
Improving energy community
interoperability: a Web of Things

approach

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Leonhard Esterbauer, BSc.
Matrikelnummer 01526782

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Jürgen Pannosch, BSc.

Wien, 18. Mai 2022
Leonhard Esterbauer Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Improving energy community
interoperability: a Web of Things

approach

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Leonhard Esterbauer, BSc.
Registration Number 01526782

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Dipl.-Ing. Jürgen Pannosch, BSc.

Vienna, 18th May, 2022
Leonhard Esterbauer Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Leonhard Esterbauer, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 18. Mai 2022
Leonhard Esterbauer

v





Acknowledgements

During this work, many people have supported me in moving forward and reaching my
goals. Above all, my assistant advisor Jürgen Pannosch was always eager to listen to all
my concerns and to give me feedback without delay. The same holds for Prof. Wolfgang
Kastner, who even made it possible for me to write this thesis in the first place.

Apart from the university environment, I would like to thank my girlfriend, who has
continuously supported me and tried to motivate me during difficult situations. Also,
my roommates have regularly listened to my concerns and helped me in stressful phases
with everyday tasks.

Finally, I would like to thank my parents, who have always believed in me and gave me
the opportunity to fully concentrate on my studies.

vii





Kurzfassung

Die EU-weiten Gesetze zu Energiegemeinschaften erlauben es Verbrauchern und Produ-
zenten, Energie gemeinschaftlich zu nutzen. Dadurch ergeben sich vor allem für Haushalte
und kleine- bis mittelständische Unternehmen neue Möglichkeiten, um den Energiever-
brauch und die damit verbundenen Kosten zu optimieren. Die für eine Optimierung
notwendigen Informationen werden zu diesem Zweck aus Sensordaten gewonnen. Durch
die Menge an verschiedenen Übertragungsprotokollen und Datenformaten kommt es
jedoch bei Integrations- und Kommunikationsprozessen mit Energiegeräten häufig zu
Problemen und eine einheitliche Datenverarbeitung wird erschwert. Zusätzlich führen
die Integrationsansätze unterschiedlicher Hersteller oft zu komplizierten Installations-
und Konfigurationsprozessen, die für technologisch unerfahrene Mitglieder von Energiege-
meinschaften nicht ausführbar sind.

In dieser Arbeit wird eine service-orientierte Architektur vorgestellt, welche darauf ab-
zielt, die genannten Probleme mittels Einsatz von Webtechnologien zu erleichtern. Um
das zu erreichen, wird im ersten Schritt die Interaktion zwischen Mitgliedern einer
Energiegemeinschaft und einem optimierenden System analysiert. Im nächsten Schritt
werden aus dieser Analyse für die Architektur relevante Eigenschaften abgeleitet. Das
Ergebnis ist eine Sammlung von architektonischen Anforderungen an ein optimierendes
Datenverarbeitungssystem. Basierend auf diesen Anforderungen wird anschließend eine
geeignete Systemarchitektur gezeigt, welche sowohl für cloudbasierte als auch für lokale
Umgebungen oder Mischformen geeignet ist. Um die Machbarkeit zu zeigen, wird die
Architektur im Anschluss in einem simulierten Prosumer-Szenario anhand zweier verschie-
dener Situationen getestet. Abschließend wird eine Einschätzung der architektonischen
Lösung im Bezug auf Umsetzung und Sicherheit durchgeführt.

Zusammenfassend beschäftigt sich diese Arbeit mit Interoperabilität und Integration
im Kontext von Energiegemeinschaften mit einem Fokus auf service-orientierte und
webbasierte Ansätze.
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Abstract

Energy communities are a new legal construct that allows energy to be used collabora-
tively. Especially for households and small to medium-sized enterprises, there are new
opportunities for optimizing energy consumption and the associated costs. Sensor data is
key for the respective optimizing measures. The problem is the plethora of incompatible
protocols and data formats that energy-related devices implement. Similarly, this affects
device integration processes. A non-tech-savvy user may not be able to perform complex
installation and configuration tasks that devices from different manufacturers require.

This thesis presents a service-oriented architecture that aims to facilitate the stated
problems by utilizing web technologies. The first step analyzes the interaction between
energy community members and an optimizing system. The result is a collection
of architecture requirements for an optimizing data processing system in the energy
community context. Further, this thesis presents a suitable system architecture design
that fits into cloud-based and local environments or mixed forms. The feasibility of the
architecture design is tested utilizing a simulated prosumer scenario with an exemplified
implementation of the respective architecture components. The simulation is the basis
for verifying the architecture by testing the integration and interaction of two different
energy-related devices. The last step of this thesis is an assessment of the architecture
design in terms of applicability and security.

In summary, this thesis presents a system architecture for energy communities that
facilitates interoperability and integration by utilizing service-oriented and web-based
techniques.
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CHAPTER 1
Introduction

1.1 Motivation
The regulations in the Elektrizitätswirtschafts- und -organisationsgesetz (ElWOG) [1]
and Erneuerbaren-Ausbau-Gesetz (EAG) [2] provide a legal framework to share energy
across property boundaries with the introduction of Energy Communitys (ECs). Until
then, the energy relationship was usually only between consumers and utilities. Now,
smaller businesses and citizens can join together and set up contracts for common energy
use. Moreover, the regulations enable a testbed for innovative concepts like Peer-to-Peer
(P2P) energy trading as described by Long et al. [3]. Although this opportunity is limited
to the respective EC members, as shown in another work by Long et al. [4], it is the first
step toward a decentralized energy market. Electricity is one form of energy where P2P
experiments are easy to handle due to the existence of a well-developed distribution
network. If an electricity trade inside an EC fails, the grid operator acts as a backup
provider and continues to assure stability in the distribution network. This way, the
chance of supply interruption is reduced, and EC members do not need to make any
firm commitments. However, P2P energy trading is only one aspect of ECs. Besides the
economic intention, ECs also create the opportunity to mitigate energy-related problems
of modern society.

The ever-increasing energy consumption causes a considerable part of these problems. In
particular, the electricity sector is affected by these problems as depicted in Figure 1.1. The
figure visualizes three central problems of today’s electricity usage. First, Subfigure 1.1a
shows the electric energy price development of selected price indices in Europe. One
of the main reasons for the steady increase of electricity prices is the constant rise in
taxes and levies, which is evident from Eurostat data [5]. Second, Subfigure 1.1b shows
the development of electricity consumption worldwide. From 1990 to 2020, electricity
production more than doubled. Third, Subfigure 1.1b visualizes the energy sources
of electricity production and indicates a rising dependency on fossil fuels. This fact
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Figure 1.1: Increasing electricity consumption, increasing dependence on fossil fuels, and
increasing electricity prices are three problems regarding electricity usage.

is particularly alarming because fossil fuels emit a significant part of Greenhouse Gas
(GHG) emissions, which are the driving force of global warming. Consequently, electricity
generation directly impacts climate change [6] and threatens human beings.

In order to counteract these effects, researchers identified measures to reduce the impact
of rising energy consumption. A practical way to achieve this is to optimize the utilization
of devices since it is not feasible to waiver electricity usage. By applying such optimizing
measures, Logenthiran et al. simulated the impact on energy prices and came up with
a reduction of 5–10% depending on the kind of energy usage [8]. Similarly, Siano et al.
implemented an Energy Management System (EMS) and managed to achieve a saving of
18% of the energy costs for residents without decreasing the level of comfort [9]. Reducing
the burden on the environment can be solved in the same way. Renewable energy sources
like photovoltaic systems or wind turbines depend on environmental factors resulting in
volatilities in supply. Optimization measures can identify these volatilities and suggest
ways to increase the portion of renewable energy sources. Han et al. took this effect
into account and increased the utilization of renewables by employing monitor and
control approaches [10]. Likewise, Celik et al. investigate a method to increase renewable
utilization in the neighborhood area by controlling storage units [11].

The basis of scenarios like P2P energy trading or energy optimization is the value and
amount of available data. According to Zhang et al. [12], the evolvement of P2P energy
markets depends on the expansion of communication and control networks. The gained
data is required to facilitate accounting and planning processes. Similarly, qualitative
data is a vital aspect of energy optimization. Continuous optimization approaches
related to the terms energy management, Demand Side Management (DSM) [13] and
Demand Response (DR) [14] primarily rely on real-time data to feed the associated

2



1.2. Problem statement

optimization algorithms [8], [10], [11], [15]–[23]. The principle of these approaches is
regulating electricity consumption and production to pursue a predefined goal. In other
words, the optimization algorithms suggest or control how electricity is used to reach an
energy-efficient behavior. However, because data is the central piece of innovative EC
scenarios, it is essential to deal with the interaction of related sensors and devices.

The concept of Internet of Things (IoT) has significantly influenced this aspect [24].
Thanks to IoT, the equipping of material objects with sensors and communication
interfaces has become convenient. Consumer home appliances such as bulbs and plugs
have already been made smart, and mass production for residential applications has
started. Moreover, the emerging concept of IoT has affected the energy sector [25]
and initiated modernization processes of Information and Communication Technology
(ICT) infrastructure. For example, the rollout of smart meters is expected to enable
more profound insights into relevant processes [14]. The gained information is precious
for the operation of utilities and for stabilizing the distribution network [26]. Besides
the widespread use of smart meters, further energy-related IoT applications have been
established. In the building sector, monitoring and automation of specific processes are
no longer a rarity, and consumer products for resident energy optimization are already
sold [27], [28]. However, the rapid adoption of IoT technology led to a diverse landscape
of ICTs. Protocols in widespread use are e.g. Hypertext Transfer Protocol (HTTP),
Constrained Application Protocol (CoAP) and Message Queuing Telemetry Transport
(MQTT), but much more exist [29]. The consequences are incompatibility of devices and
system dependency, which both discourage customers from adopting new IoT technology.

This aspect is especially problematic in ECs. Until now, few open standards for home
automation have been established, which leads to protocol diversity in the home sector.
Consequently, the development of novel systems in the energy domain is complex. Such
a situation affects technology acceptance and delays the testing of innovative approaches
like P2P energy trading or energy optimization. Especially the implementation of energy
optimization systems is vital due to the rising threat of global warming. The solution
is either modernizing the entire ICT infrastructure or extending system development
to support diversity. Since modernization usually involves considerable costs, the latter
should be favored. Therefore, software development needs approaches that focus on how
different devices can be integrated into novel systems. This thesis presents a software
architecture that supports the diversity of different devices. The focus is on facilitating
integration processes and enabling legacy devices to communicate. In order to design
the approach, an energy optimization scenario inside an EC is selected. The result is a
software architecture that allows members of an EC to integrate and connect devices to
external systems and services.

1.2 Problem statement
The primary problem domain of this thesis is the diversity of devices in an EC. Typical
settings consist of smart plugs that communicate over HTTP, solar inverters that are

3



1. Introduction

reachable over Modbus TCP, or smart light bulbs that publish data over MQTT. Data
from these devices is an essential aspect of upcoming energy scenarios. The purpose of
optimizing energy inside of an EC is one such scenario that has the potential to partly
mitigate the depicted energy problems in Figure 1.1. Until now, it is not clear what
optimization algorithms lead to the desired results. What is certain is that data and
device access are a prerequisite for energy optimization. Hence, integration approaches
and compatibility measures are needed in any case.

In other words, energy optimization inside of ECs requires a system architecture that
allows citizens, devices, and services to communicate with each other despite the usage of
different technologies. Moreover, the architecture should be open to promising applications
such as P2P trading that may extend the system in the future. A common approach
to these problems is bundling responsibilities into services by applying Service Oriented
Architecture (SOA) principles. Further, the problem of interoperability is often solved by
relying on fixed standards like it is common in the Smart Grid (SG) domain. However,
on a local level, research mainly came up with solutions for home optimization. EC
characteristics such as voluntariness are rarely covered, and suitable approaches are
missing.

Summarized, the main focus of the work is to deal with the question of: What is a
suitable system architecture for an energy optimization scenario inside of
ECs? However, the formulation of this question is broad and concerns various aspects
of an architecture. This thesis aims to answer the suitablility aspects in the context of
integration and interoperability by utilizing a service-oriented approach:

Integration: It is not clear what data will exactly become relevant for energy opti-
mization purposes. Therefore, the architecture must provide integration mechanisms for
legacy, modern, and future data sources. The resulting research question is: What is a
suitable system architecture for facilitating device and sensor integration in the context
of ECs? (RQ1)

Interoperability: Currently, the development of systems continuously relies on web
technologies. Therefore, an EC system architecture should support recent web technologies
in any case. The architecture must provide a transformation mechanism for other protocols
to enable widespread communication. Gateways are a suitable way to accomplish this.
The derived research question is: What is a suitable way of using gateway approaches to
increase interoperability in an EC system architecture? (RQ2)

Service oriented: Innovative use cases for energy communities are just around the
corner. A suitable system architecture must concern reusability and extensibility to
support innovative use cases. SOA principles help to reuse and extend parts of the
architecture. Moreover, a SOA design facilitates the replacement of existing components
with novel ones. The research question to this aspects is: What is a suitable way of
applying SOA design principles to an EC system architecture? (RQ3)

4
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Figure 1.2: DSRM process based on the work of Peffers et al. [30]

1.3 Aim of work
The overall aim of this thesis is to present an architecture software approach that facilitates
device integration and interoperability. Since ECs are a new concept, only little research
on the topic exists. Moreover, utilization of regulatory measures in real-world scenarios
is rare. For this reason, it is still early enough to scientifically investigate the initial
situation and propose a suitable system architecture. Consequently, software developers
get a broader range of possible approaches they can compare and choose from. The
number of considerable solutions can sustainably affect system development and lead to
a relief of interoperability in the future.

In detail, this work investigates two aspects of a suitable architecture approach. First,
the findings reveal a possible way of implementing device integration while considering
energy-related home appliances. Target devices are solar inverters, battery storages, EC
loading stations, smart plugs, or smart meters. Second, it is shown how a gateway can
be utilized to facilitate device interoperability. The goal is to convert Internet protocols
through a third-party service to web-based protocols.

1.4 Method and approach
Approved scientific methods are the basis for delivering qualitative research outcomes.
The investigation of the problem statement is therefore based on the Design Science
Research Methodology (DSRM) process by Peffers et al. [30]. Figure 1.2 illustrates the
chosen DSRM process and highlights the relevant steps in red. After motivating and
identifying the problem in the previous sections, the remainder of the process path leads
to the following classification of measures:
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1. Introduction

Objectives of a solution: In the context of this thesis, DSRM solution objectives
concern the system architecture’s properties. In other words, solution objectives are
requirements that a system architecture in the EC context should cover. In order to
identify such requirements, this thesis utilizes a requirements engineering process. In
detail, the requirements engineering process analyzes a typical EC setting for relevant
architecture attributes by applying the user stories methodology by Cohn [31]. The
results are used to derive use cases and further identify the architectural requirements.

Design and development: This step outlines the actual design process of the architec-
ture. Visual and textual descriptions of the approach explain the architectural structure.
Additionally, sequence diagrams are used to outline the integration and translation
mechanisms. Relevant design decisions are based on the requirements from the last step.

Demonstration: This step is about applying the proposed architecture design in a
real-world scenario. The basis for this is a simulated EC environment with two different
types of devices. On the one hand, it is demonstrated how a compatible device can be
integrated into the architecture. On the other hand, it is shown how the architecture can
be used to adapt and connect a legacy device.

Evaluation: The application of the architecture in a real-world scenario proves the
feasibility of the solution. On this basis, it is shown which requirements could have been
met and which not. Additionally, the verification process is discussed, and missing parts
of the solution are identified.

Communication: The work is published as a master’s thesis and the outcome is
further used in the research project RES 2 [32].

1.5 Structure
The first part of this thesis is the outcome of a literature research in Chapter 2. The
contents cover the description of related terms such as EC or energy optimization and
further list a selection of related work. After this chapter, the reader should understand
common concepts and approaches that are commonly used in IoT environments. Next,
Chapter 3 analyzes an EC scenario. The result of this chapter is the definition of four
architecture requirements that are further used as a guideline throughout this thesis. On
this basis, Chapter 4 presents an architectural design with a focus on interoperability
and integration abilities. Design choices orient on nine key aspects that were identified
in advance. Next, these key aspects are bundled into concerns and outsourced into
five separate services. To show the architecture’s feasibility, Chapter 5 implements
every service and simulates a prosumer scenario with two different situations of device
interaction. Chapter 6 verifies the implementation in a qualitative assessment to the
architecture requirements. In addition, this chapter discusses applicability and security
concerns of the architecture. The last step of this thesis is summing up the presented

6



1.5. Structure

work in Chapter 7 before an outlook indicates future work that might be interesting for
the topic.
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CHAPTER 2
Background

This chapter introduces selected topics and outlines necessary background knowledge
in the research field of this thesis. The primary purpose is to familiarize the reader
with the concept of ECs and the related technological concepts. In detail, this includes
an overview of optimization algorithms, the Web of Things (WoT) concept, protocols,
standards, and other paradigms. In addition, the last section presents a collection of
scientific work to which this thesis relates.

2.1 Energy communities
In general, ECs are citizen associations with the intention to consume and produce energy
jointly. This abstract definition leads to a number of concrete types of ECs with different
goals and application scenarios. Typical examples of ECs are superregional, regional,
local and renewable ECs with different goals depending on the distance of the members.
Conceivable reasons to form an EC are financial intentions such as energy discounts,
distribution network reliefs for blackout prevention or ecological beliefs to decrease GHG
emissions. To provide a legal framework for these objectives, the European Union (EU)
came up with EU directive 2018/2001 [33] and EU directive 2019/944 [34] that all
member states have to implement into national law.

In Austria, this requirement was met with the legislation of the EAG [2] and ElWOG [1],
which allows individuals and groups to form associations in order to produce, save,
consume and sell energy jointly. Conditions of this act omit concrete restrictions of
hierarchical and organizational association structures, which enables the founding of clubs
and cooperations. Inside an EC, the members are allowed to make up the energy prices
themselves and control supply and demand. What is important is that the association
must not pursue any profit-making intentions and instead should concentrate on other
values such as social, economic, or ecological benefits. For this reason, the legislator

9



2. Background
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Figure 2.1: Overview of common power grid levels on the left side and example applications
on the right side.

calls the associations energy communities and classifies them into Renewable Energy
Communities (RECs) and Citizens Energy Communities (CECs).

RECs are a kind of alliance that covers local and regional unions. The advantage of this
type is that the fulfillment of the EAG lowers the grid fee for regionally or locally energy
usage such that just a portion of the regular net costs is due. In other words, distribution
network fees are only charged for the utilized grid levels resulting in a discount for
regionally consumed energy. Specifically, a local REC that fits into a village’s borders
gains discounts of up to 57% of the net costs. In contrast, a regional REC gets similar
discounts but is tied to the level of the grid connection. This means the foundation of
regional REC is only viable when the participants are connected on the grid levels 4–7.
The resulting discounts are 64% for grid-level 4 and 5 and 28% for grid-level 6 and 7,
respectively. All stated discounts are specified by the Austrian energy authority E-Control
in their distribution network discount explanation document [35]. This document reflects
the grid usage costs at the different grid levels visualized in Figure 2.1.
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Just like RECs, CECs are energy-sharing associations. The difference is that CECs
omit local restrictions and enable member formations without consideration of the
grid connection levels. This way, a CEC neglects the goal of relieving the power grid,
and consequently, no distribution network discounts are achievable. Additionally, the
possibility of long-distance associations makes it hard or even impossible for all kinds
of energy to be shared with other members. The legislator took this problem into
account and limited the foundation of CECs to electric energy. Even though these
conditions restrict the use, CECs still enable to profit from simultaneously consumption
and production of electricity.

In general, RECs and CECs are a first step towards decentralized energy exchange
platforms in the EU. The voluntariness of the specification enables citizens to choose if and
when they are willing to join an EC. This approach makes it possible to test and experiment
with various forms of associations and hierarchical structures. Moreover, it helps to
discover acceptance factors and enables a protected setting to test decentralized energy
markets while regular distribution network providers take care of network stability.

2.2 Energy optimization
Generally, energy optimization aims to find and execute energy optimizing measures.
These measures can reach from modernizing home insulation to adjusting everyday habits.
Additionally, optimizing measures can be grouped by the kind of energy they impact.
Electricity is a popular kind of energy to optimize due to the well-developed distribution
network and the plethora of electricity-consuming devices. The incentives of typical
electricity optimizing measures can be:

• Monetary: Reduce costs or save money.

• Grid-relieving: Relieve the burden on the power grid.

• Environment-friendly: Increase renewable utilization.

• Efficiency-increasing: Reduce transmission lost or decrease consumption.

Data from various sources serve as a basis for optimization. For example, Chen et
al. [36], and Lin et al. [37] use smart meter data to identify behavior patterns and infer
individual device usage. Machine learning is utilized to analyze power consumption and
subsequently suggest optimization measures. This approach is particularly suitable for
detecting energy-intensive applications that can be avoided, such as an unintentionally
running electric stove. However, due to the limited view of the environment, the results
may not reveal the exact constellation of the system. Therefore, it is challenging to
determine extensive measures for uncertain devices. In contrast, the advantage of these
approaches is the non-intrusiveness of implementation and deployment. In short, the
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stated monitoring approaches reveal a low-effort way of gaining approximate insights
into energy usage.

More customization is required when optimizing a neighborhood’s electricity. Celik et al.
show a management strategy that reduces the electricity costs in a neighborhood [11].
At the same time, the use of Photovoltaic (PV) energy is increased, and the peak
load is reduced. To achieve this, two genetic algorithms were implemented and further
demonstrated in an exemplary scenario. The results are compared against a previously
defined baseline. It is shown that a Turn-Based Coordination Model can save 3.35% in
costs and reduces the peak load by 12.41%. To apply this algorithm, the authors assume
the initial setting of a central aggregator to which all homes are connected. Further, it is
assumed that each home operates an energy system that can monitor and control the
respective appliances. However, the concrete implementation details are neglected due to
the scope of the work. One of the main outcomes is a classification of controllable and
not controllable appliances.

Similarly, Xu et al. classifies home appliances into categories such as power-shiftable or
time-shiftable loads [18]. To optimize these loads, the authors formulate the scenario as a
DR problem. The solution is a multi-agent Reinforcement Learning (RL) based algorithm
that focuses on optimizing electricity costs while minimizing dissatisfying measures.
The basis of this algorithm is an approach with estimated hour-ahead scheduling that
simultaneously considers the current electricity price and the production data of a PV
system. The outcome is an optimizing suggestion that indicates measures like if an Electric
Vehicle (EV) should be charged or not. A key aspect of this work is the computational
efficiency of the algorithm. Since the prediction has to be done many times during the
day, the algorithm must be fast and efficient.

However, not all algorithms can be adjusted to run fast and efficiently in a local envi-
ronment. Therefore, novel optimization products already relieve local computing units
by shifting intensive computing tasks into the cloud. In most cases, the provision of
optimization functionality goes hand in hand with a monitoring solution like it is realized
by ntuity [38] or Greencom Networks [39]. The prerequisite of these optimization services
is a piece of hardware that acts as a gateway between provider and appliances.

In sum, there is a plethora of different optimization approaches [8], [10], [11], [15]–[23]. A
significant part is only tested in simulations or small setups due to the overhead of setting
up a real-world environment. If the effort of device integration and ensuring compatibility
is facilitated, maybe more optimization approaches would reach market maturity. In
other words, there is no question that optimization algorithms exist. The question is how
to foster the application of such algorithms by facilitating device interoperability.

2.3 Web of Things
The concept of IoT has facilitated the interconnection of devices, services, and systems.
In particular, it is about integrating things into a common network, which in most cases is
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the Internet. However, the definition of IoT does not facilitate deducing communication-
related properties such as underlying protocols, interfaces, or data encodings. As a result,
IoT setups encounter integration and interoperability problems due to the plethora of
applied IoT technologies. The WoT concept limits the technology space and forces every
participating device to implement web technologies. In other words, WoT is a subset of
IoT that focuses on web technologies and standards. On the one hand, this reduces the
integration burden on the consumer side due to the widespread availability of compatible
applications such as web browsers. On the other hand, WoT facilitates interoperability
with business services where web technologies are already established as a popular way
of implementing Application Programming Interfaces (APIs).

However, the limitation to web technologies only narrows the conceivable constellations of
setups. In other words, interoperability and integration problems still exist on the WoT
layer. The previous solution to further limit the allowed communication technologies
would not solve the initial problem. Therefore, research came up with other ways
to ensure interoperability. A promising solution is to apply semantics and describe
different communication technologies in a common description that devices and services
understand.

Jara et al. discuss this semantic extension of WoT and identify the outcome as a Semantic
Web of Things (SWoT) [40]. Further, the paper outlines the possible evolution of IoT over
WoT and SWoT towards global interoperability as illustrated in Figure 2.2. According to
the authors, the problem of technology spread could happen like in the beginning days of
the Internet. A subset of all available technologies from IoT could establish and further
be supported by novel systems and services. If this is the case, a common description of
the implemented communication technologies is needed.

Therefore, two of the key points for reaching global interoperability are device abstraction
and a commonly understood description, as indicated in Figure 2.2. The work by Jara et
al. [40] additionally deals with a wide variety of protocols and semantic solutions that
can be used at every stage of the stated evolution. However, a technology, which was not
defined at the time of this work, is the WoT standard by World Wide Web Consortium
(W3C). This standard aims to enable a uniform description of devices based on web
technologies. More details about the WoT standard are described in the following section.

2.3.1 W3C Web of Things
W3C WoT is a modern standard and still in the specification process at the time of
writing this thesis. For this reason, the reader might not be familiar with WoT and
needs background knowledge to understand the approaches of this thesis. The following
sections solve this issue and represent an overview of the main WoT concepts starting
with the first comprehensive and detailed description by Dominique Guinard and Vlad
Trifa in 2009 [41]. At this time, sensor networks research came up with new technologies
and standards that were rarely compatible. Therefore, Guinard and Trifa thought of
how IoT devices could utilize the widely used web technologies to achieve a common
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Figure 2.2: Evolution towards a semantic WoT. Adopted from [40].

basis in communication. In order to reach this goal, they defined a layered approach
containing concepts for accessibility, findability, sharing, and composition of devices.
Figure 2.3 visualizes their concept and additionally shows the location of certain services
and technologies.

Besides research, W3C picked up the idea of integrating and describing devices using
web technologies, and together with Guinard and Trifa, they formed a first WoT model
specification [43]. Subsequently, companies got attentive and started to support the
specification process to incorporate their own interests. As a result, W3C formed a
Working Group (WG) in 2017 consisting of experts from major companies, foundations
and consortia [44].

After the initial planning phase, the WoT WG came up with four different normative
deliverables named WoT Architecture, WoT Thing Description, WoT Discovery and WoT
Profiles. Even though the first version of WoT Architecture and WoT Thing Description
have been classified as official W3C recommendation in April 2020, the specification
is still ongoing and new versions will follow. Apart from normative deliverables, also
informative deliverables are defined named WoT Scripting API, WoT Binding Templates
and WoT Security and Privacy Guidelines. The next sections briefly introduce each
deliverable and explain their relations.
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Figure 2.3: Layered WoT approach. Adopted from [42].

Web of Things Architecture

The WoT Architecture document acts as a starting point for the specification and explains
important terms and relations [45]. A key point of the document is the definition of typical
IoT scenarios and the related system architecture requirements. These requirements
are divided into functional and technical requirements and consist of topics like device
discovery, deployment, and accessibility. Based on these topics, the authors present an
abstract WoT architecture concept consisting of multiple integration approaches. The
outcome is illustrated in the architecture diagram in Figure 2.4 and a detailed description
explains the architecture concepts. Due to the modularity of the approach, the document
divides the solution into four parts named WoT Building Blocks. Figure 2.5 illustrates
these four building blocks and classifies them into WoT Thing Description, WoT Scripting
API, WoT Binding Templates and Security and Privacy Guidelines. Furthermore, the
WoT Architecture document shows system and interaction examples to demonstrate how
the proposed WoT architecture can be used to foster interoperability in WoT system
design.
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Figure 2.4: Exemplary architecture scenarios in a WoT architecture. Adopted from [45].

Web of Things Thing Description

In order to comply with the WoT Architecture, a device must provide a textual represen-
tation of its metadata. The resulting document is named Thing Description (TD) and has
to be encoded in JavaScript Object Notation for Linked Data (JSON-LD) [46]. A typical
analogy from the WoT specification documents is that a TD acts like the index.html
file of a webpage and represents the starting point for device interaction. The content
of this document is structured in a key-value-based manner and contains information
like title and description, supported security mechanisms, or available properties of a
device. Additionally, the usage of JSON-LD allows the specification of semantically
annotated data making it possible to describe advertised data sources directly. This
instrument is beneficial when annotating descriptive data in one of the three different
device affordances consisting of properties, actions, and events. In order to get all this
information, a device must provide the TD in one of three possible ways. Ideally, the
device is providing the TD by itself, but it is also allowed that another service distributes
the content. The third possibility is to manually specify and distribute the TDs which
introduces a workaround for legacy or offline devices.
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Web of Things Binding Templates

Modern IoT development relies on a variety of protocols and data formats, resulting in a
heterogeneous communication landscape. In order to access and manage the different
protocols, a description of the underlying communication properties is essential. WoT
Binding Templates solve this issue by providing a framework that defines the structure
and notation of protocol properties inside of TD documents [47]. In other words, WoT
Binding Templates specify a TD vocabulary extension considering communication-related
terms. For example, the vocabulary in the WoT Binding Templates specification includes
abstract protocol methods like readproperty or invokeaction, the definition of media
types, a data schema for payload structures, and a basis for common data types and
value constraints. The advantage of this strategy is that already existing groups of
communication properties can be reused, forming a kind of protocol-related template.
Additionally, binding templates can exploit the contextual knowledge features of TDs
which allow the naming of specific protocol properties and further ease reusability.

Web of Things Scripting API

A typical TD provides information about a device and lists available properties, actions,
and event affordances. WoT Binding Templates abstract these affordances and bridge
the relation of TDs and the underlying communication mechanisms. This separation
of metadata and the actual device implementation allows developers to reuse binding
templates on different devices and access them in a unified way in application software.
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The missing part is a standard way to provide and access binding template functionality.
For this purpose, the WoT Scripting API [48] defines an interface utilizing the Web
Interface Definition Language (WIDL) [49], and describes possible ways to utilize the
WoT Runtime concept. As a result, the specification enables the creation of reusable
binding templates and code snippets, also called scripts or apps. This strategy enables
the separation of binding templates and apps, leading to various possible business cases.
As an example, future IoT hardware may provide a small runtime environment to execute
short scripts or simple apps. Similar to computers or smartphone apps, the definition of
common interfaces and runtimes could lead to a market for third-party providers that
access IoT hardware only relying on the information available in a TD.

Web of Things Security and Privacy Guidelines

Recently, security and privacy issues have developed into important software design topics.
For this reason, the WoT Security and Privacy Guidelines document states typical IoT
scenarios and examines related threat models that are common in software design [50].
In order to resolve these issues, the authors outline privacy concerns and reference best
practices that enable secure and private WoT application design. Special focus is given
on WoT related concerns such as configuration metadata abuse or process escalation of
WoT runtimes. Essentially, this document has an informal character, and the collection
of use cases and mitigations helps system designers to include important security and
privacy mechanisms related to WoT.

Web of Things Discovery

Similar to security and privacy issues, the discovery of devices is a cross-cutting concern
and an important topic in most software architectures. Thus, W3C’s WoT outlines an
optional directory structure named Thing Description Directory (TDD) [51]. As the
name already reveals, the concept describes a Representational State Transfer (REST)
API for TD registration and management. This includes typical scenarios like creation,
update, and deletion of TDs and additionally specifies three different ways of searching
for certain device properties. JSONPath [52] is one of these defined search endpoints
and is required in the standard. The other two endpoints are optional and utilize
XPath [53] or SPARQL Protocol and RDF Query Language (SPARQL) [54] queries
to expose the search functionality. All three search endpoints enable the submission
of queries to explore the content of registered TDs and allow the browsing of desired
device properties. The management and search for other TDs is additionally beneficial
when different TDDs connect among each other and form interconnected metadata
networks. Besides the specification of TDDs, the discovery document also takes into
account a group of device discovery mechanisms like Multicast DNS (mDNS) [55],
Constrained RESTful Environments (CoRE) link format [56], Well-Known Uniform
Resource Identifiers (URIs) [57] or Decentralized Identifiers (DID)-Documents [58] and
shows the process of utilizing these technologies to publish a TD document. In sum, the
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discovery specification shows how to get into a network, discover certain devices and
manage or query available metadata of devices for better interoperability.

Web of Things Profiles

One problem of WoT is that two devices are not necessarily able to communicate even if
they comply with the WoT standard. The reason for this is the fact that TDs are simple
representations of the provided protocols and formats of a device. The actual devices still
communicate over protocols like HTTP or MQTT which leads to a diverse communication
landscape. In order to define a common set of communication standards and content
formats, a thing can be compatible with one or more WoT Profiles [59]. These profiles
define a minimum level of properties a device must provide to be compatible with a
profile. Consequently, devices compatible with a certain profile are most likely compatible
among themselves. As an example, the WoT Core Profile suggested by W3C [59] requires
every compatible device to provide TD properties like the title and the description of
a device. Additionally, it enforces the device to utilize HTTP for communication and
encode the payload utilizing JavaScript Object Notation (JSON). Thus, the definition
of different profiles enables compatibility over a set of properties and enables a kind of
sub-standards to which different manufacturers can comply.

2.3.2 Smart Grid relevance
According to Faheem et al., IoT is a key technology for enabling SGs [60]. In other
words, the interconnection of energy-related devices is one of the cornerstones of modern
energy usage. Consequently, developments in IoT impact the evolvement of the energy
sector. This means if IoT evolves toward the WoT, adoption in the SG sector likely
follows. Indeed, the movement towards web technologies cannot be applied to the entire
communications infrastructure in the smart grid. Critical processes still require the
use of low latency protocols with certain Quality of Service (QoS) constraints. For
example, IEC61850 [61] for substation communication will not be replaced any time
soon. However, the trend toward web technologies is undeniable. Novel smart grid
protocols such as IEEE2030.5 [62] protocol for Smart Energy Profiles already make
use of web-based protocols like HTTP as communication basis. To summarize, web
technologies are especially well-suited in the smart grid area for non-critical use cases
such as monitoring or billing.

Furthermore, the exchange of optimizing measures is a suitable task for web technologies
that could build upon the current infrastructure of the Internet. However, ECs likely not
utilize these novel protocols yet as older protocols currently dominate. One example of
such an old protocol is SunSpec in solar inverters [63]. The specification of this Modbus
TCP [64], [65] based protocol is standardized by the SunSpec Alliance. In detail, the
specification consists of an information model for decentralized energy generators or
storage systems. The open and free protocol is widely used and supported by many
manufacturers such as SMA, Tesla, and Texas Instruments. In addition, also other
standards depend on the SunSpec specifications. For example, IEEE1547 [66] has defined
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Modbus SunSpec as one of three protocols for networking in decentralized energy scenarios.
However, Modbus is based on an outdated communication paradigm and is mainly used in
local industrial environments for observing or controlling systems. The basis of Modbus
goes back to the communication via serial interfaces such as Telecommunication Industry
Association (TIA)/Electronic Industries Alliance (EIA)-232 [67] or TIA/EIA-485 [68].
At this time, data exchange consisted of reading and writing one or more registers of a
computing unit. Hence, Modbus TCP also structures data via registers and coils and
provides them with a request/response paradigm.

Figure 2.6 shows the structure of a Modbus TCP message. First of all, the whole message
is called Application Data Unit (ADU), which consists of the Modbus Application Protocol
(MBAP) header and the Modbus Protocol Data Unit (PDU). Important information
in these blocks is the length, the function code, and the data block. In the function
block, predefined bit patterns are used to specify whether a register should be read or
written. In addition, there are function blocks for reading or writing several registers.
The subsequent data block holds the start address of the register, and subsequently, data
is appended. By default, a single register is 16 bits long and can hold any kind of binary
data.

This basis is utilized by SunSpec, which specifies the data that is stored in the respective
Modbus registers. In detail, SunSpec provides different models, which can be used
depending on the device type. In any case, SunSpec-specific information starts at register
40001, 50001, or 00001, followed by a mandatory block called Common Model. This
standard block is thought to contain general information about the device, such as the
manufacturer or the serial number. Data representation is covered by the definition of
typical data types like int, float, or characters and can also span over several registers.
After the first common model, further models follow. The length and semantic information
of these models have been defined in the SunSpec specification upfront. Figure 2.7 shows
the structure of an exemplary SunSpec compatible device. The figure shows a selection of
commonly used SunSpec blocks that most compatible devices provide. If a manufacturer
wants to introduce individual blocks, it is necessary to specify the respective block in
collaboration with the SunSpec Alliance. Predefined values for blocks are available for
inverters, string combiners, storage systems, Distributed Energy Resourcess (DERs), and
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many more.

Another communication technology that is relevant for energy-related scenarios is HTTP.
The rise of IoT modernized home appliances and made them smart. To reduce the
integration effort, manufacturers equipped the smart devices with Internet Protocol (IP)-
capable interfaces. Consequently, HTTP has increasingly become a standard protocol
for smart home devices. For example, there are already smart lighting controls or smart
sockets that can be controlled via HTTP.

In particular, HTTP is a text-based protocol and the foundation of the visible web.
The first standardized version was published in 1999 by the Internet Engineering Task
Force (IETF) and the W3C through Request for Comments (RFC) 2616 [69]. Since
then, a lot has changed. Intentionally developed for use in a browser, the protocol
emerged as a de-facto standard in business service development. Moreover, it received
special attention in combination with Simple Object Access Protocol (SOAP) [70], Web
Services Description Language (WSDL) [71] or REST [72]. In detail, HTTP follows a
request-response scheme. A typical use case is the download of a resource from a server,
which is visualized in Figure 2.8. The actual structure of the protocol consists of two
parts. First, a header specifies the protocol method, such as HTTP GET, the requested
resource, the content length, and some variable properties. The content follows the
header and can be formatted in various ways. JSON and Extensible Markup Language
(XML) are common formats to exchange content over HTTP.
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Figure 2.8: Sequence of the common use case of downloading content over HTTP.

Despite its widespread use, the protocol has some disadvantages. First, it is text-based
and, by default, provides no compression mechanism to reduce the content size. Second,
the keywords in the header have to be advertised in total length. This overhead is a
hurdle for many IoT devices. For this reason, the IETF CoRE WG introduced CoAP [73].

CoAP is an application protocol that is based on concepts from HTTP and REST,
but builds on the User Datagram Protocol (UDP). In detail, CoAP implements a URI
structure and some of the HTTP method verbs. The limitation of verbs and the basis of
UDP make the protocol lighter and suitable for constrained environments. Nevertheless,
the increase in computing power enables modern devices to be powerful enough to
communicate over HTTP. Even though other protocols may be more efficient, HTTP will
likely also emerge in the IoT sector. Especially in the home sector where few industrial
gateways are deployed, HTTP has a good chance to develop to the dominant protocol
standard.

However, the request-response paradigm of HTTP may not suffice for all use cases.
Therefore, also other paradigms like publish-subscribe have to be concerned. A popular
protocol in this area is MQTT [74]. MQTT is a publish-subscribe-based protocol and
requires a broker to relay messages from publishers to subscribers. This structure
becomes handy when the publisher is not performant enough to distribute messages to
all subscribers. For example, a scalable broker in the cloud can overtake this task and
distribute messages from a constrained IoT device. The respective MQTT messages are
divided into a header and a variable data block that can consist of a topic and a payload.
The topic has the purpose of identifying the channel to which the payload data relates.
This topic is formulated using a string with forward-slashes to structure the channels
hierarchically like house/device/sensor.
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2.4 Gateways
The outlook in Section 2.3 indicates global interoperability if communication technologies
converge. However, from today’s perspective, there are still some problems during reaching
and after reaching this goal. First, it is unclear how to provide interoperability until novel
technologies establish. Second, when a subset of novel technologies has been established,
it is necessary to provide backward compatibility to legacy devices even if novel devices
are compatible with each other. In general, the problem of communication interoperability
can be divided into different levels. Figure 2.9 shows a possible classification based on
the work by Paniagua et al. [75]. The classification in this figure is as follows:

1. Communication protocol: covers the underlying communication protocol like HTTP,
MQTT or CoAP.

2. Encoding and serialization: represents the format of the data like XML, JSON or
plain text.

3. Semantics: gives the encoded data some meaning like SensorML [76], Web Ontology
Language (OWL) [77], SunSpec.

4. Notation: defines the naming of the semantics. This is important to infer the same
meaning.

Interoperability is usually determined when developing a system. In other words, it is part
of the design phase. The reason is that it is difficult to adapt already deployed systems
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to novel communication paradigms or technologies. This leads to the question of how
to create interoperability after the devices or systems are deployed. One common way
to do this is the utilization of gateways. Gateway approaches exist both as stand-alone
systems and as extensions to existing systems. The gateway itself can have different
characteristics and can consist of software components, hardware components, or both,
depending on the respective application. To illustrate these levels, Figure 2.10 shows
the data flow via a gateway along the levels of the ISO/OSI model [78]. In particular,
messages are passed from one layer to another and transformed on the highest level of
the middle gateway. However, gateways can cover certain technologies on all these layers
or only on some. For example, a hardware gateway on the Physical Layer can transform
simple voltage levels, while a software gateway like in Figure 2.10 can transform the
encoding of data on the Application Layer. Further, this means that the effort and
complexity of a gateway directly depend on the respective layers that should be covered.
For example, a gateway that operates only on the software level is easier to change and
keep up to date with software updates than a transformation on hardware layers.

Therefore, device-to-IP gateways are popular in the IoT sector for reaching a common
consensus. Hardware-related protocols such as ZigBee, LoWPAN or Z-Wave implement
individual protocols and in the most cases can not directly interact with other applications.
In order to connect these devices devices to computer systems, a device-to-IP gateway is
usually deployed. Such gateways are especially common in the home sector to connect
IoT devices to an existing Local Area Network (LAN). The resulting network then makes
it possible to control the IoT devices with end-user hardware such as smartphones. The
common basis of IP allows further gateways to be deployed on a software basis.

Internet routers follow a similar concept than gateways but actually transmit data on
lower OSI layers. These routers translate network traffic from the local network to
the public network. In general, the router concept is one of the cornerstones in the
networking sector. In most cases, the network providers still rely on hardware components.
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However, increasing computing capacity makes dedicated network hardware more and
more obsolete and leads to the increased use of virtual networks. In fact, the concept
of virtual networks has been around for a long time. For example, Virtual Local Area
Network (VLAN) is a popular technique on the hardware and Virtual Private Network
(VPN) on the software layer.

2.5 Related work
The paper that probably comes closest to this thesis was written by Caballero et al. [79].
Its authors analyzed the current status of the SG and identified heterogeneity as one of
the biggest problems. Furthermore, they thought that concepts from the WoT standard
could help to simplify the integration of sensor networks. An abstract architecture
approach that consists of five layers should solve the issues. The aim is to enable a
common Web of Energy (WoE) by transforming all physical devices into common virtual
objects. This means the architecture’s five layers are abstraction and translation layers
to get a common virtual understanding of physical devices. The layers are built on web
technologies and utilize the WoT standard. Even though this work repeatedly refers to
WoT concepts and states the use of WoT, the integration of devices is merely dismissed
with the presence of a gateway. In other words, gateways or smart devices are supposed
to communicate directly within the WoE, and WoT is used to describe these devices.
Further, it is assumed that incompatible IoT protocols are translated through a gateway.
In a proof of concept implementation, the authors show a translation from MQTT to
Websockets using the Actor Model paradigm. In conclusion, this work aims to create a
common basis for communication and connectivity. Semantic interoperability is neglected.
In contrast, Desai et al. make semantics a central part of the solution [80]. The authors
propose a gateway architecture that enables a translation of IoT protocols into other
protocols. As an example, messages from CoAP are translated to MQTT and from MQTT
to REST. A software component named Multiprotocol Proxy implements interfaces to
various clients such as CoAP or MQTT. Messages from these interfaces are fed into
a message broker and represented as topics managed by a component named topic
router. The message broker additionally stores the values and, if requested from outside,
semantically annotates them. A semantic annotation service takes care of this process
and transforms JSON formatted sensor data into semantic knowledge utilizing SensorML,
SSN ontology, and other related technologies. The outcome is a semantically annotated
Resource Description Framework (RDF) message that is further published over REST
formatted as JSON-LD or XML. In this way, external services can request understandable
and informative data even if the underlying IoT devices only implement device-specific
protocols. Similar to this thesis, it is assumed that all devices are already on a common
physical layer. However, it is not mentioned how the device interfaces are integrated into
the whole software architecture. Additionally, the paper neglects the management of the
devices and how the devices interact. The focus is clearly on facilitating the connection
to the cloud. External devices like smartphones or services should be able to universally
retrieve data from home appliances.
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Similarly, Kim et al. present a gateway architecture that abstracts IoT protocols and
semantically annotates the retrieved data [81]. In a home energy-saving scenario, the
authors outline a gateway that supports the technologies Devices Profile for Web Services
(DPWS) and MQTT. Additionally, other protocols are supported if a translation to MQTT
is feasible. The gateway takes over tasks like device management and data aggregation
and publishes data to an IoT Service Platform utilizing REST. Data on this level is
enriched with ontologies, and a SPARQL engine is able to infer the interrelationship. A
service executor takes this data as input and tries to fulfill the requirements of the system.
As a result, the service executor can investigate a specific situation and determine what
actions are needed to reach a predefined goal. For example, if a temperature sensor in a
home environment reports a low temperature, the executor can take action and sends the
home gateway the command to start heating. This way, it is possible to connect different
IoT devices in a common platform and analyze the situation without being compatible
with every single device. A shortcoming of this work is the reliance on DPWS and
MQTT even though other protocols could be connected when a transformation process
is implemented. Additionally, the self-defined description of devices could be a problem
for different systems and may complicate the usage with external service providers.

In contrast, Chen et al. take third-party service providers into account [82]. The work
even assumes that DSM services are typically cloud-oriented. With this assumption, the
authors identified the problem of high latencies between the actual demand side and
the cloud. An architecture approach with on-site parts and cloud parts should solve
the issue. To achieve this, the authors presented an Artificial Intelligence (AI) powered
hardware part that is located on-site and executes real-time analytics. Through an
energy management controller, the whole setup is connected to DR services. Additionally,
the on-site setup is connected to the cloud, where other third-party services can use
the information of the system. For example, a prototypical implementation shows the
usage of If This Then That (IFTT) and sends messages if electricity rises over a specific
threshold. This way, residents will be informed by online messaging or push services over
relevant events related to electricity usage.

Another paper that mentions third-party services was written by Moghaddam et al. [83].
This work presents a fog-based energy architecture that enables external services to
gather data over the cloud. The key aspect of this work is to split services into fog-
related tasks and cloud-related tasks. Energy optimization, e.g., is a fog-related task that
benefits from a low latency connection. Additionally, fog nodes can aggregate data and
prevent that private energy consumption data is published to the cloud. This way, only
justified data like billing information is sent to the cloud. On the sensor device level,
a home gateway comes into play for managing and interconnecting devices. In detail,
the authors show the integration of devices and implemented a proxy for HTTP and
CoAP. The proxy is capable of translating these protocols among each other and sends
the outcome to the respective fog or cloud nodes. Additionally, the paper presents a price
function for electricity prices that enable optimized day-ahead scheduling. Nevertheless,
this approach concentrates on the abstract architecture with a special focus on the fog
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layer and additionally presents an optimization of costs. The terms integration and
interoperability are mentioned but not discussed in detail.

Likewise, Atzori et al. deal with the fog-level [84]. The paper presents an IoT service
architecture that aims to reduce the distance between home and cloud scenarios. In detail,
Software Defined Networking (SDN) and Network Function Virtualization (NFV) are
utilized to extend the network range of current topologies. For example, a typical local
home network with virtual network functionalities can reach over multiple layers up to
the cloud domain. In the fog domain, it is very likely that services provide better latencies
than the cloud. On the other hand, the fog domain likely provides more computational
power than the home devices. In other words, parts from the home network and parts
from the cloud can be transferred into the fog, where latency is reduced, and reliability
is increased. Additionally, the fog layer can establish new services. When thinking of an
IoT device that transfers data into the cloud, the fog layer could aggregate the data or
provide caching mechanisms. Further, device-related services could be transferred into
the cloud. The resulting concept is named Smart Devices as a Service (SDaaS). The
connection of devices and services can be changed with low effort due to the utilization
of SDN and NFV. Also, the authors identified the current Internet Service Providers
(ISPs) to be a suitable provider for operating the fog layer. The justification is that an
Internet connection always requires some sort of gateway that is connected to a network.
ISPs could extend their services to also run a kind of virtual network on their gateway
hardware.

Another gateway architecture is proposed by Han et al. [10]. The authors outline the
architecture of a Home Energy Management System (HEMS) that is connected to solar
panels utilizing Power Line Communication (PLC). Other consuming devices in the
household are connected over ZigBee. This way, the HEMS gains an overview of the
current situation of energy consumption and production. As a result, data aggregation
and analysis are possible that enable DSM purposes. On the communication layer, the
gateway supports PLC, Ethernet, and RS-485. The paper does not exactly state how
the data is transformed. Instead, an illustration of a ZigBee message encoding is given.
Data inference is also not stated, only a fixed calculation schema is presented. In other
words, the gateway consists of different blocks, but all have hardcoded functionalities
and interfaces.

This problem is further investigated by Brundu et al. [85]. The aim of this work is to
present an IoT architecture for energy management with the ability to test associated
measures in simulations. For this, the authors first divide the architecture into three layers,
namely IoT Devices and Technology Integration Layer, Service Layer, and Application
Layer. The purpose of the classification is to determine standards within the layers.
In detail, the application layer covers clients like smartphones, desktops, or other web
clients. The restriction is to access the service layer over Web Service APIs. The service
layer is responsible for maintaining a device catalog, storing historical data, performing
simulations, and managing semantic metadata. Also, this layer relies on the use of Web
Service APIs. The translating part of the architecture is the device connectors from
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the integration layer to the service layer. Different devices or systems must provide a
translation from device or service-related protocols to Web Service APIs. The paper
outlines the use of HTTP and MQTT and mentions the use of SensorML. Nevertheless,
the concrete translation process is not covered in detail. It is assumed that the device
connectors expose Web Service APIs.

The missing part of the previous paper is discussed by Derhamy et al. [86]. This work
proposes a SOA based multiprotocol translator. By using the Arrowhead framework,
the authors present a transparent translator service that can be used on-demand and
does not introduce design-time dependencies. Additionally, it can also be executed in a
cloud environment and handle many concurrent connections or run in a local cloud to
reduce latency. In detail, the architecture specifies an intermediary format that is used
to describe protocols. In other words, a message of one protocol is first transformed into
the intermediary format and then transformed into another protocol. This way, every
protocol needs only one translator from the intermediary format to a specific protocol and
back to communicate with other devices. The concept of this approach is further analyzed
by Paniagua et al. [75]. Here, the different types of interoperability are investigated, and
the individual translation of every encoding, protocol, and semantic scenario is assumed
to be infeasible. Therefore, the authors introduced a new language to model the protocols
named Contract Description Language (CDL). Documents of this type are based on
XML and are collected in a CDL database. If two actors use different protocols, an
additional actor named adapter can look up the protocol translations and instantiate an
adapter that translates one protocol to another. For the part of translation, this solution
comes nearest to the solution presented in this thesis. The problem with the approaches
from Derhamy et al., and Paniagua et al. is that they both use individual formats for
describing the related protocols. If the intermediary protocol is another non-standardized
mechanism, it is likely that this solution will never establish. Additionally, it is neither
exactly specified how the SOA based architecture of the solutions instantiate the services
nor how the lookup process for protocol descriptions works. The following architecture
solves this issue and outlines how this approach can be used for establishing a software
architecture in an EC related scenario.
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CHAPTER 3
Requirements

The following chapter analyzes the current situation in ECs. The aim is to identify
architectural system requirements that represent the basic needs of an EMS. In other
words, this chapter describes a requirements engineering process with the goal of finding
high-level requirements. The first part of the chapter explains the applied process in
more detail, and the other parts describe the actual examination of the requirements
engineering process. Finally, the last part comes up with four architectural requirements
that a suitable system architecture in the context of energy optimization should cover.

3.1 Process
The requirements engineering process consists of three steps that are illustrated in
Figure 3.1. The figure represents the outcome of each step that is classified into:

• Step 1: User stories: Requirements engineering starts with the derivation of
interaction scenarios while adhering to the regulatory measures that the Austrian
government defined in the respective energy acts ElWOG [1] and EAG [2]. This
action yields a high-level view of the environmental situation and comes up with
a collection of user stories that are formulated according to the template by

User stories

1. Step 2. Step 3. Step

Use cases Architectural
requirements

Figure 3.1: Graphical representation of the applied requirements engineering process.
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Cohn [31]. The foundation of this step has emerged in the context of the research
project RES 2 [32].

• Step 2: Use cases: This step utilizes the identified user stories and forms more
concrete use cases. The aim of this step is to structure the user stories from the
previous step and identify user stories with overlapping actors. The findings are
illustrated in a Unified Modeling Language (UML) use case diagram and described
in a list of associated functional and non-functional requirements.

• 3. Architectural requirements: The last step is to infer architectural require-
ments from the specified use cases. In detail, this step identifies requirements
that apply to a wide range of EC scenarios. In other words, the aim is to identify
architectural requirements which fit the identified use cases but at the same time
suit various other EC scenarios.

3.2 Step 1: User stories
In general, the Austrian government specified only a few restrictions for ECs. In other
words, the purpose of optimizing energy usage inside of ECs can be implemented in
various ways. However, there are two reasons to favor a central optimizer outside of an
EC member’s building. First, the conduction of optimizing measures needs collaborative
and member-overlapping knowledge. Second, optimizing algorithms have increased in
complexity such that end devices are no longer capable of running these algorithms.
Therefore, this thesis assumes the optimizer to be a central unit that is located outside
an EC member’s building. This assumption leads to the identification of two actors,
namely EC members on the one hand and optimizers on the other hand. The concrete
characteristics of each actor are examined by placing oneself into their respective roles in
the architecture. The outcome of this step is outlined in the following collection of user
stories that describe the actor’s expectation of an EMS:

1. EC members want to utilize their devices for optimizing energy usage.

a) EC members want to integrate their devices into optimizing systems.
i. Technically inexperienced EC members want to integrate their devices

into optimizing systems without technical know-how.
ii. Technically experienced EC member want to manage devices themselves.
iii. EC members want to integrate already deployed devices into optimizing

systems.
b) EC members want to have an overview of their devices.
c) EC members want to perform optimizing measures.

i. EC members want optimization measures to be performed automatically.
ii. EC members want to decide about what devices can be utilized for

optimization measures.
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Energy management system

Energy community 
member

Manage devices

Optimizer

Interact with devices

Integrate devices

Figure 3.2: High-level use cases modeled in an UML use case diagram.

d) EC members want to link or extend the system for their purposes.
e) EC members want to expose their devices securely and privately.

2. Optimizers want to optimize energy usage.

a) Optimizers want to get an overview of available devices.
b) Optimizers want to read sensor data from devices.
c) Optimizers want to control devices.

3.3 Step 2: Use cases
The user stories from the last section presented each actor’s view of the system. This
is helpful to get an idea of what goals the different actors pursue. As a result, the user
stories reveal a focus on device management and interaction. In short, the optimizer
wants to get access to an EC member’s devices, and the EC member wants to enable
that under certain conditions. From a functional perspective, the device interaction can
be bundled into three similar use cases that are depicted in Figure 3.2. The use cases in
this figure represent a high-level view of the functional requirements of the system. The
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following subsections explain these functional requirements in more detail and further
outline the non-functional requirements.

3.3.1 Integrate devices

At any point in time, EC members should be able to integrate new devices into the system.
Similarly, the optimizer should be able to access new devices on purpose. In other words,
it should be possible to dynamically expand and shrink the system as the actors want to.
The actual device integration use case primarily involves EC members that provide some
devices and want to establish a connection between the system and the respective devices.
The basis for this requirement is mainly derived from user story 1a. The associated
sub-stories 1(a)i and 1(a)ii further require the system to provide integration mechanisms
for tech-savvy and non-tech-savvy EC members. In other words, EC members should
be able to choose the level of detail they want to be involved in the integration process.
Consequently, the system should cover the respective level of effort that an EC member
is willing to spend.

3.3.2 Manage devices

The actors should be able to change or observe the constellation of the running system.
The respective requirement contains tasks like linking, extending, or configuring devices
and the associated system as indicated in user stories 1b and 1d. Above all, this
requirement concerns EC members due to the ownership of the respective devices.
However, optimizers also need insights into the device constellation and, therefore, should
be able to get an overview as indicated in user story 2a. This purpose additionally
relates with the EC member’s user stories 1e and 1(c)ii that deal with security and
privacy concerns. In detail, EC members should be able to fine-control which devices are
accessible by the optimizer and which are hidden.

3.3.3 Interact with devices

This use case covers the actual interaction of EC members and optimizers with the
respective devices. For the EC member, this means to access the full capabilities of
a device. In other words, a device’s interfaces, which could provide informative or
controllable functionalities, should be accessible by EC members without limitation as
outlined in user stories 1b and 1c. Similarly, the optimizer wants to interact with devices
as indicated in user stories 2b and 2c. However, device access for optimizers must be
protected due to the security and privacy concerns of the EC member in user story 1e.
Another essential topic of this use case is the uncertainty of the communication protocol.
EC members and optimizers should be able to interact with devices despite different
communication technologies. This aspect is especially important when dealing with
already deployed devices as outlined in user story 1(a)iii.
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3.4 Step 3: Architectural requirements
The last step in the requirements engineering process is to derive architecture requirements
for an EMS. This step reveals the desired properties of an architecture which enables EMS
development that meets the user’s needs. Naturally, the most important task is to ensure
that the architecture allows the implementation of the functional requirements. From a
technical point of view, this means the architecture must support at least one way of
implementing the intended use cases from Section 3.3. However, the strict implementation
of one such EMS is not the aim of this work but rather is an architecture approach that
exhibits specific characteristics. In other words, the focus of this work is to present and
argue architecture design decisions that lead to specific system properties. This approach
requires the definition of measures to evaluate the quality of the solution. The following
properties represent these quality measures and outline the desired characteristics of a
suitable EMS architecture.

3.4.1 Confidentiality and access control
Description: Every public network or device exposes reachable endpoints that attackers
may exploit. In the case of the proposed EMS in Figure 3.2, the main attack points are
the communication of devices and service providers. For this reason, the system must
take precautions so that no other parties gain access to devices and data. Additionally,
access to the local network of EC members should be restricted as far as possible. A
best-practice measure to lower such threats is the least privilege principle. That means
the system configuration restricts access and authorization policies to the least minimal
functionality for the system to work. No other provider should have access to data that
is unnecessary for operation. This measure also follows best practices regarding privacy
issues and is in line with the orientation of the General Data Protection Regulation
(GDPR) [87].

Objective: EC members want their devices and data to be confidential, and no unautho-
rized person should gain access. Likewise, Third Party Service Providers (TPSPs) and
the optimizer want to protect their services and use various authentication, authorization
and privacy mechanisms. An EMS architecture should support such mechanisms.

Fulfillment criteria: The requirement is fulfilled if the architecture supports authoriza-
tion mechanisms that allow fine-grained access control. Additionally, the architecture
must ensure that traffic between local devices and external parties is fully encrypted.

3.4.2 Extensibility
Description: ECs are a new concept, and the related system development has just
begun. This situation leads to new opportunities, and additional business cases may
evolve. Consequently, an EMS should enable the expansion of functionality. For example,
an EC member who wants to integrate a new device needs a way to expand the current
constellation of the system. TPSPs benefit from this property in a similar way. If
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new business cases evolve and services are needed, TPSPs want to expand the system
functionality to provide additional value.

Objective: An EMS architecture should enable the system to be open to changing use
cases and provide room for extensions. For this reason, EC members and TPSPs should
be able to integrate new devices or services at any time.

Fulfillment criteria: The requirement is fulfilled if additional devices and services can
extend the architecture after configuring the initial setup.

3.4.3 Interoperability
Description: According to Wegner, interoperability is the property of a software
component to communicate with other software components without a particular focus on
environmental factors like programming languages, runtimes, or interfaces [88]. Technical
progress makes this property an integral part of sustainable system development. EC
members already use a variety of different devices with a wide range of communication
technologies. That means there are devices based on modern communication technologies
and devices based on older ones. A crucial part of the EMS is to communicate with
this variety of devices. Therefore, system design requires a particular focus on the
integration process of already existing and upcoming devices. In other words, a sustainable
EMS architecture needs to support legacy devices and state-of-the-art protocols. The
challenge is to design a future-proof EMS architecture to fulfill the changing demands
of technological progress. Just like power grids, EMSs should also be compatible with
future systems. This especially means that no strict limitations regarding communication
abilities should be considered leading to an open and holistic interoperability approach.

Objective: The communication options of an EMS architecture should be developed
holistically. This requirement aims to ensure that the architecture includes measures
that foster interoperability.

Fulfillment criteria: The requirement is fulfilled if devices and services can communicate
without adjustments. For legacy devices, the architecture must provide a procedure to
make them compatible.

3.4.4 Usability
Description: EC members want to integrate new devices into an EMS. Therefore, the
integration process of new devices is a common use case and requires special attention.
On the one hand, there are technically proficient members that want to integrate and
configure their devices themselves. On the other hand, non-technical proficient members
want a simple way to enhance the integration process. An important part of an easy
integration process is a smooth discovery process to establish a connection. For this reason,
support of discovery and integration measures increases user satisfaction and acceptance.
Another benefit of an easy integration process is the decrease in experimentation effort.
For example, it is hard to assess the optimization potential of specific devices precisely.
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An easy way to find out if a device impacts the overall electricity usage is to test a
concrete constellation. A complicated integration procedure hinders this approach, and
instead, a low-effort way to integrate devices is desirable.

Objective: The EMS architecture should enable discovery and integration mechanisms
are crucial parts of the EMS.

Fulfillment criteria: The requirement is fulfilled if the EC architecture provides support
for standard discovery and integration mechanisms with effort.
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CHAPTER 4
Architecture

This chapter is about the presentation and description of a system architecture suitable
for ECs. To assist the reader in understanding the concepts, a typical prosumer scenario
is assumed. This includes a household with a local network to which energy-related
devices are connected. The concrete setup and related assumptions are outlined in the
first section. Moreover, the first section gives a technical overview of the problem domain.
As a result, the overview identifies nine essential topics that a suitable architecture
should cover to satisfy the requirements from Chapter 3. The second section presents
a service-oriented architecture that is specifically designed with these topics in mind.
Subsequently, every component of the service-oriented architecture is described in detail.
This includes an explanation of the purpose and the interplay with other components.

4.1 Prosumer scenario
Figure 4.1 illustrates a prosumer scenario consisting of a router, a solar inverter, and
an EV charging station. The inverter and the charging station are connected to the
router and span a local network that is further connected to the Internet. In detail,
the local network is provided by a set-up box from the ISP. The box provides basic
network functions such as Dynamic Host Configuration Protocol (DHCP), Network
Address Translation (NAT) and a firewall. In other words, it is a typical Internet router
that connects IP-capable devices. This circumstance leads to the first restriction of the
following approach, namely to only cover constellations where all devices are IP capable.
Moreover, this thesis specializes in Transmission Control Protocol (TCP) and UDP traffic
and neglects to investigate other protocols. However, the restriction to TCP and UDP
should not be a problem in real-world scenarios, as alternative communication systems
such as Long Range Wide Area Network (LoRaWAN) or ZigBee are usually already
deployed with TCP capable gateways.
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Figure 4.1: Typical prosumer scenario

Furthermore, a commitment to hardware-oriented protocols would not comply with the
WoT principles. Novel systems should already be designed with the support of web
technologies in mind to accelerate the divergence towards web technologies, as stated by
Jara et al. [40]. TCP and UDP are the basis of most web protocols and hence, a suitable
choice for further investigations. In contrast to hardware-oriented protocols, TCP and
UDP provide additional benefits. On the one hand, they are widely used and supported
by most consumer products. On the other hand, subsequent changes of web protocols
only require an adjustment of software. This way, hardware incompatibility is decreased,
and users can access their devices by simply updating software components. The initial
scenario in Figure 4.1 may already give this advantage. If available, a user can access
the inverter from a terminal device such as a smartphone. The prerequisite is that the
user knows the inverter’s IP address, and the smartphone can somehow interact with the
inverter’s interface. If this is not the case, the common basis of TCP and UDP does not
require an adjustment of hardware. Instead, the user can install additional software that
is capable of communicating with the inverter. In other words, the resulting problem
domain only concerns the application layer of the IP suite [89].

However, this also means that a solution consists of software components that must be
executed in a compatible runtime. In the simplest case, the software components can be
run directly on the inverter or on the smartphone. Another possibility is to outsource
the software execution to other devices or centrally locate it on the Internet router. Since
manufacturers usually restrict foreign code execution, it is important to also consider
other hardware environments. Moreover, the interaction scenarios in Chapter 3 involve
TPSPs, which opens the door for a flexible distribution of software. In other words,
parts of the solution may be outsourced and executed at the edge, fog, or cloud level,
depending on the concrete requirements. As a result, the desired software components
must be designed with code portability in mind. This situation extends the requirements
of Chapter 3 and adds another aspect to the design of a system architecture.
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Figure 4.2: Illustration of the architecture problem domain and associated topics

4.2 Key aspects

Considering all the requirements, Figure 4.2 visualizes the key aspects of the architecture.
The left side of the figure indicates the ascending level of centralized computing, namely
edge, fog, and cloud computing. The right side visualizes the association of the initial
prosumer scenario with the architecture problem domain. From bottom to top, the lowest
level contains devices like inverters or EV charging stations. These devices are distributed
over multiple households and do not know about each other. In contrast, the optimizer
on the top of the figure preserves the full view of the EC and is therefore located at the
cloud level. The architecture problem domain of this thesis is depicted in the middle of
the figure and delimited by a red frame. It consists of nine topics that emerged through
the previous collection of requirements. The following subsections describe each of these
key aspects in more detail.

Technology divergence

Due to the diverse landscape of available communication technologies, it is not feasible
for an EC architecture to support all of them. According to Jara et al., this is likely not
necessary [40]. The authors set up the theory that technology divergence in the WoT
context could happen the same way as during the spread of the Internet. If this is the
case, it would suffice to only support a subset of the available technologies and still be
able to participate in the emerging WoT communication network. In order to increase
the chance of being compatible with this subset, it is necessary to think about suitable
technologies in advance. In other words, before implementing the architecture is started,
it is essential to assess the divergence of technology and determine a suitable subset of
communication paradigms. The architecture should concentrate on this subset and take
it as fixed points for developing new components. This means new services should be
compatible with the selection of suitable technologies, and the system should initially be
able to communicate without workarounds. Incompatible devices are made compatible
by a gateway approach afterward.

39



4. Architecture

Encryption

Local networks are often Demilitarized Zones (DMZs). In other words, there are few
or no security mechanisms inside local networks, and every connected device can talk
to every other device. This is especially problematic when not all network devices have
encryption capabilities which in the worst case leads to clear text communication. Due
to the high resource requirements of state-of-the-art encryption mechanisms, constrained
devices cannot add another layer of security. Consequently, communication with external
actors over the Internet runs at risk of being disclosed. For example, if the optimizer in
Figure 4.1 reads the current electricity production from the inverter, adversaries may have
access to the electricity production if communication takes place in cleartext. To mitigate
this problem, the communication of devices outside the local network must be encrypted.
Moreover, access from outside the network must be restricted. The aim is to reach a
secure state-of-the-art network and simultaneously preserve the secure environment of
the local network.

Authorization

Not every device functionality is intended to be used by every participant, even if the
communication is encrypted. Therefore, device access of external parties must be re-
stricted. A scope-based authorization approach is a suitable choice for this task. However,
the selected authorization mechanism should be the same for all devices. Otherwise,
each device would implement different credential and authorization mechanisms, which
lead to compatibility issues. It is also possible to regulate access in a decentralized
manner. For example, each device could provide individual authorization providers that
are compatible with the architecture’s authorization flow. This is especially the case if
devices already implement suitable authorization mechanisms through the manufacturer
side. In most cases, the user receives authorization requests from the respective provider
and must agree or refuse the request accordingly.

Device Description

A common Device Description (DD) is necessary to know about a device’s functionalities
and interfaces. Looking at the prosumer scenario in Figure 4.1, the inverter will most
likely format its sensor data in one way and the EV charging station in another. Similarly,
the stated devices may provide different communication interfaces and interpret data
differently. This initial situation makes it hard to gain an overview of the concrete
constellation and further complicates the development of applications. The first part
of the solution is to know the encodings, protocols, and interpretations that a device
supports. If this information is available, the next step is to bring it into a format that
users, devices, and services understand. In other words, a standard format for exchanging
device information is needed. Further, the resulting DD should be understandable
by humans and machines and subsequently be used by other parties. For example,
online services could describe parts of their functionality in a DD to simulate device
functionalities.
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Discovery

Integrating new devices into the architecture should happen with little effort and adapta-
tion overhead. For this reason, all devices must support a uniform discovery mechanism
that provides information about implemented device functionalities. The purpose of
describing and formatting these properties is already covered by the aspect of a standard
DD. Discovery is responsible for receiving the DD of a device. To that end, novel
devices and services must implement DD discovery according to a predefined discovery
mechanism. Furthermore, it is necessary that devices that are not compatible with the
standard discovery mechanism also have a way to be recognized in the network. Hence,
the architecture must provide a workaround for legacy devices. This way, every device
can utilize a discovery mechanism to establish a connection to other devices. However, it
is not feasible that every device constantly triggers a discovery process or preserves its
own state of DDs. Therefore, the architecture additionally needs a shared collection of
DDs.

Knowledge

Introducing a standard format for describing devices only partly solves interoperability
problems. Further, related parties must share a common understanding of DD content.
To achieve this, DDs must extend their format with semantic meaning. In other words,
keywords and properties of the DD format must lead to the same interpretation throughout
communication parties. Moreover, DDs should be extensible by individual semantics.
This means the DD format allows to specify properties or keywords beyond the initial
specification. A suitable way to achieve this is to support semantic annotations. The
use of semantic annotations covers the attachment of additional information and further
enables extensibility in the future. Furthermore, semantic annotation can be used to
model ontologic relations. This aspect is relevant for knowledge representation and
connection. Knowledge-based systems or smart devices could interpret the meaning and
set the information in context. Subsequently, modern approaches from ontology research
could be used to relate different meanings and generate new knowledge.

Gateway

Technology most likely diverges towards novel protocols, encodings, and interpretations.
Consequently, older devices are rarely compatible with emerging WoT scenarios. Utilizing
gateways is a suitable approach to solve this problem. The gateway encapsulates
another device and virtually provides its functionalities. In other words, the gateway
substitutes the device’s place in the communication chain and transforms messages into
a compatible format. For example, Internet gateways are instances of gateway solutions
that relay messages between the local network and the Internet. In this case, an Internet
gateway abstracts the complexity of the local network and adjusts the communication
accordingly. However, this example is about relaying messages and only takes care of
simple transformations. More complicated gateway approaches transform each level of
the communication stack and translate it to other technologies. Figure 4.3 illustrates the
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Figure 4.3: Different translation levels of energy related devices.

different levels of gateway transformations covering physical, network, protocol, format,
or semantic incompatibility. The architecture needs a mechanism to support such gateway
approaches to reach device compatibility.

Runtime

The architecture should support the dynamic instantiation of gateways. Therefore,
software modules that contain gateway application code must be executed in a compatible
runtime environment. In other words, if a particular gateway functionality is needed, the
architecture must provide a mechanism to execute the gateway code. Furthermore, an
execution runtime can also perform additional tasks. For example, it is conceivable that
the optimizer distributes local applications for energy optimization. In the event of a
communication loss, the local application could continue to run and synchronize when
the connection is restored.

Organization

Ideally, device management happens automatically. Unfortunately, this is not possible
due to the limited intelligence of the system. For example, the setup in Figure 4.1 can
hardly decide if the optimizer is allowed to access the inverter or not. Consequently,
user input is required. In this case, the user should be informed about the required
interaction, and the required effort should be kept low. However, if desired, it should also
be possible to manage the whole architecture on behalf of the user. This task requires
the architecture to provide extensive configuration for experienced users but well-defined
default values for ordinary ones that rarely want to touch the system.

4.3 Design
Figure 4.4 illustrates an architecture design that specifically targets the key aspects of
the previous section. In detail, the design follows the concept of outsourcing key aspects
to individual services. This strategy extends the initial prosumer scenario in Section 4.1
with five additional services. Before every service is explained in detail, the following
bullet points outline general conditions that must be fulfilled for the architecture to work:

• Services’ software components are appropriately executed. This assumption targets
the runtime for hosting the respective services. As stated in the prosumer scenario,
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the software may be executed on the ISP gateway. Otherwise, alternative hardware
or a virtualized environment is required.

• Services are compatible with the determined technology assessment. Because the
five services are newly introduced in the scenario, they should at least support a
subset of the determined technologies. The aim is that communication can occur
without compatibility issues between the newly introduced components.

• Services support the determined authorization mechanism such that access control
can take place in a uniform manner. If technology selection determines multiple
authorization mechanisms, at least one must be supported.

• Services support the determined discovery mechanism. This assumption is similar to
the last one. Moreover, older devices depend on the discovery mechanisms of novel
devices and services. Hence, at least new devices must implement a compatible
discovery mechanism.

• Services support the predefined DD structure, format, semantics, and related
document properties. This assumption also includes that a service must self-
describe its affordances and functionalities with a DD document. At least new
services should know about each other and understand each other’s functionalities.

• Configuration and organization functionalities are also part of the DD. End de-
vices and other services can understand these capabilities and implement suitable
mechanisms for management tasks.

• External services provide transformation and matching services for unknown on-
tologies. Conceivable implementations are knowledge-based systems in the cloud
or manual translation mechanisms that involve the user, as outlined by Novo et
al. [90]. Moreover, such cases may be covered by an ontological gateway approach.

• User end devices such as smartphones are compatible with the technology choice
and further understand DD and related information. They can automatically
provide a compatible User Interface (UI) for system insights and control. Moreover,
they can access external services for translation if they do not understand relevant
information.

Additionally, it must be stated that not every service is necessarily required in every
scenario. If all devices are already compatible with each other, there is likely no reason
to introduce the architecture’s full overhead. However, the benefit of the architecture is
to be prepared for legacy devices. If parts of the architecture are already present, the
extension to full compatibility is less effort.
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Figure 4.5: Network Service interaction exemplified in a data request scenario.

4.4 Network Service
In nearly every EC scenario, the Network Service is the central part that establishes and
controls the communication between external parties and local devices. For example, if
the optimizer wants to read the actual electricity production from the inverter, the request
first reaches the Network Service, as visualized in Figure 4.5. Subsequently, the Network
Service checks the access rights and translates the request into local network messages.
Next, the inverter answers the request and sends back the production data to the Network
Service, which in turn answers the optimizer’s request by relaying the message. In other
words, the Network Service provides similar functionalities as an Internet router that
translates messages from Wide Area Network (WAN) to LAN. Moreover, the Network
Service has a built-in firewall to protect legacy devices inside the network. Indeed, this
scope first looks like it does not differ from an Internet router. The following outlines
why the Network Service needs to be separate.

In general, there are multiple ways to exchange messages on the Internet. Besides the
different communication paradigms like polling or pushing, an essential factor is who
started the communication. In the prosumer scenario in Figure 4.1, this can either
happen from inside the local network or from outside. For example, if the inverter pushes
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data to the optimizer, the communication is initiated from inside the local network. The
optimizer externally listens for the messages and receives the actual sensor data. This
procedure is commonly implemented in IoT and also allowed by most of the Internet
gateways. The resulting problems are twofold.
First, the inverter needs to know the related endpoints to which the sensor data should be
pushed. If these endpoints change regularly, the inverter needs to update its configuration.
Similarly, the location of endpoints is a problem when polling data. Because most
households get a dynamic WAN IP, the public Internet address changes from time to
time. Consequently, the optimizer does not know the updated address of the inverter
and therefore is unable to initiate a polling process.
Second, due to the default configuration of most firewalls, the optimizer cannot start
communication with the inverter by itself. In the case of pushing the data to the
optimizer, this is only a problem when the optimizer wants to answer requests or inform
the respective devices about changes. However, the polling scenario does not work with
a strict firewall. In other words, the optimizer cannot initiate the connection that is
necessary to transfer the respective request. Due to the publicity of the Internet, the
default security configuration of Internet routers blocks these requests from outside and
discards the messages. In most cases, these security settings are justified to protect local
networks from adversaries.
However, in both cases, workarounds exist. The first workaround concerns the configura-
tion of the Internet router firewall and dynamic IPs. Common approaches solve these
issues by opening TCP or UDP ports on the Internet router. Nevertheless, there are
scenarios where port forwarding is not possible or comes with high effort, despite the
existence of configuration-facilitating protocols such as Universal Plug and Play (UPnP).
For example, a Small and Medium Enterprise (SME) could communicate over a hosted
network that does not allow the opening of ports and directly resolves into an intranet.
In this case, UPnP is likely not implemented, and the structure of the network consists
of multiple gateway boxes with their own firewall rules. Apart from that, in the context
of households, it is bad security practice to open a port without providing appropriate
security mechanisms. The second problem, which concerns dynamic IP addresses, is
less complicated to solve. In most cases, some external providers, such as operators of
Domain Name System (DNS) servers, provide information about the actual IP of the
internet router. This approach requires that some device inside the local network updates
the DNS or IP entry accordingly when the dynamic IP address changes.
Creating bidirectional streams is another option for the stated problems, which usually
requires no additional configuration and still offers a high level of security. In this
case, the inverter initiates the connection to the optimizer and opens a secure tunnel.
Afterward, both parties can use the tunnel to send messages. This way, the connection is
established from inside the local network and does not require ports opening. However,
in the context of interoperability, novel streaming protocols like WebSockets [91] are
rarely implemented in IoT. Consequently, making devices compatible with such protocols
comes with transformation efforts. For example, the Network Service could take care
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of the transformation of local messages onto a streaming protocol like WebSockets. For
this purpose, the Network Service must map each device to a corresponding tunnel with
the optimizer. However, the structure of different protocols and formats complicates this
task. Additionally, dependency on the streaming protocols increases, and the Network
Service must provide complex application logic to support network functionalities like
discovery.

For these reasons, the Network Service must provide a higher-level streaming protocol
and abstract the network interface. Network virtualization is a suitable approach to
solve this problem. Virtualized networking generally abstracts the network traffic and
maps it from standard interfaces to an overlay streaming protocol. The underlying
devices do not notice that the network is virtualized because the interfaces stay the
same. Therefore, it is possible to extend the regular network with a virtualized overlay
network that can communicate without the adjustment of local devices. In the prosumer
scenario, the Network Service can be seen as a gateway to another isolated network
in which the optimizer is located. Due to the visibility and control properties of this
network, participation can be restricted, and the user can control network access. In
short, the Network Service provides an overlay network that extends the local network.
This network is controllable, and due to the utilization of streams, secure tunnels can
be established from inside the local network. With this solution, port forwarding is
prevented in most cases, and network interoperability is provided. The only restriction is
that external actors, such as the optimizer, require support for the virtualized network
technology. Even though this is a dependency on the architecture, the switch of network
virtualization technology is decoupled from the primary EC scenario. Moreover, the
Network Service is a novel component in the system, which on the one hand, can be
designed to be updated and, on the other hand, can support multiple virtualized networks.
The following bullet points summarize the stated aspects:

• Virtualized networks mostly work without special firewall configurations. This
means less configuration effort and increased security.

• Virtualized networks can provide encrypted tunnels, which lead to increased security.

• Virtualized networks can provide access control mechanisms. Due to the requirement
of a gateway, also additional firewall functionality can be implemented.

• Virtualized networks can bypass dynamic IPs and provide network-based identifica-
tion mechanisms. This leads to less configuration overhead.

• Virtualized networks can simulate broadcasting inside the network. This allows the
utilization of local discovery mechanisms that are not applicable over the Internet.

However, the Network Service should act as a router that only forwards messages from
one network to another in the regular case. For simplicity reasons, the following sections
neglect to indicate the Network Service in every scenario explicitly. In other words,
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subsequent scenarios assume that communication with external parties automatically
happens over the Network Service without explicit mention.

4.5 Security Service
The Security Service is primarily responsible for the administration of access rights.
When considering the prosumer scenario in Figure 4.1, a typical operation is that a user
allows the optimizer to access the inverter. For this to make sense, device access must be
restricted in advance. The least-privilege principle is generally a suitable way of defining
access rights in the architecture. This means third-party access to devices is restricted by
default, and permission grants take place in a prior, explicit, and minimal way. However,
this strategy is not always possible. Devices that do not provide authorization mechanisms
cannot adhere to authorization principles. Moreover, devices that implement legacy
authorization mechanisms have to be adopted. This thesis tackles the stated problems
by outsourcing authorization concerns to the Security Service. In general, the Security
Service distinguishes between compatible and legacy devices. The following paragraphs
describe the two scenarios and outline the respective authorization procedure. For the
sake of simplicity, it is assumed that the optimizer already knows about the interface
of the energy-related devices and has access to them. Concrete details about discovery
aspects are part of the Discovery Service in Section 4.6.

Compatible devices

Ideally, a device such as an EV charging station already implements a web-conform
interface like HTTP with a state-of-the-art authorization mechanism like OAuth 2.0 [92].
If this is the case, the optimizer requests an authorization token before data retrieval
starts. Figure 4.6 visualizes a token-based authorization procedure. First, the optimizer
accesses the EV charging station’s interface and requests its DD through a compatible
procedure like well-known URIs. The obtained DD contains information about the
authorization procedure and indicates an authorization endpoint, which in this case
resolves to the Security Service. Next, the optimizer requests an access token from the
Security Service. If there are no default authorization rules configured, the Security
Service stalls the request and notifies the user to give permission. Consequently, the
optimizer must wait until the request is approved. After the user permits access, the
Security Service returns the access token to the optimizer. From now on, the optimizer
can access the EV charging station by attaching the related token to every request.

Workaround for legacy devices

In the worse case, the device provides legacy or no authorization mechanisms. Here, it
is necessary to consider the dimension of possible harm. For example, if the inverter’s
interface only provides a single unsecured endpoint with reading capabilities, it is most
likely not necessary to restrict access further. However, it is also conceivable that the
inverter provides sensitive write endpoints that must be secured. In this case, access
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Figure 4.6: Token based authorization procedure for a compatible EV charging station.

to read and write must be separated through fine-grained access control. Figure 4.7
visualizes the process of adding token-based authorization capabilities to a legacy device.
In detail, the scenario outlines an extended authorization process for an inverter that does
not provide any authorization mechanism. The solution is to encapsulate the inverter’s
interface by sending requests through a gateway. In the simplest form, the gateway
only adds authorization capabilities like some HTTP proxies do. This approach comes
with little overhead and is applicable if the charging station already provides an HTTP
API. Indeed, this is a simple case, and the overhead depends on the individual situation.
Further, it is not specified in detail how the gateway handles the separation of reading
and write access. These aspects are considered to be implementation details part of
Chapter 5.
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4.6 Discovery Service

If devices do not implement the determined discovery mechanism, the Discovery Service
comes into play. In general, there are no restrictions on what techniques are internally
used in the service. The aim is to discover legacy devices and provide related DDs.
Figure 4.8 illustrates an example where a legacy device is identified by scanning the
local network. For the sake of simplicity, the example neglects authorization procedures
and associated interactions with the Security Service. However, the example starts
by connecting the inverter to the local network. Next, the inverter requests an IP
address from the set-up box via DHCP. Depending on the concrete constellation of the
network, the Discovery Service gets notified about the new device and starts a device
scan. Alternatively, it is possible to start network scans on a regular basis or provide
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Figure 4.8: Onboarding procedure of a legacy inverter.

endpoints through which users can trigger network scans manually.

When the connection is established, the Discovery Service tries several techniques that
could identify the device. A conceivable approach is to send a probable protocol request
and check if it is successful. Another way of device identification is to analyze its traffic,
as proposed by Aksoy et al. [93]. If the identification is successful, the Discovery Service
creates a suitable DD. The relevant information for device identification and DD creation
is not further specified. For example, the Discovery Service could be connected to external
cloud services, as illustrated in Figure 4.4. This way, the application logic is outsourced to
external services, which return the corresponding DD. The DD is subsequently registered
in the Directory Service, and from this moment, also other devices and services know
about the existence of the legacy device. Indeed, this procedure most likely does not cover
all legacy devices. Alternatively, the Discovery Service can support the device onboarding
and retrieve missing information through user inputs. However, in the context of the
architecture, the aim is to concentrate discovery-related tasks in the Discovery Service,
which enables a flexible architecture for additional discovery processes.
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However, additional concerns must be determined in the Discovery Service. One of them
is the problem of identification. Even though novel devices already provide identification
mechanisms, legacy devices most likely do not. For this reason, it must be managed how
legacy devices get a standard Identifier (ID) that can be uniquely be used to identify
the device in a related DD document. A simple workaround for this problem is to
utilize randomly generated IDs. Nonetheless, caution must be taken when distributing
randomized IDs in dynamic environments. Besides the entropy properties of the ID
generation algorithms, it is also necessary to think about reusability. For example, if the
inverter gets its IP address via DHCP, it could be the case that the address changes
from time to time. Due to the new IP address, the inverter may look like a new device
to the network. Consequently, the Discovery Service triggers a discovery process and
generates a DD including a new ID. In this case, the other devices may not notice
that the inverter was already part of the architecture. Consequently, properties like
access control are restricted, and settings may be reset. The Directory Service and the
architecture implementation must take care of such cases and find a suitable approach
for the respective constellation.

4.7 Directory Service
The Directory Service collects available DDs and maintains device information. This
purpose mainly concerns the actors’ need to get an overview of available devices. For
example, a user in the prosumer scenario in Figure 4.1 wants to uniformly access
information about the inverter and the EV charging station. Therefore, the architecture
requires a directory structure that can be used to access and organize device information.
This structure is also a suitable place for storing and managing the previously determined
DDs. Reasons for this are multifaceted. First, splitting device information and related
descriptions can lead to inconsistencies during updates. Second, maintaining a combined
state of device information and DDs facilitates management tasks. Third, serving device
information and DDs from the same service reduces communication overhead. This
thesis covers the stated aspects by introducing a directory service that manages device
information and related DDs accordingly.
The underlying data primarily involves property relationships. For example, parts of
the device information could represent in which room a particular device operates. In
this case, the information stands for the relationship between house and device. Triple
stores are therefore a suitable choice for maintaining and managing device information.
Also, lightweight implementations with key-value stores are conceivable. This alternative
is especially appropriate if a directory service’s computing power does not suffice for
running a triple store. However, the internal structure of the directory service is an
implementation detail. The central aspect is the interface that provides access to device
information and DDs. For this purpose, the first step is to define a data exchange format.
Currently, devices and services are only required to understand the DD format. Moreover,
DDs are semantically extensible and can therefore represent individual relationships.
These features make DDs a suitable choice for data representation and exchange. As a
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result, the directory service’s interface only needs to support a single exchange format.
Communication and access procedure of the DDs are once again specified in the Directory
Service’s DDs.

4.8 Runtime Service
The Runtime Service comes into play if an extension in the architecture is necessary.
Conceivable tasks reach from executing self-contained apps that control energy-related
devices to parts of external services that facilitate data access. In other words, the
introduction of such a service can be used for a broad range of applications. However, the
Runtime Service’s job for this architecture is to provide interoperability with gateways.
Therefore, Figure 4.9 illustrates the process of how a gateway is instantiated. For the sake
of simplicity, security and authorization-related concerns are neglected in this example.

The scenario’s background is a compatibility issue, and the user is already aware of the
problem. In the first step, the user searches for available apps from third-party providers.
If a suitable and trustable gateway code is found, the user can deploy the software to the
Runtime Service, which further initiates the gateway instantiation. After the gateway is
instanciated, the user configures the legacy device that should be encapsulated, and the
gateway registers its DD at the Directory Service. From this moment on, other devices
can recognize the gateway as an individual device and talk to it. This process can also be
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automated. Due to the semantic extension in DDs, a novel device could understand what
incompatibility issues are encountered. With this information, the device could search
for a compatible gateway and instantiates the needed gateway application on its own.
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CHAPTER 5
Implementation

This chapter describes a real-world implementation of the proposed architecture from
Section 4.3. The aim is to show the architecture’s feasibility and provide a test setup for
evaluation. For this purpose, the prosumer scenario from the last chapter is concretized
and simulated in a virtual environment. The implementation process starts with assessing
technology and choosing a subset to which the architecture’s services are compatible.
Next, the subset of technology is used to implement the architecture’s services and
construct the associated DDs. Finally, the interplay of the services is exemplified in two
interaction scenarios that demonstrates integration and interoperability properties.

5.1 Testbed environment
The background story of the implementation is a concrete instance of the prosumer
scenario in Section 4.1. In detail, the implementation outlines an exemplified scenario
with a legacy inverter and a fully compatible EV charging station. This situation is
simulated by mocking every device and service in a virtual Docker environment. The
resulting testbed consists of eight containers that are executed on standard computing
hardware. Moreover, the Docker environment is used to simulate a prosumer’s network
situation. For this purpose, the containers are split into two networks by utilizing the
Docker bridge driver. Figure 5.1 illustrates the concrete constellation. The left side of
the figure represents the local network with the subnet 10.10.0.0/16. The right side
represents a private network in the optimizer’s cloud with the subnet 10.20.0.0/16.
Every subnet is configured to act as the respective network in the prosumer scenario.
This means the optimizer and the local devices are split in connection and cannot directly
communicate with each other. However, both subnets are connected to the Internet.
Additionally, all devices and services get static IP addresses in advance. The main
reason for this policy is the avoidance of dynamic environments, which could lead to
configuration issues. If needed, self-reconfiguring measures can be added in a more
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Figure 5.1: Docker based testbed.

extensive implementation. In this implementation, it is assumed that users are able to
take care of IP configurations themselves.

5.2 Technology choice
The key aspects in Section 4.2 start with the selection of a suitable subset of technologies.
Therefore, the first step of the implementation is to assess current trends and choose a
subset of suitable technologies. The criteria for this selection process are twofold. On the
one hand, the selected technologies must suit the prosumer scenario and its consumer-
oriented environment. On the other hand, selected technologies must conform with the
WoT concepts and prepare for future scenarios. That said, the following sections compare
suitable technologies and justify the respective choices. In any case, the following selection
represents only an exemplary assessment and therefore does not claim completeness.

5.2.1 Device Description
The problem with DDs is understanding their formats and exchange procedures. For this
reason, standards like Sensor Model Language (SensorML) [76], OMA Lightweight M2M
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(LwM2M) [94] or one Machine to Machine (oneM2M) [95] specified individual information
models for the representation of device and communication functionalities. However, the
problem with these approaches is that they replace parts of the communication stack.
In other words, they introduce new specifications to which devices must adhere. This
strategy is especially problematic with legacy devices that may communicate via older
technology stacks. The W3C WoT standard [45] addresses this problem by introducing a
DD on a higher level. The advantage of this approach is the decoupling of the description
and the actual communication procedure. This way, the WoT standard intentionally
bypasses restrictive dependencies of specific communication protocols. As a result, the
so-called WoT TDs are also compatible with older devices and can be defined after the
initial deployment [46].

Likewise, the definition of a higher-level DD could be implemented by using other
technologies. For example, the utilization of knowledge representation formats such as
RDF [96] leads to similar capabilities as provided by TDs. In combination with suitable
ontologies like Smart Applications Reference (SAREF) [97] or Semantic Sensor Network
(SSN) [98], it is possible to model essential IoT devices and related properties. However,
this approach was discarded, since RDF is not intended for IoT use. In contrast, the
TD format was specifically developed for IoT and is anyway extensible by semantic
annotations. This means, information from external ontologies like SAREF or SSN can
be included into TDs similar to the representation in RDF. Moreover, the freedom of RDF
may lead to a misunderstanding of specific communication terms. In other words, the
reliance on RDF would only solve a formatting issue but still allow different vocabularies
for the same meaning. In contrast, W3C standardized the needed vocabulary for device
communication in the WoT standard. Due to the involvement of global manufacturing
companies like Siemens or Huawei, it is likely, that the WoT vocabulary is adopted by a
significant part of IoT devices. These facts make the TD format a suitable choice for
describing devices and is therefore selected for further use.

5.2.2 Communication
Promising and established protocols in IoT are MQTT [74], CoAP [73] and HTTP [69]. In
the context of web development, especially HTTP proves to be popular and established as
a de-facto standard for web applications and API development. In contrast, MQTT and
CoAP are designed for constrained environments and therefore provide lighter protocols
than HTTP. However, IoT devices continuously increase in computing power and novel
device can already handle the HTTP overhead. Additionally, HTTP provides integrated
support for insecure and secure communication over Transport Layer Security (TLS).
Even though CoAP provides similar properties, HTTP is a de-facto standard in the
web. For these reasons, HTTP is further selected as target protocol. If CoAP largely
establishes, the similarity of CoAP and HTTP allows protocol transformation with little
overhead. Therefore, the selection of HTTP provides a solid foundation for current use
and additionally prepares for future developments.

The next point in the context of communication is to select a standard data exchange
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format. JSON [99] and XML [100] are encodings that are commonly used in accordance
with HTTP. Both of these formats are text-based and hence, also human-readable.
However, due to the overhead of XML, JSON seems more suitable for communication
purposes in the WoT. Another promising candidate in the context of data encoding is
Concise Binary Object Representation (CBOR) [101]. In short, CBOR is designed as a
binary drop-in replacement for JSON to reduce its text-based overhead. However, due to
the binary format, CBOR is not human-readable. In addition, there is no standardized
query language yet. These facts discourage the adoption of CBOR, and hence, the
encoding did not reach widespread use until now. Nevertheless, if CBOR establishes,
it is little effort to extend devices and services in a way to support CBOR. Until then,
GZIP [102] or Brotli [103] compression of JSON also achieve comparable results. To
summarize, the tradeoff is acceptance and compatibility vs. performance. Due to the
interoperability focus of this work, JSON is selected for further use.

5.2.3 Discovery

Private networks allow to perform local discovery measures. Suitable protocols for this
purpose are UPnP [104], Simple Service Discovery Protocol (SSDP) [105], Domain Name
System Service Discovery (DNS-SD) [106] and mDNS [55]. In fact, mDNS and DNS-SD
were coordinately developed by IETF for the purpose of local service discovery. In
contrast, SSDP works with UPnP, but the standards are not strictly standardized for
joint use. Additionally, the primary focus of UPnP is the application layer which also
provides application related features. Parts of these features are already contained in the
WoT TD format. This overhead makes mDNS in combination with DNS-SD a simple
and straightforward solution.

Hence, novel devices and services in this implementation must provide mDNS with DNS-
SD for discovery. However, even though this selection enables proper device discovery, it
must also be specified how the discovery mechanism reveals information about the device
or service. In other words, the outcome of the service discovery process must lead to a
TD. Therefore, it is determined that capable things must provide an additional endpoint
that follows the well-known URI scheme [57]. This approach is also covered in the WoT
discovery document [51]. The document states that compatible devices must reveal to
the subpath /.well-known/wot-thing-description and therefore fits with the
previous technology choice of HTTP.

5.2.4 Authorization

Authorization is a complex topic in local environments. The reason is that an authoriza-
tion’s initial configuration and management effort does likely not pay off on a local level.
Therefore, most of the IoT devices already bring their own authorization mechanisms.
The problem is that there are few standards for authorizing device access. One standard
in the context of the web is OAuth 2.0, which is specified by IETF [92]. This standard
covers parts of the authorization process and handles detailed use cases by the definition

58



5.2. Technology choice

of OAuth 2.0 extensions. In contrast to approaches where every device provides its
own authorization mechanism, OAuth 2.0 enables the central management of access
grant and validation. Additionally, it allows the authorization server to be externally
managed by a third party. This approach is especially beneficial if users are unwilling
to operate an independent authorization server. However, the authorization flows in
OAuth 2.0 are not suitable for the prosumer scenario. The reason is OAuth 2.0’s concept
of clients and the way the credentials must be provided. For example, OAuth 2.0 does
not directly address user interaction when a device wants access to another device. The
recommended OAuth 2.0 flow for this scenario is named Client Credentials Grant and
assumes the inquiring device already has the credentials. Therefore, this implementation
only relies on concepts of the OAuth 2.0 standard but defines an individual authorization
procedure based on JSON Web Tokens (JWTs) [107]. Even though this does not solve
interoperability problems in the context of authorization, at least it specifies the format
of modeling authorization information.

Despite this, the utilization of JWT provides a framework for defining token claims. On
the one hand, this includes registered claims such as aud (audience), iss (issuer), exp
(expiration time) and sub (subject). These claims are defined in the IANA “JSON Web
Token Claims” registry for JWT Claim Names [107] and, therefore, can be considered
publicly understandable. In this implementation, the registered claims are extended by a
private claim named scopes. In short, the scopes claim is an array and represents
the access rights of a JWT. Novel devices and services in the architecture are required to
understand the scopes claim and implement their authorization mechanisms accordingly.
The concrete items that must be included in the scopes claim to access a device’s
endpoints are specified in its TD. Exemplary scopes that are used in this implementation
are observe, control, or admin. The advantage of this approach is that JWTs are
self-contained and can be validated offline. This way, the authorization server can be
outsourced to external parties, and offline devices can verify the token validity if a common
certificate is trusted in advance. The last thing to mention is how the token claims inside
JWTs are signed. With the possibility of specifying the algorithm inside of JWTs or
the security schemes in TDs, the security mechanism provides two ways for variable
use of signing algorithms. However, due to convenience reasons, this implementation
favors the RS256 (RSASSA-PKCS1-v1_5 with SHA-256 hash algorithm) variant, which
is recommended by IETF [107].

5.2.5 Virtual Private Network

In the context of VPNs, OpenVPN [108] and IKEv2/IPSec [109] are still secure solutions
and supported by a significant amount of platforms. However, novel P2P protocols are
likely more performant and secure. One such solution is the WireGuard protocol [110] by
Jason A. Donenfeld. A key aspect of this protocol is the lightweight encryption mechanism
ChaCha [111], which in contrast to OpenVPN only causes little communication overhead.
Besides the superiority in performance, WireGuard also opens the additional property
of P2P communication. As a result, the communication to external parties is less error
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prone. However, WireGuard requires more configuration effort and is less flexible in the
basic version. Tailscale [112] addresses this problem by encapsulating WireGuard into a
user-friendly network application. In other words, Tailscale abstracts the interaction with
the WireGuard daemon and the associated setup. This way, the only requirement on the
Tailscale clients [113] is to install the related software that automatically configures the
virtual network adapters.

5.2.6 Code execution and portability
This step of the selection process primarily concerns the runtime environment for extending
the architecture’s basic functionalities. A proven technique for such intentions is to use
Java and provide extensibility through the Open Services Gateway initiative (OSGi)
framework [114]. This technology choice is used by several gateway solutions like the
energy gateway OpenEMS [115]. However, the resource intensity of Java Virtual Machines
(VMs) is only partly suitable in the IoT domain. Therefore, primarily machine-oriented
languages such as C are used for constrained devices. The reason is that machine-oriented
languages can be compiled explicitly for the respective processor architectures of the
devices and thus can max out hardware constellations with little overhead. The problem
with this approach is the high level of dependency and low degree of code portability.

WebAssembly is meant to find a middle ground between hardware orientation and
code portability [116]. The essential aspects of WebAssembly are twofold. On the one
hand, compiled code is executable in various runtimes for different purposes. On the
other hand, it supports lightweight runtimes and achieves machine-near performance.
Originally, WebAssembly was conceived for better performance in web browsers, but at
present, there are already browser-independent runtimes that can even be deployed to
Microcontrollers (MCUs). Extensions like WebAssembly System Interface (WASI) [117]
provide a standardized way to communicate with system interfaces such as network
capabilities or file system access. Due to the proximity to the web, also other novel
technologies are compatible with WebAssembly. Especially web browsers or other
JavaScript (JS) environments like NodeJS or Deno already provide compatible runtime
environments. Furthermore, JS runtimes that are optimized for MCUs such as lowjs [118]
or Espruino [119] are also WebAssembly compatible. As a result, code from Rust, Go,
or C can be compiled to the WebAssembly executable format .wasm and executed on
various devices.

In other words, the prospects for WebAssembly are promising. On the one hand, its
machine-like performance and code portability properties make it a suitable choice in the
IoT domain. On the other hand, the security by design concept and its compatibility
with JS facilitates a secure and rapid integration into state-of-the-art processes. For
these reasons, WebAssembly support should be considered when developing applications
in the context of the web. However, due to the ongoing development and definition of
WebAssembly, it is not yet fully applicable. In particular, the bridge between the WoT
standard and WebAssembly needs to be explored in more detail. The primary focus of the
WoT standard was on JS because of the proximity to the web. Hence, the runtime choice
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of this implementation determines JS even though it has similar resource requirements
to Java. However, the difference to Java is that NodeJS is compatible with WoT and
WebAssembly by default and hence gives a better initial position for future developments.
In this implementation, especially gateways or external services with sufficiently enough
computing power can run a JS runtime for now and later execute WebAssembly code if
desired.

5.2.7 Semantics

W3C’s WoT standard already contains a vocabulary for communication-related topics.
However, a common understanding of the architecture’s functionalities requires the
definition of additional terms. Consequently, the choice is between extending an existing
vocabulary or defining a new one. In any case, it is necessary to define architecture-
specific terms that most likely no other vocabulary covers. Therefore, this implementation
chooses to define a lightweight standalone vocabulary specifically developed for the given
scenario. The concrete definition of terms is divided into two vocabularies that are listed
in Appendix A. In detail, the ec A.1 namespace contains the diverse terms that are
required to describe the architecture’s functionalities. Examples of this collection are
terms for access scopes, Direct Current (DC) power, or the action to start a charging
process. The second vocabulary is a subset of the SunSpec specification and is located
in the sunspec A.2 namespace. This part covers the needed terms to understand the
DC power properties of a SunSpec compatible inverter. Even though the vocabulary
development has not followed a recognized definition procedure, it works for the given
implementation and is sufficient for demonstration purposes. In other words, the defined
vocabulary only covers a part of the possible EC scenarios and must be extended or
adjusted if used in production.

5.3 Network Service
The architecture design in Section 4.3 outsources the purpose of communicating with
external parties to the Network Service. This way, the Network Service is described
as an abstract architecture component that establishes the connection between local
devices and external parties. In this implementation, the Network Service establishes
the connection to the optimizer by utilizing the aspiring WireGuard protocol. The
associated software components are installed on top of an Alpine Linux base image that
is encapsulated in a Docker image. Furthermore, the previously determined Tailscale
software for managing WireGuard connections is installed. This way, the operating
system of the Network Service provides two relevant network adapters, as illustrated in
Figure 5.2. The first adapter, which is named eth0, is the default network interface
in the local subnet with an IP address of 10.10.0.2. This interface is provided on
the Docker level and simulates a physical network interface. The second interface is
named eth1 and is virtualized on the operating system level by WireGuard. In fact,
this procedure is compatible with all environments where WireGuard is supported.
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Figure 5.2: Network Service implementation.

Furthermore, Figure 5.2 visualizes the overall structure of the Network Service. In detail,
the figure divides the software aspects into two layers. On the one hand, the application
level at the top of the figure provides an interface for controlling the Network Service. On
the other hand, the operating system on the bottom is responsible for network-related
services such as NATing and firewall tasks. A sample request from the optimizer to the
local network is visualized on the right side of the figure. First, the request reaches the
eth1 network interface and is further forwarded to the firewall. The firewall checks for
applicable rules for the optimizer’s IP address in the virtual network and drops invalid
requests. Next, the source and target addresses are respectively adjusted to the Network
Service’s eth0 interface and sent to the recipient in the local network. Due to the
Linux-based environment, the desired forwarding and firewall behavior is configured by
utilizing the iptables application. Moreover, permitting and denying access is mapped
to the application layer where associated endpoints in a NodeJS application allow the
configuration over HTTP.

The Network Service’s TD contains the usage information for these endpoints as listed
in B.3. A user’s end device can recognize this TD and identify the Network Service’s
capabilities. Further, a user application can generate according UIs and provide suitable
forms on the TD’s basis. However, caution must be taken as firewall configuration is a
sensitive task. Therefore, the admin scope is necessary to access the respective endpoints,
as indicated on lines 54 and 84 in TD 5.1. Moreover, line 16 indicates the necessary
JWT structure for configuring the firewall rules. By default, the firewall is configured to
block all incoming and outgoing connections, so no unintended communication is possible.
Due to the simplicity of the firewall rules endpoint, users can either inspect the actual
firewall rules or adjust them accordingly. Updating an existing firewall rule is done by
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submitting a new rule. The old one will get obsolete by an entry in the respective IP
table. However, configuring network settings means an effort for the user. Therefore, the
Network Service searches the local network and automatically passes secure devices and
services to the optimizer. This means devices or services that strictly require HyperText
Transfer Protocol Secure (HTTPS) and provide authorization control can automatically
communicate with external parties such as the optimizer. The needed information for
this intent is retrieved from the Directory Service. In the case of doubts, the automatic
inclusion of firewall rules is prohibited.

TD 5.1: Snippets of the Network Service’s TD. Complete TD listed in B.3.

... ...
12 "title": "Network Service",
13 "description": "Service that is responsible for connecting

external parties.",�→
14 "id": "21da2b3f-2afa-4d2c-9b09-daba90eb75c7",
15 "securityDefinitions": {
16 "bearer_sc": {
17 "scheme": "bearer",
18 "in":"header",
19 "format": "jwt",
20 "alg": "RS256",
21 "authorization":

"https://10.10.0.8:8080/.well-known/wot-thing-description",�→
22 "ec:scopes": ["observe", "control"]
23 }
24 },
25 "security": ["bearer_sc"],
26 "base": "https://10.10.0.2:8020",
27 "properties": {
28 "firewallRules": {
... ...

50 "forms": [{
51 "href": "/properties/firewallRules",
52 "contentType": "application/json",
53 "op": ["readproperty"],
54 "ec:scopes": ["admin"]
55 }]
56 }
57 },
58 "actions": {
59 "setFirewallRule": {
... ...

80 "forms": [{
81 "href": "/actions/setFirewallRule",
82 "contentType": "application/json",
83 "op": ["invokeaction"],
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84 "ec:scopes": ["admin"]
85 }]
86 }
87 }
... ...

5.4 Security Service
The Security Service maintains a list of rights and is responsible for granting and denying
access. Internally, the service represents the respective data structures as a JSON model
with the previously determined JWT claims. In other words, the data consists of key-value
pairs specifying the IDs of the issuer, inquirer, and the respective audience. Additional
parts of the data are the array of access scopes and two timestamps for indicating
issuing and expiration times, respectively. The underlying data is persisted in a LevelDB
database and manipulated by a NodeJS application. Moreover, the NodeJS application
serves the respective security functionality for users, devices, and services. The full scope
of the functionalities is listed in the Security Service’s TD in B.5. In detail, the API
consists of seven endpoints that allow the respective authorization flow visualized in
Figure 5.3. The prerequisite for this flow is that the participating devices and services
understand and trust the Security Service’s signature in a JWT.

Concretely, the scenario in Figure 5.3 visualizes the process where the optimizer wants to
request data from the EV charging station. It is assumed that the EV charging station
is fully compatible and already trusts the Security Service’s signatures. That said, the
first step for the optimizer is to find out about the authorization procedure of the EV
charging station. For this purpose, the optimizer accesses the EV charging station’s
well-known-URI and fetches the respective TD as listed in B.6. Next, the optimizer
parses the TD and searches the content for the token issuer’s endpoints. The related
information in TD 5.2 is stated on line 22. Additionally, the optimizer infers the EV
charging station’s functionalities and checks the required scopes for reading the EV
charging station’s state. In this case, the required scope is observe. Subsequently, the
optimizer builds the authorization request with the intended scope and sends the request
to the Security Service. For the purpose of identification, the Security Service sends back
a newly generated JWT and stalls the request until the user grants access. The returned
JWT initially has an empty scope array meaning the optimizer is not allowed to read the
EV charging station’s state. In order to get the desired scopes, the optimizer polls the
Security Service for new tokens until the desired scopes are included. In other words,
the optimizer has to trade in an old JWT token to get a new one with extended scopes.
The scope array will remain empty until the user grants access to the optimizer. That
is why the Security Service notifies the user about the recently received request. The
subscription endpoint on line 245 in TD 5.3 provides a functionality to notify the user.
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Figure 5.3: The architecture’s authorization flow.
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TD 5.2: Snippets of the EC charging station’s TD. Complete TD listed in B.6.

... ...
13 "title": "EV charging station",
14 "description": "Simulated charging station for electric

vehicles",�→
15 "id": "2972af70-7059-41c7-b417-0be91ffb2d5f",
16 "securityDefinitions": {
17 "bearer_sc": {
18 "scheme": "bearer",
19 "in":"header",
20 "format": "jwt",
21 "alg": "RS256",
22 "authorization":

"https://10.10.0.8:8080/.well-known/wot-thing-description",�→
23 "ec:scopes": ["observe", "control"]
24 }
25 },
26 "security": ["bearer_sc"],
... ...

TD 5.3: Snippets of the Security Service’s TD. Complete TD listed in B.5.

... ...
218 "events": {
219 "newAccessRequest": {
... ...

243 "forms": [{
244 "href": "/subscriptions/newAccessRequest",
245 "subprotocol": "longpoll",
246 "op": ["subscribeevent"],
247 "ec:scopes": ["admin"]
248 }]
249 }
250 }

... ...

After the user has accepted the request, the Security Service includes the granted token
claims in the next issued JWT. In other words, the optimizer gets the desired claims when
refreshing the JWT. From this moment on, the optimizer can access the EV charging
station’s endpoints by attaching the JWT to the HTTP header of future requests. When
the EV charging station receives such a request, it checks the claims of the attached JWT.
Moreover, it checks the expiration time and ensures the validity by verifying the JWT’s

66



5.5. Discovery Service

signature. In this implementation, the token automatically expires after ten minutes.
This means the JWT can be used for ten minutes until a new token is required. An
inquirer may refresh the token before the old one expires. This policy is necessary to
provide uninterrupted operation of the system. The actual refreshing procedure works
the same way as the initial issuing of the token works. In other words, an inquirer has to
prove previous access by passing an old JWT. The Security Service checks the signature
and the current access rights and issues a new token. In case of an error, the JWT request
fails with an HTTP error. When the device tries to make the request again, the Security
Service immediately rejects it, so unnecessary user notifications are prevented. This way,
a rejected device is permanently banned from the Security Service. In order to undo
the ban, the user must manually intervene and adjust the security settings accordingly.
However, the most important task of the process is that the user gets sure about an
inquirer’s identity. When requesting the JWT, an attacker could forge the inquirer’s
identity and fool the user by imitating another device. Consequently, the user might think
that a malicious device wants access and unintentionally accepts the request. Hence, it is
necessary that a user gets sure about a device’s requests. After the first access is granted,
the identification process is ensured by requiring old tokens to get a new one.

5.5 Discovery Service
The Discovery Service is a flexible component that is responsible for identifying devices
and registering their TDs in the Directory Service. In fact, the Discovery Services’s
implementation consists of two parts. First, a NodeJS application periodically broadcasts
mDNS/DNS-SD requests in the network to find compatible devices. If a compatible
device answers, the Discovery Service searches for the device’s TDs. In the compatible
case, a device or service publishes its TD over HTTP and makes it accessible by a
well-known URI. In this case, the Discovery Service fetches the TD and further publishes
the content to the Directory Service. In the legacy case, the Discovery Service tries to
identify promising devices and generate the respective TDs on its own. For this purpose,
the Discovery Service’s implements the following procedure:

1. Periodically scan the network for devices. This is implemented by scanning TCP
port 502.

2. If a promising device is found, check if it is Modbus TCP compatible by sending a
SunSpec Modbus request.

3. If the device answers accordingly, read the model specification and generate the
related TD.

4. Publish the TD in the Directory Service.

Like the mDNS/DNS-SD approach, this procedure is implemented in a NodeJS application
that periodically checks the network in an interval of ten minutes. Due to the automatic
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process, the control endpoints for users are limited. The implementation only allows
users to start or stop the discovery process as described in TD 5.4 on lines 46 and 56,
respectively. The available properties on line 27 are even less extensive, consisting of a
single endpoint that indicates the state of the discovery process.

TD 5.4: Snippets of the Discovery Service’s TD. Complete TD listed in B.2.

... ...
45 "actions": {
46 "startDiscovery": {
47 "@type": ["ec:startDiscovery"],
48 "description": "Start discovering",
49 "forms": [{
50 "href": "/actions/startDiscovery",
51 "contentType": "application/json",
52 "op": ["invokeaction"],
53 "ec:scopes": ["admin"]
54 }]
55 },
56 "stopDiscovery": {
57 "@type": ["ec:stopDiscovery"],
58 "description": "Stop discovering",
59 "forms": [{
60 "href": "/actions/stopDiscovery",
61 "contentType": "application/json",
62 "op": ["invokeaction"],
63 "ec:scopes": ["admin"]
64 }]
65 }
66 }
... ...

5.6 Directory Service
Typical discovery processes on the Internet consist of a central point that collects service
information and further broadcasts the information to interested parties. This way,
services can uniformly exchange information and must only be compatible with the
central directory. Two substantial factors must be covered to make this work. First, the
format of device information has to be specified. Second, the interface of the directory
has to be known. In the proposed architecture in Section 4.3, the central point is
represented by the Directory Service. To provide the intended functionality to other
devices or services, the Directory Service needs to implement a standard interface and
use a standard exchange format. One possible solution to this task is selecting proper
communication technologies and specifying the related API endpoints independently from
existing solutions. However, due to the determination of HTTP and the WoT standard
in the last steps, a suitable solution is to implement the specially developed HTTP
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API from W3C. The specification of another API would only lead to incompatibility of
devices, services and directory structures. Therefore, WoT’s directory API is determined
for registering and looking up TDs.

Another topic of the Directory Service is the internal handling of data and the implemen-
tation of related query functionality. The latter task is implemented by utilizing WoT
Hive [120]. WoT Hive is an implementation of W3C’s thing directory API. The respective
data management is done by utilizing the triplestore Apache Jena Fuseki. Its backend is
executed as a separate Docker container but isolated from all but the Directory Service
container. Indeed it would be possible to integrate the Fuseki features directly into the
WoT Hive container. However, it is more suitable to leave the separation of concerns
as it is due to maintenance aspects. This approach additionally has the advantage of
exchanging the backend without changing the Directory Service implementation. Due
to the standardized interface of Fuseki’s SPARQL endpoints, every other triple store
implementation is eligible. The public API of the Directory Service is described in
TD B.1. In particular, the TD largely follows the officially thing directory API in [51].

5.7 Runtime Service
Similar to the other services, the Runtime Service provides a host application and a
common API to control it. In detail, the Runtime Service utilizes an instance of the
NodeJS runtime with the vm2 package [121]. This setup enables a secure environment
for remote execution of JS code. The API of the Runtime Service provides access to the
hosted runtime by providing three endpoints. First, it is possible to get an overview of
the running jobs by querying the runningScripts endpoint. This endpoint is listed
on line 28 in TD 5.5. The other two endpoints on lines 55 and 91 allow the user to
deploy a script or stop a running instance. Indeed, remote code execution is a sensitive
topic. Therefore, the interaction with the control endpoints is restricted to admins only.
Additionally, it is assumed that users self-determine the needed script functionalities and
deploy the respective scripts over the startScript endpoint.

TD 5.5: Snippets of the Runtime Service’s TD. Complete TD listed in B.4.

... ...
27 "properties": {
28 "runningScripts": {
... ...

52 }
53 },
54 "actions": {
55 "startScript": {
... ...

90 },
91 "stopScript": {
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... ...
104 }
105 }

... ...

5.8 Device interaction
The previous sections described the implementation of the architecture’s key components.
This section demonstrates how the key components interact when integrating devices.
For this purpose, the following sections describe two cases of device integration in the
prosumer environment. On the one hand, a regular scenario with a WoT compatible
EV charging station demonstrates a simple case where no additional translation of the
communication is necessary. On the other hand, a legacy inverter scenario demonstrates
the adoption of a legacy device and the instantiation of the corresponding gateway.

5.8.1 Compatible device
In this scenario, the user onboards a novel EV charging station. The first step is to
startup the device as illustrated in Figure 5.4. This step is simulated by starting up
the respective Docker container, which contains a dummy implementation of an EV
charging station. After the container has started up, the Discovery Service identifies the
EV charging station in its next service discovery round. Subsequently, the Discovery
Service registers the EV charging station’s TD in the Directory Service. This fires an
event in the Directory Service’s API on which the Network Service and the optimizer
have subscribed. Due to the full compatibility of the EV charging station, the Network
Service automatically creates a firewall rule and forwards requests to the EV charging
station. Furthermore, the optimizer classifies the EV charging station as a relevant device
for optimization purposes.

Consequently, the optimizer wants access to this device and contacts the Security Service.
The respective sequence of steps is already visualized in Figure 5.3. In this case, the
necessary claims to control the EV charging station are observe and control, which
the optimizer requests from the Security Service. The Security Service stalls this request
and, in the meantime, asks the user for permission. When the user grants access, the
next time the optimizer issues a new token, the respective claims are set in the JWT.
From this moment on, the optimizer can attach the JWT to requests and proves the
EV charging station allowance. This way, the user has to interact with the system only
once for granting access to the requesting systems. The resulting process comes with
low effort by sending the required messages on the user’s end devices. Indeed, requests
have to be carried out by each device and, in the case of multiple external parties, lead
to multiple possible interactions with the system. Additionally, this scenario assumes
that the Security Service’s signature key is already installed on the EV charging station
and trusts the signed JWTs from the Security Service.
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Figure 5.4: Onboarding steps of a compatible EV charging station. The procedure
resumes with access requests as illustrated in Figure 5.3.
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5.8.2 Legacy device
The second scenario demonstrates how the user can onboard a legacy inverter. In
detail, the inverter implements the SunSpec Modbus protocol over Modbus TCP. The
scenario begins like the compatible scenario by starting up the corresponding Docker
container. The respective sequence is visualized in Figure 5.5. After starting up the
container, the Discovery Service identifies the inverter in the next service discovery round.
In this case, the Discovery Service recognizes the legacy device and creates a legacy
device TD B.7. The onboarding procedure continues like in the compatible scenario
with the registration of the TD in the Directory Service. In this case, the Network
Service does not automatically add a route to the inverter due to the absence of required
security mechanisms. Likewise, the optimizer behaves differently by not requesting
access due to incompatibility with Modbus TCP. Next, the user is required to solve the
problem by searching for a compatible gateway translator. If a suitable code is found,
the user instantiates the gateway code by deploying the script to the Runtime Service.
Subsequently, the user has to configure the script code and link it to the inverter’s
TD. Next, the instantiated gateway publishes its TD B.8, and the Discovery Service
can recognize it in the next scan. From this moment, the onboarding procedure takes
place like with a compatible device in Figure 5.4. This means the Directory Service gets
notified about a new TD, the Network Service passes the requests and the optimizer
requests access. In the gateway case, the scope is only observable due to the restricted
functionalities of the legacy inverter. However, compatibility problems are solved, and
communication can occur like the legacy inverter would support the technology choice.

The related gateway code consists of three components. First, it implements an HTTP
interface that exposes a server that simulates the inverter’s functionalities. Second,
it implements a Modbus TCP client that is able to query the related registers at the
inverters interface. The third component is a middleware function that translates SunSpec
Modbus content to a JSON format like it is described on line 30 and 31 in the gateway’s
TD 5.6. In detail, the gateway reads two properties of the inverter if a request arrives.
The inverter supports the SunSpec model 103 that splits the DC power value of the
inverter into two registers. One of the registers contains the actual value, and the second
register the value’s scaling factor. This means the representation of power is divided
into two separate Modbus entries that must be combined for further usage. For this, the
gateway simply fetches the data from the Modbus interface and passes the content in
binary format to the transformation function. Next, the function locates the two values
and scales the power value with the corresponding scaling factor. The transformed value
is returned to the requester. The meaning and unit of this value are already known due
to the gateway’s TD B.8.
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Figure 5.5: Onboarding steps of a legacy inverter. The procedure resumes with onboarding
the gateway like in the compatible case visualized in Figure 5.4.

TD 5.6: Snippets of the gateway’s TD. Complete TD listed in B.8.

... ...
29 "properties": {
30 "DCPower": {
31 "@type": ["ec:DCPower"],
... ...

42 }
43 }
... ...
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CHAPTER 6
Evaluation and discussion

This chapter evaluates the proof-of-concept implementation from the previous chapter
by checking if the predefined architecture requirements of Section 3.4 are fulfilled. As it
turns out, the architecture covers the requirements of the respective EC scenarios and
significantly facilitates interoperability and integration problems. However, the benefits of
the solution depend on multiple factors. A subsequent discussion covers these factors and
performs a shallow security analysis, discusses the architecture’s overhead, and examines
acceptance assumptions of the initial situation. As a result, the discussion brings up
open questions and states factors that may also be relevant for other IoT scenarios.

6.1 Requirements fulfillment
The following subsections recapitulate the fulfillment criteria from Section 3.4 and
qualitatively verify the architecture behavior of the proof-of-concept implementation in
Chapter 5.

6.1.1 Requirement 1: Confidentiality and access control
Fulfillment criteria: The requirement is fulfilled if the architecture supports authoriza-
tion mechanisms that allow fine-grained access control. Additionally, the architecture
must ensure that traffic between local devices and external parties is fully encrypted.

Verification result: The initial deployment of the architecture’s services fulfills this
requirement by design. Communication is encrypted, and fine-grained access control
through the implemented authorization mechanism ensures the realization of the least
privilege principle. In the context of non-architecture devices, two scenarios in Section 5.8
demonstrate the corresponding behavior. The EV charging station scenario shows how a
compatible device can participate in the architecture. In fact, the device has the same
security properties as an architecture service and, therefore, also fulfills the security
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requirement by design. The second scenario demonstrates the behavior of a legacy
security implementation. In this case, the architecture provides the gateway mechanism
for encapsulating insecure endpoints with the Runtime Service. Additionally, the Network
Service takes care of encrypting even insecure traffic. Due to the use of WireGuard,
traffic to external parties such as the optimizer is fully encrypted on the IP layer. In
other words, the architecture implements a state-of-the-art security scheme but also
provides mechanisms for legacy security instruments. This way, secure and private EC
environments can be built, even if it comes to the interaction of local devices and external
parties.

6.1.2 Requirement 2: Extensibility

Fulfillment criteria: The requirement is fulfilled if additional devices and services can
extend the architecture after configuring the initial setup.

Verification result: The service-oriented architecture design from Chapter 4.3 leads to
a separation of architecture concerns. In fact, the different services are primarily indepen-
dent and can be configured and distributed as desired. The central aspect of fulfilling this
requirement is the description of device and service interfaces. Unlike it is best practice
in software engineering to only document web APIs for other developers, this approach
made use of semantic annotations in the TD format. Devices and services interpret
these annotations and automatically infer the required endpoints. Subsequent integration
of novel devices and services can read the endpoints and extend the functionality of
the architecture with little effort. The second case of extensibility deals with already
deployed devices that want to use novel systems. In this case, it can be the case that not
all of the semantic annotations are understandable. Consequently, software components
of the architecture must be updated if they do not outsource semantic translation to
external services. In other words, the architecture supports extensibility and provides a
future-proof environment for energy-related use cases due to the modular design and the
utilization of a standard DD.

6.1.3 Requirement 3: Interoperability

Fulfillment criteria: The requirement is fulfilled if devices and services can communicate
without adjustments. For legacy devices, the architecture must provide a procedure to
make them interoperable.

Verification result: The scenarios in Section 5.8 demonstrate two different initial
situations that the architecture handles. On the one hand, the first scenario demonstrates
how the system interacts with fully compatible devices and services. Due to the imple-
mentation of standard technology such as HTTP, JWT and the predefined vocabulary,
devices and services already fulfill the first part of the criteria by default. The second case
demonstrates the case where a legacy input device is made interoperable by utilizing the
architecture’s mechanisms for discovering and translating device communication. This
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scenario tests the second criteria by making a legacy device accessible to the other parts
of the architecture.

6.1.4 Requirement 4: Usability

Fulfillment criteria: The requirement is fulfilled if the EC architecture provides support
for standard discovery and integration mechanisms with effort.

Verification result: The actual fulfillment of the criteria is already met with the
utilization of mDNS with DNS-SD. However, the key aspect of the usability requirement
is the user interaction with the system. Both scenarios in Section 5.8 demonstrate
few user interaction. The tradeoff is between security and convenience. Finally, the
implementation determines to automatically adopt devices through the discovery process
until user input is required for granting access. Especially the discovery and adaption
processes in a fully compatible scenario results in low user effort. The integration of legacy
devices came with higher effort due to the manual search for suitable gateway scripts.
This process could be simplified by applying approaches from the area of automatic
reasoning. However, the architecture provides interfaces and opportunities to cover such
cases.

In summary, the proposed architecture covers all predefined requirements from Section 3.4
by introducing assisting mechanisms. The service-oriented architecture approach enables
a secure, extensible, interoperable, and convenient environment that facilitates the
communication of local devices with external service providers in an EC. Especially
the aspects in the context of interoperability and integration are covered as desired in
Section 1.2. This way, the proposed architecture is assessed as a suitable architecture in
the EC context.

6.2 Solution assessment

The previous section verified the implementation according to the predefined architecture
requirements. Even if the verification results were mostly positive, the evaluation must
be put into context. The first point of this context concerns the physical or underlying
situation. First, the architecture is only applicable on the application level of the IP
family. In detail, only TCP and UDP is supported. This limits the conceivable scenarios
and results in deficits in contrast to the solution proposed by Han et al. [10]. Moreover,
the implementation only covered only a minimal set of technology. Consequently, only
a few possible scenarios could be verified, and other communication paradigms like
publish/subscribe patterns were neglected. Apart from these points, the communication
assessment covered essential aspects of a local network. However, the following points of
security, overhead, and acceptance have to be discussed in more detail.
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6.2.1 Security
The applied security mechanisms protect users, devices, and services from external
adversaries. However, there are some cases where security is still an issue. Especially
in the local network, there are few security mechanisms to mitigate exploitation. First,
a novel device that is introduced into the architecture could forge its identity and fool
the user into being another device that the user trusts. If the malicious device requests
access to a specific device, the user may unintentionally grant access. However, if the
user’s network consists of an insecure network, security is anyways at risk. Therefore, the
local network is assumed to be a secure environment, and the user must care about an
appropriate level of security. Possible ways would be to utilize proven security schemes
such as IEEE 802.1X network access control [122]. Another mitigation is to put some
unique hardware identification on the device that other devices cannot know. The user
could check the respective request and compare it with the hardware identification.

Another point is the automatic processes like discovery, adoption, and network passthrough.
These concerns also concern the local level. If an adversary somehow gets access to the
local network, it could mimic another device by assigning its IP address. The Network
Service may think that the device is secure due to the TD of the mimicked device and
passes the request. Because the firewall only concerns IP level traffic, the original device
would be disclosed in the network even if it does not provide any security mechanisms.
However, this scenario is relatively unlikely. First, an external instance of the adversary
must participate in the Network Service’s virtual network. Additionally, it must somehow
mimic a local instance. The question is why an adversary wants to achieve the automatic
passthrough if local access is achieved anyways. In other words, this aspect also depends
on access to the local network and concerns the intrusion of adversaries into devices and
services.

The third security aspect describes a possible way so that external parties get access to
the local network. The respective security vulnerability concerns the remote execution of
scripts. Due to the provision of a full-fledged runtime, it is essential to trust the executed
software, like gateway scripts. Even trusted code execution could lead to a security
breach that enables the adversary access to the local network. In other words, even if
the local network is secured from external adversaries, the Runtime Service is already in
the local network and could cause malicious behavior like described in the previously
mentioned scenarios.

6.2.2 Overhead
Another aspect of the architecture is the overhead of the introduced components and the
associated expense for the user. More precisely, EC users have to provide runtimes for the
required services. However, standard runtimes are suitable in most cases due to the limited
runtime design. Conceivable hardware is single-board computers such as Raspberry Pis
or management boxes from existing smart home systems. These systems may lead to
little introduction effort and space consumption. Moreover, the implementation of such a
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solution is also feasible for small budgets. However, the architecture causes additional
overhead. First, the required service software must be installed on the respective systems.
Afterward, every device needs to trust the Security Service’s certificate for validating
JWTs and needs to know its IP address. Constrained devices are at risk of neither
supporting the secure implementation of HTTP nor the certificate validation of the
security scheme. Additionally, the search for suitable gateway solutions and code requires
the user to invest even more time and knowledge into the adoption process of legacy
devices. This aspect could discourage people even if the architecture took extraordinary
measures to reduce this overhead.

6.2.3 Acceptance
The initial architecture requirements consist of recent aspects in the context of IoT. These
requirements represent one possible view of the respective EC scenarios. In particular,
this means that even the few user interactions in the presented scenarios may be too much
for broad acceptance. Furthermore, users may not want to care about service structures
or are unwilling to invest in new technology that follows the proposed architectural
design. Ready-for-use alternatives such as directly connected cloud devices could be
favored. In this case, various beneficial properties of the architecture would be traded-in
for convenience. However, the involvement of third-party providers in the architecture
allows the emergence of various service structures. The actual third-party providers could
develop novel business models that motivate the user to accept the service landscape of
the architecture. Also, business models that pay the EC users are conceivable. In any
case, the architecture is ready for these cases and supports various possible scenarios.
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CHAPTER 7
Conclusion and outlook

This final chapter summarizes the thesis and repeats key aspects of the research process.
Moreover, an outlook of promising approaches reveals ideas for extending and stabilizing
the architecture approach.

7.1 Summary
In short, this thesis aimed to design and implement a suitable architecture for ECs.
For this purpose, the research process started with assessing conceivable energy-related
scenarios. The outcome of this step was the description of so-called interaction scenarios
that represent abstract ways of how users and external parties can jointly interact inside
of ECs. Furthermore, this step led to the specification of four architecture requirements
regarding interoperability, usability, confidentiality and access control, and extensibility.
To cover these requirements, Section 4.2 identified eight key aspects that represent
guidance for conceiving the architecture design. On this basis, the architecture design
came up with a service-oriented approach that consists of five services. The underlying
design strategy was to outsource essential concerns into individual services that all are
compatible with a preselected subset of novel communication technology. This process led
to a modular architecture that was described in Section 4.3. Furthermore, the structure
and behavior of every service was outlined in individual sections.

Subsequently, the proposed architecture was demonstrated in a proof-of-concept im-
plementation. The underlying testbed consisted of a Docker environment where every
service and the underlying network situation was simulated. In detail, the implementation
scenario was built around a prosumer scenario that consists of two local energy-related
devices and an external optimizer that wants to access these devices. The implementation
of this scenario was started by following the key aspects of the proposed architecture in
Section 4.2. Consequently, the implementation started with the selection of a suitable
subset of technology such as HTTP, mDNS and JWT. Further, the implementation
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explained how the technology subset is applied to the architecture components and
outlined the functionalities and service descriptions of the five architecture services.

For demonstration purposes, the implementation was evaluated by demonstrating two
different scenarios. The first scenario was about integrating a technology-compatible EV
charging station. By utilizing parts of the WoT standard, the implementation showed
a fully compatible onboarding process and described the associated assumptions. As
a result, the interaction of a potential user with a device was minimal. In fact, the
proposed scenario only required user interaction once for granting device access. The
second scenario of the implementation demonstrated a legacy device integration. For
this purpose, a legacy inverter that implements the Modbus SunSpec protocol was
adopted. This scenario demonstrated how the gateway approach could be used to
facilitate interoperability by utilizing the architecture’s assistance mechanisms. In this
case, users had to interact with the architecture twice. First, users had to recognize,
find and deploy an interoperable gateway script, and second, they had to configure the
associated access rights.

The proof-of-concept revealed that the architecture is a suitable approach to initially set
up the EC communication structure. A critical assessment came to the result that the
architecture provides components for assisting integration and interoperability problems.
However, the findings of this thesis mainly concern the overall architecture. Especially
the concrete details of knowledge representation, discovery, and protocol translation are
only covered rudimentary. For this purpose, the following section explains ideas and
promising approaches for future work.

7.2 Future work
One of the further topics of this thesis is to define a standard vocabulary that all
participating parties understand. In other words, it is necessary to carefully define
a vocabulary that covers multitudes of possible use cases and reaches a high level of
acceptance. Alternatively, the presented approach could be extended by utilizing gateways
or vocabulary mappers that translate labels or knowledge graphs from one vocabulary
into another. The related research approaches for ontology matching and alignment
look promising, and their application must be tested. Additionally, the representation
of a standard DD such as WoT’s TD format could be utilized to model the whole
communication and description vocabulary on a higher level where knowledge-based
systems can understand the processes and feed the information into AI systems.

Another topic is interoperability and integration in the context of security. When writing
this thesis, there are several interesting security mechanisms in an early adoption stage.
First, it is interesting how blockchain technology suits the architecture for authorization
purposes. A public blockchain like IOTA that is also verifiable by IoT devices could
enable the decentralized management of access control. Second, security interoperability
may be facilitated if the applied mechanisms are described in a standard format. The DID
document specification from W3C addresses this issue and aims to develop a common
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format to represent various kinds of authorization or access control mechanisms [58].
Both approaches seem suitable for the proposed architecture and may increase the level
of interoperability.

The final point in this outlook is the execution of third-party scripts. On the one hand,
these scripts should be able to process complex tasks. On the other hand, resource
intensity and security are central topics of IoT. In other words, the right trade-off between
these properties in the context of gateways and IoT devices must be investigated in more
detail. The WoT Scripting API brought up the idea of running lightweight scripts directly
on IoT devices [48]. However, the runtime of the first Scripting API implementations
is built on JS runtimes that could possibly be too extensive for constrained devices.
WebAssembly reveals new opportunities for providing a lightweight and secure runtime
concept that can execute portable source code from the server to the web. Moreover, the
interplay of related runtimes and DD such as TD has to be investigated in more detail.
Maybe there is a way to represent the library and runtime environment of the respective
scripting engine in a description format. The interesting aspect is the modeling of specific
runtime capabilities and restrictions that all participants understand.
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APPENDIX A
Vocabularies

A.1 Energy Community namespace
TD A.1: Vocabulary of essential EC related terms for the proof-of-concept implementation

1 // Services
2 ec:directoryService
3 ec:discoveryService
4 ec:networkService
5 ec:runtimeService
6 ec:securityService
7
8 // Security
9 ec:scopes

10 ec:scope
11 ec:pendingAccessRequests
12 ec:newAccessRequestArrived
13 ec:grantedAccess
14 ec:grantAccess
15 ec:requestAccess
16 ec:refuseAccess
17 ec:accessToken
18 ec:issueToken
19 ec:accessEntry
20 ec:sourceId
21 ec:target
22
23 // Abstract types
24 ec:gateway
25 ec:energyDevice
26 ec:inverter
27 ec:EVChargingStation
28
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29 // Runtime Service
30 ec:runningScripts
31 ec:scriptId
32 ec:scriptName
33 ec:startScript
34 ec:stopScript
35 ec:jsCode
36
37 // Miscellaneous
38 ec:state
39 ec:allowed
40
41 // Discovery Service
42 ec:startDiscovery
43 ec:stopDiscovery
44
45 // EV charging station
46 ec:stateOfCharge
47 ec:startCharging
48 ec:stopCharging
49
50 // Network Service
51 ec:firewallRules
52 ec:firewallRule
53 ec:setFirewallRule
54 ec:sourceIP
55 ec:destinationIP
56
57 // Inverter
58 ec:DCPower

A.2 SunSpec namespace
TD A.2: Vocabulary of essential SunSpec related terms for the proof-of-concept imple-
mentation

1 sunspec:inverter
2 sunspec:models
3 sunspec:value
4 sunspec:desc
5 sunspec:label
6 sunspec:name
7 sunspec:sf
8 sunspec:size
9 sunspec:type

10 sunspec:units
11 sunspec:name
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APPENDIX B
Thing Descriptions

B.1 Directory Service
TD B.1: Directory Service’s TD

1 {
2 "@context": [
3 "http://www.w3.org/ns/td",
4 "https://w3c.github.io/wot-discovery/context/discovery-context.j �

sonld",�→
5 {
6 "ec": "http://www.tuwien.ac.at/autosys/leonhard-esterbauer/e �

nergy-community-architecture"�→
7 }
8 ],
9 "@type": [

10 "ThingDirectory",
11 "ec:directoryService"
12 ],
13 "title": "Directory Service",
14 "description": "Maintains and distributes thing descriptions",
15 "id": "50ead19a-30ee-4c1a-bd67-2282c3cf80bf",
16 "securityDefinitions": {
17 "bearer_sc": {
18 "scheme": "bearer",
19 "in":"header",
20 "format": "jwt",
21 "alg": "RS256",
22 "authorization":

"https://10.10.0.8:8080/.well-known/wot-thing-description",�→
23 "ec:scopes": ["observe", "control"]
24 }
25 },
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26 "security": ["bearer_sc"],
27 "base": "https://10.10.0.11:8110",
28 "properties": {
29 "things": {
30 "description": "Retrieve all Thing Descriptions",
31 "uriVariables": {
32 "offset": {
33 "title": "Number of TDs to skip before the page",
34 "type": "number",
35 "default": 0
36 },
37 "limit": {
38 "title": "Number of TDs in a page",
39 "type": "number"
40 },
41 "sort_by": {
42 "title": "Comparator TD attribute for collection sorting",
43 "type": "string",
44 "default": "id"
45 },
46 "sort_order": {
47 "title": "Sorting order",
48 "type": "string",
49 "enum": [
50 "asc",
51 "desc"
52 ],
53 "default": "asc"
54 }
55 },
56 "forms": [
57 {
58 "href": "/api/things{?offset,limit,sort_by,sort_order}",
59 "htv:methodName": "GET",
60 "response": {
61 "description": "Success response",
62 "htv:statusCodeValue": 200,
63 "contentType": "application/ld+json",
64 "htv:headers": [
65 {
66 "htv:fieldName": "Link"
67 }
68 ]
69 },
70 "additionalResponses": [
71 {
72 "description": "Invalid query arguments",
73 "contentType": "application/problem+json",
74 "htv:statusCodeValue": 400
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75 }
76 ],
77 "scopes": "readAll"
78 }
79 ]
80 }
81 },
82 "actions": {
83 "createThing": {
84 "description": "Create a Thing Description",
85 "uriVariables": {
86 "id": {
87 "@type": "ThingID",
88 "title": "Thing Description ID",
89 "type": "string",
90 "format": "iri-reference"
91 }
92 },
93 "forms": [
94 {
95 "href": "/api/things/{id}",
96 "htv:methodName": "PUT",
97 "contentType": "application/td+json",
98 "response": {
99 "description": "Success response",

100 "htv:statusCodeValue": 201
101 },
102 "additionalResponses": [
103 {
104 "description": "Invalid serialization or TD",
105 "contentType": "application/problem+json",
106 "htv:statusCodeValue": 400
107 }
108 ],
109 "scopes": "write"
110 }
111 ]
112 },
113 "createAnonymousThing": {
114 "description": "Create an anonymous Thing Description",
115 "forms": [
116 {
117 "href": "/api/things",
118 "htv:methodName": "POST",
119 "contentType": "application/td+json",
120 "response": {
121 "description": "Success response including the

system-generated URI",�→
122 "htv:headers": [
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123 {
124 "description": "System-generated URI",
125 "htv:fieldName": "Location"
126 }
127 ],
128 "htv:statusCodeValue": 201
129 },
130 "additionalResponses": [
131 {
132 "description": "Invalid serialization or TD",
133 "contentType": "application/problem+json",
134 "htv:statusCodeValue": 400
135 }
136 ],
137 "scopes": "write"
138 }
139 ]
140 },
141 "retrieveThing": {
142 "description": "Retrieve a Thing Description",
143 "uriVariables": {
144 "id": {
145 "@type": "ThingID",
146 "title": "Thing Description ID",
147 "type": "string",
148 "format": "iri-reference"
149 }
150 },
151 "safe": true,
152 "idempotent": true,
153 "forms": [
154 {
155 "href": "/api/things/{id}",
156 "htv:methodName": "GET",
157 "response": {
158 "description": "Success response",
159 "htv:statusCodeValue": 200,
160 "contentType": "application/td+json"
161 },
162 "additionalResponses": [
163 {
164 "description": "TD with the given id not found",
165 "contentType": "application/problem+json",
166 "htv:statusCodeValue": 404
167 }
168 ],
169 "scopes": "read"
170 }
171 ]
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172 },
173 "updateThing": {
174 "description": "Update a Thing Description",
175 "uriVariables": {
176 "id": {
177 "@type": "ThingID",
178 "title": "Thing Description ID",
179 "type": "string",
180 "format": "iri-reference"
181 }
182 },
183 "forms": [
184 {
185 "href": "/api/things/{id}",
186 "htv:methodName": "PUT",
187 "contentType": "application/td+json",
188 "response": {
189 "description": "Success response",
190 "htv:statusCodeValue": 204
191 },
192 "additionalResponses": [
193 {
194 "description": "Invalid serialization or TD",
195 "contentType": "application/problem+json",
196 "htv:statusCodeValue": 400
197 }
198 ],
199 "scopes": "write"
200 }
201 ]
202 },
203 "partiallyUpdateThing": {
204 "description": "Partially update a Thing Description",
205 "uriVariables": {
206 "id": {
207 "@type": "ThingID",
208 "title": "Thing Description ID",
209 "type": "string",
210 "format": "iri-reference"
211 }
212 },
213 "forms": [
214 {
215 "href": "/api/things/{id}",
216 "htv:methodName": "PATCH",
217 "contentType": "application/merge-patch+json",
218 "response": {
219 "description": "Success response",
220 "htv:statusCodeValue": 204
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221 },
222 "additionalResponses": [
223 {
224 "description": "Invalid serialization or TD",
225 "contentType": "application/problem+json",
226 "htv:statusCodeValue": 400
227 },
228 {
229 "description": "TD with the given id not found",
230 "contentType": "application/problem+json",
231 "htv:statusCodeValue": 404
232 }
233 ],
234 "scopes": "write"
235 }
236 ]
237 },
238 "deleteThing": {
239 "description": "Delete a Thing Description",
240 "uriVariables": {
241 "id": {
242 "@type": "ThingID",
243 "title": "Thing Description ID",
244 "type": "string",
245 "format": "iri-reference"
246 }
247 },
248 "forms": [
249 {
250 "href": "/api/things/{id}",
251 "htv:methodName": "DELETE",
252 "response": {
253 "description": "Success response",
254 "htv:statusCodeValue": 204
255 },
256 "additionalResponses": [
257 {
258 "description": "TD with the given id not found",
259 "contentType": "application/problem+json",
260 "htv:statusCodeValue": 404
261 }
262 ],
263 "scopes": "write"
264 }
265 ]
266 },
267 "searchJSONPath": {
268 "description": "JSONPath syntactic search",
269 "uriVariables": {
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270 "query": {
271 "title": "A valid JSONPath expression",
272 "type": "string"
273 }
274 },
275 "safe": true,
276 "idempotent": true,
277 "forms": [
278 {
279 "href": "/search/jsonpath?query={query}",
280 "htv:methodName": "GET",
281 "response": {
282 "description": "Success response",
283 "contentType": "application/json",
284 "htv:statusCodeValue": 200
285 },
286 "additionalResponses": [
287 {
288 "description": "JSONPath expression not provided or

contains syntax errors",�→
289 "contentType": "application/problem+json",
290 "htv:statusCodeValue": 400
291 }
292 ],
293 "scopes": "search"
294 }
295 ]
296 },
297 "searchXPath": {
298 "description": "XPath syntactic search",
299 "uriVariables": {
300 "query": {
301 "title": "A valid XPath expression",
302 "type": "string"
303 }
304 },
305 "safe": true,
306 "idempotent": true,
307 "forms": [
308 {
309 "href": "/search/xpath?query={query}",
310 "htv:methodName": "GET",
311 "response": {
312 "description": "Success response",
313 "contentType": "application/json",
314 "htv:statusCodeValue": 200
315 },
316 "additionalResponses": [
317 {
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318 "description": "XPath expression not provided or
contains syntax errors",�→

319 "contentType": "application/problem+json",
320 "htv:statusCodeValue": 400
321 }
322 ],
323 "scopes": "search"
324 }
325 ]
326 },
327 "searchSPARQL": {
328 "description": "SPARQL semantic search",
329 "uriVariables": {
330 "query": {
331 "title": "A valid SPARQL 1.1. query",
332 "type": "string"
333 }
334 },
335 "safe": true,
336 "idempotent": true,
337 "forms": [
338 {
339 "href": "/search/sparql?query={query}",
340 "htv:methodName": "GET",
341 "response": {
342 "description": "Success response",
343 "htv:statusCodeValue": 200
344 },
345 "additionalResponses": [
346 {
347 "description": "SPARQL query not provided or contains

syntax errors",�→
348 "contentType": "application/problem+json",
349 "htv:statusCodeValue": 400
350 }
351 ],
352 "scopes": "search"
353 },
354 {
355 "href": "/search/sparql",
356 "htv:methodName": "POST",
357 "response": {
358 "description": "Success response",
359 "contentType": "application/json",
360 "htv:statusCodeValue": 200
361 },
362 "additionalResponses": [
363 {
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364 "description": "SPARQL query not provided or contains
syntax errors",�→

365 "contentType": "application/problem+json",
366 "htv:statusCodeValue": 400
367 }
368 ],
369 "scopes": "search"
370 }
371 ]
372 }
373 },
374 "events": {
375 "thingCreation": {
376 "description": "Registration of Thing Descriptions inside the

directory",�→
377 "uriVariables": {
378 "diff": {
379 "description": "Receive the full created TD as event data",
380 "type": "boolean"
381 }
382 },
383 "data": {
384 "title": "Partial/Full TD",
385 "type": "object"
386 },
387 "forms": [
388 {
389 "op": "subscribeevent",
390 "href": "/events/create{?diff}",
391 "subprotocol": "sse",
392 "contentType": "text/event-stream",
393 "htv:headers": [
394 {
395 "description": "ID of the last event for reconnection",
396 "htv:fieldName": "Last-Event-ID"
397 }
398 ],
399 "scopes": "notification"
400 }
401 ]
402 },
403 "thingUpdate": {
404 "description": "Updates to Thing Descriptions within the

directory",�→
405 "uriVariables": {
406 "diff": {
407 "description": "Include TD changes inside event data",
408 "type": "boolean"
409 }
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410 },
411 "data": {
412 "title": "Partial TD",
413 "type": "object",
414 "contentMediaType": "application/merge-patch+json"
415 },
416 "forms": [
417 {
418 "op": "subscribeevent",
419 "href": "/events/update{?diff}",
420 "subprotocol": "sse",
421 "contentType": "text/event-stream",
422 "htv:headers": [
423 {
424 "description": "ID of the last event for reconnection",
425 "htv:fieldName": "Last-Event-ID"
426 }
427 ],
428 "scopes": "notification"
429 }
430 ]
431 },
432 "thingDeletion": {
433 "description": "Deletion of Thing Descriptions from the

directory",�→
434 "data": {
435 "title": "Partial TD",
436 "type": "object"
437 },
438 "forms": [
439 {
440 "op": "subscribeevent",
441 "href": "/events/delete",
442 "subprotocol": "sse",
443 "contentType": "text/event-stream",
444 "htv:headers": [
445 {
446 "description": "ID of the last event for reconnection",
447 "htv:fieldName": "Last-Event-ID"
448 }
449 ],
450 "scopes": "notification"
451 }
452 ]
453 }
454 },
455 "@id": "http://localhost:9000/.well-known/wot-thing-description"
456 }
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B.2 Discovery Service

TD B.2: Discovery Service’s TD
1 {
2 "@context": [
3 "https://www.w3.org/2019/wot/td/v1",
4 {
5 "ec": "http://www.tuwien.ac.at/autosys/leonhard-esterbau �

er/energy-community-architecture",�→
6 }
7 ],
8 "@type": [
9 "Thing",

10 "ec:discoveryService"
11 ],
12 "title": "Discovery Service",
13 "description": "Recognizes the DC Power property of Modbus TCP

devices that implement SunSpec model 101",�→
14 "id": "f4eaea7d-6cdb-49c9-a825-a796bc044bd0",
15 "securityDefinitions": {
16 "bearer_sc": {
17 "scheme": "bearer",
18 "in":"header",
19 "format": "jwt",
20 "alg": "RS256",
21 "authorization":

"https://10.10.0.8:8080/.well-known/wot-thing-description",�→
22 "ec:scopes": ["admin"]
23 }
24 },
25 "security": ["bearer_sc"],
26 "base": "https://10.10.0.9:8090",
27 "properties": {
28 "state": {
29 "@type": ["ec:state"],
30 "type": "string",
31 "description": "Discovering state (running, stopped)",
32 "readOnly": true,
33 "enum": [
34 "running",
35 "stopped"
36 ],
37 "forms": [{
38 "href": "/properties/state",
39 "contentType": "application/json",
40 "op": ["readproperty"],
41 "ec:scopes": ["admin"]
42 }]
43 }
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44 },
45 "actions": {
46 "startDiscovery": {
47 "@type": ["ec:startDiscovery"],
48 "description": "Start discovering",
49 "forms": [{
50 "href": "/actions/startDiscovery",
51 "contentType": "application/json",
52 "op": ["invokeaction"],
53 "ec:scopes": ["admin"]
54 }]
55 },
56 "stopDiscovery": {
57 "@type": ["ec:stopDiscovery"],
58 "description": "Stop discovering",
59 "forms": [{
60 "href": "/actions/stopDiscovery",
61 "contentType": "application/json",
62 "op": ["invokeaction"],
63 "ec:scopes": ["admin"]
64 }]
65 }
66 }
67 }

B.3 Network Service
TD B.3: Network Service’s TD

1 {
2 "@context": [
3 "https://www.w3.org/2019/wot/td/v1",
4 {
5 "ec": "http://www.tuwien.ac.at/autosys/leonhard-esterbau �

er/energy-community-architecture"�→
6 }
7 ],
8 "@type": [
9 "Thing",

10 "ec:networkService"
11 ],
12 "title": "Network Service",
13 "description": "Service that is responsible for connecting

external parties.",�→
14 "id": "21da2b3f-2afa-4d2c-9b09-daba90eb75c7",
15 "securityDefinitions": {
16 "bearer_sc": {
17 "scheme": "bearer",
18 "in":"header",

98



B.3. Network Service

19 "format": "jwt",
20 "alg": "RS256",
21 "authorization":

"https://10.10.0.8:8080/.well-known/wot-thing-description",�→
22 "ec:scopes": ["observe", "control"]
23 }
24 },
25 "security": ["bearer_sc"],
26 "base": "https://10.10.0.2:8020",
27 "properties": {
28 "firewallRules": {
29 "@type": ["ec:firewallRules"],
30 "type": "array",
31 "items": {
32 "@type": ["ec:firewallRule"],
33 "type": "object",
34 "properties": {
35 "sourceIP": {
36 "type": "string",
37 "@type": ["ec:sourceIP"]
38 },
39 "destinationIP": {
40 "type": "string",
41 "@type": ["ec:destinationIP"]
42 },
43 "allowed": {
44 "type": "boolean",
45 "@type": ["ec:allowed"]
46 }
47 }
48 },
49 "readOnly": true,
50 "forms": [{
51 "href": "/properties/firewallRules",
52 "contentType": "application/json",
53 "op": ["readproperty"],
54 "ec:scopes": ["admin"]
55 }]
56 }
57 },
58 "actions": {
59 "setFirewallRule": {
60 "@type": ["ec:setFirewallRule"],
61 "description": "Endpoint for allowing or denying access

to a thing's network interface",�→
62 "input": {
63 "@type": ["ec:firewallRule"],
64 "type": "object",
65 "properties": {
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66 "sourceIP": {
67 "type": "string",
68 "@type": ["ec:sourceIP"]
69 },
70 "destinationIP": {
71 "type": "string",
72 "@type": ["ec:destinationIP"]
73 },
74 "allowed": {
75 "type": "boolean",
76 "@type": ["ec:allowed"]
77 }
78 }
79 },
80 "forms": [{
81 "href": "/actions/setFirewallRule",
82 "contentType": "application/json",
83 "op": ["invokeaction"],
84 "ec:scopes": ["admin"]
85 }]
86 }
87 }
88 }

B.4 Runtime Service
TD B.4: Runtime Service’s TD

1 {
2 "@context": [
3 "https://www.w3.org/2019/wot/td/v1",
4 {
5 "ec": "http://www.tuwien.ac.at/autosys/leonhard-esterbau �

er/energy-community-architecture"�→
6 }
7 ],
8 "@type": [
9 "Thing",

10 "ec:runtimeService"
11 ],
12 "title": "Runtime Service",
13 "description": "Service that provides a NodeJS Runtime for

executing JavaScript code",�→
14 "id": "c0daf98c-3311-4464-b4c7-a589a4d3e0ae",
15 "securityDefinitions": {
16 "bearer_sc": {
17 "scheme": "bearer",
18 "in":"header",
19 "format": "jwt",
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20 "alg": "RS256",
21 "authorization":

"https://10.10.0.8:8080/.well-known/wot-thing-description",�→
22 "ec:scopes": ["admin"]
23 }
24 },
25 "security": ["bearer_sc"],
26 "base": "https://10.10.0.10:8100",
27 "properties": {
28 "runningScripts": {
29 "@type": ["ec:runningScripts"],
30 "type": "array",
31 "items": {
32 "type": "object",
33 "properties": {
34 "scriptId": {
35 "type": "string",
36 "@type": ["ec:scriptId"]
37 },
38 "scriptName": {
39 "type": "string",
40 "@type": ["ec:scriptName"]
41 }
42 }
43 },
44 "description": "Lists running scripts and related

properties such as name and id",�→
45 "readOnly": true,
46 "forms": [{
47 "href": "/properties/runningScripts",
48 "contentType": "application/json",
49 "op": ["readproperty"],
50 "ec:scopes": ["admin"]
51 }]
52 }
53 },
54 "actions": {
55 "startScript": {
56 "@type": ["ec:startScript"],
57 "description": "Runs JS code in a virtual environment",
58 "input": {
59 "type": "object",
60 "properties": {
61 "script": {
62 "type": "string",
63 "@type": ["ec:jsCode"]
64 },
65 "scriptName": {
66 "type": "string",
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67 "@type": ["ec:scriptName"]
68 }
69 }
70 },
71 "output": {
72 "type": "object",
73 "properties": {
74 "scriptId": {
75 "type": "string",
76 "@type": "ec:scriptId"
77 },
78 "scriptName": {
79 "type": "string",
80 "@type": "ec:scriptName"
81 }
82 }
83 },
84 "forms": [{
85 "href": "/actions/startScript",
86 "contentType": "application/json",
87 "op": ["invokeaction"],
88 "ec:scopes": ["admin"]
89 }]
90 },
91 "stopScript": {
92 "@type": ["ec:stopScript"],
93 "description": "Stops and removes a virtual environment",
94 "input": {
95 "@type": ["ec:scriptId"],
96 "type": "string"
97 },
98 "forms": [{
99 "href": "/actions/stopScript",

100 "contentType": "application/json",
101 "op": ["invokeaction"],
102 "ec:scopes": ["admin"]
103 }]
104 }
105 }
106 }

B.5 Security Service
TD B.5: Security Service’s TD

1 {
2 "@context": [
3 "https://www.w3.org/2019/wot/td/v1",
4 {
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5 "ec": "http://www.tuwien.ac.at/autosys/leonhard-esterbau �
er/energy-community-architecture"�→

6 }
7 ],
8 "@type": [
9 "Thing",

10 "ec:securityService"
11 ],
12 "title": "Security Service",
13 "description": "Service that is responsible for device and

service authorization",�→
14 "id": "6daf93df-25f0-414c-9adc-acccf640916a",
15 "securityDefinitions": {
16 "basic_sc": {
17 "scheme": "basic",
18 "in": "header",
19 "ec:scopes": ["admin"]
20 },
21 "bearer_sc": {
22 "scheme": "bearer",
23 "in":"header",
24 "format": "jwt",
25 "alg": "RS256",
26 "authorization":

"https://10.10.0.8:8080/.well-known/wot-thing-description",�→
27 "ec:scopes": ["admin"]
28 }
29 },
30 "security": ["basic_sc", "bearer_sc"],
31 "base": "https://10.10.0.8:8080",
32 "properties": {
33 "pendingAccessRequests": {
34 "@type": ["ec:pendingAccessRequests"],
35 "type": "array",
36 "items": {
37 "@type": ["ec:accessEntry"],
38 "type": "object",
39 "properties": {
40 "sourceId": {
41 "type": "string",
42 "@type": ["ec:sourceId"]
43 },
44 "targetId": {
45 "type": "string",
46 "@type": ["ec:targetId"]
47 },
48 "scopes": {
49 "type": "array",
50 "@type": ["ec:scopes"],
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51 "items": {
52 "type": "string",
53 "@type": ["ec:scope"]
54 }
55 }
56 }
57 },
58 "readOnly": true,
59 "forms": [{
60 "href": "/properties/pendingAccessRequests",
61 "contentType": "application/json",
62 "op": ["readproperty"],
63 "ec:scopes": ["admin"]
64 }]
65 },
66 "grantedAccess": {
67 "@type": ["ec:grantedAccess"],
68 "type": "array",
69 "items": {
70 "@type": ["ec:accessEntry"],
71 "type": "object",
72 "properties": {
73 "sourceId": {
74 "type": "string",
75 "@type": ["ec:sourceId"]
76 },
77 "targetId": {
78 "type": "string",
79 "@type": ["ec:targetId"]
80 },
81 "scopes": {
82 "type": "array",
83 "@type": ["ec:scopes"],
84 "items": {
85 "type": "string",
86 "@type": ["ec:scope"]
87 }
88 }
89 }
90 },
91 "readOnly": true,
92 "forms": [{
93 "href": "/properties/grantedAccess",
94 "contentType": "application/json",
95 "op": ["readproperty"],
96 "ec:scopes": ["admin"]
97 }]
98 }
99 },
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100 "actions": {
101 "refuseAccess": {
102 "@type": ["ec:refuseAccess"],
103 "description": "Endpoint for refusing access to a

thing's scope",�→
104 "input": {
105 "@type": ["ec:accessEntry"],
106 "type": "object",
107 "properties": {
108 "sourceId": {
109 "type": "string",
110 "@type": ["ec:sourceId"]
111 },
112 "targetId": {
113 "type": "string",
114 "@type": ["ec:targetId"]
115 },
116 "scopes": {
117 "type": "array",
118 "@type": ["ec:scopes"],
119 "items": {
120 "type": "string",
121 "@type": ["ec:scope"]
122 }
123 }
124 }
125 },
126 "forms": [{
127 "href": "/actions/refuseAccess",
128 "contentType": "application/json",
129 "op": ["invokeaction"],
130 "ec:scopes": ["admin"]
131 }]
132 },
133 "grantAccess": {
134 "@type": ["ec:grantAccess"],
135 "description": "Endpoint for granting access to a

thing's scope",�→
136 "input": {
137 "@type": ["ec:accessEntry"],
138 "type": "object",
139 "properties": {
140 "sourceId": {
141 "type": "string",
142 "@type": ["ec:sourceId"]
143 },
144 "targetId": {
145 "type": "string",
146 "@type": ["ec:targetId"]
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147 },
148 "scopes": {
149 "type": "array",
150 "@type": ["ec:scopes"],
151 "items": {
152 "type": "string",
153 "@type": ["ec:scope"]
154 }
155 }
156 }
157 },
158 "forms": [{
159 "href": "/actions/grantAccess",
160 "contentType": "application/json",
161 "op": ["invokeaction"],
162 "ec:scopes": ["admin"]
163 }]
164 },
165 "requestAccess": {
166 "@type": ["ec:requestAccess"],
167 "description": "Endpoint for requesting the user for

access to a thing's scope",�→
168 "input": {
169 "@type": ["ec:accessEntry"],
170 "type": "object",
171 "properties": {
172 "sourceId": {
173 "type": "string",
174 "@type": ["ec:sourceId"]
175 },
176 "targetId": {
177 "type": "string",
178 "@type": ["ec:targetId"]
179 },
180 "scopes": {
181 "type": "array",
182 "@type": ["ec:scopes"],
183 "items": {
184 "type": "string",
185 "@type": ["ec:scope"]
186 }
187 }
188 }
189 },
190 "output": {
191 "type": "string",
192 "@type": ["ec:AccessToken", "ec:JWT"]
193 },
194 "forms": [{
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195 "href": "/actions/requestAccess",
196 "contentType": "application/json",
197 "op": ["invokeaction"]
198 }]
199 },
200 "issueToken": {
201 "@type": ["ec:issueToken"],
202 "description": "Issues a JWT token that is valid for

10min",�→
203 "input": {
204 "type": "string",
205 "@type": ["ec:AccessToken", "ec:JWT"]
206 },
207 "output": {
208 "type": "string",
209 "@type": ["ec:AccessToken", "ec:JWT"]
210 },
211 "forms": [{
212 "href": "/actions/issueToken",
213 "contentType": "application/json",
214 "op": ["invokeaction"]
215 }]
216 }
217 },
218 "events": {
219 "newAccessRequest": {
220 "@type": ["ec:newAccessRequest"],
221 "data": {
222 "@type": ["ec:accessEntry"],
223 "type": "object",
224 "properties": {
225 "sourceId": {
226 "type": "string",
227 "@type": ["ec:sourceId"]
228 },
229 "targetId": {
230 "type": "string",
231 "@type": ["ec:targetId"]
232 },
233 "scopes": {
234 "type": "array",
235 "@type": ["ec:scopes"],
236 "items": {
237 "type": "string",
238 "@type": ["ec:scope"]
239 }
240 }
241 }
242 },
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243 "forms": [{
244 "href": "/subscriptions/newAccessRequest",
245 "subprotocol": "longpoll",
246 "op": ["subscribeevent"],
247 "ec:scopes": ["admin"]
248 }]
249 }
250 }
251 }

B.6 Electric Vehicle charging station
TD B.6: EV charging station’s TD

1 {
2 "@context": [
3 "https://www.w3.org/2019/wot/td/v1",
4 {
5 "ec": "http://www.tuwien.ac.at/autosys/leonhard-esterbau �

er/energy-community-architecture"�→
6 }
7 ],
8 "@type": [
9 "Thing",

10 "ec:energyDevice",
11 "ec:EVChargingStation"
12 ],
13 "title": "EV charging station",
14 "description": "Simulated charging station for electric

vehicles",�→
15 "id": "2972af70-7059-41c7-b417-0be91ffb2d5f",
16 "securityDefinitions": {
17 "bearer_sc": {
18 "scheme": "bearer",
19 "in":"header",
20 "format": "jwt",
21 "alg": "RS256",
22 "authorization":

"https://10.10.0.8:8080/.well-known/wot-thing-description",�→
23 "ec:scopes": ["observe", "control"]
24 }
25 },
26 "security": ["bearer_sc"],
27 "base": "https://10.10.0.6:8060",
28 "properties": {
29 "stateOfCharge": {
30 "@type": ["ec:stateOfCharge"],
31 "type": "number",
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32 "description": "If an EV is connected, this property
represents the current state of charge in % (0 ... 100%)",�→

33 "readOnly": true,
34 "minimum": 0,
35 "maximum": 100,
36 "unit": "%",
37 "forms": [{
38 "href": "/properties/stateOfCharge",
39 "contentType": "application/json",
40 "op": ["readproperty"],
41 "ec:scopes": ["observe"]
42 }]
43 },
44 "state": {
45 "@type": ["ec:state"],
46 "type": "string",
47 "description": "Charging status (readyToCharge,

charging, disconnected)",�→
48 "readOnly": true,
49 "enum": [
50 "readyToCharge",
51 "charging",
52 "disconnected"
53 ],
54 "forms": [{
55 "href": "/properties/state",
56 "contentType": "application/json",
57 "op": ["readproperty"],
58 "ec:scopes": ["observe"]
59 }]
60 }
61 },
62 "actions": {
63 "startCharging": {
64 "@type": ["ec:startCharging"],
65 "description": "Start charging",
66 "forms": [{
67 "href": "/actions/startCharging",
68 "contentType": "application/json",
69 "op": ["invokeaction"],
70 "ec:scopes": ["control"]
71 }]
72 },
73 "stopCharging": {
74 "@type": ["ec:stopCharging"],
75 "description": "Stop charging",
76 "forms": [{
77 "href": "/actions/stopCharging",
78 "contentType": "application/json",
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79 "op": ["invokeaction"],
80 "ec:scopes": ["control"]
81 }]
82 }
83 }
84 }

B.7 Legacy inverter
TD B.7: Inverter’s TD

1 {
2 "@context": [
3 "https://www.w3.org/2019/wot/td/v1",
4 {
5 "ec": "http://www.tuwien.ac.at/autosys/leonhard-esterbau �

er/energy-community-architecture",�→
6 "sunspec": "http://www.sunspec.org"
7 }
8 ],
9 "@type": [

10 "Thing",
11 "sunspec:inverter"
12 ],
13 "title": "SunSpec Modbus inverter",
14 "description": "Inverter providing a Modbus TCP interface that

implements the SunSpec specification",�→
15 "id": "6f1d8fa6-c327-4a2a-8784-51b3da260a39",
16 "securityDefinitions": {
17 "nosec_sc": {
18 "scheme": "nosec"
19 }
20 },
21 "security": "nosec_sc",
22 "base": "modbus+tcp://10.10.0.7:502",
23 "sunspec:models": ["101"],
24 "properties": {
25 "DCPower": {
26 "@type": ["sunspec:value"],
27 "type": "int",
28 "forms": [
29 {
30 "href": "/1",
31 "op": ["readproperty"],
32 "modbus:function": "readCoil",
33 "modbus:address": 40102
34 }
35 ],
36 "sunspec:desc": "DC Power",
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37 "sunspec:label": "DC Watts",
38 "sunspec:name": "DCW",
39 "sunspec:sf": "DCW_SF",
40 "sunspec:size": 1,
41 "sunspec:type": "int16",
42 "sunspec:units": "W"
43 },
44 "DCScalingFactor": {
45 "@type": ["sunspec:value"],
46 "type": "int",
47 "forms": [
48 {
49 "href": "/1",
50 "op": ["readproperty"],
51 "modbus:function": "readCoil",
52 "modbus:address": 40103
53 }
54 ],
55 "sunspec:name": "DCW_SF",
56 "sunspec:size": 1,
57 "sunspec:type": "sunssf"
58 }
59 }
60 }

B.8 SunSpec Modbus gateway
TD B.8: SunSpec Modbus Gateway’s TD

1 {
2 "@context": [
3 "https://www.w3.org/2019/wot/td/v1",
4 {
5 "ec": "http://www.tuwien.ac.at/autosys/leonhard-esterbau �

er/energy-community-architecture"�→
6 }
7 ],
8 "@type": [
9 "Thing",

10 "ec:gateway",
11 "ec:energyDevice",
12 "ec:inverter"
13 ],
14 "title": "SunSpec inverter gateway",
15 "description": "Gateway for transforming actual SunSpec DC power

from Modbus to HTTP and performs protocol specific adjustments",�→
16 "id": "f02b05c3-a7f9-40cb-9c5a-8621a027e6e7",
17 "securityDefinitions": {
18 "bearer_sc": {
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19 "scheme": "bearer",
20 "in":"header",
21 "format": "jwt",
22 "alg": "RS256",
23 "authorization":

"https://10.10.0.8:8080/.well-known/wot-thing-description",�→
24 "ec:scopes": ["observe"]
25 }
26 },
27 "security": ["bearer_sc"],
28 "base": "https://10.10.0.10:8101",
29 "properties": {
30 "DCPower": {
31 "@type": ["ec:DCPower"],
32 "type": "number",
33 "description": "Actual DC power of the inverter in

Watts",�→
34 "readOnly": true,
35 "unit": "W",
36 "forms": [{
37 "href": "/properties/DCPower",
38 "contentType": "application/json",
39 "op": ["readproperty"],
40 "ec:scopes": ["observe"]
41 }]
42 }
43 }
44 }
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