
Clock Synchronization in a
Distributed Hardware-in-the-Loop

Testbed

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Embedded Systems

by

Thomas Reisinger, BSc
Registration Number 01125966

to the Faculty of Electrical Engineering and Information Technology

at the TU Vienna

Advisor: Privatdoz. Dipl.-Ing. Dr.techn. Wilfried Steiner
Assistance: Dr. Michael Steurer

Dr. Mark Stanovich
Dr. Karl Schoder

Vienna, 1st June, 2022
Thomas Reisinger Wilfried Steiner

Technische Universität Wien
A-1040 Vienna Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

reisi
Bleistift

wsteiner
Stamp

Acknowledgements

I would like to express my sincere gratitude to Vienna University of Technology and
Florida State University (FSU) Center for Advanced Power Systems (CAPS) for this
cooperative master’s thesis. In the course of my studies and many working hours in
the study rooms of the Central Information Team (CID), a very familiar study group
has established itself over the years. The thus self-proclaimed "CID-Room-Gang" has
meanwhile become not only my closest circle of friends but also very valued work colleagues
who were always up for a scientific discussion round. I would also like to thank my
father, Michael Reisinger, through whose support over the years, I was able to focus
on my studies. No matter how tiring and exhausting the studies were at times, there
was one person in particular who always stood behind me and whose emotional support
I could always rely on, thank you Marlies Metzich. A big thank you also goes to my
advisors Wilfried Steiner, Mark Stanovich, and Michael (Mischa) Steurer who supervised
me during my thesis. Last but not least, I would like to thank all my friends and family
who are not mentioned by name and who always stood behind me and supported me
during my studies.

This work was sponsored in part by the US Office of Naval Research (ONR) under grant
number N00014-16-1-2956.

iii

Kurzfassung

Power Hardware-in-the-Loop (PHIL) und Controller Hardware-in-the-Loop (CHIL) Ex-
perimente sind wertvoll für die Forschung und Entwicklung neuartiger Energiesystem-
technologien. In Kombination mit Netzwerkemulatoren wie CORE (Common Open
Research Emulator) können komplexe Simulationen mit minimalen Hardwareanforderun-
gen durchgeführt werden. Solche Simulationen sind jedoch recht komplex, da die Anzahl
der gleichzeitigen Ereignisse und der erzeugten Daten steigt. Daher ist es wichtig, eine
gemeinsame Uhr zur Verfügung zu stellen, mit der die Daten mit einem Zeitstempel
versehen werden können. Zu diesem Zweck können genaue Zeitverteilungsmechanismen
wie das Präzisionszeitprotokoll (PTP) IEEE-1588 genutzt werden. Das Center for Ad-
vanced Power Systems (CAPS) an der Florida State University (FSU) ist führend auf
dem Gebiet der HIL-Simulationen. Derzeit umfasst die Infrastruktur des CAPS und der
Partneruniversitäten für die Co-Simulation keine GPS-synchronisierten Hochpräzisions-
Taktsynchronisationsgeräte, die in einem HIL-Experiment verwendet werden. Daher ist es
das Ziel dieser Masterarbeit, ein GPS-Taktsynchronisationskonzept für das HIL-Testbed
zu entwickeln. Das entwickelte Konzept wird ermöglichen, dieses PTP-Backbone mit
verschiedenen Komponenten eines HIL-Testbeds bei CAPS zu verwenden und die Vorteile
einer gemeinsamen Zeitbasis zwischen unabhängigen Hardwarekomponenten zu verifi-
zieren. Dies ermöglicht die Messung der Einweg-Verzögerung zwischen zwei Geräten
mit einer Auflösung im Nanosekundenbereich. Diese Methode kann insbesondere dazu
verwendet werden, das Verhalten von emulierten Netzwerken in CORE im Vergleich zu
realen Netzwerken zu überprüfen. Darüber hinaus kann die Auflösung von zeitgestempel-
ten Daten aus Echtzeitsimulatoren (RTS) für eine genauere Ereignisbestimmung erhöht
werden.

v

Abstract

Power Hardware-in-the-Loop (PHIL) and Controller Hardware-in-the-Loop (CHIL) exper-
iments are valuable for the research and development of novel power-system technologies.
In combination with network emulators like CORE (Common Open Research Emulator)
complex simulations can be realized with minimal hardware requirements. However, such
simulations are quite complex as the number of simultaneous events and generated data
grows. Therefore, it is important to provide a common clock by which to timestamp
data. For this, accurate timing distribution mechanisms, like the precision time protocol
(PTP) IEEE-1588 can be leveraged. The Center for Advanced Power Systems (CAPS) at
Florida State University (FSU) is a leader in the field of HIL simulations. Today, the
infrastructure at CAPS and partner universities for co-simulation does not include GPS
synchronized high precision clock synchronization cross devices used in a HIL experiment.
It is, thus, the objective of this master’s thesis to develop a GPS clock synchronization
concept for the HIL Testbed. The developed concept will demonstrate the possibility
to use that PTP Backbone with different components of a HIL Testbed at CAPS and
verify the benefits of a common time base between independent hardware components.
This enables the opportunity to measure one-way path delay between two devices in
nanosecond resolution. In particular, this method can be used to validate the behavior
of emulated networks in CORE compared to real networks. In addition, the resolution of
time stamped data from real-time simulators (RTS) can be increased for more precise
event determination.

vii

Contents

Kurzfassung v

Abstract vii

Contents ix

List of Figures xi

List of Tables xiii

Acronyms xv

1 Introduction 1
1.1 Thesis Contributions . 2
1.2 Description of the research content . 2
1.3 Expected Outcome . 3

2 State of the Art 5
2.1 Precision Time Protocol IEEE 1588 5

2.1.1 Clock Types . 5
2.1.2 Clock Synchronization . 6
2.1.3 Precision Time Protocol (PTP) Profile IEC 61850-9-3 7

2.2 Hardware in the Loop Simulations . 9
2.3 Case Studies . 10

2.3.1 GPS Clock Synchronization Accuracy 10
2.3.2 Clock Synchronization in HIL Systems 12
2.3.3 Common Open Research Emulator (CORE) 14

2.4 Current Hardware in the Loop Testbed 16
2.4.1 Center for Advanced Power Systems 16
2.4.2 Power Hardware in the Loop Testbed 16
2.4.3 Controller Hardware in the Loop Testbed 18

3 System Architecture / Implementation 21
3.1 PTP Compatibility of HIL Interfaces . 21

ix

3.1.1 Real Time Digital Simulator . 21
3.1.2 Linux Operating System . 23
3.1.3 Non PTP Compatible Devices 24

3.2 PTP Backbone . 26
3.2.1 Grandmaster Clock . 26
3.2.2 PTP Switch . 28
3.2.3 PTP Hardware Configuration 28
3.2.4 Final Hardware Setup . 35

4 System Performance Validation 39
4.1 User Datagram Protocol (UDP) measurement script 40

4.1.1 UDP Socket Configuration . 42
4.1.2 Sending and receiving UDP packets 42
4.1.3 Accessing timestamps via a control messages 44
4.1.4 Linuxptp data . 44

4.2 CORE Validation Process . 45
4.2.1 CORE Measurement Setup . 45
4.2.2 CORE Validation Results . 46

4.3 RTDS Validation Process . 54
4.3.1 RTDS Measurement Setup . 54
4.3.2 RTDS Validation Results . 56

4.4 SyncBox validation Process . 59
4.4.1 SyncBox Measurement Setup 59
4.4.2 SyncBox Validation Results . 60

5 Outlook 65
5.1 Conclusion . 65
5.2 Future Work . 66

Bibliography 67

List of Figures

2.1 Example peer delay mechanism between master and slave clock [1]. 6
2.2 Peer-to-Peer mechanism with a transparent clock [2]. 8
2.3 The Basic structure of PHIL/CHIL-based experimental test [3]. 10
2.4 OSI layer topology and an illustrated Controller Hardware-in-the-Loop (CHIL)

setup [4]. 10
2.5 A concept overview to integrate IEEE 1588 power profile into a Power

Hardware-in-the-Loop (PHIL) testbed [5]. 13
2.6 The proposed software-based time synchronization mechanism [5]. 13
2.7 The block diagram of the experimental setup [5]. 14
2.8 Overview of a representative CHIL setup to evaluate distributed energy

management control system performance [6]. 15
2.9 Response time between a) a real hardware switch and b) an emulated switch

within Common Open Research Emulator (CORE) [6] 16
2.10 Current Power Hardware in the Loop Testbed setup overview. 17
2.11 Florida State University (FSU)-Center for Advanced Power Systems (CAPS)

Power Hardware in the loop Amplifiers setup. 18
2.12 FSU-CAPS Controller Hardware in the loop setup. 19

3.1 Extended CHIL testbed with a PTP backbone. 22
3.2 Real Time Digital Simulator (RTDS) periphery including different interface

cards [7]. 23
3.3 Core components of the PTP Backbone. 36

4.1 Measurement setup to validate system performance. 40
4.2 Flowchart of the UDP measurement script 41
4.3 Measurement setup during the validation process. 45
4.4 Emulated switch within the CORE simulation. 46
4.5 One-way latency of direct Ethernet connection, influenced of uncalibrated

state using hardware timestamps. 47
4.6 One-way latency of direct Ethernet connection, influenced of uncalibrated

state using software timestamps. 48
4.7 Examples of possible clock drift, or path delay measurement accuracy without

PTP synchronization. 49
4.8 Comparison of one-way path delay over three different hardware switches. . 51

xi

4.9 Deviation of the propagation delay of an emulated switch according to different
network parameters. 53

4.10 Schematic of the RSCAD UDP communication using the GTSYNC card as a
time reference. 54

4.11 Visualization of an example GTNET UDP measurement including all moni-
toring signals. 56

4.12 Example latency measurement setup between GTNET-SKT and Linux ma-
chine. 56

4.13 Deviation of path delay between Optiplex 9010 and RTDS. 58
4.14 Influence of the timestep on the measured path delay. 59
4.15 Measurement setup for SyncBox clock stability. 60
4.16 Example of the rising edge detection algorithm. 61
4.17 Min/Avg/Max clock drift compared to reference Channel 1. 61
4.18 Minimal, average, and maximal drift compared to Channel 1 during 40 min

period. 62
4.19 Average drift compared to Channel 1 during the total measurement period. 63
4.20 Drift between 10 MHz output ports within the SyncBox. 63

List of Tables

2.1 72-hour H-Maser linear fit residuals. 12

3.1 Overview of PTP features of a GTSYNC card. 22
3.2 Overview of PTP features of Linuxptp. 24
3.3 Hardware requirements for a Network Interface Card (NIC) to communicate

with IEEE 1588 PTP [8] . 24
3.4 Oscillators integrated in Meinberg Devices [9] 25
3.5 Mandatory (M) and optional (O) requirements for the PTP Backbone . . 26
3.6 Protocols and profiles of the microSync RX102 Grandmaster (GM) [10] . 27
3.7 Different antenna types which are compatible to the Meinberg receiver [10] 27
3.8 MAC and IP addresses of all components within the PTP network 29
3.9 List of available Global Positioning System (GPS)/Galileo satellites. . . . 30
3.10 Meinberg SyncBox PTP configuration. 30
3.11 Flag description of ptp4l and phy2sys command. 32
3.12 Example output from ptp4l and phc2sys command. 33
3.13 GM microSync RX102 description of status LEDs [10]. 34
3.14 Description of status LEDs regarding Meinberg SyncBox. 35
3.15 All components used or available. 37

4.1 Comparison of path delay results depending on measurement method. . . 50
4.2 Comparison of one-way path delay over three different hardware switches. . 51
4.3 Average propagation delay of an emulated switch according to different network

parameters. 52
4.4 Difference between the real and emulated switch in CORE. 52
4.5 Path-delay between GTNET and Optiplex machine, depending on RTDS

timestep. 57
4.6 Summary of internal and external drifts of two SyncBoxes. 64

xiii

Acronyms

1PPS one Pulse per Second. 10–12, 14, 21, 22, 25, 65, 66

ADC Analog Digital Converter. 12

BC Boundary Clock. 5–7

BMCA Best Master Clock Algorithm. 5, 7, 26

CAN Controller Area Network. 19, 35, 66

CAPS Center for Advanced Power Systems. xi, 2, 16, 18, 19, 21, 24–26

CHIL Controller Hardware-in-the-Loop. xi, 9, 10, 14–16, 18, 22, 35

CORE Common Open Research Emulator. xi, xiii, 1, 3, 14–16, 19, 39, 40, 45, 46, 50,
52, 65

CSU COMPISO System Unit. 18

DAC Digital Analog Converter. 12

DUT Device Under Test. 1, 9, 12, 14, 17–19, 24, 26, 35, 59, 66

E2E End-to-End. 5, 25, 26

FPGA Field Programmable Gate Array. 12, 22

FSU Florida State University. xi, 2, 16, 18, 19, 21, 26

GM Grandmaster. xiii, 7, 21, 26, 27, 33, 34

GMC Grandmaster Clock. 2, 5, 7, 9, 12, 14, 21, 24, 26, 28, 31, 32, 34, 40, 44, 45, 59, 62

GNSS Global Navigation Satellite Systems. 5

GPS Global Positioning System. xiii, 5, 10–12, 21, 25–27, 30, 31, 33, 34, 65, 66

xv

GUI Graphical User Interface. 22, 28–30, 34

HIL Hardware-in-the-Loop. 1–3, 9, 16, 18, 19, 21, 23, 25, 26, 39, 59, 65, 66

HMI Human-Machine Interface. 10, 16, 17

IEC International Electrotechnical Commission. 8

IF Intermediate Frequency. 11, 27

IP Internet Protocol. 10, 19, 28, 42, 43, 55

IRGBH Inter Rack Global Bus Hub. 23

IRIG Inter-Range Instrumentation Group. 25, 65

MAC Media Access Control. 28

MMC Multilevel Converters. 17, 18

NIC Network Interface Card. xiii, 14, 24, 31–34, 39, 40, 42, 45, 48

NTP Network Time Protocol. 5, 12, 17, 25, 29, 43, 59

OS Operating System. 23, 32, 65

P2P Peer-to-Peer. 5–7, 9, 22, 25, 26, 29, 30

PHIL Power Hardware-in-the-Loop. xi, 2, 9, 12, 13, 16–18, 35, 66

PoE Power over Ethernet. 25, 28

PPB Part per Billion. 32

PPO Programmable Pulse Output. 25, 26

PTP Precision Time Protocol. ix, xi, xiii, 1–3, 5, 7–9, 12, 14, 21–26, 28–36, 39, 40, 44,
45, 49, 50, 52, 55–57, 59, 60, 62, 65, 66

PTPd PTP deamon. 23

PUP Power Utility Profile. 8

RTDS Real Time Digital Simulator. xi–xiii, 15–18, 21–23, 39–41, 55–58, 65

RTS Real Time Simulator. 1, 9, 12, 15, 16, 21, 65

RTT Round Trip Time. 3, 45, 48, 49, 52

SFP Small Form-factor Pluggable. 26, 28

SNTP Simple Network Protocol. 31

SPAN Switched Port Analyzer. 30

TAI International Atomic Time. 29, 31–33, 54

TC Transparent Clock. 5–7

TCP Transmission Control Protocol. 10, 19

TTL Transistor-Transistor Logic. 25

UDP User Datagram Protocol. x–xii, 15, 22, 39–46, 48, 49, 54–57

UTC Coordinated Universal Time. 5, 12, 29, 31, 32, 55

VVS Variable Voltage Sources. 17, 18

CHAPTER 1
Introduction

Every device during the development process requires a variety of simulation and testing
procedures before integration into the field. Since software-based simulation includes
assumptions and simplifications, Hardware-in-the-Loop (HIL) simulations offer a more
realistic approach. HIL simulations can be used for developing and testing real hardware
under real circumstances. This technique reduces costs and over hardware testing,
and includes testing with real-world issues like hardware weakness, noise, or randomly
triggered events[5].

In combination with such simulation, two major components are used, a Real Time
Simulator (RTS) and the Device Under Test (DUT). In addition, virtual network emulators
can be used to further compute large-scale network analysis[11]. A RTS is responsible
for the major computation and simulation process. Events of a simulation are executed
sequentially during discrete time periods given by the RTS processor. Therefore, a
discrete event counter starts with every simulation and can be used as a time reference
for the simulation. Depending on the specific use case a virtual network emulator CORE
can be utilized to create a network topology between RTS and DUT [6]. This reduces
the amount of necessary peripheral hardware like switches, routers, or computers. Thus,
emulated networks improve the controllability of network components and reduce costs
by replacing real hardware.

Instead of discrete timing events from RTS, a higher resolution of time source can be
achieved with a high precision GPS synchronized reference. Therefore a clock distribution
system is required to synchronize all components of the simulation with the same time
reference. IEC 61850 is a widely used standard for communication in the power and
energy industry. In particular, the IEC 61850-9-3, a profile of the PTP IEEE 1588
standard will be used in this thesis due to the wide compatibility with all kinds of
hardware components.

1

1. Introduction

It is, thus, the objective of this master’s thesis to implement a clock synchronization
concept for the existing PHIL testbed of FSU-CAPS. This work also demonstrates
representing user applications to take advantage of the common clock synchronization.

1.1 Thesis Contributions
One major challenge of this thesis is to work with the already existing HIL testbed at
CAPS, and the associated hardware requirements. Since the testbed is parallel used for
different projects, the development process must not harm or interfere in any way with
the ongoing simulations. This circumstance is called Brownfield development, compared
to Greenfield development which is a totally new environment and allows development
from a clean slate.

So the major thesis contributions can be settled as follows:

− Determining the appropriate Clock Synchronization Standard according to the
existing hardware components.

− Classification of available devices, depending on the compatibility of clock synchro-
nization.

− Selecting three representative devices for a demonstration test.

− Establishing a GPS synchronized Backbone with an external Grandmaster Clock
(GMC).

− Validation of the system performance of the developed concept.

1.2 Description of the research content
The thesis can be separated into two major tasks. On the one hand, the PTP Backbone,
which provides a GPS synchronized time reference with an interface to components of the
CAPS HIL testbed. And on the other hand, the performance validation concept verifies
the improvement and benefits on a scientific base. So the thesis can be structured further
as follows. Chapter 2 contains background information about different concepts of clock
distribution systems in HIL simulations. Followed by an overview of different PTPs, their
benefits, use cases, and necessary background information. Chapter 2.4 treats the current
HIL testbed of FSU-CAPS, including an explanation of used hardware components and
workflow. Chapter 3 describes the practical part of the thesis. This covers the complete
design process of the PTP Backbone. Chapter 4 copes with the performance validation
process of the developed concept. This includes developed measurement concepts, the
validation concept of the virtual network emulator, and the associated results. The last
Chapter 5 provides a conclusion and a future outlook with further improvements and use
cases.

2

1.3. Expected Outcome

1.3 Expected Outcome
The developed PTP Backbone should provide precise GPS synchronized time reference
for devices that support the IEEE-1588 protocol or related profiles like IEC 61850-9-3.
Components without such protocol support should also have the possibility of clock
synchronization. One possible user application to demonstrate the advantages of common
clock synchronization is the possibility of one-way path delay measurements. Since
every component is synchronized to the same global time base, the path delay is the
difference between hardware time stamped sent and received messages between two device.
This provides higher accuracy compared to application-level Round Trip Time (RTT)
measurements. In particular, if a system only implement software instead of hardware
timestamp mechanisms. This gives a new opportunity to quantify the performance of
CORE compared to real hardware. Moreover, since data of a HIL simulation has a
timestamp from the common clock, data during post-processing can be compared with
co-simulations.

3

CHAPTER 2
State of the Art

2.1 Precision Time Protocol IEEE 1588
The most common protocols in terms of clock synchronization are Network Time Protocol
(NTP) and IEEE 1588, well known as PTP. NTP can provide microseconds time accuracy
using software-based solutions, where PTP achieve up to tens of nanosecond using
hardware timestamps. Typically, Global Navigation Satellite Systems (GNSS)/GPS are
used as the main time source due to their price, global time base, accuracy, and easy
deployment. Such systems allow the use of time (Coordinated Universal Time (UTC)) and
frequency references with tens of nanosecond accuracy [12]. Another important aspect is
cyber security, Lisova et al. [13] applied a game theory to investigate possible strategies to
perform attacks on clock synchronization systems but also a network monitoring concept
aiming to detect such attacks. The following section should give general information about
the necessary PTP terms, to understand and configure a PTP synchronized network.

2.1.1 Clock Types
In PTP network four different types of clocks exist, Ordinary Clocks, Grandmaster
Clock, Boundary Clocks, and Transparent Clocks. Ordinary clocks are typically
devices with only one port, also called end nodes, and can be selected as GMC from the
Best Master Clock Algorithm (BMCA) [14]. Only one GMC can be selected at the same
time. Boundary Clock (BC)s are usually switches or routers in the PTP network and
thus, have more than one PTP port. BCs synchronize their own clock with the selected
GMC, an example is explained in Figure 2.1. Transparent Clock (TC)s can be separated
into two categories, End-to-End (E2E)-TCs and Peer-to-Peer (P2P)-TCs. E2E-TCs are
forwarding PTP synchronization messages but do not provide correction for the internal
propagation delay of the link itself. P2P-TCs on the other side are considering this
internal link delay. Figure 2.2 shows an example of master-slave clock synchronization
with a P2P-TC in between [15].

5

2. State of the Art

2.1.2 Clock Synchronization

To synchronize all clocks in a network and thus, compensate for clock offset and clock
drift, it is required to calculate the link delay between each device. Therefore, two
synchronization concepts exist depending on the use of BC or P2P-TC. Figure 2.1 shows
an example of the fundamental peer delay mechanism of IEEE 1588 using a BC. The
master is sending a Sync message and a Follow_up message containing the hardware
timestamp of sending the Sync message (t1). The slave is hardware time stamping the
receiving of the Sync message (t2) and also saves t1 from the Follow_up payload. The
slave is sending a Delay_Req to the master and timestamps the sending time (t3). The
master is answering with a Delay_Resp message containing the timestamp of receiving
the Delay_Req message (t4) [1].

100s
101s
102s
103s
104s
105s
106s
107s
108s
109s
110s
111s
112s
113s

80s
81s
82s
83s
84s
85s
86s
87s
88s
89s
90s
91s
92s
113s

Master Time Slave Time
Timestamps
known by Slave

t2 = 82s

t3 = 86s

t1 = 100s

t4 = 108s

Adjusted
Slave Clock

Figure 2.1: Example peer delay mechanism between master and slave clock [1].

The slave has now four timestamps (t1, t2, t3, t4) locally available to calculate the current
clock offset between master and slave according to Equation 2.2. In this particular
example, the initially unknown link delay is 2 s and thus, the clock offset between slave
and master is −20 s. The RateRatio is an indicator of clock drifts, but the algorithm is
not prescribed in IEEE 1588. Any algorithm is allowed that achieves a measurement
accuracy of ±0.1 ppm. Equation 2.3 represents an example algorithm introduced in [16].
Since the peer delay mechanism is repeated periodically, the rate ratio is calculated as
the ratio of the arrival intervals of consecutive Delay_Req messages to the departure

6

2.1. Precision Time Protocol IEEE 1588

intervals of the same message.

Clock_offset = RX(t4) − TX(t1) − Link_delay = 2 s (2.1)

Link_delay = [(t4 − t3) + (t2 − t1)]
2 = −20 s (2.2)

RateRatio = t�
1 − t1

t�
2 − t2

= 105 − 100
87 − 82 = 1 (2.3)

Figure 2.2 shows an example P2P mechanism with a transparent clock switch between a
master and a slave clock. Every Master clock is sending a Sync message to the network
and TC/BCs are forwarding this Sync message to the slaves. Every node in this path is
saving the time of sending and receiving locally. Then, a Follow_up message including
the sending timestamp of the master Sync message is also sent to the slave over the same
path as the Sync message. The announce message contains clock properties like clock
accuracy, and a timeTraceable flag which indicates that the GM is using a GPS reference
or other clock information. According to all announce messages in the network, the
BMCA selects the GMC [14]. After that, the link delay between nodes can be calculated
as analog to the explained BC mechanism in Figure 2.1. The time offset between the
master and slave clock can be calculated with Equation 2.4. The correction field contains
the time delay within the switch to forward a message.

Time_offset = RX(t4) − TX(t1) −
�

Delay − Corr_field (2.4)

Delay_1 = [(t6 − t5) + (t8 − t7)]
2 (2.5)

Delay_2 = [(t10 − t9) + (t12 − t11)]
2 (2.6)

Corr_field = (t3 − t2) (2.7)

Important to mention is, that both synchronization methods are based on the assumption
of symmetric link delay.

2.1.3 PTP Profile IEC 61850-9-3
The IEEE 1588 definition of a PTP profile is the set of allowed PTP features applicable
to a device. A PTP profile is usually specific to a particular type of application or
environment and defines the following values [15]:

− Best master clock algorithm options.

− Configuration management options.

− Path delay mechanisms.

7

2. State of the Art

Switcht1
t2

t3

t4
t1, t4

t5

t8

t5, t6, t7, t8

t6

t7

t9

t12

t9, t10,
t11, t12

Slave
Clock

Master
Clock

t10

t11

Delay_1 Delay_2

Corr_field
Figure 2.2: Peer-to-Peer mechanism with a transparent clock [2].

− Range and default values of all PTP configurable attributes and data set members.

− Transport mechanisms that are required, permitted or prohibited.

− Node types that are required, permitted or prohibited.

− Options that are required, permitted or prohibited.

Since 1960 when digital communication became more and more relevant different com-
munication protocols were developed. But requirements from the past like reducing
bytes on the wire are obsolete nowadays. Therefore, the International Electrotechnical
Commission (IEC) has developed and released a new global standard for substation
automation called IEC 61850. The main structure of that protocol is abstracting the
data items and services. The so-created data is independent of any underlying protocol
and can be mapped to any other protocol that can meet the specific requirements [17].

One part of that new standard is the IEC 61850-9-3, also called Power Utility Profile
(PUP), clock synchronization and precise timing distribution protocol. PUP is a sub-
profile of the IEEE 1588 PTP. IEC 61850-9-3 defines specific or allowed values for the
PTP network used for power the substation. Power profile values provide a consistent

8

2.2. Hardware in the Loop Simulations

and reliable network time distribution system within and across substations [15].
Some Requirements for IEC-61850-9-3 PTP networks:

− GMC accuracy has to be smaller than 250 ns.

− All clocks have to send PTP messages over network protocol 802.3 (layer 2).

− All clocks have to support P2P mechanism.

− All clocks have to support 1 and 2 step synchronization.

Additional timing constraints are documented in [18].

2.2 Hardware in the Loop Simulations
HIL simulation is a real-time simulation technique that, when combined with emulated
input and output signals, supports the development and testing of real-world systems.
Real-time simulators typically abstract and model any complex system. At the same time,
DUT, a specific component whose behavior is evaluated, is not modeled or simulated, but
actually works as if it were installed in a real plant. In other words, the HIL simulation
platform emulates the interaction between the plant and the DUT, usually by mimicking
electrical input/output signals. Furthermore, simulating plant behavior in real-time using
specific mathematical models. HIL provides and receives control signals and receives
feedback from the DUT. This allows to repeat simulations for multiple runs under the
same conditions and thus, greatly improves the reproducibility of the test process under
development [5].

The DUT can be a sensor, an electrical machine, a generator or an entire system. They
cover the whole scope two further categories exist, CHIL and PHIL. Figure 2.3 illustrates
the basic structure of Controller and Power Hardware in the Loop simulations.

RTS typically use a fixed-time step solver with the smallest time-step size that can be
achieved. This limitation can affect the time constants, and thus the switching frequencies
of power electronics models. In addition, the amplifiers, actuators, sensors, and A/D
cards of a PHIL simulation have their own bandwidth, which can cause time delays to
create instability in some cases. The power limits of amplifiers and actuators (voltage,
current, torque, speed, etc.) also add constraints that need to be fulfilled. Therefore, it
is important to consider the limitations of PHIL experiments and properly assess the
system requirements [3].

CHIL simulations compared to PHIL are typically handled with low voltage levels (±10 V).
Figure 2.4 illustrates the layer topology and a possible CHIL setup. Depending on the
use case, a RTS can emulate a test system in the physical layer of the OSI model.
Lower-level Controller hardware can be added for case-dependent control schemes (e.g.
Frequency/voltage drop control). Control architecture, or cyber nodes, are the interface

9

2. State of the Art

Controller HIL Simulation
● Controller is hardware of

interest and under test
● Low level signals (+/-10V)

Real-time
Simulator

D/A A/D

A/D D/A
Controller
under Test

Power Amplifier

Simulator

D/A A/D

Power Device
under Test

Interface Algorithm

Power HIL Simulation
● Power device hardware of interest & under test
● MV Power electronics amplifiers:

Figure 2.3: The Basic structure of PHIL/CHIL-based experimental test [3].

between physical layer and the cyber layer and typically communicates via Modbus
Transmission Control Protocol (TCP)/Internet Protocol (IP) protocol. Another part
of the cyber layer is the aggregator which acts as Human-Machine Interface (HMI) to
forward information to the cyber nodes [4][19].

Lower-level
Controller

Physical Layer

Physical Layer

Application Layer

Data Link Layer

Network Layer

Transport Layer

Cyber Layer

Cyber Node

RTS

DUT

DUT

DUT

N
E
T
W
O
R
K

Lower-level
Controller

Lower-level
Controller

Cyber Layer

Cyber Node

Aggregator

Seriel
Communication

Modbus TCP/IP

Figure 2.4: OSI layer topology and an illustrated CHIL setup [4].

2.3 Case Studies
2.3.1 GPS Clock Synchronization Accuracy
The position of a GPS receiver on earth can be calculated by multiplying the one Pulse
per Second (1PPS) signal received from a satellite with the speed of light. With three
satellites the current position (x, y, z) can be determined. Since the internal clock of
GPS receivers has a certain accuracy, a clock drift could be interpreted as a movement

10

2.3. Case Studies

of the receiver or clock drift. Therefore, a fourth satellite is required to verify the time
error of GPS receiver’s clock. Since the receiver is measuring the distance to satellites
at the same time, each measurement includes the same time offset error. Therefore,
calculated ranges between satellite and receiver with the same measurement error are
called pseudoranges [20].

The work from Lee et al. [21] demonstrates a concept to calculate the time difference
between two distributed GPS synchronized ground stations. One receiver is in Korea
Standards Research Institute (KSRI)and the other in Tokyo Communications Research
Laboratory (CRL). The distance between both is ∼3000 km. Each GPS receiver is
down-converting the 1pps signal from the antenna to a Intermediate Frequency (IF)
of 75.42 and 10.7 MHz. The GPS receiver gets a 1PPS signal from the antenna and
calculates it’s clock offset compared to the satellite’s according to Equation 2.8

ΔTis = ti − ts = Ti − ρi/c − δρi/c − tri (2.8)

where

Ti . . . pseudorange time interval.
ti . . . 1PPS signal of clock i.
ts . . . 1PPS signal of satellite.
ρi . . . geometric delay between a station and a satellite.
δρi . . . error sources.
tri . . . receiver delay time.
c . . . speed of light.

Main error sources are, geometric delay, ionospheric, tropospheric and Sagnac effect [22].
Further, the clock time offset between two ground stations A and B can be calculated by:

τAB = ΔTAS − ΔTBS (2.9)
where ΔTAS = tA − ts, ΔTBS = tB − tS (2.10)

During a four-day measurement period and a connection to only three satellites, the peak
variation between both ground stations was 30 ns. The frequency stability between the
receiver clocks of KSRI and CRL stations was about 1 part in 1013 [21].

Another approach to testing GPS clock synchronization accuracy demonstrates Jefferson
et al. [23]. They are using reference data from 24 GPS satellites and more than 150
ground stations. The results presented in this work, are from stations with TurboRogue
receivers in combination with H-Maser oscillators. Data acquisition is processed with
the software tool GIPSY-OASIS II from the Jet Propulsion Laboratory (JPL) [24]. This
software tool can measure and estimate GPS satellite clocks and orbits, receiver clock
offsets and locations, and other parameters like Earth orientation. They present the clock
accuracy between four ground stations, the smallest and highest offsets are highlighted
here. Table 2.1 shows the results of clock accuracy between Tidbinbilla-Australia (TID2),

11

2. State of the Art

Algonquin Park-Ontario Canada (ALGO), and Pietown-New Mexico USA (PIE1). Due
to the GIPSY-OASIS II tool and the estimation strategy, clock calibration between
distributed ground stations of sub-one-nanoseconds can be achieved.

Table 2.1: 72-hour H-Maser linear fit residuals.

TID2 vs ALGO PIE vs ALGO
clock-offset −43.32 ns/day −16.24 ns/day
clock lin. fit rms 0.411 ns/3days rms 0.244 ns/3days
distance 16 000 km 3000 km

2.3.2 Clock Synchronization in HIL Systems
Rinaldi et al.[5] presented a method to extend a PHIL testbed with a PTP synchronization
concept with minimal hardware requirements. Since some devices do not support the
IEEE 1588 PTP they designed a software-based solution to timestamp analog signals
during the simulation. To fulfill the timing requirements of the power industry, the power
profile of IEEE 1588 (a.k.a. IEEE C37.238-2017) has been used.
The PTP Backbone which provides and distributes the precise GMC consists of three
Siemens Ruggedcom RSG2488 switches and a GPS receiver. The Siemens switches fully
support PTP/GPS/NTP and 1 Gbps fiber optic ports. One switch is connected to the
GPS receiver and acts as GMC in the PTP Backbone. Another switch is used as an
interface to IEEE 1588 DUTs and the third is used as an interface to the PHIL. The
distances between those substations are between 300 m and 500 m. Figure 2.5 illustrates
the explained PTP Backbone and the PHIL system.
The PHIL system is based on an OPAL-RT OP5700 RTS, operating on a Virtex-7 Field
Programmable Gate Array (FPGA) platform, a Redhat OS, IntelXeon E5, 8 Cores,
3.2 GHz, and 8 GB RAM. In addition, four quadrants power amplifier, electronic load,
an OP5330 analog output board, and an OP5340 input board with 1 MSamples/s.
Some devices of the PHIL supply part are high-performance analog input and output
devices that cant be connected to the PTP Backbone. Therefore, a software-based solution
is designed, see Figure 2.6. This approach follows the principle of a Phase-Locked-Loop.
The PHIL system has a tunable internal clock PHIL_Clk which generates 1PPS signals
with the Puls Generator. The Digital Analog Converter (DAC) block is looped back as
input for the Analog Digital Converter (ADC) Block. An external Ref (UTC) signal
and PHIL_gen 1PPS signal will be compared in terms of frequency and phase difference.
PI Controller tunes the Pulse Generator until both signals have the same phase and
frequency. Then the system is in a lock state and the internal 1PPS is synchronized to
the external reference signal. If this external reference signal is provided by an IEEE 1588
device the PHIL is locked to the same common time base.
Figure 2.7 can be used to compare the generated 1PPS PHIL output with the IEEE 1588
1PPS. Therefore, a Keysight 53230A frequency counter is used to perform the clock

12

2.3. Case Studies

IEEE 1588
DUT

IEEE 1588
Switch

Power
System

Power
System

Power Grid

Measurement Control

IEEE 1588
Switch

IEEE 1588
Switch

IEEE 1588 Reference network

GPS
Lan

Figure 2.5: A concept overview to integrate IEEE 1588 power profile into a PHIL
testbed [5].

Phase &
Freq detc.ADC

gen

Ref.
(UTC/1588)

Grid
Emulation

PI
controller

Pulse
gen.

e(k) u(k)

PHIL_Clk

t(k)

Trig. (UTC)
SW

ref

gen

RT-PHIL

ADC

Figure 2.6: The proposed software-based time synchronization mechanism [5].

13

2. State of the Art

stability measurement by measuring the frequency of both signals. The Siemens IEEE 1588
switches do not provide a 1PPS signal. Therefore, a APU2C4 board with an AMD G
series GX-412TC CPU, 1 1 GHz quad-core, 64 bit, 4 GB RAM with a Intel i210 NIC is
used. The system runs on an Arch Linux distribution, kernel version 4.7.2. With the
Linuxptp package and the ptp4l command, the Intel i210 can be configured as PTP slave
and also provide 1PPS synchronized to the IEEE 1588 GMC.

PHIL
System

IEEE 1588
Slave

IEEE 1588
Switch

Freq. Counter
Ch1 Ch2

IEEE 1588 Network

Out

Out

Out

In

1-PPS_slave

1-PPS_1588
1-PPS_PHIL

Figure 2.7: The block diagram of the experimental setup [5].

With the explained measurement method the percentage frequency distribution between
the generated 1-PPS_Phil and 1-PPS_1588 can be evaluated. Measured 43200 samples
during 12 hours, leads to a mean time offset of 0.4 µs, a standard deviation of 0.25 µs
and jitter of 2.3 µs.

2.3.3 Common Open Research Emulator (CORE)
Ogilvie et al.[6] are investigating the communication network components of a Controls
Evaluation Framework (CEF) for future shipboard platforms. The idea is to augment the
CEF’s available feature set with the help of CHIL simulations. Thus, the communication
network components, the DUT, can be tested in a highly controllable environment.
Co-simulations with multiple controllers, allow simulations with varying timesteps and
different control schemes to simulate the required environment according to the specific
use case requirements.

One part of the work is to replicate the in [6, Section 3 A] introduced hardware-based
communication network with a Common Open Research Emulator (CORE) [25]. CORE
is a software solution to emulate computer networks running on a high-performance
server including multiple NICs. CORE is capable of emulating Ethernet switches/hubs,
routers, wireless local area networks (WLANs), and virtual PCs. In addition, CORE can
emulate applications, and the behavior of data link and physical layers of the OSI model
[26]. The capability of running CORE simulations in real-time is the reason to be used
as the software platform for the CEF communication network module.

14

2.3. Case Studies

Figure 2.8: Overview of a representative CHIL setup to evaluate distributed energy
management control system performance [6].

Figure 2.8 shows the overview of hardware components of the experimental setup for the
distributed energy management control system performance validation. With RTDS as
RTS system and CORE as a virtual network between C-Rios and SB-Rios controller. To
evaluate the performance of an emulated network in CORE compared to a real network,
the response time of a real hardware switch is compared with an emulated switch in
CORE. For the experiment, a Netgear M4300-52G switch is used and CORE is running
on a Dell server with Intel Xeon E5-2637 v4 CPU with 3.5 GHz, 64 GB RAM, and 26
i350 Gigabit network connections.

To measure the response time, a UDP client-server echo benchmark test similar to a ping
command is performed. According to the measurements, the virtual switch results in a
mean response time of 124 µs (see Figure 2.9b) and the real hardware switch 153 µs (see
Figure 2.9a). Based on that measurement further response measurements are processed
including the distributed energy storage module controllers (see [6, Section 4 B]). It is
important to mention that the measured response time includes the latency for packet
processing in the operating system and is not restricted to propagation time through the
computer network. It is a typical system-level control that is likely performed by the
operating system. Therefore, the response time can be considered representative.

15

2. State of the Art

(a) Netgear M4300-52G switch. (b) emulated switch in CORE.

Figure 2.9: Response time between a) a real hardware switch and b) an emulated switch
within CORE [6]

2.4 Current Hardware in the Loop Testbed
2.4.1 Center for Advanced Power Systems
CAPS at FSU is a leader in the field of PHIL simulations where CHIL is a fundamental
aspect of the whole process. The following HIL setup which will be illustrated in this
Thesis is not a specific instance of any prior or current experiment at FSU-CAPS but is
representative of many HIL experiments [27][28][29][30].

2.4.2 Power Hardware in the Loop Testbed
Any HIL experiment will generally include one or more RTS. The RTS generally provide
the following functions: real-time electrical stimulation, system-level controls/protections,
and HMI. In terms of real-time simulation, "real-time" refers to the deadlines associated
with synchronizing the simulated system with the physical world or wall clock time. By
far the most common real-time model is a strictly periodic task model that computes
simulated values and has a deadline corresponding to its period. The period of such a task
is usually referred to as a simulation time step. FSU-CAPS uses simulators from most
major RTS vendors, more specifically RTDS, OPAL-RT, Typhoon, and Speedgoat. For
this work, RTDS is selected as represented RTS since it is used in most of the simulations
at CAPS. The GTSync is an RTDS-specific card that allows a real-time simulation to
be synchronized with an external clock and supports 1 Pulse Per Second (1PPS) or
IEEE 1588 via RJ45 or ST fiber-optic connection. However, IEEE 1588 is currently not
used. Instead, events that occur during a timestep period of RTDS are captured together
with the current timestep counter since simulation start. This kind of time stamping is
provided by the custom logger (GLogger) and data are stored in a Windows file server,
in Figure 2.10 shown as “plasma".

The GLogger (GTFPGA Logger) is a data acquisition tool developed by FSU-CAPS

16

2.4. Current Hardware in the Loop Testbed

Figure 2.10: Current Power Hardware in the Loop Testbed setup overview.

and specifically designed for connection to RTDS racks and chassis. Communication is
point-to-point using an RTDS proprietary 8b/10b encoded data stream. At each time
step, the RTDS transmits values for a user-defined/configurable set of signals. The
current method of time stamping is done by appending an integer denoting the values
of the simulation time step. The start of an RTDS case/simulation begins at time step
zero and the first time step values available to the GLogger are timestamped zero and
incremented by one for each subsequent time step. The typical time step length is
25-50 ms.

Many DUTs communicate via the CAN protocol. Since RTDS is used for protection,
monitoring, and as an HMI, data produced by a DUT is sent to RTDS. The data received
from or sent to the DUT is recorded locally on the Linux PC and is timestamped with
the time-of-day, typically synchronized with ntpdate software tool. Ntpdate sets the
local date and time by polling the NTP server(s) to determine the correct time. The
communication through the Linux PC (CAN-GTNET Interface) is best effort and only
coarsely time synchronized with the values produced by RTDS (a back-of-the-envelope
approximation is tens of msecs).

Scopes are best effort synchronized but could also benefit from global synchronized
timestamps. Typical use cases are sporadically short duration (typically seconds long)
captures at high resolution throughout a given experiment.

PHIL Amplifiers:
Parts of the Testbed is builds on a combination of megawatt-level power amplifiers such
as the Variable Voltage Sources (VVS) and Multilevel Converters (MMC) built by ABB,
and a 100 kW-level Egston amplifier as shown in Figure 2.11. The VVS power amplifier

17

2. State of the Art

Figure 2.11: FSU-CAPS Power Hardware in the loop Amplifiers setup.

can be configured to operate in AC-only mode (5 MW, 0-4.16 kV, 45-65 Hz) and AC-DC
mixed-mode with 2.5 MW each and dc-voltage of up to 1.15 kV. Reference signals are
provided as analog signals to the VVS.

The MMCs provide direct current and are rated 6 kV and208 A with full four quadrant
capability. Combining the MMCs in series or parallel allows up to 24 kV and 832 A. Two
MMCs can also be combined to operate back-to-back. Custom control modes allow use of
the MMCs as inverters to provide AC voltages/currents. Reference signals are provided
as analog signals.

The Egston amplifier at CAPS is a COMPISO System Unit (CSU) 100 kVA. It is based
on six individually controllable single-phase amplifier modules with a frequency range
from DC to 5 kHz full output voltage range. The reference values can be provided through
a multi-mode fiber interface through an RTDS GPES interface box.

Each mentioned power system provides custom fault recording options. But, due to
the lack of time synchronization, these features are currently not commonly used in
experiments.

2.4.3 Controller Hardware in the Loop Testbed
Chapter 2.2 introduced the fundamental concept of HIL and also presented a basic CHIL
setup. The CHIL testbed at CAPS uses the same infrastructure as the presented PHIL
testbed for real-time simulations and monitoring. Since the DUT (e.g. a controller)
requires low voltage input and output signals (typically ± 10 V) the power amplifier
infrastructure introduced in the previous sections are not in use. Figure 2.4 from
Chapter 2.2 shows that the test case implemented in the physical layer also includes a
computer network. Depending on the specific use case, such networks can be complex

18

2.4. Current Hardware in the Loop Testbed

and thus hardware and cost intensive. To follow the fundamental idea of HIL simulations
a virtual network emulator CORE comes into place to emulate the desired computer
network around the DUT.

CORE is running in an appropriate high-performance Dell Server, with a Intel(R) Xeon(R)
CPU E5-2637 v4 @3.5 GHz processor, 64 GB RAM and 26 Intel i350 network cards which
can be used as the hardware interface between the real network and emulated network.
Possible communications protocols between DUT and the aggregator are Modbus TCP/IP,
Controller Area Network (CAN)-Bus, Aurora over fiber or Ethernet. A specific use case
of CORE is explained in Chapter 2.3.3 and in a related work [11].

Device Under Test
(DUT)

Linux Computer

Modbus TCP/IP, CAN Bus,
Aurora over fiber

Linux Computer

GTNETx2
GTNET_SKT: 3p1

10.146.64.23

Rack 13 - RTDS

UDP (10.146.64.x)
High Bay Switch

Display
(high bay)

Simulink
Co-simulation

CAN-GTNET
interface

Copper Ethernet

fiber
Simlab Switch

Copper
Ethernet

GLogger
GTSYNCGPS

Scope

Copper
Ethernet

FPGA
VC707

PCIe

RTS

Opal-RT | Typhoon

plasma

Common Open
Research Emulator

(CORE)
Copper
Ethernet

Figure 2.12: FSU-CAPS Controller Hardware in the loop setup.

19

CHAPTER 3
System Architecture /

Implementation

To implement a clock distribution system in the current HIL testbed of FSU-CAPS,
which was introduced in Chapter 2.4, it is necessary to classify the major components
about their compatibility with mentioned PTP concepts from Chapter 2.1. The common
PTP which is supported by each representative component is the IEC 61850-9-3. For an
overall understanding Figure 3.1 illustrates the current HIL testbed with the extended
PTP backbone (yellow area) developed during this thesis.

The GPS Receiver is the main time source of the whole PTP network, also called GM.
It receives 1PPS signals from external GPS Antenna to provide the PTP to the whole
network. An appropriate PTP Switch is necessary to distribute the precise GMC. A
10 MHz reference signal which is synchronized to the PTP network, can provide a precise
time reference for devices without PTP support. The following sections will give a detailed
description of the development, including all shown components, their functionalities,
and configurations.

3.1 PTP Compatibility of HIL Interfaces
According to the research of commonly used PTPs in Chapter 2, IEEE 1588 is widely
used and supported by components in the data acquisition sector. Nevertheless, since
IEEE 1588 has different sub-profiles like IEC 61850-9-3, it’s necessary to specify the
compatibility of major used hardware components in the HIL testbed.

3.1.1 Real Time Digital Simulator
Since RTSs from RTDS vendor are the most commonly used simulator hardware at CAPS,
the focus on finding an interface to a PTP network was on RTDS components. RTDS

21

3. System Architecture / Implementation

Device Under Test
(DUT)

Real Time Digital Simulator
RTDS

GTSync

GPS Receiver
microSync

Scope

Linux Computer

PTP-Network
Card

plasma

Scope Trigger

PTP Switch
GPS Antenna

RTDS Trigger

SyncBox
10 MHz Ref.
PTP synched

Common Open
Research Emulator

(CORE)

Attached PTP
Backbone

Coax
Fiber
Ethernet

CAN/
Ethernet
Gateway

Figure 3.1: Extended CHIL testbed with a PTP backbone.

uses three different generations of main processing units (GPC, PB5, and NovaCor) for
the real-time simulation, implemented in FPGAs. The GTWIF card is the interface
between GPC and external networks, the Graphical User Interface (GUI) RSCAD or
any other RTDS card. So any configuration of used cards is accessible via the GTWIF
terminal [31].

To synchronize simulation timestamps, RTDS offers a specific hardware component called
GTSYNC card. It can use its own internal time source or external references like IRIG-B,
1PPS, IEEE 1588, IEEE C37.238 and IEC 61850-9-3. Table 3.1 gives an overview of the
available IEEE 1588 profiles and their supported features. The only network protocol in
combination with PTP that is supported from the GTSYNC card is IEEE 802.3 (Layer 3),
P2P delay mechanism and acceptable data rate is limited to 100 Mbps[7].

Table 3.1: Overview of PTP features of a GTSYNC card.

Delay Mechanism Network Transport PTP Profiles Data Rate
Peer to Peer IEEE 802.3 (Layer 2) IEEE 1588 100 Mbps

IEC 61850-9-3
IEEE C37.238

Figure 3.2 illustrates how the mentioned components are connected within a RTDS rack.
The GTNET card is a real-time communication interface between the simulation and an
external network. It has a fiber connection to the GPC/NovaCor card and implements
various types of communication modules. One of them is the GTNET-SKT for UDP
communication protocol, which is necessary for the performance validation, which will be

22

3.1. PTP Compatibility of HIL Interfaces

explained in Chapter 4. The Inter Rack Global Bus Hub (IRGBH) manages inter rack
time synchronization and is the interface between GTWIF cards of different racks. This
connection is relevant during parallel simulations across multiple RTDS systems.

PTP Network

NovaCor
PB5
GPC

NovaCor
PB5
GPC

GTWIF

Data Network

Caps Network/RSCAD

GTWIF

Caps Network/RSCAD

Inter rack time
synchronisation

Main
processing unit

IRGBH

IRGBH: Inter Rack Global Bus Hub

Ethernet
Fiber

RTDS-GTSYNC

Port1
Eth1

PortA

Eth1

RTDS-GTNETx2

Figure 3.2: RTDS periphery including different interface cards [7].

The connectors and periphery of a GTSYNC card is available in the RTDS GTSYNC
manual [7]. Besides the 24 V power supply three further interfaces were used. The
100base-TX Copper Ethernet Port is connected to the PTP Backbone. The GT Port 1 is
connected to the GTWIF card via fiber. And the several status led around the board for
visual monitoring [7].

3.1.2 Linux Operating System
Since computers with Linux Operating System (OS) are a major component in every HIL
simulation, it adds a significant benefit if their internal clocks are synchronized to the
common time base. Therefore to include a Linux machine to the PTP Backbone, specific
software and hardware requirements must be met. Two major PTP implementations to
synchronize to IEEE 1588 are mentioned in the literature, PTP deamon (PTPd) [32] and
Linuxptp [33]. According to the PTPd manpage [34] and Wiesner and Kovacshazy [33,
Section 1], hardware timestamps are not supported but considered in future updates.
Since the PTPd GitHub repository [35] is inactive over the last few years, this software
solution is not promising.

Linuxptp on the other hand, supports hardware time stamping and is widely used in
the community. This implementation has well-known issues (e.g., see Machnikowsk et

23

3. System Architecture / Implementation

al. [36]), but has an active community that continuously develops and commits updates
to the Linuxptp GitHub repository [8]. Table 3.2 gives a short overview of important
parameters that are relevant for GMC and PTP switch selection.

Table 3.2: Overview of PTP features of Linuxptp.

Delay Mechanism Network Transport PTP Profiles Time Stamping
Peer to Peer IEEE 802.3 (Layer 2) IEEE 1588 Hardware
End to End UDP IPV4 (Layer 3) IEC 61850-9-3 Software

IEEE C37.238

A NIC is the first instance of receiving data from the network, time stamping the moment
of receiving the data packet before further processing. To achieve nanosecond accuracy
of such timestamps a NIC needs to support hardware time stamping. Table 3.3 shows
an example of a NIC that meets requirements for hardware timestamps. This can be
verified with the Linux shell command:

$ e th too l −T eth6

Table 3.3: Hardware requirements for a NIC to communicate with IEEE 1588 PTP [8]

Time stamping parameters for: eth6
Capabilities:

hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)

PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)
on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)
all (HWTSTAMP_FILTER_ALL)

The NIC I350 (2 or 4 port) from Intel fulfills the mentioned functionalities from Table 3.3,
and each port supports 10/100/1000 Mbps data rates. Since this NIC was available at
CAPS, it is used in every setup where a Linux PC is synchronized to the PTP network.

3.1.3 Non PTP Compatible Devices
Not every hardware component in the field can communicate with a PTP like IEEE 1588,
therefore other solutions for the best effort synchronization have to be made. Scopes
are widely used in different kinds of setups for a short snapshot of the DUT output or

24

3.1. PTP Compatibility of HIL Interfaces

long-term monitoring. Scopes like Tektronix MDO4034C/MSO58-2-125 are frequently
used during HIL simulations at CAPS. Each device has an internal oscillator as a time
reference. The stability of such oscillators are highly dependent on their quality, age,
and changes in temperature. Therefore to guarantee precise long-term measurements,
without clock drifts, a more precise external reference is necessary. For this purpose,
scopes usually have a 10 MHz external reference input (BNC connector). According to
the datasheet, the Tektronix MSO58-2-125 can phase-lock to an external reference with
the precision of ±4 ppm [37]. So a device is necessary which supports the IEEE 1588
PTP and provides a 10 MHz output that is synchronized to the PTP network.

The SyncBox/N2X [38] from Meinberg is an optimal solution for this purpose. It has
three Programmable Pulse Output (PPO) (BNC connector) like 10 MHz, 1PPS, a 1 to
10 MHz frequency synthesizer, Inter-Range Instrumentation Group (IRIG) time codes
and serial time telegrams. Some functionalities are not relevant for this thesis, but offers
a huge variety for future use cases. The SyncBox has a built-in TCXO oscillator. The
detailed specification is available in Table 3.4.

Table 3.4: Oscillators integrated in Meinberg Devices [9]

TCXO OCXO MQ
short term stability, (τ = 1 sec) 2·10-9 2·10-10
accuracy of PPS, (pulse per sec) <±100 nsec <±50 nsec
phase noise 1 Hz −60 dBc/Hz

10 Hz −90 dBc/Hz
100 Hz −120 dBc/Hz
1 kHz −130 dBc/Hz

1 Hz −75 dBc/Hz
10 Hz −110 dBc/Hz
100 Hz −130 dBc/Hz
1 kHz −140 dBc/Hz

accuracy ±1·10-7 ±1.5·10-9
free run, one day ±1 Hz (1) ±15 mHz (1)
accuracy GPS-synchronous, averaged 24 h ±1·10-11 ±5·10-12
accuracy of time, free run, one day ±4.3 msec ±65 µs
temperature dependant drift free run ±1·10-6

(-20...70 °C)
±5·10-8
(-20...70 °C)

Note 1:
The accuracy in Hertz is based on the standard frequency of 10 MHz.
For example: Accuracy of TCXO (free run one day) is ±1·10-7·10 MHz = ±1 Hz

The 10 MHz output is based on a Transistor-Transistor Logic (TTL) and provides a
0 to 5 V rectangular signal. The input port (RJ45 Ethernet) accepts NTP and PTP
IEEE 1588, UDP/IPv4 (L3) or IEEE 802.3 (L2) network protocol and E2E/P2P delay
mechanism but only supports data rates of 10/100 Mbps. The SyncBox supports Power
over Ethernet (PoE) as a power supply or 20 to 60 V DC via a power connector on the
back of the device. For convenience reasons, PoE is preferred but adds an additional
requirement for the PTP switch. To verify the accuracy of the 10 MHz reference, a second
SyncBox is installed in the system to compare possible variations between them. This
can be important since multiple SynBoxes could be placed in different locations of the

25

3. System Architecture / Implementation

same HIL simulation. Therefore the deviation between 10 MHz references signals from
the SyncBoxes should be known well.

3.2 PTP Backbone
Since the PTP Backbone developed during this thesis will be used from FSU-CAPS for
current but also future HIL simulation, the system should provide maximum flexibility.
Therefore Table 3.5 shows all mandatory and optional requirements according to occurring
PTPs in the literature and the limitations of components of the testbed. Nevertheless,
the mandatory features that should be supported from the GMC and PTP switch are:
supporting network protocol IEEE 802.3 and P2P, and implementing the PTPs IEEE 1588
and IEC61850-9-3. The SyncBox and the GTSYNC card do not support data rates faster
than 100 Mbps. Therefore, several SFP-GB-GE-T, 10/100/1000 BASE-T, RJ-45 Small
Form-factor Pluggable (SFP) transceivers are used in the field. Since the time window
for completing the PTP Backbone at CAPS was limited to three months, additional
timing constraints like delivery time of needed components had to be considered as well.

Table 3.5: Mandatory (M) and optional (O) requirements for the PTP Backbone

Delay Mech. Network Transport PTP Profiles Data Rate
P2P (M) IEEE 802.3 (M) IEEE 1588 (M) 10/100/1000 Mbps (M)
E2E (O) IPv4/v6 (O) IEC 61850-9-3 (M)

IEEE 802.1AS (O)

3.2.1 Grandmaster Clock
From different vendors like Orolia, Oscilloquartz, Omicron, the Meinberg microSync RX102
GM in combination with the Meinberg SyncBox fulfill all technical and organizational
requirements mentioned so far. Table 3.6 shows that the Meinberg GM offers a huge
variety of supported network and time protocols in addition to the mandatory IEEE
802.3 and IEC 61850-9-3 protocols. All four SFP ports of the microSync RX102 support
10/100/1000 Mbps and two of them can be used as PTP reference for two different
networks. To ensure all transmission rates, four SFP-GB-GE-T SFP transceivers from
fs.com are used. The two PPOs of the microSync RX102 provide similar functionalities
as the SyncBox. But in terms of local circumstances of the HIL testbed, DUT and GM
are usually not at the same location. But scopes have to be placed right next to the
DUT. So the big advantage of the SyncBox is, that the GMC can be distributed over the
Ethernet PTP Backbone over longer distances. And only short coax cables are necessary
for the 10 MHz reference for the scope.

Meinberg offers three different GPS antennas in combination with the microSync RX102
which can be seen in Table 3.7. Since the PTP Backbone has no redundant parallel
GPS receivers where the BMCA can choose another time source in case of connection
losses, the antenna should be as reliable as possible. Therefore the GNS-UC antenna

26

3.2. PTP Backbone

Table 3.6: Protocols and profiles of the microSync RX102 GM [10]

Network Protocols IEEE 1588 PROFILES}
IPv4, IPv6 IEEE 1588v2 Default Profile
NTPv3, NTPv4 IEEE C.37.238-2011 Power Profile
PTPv1, PTPv2 IEEE C.37.238-2017 Power Profile
IEC 62439-3 (PRP) IEC/IEEE 61850-9-3 Power Utility Profile
DHCP, DHCPv6 Enterprise-Profile
DSCP ITU-T G.8265.1, ITU-T G.8275.1,

ITU-T G.8275.2 Telecom Profile
IEEE 802.1q VLAN filtering/tagging SMPTE ST 2059-2 Broadcast Profile
IEEE 802.1p QOS IEEE 802.1AS TSN/AVB Profile
SNMPv1/v2/v3 AES67 Media Profile
Remote Syslog Support (UDP) DOCSIS 3.1

is selected as the GPS source. This GNS-UC antenna establishes a connection to two
satellite systems, GPS and Galileo. Thereby, it’s very unlikely that both systems would
fail and causes the GM to switch into Holdover mode. In this case, the OCXO MQ
Oscillator within the Meinberg receiver could provide a time source with an accuracy of
±65 µs over a period of one day and ±2.9 ms in seven days. A detailed specification of
the OCXO MQ oscillator is available in Table 3.4.

Table 3.7: Different antenna types which are compatible to the Meinberg receiver [10]

Receiver Type Signal Type Value Connector
Meinberg GPS IF, 12-channel IF (Meinberg Antenna) 15 V DC BNC
Meinberg GNS-UC GPS/Galileo IF IF (Meinberg Antenna) 15 V DC BNC
GNSS (GPS, GLONASS,
Galileo, BeiDou), 72-channel L1/E1/B1 band 5 V DC SMA

Since the GM is located within the building, the coax cable length between receiver (GM)
and antenna could reach up to 100 m. Meinberg provides an Equation 3.1 to calculate
the maximum possible coax cable length depending on the cable type. The IF α1, is the
highest frequency transmitted on the cable [39]. According to the Meinberg homepage the
maximum attenuation of 30.4 dB at given IF of 35.42 MHz between antenna and receiver
must not be exceeded. The RG-58 coax cable that Meinberg offers have a attenuation
of α1 = 17 dB/100 mm at 100 MHz. Therefore, according to Equation 3.1 the maximum
cable length between antenna and receiver is 300 m.

α2 = α1

�
f2
f1

(3.1)

α2 = 17 dB/100 m
�

35.42 MHz
100 MHz = 10.2 dB/100 m (3.2)

An RG-213 coax cable with an attenuation factor of 7 dB/100 m would achieve a maximum
length of 700 m but is also less flexible to handle within small pipes. Thus, as a risk-

27

3. System Architecture / Implementation

mitigation measure and for better cable flexibility a 100 m RG-58 coax cable is used for
the PTP Backbone.

3.2.2 PTP Switch
The PTP Backbone should be capable of connecting multiple devices that could benefit
from a global clock synchronization. Therefore the two PTP Ethernet output ports from
the microSync RX102 are not enough to fulfill this requirement. A dedicated switch that
supports the mentioned PTPs is necessary to distribute the GMC to every device and
act as a transparent or boundary clock within the PTP network.

Besides the mandatory and optional requirements from Table 3.5 the PTP switch should
also provide PoE to avoid the urgency of an external power supply for the SyncBoxes.
CISCO is one of the biggest vendors for high-performance switches and offers a wide
selection of switches that support IEEE 1588. Due to mentioned timing constraints and
long delivery times of over 110 days, purchasing re-manufactured CISCO components
from certified partners offered a great opportunity regarding short delivery times, and
also high-quality products with a warranty.

The re-manufactured IE40004GC4GP4GE switch from CISCO, fulfills all optional and
mandatory requirements and was delivered within a few weeks. The matching 170 W
power supply module PWR-IE170W-PCAC was also available at the same certified CISCO
partner. The IE4000 has eight combo ports, SFP (fiber) or RJ45 (10/100/1000 Mbps) and
four additional PoE GigaByte-Ethernet 125 W ports. It supports PTPs like IEEE 1588,
802.1AS, and Power Profile (C37.238-2011/2017 and IEC 61850-9-3). But the only PTP
profile that supports network protocol 802.3 (layer 2) is the Power Profile.

3.2.3 PTP Hardware Configuration
To establish the PTP network every component need to be configured with the same
PTP profile, network transport protocol, PTP domain, and delay mechanism. Those
configuration parameters can be adjusted via telnet, web browser, or the GUI Meinberg
Device Manager, with the related IP address from Table 3.8. In this section the most
important configurations will be explained. The GTSYNC card only accepts PTP
synchronization messages using network protocol 802.3 (layer 2). Therefore, all other
components need to use that network protocol. Since the CISCO IE4000 switch only
provide 802.3 network protocol in the PTP Power Profile the only common PTP profile
is IEC 61850-9-3.

Grandmaster microSync RX102

The Meinberg Device Manager is an application to configure and monitor Meinberg
devices like the microSync RX102 or the SyncBox. During this work the Meinberg Device
Manager firmware version Southbotton 2020.11.4-u 5cfab0a5 and microSync 2.71 are
used. After adding a physical device via IP/Media Access Control (MAC) address or

28

3.2. PTP Backbone

Table 3.8: MAC and IP addresses of all components within the PTP network

Device Name IP Address MAC Address
Cisco IE4000 192.168.2.11 70:61:7b:a2:d7:01
microSync RX102 192.168.2.2 ec:46:70:0c:ee:ea
OptiPlex 9010 192.168.2.20 b4:96:91:62:34:32
PowerEdge R640 192.168.2.25 e4:3d:1a:4d:50:6c
RTDS GTSYNC 192.168.2.14 00:50:c2:4f:96:9f
SyncBox1 192.168.2.31 ec:46:70:0b:5f:53
SyncBox2 192.168.2.32 ec:46:70:0b:5f:52
Wireshark 192.168.6.20 N/A

auto search, every added device is accessible via the drop-down menu at the top. The
GUI is structured in two main sections, a Config section on the left and a Status section
on the right side of the screen. Under Config/References the GNSS satellite systems is
selected as main, and NTP as a second time source. By selecting the IEC 61850-9-3
profile in the Config/PTP (IEEE1588) section most of the parameters like P2P delay
mechanism, IEEE 802.3 network protocol, and International Atomic Time (TAI) time
format are pre-selected and not changeable. Therefore it is important to verify that
devices in the PTP Backbone are capable of detecting the TAI time format and not only
expecting UTC. PTP domain is set to 0 and should match with every other device in the
PTP Backbone.

Monitoring: Meinberg Device Manager offers different monitoring tools in the Status
section. Reference clock status should be, clock synchronized and Oscillator warmed up,
the estimated time quality of 100 ns is also displayed in this section. Reference Antenna
status should be, accepted as Master, and locked with low Jitter flag. Table 3.9 shows a
certain moment of locked and in view satellites. The position, index number (SVNO)
of the satellites, and the Carrier to noise density ratio (C/NO) of each satellite are
also visible. The Event Log is tracking every change of Antenna or synchronization
state and categorizes them into three levels (Info, Warning, and Critical). The PTP
(IEEE1588) Status sections offer an overview of PTP parameters like current UTC offset,
total transmitted and received packets.

SyncBox

Analog to the microSync configuration, the SyncBox can be configured via Meinberg
Device Manager. In the current Device Manager version 6.4 the SyncBox has no pre-
defined IEC 61850-9-3 profile. Instead, the Custom profile can be selected, in combination
with Multicast Slave role, IEEE 802.3 Network Protocol, PTP Domain Number 0 and
P2P Delay Mechanism (see Table 3.10). As a reference source PTP should be selected
instead of NTP (default). For a trustworthy synchronization the Clock, Reference and
PTP Status can be tracked as explained in the microSync RX102 configuration section.

29

3. System Architecture / Implementation

Table 3.9: List of available GPS/Galileo satellites.

GNSS SVNO Elevation [°] Azimuth [°] C/NO [dBHz] Status
GPS 3 46 266 20 Locked
GPS 4 37 320 29 Locked
GPS 9 5 192 0 In View
GPS 16 73 192 18 Locked
GPS 22 36 114 34 Locked
GPS 26 67 46 35 Locked
GPS 27 16 162 22 Locked
GPS 29 7 45 22 Locked
GPS 31 33 55 38 Locked
GPS 32 16 125 33 Locked
Galileo 1 72 233 10 Locked
Galileo 4 43 320 25 Locked
Galileo 19 73 112 19 Locked
Galileo 21 54 38 33 Locked
Galileo 27 4 42 7 In View
Galileo 31 17 224 12 Locked

Table 3.10: Meinberg SyncBox PTP configuration.

PTP Settings Ref. Source Settings
Role: Multicast Slave Ref. Source 1: PTP
Profile: Custom
Network Protocol: IEEE 802.3
Domain Number: 0
Delay Mechanism: P2P

PTP Switch

The access of the CISCO switch via telnet offers full configurations possibility. The GUI
via the web browser on the other hand is more convenient for monitoring during run time.
Listing 3.1 provides the necessary commands for complete configuration. According to
the CISCO PTP Software Configuration Guide [40] IEC 61850-9-3 is available in the
power profile (line 5). When the switch is in power profile mode, only P2P-transparent
clock (line 6) is supported. In addition, allow-without-tlv command (line 7) is necessary
to guarantee proper operation. To track network traffic through the switch, Switched
Port Analyzer (SPAN) can be configured to pass through all ports (line 9) to one single
monitoring port (line 11). The flag encapsulation replicate is mandatory to monitor
Layer 2 traffic. Wireshark can be used to track the whole PTP network traffic via Port 8
if the CISCO switch.

1$ t e l n e t 1 9 2 . 1 6 8 . 2 . 1 1
2// Enter Login Creden t i a l s
3IE4000>en
4IE4000#c o n f i g u r e terminal
5IEC4000 (c o n f i g) ptp p r o f i l e power

30

3.2. PTP Backbone

6IEC4000 (c o n f i g) ptp mode p2ptransparent
7IEC4000 (c o n f i g) ptp al low−without−t l v
8IEC4000 (c o n f i g) monitor s e s s i o n 4 source i n t e r f a c e
9Gi1/1 − 3 , Gi1/5 , Gi1/7 , Gi1/9 − 10
10IEC4000 (c o n f i g) monitor s e s s i o n 4 d e s t i n a t i o n
11i n t e r f a c e Gi1/8 encapsu la t i on r e p l i c a t e
12IE4000#show running−c o n f i g
13IE4000#copy running−c o n f i g startup−c o n f i g

Listing 3.1: PTP switch CISCO IE4000 configuration.

GTSYNC Card

The GTSYNC card can be configured directly via NovaCor, or the GTWIF card (in case
of a GPC card instead of NovaCor). Listing 3.2 shows the major parameters configurable
via telnet (line 1). Simple Network Protocol (SNTP) is another time synchronization
protocol, to avoid ambiguity SNTP is deactivated by setting this parameter to 0.0.0.0
(line 9). GTSYNC card can only operate in Slave mode (line 10) when the master provides
at least 1 µs time accuracy, which Meinberg microSync RX102 fulfills. PTP Domain
should be set to the same value as GMC to establish a connection (line 12). Advertised
time source (line 14) is a status flag and indicates that the time source is actually the
GPS antenna and not any other clock source. The GTSYNC card assumes UTC as time
format via PTP. Since microSync RX102 IEC 61850-9-3 profile use exclusive TAI format,
further data processing explained in Section 4.3.1 is necessary.

1$ t e l n e t rack12 . caps . f s u . edu
2> gtw i f
3PER > 64
4Current GTSYNC c o n f i g u r a t i o n :
5Ethernet port : Copper RJ45
6IP address : 1 9 2 . 1 6 8 . 2 . 1 4
7Subnet mask : 2 5 5 . 2 5 5 . 2 5 5 . 0
8Gateway IP address : 1 9 2 . 1 6 8 . 2 . 1
9SNTP s e r v e r IP address : 0 . 0 . 0 . 0
10PTP mode : Slave−only
11PTP p r o f i l e : IEC/IEEE 61850−9−3 Power U t i l i t y P r o f i l e
12PTP domain : 0
13Sync mode : IEEE 1588
14Advert i sed time source : \ g l s { gps }

Listing 3.2: PTP configuration of the GTSYNC card

NIC Intel i350

Two different DELL computers are involved in this setup for performance validation
which will be further explained in Chapter 4. The Dell PowerEdge R640 with an Intel
Xeon Gold 6210U CPU (2.5 GHz) and 96 GB Ram has Linux Red Hat Enterprise 7.9
installed. On the other hand, the Dell OptiPlex 9010 with an Intel Core i7-3770 CPU
(3.4 GHz) and 8 GB Ram has Linux Ubuntu 20.04 LTS installed. Both machines have the

31

3. System Architecture / Implementation

Intel i350 NIC installed. Linuxptp offers two specific commands to synchronize the NIC
clock to the GMC, ptp4l and phc2sys. The ptp4l command is responsible for the PTP
to synchronize the specified NIC port. Every other clock in the OS or NIC port that
needs to be synchronized has to be configured via the phs2sys command. For example,
CLOCK_REALTIME is a reference to most user applications and therefore needs to
be synchronized separately. Listing 3.3 shows an example configuration according to
the flags explained in Table 3.11. The -w (wait) flag is important to guarantee that all
configured clocks/ports are only synchronized when the ptp4l command is running and
in calibrated state.

sudo ptp4 l −i p2p1 −P −2 −s −m
sudo phc2sys −c CLOCK_REALTIME −s p2p1 −w −m
sudo phc2sys −c p2p2 −s p2p1 −w −m

Listing 3.3: NIC configuration with ptp4l and phc2sys commands

Table 3.11: Flag description of ptp4l and phy2sys command.

ptp4l Flag Description phc2sys Flag Description
-P P2P -s [dev] master clock
-2 IEEE 802.3 -c [dev] slave clock
-H hardware ts -w wait for ptp4l
-s slave only mode -m print msgs to stdout
-m print msgs to stdout
-i [dev] interface device

Table 3.12 shows an example output of a ptp4l/phc2ys command. In this case, NIC
port p2p1 is connected to the PTP network, and CLOCK_REALTIME (clock_rt) is
synchronized to the PTP reference. After an initialization phase, the TAI time format
is updated to UTC according to the current offset. The first column represents the
timestamp of the respective output in seconds since Epoch. Offset represents the time in
nanoseconds between master and slave. In the case of ptp4l, between GMC and NIC
port p2p1. Both services have three different states: unlocked (s0), clock step (s1),
and locked (s2). After the system is in locked state, phc2sys service is switching from
Waiting for ptp4l... to operating mode. Freq indicates the frequency adjustment of the
respective clock in Part per Billion (PPB) to synchronize the slave with the master
clock. Delay is an estimated synchronization message delay between master and slave in
nanoseconds. Path delay of ptp4l depends on cable length between devices within the
PTP network. Delay from phc2sys can vary by a factor of 10 depending on the hardware
architecture of the NIC. In general ptp4l and phc2sys indicate a synchronization to the
GMC. However, this quality degrades for applications as their software stacks cause
additional jitter. Thus, it is one part of Chapter 4 to validate synchronization during

32

3.2. PTP Backbone

a specific user application. The explained output from the ptp4l command is also an
indicator for successful communication between the NIC and the PTP Backbone.

Table 3.12: Example output from ptp4l and phc2sys command.

ptp4l[2561913.014]: selected /dev/ptp2 as PTP clock
ptp4l[2561913.034]: port 1 (p2p1): initializing to listening on init_complete
ptp4l[2561913.034]: port 0 (/var/run/ptp4l): initializing to listening on init_complete
ptp4l[2561913.034]: port 0 (/var/run/ptp4lro): initializing to listening on init_complete
ptp4l[2561913.308]: port 1 (p2p1): new foreign master ec4670.fffe.0ceeea-1
ptp4l[2561914.308]: updating UTC offset to 37
ptp4l[2561915.309]: selected best master clock ec4670.fffe.0ceeea
ptp4l[2561915.309]: port 1 (p2p1): listening to uncalibrated on rs_slave
ptp4l[2561916.048]: master offset -32031 s0 freq 36029 path delay 296
ptp4l[2561917.049]: master offset -32050 s1 freq 36010 path delay 294
ptp4l[2561918.047]: master offset -3 s2 freq 36007 path delay 293
ptp4l[2561918.048]: port 1 (p2p1): uncalibrated to slave on master_clock_selected
ptp4l[2561919.049]: master offset 7 s2 freq 36013 path delay 294
ptp4l[2561920.046]: master offset 15 s2 freq 36030 path delay 293
ptp4l[2561921.047]: master offset -14 s2 freq 36023 path delay 292

phc2sys[2561917.049]: Waiting for ptp4l...
phc2sys[2561918.046]: clock_rt phc offset -53252 s2 freq -3957 delay 841
phc2sys[2561919.047]: clock_rt phc offset -453 s2 freq -4562 delay 834
phc2sys[2561920.048]: clock_rt phc offset 96 s2 freq -5015 delay 834

PTP Monitoring

Multiple status LEDs and status messages in Meinberg Device Manager or Wireshark
are available to verify a successful connection of a device after connecting it to the PTP
Backbone and configuring it properly. The status LEDs of the GM microSync RX102
can be interpreted according to Figure 3.13. In addition, in the Meinberg Device Manager
section Status/PTP (IEEE1588) the number of transmitted and received PTP packages
are visible. This signals, that the GM and at least one additional device are correctly
configured and a PTP communication is established.

The Meinberg SyncBox can also be monitored via status LEDs (Figure 3.14) or Meinberg
Device Manager. In section Status/PTP several parameters about the current PTP
connection are available. For example, the calculated path delay between GM and
SyncBox and the corresponding time Offset in nanoseconds. Also, the Time Source flag
indicates if GM is using the GPS system as time source instead of its internal oscillator.
In addition, since TAI is the selected time format, the UTC Offset of 37 s is a sign for a
correct time format conversion. It is important to mention that, all status LEDs can be
green although the internal Oscillators are not warmed up. It can take several hours for
the warm-up process, depending on environment’s temperature. Since the clock accuracy
is also temperate dependent, it is necessary to verify that warm-up phase is completed.

33

3. System Architecture / Implementation

Table 3.13: GM microSync RX102 description of status LEDs [10].

CPU REC:
R (Receiver) Fail
green The reference clock

(e.g. build-in GNS181-UC)
provides a valid time

red: No synchronization

red: the reference clock does not provide
a valid time

T (Time Service) Ant
green: NTP is synchronized to the

reference clock, e.g. GNS181-UC
green: Antenna connected and

clock is synchronized
red: NTP is not synchronized or

switched to the "local clock"
red: No synchronization resp.

no antenna connected or short
circuit on the antenna line

N (Network) Init
green: All monitored network interfaces

are connected ("Link up")
green: "warmed up" -

oscillator is adjusted
red: At least one of the monitored

network interfaces is faulty
blue: Initialisation phase

A (Alarm)
off: No error
red: General error

Listing 3.2 already explained a quick method of proving the PTP connection by checking
the Advertised time source (GPS). RTDS provides the software tool RSCAD as GUI for
real-time simulations. To make timestamps from the GTSYNC card available during
a simulation, the GT_SYNC module has to be added. After compiling a RSCAD
simulation including a GT_SYNC module, the CRTSECD and CRTNSEC signals are
available. These two signals include the current Epoch timestamps from the GTSYNC
card according to the GMC. A detailed description about signal and flag configuration
will be explained in Chapter 4.3.1 Figure 4.11.

A successful connection between the PTP Backbone and the Intel i350 NIC can be
directly verified via ptp4l and phc2sys command. Table 3.12 is an example of a successful
synchronization of the NIC PTP slave port (ptp4l), and an additional clock (phc2sys).
Two parts are relevant here in terms of accuracy. First the phc2sys service tries to
synchronize the CLOCK_REALTIME to the synchronized slave port. But at the
beginning (timestamp 2561917.049) the ptp4l service is not in a locked s2 state. So
this behavior guarantees that as long as the ptp4l slave port is not in locked state, the
phc2sys state stays in Waiting for ptp4l. The other interesting aspect is, that both PTP
services have a short warm-up phase before the offset is stagnating at a certain value,

34

3.2. PTP Backbone

Table 3.14: Description of status LEDs regarding Meinberg SyncBox.

LED Indicators
LI - Link: lights up in the same color as SP-Speed,

on or off, if no link is available

SP - Speed:
red no link available
yellow 10Mbit
green 100Mbit

IN - Input:
red no reference
yellow reference is available
green-blinking synchronous
green oscillator has locked

ST - Status:
blue during initialization
green normal operation
red error

usually a few nanoseconds.

3.2.4 Final Hardware Setup

Figure 3.3 demonstrates the final setup of the PTP Backbone. All components are
designed to fit into a rack tower. The Dell PowerEdge R640 server and the OptiPlex
Tower at the bottom of the Rack-Tower. The two Syncboxes are also mounted into the
rack during this test scenarios and will be placed next to scopes and the DUT during real
PHIL/CHIL experiments. The Meinberg microSync RX102 1 U Rack-size, the CISCO
IE4000 switch in combination with related power supply on the top. The white device
on the top, is an Ethernet-CAN-Gateway from Peak-System. Since some DUTs might
support CAN bus, this device was also included in the design concept developing process.
Nevertheless, this device is currently not included in any experiment but has the potential
for benefits in future projects. All RTDS interface cards like the mentioned GTSYNC,
GTNET, or GTWIF cards are centralized together in the RTDS Racks.

The GNSS Antenna has a complete rooftop mounting set including a surge voltage
protection in case of lighting and a 100 m cable to mount it outside. Due to convenience
reasons and higher accessibility during experiments presented in this Thesis, the GNSS
Antenna is mounted temporally inside but still connected with the 100 m coax cable
between Antenna and microSync receiver. As shown in Table 3.7 this had no negative
influence on the experiment. The Event-Log from the Meinberg microSync tracked not a
single connection loss during the whole testing period. Nevertheless, it can be assumed

35

3. System Architecture / Implementation

that more satellites would be insight with an appropriate roof top mounting, but also
increased the chance of damage caused by animals or weather. A list of all components
used for experiments or for future projects are listed in Table 3.15.

Figure 3.3: Core components of the PTP Backbone.

36

3.2. PTP Backbone

Table 3.15: All components used or available.

Product Company Article Number Description
Receiver Meinberg microSync RX102 GNS-UC Receiver, 10 Series,

OCXO MQ Oscillator
Power Supply Meinberg microSync AD10 100-240 VAC / 100-200 VAC
SFP Module Meinberg ABCU-5740RZ 1000Base-T,

Copper Gigabit Ethernet
SFP Module Meinberg AFBR-5710PZ 1000 BaseSX,

Multimode 850 nm, Gigabit Ethernet
Surge- Meinberg MBG S-PRO MBG S-PRO Surge Suppressor
Suppressor
SyncBox Meinberg SyncBox/N2X/PP-3 Input: PTP, Output: IRIG, 10 MHz,

PPS, DCF77
Coax Cable Meinberg RG58 5 m, BNC (male/male),

used for scopes
Meinberg RG58 5 m, N-Norm(male/male),

between antenna and Surge Suppressor
Meinberg RG58 100 m, N-Norm(male) / BNC(male),

between Surge Suppressor and GM

Switch CISCO IE40004GC4GP4GE PTP, 12 Ports - Manageable -
Gigabit Ethernet 10/100/1000 Base-TX

Power Supply CDW PWR-IE170W-PCAC-RF 170 W PoE AC-DC

Server DELL PowerEdge R640 Intel Xeon Gold 6210U 2.5 GHz,
92 Gb RAM

Tower DELL OptiPlex 9010 Intel Core i7-3770 CPU (3.4 GHz),
8 GB Ram

SFP Module FS.com SFP-GB-GE-T 10/100/1000 BASE-T, RJ-45
SFP Module FS.com SFP1G-SX-85 1000 Base-SX, 850 nm
SFP Module FS.com SFP-10G-T 10 GBase-T, RJ-45
SFP Module FS.com SFP-10GSR-85 10 GBase-SX, 850 nm

Rack- Amazon Screws, DIN Rail Kit,
Mounting 1U 19-inch 4 post rack

Available but no present
FPGA Board Mouser 424-Netfpga-Sume
Ethernet/ PEAK IPEH-004012
CAN Gateway

37

CHAPTER 4
System Performance Validation

Chapter 3 introduced the developed PTP Backbone to synchronize clocks of HIL testbed
components using Linuxptp. In general a user application does not have direct access to
precise timestamps of the Linuxptp service. To demonstrate how user applications can
take advantage of a clock-synchronized network, the following use cases can be defined:

− RTDS Validation Process:
Demonstrating the possibility to use synchronized time reference within a HIL
simulation in RSCAD. In particular, using this time reference for one-way path
delay measurements between RTDS and a Linux machine synchronized to the PTP
Backbone.

− CORE Validation Process:
Using hardware timestamps of a synchronized NIC to measure latency of an
emulated switch in CORE compared to a real hardware switch. Results can be
compared to related work from Ogilvie et al. [6] that uses ping command for
the latency measurement. Thus, this use case represents the benefits between
synchronized and not synchronized systems.

− SyncBox Validation Process:
Validation of clock stability between two SyncBoxes, to demonstrate the possibility
to synchronize devices which do not support PTP.

The lower part of Figure 4.1 visualizes the PTP Backbone introduced in Chapter 3, and
the upper part the measurement data network. RTDS and the two Linux computers
introduced in Chapter 3.2.3 are sharing the same time base, due to the PTP Backbone.
By sending UDP messages with a unique payload, the moment of sending and receiving
packages from one-way messages can be tracked precisely and stored in a common file
system. During the post-processing, collected data is analyzed to calculate path delays,

39

4. System Performance Validation

and clock drifts. The data network can be categorized into two parts, CORE and RTDS
validation, and the developed UDP script as the common measuring method. These two
parts of the validation procedure and the developed UDP measurement script will be
explained in detail in the following sections.

Dell OptiPlex 9010
Real Time Digital Simulator

RTDS PTP-Network
Card

GTSYNC

microSync
Grandmaster-

ClockPTP Switch
GPS Antenna

Dell PowerEdge R640

PTP-Network
Card

PTP Network

Data Network

Switch

CORE

GTNET-SKT

Coax
Fiber
Ethernet

Figure 4.1: Measurement setup to validate system performance.

4.1 UDP measurement script
One possible use case to take advantage of synchronized clocks within a network is the
possibility of one-way path delay measurements. Therefore, a precise latency measurement
method was developed based on UDP messages that support hardware time stamping.
This further increase the time stamping precision compared to software-based solutions.

The open-source package Linuxptp is using UDP communication in combination with
hardware time stamping to achieve accuracy in nanosecond resolution. This led to the
basic communication protocol in terms of path delay measurement during the following
validation processes. Different example solutions and detailed documentation about
UDP message time stamping are available in the literature [41]. Thus, the programming
language C was selected for measuring hardware timestamps, and Python for data
post-processing.

The basic idea is to send a UDP message from the Dell OptiPlex 9010 machine to the
Dell PowerEdge R640 machine and capture the hardware timestamp from the moment of
transmitting (TX). Analog the Dell PowerEdge R640 computer is capturing the timestamp
of the receiving message (RX). Both machines can save those data to the common shared
file server. Since both NICs are synchronized to the GMC via the PTP Backbone the
path delay is the difference between RX and TX timestamp. Another scenario is sending
UDP from Dell Optiplex 9010 messages to RTDS and receive messages on the same

40

4.1. UDP measurement script

machine. This measurement setup will be explained in detail in Chapter 4.3.1, but the
fundamental methods are explained in this Chapter.

Even when the sending and receiving routine is executed on different computers, it was
more convenient to implement code in one common file named rtds.c. By executing
the c-file with an additional argument like -s (sending), -r (receiving), or -sr (sending
and receiving on the same machine). Different sequences of the code are executed,
illustrated in Figure 4.2. Each part of the code is structured similarly. First, configuring
and initializing the socket, starting the sending/receiving routine, and storing the data
into a text file for post-processing. These three parts of the code will be explained in
detail in the following sections. The sending and receiving part on the same machine is
an individual measurement required for the RTDS validation procedure which will be
introduced in Chapter 4.3.1.

Init Sending
Socket

Send UDP
Message

Start

Which
Scenario

Get
Timestamp

Store Data

Init Receiving
Socket

Receive UDP
Message

Get
Timestamp

Store Data

Init
Sending & Receiving

Socket

Send UDP
Message

Get
Timestamp
Store Data

Receive UDP
Message

Get
Timestamp
Store Data

End

Re
pe

at

Re
pe

at

Re
pe

at

Receiving

Figure 4.2: Flowchart of the UDP measurement script

Before a UDP connection between two devices can be established, and UDP sockets can
hardware timestamp in- and outgoing packets, two requirements have to be met. First,
by installing the Linuxptp package the terminal command hwstamp_ctl is available. The
following command enables hardware timestamps for a specific interface.

hwstamp_ctl −i [i n t e r f a c e] −r 1 −t 1

41

4. System Performance Validation

This needs to be done for every interface that runs a UDP measurement script that
requires hardware timestamps. Second, the firewall of each Linux machine needs to
configured to allow communication on the selected port.

4.1.1 UDP Socket Configuration
Several steps are necessary to configure a socket to send and receive UDP messages
and enable time stamping functionalities (Listing 4.1). The socket() method (Line 1)
creates a communication endpoint according to the given arguments, domain, type,
and protocol. The AF_INET address family argument enables IPv4 Internet protocols
and the SOCK_DGRAM UDP messaging. Protocol, the third argument defines the
communication protocol used depending on the selected domain and type. In this
particular case, only one protocol exists so this argument could be set to 0, or manually
set to IPPROTO_UDP [42].

The setsockopt() method (Line 4) allows to set specific socket options to enable
software/hardware timestamps of packets. The skt argument contains the file descriptor
of the created socket. SOL_SOCKET defines the protocol level where the option specified
from SO_TIMESTAMPING (option_name) is located. The array ts_opt (Line 3), in
this case, contains the required flags to enable hardware time stamping. Analog, software
time stamping can be enabled by replacing *_HARDWARE with *_SOFTWARE and
*_RAW_HARDWARE with *_SOFTWARE [43]. Software timestamps are available in
most NIC, and therefore also used in the ping command [44].

After a socket is created and required options are set, the method bind() is required to
bind the socket to a local interface with the corresponding IP address and port number.
The structure recv_addr of type sockaddr_in contains all required information like socket
domain, IP address, and port. The method inet_aton() converts IP addresses from
numbers-and-dots to binary form, and htons() from unsigned integer to network byte
order (Lines 7 and 8).

1skt = socket (AF_INET, SOCK_DGRAM, IPPROTO_UDP) ;
2ts_opt = SOF_TIMESTAMPING_RX_HARDWARE |
3SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE;
4se t sockopt (skt , SOL_SOCKET, SO_TIMESTAMPING, &ts_opt , s i z e o f (ts_opt)) ;
5
6recv_addr . s in_fami ly = AF_INET;
7inet_aton (ip_addr , &recv_addr . sin_addr) ;
8recv_addr . s in_port = htons (PORT) ;
9bind (skt , (const s t r u c t sockaddr ∗)&recv_addr , s i z e o f (recv_addr)) ;

Listing 4.1: Fundamental methods to initialize a UDP socket.

4.1.2 Sending and receiving UDP packets
To access timestamps later on, control messages (also called ancillary data) that can
store information like timestamps, and related interface are necessary. The methods
sendmsg() and recvmsg() (for sending and receiving) can send/receive such control

42

4.1. UDP measurement script

messages to/from the socket. They require three arguments, sockfd, msghdr, and flags.
The sockfd flag holds the file descriptor of the associated socket. The structure msghdr
(Listing 4.2) contains among others the payload (*msg_iov), the destination IP address
(*msg_name), and the control message (*msg_control). If the message size exceeds a
certain length the message will not be transmitted. The sendmsg() method in this case
return the error EMSGSIZE. In terms of sending a packet, the third argument flag is set
to 0 since no further configuration is necessary [45].
s t r u c t msghdr {

void ∗msg_name ; /∗ Optional address ∗/
socklen_t msg_namelen ; /∗ S i z e o f address ∗/
s t r u c t i ovec ∗msg_iov ; /∗ Sca t t e r / gather array ∗/
s i z e_t msg_iovlen ; /∗ # elements in msg_iov ∗/
void ∗ msg_control ; /∗ A n c i l l a r y data , s ee below ∗/
s i z e_t msg_control len ; /∗ A n c i l l a r y data b u f f e r l en ∗/
i n t msg_flags ; /∗ Flags (unused) ∗/
} ;

Listing 4.2: Definition of the msghdr structure [45]

If a socket receives a message and time stamping options are set properly, ancillary data
including timestamps are created. Therefore, the recvmsg() can be used to retrieve this
information from the socket.

By calling the sendmsg() method, the packet will be hand over into a sending queue.
Thus, the timestamp of actual sending the message is not available at this point and
the control message remains empty. Instead, outgoing packets are also looped back
into the socket’s error queue with the send timestamps attached. By executing the
rescvmsg() with the MSG_ERRQUEUE flag, this method return relevant metadata
of the originally transmitted message including timestamps [41]. Listing 4.3 shows an
example of a sending and receiving socket with ancillary data containing timestamps.
The unique string UDP_n in the payload, where n is an integer number starting from 1,
allows data correlation during the post-processing. With those RX and TX timestamps,
path delay between both devices running the script can be calculated.

The method clock_gettime() saves the current time from the related local clock to the
given file descriptor. CLOCK_REALTIME is a clock that can be modified or adjusted
by certain services like NTP or Linuxptp. Its time represents the current seconds and
nanoseconds since Epoch. CLOCK_MONOTONIC_RAW on the other hand, can not
be modified or tuned in terms of frequency. So these two timestamps right before sending
a message and after receiving one can be used as a reference compared to path delay
calculated from hardware timestamps.
\\ Sending Socket
c lock_gett ime (CLOCK_REALTIME, &pre_ts_rt) ;
c lock_gett ime (CLOCK_MONOTONIC_RAW, &pre_ts_mraw) ;
sendmsg (skt , &msg , 0) ;
while (1){

recvmsg (skt , &msgc , MSG_ERRQUEUE) ;

43

4. System Performance Validation

break ;
}

\\ Rece iv ing Socket
recvmsg (skt , &msg , 0) ;
c lock_gett ime (CLOCK_MONOTONIC_RAW, &post_ts_mraw) ;
c lock_gett ime (CLOCK_REALTIME, &post_ts_rt) ;

Listing 4.3: Fundamental commands to send and timestamp a transmitted message.

4.1.3 Accessing timestamps via a control messages
Control messages (also called ancillary data) contain additional information (like times-
tamps) about the interface (socket) that received incoming packets and are not part
of the socket payload. As mentioned above, ancillary data can be received by call-
ing recvmsg(). This structure contains various information in different socket levels.
Therefore, macros from the cmshdr struct can be used to iterate through the data [46],
Listing 4.4 illustrates this procedure. Line 3 is searching for ancillary data that matches
the level and option_name with configured socket options. When this condition is met,
CMSG_DATA(cmsg) contains the corresponding timestamps and copies them to struct
scm_timestamping *ts. Depending on the socket option ts[0] holds software timestamps
and ts[2] hardware timestamps. In general hardware timestamping is the preferred
configuration due to higher precision.

1s t r u c t cmsghdr ∗cmsg ;
2for (cmsg = CMSG_FIRSTHDR(msg) ; cmsg ; cmsg = CMSG_NXTHDR(msg , cmsg)) {
3i f (cmsg−>cmsg_level == SOL_SOCKET && cmsg−>cmsg_type == SO_TIMESTAMPING){
4s t r u c t scm_timestamping ∗ t s = (s t r u c t scm_timestamping ∗)CMSG_DATA(cmsg) ;
5}

Listing 4.4: Reading timestamps from ancillary data.

Every single sent and received UDP message has corresponding hardware timestamps,
timestamps from CLOCK_REALTIME and CLOCK_MONOTONIC_RAW, and the
unique message number. To avoid loss of data during run-time, and reduce used workspace
memory, each dataset is saved into a text file after each sending/receiving sequence.

4.1.4 Linuxptp data
The Linuxptp project is an open-source project and thus still might have some bugs
and issues. As explained in Chapter 2.1 the PTP requires four messages to calculate
the path delay and clock offset between two devices. Due to timing constraints and
packet loss, the ptp4l service might switch to an uncalibrated state. In this case, the
clocks are not synchronized to the GMC anymore and could drift apart. Usually this
uncalibrated state last between 20 and 60 s. During this period, hardware timestamps
from the introduced UDP measurement script are not that accurate. However, we can
track the non-callibrated phases via the output of the ptp4l and phc2sys programs. To
determine which datasets are valid (captured during calibrated state), the Linuxptp

44

4.2. CORE Validation Process

package was minimally modified. Every time the output from the ptp4l and phc2sys
service (see Table 3.12) is printed, the same line is also saved to a text file. Every line has
an additional column including timestamps from local CLOCK_MONOTONIC_RAW.
Therefore, the data frame from the developed UDP script can be merged with the data
frame from the ptp4l/phc2sys data frame. This allows the categorization of valid and
invalid datasets and adds additional information to every UDP message.

4.2 CORE Validation Process
In Chapter 2.3.3 the work from Ogilvie et al. [6] is summarized. Ogilvie et al. demon-
strated the behavior of emulated networks in CORE compared to real networks. Therefore,
they measured latency of a real hardware switch using ping command and compared it to
a virtual switch within CORE. This procedure relies on software timestamps and end-to-
end RTT measurements. Due to synchronized clocks, the developed PTP Backbone offers
the opportunity to use one-way path delay measurements with nanosecond resolution
based on hardware timestamps. Therefore the demonstrated setup from Ogilvie et al. [6]
acts as a reference to compare the results of these two measurement methods.

4.2.1 CORE Measurement Setup
To validate the performance of CORE, three different latency measurement setups
between the two Linux machines are developed (see right part of Figure 4.3). To use
synchronized clocks in a user application, the specific ports used for the measurement
has to be synchronized to the PTP Backbone. Therefore, Port 1 of each Intel i350 NIC
from both Dell computers are synchronized to the GMC via ptp4l command from the
Linuxptp package. Every Port required for the measurement is synchronized to Port 1
via phc2sys command. Table 3.12 shows the required command arguments and related
output.

Dell OptiPlex 9010 Dell PowerEdge R640

Data Network

EdgeSwitch 12
TE100-S16R

Netgear M4300-52G

CORE 7.6m

7.6m

15m

15m

7.6m

PTP Backbone

Real Time Digital Simulator
RTDS

GTSYNC

GTNET-SKT Fiber
Ethernet

10.6m

Figure 4.3: Measurement setup during the validation process.

45

4. System Performance Validation

In phase one (direct connection), additional latency and other dependencies can be
reduced to a minimum. Thus, it is possible to calculate the theoretical propagation delay
of a specified package within the Ethernet cable with a defined length. This value can
be compared with the measured latency from the hardware timestamp UDP script and
verify the accuracy and validity of the developed UDP measurement script.

In the second phase, the latency of three different hardware switches are measured with
the now approved UDP script. The Netgear M4300-52G switch is the same model as the
one used in the reference measurement [6]. This allows a accurate comparison between
both concepts. For further reference data, the latency of a 1000 Mbps (EdgeSwitch 12)
and a 100 Mbps (TE100-S16R) switch are also investigated. The obtained data of these
three hardware switches serve as a reference for the emulated switch in CORE.

The third phase includes latency measurements of a emulated switch within core. The
possibilities of configuration in CORE is limited. In the current version 6.5.0 the
Ethernet switch model has no further configurable parameters. The links between
modules have parameters like, Bandwidth, Delay, Jitter, Loss and Duplicate. As an
initial test, it is relevant to figure out the minimal achievable latency of an emulated
switch, see Figure 4.4. By setting the delay to zero the minimal latency for 1000 Mbps
connection can be emulated. From this minimal reference, it is possible to increase the
delay and compare it with the measured latency from the hardware timestamped UDP
script. Chapter 4.2.2 will present all results and comparisons between real and emulated
switches.

Figure 4.4: Emulated switch within the CORE simulation.

4.2.2 CORE Validation Results
As explained in Section 4.1.4 due to timing requirements, the Linuxptp service might
switch into an uncalibrated state for several seconds. Since this behavior might be part
of every real scenario, it is important to visualize ideal versus real circumstances. For
the following section data during an uncalibrated state are categorized as invalid, and
synchronized data as valid.

Direct Connection

In this section, the developed UDP measurement script is used to measure one-way path
delay of a direct Ethernet connection between Optiplex 9010 and PowerEdge R640. The
packet size of each transmitted UDP message is 142 byte = 1136 bit. The theoretical
total delay is the sum of processing delay, transmission delay, propagation delay, and

46

4.2. CORE Validation Process

queuing delay. The transmission rate with a 1000 Mbps Ethernet connection is 1 bit/ns.
Processing delay can be neglected since the measurement script uses hardware timestamps
from the time of physical transmitting and receiving a packet. The queuing delay can
be assumed as minimal since only one single message will be sent on the link between
sender and receiver at the same time. With a packet size of 142 byte the transmission
delay would be 1136 ns. Under the assumption that data can be transmitted on a copper
cable with 2/3 of the speed of light, the corresponding propagation delay of a 7.5 m cable
is 37.5 ns. This leads to a theoretical total delay of 1173.5 ns.

Figure 4.5 shows the comparison between a valid and an invalid one-way latency mea-
surement using hardware timestamps. The impact on the mean path delay is minimal
with 15 ns offset. But the difference in standard deviation (924 ns) is significant. During
the uncalibrated state, every clock is in a free-running mode due to the missing synchro-
nization. This leads to drifting clocks and therefore a wider deviation of latency. Even
when the state change back to a locked state, a small warm-up phase is recognizable.
Table 3.12 shows this warm-up period and the correlated master offset values. Since
every measured dataset has the associated Linuxptp values stored, the valid dataset only
use data after the warm-up phase. This leads to a smaller standard deviation compared
to invalid dataset.

1000 500 0 500 1000 1500 2000

Delay [ns]

0

500

1000

1500

2000

2500

O
c
c
u
rr

e
n
c
e
s

Deviation all data: T=1d:0h:11m
Mean: 532.42 ns

StdDev: 1201.75 ns

(a) Including uncalibrated states.

200 0 200 400 600 800 1000 1200

Delay [ns]

0

100

200

300

400

500

600

700

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=1d:0h:11m
Mean: 547.02 ns

StdDev: 277.46 ns

(b) Only locked state.

Figure 4.5: One-way latency of direct Ethernet connection, influenced of uncalibrated
state using hardware timestamps.

There are multiple reasons to explain the 589 ns difference between theoretical and
measured path delay. 100 % clock synchronization is not possible, so the individual
synchronized clocks of the sender and receiver are also affecting the latency. The
predominant part of the theoretical path delay is the transmission delay with 1136 ns.
Per definition, this is the time that the physical layer needs to push the packet on the
link [47]. As explained in Chapter 4.1.2 transmitted packets are looped back to the

47

4. System Performance Validation

MSG_ERRQUEUE to timestamp the actual time of transmitting the packet. Therefore
it is plausible that the measured path delay is smaller than the calculated total delay of
1173.5 ns.

One benefit of the developed clock synchronization concept is the hardware timestamp fea-
ture of the Intel i350 NIC, this allows accuracy in nanosecond resolution. To demonstrate
this major advantage, the same measurement is repeated with a UDP socket configured for
software timestamps (see Chapter 4.1.1). Figure 4.6 illustrates the mentioned drawbacks
of software timestamps. Both datasets, valid and invalid, show two peaks with an offset
of 4.2 µs instead of a normal distribution compared to hardware timestamps. According
to the data, it is not a specific amount of consecutive packets that are delayed. Instead,
time stamping is delayed randomly from other preemptive tasks. Another aspect is the
similar standard deviation between valid and invalid dataset. This can be explained
due to less accurate timestamps in general. As explained in Figure 4.5, the influence of
the short warm-up phase after a state switch is sub-microsecond. So the resolution of
software timestamps is too low to significantly influence the path delay measurement.

30000 35000 40000 45000 50000 55000 60000 65000

Delay [ns]

0

50

100

150

200

250

300

350

400

O
c
c
u
rr

e
n
c
e
s

Deviation all data: T=0d:1h:00m
Mean: 49395.11 ns

StdDev: 13315.59 ns

(a) Including uncalibrated states.

10000 20000 30000 40000 50000 60000 70000 80000

Delay [ns]

0

50

100

150

200

250

300

350

400

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=0d:1h:00m
Mean: 49324.03 ns

StdDev: 13167.74 ns

(b) Only locked state.

Figure 4.6: One-way latency of direct Ethernet connection, influenced of uncalibrated
state using software timestamps.

To further prove the reliability of the developed UDP measurement script, results from
Figure 4.6 can be compared with RTT values from a ping command. As explained in
Chapter 4.1.1 ping command is also using similar software timestamp socket configurations.
The average RTT of a ping command with the same packets size (142 Byte) over the same
physical Ethernet connection is 182 µs. This leads to an offset of 83 µs, between ping
RTT and double the time of measured 49.4 µs one-way latency. This offset is plausible
since RTT also includes processing time within the NIC to prepare the ping response.

Another reference measured during this setup are timestamps from the clock_gettime()
method including current time from CLOCK_REALTIME and

48

4.2. CORE Validation Process

CLOCK_MONOTONIC_RAW (see Chapter 4.1.2). This method is called right before
and after sending/receiving a UDP packet (see Listing 4.3). It is unpredictable how
many preemptive tasks might be executed between this and sendmsg()/recvmsg() method
call. Therefore, this method is not recommended for precise delay measurements seeking
sub-microsecond resolution. Figure 4.7a shows the absolute clock drift between two
not synchronized systems. The current clock offset and absolute drift between two not
synchronized clocks can be calculated with Equation 4.1a and 4.1b.

clock_offset = (RXts − TXts) − path_delay (4.1a)

absolute_drift = clock_offset[end] − clock_offset[start] (4.1b)

The path_delay value is used from the hardware timestamp measurement and RX/TXts

represent the current CLOCK_MONOTONIC_RAW value. This leads to an absolute
drift of 114 µs within one hour between two not synchronized computers. This is a
rare scenario but should demonstrate the necessity of synchronization concepts. Fig-
ure 4.7b shows the measured path delay only with clock_gettime(CLOCK_REALTIME)
method timestamps. Similar to the software timestamps from Figure 4.6 is this user
space timestamp affected by other preemptive tasks that lead to this two peaks. The

0 1000 2000 3000 4000 5000 6000 7000

UDP-Message

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
ff

s
e
t[

n
s
]

1e8

MRAW abs drift only valid: T=0d:1h:00m
Abs. Diff.: 114.862840 us

(a) CLOCK_MONOTONIC_RAW drift.

80000 100000 120000 140000 160000

Delay [ns]

0

5

10

15

20

O
c
c
u
rr

e
n
c
e
s

Dev Clock RT Delay only valid: T=0d:1h:00m
Mean: 126234.84 ns
StdDev: 32629.85 ns

(b) CLOCK_REALTIME path delay.

Figure 4.7: Examples of possible clock drift, or path delay measurement accuracy without
PTP synchronization.

demonstrated results can prove the reliability of the developed UDP measurement script
and the capability of one-way path delay measurement with nanosecond resolution. To
reduce the number of redundant plots and results the following sections will only include
data from the valid datasets. Moreover, reference path delay results from software
timestamps, CLOCK_REALTIME, or MONOTONIC_RAW will be only discussed if
they are relevant. Finally, Table 4.1 provides a brief summary of the obtained one-way
path delays (except the ping command is RTT).

49

4. System Performance Validation

Table 4.1: Comparison of path delay results depending on measurement method.

Packet Size: 142 Byte
Method Path Delay
Hardware timestamp 546.5 ns
Softwaretimestamp 49 300.0 ns
ping (RTT) 182 000.0 ns
clock_gettime() 163 900.0 ns

Real Hardware Switch

Since the correlation between valid and invalid data, hardware and software timestamps
is similar to the previous direct measurement, only results from hardware timestamps
are discussed in this section. The Trendnet TE100-S16R is a 100 Mbps switch where
EdgeSwitch 12 and Netgear M4300-52G support 1000 Mbps. The cable length from
Optiplex 9010 to the switch is 15 m, and the 7.6 m to the PowerEdge R640. Figure 4.8
shows the path delay between the two Dell computers over three different hardware
switches. The Trendnet switch has an average latency of 18.471 µs, where EdgeSwitch
has 6.385 µs and Netgear 5.336 µs. The theoretical propagation delay of a 7.5 and 15 m
cable is neglectable compared to the long processing delay within the switch.

For a quick sanity check, the Forwarding Rate of a 100 and a 1000 Mbps switch can be
used to calculate the estimated processing time (see Equation 4.2) [48].

Packet_Forwarding_Rate = Transmission_Rate/8 bit/(64 + 8 + 12)byte (4.2)
PFR100Mbps = 100 ∗ 1e6/8/84 = 148 809.5 pps

PFR1000Mbps = 1 488 095 pps

The minimal packet length is 64 byte with additional 8 byte frame header and 12 byte
frame interval. Thus, the theoretical switch processing delay for a 64 byte message is
1/PFR seconds. For small packet sizes of 142 byte like in this case, a linear correlation
between packet size and processing delay can be assumed. Therefore, the calculated
delay of the 100 Mbps switch is 14.9 µs compared to the measured 18.4 µs. The measured
one-way path delay from all three hardware switches are also available in Table 4.2. In
addition, the measured latency of the same Netgear hardware switch from [6, Figure 6] is
listed in the Table. This demonstrates the improved accuracy of path delay measurement
due to the developed PTP Backbone, compared to the measurement introduced in Ogilvie
et al. [6].

Emulated Switch in CORE

In this scenario, the same cable length configuration is used as in the previous hardware
switch measurement. I cant be assumed that an emulated software base switch has a
higher latency than a real hardware switch. Therefore, as initial reference, the configurable
link delay value of an emulated switch is set to zero.

50

4.2. CORE Validation Process

4500 4750 5000 5250 5500 5750 6000 6250

Delay [ns]

0

50

100

150

200

250

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=1d:0h:11m
Mean: 5336.93 ns
StdDev: 316.11 ns

(a) Netgear M4300-52G (1000 Mbps).

5500 5750 6000 6250 6500 6750 7000

Delay [ns]

0

50

100

150

200

250

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=1d:0h:12m
Mean: 6285.35 ns
StdDev: 304.15 ns

(b) EdgeSwitch 12 (1000 Mbps).

17500 18000 18500 19000 19500

Delay [ns]

0

100

200

300

400

500

600

700

800

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=1d:0h:12m
Mean: 18471.11 ns
StdDev: 397.39 ns

(c) Trendnet TE100-S16R (100 Mbps).

Figure 4.8: Comparison of one-way path delay over three different hardware switches.

Table 4.2: Comparison of one-way path delay over three different hardware switches.

Packet Size: 142 Byte
Method Path Delay Ref. Paper [6]
Trendnet TE100-S16R (100 Mbps) 18.471 µs
EdgeSwitch 12 (1000 Mbps) 6.285 µs
Netgear M4300-52G (1000 Mbps) 5.336 µs 153 µs

51

4. System Performance Validation

In the first phase, the links between the external interface port and the emulated switch
are configured with a 1000 Mbps Bandwidth but zero additional delays (see Figure 4.4).
In the second phase, different virtual link delays are configured to compare the added
delay with the real measurement (see Figure 4.9 a-c). The same procedure is repeated
for a 100 Mbps Bandwidth link (see Figure 4.9d-f). According to Figure 4.9 an emulated
100 Mbps switch behaves similarly to an 1000 Mbps switch regarding path delay with an
equal delay value. This could be explained by the low traffic during the measurement.
The average minimum achievable path delay in CORE is therefore 65.3 µs. The accuracy
of the emulated additional delay of 50 and 100 µs is matching more than 91 % with the
measured additional delay.

Table 4.3: Average propagation delay of an emulated switch according to different network
parameters.

100 Mbps Link
Emulated Delay [µs] Path-Delay [µs] Offset to 0 µs [µs] Data conformity [%]
0 65.189 0 0
50 119.59 54.401 91.2
100 169.952 104.763 95.2

1000 Mbps Link
Emulated Delay [µs] Path-Delay [µs] Offset to 0 µs [µs] Data conformity [%]
0 65.299 0 0
50 119.563 54.264 91.5
100 169.703 104.404 95.6

Since the cable configuration is identical to the real hardware switch measurement,
comparing data from real and emulated switch will lead to a comparison of the actual
processing delay of both concepts. This allows an accurate validation of the emulated
switch in CORE. By subtracting the measured path delay from a real and an emulated
switch, the additional latency can be validated. Table 4.4 shows that an emulated
100 Mbps switch is 46.72 µs slower than the Trendnet switch. And an emulated 1000 Mbps
switch is ∼59 µs slower than EdgeSwitch/Netgear switch.

Table 4.4: Difference between the real and emulated switch in CORE.

CORE Ref. Paper [6]
100 Mbps 1000 Mbps 1000 Mbps

Trendnet 46.72 µs - -
EdgeSwitch - 59.02 µs -
Netgear - 59.96 µs −29 µs

In Ogilvie et al. [6], the presented ping RTT response time from the same Netgear switch
and CORE revealed that the response time from CORE was 29 µs shorter than the real
hardware switch. That specific use case demonstrated that the PTP Backbone can be

52

4.2. CORE Validation Process

55000 57500 60000 62500 65000 67500 70000 72500 75000

Delay [ns]

0

25

50

75

100

125

150

175

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=0d:1h:01m
Mean: 65299.08 ns
StdDev: 3627.78 ns

(a) 1000 Mbps Switch with 0 ns delay.

57500 60000 62500 65000 67500 70000 72500

Delay [ns]

0

20

40

60

80

100

120

140

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=0d:1h:00m
Mean: 65189.70 ns
StdDev: 3190.85 ns

(b) 100 Mbps Switch with 0 ns delay.

110000 112500 115000 117500 120000 122500 125000 127500 130000

Delay [ns]

0

20

40

60

80

100

120

140

160

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=0d:1h:00m
Mean: 119563.30 ns
StdDev: 3697.98 ns

(c) 1000 Mbps Switch with 50 ns delay.

110000 112500 115000 117500 120000 122500 125000 127500

Delay [ns]

0

50

100

150

200

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=0d:1h:00m
Mean: 119590.84 ns
StdDev: 3262.39 ns

(d) 100 Mbps Switch with 50 ns delay.

160000 162500 165000 167500 170000 172500 175000 177500 180000

Delay [ns]

0

50

100

150

200

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=0d:1h:00m
Mean: 169703.65 ns
StdDev: 3488.26 ns

(e) 1000 Mbps Switch with 100 ns delay.

162000 164000 166000 168000 170000 172000 174000 176000 178000

Delay [ns]

0

50

100

150

200

O
c
c
u
rr

e
n
c
e
s

Deviation only valid: T=0d:1h:00m
Mean: 169952.96 ns
StdDev: 2793.06 ns

(f) 100 Mbps Switch with 100 ns delay.

Figure 4.9: Deviation of the propagation delay of an emulated switch according to
different network parameters.

53

4. System Performance Validation

used for precise path delay measurements compared to the measurement method of the
reference work [6].

4.3 RTDS Validation Process
4.3.1 RTDS Measurement Setup
The GTNET card is a real-time communication interface between the simulation and an
external network. It supports a huge variety of protocols depending on the application.
For this scenario, the GTNET-SKT is relevant to exchange data via UDP. Figure 4.10
shows the Draft file within RSCAD, including all necessary modules to implement a UDP
communication with synchronized timestamps from the GTSYNC card.

rxCnt

NewData

SocketOvr

INVALIDPKT

GTIO Fiber Port 1

GTNET-SKT
GTNET Card # 1

NewDataFlag

NewDataSeq

From: 0

. ..
Remote Port

192 204168
6002

Remote IP

Local Port 9002

Mode UDP

SocketOvr

ReadyToSend

GTNETSKT1

InvMsg

3Variables To:

SendDataFlag

readyToSen

GT_SYNC

SYNCHRONIZATION
OF SUBSYSTEM #1

TO EXTERNAL TIME INPUT

OPTIONAL NAMED
TIME SIGNALS

CRTSECD CRTSEC37
++

37

Figure 4.10: Schematic of the RSCAD UDP communication using the GTSYNC card as
a time reference.

By importing the GT_SYNC module, two important time signals are available, CRT-
SECD (current second) and CRTNSECD (current nanosecond) since Epoch. As mentioned
in Chapter 3.2.3 only TAI time format is available in IEC 61850-9-3 mode, but the GT-

54

4.3. RTDS Validation Process

SYNC card expects UTC. Therefore, the 37 s offset between both is added manually
and the new signal is labeled as CRTSEC37. In general, only the GT_SYNC module in
combination with the 37 s offset are necessary to add PTP synchronized timestamps to
any simulation case.

Besides the network configuration like IP address and port from the GTNET-SKT, it is
required to set the from: variable properly. The GTNET card expects data length with
integer multiples of four byte. Since the transmitted packets have a data length of 100
byte, the variable has to be set to 25.

Several other flags are relevant. SocketOvr is an Integer output signal that indicates
a loss of UDP packets. This can occur if multiple messages arrive at the same time.
If an Ethernet message with the wrong length is received the InvMsg would be set to
’1’. ReadyToSend is only ’1’ if port configuration is completed and no pending data
transmission exists. Only then, GTNET-SKT is ready to receive data from the processor
(like timestamps) that will be used as UDP payload.

The Integer value of the NewDataSeq flag increments for every received message since the
simulation started. This value can be used to add a unique consecutive Integer number to
every transmitted UDP message. In addition, the payload includes the current timestamp
from the GT_SYNC module in seconds and nanoseconds (CRTSEC37 and CRTNSEC).

If the SendDataFlag input is set to ’1’ and the ReadyToSend flag is also ’1’, two timesteps
are required to send the data. In the first timestep, the dataset including the GTSYNC
timestamps, are sampled from the processor. In the second timestep up to 30 data points
are transferred from the processor to the GTNET card. The time for one timestep can
be configured in RSCAD in the draft file. By right clicking anywhere in the Draft area
of RSCAD, under section "Circuit Options", Time Step (µs) parameter is available. The
minimum allowed value, regulated by RSCAD, is 10 µs. Therefore by connecting the
NewData signal direct to the to the SendDataFlag, receiving a message is also the trigger
to send a message back [49]. Figure 4.11 shows the run-time environment of the UDP
measurement in RSCAD including all explained signals for monitoring reasons.

Figure 4.12 demonstrates the fundamental concept to measure one-way latency between
Linux machine and RTDS. One dataset of n UDP message consist of three different
timestamps to calculate the one-way latency for each direction. First, the hardware
timestamp from the point of transmitting the UDP message from the Linux machine.
Second, the current timestamps from the GT_SYNC module from the moment of receiving
a packet. Third, the hardware timestamp from the received message transmitted from
the GTNET card, including the GTSYNC timestamps in the message payload. With
these three timestamps and the correlated message number n, the path delay for each
direction can be calculated.

A small example, in case the timestep is set to 10 µs, and a UDP message is received.
The rxCnt signal would increase by one and NewData and thereby also SendDataFlag is
set to ’1’. During the first 10 µs timestep the processor is preparing a dataset, including
the value of CRTSEC37 and CRTNSEC from the GTSYNC module. Within another

55

4. System Performance Validation

Figure 4.11: Visualization of an example GTNET UDP measurement including all
monitoring signals.

10 µs timestep the data is sent from the processor to the GTNET card and further to the
Linux machine via UDP. So in theory, increasing the timestep by 100 µs should increase
the latency between GTNET and Linux machine by 200 µs. Chapter 4.3.2 will show the
latency depending on different timesteps of RTDS.

GTNET-SKT Linux
Machine

(UDP_n)
TX_ts

RX_ts
(n, CRTSEC37, CRTNSEC)

Figure 4.12: Example latency measurement setup between GTNET-SKT and Linux
machine.

4.3.2 RTDS Validation Results

The following section will demonstrate the availability of timestamps during a RSCAD
simulation that is synchronized to the PTP Backbone through the GTSYNC card. Using
the timestamps from the GTSYNC module to measure the latency between a device
and RTDS via UDP messages is only one representative way. The results presented
in this section also display the impact off different processing timesteps of the RTDS
processor. As explained in Chapter 4.3.1 changing the timestep of RSCAD should have a
direct impact on the measured latency between Optiplex 9010 and RTDS. Minimal two
timesteps are necessary to compute and respond after an incoming UDP message at the
GTNET card. To demonstrate the ideal scenario only data and results from the valid

56

4.3. RTDS Validation Process

dataset will be discussed. Differences between valid and invalid datasets were discussed
already in previous sections.

The minimal timestep within RSCAD that can be set is 10 µs. In addition measurements
with a timestep of 25, 50, 75, 100, and 150 µs are accomplished. Three representative
dataset are presented in Figure 4.13. Figure 4.13a and 4.13b show the influence of path
delay depending on the RTDS timestep. Two timesteps are required between requesting
GTSYNC current timestamps and actually responding. Thus, the path delay is not
symmetric, to_GTNET is with 50.1 µs shorter than from_GTNET (79.8 µs). The sum
of both path delays (see Figure 4.13) correlates with double the time of the set RTDS
processor timestep. Increasing the timestep from 25 µs to 50 µs, increases the total path
delay by 49.665 µs. Table 4.5 illustrates the correlation of the other timesteps. The
correlation between timestep and path delay of from_GTNET is linear between 25 and
150 µs with less than 1% deviation.

Another interesting aspect can be seen in Figure 4.13 a, c, and e. By increasing the
timestep the standard deviation of the to_GTNET latency is increasing. The right
maximum is almost constant at 50 µs but the minimum path delay is getting negative.
This phenomenon can be explained in Figure 4.14. At the beginning and the end of
every timestep period the RTDS processor is reading and writing data depending on the
simulation needs. Depending on the moment of receiving a UDP message and requesting
GTSYNC timestamps, the RTDS processor decides whether he takes data from the
beginning or obtains new/current values. So the total width of the to_GTNET path
delay deviation matches with the selected timestep value. By further increasing this
timestep, the width of that time window might be larger than the time event of the
original sent UDP message from the Optiplex machine. This causes a temporally smaller
RX_timestamp than TX_timestamp which leads to a negative path delays. That means
that a negative latency value can not be larger than one timestep.

Table 4.5: Path-delay between GTNET and Optiplex machine, depending on RTDS
timestep.

to GTNET from GTNET Diff. between Time-Steps
Time-Step [ns] Path-Delay [ns] Path-Delay [ns] [ns] [%]

10 50,118 79,757 0,000 0,000
25 42,387 97,345 17,588 70,571
50 29,583 147,010 49,665 0,675
75 18,303 197,177 50,167 -0,333

100 5,193 246,974 49,797 0,408
150 -20,242 346,915 99,941 0,059

Due to the developed PTP backbone and thus the possibility to perform precise one-way
latency measurements, it was possible to analyze the behavior of RTDS with respect to
the use of timestamps during running simulations.

57

4. System Performance Validation

40000 45000 50000 55000 60000

Delay [ns]

0

5

10

15

20

25

O
c
c
u
rr

e
n
c
e
s

Dev HWTS Delay to GTNET (valid): T=0d:1h:01m
Mean: 50118.62 ns
StdDev: 3807.29 ns

(a) RSCAD timestep is 10 µs.

70000 75000 80000 85000 90000

Delay [ns]

0

5

10

15

20

25

30

O
c
c
u
rr

e
n
c
e
s

Dev HWTS Delay from GTNET (valid): T=0d:1h:01m
Mean: 79757.32 ns
StdDev: 3928.24 ns

(b) RSCAD timestep is 10 µs.

10000 0 10000 20000 30000 40000 50000 60000 70000

Delay [ns]

0

1

2

3

4

5

6

7

8

O
c
c
u
rr

e
n
c
e
s

Dev HWTS Delay to GTNET (valid): T=0d:1h:01m
Mean: 29583.17 ns

StdDev: 14474.41 ns

(c) RSCAD timestep is 50 µs.

140000 142000 144000 146000 148000 150000 152000 154000

Delay [ns]

0

25

50

75

100

125

150

175

O
c
c
u
rr

e
n
c
e
s

Dev HWTS Delay from GTNET (valid): T=0d:1h:01m
Mean: 147010.04 ns
StdDev: 2810.74 ns

(d) RSCAD timestep is 50 µs.

150000 100000 50000 0 50000 100000

Delay [ns]

0

1

2

3

4

5

6

7

8

O
c
c
u
rr

e
n
c
e
s

Dev HWTS Delay to GTNET (valid): T=0d:1h:01m
Mean: -20242.65 ns
StdDev: 43409.53 ns

(e) RSCAD timestep is 150 µs.

343000 344000 345000 346000 347000 348000 349000 350000

Delay [ns]

0

5

10

15

20

25

30

35

40

O
c
c
u
rr

e
n
c
e
s

Dev HWTS Delay from GTNET (valid): T=0d:1h:01m
Mean: 346915.32 ns
StdDev: 1311.40 ns

(f) RSCAD timestep is 150 µs.

Figure 4.13: Deviation of path delay between Optiplex 9010 and RTDS.
58

4.4. SyncBox validation Process

0 20 40 60 80 100

Sending Message
Hardware
TX-timestamp

RTDS time step 10 μs RTDS time step 10 μs RTDS time step 10 μsRTDS
time step
150 μs

Receive Message
at GTNET Request
GTSYNC timestamps

R/W

Sending Message
from GTNET including
GTSYNC timestamps

Receiving Message
Hardware
RX-timestamp

R/W R/W R/W R/W R/W

Read GTSYNC Send to GTNET Send to Optiplex

R/W μs

Figure 4.14: Influence of the timestep on the measured path delay.

4.4 SyncBox validation Process

4.4.1 SyncBox Measurement Setup
During HIL simulations scopes are relevant for long term monitoring or capturing a
current state. In both scenarios the scope should be placed as close as possible to the
DUT. This is common practice since it reduces unnecessary long analog coax cables
and the latency between measured events and their temporal data acquisition. As
explained in Chapter 3 scopes can be best effort synchronized to the PTP Backbone
via the Meinberg SyncBox. Therefore, during larger or distributed simulations, multiple
SyncBoxes required to synchronize devices with a 10 MHz reference input with the PTP
Backbone. Thus, it is important to verify the accuracy of clock stability between the
10 MHz reference output signal of the individual SyncBoxes.

Figure 4.15 illustrates the setup to measure the clock stability of two Meinberg SyncBoxes.
Both devices are in sync with the PTP Backbone, and internal oscillators are warmed
up. The third output port from SyncBox 1 is used for the 10 MHz reference input of the
Tektronix MDO4034C scope. The port configuration between scope and both SyncBoxes
is visible in Figure 4.15. Two major parameters are interesting, the internal clock stability
within one SyncBox, and between two separated SyncBoxes. According to the datasheet
the accuracy of s pulse output synchronized to PTP is ±100 ns (relative to the GMC)
and ±1 s with NTP [38].

During the data post-processing in Python several steps are necessary to verify the clock
stability. The scope is capturing the four 10 MHz rectangular signals over a period of
one day and stored it to mat-files in HDF5 format. Every file contains data from a
0.008 s period. This results in 80 000 rising edges per signal. Channel 1 (Output 1 from
SyncBox 1) is defined as reference. To quantify the clock stability between Channel 1
and every other Channel, the offset between each rising edge can be calculated. The
minimum, average and maximum offset of each mat-file are saved in a data-frame. The

59

4. System Performance Validation

Meinberg SyncBox 1

OUT 3

OUT 1
OUT 2

Meinberg SyncBox 2

OUT 1
OUT 2

Scope

Tektronix
MDO4034C

Ref. Input
Ch1
Ch2
Ch3
Ch4

microSync
Grandmaster-

Clock

PTP Switch

GPS Antenna

PTP Backbone

PTP
Ref.

PTP
Ref.

Figure 4.15: Measurement setup for SyncBox clock stability.

average time between each scope capture is two minutes, so a possible long-term drift
can be measured.

4.4.2 SyncBox Validation Results
This section will present the clock accuracy of the 10 MHz output signals between two
SyncBoxes. A detailed measurement setup description was presented in Chapter 4.4.1
and Figure 4.15. Figure 4.16 shows an example of the rising edge detecting algorithm.
According to the signal frequency of 10 MHz and a span of 0.008 s per scope capture, a
theoretical number of 8000 rising edges results. The used algorithm was able to capture
all 8000 rising edges.

Figure 4.17 illustrates the minimum and maximum offset between a rising edge of
reference Channel 1 (OUT1 of SyncBox 1) and every other SyncBox output. During a
span of 0.008 s Channel 2 has a offset of 1.4 ns and drifts ±0.2 ns compared to Channel 1.
Channel 3 and 4 showed a constant offset of −12.6 ns and −12.4 ns, and a drift of ±0.4 ns.
This higher offset is reasonable since Channel 3 and 4 are output signals of the second
SyncBox therefore the offset is correlated to the PTP synchronization accuracy. These
three values, average, minimal, and maximal offset of each 0.008 s measured period, are
captured 1551 times over a total measured time of ∼41 hours.

Figure 4.18 shows the minimum, average, and maximal drift compared to Channel 1
during 40 min period of the measurement. Since the average offset correlates with the
minimum and maximum curve with less than 0.7 ns, only average values are further
discussed. Therefore, Figure 4.19 illustrates the minimum and maximum drift compared
to Channel 1 during the total 41 hours measurement duration. The drift within SyncBox
1 (Channel 2 to Channel 1) is expected small with maximum value of 1.37 ns. SyncBox 2
is drifting between −16.1 and 84 ns compared to reference Channel 1. According to the

60

4.4. SyncBox validation Process

3.9952 3.9951 3.9950 3.9949 3.9948

elapsed time [ms]

1

0

1

2

3

4

5

6
A

m
p
li
tu

d
e
 [

V
]

Edge Detection all Channels

ch1

ch2

ch3

ch4

ch1_edges

ch2_edges

ch3_edges

ch4_edges

Figure 4.16: Example of the rising edge detection algorithm.

0 1000 2000 3000 4000 5000 6000 7000 8000

elapsed time [us]

12

10

8

6

4

2

0

2

T
im

e
 o

ff
s
e
t

p
e
r

e
d
g
e
 [

n
s
]

Drift within T=8 ms: ChX to Ch1:
2_to_1: min=1.20 ns, max=1.60 ns

3_to_1: min=-13.20 ns, max=-12.40 ns
4_to_1: min=-12.80 ns, max=-12.00 ns

2_to_1

3_to_1

4_to_1

Figure 4.17: Min/Avg/Max clock drift compared to reference Channel 1.

61

4. System Performance Validation

0 10 20 30 40 50

elapsed time [min]

20

10

0

10

20

30

40

50

T
im

e
 o

ff
s
e
t

p
e
r

e
d
g
e
 [

n
s
]

All max/avg/min offset to ch1: T=1d:16h:38m
Diff between max/avg and min/avg

2_to_1: min/avg=-0.57 ns, max/avg=0.30 ns
3_to_1: min/avg=-0.60 ns, max/avg=0.63 ns
4_to_1: min/avg=-0.62 ns, max/avg=0.64 ns

min_2_to_1

min_3_to_1

min_4_to_1

avg_2_to_1

avg_3_to_1

avg_4_to_1

max_2_to_1

max_3_to_1

max_4_to_1

Figure 4.18: Minimal, average, and maximal drift compared to Channel 1 during 40 min
period.

datasheet, the accuracy of the pulse output synchronized to PTP is ±100 ns (relative to
the GMC). Thus, the drift between the two SyncBoxes is within the tolerance.

Figure 4.20 compares the drift between two 10 MHz outputs of the same SyncBox. Since
the Tektronix MDO4034C scope only has four input channels, it is not possible to compare
all six output channels of both SyncBoxes. But it can be assumed that the behavior
of the third channel can be derived from the drift between the other Channels. The
maximum internal drift of SyncBox 2 (avg_4_to_3) is 0.6 ns smaller than SyncBox 1.
In Figure 4.20a nine negative spikes occur during a 41 hour measurement. Figure 4.20b
shows a specific spike at 862 min in detail. Internal clocks and thus external driver is
synchronized to the external PTP Backbone. It seems like one output driver is getting
the information of the new value, one timestep before the other channel. Table 4.6
summaries the relevant measurement results again. Since the minimum internal drift of
the SyncBox 2 is −99.3 ns, due to the peaks, the average value is more applicable.

62

4.4. SyncBox validation Process

0 500 1000 1500 2000 2500

elapsed time [min]

20

0

20

40

60

80

T
im

e
 o

ff
s
e
t

p
e
r

e
d
g
e
 [

n
s
]

Avg Drift to ch1: T=1d:16h:38m
2_to_1: min=1.30 ns, max=1.37 ns

3_to_1: min=-16.12 ns, max=83.90 ns
4_to_1: min=-16.14 ns, max=84.01 ns

avg_2_to_1

avg_3_to_1

avg_4_to_1

Figure 4.19: Average drift compared to Channel 1 during the total measurement period.

0 500 1000 1500 2000

elapsed time [min]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T
im

e
 o

ff
s
e
t

p
e
r

e
d
g
e
 [

n
s
]

Avg Drift: within one SyncBox: T=1d:16h:38m
2_to_1: min=1.30 ns, max=1.37 ns

4_to_3: min=-99.36 ns, mean=0.07 ns, max=0.67 ns

avg_2_to_1

avg_4_to_3

(a) RSCAD timestep is 10 µs.

858 860 862 864 866 868 870

elapsed time [min]

20

0

20

40

60

80

T
im

e
 o

ff
s
e
t

p
e
r

e
d
g
e
 [

n
s
]

Avg Drift: SyncBox2 to SyncBox1(Ch1): T=1d:16h:38m

avg_3_to_1

avg_4_to_1

(b) RSCAD timestep is 10 µs.

Figure 4.20: Drift between 10 MHz output ports within the SyncBox.

63

4. System Performance Validation

Table 4.6: Summary of internal and external drifts of two SyncBoxes.

10MHz Output Drift
External min [ns] avg [ns] max [ns]
Ch2 to Ch1 1,305 - 1,37
Ch3 to Ch1 -16,123 83,9
Ch4 to Ch1 -16,139 - 84,008

Internal
Ch2 to Ch1 1,305 - 1,37
Ch4 to Ch3 -99,36 0,066 0,673

64

CHAPTER 5
Outlook

5.1 Conclusion
This work has demonstrated the possibility to integrate a GPS synchronized PTP
Backbone into an existing HIL testbed. Devices with hardware timestamp support and
a PTP implementation can benefit from the common global GPS time reference. A
RTS like RTDS can use its GTSYNC card to synchronize with the PTP network. Thus,
synchronized timestamps are accessible during real-time simulation. Machines with
Linux OS and hardware timestamp support can be synchronized due to the open-source
Linuxptp package. The Meinberg SyncBox has the PTP implemented and provides
several time sources like 10 MHz, 1PPS or IRIG time codes. This enables even devices
without PTP implementations the capability to synchronize their clocks with the common
GPS time reference.

One representative user application to demonstrate the benefits of the implemented
PTP Backbone is the possibility to proceed with one-way path delay measurements.
Thus, new knowledge in terms of CORE performance and the impact of timestep size
during real-time simulations could be obtained. In previous work from Ogilvie et al. [6],
the measured latency of an emulated switch within CORE was 124 µs compared to a
real hardware switch with 153 µs. Due to hardware timestamps and one-way latency
measurements presented in this work, latency measurement of the same hardware switch
led to 5.3 µs and 65.3 µs for an emulated switch within CORE. CORE has the opportunity
to add additional virtual delay to an emulated network. The percentage error between
configured and actual measured delay could be validated as below 10 %.

Another new insight is the impact of the real-time simulation timestep size on timestamp
accuracy. The deviation of latency measurements between the RTS from RTDS correlated
with timestep length. That means, that the accuracy of timestamps during a real-time
simulation is directly correlated to the simulator processor’s timestep size. The presented

65

5. Outlook

results and insights are demonstrating the benefits of the PTP Backbone in that particular
user application. The design and the precision of the PTP Backbone enable a variety of
possible applications in the future.

5.2 Future Work
One major advantage of a GPS synchronized HIL testbed is the opportunity for co-
simulation around the world. Therefore, this work could act as guidelines for other
organizations to implement such a system in their testbed. Thus, future work could
demonstrate the accuracy of HIL co-simulations using the same global time base. Linuxptp
drops some event messages during runtime which causes an uncalibrated state for
several seconds. During this time, clocks within the PTP network might drift since
synchronization is not possible during this state. This can happen, due to other preemptive
tasks that cause a significant delay of PTP event messages. In the future, the focus
could be set on the priority of PTP event messages of the Linuxptp service to avoid this
behavior. Similar to the work from Rinaldi et al.[5] the 1PPS reference signal from the
Meinberg SyncBox could be used to synchronize components that do not implement the
PTP. For communication protocols like CAN bus an Ethernet-CAN-Gateway FD DR
from Peak-System is already purchased as part of the PTP Backbone design concept but
is currently not implemented in the testbed. Future work could investigate procedures
to timestamp data from a DUT using CAN bus as a communication protocol. Security
aspects are not considered during this work since the demonstrated concepts are not part
of critical infrastructure. Nevertheless, working with PHIL simulation requires correct
timing constraints to achieve a safe and successful simulation. Thus, game theories could
be investigated to estimate potential risks of cyber attacks on PTP networks and clock
timings.

66

Bibliography

[1] HBM. Precision time protocol in data acquisition and testing. [Online] Available:
https://www.hbm.com/en/5143/precision-time-protocol/. (accessed
22 May 2021).

[2] Huang Xin, Li Wenmeng, Yang Song, Zhang Daonong, and Du Qiwei. Smart
substation iec61588 time synchronization system and security evaluation. In 2014
IEEE International Symposium on Precision Clock Synchronization for Measurement,
Control, and Communication (ISPCS), pages 97–101. IEEE, 2014.

[3] Chris S. Edrington, Michael Steurer, James Langston, Touria El-Mezyani, and
Karl Schoder. Role of power hardware in the loop in modeling and simulation for
experimentation in power and energy systems. Proceedings of the IEEE, 103(12):2401–
2409, 2015.

[4] Oscar Azofeifa, Siddhartha Nigam, Olaoluwapo Ajala, Christopher Sain, Samuel
Utomi, Alejandro D. Dominguez-Garcia, and Peter W. Sauer. Controller hardware-in-
the-loop testbed for distributed coordination and control architectures. In 2019 North
American Power Symposium (NAPS), pages 1–6. IEEE, 10/13/2019 - 10/15/2019.

[5] Stefano Rinaldi, Federico Bonafini, Paolo Ferrari, Alessandra Flammini, Marco
Pasetti, and Emiliano Sisinni. Software-based time synchronization for integrating
power hardware in the loop emulation in ieee1588 power profile testbed. In 2019
IEEE International Symposium on Precision Clock Synchronization for Measurement,
Control, and Communication (ISPCS), pages 1–6, [Place of publication not identified],
2019. IEEE.

[6] Colin Ogilvie, Juan Ospina, Charalambos Konstantinou, Tuyen Vu, Mark Stanovich,
Karl Schoder, and Mischa Steurer. Modeling communication networks in a real-time
simulation environment for evaluating controls of shipboard power systems. In 2020
IEEE CyberPELS (CyberPELS), pages 1–7. IEEE, 2020.

[7] RTDS. Chapter 11 GTSYNC. RSCAD v5.011 (accessed 24 May 2022).

[8] Richard Cochran. Github · richardcochran/linuxptp. [Online] Available: https:
//github.com/richardcochran/linuxptp. (accessed 20 April 2021).

67

https://www.hbm.com/en/5143/precision-time-protocol/
https://github.com/richardcochran/linuxptp
https://github.com/richardcochran/linuxptp

[9] Meinberg. Oscillators available for meinberg receivers: Ocxo, tcxo. [Online]
Available: https://www.meinbergglobal.com/english/specs/gpsopt.
htm?pk_source=print&pk_medium=flyer&pk_campaign=OSC-List&pk_
content=&pk_cid=21. (accessed 11 May 2022).

[10] Meinberg. mycrosync rx102. [Online] Available: https://www.meinbergglobal.
com/download/docs/manuals/english/microsync_rx102_acdc.pdf.
(accessed 10 August 2021).

[11] Juan Ospina, Charalambos Konstantinou, Mark Stanovich, and Mischa Steurer.
Evaluation of communication network models for shipboard power systems. In 2021
IEEE Electric Ship Technologies Symposium (ESTS), pages 1–9. IEEE, 2021.

[12] Francisco Girela-Lopez, Jose Lopez-Jimenez, Miguel Jimenez-Lopez, Rafael Ro-
driguez, Eduardo Ros, and Javier Diaz. Ieee 1588 high accuracy default profile:
Applications and challenges. IEEE Access, 8:45211–45220, 2020.

[13] Elena Lisova, Elisabeth Uhlemann, Wilfried Steiner, Johan Akerberg, and Mats
Bjorkman. Game theory applied to secure clock synchronization with ieee 1588. In
ISPCS, pages 1–6, Piscataway, NJ, 2016. IEEE.

[14] Geoffrey M. Garner. Use of ieee 1588 best master clock algorithm in ieee 802.1as. [On-
line] Available: https://www.ieee802.org/1/files/public/docs2006/
as-garner-use-of-bmc-061114.pdf, 200. (accessed 21 May 2022).

[15] CISCO. Precision time protocol software configuration guide for ie 4000, ie 4010,
and ie 5000 switches. [Online] Available: https://www.cisco.com/c/en/us/
td/docs/switches/lan/cisco_ie4000/software/release/15-2_4_e/
b_ptp_ie4k.html. (accessed 22 May 2021).

[16] Geoffrey Garner and Hyunsurk Ryu. Synchronization of audio/video bridging
networks using ieee 802.1as. IEEE Communications Magazine, 49(2):140–147, 2011.

[17] R.E. Mackiewicz. Overview of iec 61850 and benefits. In 2006 IEEE PES Power
Systems Conference and Exposition, pages 623–630, 2006.

[18] Communication networks and systems for power utility automation - part 9-3:
Precision time protocol profile for power utility automation, May 2016.

[19] Siddhartha Nigam, Olaoluwapo Ajala, Alejandro D. Domínguez-García, and Peter W.
Sauer. Controller hardware in the loop testing of microgrid secondary frequency
control schemes. Electric Power Systems Research, 190:106757, 2021.

[20] Peter J. G. Teunissen and Alfred Kleusberg. Gps observation equations and posi-
tioning concepts. In Lecture Notes in Earth Sciences, volume 60, pages 175–217,
1996.

68

https://www.meinbergglobal.com/english/specs/gpsopt.htm?pk_source=print&pk_medium=flyer&pk_campaign=OSC-List&pk_content=&pk_cid=21
https://www.meinbergglobal.com/english/specs/gpsopt.htm?pk_source=print&pk_medium=flyer&pk_campaign=OSC-List&pk_content=&pk_cid=21
https://www.meinbergglobal.com/english/specs/gpsopt.htm?pk_source=print&pk_medium=flyer&pk_campaign=OSC-List&pk_content=&pk_cid=21
https://www.meinbergglobal.com/download/docs/manuals/english/microsync_rx102_acdc.pdf
https://www.meinbergglobal.com/download/docs/manuals/english/microsync_rx102_acdc.pdf
https://www.ieee802.org/1/files/public/docs2006/as-garner-use-of-bmc-061114.pdf
https://www.ieee802.org/1/files/public/docs2006/as-garner-use-of-bmc-061114.pdf
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/software/release/15-2_4_e/b_ptp_ie4k.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/software/release/15-2_4_e/b_ptp_ie4k.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/software/release/15-2_4_e/b_ptp_ie4k.html

[21] Chang Bok Lee, Dong Doo Lee, Nak Sam Chung, M. Imae, C. Miki, M. Urtsuka, and
T. Morikawa. Development of a gps time comparison system and the gps common-
view measurements. IEEE Transactions on Instrumentation and Measurement,
40(2):216–218, 1991.

[22] John Klobuchar. Ionospheric time-delay algorithm for single-frequency gps users.
IEEE Transactions on Aerospace and Electronic Systems, AES-23(3):325–331, 1987.

[23] D. C. Jefferson, S. M. Lichten, and L. E. Young. A test of precision gps clock
synchronization. In Proceedings of the 1996 IEEE International Frequency Control
Symposium (50th anniversary), pages 1206–1210, [New York, N.Y.] and Piscataway,
N.J., 1996. Institute of Electrical and Electronics Engineers and IEEE Service Center.

[24] W. I. Bertiger et al. S. M. Lichten, Y. E. Bar-Sever. Gipsy-oasis ii: A high precision
gps data processing system and general satellite orbit analysis tooln. In Technology
2005 NASA Technology Transfer Conference, [New York, N.Y.] and Piscataway, N.J.,
1995-Oct.-24-26.

[25] coreemu/core - common open research emulator. [Online] Available: https://
github.com/coreemu/core. (accessed 20 May 2022).

[26] Jeff Ahrenholz. Comparison of core network emulation platforms. In Military
Communication Conference, 2010, pages 166–171, [Piscataway, N.J.], 2010. [IEEE].

[27] E. Guillo-Sansano, M. H. Syed, A. J. Roscoe, G. Burt, Mark Stanovich, and Karl
Schoder. Controller hil testing of real-time distributed frequency control for future
power systems. In 2016 IEEE PES Innovative Smart Grid Technologies Conference
Europe (ISGT-Europe), pages 1–6. IEEE, 2016.

[28] James Langston, Kazuki Watanabe, John Hauer, Karl Schoder, Mark Stanovich,
Harsha Ravindra, and Michael Steurer. Using power hardware-in-the-loop simulation
to study control of energy storage within limited-inertia power system. In 2021
IEEE Electric Ship Technologies Symposium (ESTS), pages 1–6. IEEE, 2021.

[29] Bang L. H. Nguyen, Tuyen Vu, Colin Ogilvie, Harsha Ravindra, Mark Stanovich,
Karl Schoder, Michael Steurer, Charalambos Konstantinou, Herbert Ginn, and
Christian Schegan. Advanced load shedding for integrated power and energy systems.
In 2021 IEEE Electric Ship Technologies Symposium (ESTS), pages 1–6. IEEE,
2021.

[30] S. Suryanarayanan, M. Steurer, S. Woodruff, and R. Meeker. Research perspectives
on high-fidelity modeling, simulation and hardware-in-the-loop for electric grid
infrastructure hardening. In 2007 IEEE Power Engineering Society General Meeting,
pages 1–4. IEEE, 6/24/2007 - 6/28/2007.

[31] RTDS. GTWIF Workstation Interface Card, March 2012. RSCAD v5.011.

69

https://github.com/coreemu/core
https://github.com/coreemu/core

[32] Richard Cochran, Cristian Marinescu, and Christian Riesch. Synchronizing the
linux system time to a ptp hardware clock. In 2011 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and Communication,
pages 87–92. IEEE, 2011.

[33] Andras Wiesner and Tamas Kovacshazy. Portable, ptp-based clock synchronization
implementation for microcontroller-based systems and its performance evaluation.
In 2021 IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication (ISPCS), pages 1–6. IEEE, 2021.

[34] Canonical. Ubuntu manpage: ptpd - precision time protocol daemon (1588-
2008). [Online] Available: http://manpages.ubuntu.com/manpages/focal/
man8/ptpd.8.html. (accessed 16 August 2021).

[35] Github - ptpd/ptpd: Ptpd implementation of precision time protocol (ptp). [Online]
Available: https://github.com/ptpd/ptpd, 2010. (accessed 15 August 2021).

[36] Maciej Machnikowski, Ramana Reddy, and Zoltan Fodor. Challenges with linuxptp
on telco ran deployments. In 2021 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control, and Communication (ISPCS),
pages 1–4. IEEE, 2021.

[37] Tektronix. 5 series mso. [Online] Available: https://www.tek.com/en/
datasheet/5-series-mso. (accessed 10 August 2021).

[38] Meinberg. Syncbox/n2x - signal converter. [Online] Available: https:
//www.meinbergglobal.com/download/docs/manuals/english/
syncbox_n2x.pdf. (accessed 3 March 2022).

[39] Meinberg. Maximum length antenna cable gps-clocks. [Online] Available: https://
www.meinbergglobal.com/english/specs/gpscable.htm. (accessed 16
April 2021).

[40] Cisco. Precision time protocol software configuration guide for ie 4000, ie 4010,
and ie 5000 switches. [Online] Available: https://www.cisco.com/c/en/us/
td/docs/switches/lan/cisco_ie4000/software/release/15-2_4_e/
b_ptp_ie4k.html. (accessed 30 July 2021).

[41] Documentation: time stamping socket programming. [Online] Available: https://
www.kernel.org/doc/Documentation/networking/timestamping.txt.
(accessed 20 September 2021).

[42] man7.org Michael Kerrisk. socket(2) - linux manual page. [Online] Available:
https://man7.org/linux/man-pages/man2/socket.2.html. (accessed 5
May 2022).

70

http://manpages.ubuntu.com/manpages/focal/man8/ptpd.8.html
http://manpages.ubuntu.com/manpages/focal/man8/ptpd.8.html
https://github.com/ptpd/ptpd
https://www.tek.com/en/datasheet/5-series-mso
https://www.tek.com/en/datasheet/5-series-mso
https://www.meinbergglobal.com/download/docs/manuals/english/syncbox_n2x.pdf
https://www.meinbergglobal.com/download/docs/manuals/english/syncbox_n2x.pdf
https://www.meinbergglobal.com/download/docs/manuals/english/syncbox_n2x.pdf
https://www.meinbergglobal.com/english/specs/gpscable.htm
https://www.meinbergglobal.com/english/specs/gpscable.htm
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/software/release/15-2_4_e/b_ptp_ie4k.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/software/release/15-2_4_e/b_ptp_ie4k.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/software/release/15-2_4_e/b_ptp_ie4k.html
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://man7.org/linux/man-pages/man2/socket.2.html

[43] man7.org Michael Kerrisk. setsockopt(3p) - linux manual page. [Online] Available:
https://man7.org/linux/man-pages/man3/setsockopt.3p.html. (ac-
cessed 5 May 2022).

[44] Nikolay Sivko. How ping measures network round-trip time accurately us-
ing so_timestamping. [Online] Available: https://coroot.com/blog/
how-to-ping, 02.23.2022. (accessed 12 May 2022).

[45] man7.org Michael Kerrisk. send(2) - linux manual page. [Online] Available: https:
//man7.org/linux/man-pages/man2/sendmsg.2.html. (accessed 5 May
2022).

[46] man7.org Michael Kerrisk. cmsg(3) - linux manual page. [Online] Available: https:
//man7.org/linux/man-pages/man3/cmsg.3.html. (accessed 5 May 2022).

[47] James F. Kurose and Keith W. Ross. Computer networking: A top-down approach.
Always learning. Pearson Education, Harlow, 6th ed., international ed. edition, 2012.

[48] ZYXEL. How can i calculate the switching forwarding rate and packet forwarding rate
of ports. [Online] Available: https://kb.zyxel.com/KB/searchArticle!
gwsViewDetail.action?articleOid=007011&lang=ENg. (accessed 13 May
2022).

[49] RTDS. RSCAD Controls Library Manual. RSCAD v5.011 (accessed 24 May 2022).

71

https://man7.org/linux/man-pages/man3/setsockopt.3p.html
https://coroot.com/blog/how-to-ping
https://coroot.com/blog/how-to-ping
https://man7.org/linux/man-pages/man2/sendmsg.2.html
https://man7.org/linux/man-pages/man2/sendmsg.2.html
https://man7.org/linux/man-pages/man3/cmsg.3.html
https://man7.org/linux/man-pages/man3/cmsg.3.html
https://kb.zyxel.com/KB/searchArticle!gwsViewDetail.action?articleOid=007011&lang=ENg
https://kb.zyxel.com/KB/searchArticle!gwsViewDetail.action?articleOid=007011&lang=ENg

Danksagung

Ich möchte mich sehr herzlich bei Technischen Universität Wien und der Florida State
University (FSU) Center for Advanced Power Systems (CAPS) für diese kooperative
Diplomarbeit bedanken. Im Zuge des Studiums und vieler Arbeitsstunden in den Lernräu-
men des Zentralen Informationsteams (ZID) hat sich über die Jahre eine sehr vertraute
Lerngruppe etabliert. Die somit selbst ernannte ”ZID-Raum-Gan” gehört mittlerweile
nicht nur zu meinem engsten Freundeskreis, sondern auch zu sehr wertgeschätzten Ar-
beitskollegen die immer für eine wissenschaftliche Diskussionsrunde zu begeistern waren.
Ich möchte mich auch bei meinem Vater Michael Reisinger bedanken, durch dessen
Unterstützung über die Jahre hinweg, ich den Fokus auf mein Studium lenken konnte.
Egal wie ermüdend und anstrengend das Studium auch teilweise war, gab es vorallem
eine Person die immer hinter mir stand und auf dessen emotionale Unterstützung ich
mich immer verlassen konnte, danke Marlies Metzich. Ein großer Dank geht auch an
meine Betreuer Wilfried Steiner, Mark Stanovich und Michael (Mischa) Steurer die mich
während meiner Diplomarbeit betreut haben. Zu guter Letzt bedanke ich mich bei allen
namentlich nicht erwähnten Freunden und Familienmitgliedern die immer hinter mir
standen und mich während meiner Studiums Zeit unterstützt haben.

73

Erklärung zur Verfassung der
Arbeit

Thomas Reisinger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Juni 2022
Thomas Reisinger

75

reisi
Bleistift

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Thesis Contributions
	Description of the research content
	Expected Outcome

	State of the Art
	Precision Time Protocol IEEE 1588
	Clock Types
	Clock Synchronization
	ptp Profile IEC 61850-9-3

	Hardware in the Loop Simulations
	Case Studies
	GPS Clock Synchronization Accuracy
	Clock Synchronization in HIL Systems
	Common Open Research Emulator (CORE)

	Current Hardware in the Loop Testbed
	Center for Advanced Power Systems
	Power Hardware in the Loop Testbed
	Controller Hardware in the Loop Testbed

	System Architecture / Implementation
	PTP Compatibility of HIL Interfaces
	Real Time Digital Simulator
	Linux Operating System
	Non PTP Compatible Devices

	PTP Backbone
	Grandmaster Clock
	PTP Switch
	PTP Hardware Configuration
	Final Hardware Setup

	System Performance Validation
	udp measurement script
	UDP Socket Configuration
	Sending and receiving udp packets
	Accessing timestamps via a control messages
	Linuxptp data

	CORE Validation Process
	CORE Measurement Setup
	CORE Validation Results

	RTDS Validation Process
	RTDS Measurement Setup
	RTDS Validation Results

	SyncBox validation Process
	SyncBox Measurement Setup
	SyncBox Validation Results

	Outlook
	Conclusion
	Future Work

	Bibliography

