. This is in contrast to epistemic uncertainties (e.g.
about strength or damping values) where one may still aim at gaining better informations
about the quantities by more testing.

However, the (state of the art) framework of probabilistic analysis - as has been outlined in
chapter 2 and further developed in chapter 3 - is hardly applicable to seismic analyses in its
conventional form. This is because:

• The stochastic representation of a seismic signal is much more difficult than of an uncertain
static system - which may be described by a multidimensional PDF for the random variables
and a limit state (equation). This is due to the fact that a seismic signal is a random process
characterized by many parameters such as intensity, frequency content, and duration. To
represent the seismicity of a specific site, the analyst can either employ (scaled) recorded
ground motions or artificial ground motions. In neither strategy, advanced sampling
techniques such as low-discrepancy sampling are applicable.
Furthermore, the need to implement a random process as well as the desire to simulate
the structural behaviour as realistically as possible (including nonlinearities and failure)
render a failure probability estimate method relying on design point detection impractical.
The design point is the most probable configuration of the random parameters leading to
failure.

• A further peculiarity of seismic analyses arises due to the fact that safety estimates result
from a superposition of seismic hazard and respective damage/failure probabilities. More
specifically, one has to integrate these quantities over all conceivable seismic intensity levels.
In this work it has been shown that seismic safety is not a matter of small probabilities (as
many other reliability problems). Furthermore, it has been demonstrated that any attempt
to perform a (more economical) stochastic analysis using a single intensity level is pointless.
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According to this study, a saving in computation time may not be gained by advanced sampling
of the input parameters, but rather by advanced result processing. Two methods have been
presented and tested which allow damage/failure probability estimates based on 100 simulation
runs.

Besides, the elaboration of a sophisticated model of an arch dam has shown that the seismic
behaviour of special structures may be simulated by modern software. In particular, the gradual
deterioration of the concrete may be represented by implementing a suitable material model.

The assessment of the seismic safety of a structure requires the preparation of an appropriate
(finite element) model. This necessitates, however, that the analyst comprehends the essential
physical processes, in particular the seismic excitation and the load bearing characteristics.
Furthermore, the engineer must be able to identify realistic damage and failure mechanisms.
This is not only the case in a probabilistic analysis, as presented in this work, but rather also
when conventional methods are employed such as deterministic time history analysis for a target
return period, or response spectrum analysis.

Further research should regard proper modelling of the earthquake input mechanism, the focus
being on two aspects:

• Capturing radiation damping realistically. The associated difficulties have been outlined
in subsection 4.3.3. A Monte-Carlo-based seismic analysis requires the deconvolution
procedure being automized. Hence, it must be implemented in the finite element software
package.

• Consideration of spatially varying ground motions. Numerous studies have shown that
ground motions time histories are not equal at different points of the foundation-structure
interface in case of structures having extensions of several hundreds of meters. Of course,
this depends strongly on the shape of the foundation, the ground conditions, and also on
the specific seismic excitation. Hence, consequences on the response of the structure may
only be described reasonably in a probabilistic sense. Thus, calculations need to be based
on Monte-Carlo simulation.
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