
Self-supervised Pre-training on
LSTM and Transformer Models for

Network Intrusion Detection

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Embedded Systems

by

Jonas Ferdigg, BSc
Registration Number 01226597

to the Faculty of Electrical Engineering and Information Technology

at the TU Wien

Advisor: Univ. Prof. Dipl.-Ing. Dr.-Ing. Tanja Zseby
Assistance: Univ.Ass. Dipl.-Ing. Alexander Hartl

Vienna, 31st May, 2022

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Jonas Ferdigg, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 31. Mai 2022

iii

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich auf dem langen Weg zu
diesem Abschluss begleitet haben.

Besonders möchte ich mich bei Frau Prof. Tanja Zseby und Herrn Dipl.-Ing. Alexander
Hartl bedanken, die mich in den letzten Monaten vor dem Abschluss dieser Thesis mit
sehr viel konstruktivem Feedback und Anregungen unterstützt haben und ohne die diese
Arbeit zu diesem Zeitpunkt wohl noch längst nicht abgeschlossen wäre.

Als nächstes möchte ich mich sehr herzlich bei meinen Eltern bedanken, die mir den
nötigen finanziellen und mentalen Rückhalt gegeben haben und mich zu einem Menschen
erzogen haben, der es fertig bringt, einen Master an der TU Wien abzuschließen.

Bedanken möchte ich mich auch bei meiner Freundin, ohne die diese Arbeit wohl weit
mehr Rechtschreibfehler enthalten würde und die es mir in turbulenten Zeiten ermöglicht
hat, mich trotzdem auf den Abschluss dieser Arbeit zu konzentrieren.

Ein dankendes Wort möchte ich auch an meine Studienkollegen richten dafür, dass sie
die Freuden und manches Leiden des Studiums mit mir geteilt und mich stets motiviert
haben, ein besserer Ingenieur zu werden.

Besonders bedanken möchte ich mich auch bei all meinen Professorinnen und Professoren
sowie Tutorinnen und Tutoren der TU Wien dafür, dass sie ihr Wissen mit mir geteilt
haben und den doch oft sehr trockenen Stoff mit viel Humor etwas verdaulicher gemacht
haben.

Ein besonderer Dank gilt auch meiner WG aus der Schweglerstraße und all meinen
Freunden, die dafür gesorgt haben, dass ich mich wärend des Studiums nicht nur fachlich,
sondern auch menschlich weiterentwickelt habe und ohne die diese Arbeit schon vor
Jahren fertig geworden wäre.

v

Kurzfassung

Techniken des Machine Learnings (ML) und Deep Neural Networks (DNNs) haben in
verschiedene Disziplinen Einzug gehalten und ihre möglichen Vorteile werden für eine
Vielzahl von Anwendungen untersucht. Die Fähigkeiten moderner ML Modelle in der
Mustererkennung haben Expertensysteme oder sogar Menschen in speziellen Anwen-
dungsbereichen längst überholt. Ihre Fähigkeit, scheinbar komplexe Daten genau zu
klassifizieren, eignet sich auch für den Einsatz im Zusammenhang mit Network Intru-
sion Detection (NID). Ein häufig verwendetes Muster beim Trainieren von Neuronalen
Netzen im Bereich des Natural Language Processing (NLP) ist, ein Modell mit vielen
nicht-gelabelten Daten selbstüberwacht vorzutrainieren (to pre-train) und dann nur
noch mit einem kleinen markierten Datensatz zu verfeindern (fine-tuning). Im Zuge des
Vortrainierens kann ein Modell beauftragt werden, verhüllte Informationsteile aus den
Eingabedaten zu rekonstruieren, künftige Eingaben vorherzusagen, oder andere Fragen zu
den Eingabedaten zu stellen, deren Antwort aus den unmarkierten Daten ableitbar ist. Im
nächsten Schritt wird eine kleine Menge von gekennzeichneten Daten zur Feinabstimmung
des Modells verwendet, um die angestrebte eigentliche Aufgabe zu erfüllen. Inspiriert von
den Erfolgen von Modellen wie BERT und seinen Nachfolgern haben wir die gleichen Me-
thoden verwendet, um die Klassifizierungsgenauigkeit für Deep-Learning basierte Network
Intrusion Detection Systeme (NIDS) zu erhöhen. In unserer Forschung beantworten wir
die Frage, ob Pre-Training Paradigmen, die im NLP verwendet werden, auch im Kontext
von Deep-Learning basierten NIDS anwendbar sind. Wir haben ein Vortraining für Long
Short-Term Memory (LSTM) und transformer encoder Modellen mit einer Reihe von
selbstüberwachten Trainingsmethoden auf Basis von Autocodierung und Autoregression
durchgeführt, um die binäre Klassifizierung von Netzwerkverkehrsaufzeichnungen zu
verbessern. Nach dem Vortraining verwenden wir eine überwachte Feinabstimmung mit
einer kleinen Menge markierter Daten, um dem Modell beizubringen, wie es die Daten
in angreifende und gutartige Datenströme einteilen kann. Als Trainingsdaten haben wir
eine flow-Darstellung der NID-Datensätze CIC-IDS2017 und UNSW-NB15 mit dem flow-
Schlüssel <dstIp, srcIp, dstPort, srcPort, protocolId> verwendet. Unsere flows bestehen
aus einer Folge von Tensoren, die paket- und flussspezifische Merkmale enthalten. Unsere
Ergebnisse zeigen, dass die Klassifizierungsgenauigkeit durch Vortraining verbessert wer-
den kann, aber nur in bestimmten Instanzen. Weitere Untersuchungen sind erforderlich,
um zu sehen, ob unsere Ergebnisse verallgemeinert werden können.

vii

Abstract

Machine learning techniques and Deep Neural Networks (DNNs) have found their way
into various disciplines. Their possible benefits are explored for a diverse range of
applications. The pattern matching capabilities of modern day machine learning models
have long surpassed expert systems or even humans in narrow applications. Their ability
to accurately classify seemingly complex data makes them well suited to also be used
in the context of Network Intrusion Detection (NID). While supervised learning is still
most effective when training machine learning models, its feasibility is often stifled by
a lack of expensive labeled data. For this, among other reasons, researchers at the
forefront of machine learning development, especially in the field of Natural Language
Processing (NLP), have began to pre-train their models on large amounts of unlabeled
data to overcome the scarcity of labeled data. A commonly used pattern e.g. used
to train Google’s Bidirectional Encoder Representations from Transformers (BERT)
model, is to pre-train large scale machine learning models in a self-supervised manner.
This is done by tasking the model to either reconstruct omitted parts of information
from the input data, predicting future input or asking other questions about the input
data to which the answer is derivable from the unlabeled data. Only a small amount
of labeled data is then used to fine-tune the model to perform the target downstream
task. Inspired by the achievements of models like BERT and its successors, we used
the same methods to increase classification accuracy for deep learning based Network
Intrusion Detection System (NIDS). In our research we try to answer the question whether
pre-training paradigms used in NLP can improve classification accuracy for deep learning
based NIDS. We performed pre-training on Long Short-Term Memory (LSTM) and
transformer encoder models with a set of devised auto encoding and auto regression
based self-supervised training methods to improve binary classification of network traffic
records. After pre-training we use supervised fine-tuning with a small amount of labeled
data to teach the model how to classify the data into attack and benign flows. As training
data we used flow representations of the CIC-IDS2017 and UNSW-NB15 NID datasets
with the flow key <dstIp, srcIp, dstPort, srcPort, protocolId>. Our flows consist of
a sequence of tensors containing packet and flow specific features. Our results show
that classification accuracy can be improved through pre-training, but only in specific
instances. Further inquiry is needed to see if our results can be generalized.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Approach . 3
1.4 Contribution . 3
1.5 Structure . 3

2 Background 5
2.1 Notation . 5
2.2 Machine Learning . 5
2.3 Artificial Neural Networks . 6
2.4 Stochastic Gradient Descent . 7
2.5 Backpropagation . 7
2.6 Recurrent Neural Networks . 8
2.7 Long Short-Term Memory . 9
2.8 Attention and Transformers . 10
2.9 Self-supervised Learning . 12
2.10 Auto-Encoder . 13
2.11 Pre-Training and Fine-Tuning . 13
2.12 Performance Metrics . 14

3 State of the art 17
3.1 Machine Learning for Network Intrusion Detection 17
3.2 Self-supervised Pre-training for LSTMs and Transformer Networks . . . 21

4 Methodology 29
4.1 Datasets . 29
4.2 Data Representation . 33

xi

4.3 Machine Learning Models . 34
4.4 Framework and Training . 37
4.5 Metrics and Validation . 38

5 Experiments 39
5.1 Self-supervised Pre-training for Long Short-Term Memory Networks . 40
5.2 Self-supervised Pre-training for Transformer Encoder Networks 49

6 Results 55
6.1 Long Short-Term Memory Model . 56
6.2 Transformer Model . 69
6.3 Explainability . 72

7 Discussion 85

8 Conclusion 93

A Appendix 96
A.1 Transformer per Category Results . 96
A.2 Training and Validation Loss . 102
A.3 Partial Dependency Plots . 102
A.4 Neuron Plots . 207
A.5 Decision Trees . 228

List of Figures 255

List of Tables 285

Acronyms 289

Bibliography 293

CHAPTER 1
Introduction

1.1 Motivation
With the progressing digitalization of more and more aspects of society, cyber security
continues to be a relevant issue as no system will ever be fully secure. Preventing possible
cyber attacks by developing more robust systems is one way to mitigate the issue; the
other is preventing already existing faults from being exploited as not every vulnerability
can be patched easily like it is the case with e.g. DoS and brute force attacks. To stop
such attacks it is necessary to identify them within the vast flow of benign network traffic
which gives rise to the need of Intrusion Detection Systems (IDSs). State-of-the-art
IDSs apply two methods to detect occurring attacks: Signature-based detection and
statistical anomaly-based detection. Signature-based detection looks for known patterns
or signatures within packets and data streams to identify incoming attacks. Statistical
anomaly-based detection focuses on differentiating between normal and abnormal behavior
in the system and raises an alert if the latter is identified. The problem with signature-
based detection is that unknown attacks are ignored and anomaly-based detection is still
not sufficiently accurate and prone to false positives. A machine learning based approach
has the potential to combine both and overcome the downsides each one has individually.
As Machine Learning (ML) is a rapidly developing field, its steady improvement fueled
the advance of Neural Network (NN) based IDSs, which start to show promising results
[SYZ20], [MDES18], [PKBB19]. NNs however are still mostly trained in a supervised
fashion, namely by providing labeled examples of cyber attacks for the NN to learn
from. This poses the problem that only known attacks can be identified, but new attacks
that are sufficiently similar to old attacks can also be identified, which is not the case
with mere signature-based detection. As with every form of supervised training on NNs,
labeled data is harder to come by while unlabeled data is often abundant and certainly
so for network traffic data. For this reason, self-supervised training/pre-training is seeing
increased use in the realm of ML as unlabeled data can be used to boost the performance

1

1. Introduction

without need for expensive labeled data. One of the most noteworthy examples of the
effectiveness of self-supervised pre-training for neural networks in the realm of NLP is
BERT [DCLT18] developed by Jacob Devlin et alteri from Google AI Language. BERT
is based on the state-of-the-art transformer architecture [VSP+17a] and uses a series
of proxy tasks like word masking and next sentence prediction to teach the network
about syntax and grammar in a self-supervised fashion, i.e. without using labeled data.
The pre-trained network can then be fine-tuned for more specific tasks like question
answering or text classification. Analogously, it would be highly beneficial if these or
similar pre-training mechanisms could be used to bolster performance of ML based IDSs
by improving the classification of network flows, at the most basic level, into cyber attack
vs. no cyber attack.

As the technologies mentioned above are fairly recent (Transformers Dec 2017, BERT
May 2019) and the design space for solutions in the context of ML for cyber security is
substantial, there has not yet been sufficient inquiry into the possibilities of these new
methods when applied to the problems posed by intrusion detection and cyber attack
classification. NN performance also improves with the steadily increasing capabilities of
modern Graphics Processing Units (GPUs) which makes this a promising concept that
can be improved upon by future more powerful hardware.

1.2 Research Questions

In this thesis we inspect if the flow classification performance of LSTMs and transformer
encoder networks can be improved with self-supervised pre-training in a scenario where
only little labeled and a lot more unlabeled data is available. In our experiments we
are looking at scenarios where the ratio of labeled to unlabeled data is 1:8, 1:80 and an
extreme case where the ratio is over 1:100, depending on the dataset. For performance
we are mainly looking at the accuracy of classification, but we are also keeping track of
other commonly used evaluation metrics like the F1 score, recall, precision, etc. The
problem to solve is a binary classification problem for which the model is to group flows
into attack and benign classes.

• R1: Can self-supervised pre-training improve the flow classification capabilities of
an LSTM model?

• R2: Can self-supervised pre-training improve the flow classification capabilities of
a transformer encoder model?

• R3: Which pre-training tasks improve accuracy and which do not?

• R4: If improvement is possible, how can it be explained?

2

1.3. Approach

1.3 Approach
To answer these questions we conduct a series of experiments. In these experiments
we devised different proxy tasks for the models to solve in a self-supervised fashion.
Solving these proxy tasks serves as pre-training for the network during which it learns
the structure of the data and to form abstract representations within its latent space.
After pre-training, we fine-tune the network with very little labeled training data to teach
it how to classify the flows into benign and attack categories. These experiments show
if pre-training can improve accuracy of the model when compared to only training it
with the same amount of labeled data but without pre-training. They also show which
pre-training methods are more and which are less beneficial for classification accuracy.
While we are only training the models for binary classification, we are also tracking the
specific accuracy for all of the different types of attacks occurring in the datasets. We
then take a closer look at how and why classification behavior differs for the pre-trained
models and what the reasons might be for cases where pre-training did not improve
performance.

1.4 Contribution
• Implementation of a pre-trainable LSTM model and training suite.

• Implementation of a pre-trainable transformer encoder model and training suite.

• Inquiry into the benefits of pre-training for sequence2sequence models in the context
of NIDSs.

• Development of new pre-training methods for LSTMs and transformer encoder
models in the context of NIDSs.

• Close inspection of the used datasets.

1.5 Structure
After this introduction section, we provide some background information and define
terminology, acronyms and mathematical notation used throughout the thesis. Sub-
sequently we provide an overview of the current state-of-the-art of NNs research for
sequence2sequence modeling, pre-training for such models and ML supported NIDSs
in general in the State of the Art section 3. Reasoning behind our methodology, data
representation and other decisions made can be found in the dedicated Methodology
section 4. A detailed description of the conducted experiments and the parameters used
can be found in the section Experiments 5 with the goal to make them as reproducible
as possible. A structured comprehension of experiments conducted is provided in the
section Results 6. Finally, in the sections Discussion 7 and Conclusion 8 we discuss
successes and failures and draw conclusions from our findings, including considerations
for future research.

3

CHAPTER 2
Background

Artificial Neural Networks (ANNs) have shown great improvements over the last years
due to increasing computational power, more sophisticated models and smarter training
algorithms [KSCP21], [ASR21]. ML and ANNs have long found their way into many
commercial applications and many scientific fields have successfully applied this relatively
new method of data processing to further their own research [JEP+21], [SGSG19],
[SYS+20]. It was only logical that researchers and companies have also started to look
into the possible benefits this emerging technology could have for Network Security
applications [MDES18], [PKBB19]. ANNs are especially suited for IDSs due to their
capability to classify data with high accuracy based on seemingly complex patterns. To
harness the power of ML for the purpose of Network Security, we made use of existing
methods and models, which we will summarize in this section.

2.1 Notation
Throughout the thesis, sequences are denoted x(n) while an element in a vector or matrix
would be denoted in subscript e.g. xi or Wi,j respectively, with matrices always written
in capital letters. Superscript letters (except for T , which is the transpose operator and
will never be used as label) without parenthesis are part of the variable name, e.g. W Q

is the query matrix in the attention function. Deviations from this notation are stated
explicitly.

2.2 Machine Learning
Machine learning describes the study of computer algorithms which are trained or fitted to
optimize a given criterion without the need to specifically program them. The algorithm
constructs a model based on input-output pairs which describe how the model should
behave. To ensure that the algorithm is learning patterns and structures of problems

5

2. Background

and not only memorizing input-output data pairs, the training process is often split into
two phases: Training phase and validation phase. In the training phase, the algorithm
processes the data and produces a best guess for the output. In the validation phase,
the network processes unseen data, i.e. data not used during training, to ensure that
the model did not just learn the training data by heart. Popular traditional machine
learning algorithms and models used for classification are k-Nearest Neighbors (KNN),
Support Vector Machine (SVM), Naive Bayes or Decision Tree Classifier (DTC)

2.3 Artificial Neural Networks
ANNs are a type of Machine Learning algorithm used for classification and prediction.
Named after their resemblance to neurons in a brain, ANNs are systems comprised of
connected nodes called artificial neurons. Analogous to synapses, nodes communicate
via connections called edges by sending "signals" to other nodes. Signals are represented
as scalar real numbers. The output signal from a sending node is multiplied by the
weight of the edge the signal is "traveling" on. Each node calculates its output signal
by applying a non-linear function to the sum of its input signals. Signals travel forward
through the network from the first to the last layer, but usually not within layers. The
resulting computations can be summarized as a combination of function compositions and
matrix multiplications g(x) := fL(W LfL−1(W L−1...f1(W 1x)...)) where L is the number
of layers, W l, l ∈ {1, ..., L} the weights connecting nodes of the prior layer to layer l and
f l the activation function of the layer. W l can also be written as series (wl

jk) where wl
jk

is the weight between the k-th node in layer l − 1 and the j-th node in layer l.

There are various types of ANNs like Recurrent Neural Networks (RNNs) or Convolutional
Neural Networks (CNNs) which have many derivations themselves but they all operate on
the before stated principal of signals traveling through the network, which get transformed
at each node by a differentiable non-linear function. The most popular non-linear function
at this time is the Rectified Linear Unit (ReLU) function. Without training, an ANN
performs an input transformation that depends on the initialization values of its weights,
often called parameters.

During training, a metric of difference, often called loss, is then calculated between the
output of the model and the ground truth, i.e. the expected output. The function used to
calculate the loss is called a loss function or cost function and must be differentiable. The
network is trained to perform a desired transformation by adjusting its weights/parameters
through virtue of backpropagation and Stochastic Gradient Descent (SGD). The network
produces output ŷ at the last layer after processing input x. A scalar cost/loss value is
calculated by the loss function C(ŷ, y) as a measure of difference between the networks
output ŷ and the target output y. For classification tasks, the loss function is usually
Cross Entropy Loss (CEL), and for regression Squared Error Loss (SEL) or L1 loss is
typically used. Backpropagation 2.5 computes the gradient of the loss function, which
is then used by a gradient method like SGD to iteratively update all weights in order
to minimize (or maximize) C(ŷ, y). As we only aim to distinguish between attack and

6

2.4. Stochastic Gradient Descent

no-attack flows, and therefore have only two classes, we are using binary CEL with mean
reduction which is defined as:

C(ŷ, y) = − 1
N

N

n

[yn · log(ŷn) + (1 − yn) · log(1 − ŷn)] (2.1)

With ŷ and y being predicted, and target data and N the batch size.

Other methods to train an ANN are e.g. the Conjugate gradient method or the Levenberg-
Marquardt algorithm, but SGD is by far the most popular.

2.4 Stochastic Gradient Descent
Stoachstic Gradient Descent is by far the most popular algorithm used for training
modern neural networks. It is an iterative first-order optimization algorithm aimed to
iteratively improve an objective function by updating its parameters towards its lowest
point, i.e. the local maximum (or minimum). For non-stochastic gradient descent it
must be possible to calculate an exact gradient. In the case of machine learning, the
function to minimize is the sum (or mean) of the loss of all records in the dataset. The
function, which is to be optimized, would then be Q(θ) = N

i C(g(xi), yi, θ), where N is
the number of records in the dataset. Input xi and output data yi are seen as constants
and θ represents all weights in the model. The length of the resulting gradient vector
∇θQ(θ) would therefore be the cardinality of theta |θ| which is the number of parameters
used in the model. Function f(θ) is then a function that accumulates the loss for every
record in the dataset. To put this into perspective: the datasets we use contain around
2 million records and the LSTM model contains 5 million weights. One can see that
it is not possible for computers at this date to calculate an exact gradient. Therefore,
a stochastic approach is used to estimate a gradient ∇θQ̂(θ). The parameters of the
objective function are then iteratively updated by a small amount towards the steepest
slope, i.e. the gradient:

θ = θ − η∇θQ(θ) (2.2)

η is called the learning rate and is an important hyper parameter in machine learning,
which must be tuned to the model and data at hand.

2.5 Backpropagation
Backpropagation is a type of differentiation algorithm used to calculate the gradient
of an arbitrary function with relatively low computational effort. During training, an
input x is processed and information is flowing forward through the network, producing
output ŷ = g(x) 2.3, hence this is called a forward-pass or forward-propagation. The

7

2. Background

model output culminates into a single scalar cost after applying a loss function C(ŷ, y),
which can be interpreted as a measure of distance between the model output ŷ and
the target output y. For ML the backpropagation algorithm is used to calculate the
gradient of the loss function ∇θC(θ) with respect to every weight wl

kj in the model for
the record that was processed. For this purpose, the weights w are deemed parameters
of the forward-propagation and inputs xi are deemed constant with the effect of g(w)
now only being dependent on w. The chain rule for differentiation is applied multiple
times to calculate the partial derivative ∂C(g(w),y)

∂wl
jk

for every weight between every layer
in the network, which ultimately yields the gradient of C(g(w), y) with respect to w.

2.6 Recurrent Neural Networks
The broader concept behind all RNNs is a cyclic connection which enables the RNN to
update its state based on past states and current input data [YSHZ19]. Typically, an
RNN consists of standard tanh nodes with corresponding weights. There are different
kinds of RNNs like continuous-time and discrete-time or finite impulse and infinite
impulse RNNs. Here we will only look at discrete-time, finite impulse RNNs as we will
only be using those. This type of network, e.g. the Elman network [Elm90], is capable of
processing sequences of variable length by compressing the information from the whole
sequence into the hidden layer or hidden state. The model produces one output token for
each input token, so the transformation is sequence2sequence where input and output
sequences are of equal length. One input sequence consists of a sequence of real valued
vectors x(t) = x(1), x(2), ..., x(T) where T is the sequence length. From this input sequence,
an output sequence of real valued vectors ŷ(t) = ŷ(1), ŷ(2), ..., ŷ(T) is produced. In the
case of the Elman network, two parameter matrices are involved in the calculation of the
output:

h(t) = σh(W hx(t) + Uhh(t−1) + bh) (2.3)

ŷ(t) = σŷ(W ŷh(t) + bŷ) (2.4)

With W h, W ŷ and Uh being the parameter matrices, and bh and bŷ being a parameter
vectors. σh and σŷ constitute (potentially different) activation functions. To train an
RNN, pairs of input and target sequences (x(t), y(t)) are provided, from which, analogous
to the training of ANNs in general2.3, a differentiable loss function C(ŷ(t), y(t)) can
be calculated which can again be minimized by applying backpropagation and SGD.
In theory, RNNs can process data sequences of arbitrary length, but the longer the
sequence, the deeper the network gets, i.e. the longer the gradient paths. This leads to
complications when relevant tokens are further apart in the sequence as the RNN is not
capable of handling such "long-term dependencies" [YSHZ19]. Long gradient paths in
RNNs might also cause the gradient to become either very small or very large, which

8

2.7. Long Short-Term Memory

results in the known vanishing gradient or exploding gradient problems correspondingly
and cause training to either stagnate or diverge. The LSTM improves upon RNNs by
making the gradient more stable and allowing long-term dependencies to be considered
in the learning process.

Figure 2.1: Depiction of an unrolled RNN with x(t) being the input sequence, ŷ(t) the
output sequence, and h(t) the internal state of the RNN after each processing stage.

2.7 Long Short-Term Memory
Introduced by Hochreiter and Schmidhuber in 1997 [HS97], the LSTM model mitigates
the vanishing and exploding gradient problem by replacing the tanh nodes in the hidden
layer of a conventional RNN with memory cells as seen in 2.2. A memory cell is comprised
of input node C̃, hidden state h, cell state C, input gate i, forget gate f , and output gate
o.

In contrast to an ordinary RNN, an LSTM has two memory states: the hidden state h(t)

and the cell state C(t). Three gates enable the cell to control the flow of information
and its effects on the cell state. For this purpose, gates in an LSTM consist of a point-
wise multiplication with a vector that holds values between 0 and 1. The three sigma
activations seen in 2.2 produce the gate vectors. The input gate i(t) controls whether the
memory cell is updated. The forget gate f (t) controls how much of the old state is to be
forgotten. The output gate o(t) controls whether the current cell state is made visible.
The weight matrices W i, W j and W o decide how information is processed by the cell and
are learned parameters. The cell state is updated by addition with the vector C̄ after
multiplication with the input gate vector i(t). The repeated addition of a tanh activation
distributes gradients and vanishing/exploding gradients are mitigated.

i(t) = σ(W i[h(t−1), x(t)] + bi) (2.5)

f (t) = σ(W f [h(t−1), x(t)] + bf) (2.6)

9

2. Background

Figure 2.2: One LSTM memory cell [Lip15]

o(t) = σ(W o[h(t−1), x(t)] + bo) (2.7)

C̄ = tanh(W C [h(t−1), xt] + bC) (2.8)

2.8 Attention and Transformers
In 2017, Vaswani et al. published a paper with the ominous title "Attention is All you
Need" [VSP+17b], referring to the already known attention mechanism which is used to
model dependencies within a data sequence over longer distances. The authors proposed
the transformer model consisting entirely of self attention mechanisms to model sequences
and therefore diverge from the recurrent architectures of RNNs and LSTMs. Attention is
a mechanism to capture contextual relations between tokens in a sequence, e.g. words

10

2.8. Attention and Transformers

in a sentence or packets in a flow. For every token in the input sequence, an attention
vector is generated, which represents how relevant other tokens in the input sequence
are to the token in question. While attention can be implemented in different ways, the
authors chose the scaled dot-product attention defined as

Attention(Q, K, V) = softmax(QKT

√
dk

)V (2.9)

Figure 2.3: Self attention layer of Transformer by [VSP+17b]

"An attention function can be described as mapping a query and a set of key-value pairs
to an output" [VSP+17b]. Q, K and V are matrices composed of query, key and value
vectors for every token with respect to every other token in the sequence. Vaswani et
al. proposed the use of Multi-Head Attention mechanism, suggesting the use of multiple
independent attention heads which are generated by linear projection of the original Q, K
and V matrices by different learned matrices W Q

i , W K
i and W V

i for i = 1, ..., h where h
is the number of desired attention heads. The attention vectors of the different attention
heads are again concatenated and projected by matrix W Z again resulting in a single
combined attention vector instead of h vectors. This results in the formulation

headi = Attention(QW Q
i , KW K

i , V W V
i), i = 1, ..., h (2.10)

MultiHead(Q, K, V) = Concat(head1, ..., headh)W O (2.11)

depicted in figure 2.3. The Multi-Head Attention block from 2.3 is used in the transformer
encoder block 2.4 together with a fully-connected feed forward network. After each sub-
layer (Multi-Head Attention, Feed Forward) layer, normalization is applied and a residual

11

2. Background

connection originating from the input to the sub-layer is added as can again be seen in
figure 2.4. The output of each sub-layer is hence defined as LayerNorm(x+Sublayer(x))
where Sublayer is either a Feed Forward or a Multi-Head Attention function. While
there is more to the transformer model, for our experiments we are only using the parts
described here.

Figure 2.4: Transformer encoder model as proposed by [VSP+17b]

2.9 Self-supervised Learning
Supervised learning is most effective when teaching a NN the desired projection, but
it is limited by the amount of labeled data that is available. For many use cases, not
enough is available and the cost of creating new labeled data is too high to be feasible. In
those cases, self-supervised learning or self-supervised pre-training might be an efficient
addition or alternative. For supervised learning, the target data provides the supervision.
For self-supervised learning the data itself provides the supervision, meaning the loss
C(x̂, x) is calculated between the reconstructed input x̂ and the actual input x. In general
this means that some part of an input tensor or an input series is withheld and the model
is tasked with reconstructing the unknown information. So instead of being trained for
the task, we want it to perform, it is first trained on a proxy task which serves no purpose

12

2.10. Auto-Encoder

on its own but forces the model to learn a semantic representation, i.e. abstract features
of the data which will help solve the actual task.

2.10 Auto-Encoder
The auto-encoder is a popular tool for self-supervised learning. The model is composed
of an encoder and a decoder stage as can be seen in figure 2.5. The encoder compresses
the input data, artificially causing loss of information. In the next step the decoder tries
to reconstruct the compressed data as accurately as possible. The loss C(x̂, x) is then
calculated as the difference between the original input and the reconstructed one. The
aim of this seemingly nonsensical task is to force the model to form an abstract, more
compact representation of the input data in its restricted latent space. To compress data
with minimal loss of relevant information, the network has to find patterns in the input
and ideally learns some semantic or context of the data.

Figure 2.5: Visualization of an auto-encoder. The input is encoded and subsequently
decoded yielding and approximate reconstruction of the image [BKG20]

After the self-supervised training of the auto-encoder is finished, the decoder stage
is removed and subsequently the output of the encoder is used as input tensor for a
classification or prediction model or the next layer of auto-encoder.

2.11 Pre-Training and Fine-Tuning
Pre-training with subsequent fine-tuning describes a methodology of training a NN in two
separate phases. E.g. Google’s BERT for NLP is pre-trained in a self-supervised fashion
with vast amounts of text (3.3 billion words) [DCLT18]. Self-supervised in this context
means that the input, or parts of it, are also used as the training target. Depending on
the task of the model, i.e. translation, question answering, text generation, the model’s
parameters are then fine-tuned with labeled data to fit the given task. Fine-tuning then
involves updating the weights of a pre-trained model by training it on a task specific
labeled dataset, which is usually much smaller than the dataset used for pre-training
[BMR+20]. Up to the release date of this paper, the pre-training - fine-tuning approach
is still among the most effective approaches available when it comes to training large
scale (>1 billion parameters) NLP models, but researchers have since aimed to decrease

13

2. Background

the need for labeled data even further by only presenting the model with very few, or
even just one, example of a correctly executed downstream task [BMR+20] instead of
fine-tuning on labeled data.

2.12 Performance Metrics
To measure the effectiveness of different IDSs and machine learning models in general,
a commonly used set of performance metrics has been devised to promote comparison
between solutions. For binary classification (attack vs. benign), the basic metrics are

• True Positive (TP): Number of samples correctly classified as attack

• True Negative (TN): Number of samples correctly classified as benign

• False Positive (FP): Number of samples falsely classified as attack

• False Negative (FN): Number of samples falsely classified as benign

From these basic metrics, a variety of semantically more expressive metrics can be derived,
which describe different performance aspects of the classification task like overall accuracy
or the rate of falsely raised alarms [Pow08]. Commonly used metrics are

• Accuracy is defined as the ration of correctly classified samples to total samples.

Accuracy = TP + TN

TP + TN + FP + FN
(2.12)

• Precision is defined as the ration of true positive samples to predicted positive
samples and represents the confidence of attack detection.

Precision = TP

TP + FP
(2.13)

• Recall or Detection Rate (DR) is defined as the ration of true positive samples
to total positive samples. The metric describes the probability that an attack will
be detected by the IDS.

Recall = DR = TP

TP + FN
(2.14)

• Specificity is defined as the ration of true negative samples to total negative
samples. The metric describes the probability that a benign flow will be categorized
as such by the IDS.

Specificity = TN

TN + FP
(2.15)

14

2.12. Performance Metrics

• False Negative Rate (FNR) or Missed Alarm Rate (MAR) is defined as
the ratio of false negative samples to total positive samples and describes how many
attacks go undetected by the IDS.

FNR = MAR = FN

TP + FN
(2.16)

• False Positive Rate (FPR) or False Alarm Rate (FAR) is defined as the
ratio of false positive samples to predicted positive samples and describes how often
the IDS falsely raises an alarm.

FPR = FAR = FP

TP + FP
(2.17)

• F1 Measure or F Score is calculated from the precision and recall of the test
and is an alternative description of the accuracy of a statistical analysis.

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(2.18)

15

CHAPTER 3
State of the art

As the topic of this thesis is rather specific and novel in the context if NID, comparable
research is hard to find. Overall, the thesis works on the two subjects of self-supervised
pre-training for NNs and for Deep Learning (DL) supported NIDS. Here we are looking at
state-of-the-art research of both aspects individually. Special focus lays on achievements
in machine learning based NLP due to the similar structure in input data and semantic.

3.1 Machine Learning for Network Intrusion Detection

Machine learning techniques have shown to be competitive to signature based expert
systems when it comes to NID. Hence there have been many attempts over the past years
to implement various types of machine learning algorithms with considerable success.
The design space for such systems is vast, as Hongyu Liu and Bo Lang show in their 2019
paper [LL19] "Machine Learning and Deep Learning Methods for Intrusion Detection
Systems: A Survey" where they enumerate the possible approaches to a machine learning
based IDS and discuss their advantages and disadvantages. The authors classify proposed
IDSs to date based on data sources and detection methods used to create a comprehensive
taxonomy system. When using machine learning, further classification entails the type of
machine learning methods used for implementing it. Based on their classification, our
approach would be categorized as follows: the data source is a network based IDS with
flow based detection using deep learning methods as depicted in figure 3.1. As can be
see in figure 3.2, the detection method is machine learning based anomaly detection and
the machine learning model is a deep learning model based on LSTM and transformer
networks, but using both unsupervised and supervised learning methods. As such, our
model is not even completely classifiable by the taxonomy proposed by Hongyu Liu et al..

17

3. State of the art

Figure 3.1: Our design decisions (blue) and alternatives (green) based on the data source
taxonomy proposed by Hongyu Liu et al. [LL19].

Figure 3.2: Our design decisions (blue) and alternatives (green) based on the detection
method taxonomy proposed by Hongyu Liu et al. [LL19].

Congruent with our assumptions, Hongyu Liu and Bo Lang deem a flow based detection
to be a suitable way to structuring the raw network data, as it represents the whole
network environment and retains a lot of contextual information, but with the obvious
drawback that package payload is being ignored. This leads to poor detection rates
for User to Root (U2R) and Remote to Local (R2L) attacks like SQL injection or XSS
attacks, which our results confirm as can be seen in section 6.

Although the design space for ML based approaches is much greater, we are focusing on
DL based approaches, which have shown to be superior to shallow networks in general.
A good initial overview of state-of-the-art DL techniques applied to NID can be found in
the 2020 paper "Fog-Based Attack Detection Framework for Internet of Things Using
Deep Learning" [SYZ20] by Ahmed Samy et al. Although the paper focuses on IDSs for
resource and energy constrained Internet of Things (IoT) networks, the authors provides
a comprehensive overview of the performance of different up-to-date DL models applied
to various NIDS data sets. The goal of their research is to implement DL based IDSs in
a resource constrained IoT network by outsourcing the processing to fog nodes, which
are capable of storing large amounts of data with low latency and are placed at the edge
of the IoT network. In the context of their research, they implemented six state of the
art DL models:

• Deep Neural Network (DNN) with an input layer of 1024 cells, five hidden
layers with 512 cells each using ReLU activation functions and one output layer
with one cell using a sigmoid activation function.

18

3.1. Machine Learning for Network Intrusion Detection

• Long Short-Term Memory (LSTM) with an input layer of 128 cells, three
hidden layers with 256 cells each and one output layer with one cell using sigmoid
activation

• Bidirectional Long Short-Term Memory (Bi-LSTM) with an input layer of
128 cells, three hidden layers with 128 cells each and one output layer with one cell
using sigmoid activation

• Convolutional Neural Network Long Short-Term Memory (CNN-LSTM)
with three convolutional layers with 64 filters, each using ReLU activation functions,
three pooling layers, one LSTM layer with 256 cells and one output layer with one
cell using sigmoid activation

• Gated Recurrent Unit (GRU) with an input layer of 64 cells, three hidden
layers with 64 cells each and one output layer with one cell using sigmoid activation

• Convolutional Neural Network (CNN) with three convolutional layers with
64 filters each using ReLU activation functions, three pooling layers and one output
layer with one cell using sigmoid activation

For multi-class classification the output layer is expanded to match the number of classes
in the data set. Ahmed Samy et al. tested their implementations on five different data
sets:

• UNSW-NB15 [MS15]

• CICIDS-2017 [SLG18]

• RPL-NIDS17 [VR19]

• N_BaIoT [MBM+18]

• NSL-KDD [TBLG09]

They used a feature representation of the data comprised of 80 network traffic features
extracted with CICFLOWMETER. The best results in training were achieved with a
learning rate of 0.01, a batch size of 64 using the Adam optimization algorithm. They
used accuracy, precision, recall, F1-measure, FAR, DR as metrics corresponding with
the definitions in section 2.12 to assess the performance of the different models. This
research was especially relevant for u, because the authors used similar models and the
same datasets, so a direct comparison with our results can be made. An overview of the
relevant results for binary classifications can be found in table 3.1 and for multi-class
classification in table 3.2.

As shown by the results and also stated in the paper, LSTM networks outperform other
deep learning models consistently in attack detection and accuracy overall. This gives

19

3. State of the art

DataSet Name DL Model Accuracy Precision Recall F1-Measure FAR DR

UNSW-NB15
Dataset

DNN 99.67% 99.79% 99.87% 99.83% 6.23% 99.87%
LSTM 99.96% 99.96% 99.97% 99.98% 4.02% 99.97%

Bi-LSTM 99.67% 99.82% 99.83% 99.83% 5.35% 99.83%
GRU 99.58% 99.79% 99.77% 99.78% 6.21% 99.77%
CNN 99.66% 99.86% 99.78% 99.82% 4.24% 99.78%

CNN-LSTM 98.95% 99.96% 98.97% 99.46% 1.2% 98.97%

CIC-IDS2017
Dataset

DNN 98.95% 98.57% 99.73% 99.15% 2.29% 99.73%
LSTM 99.37% 99.28% 99.67% 99.49% 1.15% 99.67%

Bi-LSTM 99.35% 99.22% 99.77% 99.48% 1.25% 99.77%
GRU 99.35% 99.21% 99.73% 99.47% 1.26% 99.73%
CNN 99.08% 98.61% 99.92% 99.26% 2.25% 99.92%

CNN-LSTM 98.88% 98.41% 99.8% 99.1% 2.57% 99.8%

Table 3.1: Evaluation metrics of DL models with the five data sets in binary classification.
[SYZ20]

DNN LSTM Bi-LSTM
Attacks P R F1-M P R F1-M P R F1-M
Benign 98.41% 99.71% 99.06% 99.48% 99.15% 99.31% 99.04% 99.24% 99.14%
DDoS 99.18% 57.77% 73.01% 98.89% 98.94% 98.91% 99.49% 97.16% 98.31%
FTP-Patator 84.38% 56.41% 67.62% 91.05% 99.14% 94.93% 93.84% 98.94% 96.32%
Port-Scan 47.66% 74.78% 58.21% 99.42% 99.91% 99.66% 99.21% 99.97% 99.59%
SSH-Patator 39.31% 29.27% 33.56% 100% 70.68% 82.82% 93.73% 79.03% 85.75%
Brute-Force 30.23% 4.12% 7.26% 44.74% 84.65% 58.54% 44.81% 85.77% 58.86%
SQL-Injection 0% 0% 0% 11.11% 2.56% 4.28% 0% 0% 0%

GRU CNN CNN-LSTM
Attacks P R F1-M P R F1-M P R F1-M
Benign 99.81% 98.86% 99.33% 95.78% 99.94% 97.82% 74.5% 99.89% 85.35%
DDoS 99.06% 98.94% 99 99.96% 98.68% 99.32% 99.77% 98.93% 99.35%
FTP-Patator 89.13% 99.79% 94.16% 99.76% 84.58% 91.54% 96.42% 49.2% 65.16%
Port-Scan 99.79% 99.93% 99.86% 99.96% 91.28% 85.42% 91% 0.57% 1.13%
SSH-Patator 74.04% 98.76% 84.63% 98.57% 50.64% 66.91% 99.56% 50.98% 67.43%
Brute-Force 43.8% 84.65% 57.73% 26.14% 3.16% 5.64% 0% 0% 0%
SQL-Injection 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 3.2: Evaluation metrics of DL models with the five data sets in binary classification.
P denotes precision, R recall and F1-M the F1 measure. [SYZ20]

us confidence that our decision of working with LSTM networks was the right call as it
adds to the real world relevance of our work. Additionally, we use a transformer encoder
model for classification which was not included in the comparison done by Ahmed Samy
et al. Furthermore, the models in their paper were trained exclusively in a supervised
manner with at least 70% of the data available in each dataset which differs from our
approach of using very little labeled data and relying on self-supervised pre-training.

Compared to other machine learning models there is much less research published on

20

3.2. Self-supervised Pre-training for LSTMs and Transformer Networks

Model Precision (%) Recall (%) F-Score (%) FPR (%)

Bi-LSTM 88.86 91.85 90.33 0.15
CRF 48.09 15.41 23.34 0.22
ANID 97.29 94.40 95.28 0.03

Table 3.3: Model performance comparison for CIC-IDS2017 dataset [TICE19]

transformer or attention based networks for IDS. In one of the few papers published on
the topic by Mangxuan Tan et al., the authors constructed their own attention based
model, similar to the classic transformer model [TICE19], which they coined "Attention
for Network Intrusion Detection (ANID)". The model includes a Feed Forward (FF), a
Scaled Dot-Product Attention (SDA) and a Scaled Dot-Product Self-Attention (SDSA)
component which are the same as in the traditional transformer model by Vaswani et
al. but combined differently. Like us, the authors used the CIC-IDS2017 dataset for
their experiments but use a fundamentally different approach to data pre-processing and
feature selection. For pre-processing, the authors constructed a sequenced of feature
vectors by dividing the raw pcap traces into time slots of 0.5 seconds and labeling them as
1 (attack class) if an attack occurred in that time frame and 0 (benign class) otherwise. In
the resulting pre-processed dataset, each record contains a sequence of 10 sequential time
slots. As feature representation, they use a selection of statistical features aggregated
over each time slot resulting in 19 features [TICE19]. Furthermore, they removed 95% of
attack slots of each attack type to simulate a real world scenario where attacks are much
rarer than they are in the dataset. They compared the performance of their model to a
conventional Bi-LSTM model and a Conditional Random Fields (CLF). Their results
can be seen in table 3.3.

Even though the authors used the same dataset as we did for our research, comparability
with our models is limited due to the different approach to dataset pre-processing and
feature selection. The paper still shows that attention based models can achieve a
performance improvement over LSTM models in certain cases which gives us reason to
look further into them.

3.2 Self-supervised Pre-training for LSTMs and
Transformer Networks

When it comes to machine learning, rapid progress has been made over the past years.
Frameworks such as PyTorch [ea16] and Tensorflow [Tea15] have made the technology
accessible to people without a background in computer science. More than 11 thousand
papers in the category "Computer Science - Artificial Intelligence (cs.AI)" have been
published on arXiv.org [Gin91] within the last year. With steadily increasing processing
capabilities, vast amounts of data can be used to train ever growing NNs within an
acceptable timeframe. E.g. the largest variant of Google’s BERT algorithm has 340

21

3. State of the art

million parameters and was trained on a dataset of 3.3 billion words [DCLT18]. Today,
the limiting factor is often the amount of labeled data available to train a network. Hence,
the topic of unsupervised or self-supervised training is explored by researchers of different
fields in hope of enhancing their models without the need for more labeled data. Special
attention was given to papers in the NLP sector as the methods we use are successfully
deployed there.

In the following section we are looking at some of the related papers on the topic of
self-supervised or unsupervised training.

3.2.1 BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Google’s BERT [DCLT18] by Jacob Devlin et al. effectively uses a deep bidirectional
transformer model, often referred to as transformer encoder, for various NLP tasks,
both on sentence and word level, like question answering, natural language inference,
sentiment analysis, paraphrasing and others. At the time it was published, it produced
the highest recorded GLUE [WSM+18] score of 80.5% advancing it by 7.7% over the
former top scorer. It uses the WordPiece [WSC+16] embedding, resulting in a 30,000
token vocabulary. It was pre-trained in a fully unsupervised fashion on all sentences in
the English Wikipedia (2,5 billion words) and the BooksCorpus [ZKZ+15] containing 800
million words. The pre-training consisted of two proxy tasks: Next Sentence Prediction
(NSP) and Masked LM (MLM). For NSP, two sections of text, A and B, separated by
a [SEP] token are fed into the model at the same time. 50% of the time, B is the next
section that follows A in the original text. 50% of the time it is a random sentence
from the corpus. The model is tasked with predicting if sentence B follows sentence
A. For MLM, 15% of the input tokens are hidden from the model by replacing with a
[MASK] tokens. The model is tasked with reconstructing the masked tokens. Both of
those pre-training tasks are performed at the same time. The pre-trained model is then
fine-tuned to perform a specific down-stream task.

This two stage approach, pre-training and fine-tuning, produces a reusable pre-trained
model which can then be fine-tuned relatively swiftly (Jacob Devlin et al. state that
it takes at most an hour of fine-tuning on a GPU to replicate all results in the paper)
to solve various NLP tasks. For this thesis, we use the same approach to pre-train our
models in an unsupervised fashion and then fine-tune them with a small amount of
labeled data to teach them the down-stream task of classifying network flows. We also
use the pre-training task of masking parts of the input data for the model to reconstruct
for both our LSTM and Transformer networks. The NSP task is not feasible in our
situation, as network flows don’t have an order other than the time of occurrence, and
therefore flows do not have a semantically identifiable successor or predecessor.

22

3.2. Self-supervised Pre-training for LSTMs and Transformer Networks

3.2.2 Unsupervised Learning of Video Representations using LSTMs

The use of unsupervised learning is not limited to transformer networks. As early as
2016, before the rise of transformers, Nitish Srivastava et al. showed in their paper "Un-
supervised Learning of Video Representations using LSTMs" [SMS15] that unsupervised
learning on LSTMs can have a positive impact on subsequent classification tasks. The
authors use video data to train their models in frame prediction and auto-encoding as
the proxy tasks with the goal of improving accuracy in human action recognition, based
on evaluation with the UCF-101 and HMDB-51 datasets. They experimented with two
types of video representations: patches of image pixels and high-level representations
("percepts") of video frames extracted by a convolutional net. They used 13,320 videos
with an average length of 6.2 seconds belonging to 101 different action categories.

The auto-encoding property of the model is achieved by concatenating two LSTMs, with
one performing the function of encoder and one of decoder. The goal is to produce
a sequence2sequence model capable of reconstructing the input sequence after being
forced to compress the input data. The input sequence is first processed by the encoder
LSTM to produce an output of constant length (in their case, the hidden size of the
encoder LSTM). The resulting vector is then fed into the decoder which is tasked with
reconstructing the input sequence in reverse order. Here, the decoder can be configured
to either be conditioned or unconditioned. A conditioned decoder uses the output of
the last LSTM stage as input for the next stage. An unconditioned decoder uses the
corresponding input token (ground truth) as input for the next stage. The latter practice
is also called teacher forcing.

The second unsupervised task to train the LSTM consists of predicting multiple future
video frames. For this, again two consecutive LSTM networks are used: an encoder and
a predictor LSTM. The first network is fed the frame representation of part of a short
video and again produces a fixed sized output vector to be used by the predictor LSTM.
The second LSTM is then tasked with producing the remaining frames. Same as with
the auto-encoder, the predictor LSTM can either be conditioned or unconditioned.

The authors then propose a composite model as can be seen in figure 3.3 where both
proxy tasks, reconstructing the input and predicting the future, are combined to produce
a single model.

The pre-trained models are then fine-tuned for their classification task on the mentioned
training datasets. With the pre-trained and fine-tuned composite model, the authors
achieved an absolute increase of 1.3% accuracy for both the UCF-101 and the HMDB-51
datasets over a conventional LSTM classifier as can be seen in table 3.4.

For our thesis, we used the same auto-encoder and composite model for pre-training as
explained in sections 5.1.5 and 5.1.6.

23

3. State of the art

Figure 3.3: Composite model for input reconstruction and future prediction [SMS15]

Model UCF-101
RGB

UCF-101
1-frame flow

HMDB-51
RGB

Single Frame 72.2 72.2 40.1
LSTM classifier 74.5 74.3 42.8
Composite LSTM Model + fine-tuning 75.8 74.9 44.1

Table 3.4: Summary of results on Action Recognition [SMS15]

3.2.3 Unsupervised Pre-training of a Deep LSTM-based Stacked
Auto-Encoder for Multivariate Time Series Forecasting
Problems

In their 2019 paper [SK19b], Alaa Sagheer et al. explore the benefits of unsupervised
pre-training using stacked LSTM auto-encoders with subsequent supervised fine-tuning.
Their goal was to improve the prediction capabilities for Multivariat Time Series (MTS)
problems. In their previous paper [SK19a], the authors showed the effectiveness of Deep

24

3.2. Self-supervised Pre-training for LSTMs and Transformer Networks

Figure 3.4: Data flow in a three layered LSTM network.

Long Short-Term Memory (DLSTM) based models for MTS prediction tasks. In their
2019 paper, they showed the improvements resulting from pre-training when compared to
an initial random initialization of weights when working with DLSTM models. Compared
to shallow LSTM networks, DLSTM networks contain multiple layers of LSTM cells
stacked on each other. Information travels the network from left to right and from bottom
to top as is depicted in figure 3.4.

For pre-training the network, the authors use a LSTM-based Stacked Auto-Encoder
(LSTM-SAE) model. In contrast to a conventional auto-encoder like described in 2.10,
a stacked auto-encoder model uses multiple encoder and decoder layers as can be seen
in figure 3.5. The different encoder layers are trained individually in a multi phased
training procedure: train the first auto-encoder layer like a conventional LSTM-based
Auto-Encoder (LSTM-AE) with the target being the original input data. Cut the decoder
part of the first LSTM-AE. When training the second LSTM-AE, the input is encoded
by both the encoder of the first and second LSTM-AE block and then decoded only by
the decoder of the second LSTM-AE. The target data for training the second LSTM-AE
is again the original input, and not the reconstructed input of the first LSTM-AE. The

25

3. State of the art

Figure 3.5: Layer-wise pre-training of LSTM-SAE model. [SK19b]

training process is depicted in figure 3.5. This process is then repeated for arbitrarily
many LSTM-AE layers. The authors tried both one and two stacked layers of LSTM-AE.
The trained encoder blocks are then used to initialize a multi layered DLSTM.

To complete the training phase, the parameters of the pre-trained DLSTM are then
fine-tuned in a supervised fashion. This is done by adding an output layer which produces
values of the dimension of labels of the training set used and of the variables to be
predicted. In the case of the authors, the output layer was a single neuron to predict a
single variable. For supervised fine-tuning and validation, they used two datasets:

1. The capital bike sharing dataset

2. The PM2.5 concentration in the air of CHINA dataset

For the first dataset, the model tried to predict how many bikes will be rented on a
particular day based on parameters like Season, Holiday, Weekday, Working day etc. For
the second dataset, the task was to predict PM2.5 concentrations in the air for various
Chinese cities based on parameters like Dew Point, Temperature, Pressure, Combined
Wind Direction etc.

As metric of performance, the authors used Root Mean Square Error (RMSE), Mean
Absolute Error (MAE) and Symmetric Mean Absolute Percentage Error (SMAPE) (lower
is better) which all describe the difference between predicted value and observed value.
The results of evaluation with both data sets can be seen in tables 3.5 and 3.6.

The results in tables 3.5 and 3.6 show that unsupervised pre-training improved final
accuracy and led to better and faster convergence.

For this thesis, we used only a single LSTM-AE network, but with three layers of LSTM
cells making it a DLSTM for both encoder and decoder.

26

3.2. Self-supervised Pre-training for LSTMs and Transformer Networks

Model No. of
hidden layer Dropout lag batch RMSE MAE SMAPE

DLSTM 1 0.4 20 146 52.062 32.468 12.088
DLSTM 2 0.3 25 219 49.811 31.524 12.183
LSTM-SAE 1 0.1 30 219 49.389 32.192 13.878
LSTM-SAE 2 0.1 30 73 46.927 30.041 11.646

Table 3.5: The results of DLSTM and LSTM-SAE using data set 1 [SK19b]

Model No. of
hidden layer Dropout lag batch RMSE MAE SMAPE

DLSTM 1 0.2 30 60 23.993 12.124 10.919
DLSTM 2 0.2 30 73 23.750 12.452 12.181
LSTM-SAE 1 0.1 30 219 23.907 12.509 11.052
LSTM-SAE 2 0.3 25 146 24.041 12.060 9.864

Table 3.6: The results of DLSTM and LSTM-SAE using data set 2 [SK19b]

27

CHAPTER 4
Methodology

As summarized by the survey paper [LL19] of Hongyu Liu and Bo Lang in section 3.1,
the design space for ML based NIDS is vast and can be hard to navigate at times. Hence,
careful consideration of data representation, data pre-processing, ML models, model
parameters and training hyperparameters is necessary. The goal of this thesis is to
examine the benefit of pre-training for already established DL models in the context of
NIDS, hence we wanted to start from the most effective DL models available. Derived
from state-of-the-art research, this seems to be a uni-directional multi-layer DLSTM in
the context of NID. Most of the state-of-the-art research on DL, however, and especially
on self-supervised/unsupervised and transfer learning, is done in the context of NLP
[DCLT18], [PNI+18], [VSP+17a], [BMR+20]. Network communication is similar to
natural language in the sense that it follows a certain set of rules, a grammar so to say,
and each token i.e a word or packet conveys some semantic meaning when in the context
of a sentence or flow. Other researchers have made similar observations [RATS18]. Based
on the results achieved in NLP with attention based models, we deemed the transformer
encoder to be a potentially powerful new tool for network traffic classification.

4.1 Datasets
We used the two NIDS datasets UNSW-NB15 [MS15] and CIC-IDS2017 [SLG18].

The UNSW-NB15 dataset [MS15], created by Nour Moustafa et al. from the School of
Engineering and Information Technology, University of New South Wales at the Australian
Defence Force Academy, Australia, was released as an update for the formerly frequently
used but deprecated [MS15] KDD dataset family. It was designed to reflect most known
low footprint attacks at time of publication. The records are bidrectional flows extracted
from the raw traffic data and grouped by the commonly used <srcIP, dstIP, srcPort,
dstPort, protocol> tuple. Each flow is described by 47 derived or measured features,
e.g. total duration, bytes transmitted, the mean of the flow packet size transmitted by

29

4. Methodology

destination IP etc. After preprocessing, where some incomplete records are removed,
the dataset contains a total of 2.06 million records, of which 1.99 million are normal
transactions labeled as benign and 0.072 million attack records meaning 96.64% of data
is classified as benign and 3.36% as attack. Attack records can be further divided into
nine attack categories as listed in table 4.1.

Class No. Records % w.r.t.
benign class % % w.r.t.

majority atk. class
% w.r.t.

total instances

0 Analysis 534 0.03% 1.82% 0.03%
1 Backdoors 397 0.02% 1.36% 0.02%
2 DoS 3972 0.20% 13.57% 0.19%
3 Exploits 29281 1.47% 100.00% 1.42%
4 Fuzzers 20848 1.05% 71.20% 1.01%
5 Generic 4301 0.22% 14.69% 0.21%
6 Benign 1991349 100.00% 6800.82% 96.46%
7 Reconnaissance 11971 0.60% 40.88% 0.58%
8 Shellcode 1546 0.08% 5.28% 0.07%
9 Worms 185 0.01% 0.63% 0.01%

Table 4.1: UNSW-NB15 dataset record distribution by attack category [MS15].

The dataset was generated from a synthetic environment comprised of 3 networks and 45
distinct IP addresses using the IXIA PerfectStorm (now keysight PerfectStorm) tool.

The CIC-IDS2017 dataset [SLG18], created by Iman Sharafaldin et. al from Canadian
Institute for Cybersecurity (CIC), University of New Brunswick (UNB), Canada, consti-
tutes another updated representation of known attack types at the time of publication.
Compared to the UNSW-NB15 dataset, it contains records of more modern cyber attacks
like Heartbleed, HULK DoS, but leaves out worm attacks among others. It contains a
total of 2.31 million records of which 1.73 million are labeled as benign and 0.58 million
are attack records. In other words, 74.72% of the dataset are benign records and 25.28%
attack records. Attack records are further classified as shown in table 4.2.

30

4.1. Datasets

Class No. Records % w.r.t.
benign classs

% w.r.t.
majority atk. class

% w.r.t.
total instances

0 Botnet ARES 755 0.04% 0.32% 0.03%
1 FTP-Patator 254 0.01% 0.11% 0.01%
2 SSH-Patator 2,556 0.15% 1.09% 0.11%
3 DDoS LOIT 94,327 5.46% 40.39% 4.08%
4 DoS GoldenEye 7,451 0.43% 3.19% 0.32%
5 DoS Hulk 233,521 13.53% 100.00% 10.11%
6 DoS Slowhttptest 4,209 0.24% 1.80% 0.18%
7 DoS slowloris 3,886 0.23% 1.66% 0.17%
8 Heartbleed 2 0.00% 0.00% 0.00%
9 Infiltration 76,237 4.42% 32.65% 3.30%
10 Benign 1,726,226 100.00% 739.22% 74.72%
11 PortScan - Firewall off 159,648 9.25% 68.37% 6.91%
12 PortScan - Firewall on 381 0.02% 0.16% 0.02%
13 SQL Injection 13 0.00% 0.01% 0.00%
14 XSS WebAttack 678 0.04% 0.29% 0.03%

Table 4.2: CIC-IDS2017 dataset record distribution by attack category. [PB18].

In contrast to the UNSW-NB15 network simulation environment, the network topology
consists of two networks: a highly secured victim network with firewall, router, switches
and most common operating systems, and a separated attack network containing a set of
PCs with public IPs and running Windows 10 and Kali Linux.

To reduce variance in results and to keep comparability high, we use the same random
seed for all experiments and use stratified sampling when we divide the data sets into
smaller chunks for pre-training, training and validation to assure the each attack category
is represented in the subset proportionally to the whole dataset. This is especially
important if we use very small subsets (10 flows per attack category) for fine-tuning as
described in section 5.

4.1.1 Subsets
Pre-training and training in our experiments is conducted on subsets of the original
dataset, i.e. 80% for pre-training, 10%, 1% and even smaller splits for fine-tuning. The
split of the datasets is performed by stratified sampling so the ratio of each attack class
stays roughly the same in the different splits as in the original dataset.

In hope of making any possible positive results more salient, we devised an extreme
scenario where we limit the labeled data available for fine-tuning to a bare minimum of

31

4. Methodology

10 records at most (for some categories, the dataset contains less than 10 samples) per
attack category present in the original dataset. We then include an amount of benign
records to keep the ratio of attack/benign flows of the original dataset. This results in
the two subsets elaborated in tables 4.3 and 4.4 labeled CIC17_10 and UNSW15_10
for the corresponding datasets.

Class No. Records

1 Botnet ARES 10
2 FTP-Patator 10
3 SSH-Patator 10
4 DDoS LOIT 10
5 DoS GoldenEye 10
6 DoS Hulk 10
7 DoS Slowhttptest 10
8 DoS slowloris 10
9 Heartbleed 1
10 Infiltration 10
11 Benign 391
12 PortScan - Firewall off 10
13 PortScan - Firewall on 10
14 SQL Injection 1
15 XSS WebAttack 10

Table 4.3: Subset CIC17_10 devised for CIC-IDS2017 to include a minimal amount of
records amounting to approximately 0.023% of the total dataset.

Class No. Records

1 Analysis 10
2 Backdoors 10
3 DoS 10
4 Exploits 10
5 Fuzzers 10
6 Generic 10
7 Benign 2543
8 Reconnaissance 10
9 Shellcode 10
10 Worms 10

Table 4.4: Subset UNSW15_10 devised for UNSW-NB15 to include a minimal amount
of records amounting to approximately 0.11% of the total dataset.

32

4.2. Data Representation

4.2 Data Representation
Network traffic data can be viewed from a multitude of perspectives ranging from
aggregate statistical data over different time-frames [MDES18] to looking at feature
representations of single packets. These can be viewed in the context of flows. Flows are
loosely defined as sequences of packets that share a certain property [HBFZ19]. In our
case, we define flows as sequences of packets that share source and destination IP address,
source and destination port, and the network protocol used. This creates the quintuple
<srcIP, dstIP, srcPort, dstPort, protocol> as the key over which individual packets are
aggregated to flows, which is a very common approach [WZA06], [MS15], [MZIV18]. We
chose a flow representation since this approach has shown good results frequently, is easy
to obtain, requires no domain knowledge and is feasible for encrypted traffic [MZIV18].
We decided not to include any packet payload features except the packet length in bytes,
as in a real world scenario most of the traffic would be encrypted anyway. This leads to
poor classification performance for U2R and R2L [TBLG09] like SQL injection, XSS and
other payload based attacks, which is also shown by our results as can be seen in section
6. Commonly, flows are represented as a single feature vector in the dataset, containing
aggregated statistical data of the completed flow like the mean of the flow packet size
transmitted by the source IP, source to destination packet count, bits per second or total
duration of the transmission. However, we use a packet sequence representation instead
of an aggregate flow tensor due to its similarity with natural language as mentioned
before, which enables us to apply state-of-the-art methods and sequence2sequence models
from DL based NLP.

The sending direction pktDirection of the packet is a binary feature where 0 is the
direction of the first packet in the flow and 1 is the complementary direction.

We used the data pre-processing from the paper [HBFZ19] by Tanja Zseby et al. as it fit
the requirements for our experiments and was easily modifiable. Starting from captured
network traffic in the form of PCAP files, we used the tool go-flows [oT19] to extract the
specified features and used the same python script as was used for the experiments in
the paper [HBFZ19] to assign labels to the extracted flows.

To keep gradient paths shorter and to improve training stability, packet sequences are
truncated to be at most 100 packets long. As last step of pre-processing, features are
standardized to be within a range of [−1, 1] to make gradient descent converge quicker.
Standardization is performed as following:

x̂ji = xji − µi

σi
; i = 1, .., n; j = 1, ..., N (4.1)

X̂j = [x̂j1 , ..., x̂jn]T ; j = 1, ..., N (4.2)

Here n denotes the number of features in a feature vector, N is the number of packets
(not flows) in the dataset. xji is the ith feature value in the jth packet in the dataset. µi

33

4. Methodology

Name Type Constant
over flow Description

1 srcPort Int yes Source port number
2 dstPort Int yes Destination port number
3 protocol Int yes IP protocol identifier
4 pktLength Int no Packet length in bytes
5 pktIat Int no Interarrival Time (IAT)
6 pktDirection Bool no Sending direction of the packet
7 synFlag Bool no TCP SYN Flag
8 finFlag Bool no TCP FIN Flag
9 rstPort Bool no TCP RST Flag
10 pshFlag Bool no TCP PSH Flag
11 ackFlag Bool no TCP ACK Flag
12 urgFlag Bool no TCP URG Flag
13 eceFlag Bool no TCP ECE Flag
14 cwrFlag Bool no TCP CWR Flag
15 nsFlag Bool no TCP NS Flag

Table 4.5: Packet features [PB18].

and σi denote the mean and standard deviation of feature i calculated from all packets
in the dataset. X̂j is therefore the standardized feature vector of packet j in the dataset.

4.3 Machine Learning Models

To inspect the potential benefits of self-supervised pre-training for ML-based intrusion
detection we chose to take a look at LSTM and networks as they are suited to process
sequences of variable length and have shown promising results in the past in the domains of
IDS and/or NLP [DCLT18], [TICE19]. Both types of networks are generally susceptible to
improvements through self-supervised pre-training as prior research has shown [DCLT18]
[SMS15] [SK19b]. Whether pre-training improves performance in the context of NIDS
remains to be shown and is subject of this thesis.

For our LSTM network we chose a three layer DLSTM with a hidden size of 512. While
a larger network might be slightly more effective, this configuration proved to be swiftly
trainable while also producing results close to those achieved by other researchers using

34

4.3. Machine Learning Models

Figure 4.1: All steps performed in dataset preprocessing to yield pre-training, training
and validation splits.

LSTM models applied to the same datasets [SYZ20]. A depiction of the data flow and
layers of a three layered LSTM can be seen in figure 3.4.

Since our main focus is on comparisons between different training methods applied to
the same model, it is not necessary to achieve optimal results as this would unnecessarily
increase the training time needed until the model converges. For training the LSTM
model, each flow is considered one sample and each packet is one token. The tokens are
processed by the model in chronological order, meaning packets with an earlier timestamp
will be processed first. The timestamp however is not part of the feature representation
but is considered for data pre-processing to order packets within flows.

Independent of the context, LSTM models have shown to be sensible to initialization
of their weights and hidden state. This can be seen as a drawback but also as an
opportunity to increase performance or decrease learning time. While there are many
ways to initialize the weights of an LSTM network, the most common ones are random
initialization, orthogonal initialization or some form of transfer learning which in our
case is self-supervised pre-training.

For pre-training, the output layer is a linear layer with 15 nodes, equal to the number of
features, and no activation function. This is necessary as for pre-training the output of the
model is a sequence of feature vectors representing network packets, e.g. when calculating
the identity function, the model is tasked with producing the input packet sequence, or
parts of it, as the model output. For binary classification, the output layer is replaced
with a linear layer with a single node because only one probability value is needed to
distinguish between attack and no-attack. The node has no activation function on its

35

4. Methodology

own because we use the PyTorch implementation torch.nn.BCEWithLogitsLoss of Binary
Cross Entropy (BCE) which applies a sigmoid activation function as first step of the
calculation. This results in a sequence2sequence model which generates output sequences
equal to the length of the input sequence. For supervised fine-tuning, the target sequence
is one of length n equal to the input sequence length where every element is the target
label of the binary classification, e.g. if the sequence is classified as an attack, the target
label would be 1 and the target sequence for supervised training would be y(t) = (1, ..., 1)
of length n. For validation, however, it would only require a sequence2scalar model so
only the output of the last stage is looked at. At that point the whole input sequence
was processed by the model and information in a (uni-directional) LSTM only flows in
one direction. The output of this stage should therefore be most accurate.

Figure 4.2: Depiction of the LSTM model.

The model as proposed by Vaswani et. al [VSP+17a] and its derivative score high on the
leader boards of NLP benchmarks like GLUE [WSM+18] or SQuAD [RJL18] and are still
considered state-of-the-art in many regards. Following the example of BERT, we only
used the encoder part of the network since the decoder does not provide any benefits
for classification problems. We tuned the model parameters to be 10 layers, each layer
consisting of a 3-headed Multi-Head Attention block and a feed-forward network with a
forward expansion of 2, meaning an internal representation size double to the number of
features per packet. A depiction of the model can seen in figure 4.3, where N denotes the
number of layers. For pre-training, the output layer is a linear layer with 15 nodes, equal
to the number of features, and no activation function is used. For binary classification,
the output layer is replaced with a linear layer with a single node and no activation
function because the objective function for binary classification BCE loss operates on
logits. This again results in a sequence2sequence model which produces output sequences
of length equal to the input sequence. For binary classification, we only need a single
value, but the transformer encoder model produces a sequence of values. In contrast
to the LSTM model, information in the transformer does not aggregate at a specific
stage and therefore we cannot identify an output token which has more information
or is more likely to be accurate than others. Google solved this problem for BERT by
prepending a classification token [CLS] to every input sequence and the model learns to
aggregate information regarding classification at the corresponding output token. We

36

4.4. Framework and Training

tried this approach with no success, perhaps due to insufficient training. We opted for
an unweighted average pooling layer over all output tokens to get from a sequence of
variable length to a single value and this approach also works as can be seen later in the
results section 6.2.

Figure 4.3: Depiction of the transformer encoder model used for classification.

4.4 Framework and Training
To conduct our experiments, we used PyTorch [ea16] to implement and train our proposed
models. To save labor and to keep results comparable, we used the standard implementa-
tions torch.nn.LSTM and torch.nn.Encoder. Training is conducted by a standard training
loop going through forward and backpropagation, calculating losses and updating weights
for each batch. Noteworthy is the use of gradient clipping to a maximum of 1 and the

37

4. Methodology

use of a learning rate scheduler which decreases the learning rate by a factor of 0.1 if
mean batch loss is plateauing during training. As optimization criterion for pre-training
we use L1 loss, i.e. MAE (nn.L1Loss). For supervised training, we use BCE loss with
mean reduction on logits directly (nn.BCEWithLogitsLoss). For updating weights, we use
the Adam optimizer [KB14] which is an extension to the commonly used SGD method.
Similar to AdaGrad [Rud16] and RMSProp [Rud16], it maintains separate learning rates
for each individual weight instead of using the same learning rate for every weight like
in classic SGD. Compared to other optimizers, Adam was shown to be more effective
in improving training efficiency [KB14] and is appropriate for noisy or sparse gradients
which can occur when working with RNNs in general. We also tried to apply [?] which
did not seem to have an effect on learning. We developed and implemented a framework
in Python to automate the experiments, generate statistics, plots and metrics.

The models were trained on two NVidia GeForce RTX 2070 Super GPUs with a combined
performance of 19.4 Teraflops per second for 32bit float (FP32) values. For some instances,
i.e. for pre-training with the proxy tasks MASK on the transformer model and for pre-
training with the proxy task IDENTITY and PREDICT, we use 16bit float (FP16) values
during training together with the torch.cuda.amp.GradScaler. This significantly decreases
training time and GPU load but introduced numerical instability in some cases and for
most cases we went back to training with FP32 values. Training was performed with
a batch size of 128 for the LSTM model and 1024 for the transformer encoder model.
Further increasing batch size did not improve final accuracy nor did it decrease the time
in which training converges.

4.5 Metrics and Validation
All tables, graphs and plots are automatically generated by a results script which trains
the models with parameters set in a configuration file and generates the necessary data
for all subsequent analysis methods, i.e. performance metrics, per attack class statistics,
Partial Dependence Plot (PDP), neuron activation plots and DTC. It subsequently
generates latex tables and graphical elements which are included in this thesis. During
supervised training, the model is validated every 6, 2 and 1 epoch(s) for trainings with a
total of 600, 200 and 100 training epochs respectively. The metrics described in section
2.12 are generated and stored for every validated epoch. The results in the following
sections and all plots are generated with the model from the epoch with the highest
recorded accuracy score. Hence, the tables in the results chapter 6 also include the
number of the training epoch after which the numbers were generated and the training
time needed on the setup described in the previous section 4.4 to reach that epoch.
All results were generated and validated with the same random seed for the Python,
PyTorch and Numpy Random Number Generator (RNG). Due to this, pre-training and
validation splits contain exactly the same records for all experiments which maximizes
comparability.

38

CHAPTER 5
Experiments

As a premise for our research we trained the LSTM and the transformer network in a
solely supervised fashion to get a baseline later results can be compared to. Supervised
training was performed for 50, 50 and 200 epochs each for 90%, 10% and 1% respectively
of available data on both data-sets and a constant 10% of data for validation which
has not been used for training. Training with the specialized subsets CIC17_10 and
UNSW15_10 4.1.1 was performed for 600 epochs. A full overview of all experiments to
establish a comparison baseline can be seen in table 5.1. We specifically wanted to know
how the networks would perform in a scenario where very little labeled training data was
available as this would best describe a scenario where large amounts of unlabeled data are
available for self-supervised pre-training and only a small amount of labeled data for fine
tuning. To pre-train a NN, the network is given a task that is not necessarily connected
to the final purpose of the network, often referred to as a proxy task. By solving the
proxy task the network attempts to find structure in the data and should learn to form
a more abstract representation of the data within its latent space. E.g. with BERT
pre-training is performed by masking a certain percentage of input tokens and having
the NN reconstruct the missing words and additionally letting the network guess whether
one sentence precedes an other in a text. We defined our own proxy tasks for pre-training
the networks as described in the following sections. Pre-training is performed with 80%
of available data for 10 epochs in all instances. Supervised fine-tuning is performed with
10%, 1% and with even smaller subsets as described in the previous section 4.1.1.
The assumption is that the less the model can rely on information acquired through
supervised training, the more it has to rely on information acquired during self-supervised
pre-training. Overviews of all conducted experiments can be found in tables 5.1, 5.3 and
5.4. Experiments are numbered so they can be referenced in later sections. Experiments
in table 5.1, where the model is not pre-trained, are referenced again in table 5.3.
As pre-training method we devised a list of proxy tasks which should challenge the model
to build an abstract representation of the data within its hidden space or at least learn

39

5. Experiments

Model Dataset Batch size Subset Training % Training Eps.
1.1.1 LSTM CIC-IDS2017 128 - 90 50
2.1.1 LSTM CIC-IDS2017 128 - 10 50
2.2.1 LSTM CIC-IDS2017 128 - 1 200
2.3.1 LSTM CIC-IDS2017 128 CIC17_10 - 600
1.2.1 LSTM UNSW-NB15 128 - 90 50
2.4.1 LSTM UNSW-NB15 128 - 10 50
2.5.1 LSTM UNSW-NB15 128 - 1 200
2.6.1 LSTM UNSW-NB15 128 CIC17_10 - 600
1.3.1 Transformer CIC-IDS2017 1024 - 90 50
3.1.1 Transformer CIC-IDS2017 1024 - 10 50
3.2.1 Transformer CIC-IDS2017 1024 - 1 200
3.3.1 Transformer CIC-IDS2017 1024 UNSW15_10 - 600
1.4.1 Transformer UNSW-NB15 1024 - 90 50
3.4.1 Transformer UNSW-NB15 1024 - 10 50
3.5.1 Transformer UNSW-NB15 1024 - 1 200
1.6.1 Transformer UNSW-NB15 1024 UNSW15_10 - 600

Table 5.1: List of baseline training runs used for comparison with results from pre-trained
models.

which features are more important than others and correct weights accordingly. A list of
all proxy tasks can be seen in table 5.2. Each of them will be explained in detail in the
sections below.

5.1 Self-supervised Pre-training for Long Short-Term
Memory Networks

For pre-training the LSTM, we devised six different proxy tasks for the model to solve
in a self-supervised fashion: predicting the next packet in the flow, predicting masked
features of randomly chosen packets and predicting randomly masked packets, the identity
function, a sequence2sequence auto-encoder and a composite task comprised of part
auto-encoding and part prediction. The weights of each LSTM layer are initialized with
a uniform random distribution U(−√

k,
√

k) where k = 1
hidden_size . Because we assume

that in some cases, i.e. for some sequences, no reasonable prediction can be made, we
do not want the model to react too strongly to those outliers. Hence, the MAE is
used to determine the divergence between prediction and target data instead of Mean
Squared Error (MSE). Translating to PyTorch, this means we used L1Loss with mean
reduction as the loss function for pre-training. After some initial trials we set the training

40

5.1. Self-supervised Pre-training for Long Short-Term Memory Networks

Section(s) Label Name Description

5.1.1 IDENTITY Identity Function Reconstruct exact input
feature vector at each stage

5.1.2 PREDICT Predict Packet Predict the next packet at
each stage of the LSTM

5.1.3, 5.2.3 MASK Mask Packets Reconstruct masked packets
in the sequence

5.1.4, 5.2.1 OBSCURE Obscure Features Reconstruct obscured features

5.1.5, 5.2.2 AUTO Auto-Encoder Encode and decode input
with minimal loss

5.1.6 COMPOSITE Composite Task Combination of prediction
and auto-encoding

Table 5.2: Devised proxy tasks for pre-training of DL models.

hyper-parameters for both supervised and self-supervised training to an initial learning
rate of 10−3 and a batch size of 128. Over the training process, the learning rate will be
adjusted by Adam so the model is somewhat robust to changes on the initial learning
rate. For every proxy task, the model has been trained with the different parameters in
table 5.3 to establish comparable results.

5.1.1 Identity Function (IDENTITY)
The simplest form of a proxy-task for pre-training is having the model learn the identity
function. In practice this means that input sequence x(t) and target sequence y(t) are the
same, i.e. x(t) = y(t) with the same sequence length. The model learns to convey the
information through the network at each time step. For this task, the model does not
need to derive any meaningful hidden representation of the data, but as our experiments
show, it still moves the weights of the model into a favorable direction in some instances
when compared to the case where the model was not pre-trained, i.e. where weights are
initialized randomly with a uniform distribution.

5.1.2 Predict Packet (PREDICT)
For this proxy task, the model has to predict the next packet in the flow. This is also
called autogregression and it assumes autocorrelation between the current state of the
model, i.e. the encoded input sequence up to this point, and future inputs. We can
see that the synF lag, ackF lag the pktDirection and also to some extend pktIat and
pktLength should be predictable in many instances since they either follow a certain

41

5. Experiments

Dataset Subset Training % Training Eps. Proxy Task Pretr. % Pretr. Eps.
2.1.1 CIC-IDS2017 - 10 50 NONE 0 0
2.1.2 CIC-IDS2017 - 10 50 PREDICT 80 10
2.1.3 CIC-IDS2017 - 10 50 OBSCURE 80 10
2.1.4 CIC-IDS2017 - 10 50 AUTO 80 10
2.1.5 CIC-IDS2017 - 10 50 IDENTITY 80 10
2.1.6 CIC-IDS2017 - 10 50 COMPOSITE 80 10
2.2.1 CIC-IDS2017 - 1 200 NONE 0 0
2.2.2 CIC-IDS2017 - 1 200 PREDICT 80 10
2.2.3 CIC-IDS2017 - 1 200 OBSCURE 80 10
2.2.4 CIC-IDS2017 - 1 200 AUTO 80 10
2.2.5 CIC-IDS2017 - 1 200 IDENTITY 80 10
2.2.6 CIC-IDS2017 - 1 200 COMPOSITE 80 10
2.3.1 CIC-IDS2017 CIC17_10 - 600 NONE 0 0
2.3.2 CIC-IDS2017 CIC17_10 - 600 PREDICT 80 10
2.3.3 CIC-IDS2017 CIC17_10 - 600 OBSCURE 80 10
2.3.4 CIC-IDS2017 CIC17_10 - 600 AUTO 80 10
2.3.5 CIC-IDS2017 CIC17_10 - 600 IDENTITY 80 10
2.3.6 CIC-IDS2017 CIC17_10 - 600 COMPOSITE 80 10
2.4.1 UNSW-NB15 - 10 50 NONE 0 0
2.4.2 UNSW-NB15 - 10 50 PREDICT 80 10
2.4.3 UNSW-NB15 - 10 50 OBSCURE 80 10
2.4.5 UNSW-NB15 - 10 50 AUTO 80 10
2.4.6 UNSW-NB15 - 10 50 IDENTITY 80 10
2.4.7 UNSW-NB15 - 10 50 COMPOSITE 80 10
2.5.1 UNSW-NB15 - 1 200 NONE 0 0
2.5.2 UNSW-NB15 - 1 200 PREDICT 80 10
2.5.3 UNSW-NB15 - 1 200 OBSCURE 80 10
2.5.4 UNSW-NB15 - 1 200 AUTO 80 10
2.5.5 UNSW-NB15 - 1 200 IDENTITY 80 10
2.5.6 UNSW-NB15 - 1 200 COMPOSITE 80 10
2.6.1 UNSW-NB15 UNSW15_10 - 600 NONE 0 0
2.6.2 UNSW-NB15 UNSW15_10 - 600 PREDICT 80 10
2.6.3 UNSW-NB15 UNSW15_10 - 600 OBSCURE 80 10
2.6.4 UNSW-NB15 UNSW15_10 - 600 AUTO 80 10
2.6.5 UNSW-NB15 UNSW15_10 - 600 IDENTITY 80 10
2.6.6 UNSW-NB15 UNSW15_10 - 600 COMPOSITE 80 10

Table 5.3: Training and pre-training configurations for LSTM model with different proxy
tasks.

pattern over the course of the flow or are expected to remain within a small deviation
range. We started by predicting only the last packet in each flow but then moved to
predicting all packets in a flow except the first. This means having a sequence2sequence
model where the inputs are all tokens in one flow with length n except the last, because
it has no successor: x(t) = x(1), x(2), ..., x(n−1). The target data are all tokens in the same
flow except the first, because it has no predecessor: y(t) = x(t+1) : t = 1, .., n − 1. LSTMs
process data in sequential order, so at each time step the model only has information of
packets in the past and is to predict what the next packet in the flow will be. This results
in two comparable tensors y(t) and the model output sequence x̂(t) = x̂(2), x̂(3), ..., x̂(n)

of equal length n − 1 between which a differentiable loss can be calculated. This way,
a lot of information is conveyed to the network when compared to only predicting the

42

5.1. Self-supervised Pre-training for Long Short-Term Memory Networks

Figure 5.1: Depiction of data flow, input and output of the model during pre-training on
the identity function proxy task (ID).

last packet in a flow. At first glance, this looks similar to the identity function above.
However, the key difference is that the token which is to be predicted is not yet available
as an input token to the model, meaning it has to derive the features by other means
than conveying the requested input token to the output. The loss is calculated as the
MAE (L1Loss with mean reduction) between the predicted logits and the target data
sequences. A depiction of the proxy task can be seen in figure 5.2.

5.1.3 Mask Packets (MASK)
Similar to the pre-training in BERT, a random token in the input sequence is masked with
a value of -1, i.e. the packet token is replaced with a feature vector xmask = [−1, ..., −1]T
containing −1 for each element and the model is to reconstruct the masked packet. Again,
MAE is used as the loss function. Unlike BERT, we don’t only look at the masked tokens
when calculating the loss, but compare every feature of every packet, also the non-masked
ones, which adds an auto-encoding property to the pre-training. We found this to have
more beneficial effect on the results than only looking at the masked packets. This is
possibly due to the model having to retain information to solve two different tasks, an
approach also used to pre-train Google’s BERT, which prevents the model from attuning
itself to one specific task in a form of overfitting. A depiction of the proxy task can be
seen in figure 5.3.

5.1.4 Obscure Features (OBSCURE)
For this pre-training task, the model is to predict masked features of some packets in
the sequence as depicted in figure 5.4. We have tried multiple masking values but −1

43

5. Experiments

Figure 5.2: Depiction of data flow, input and output of the model during pre-training on
the prediction proxy task (PREDICT).

produces the best results out of the values we tried. This proxy task in particular can be
parameterized in different ways, e.g. the number of features and which features to mask:
if always the same features are masked or if the selection is random for each packet or
for each flow, if every packet in the sequence has some masked features or if there is only
a chance that a packet is selected for masking. Those are only some examples of how
this task can be set up in different ways. To be completely exhaustive was not possible,
but we tried some of the most intuitive approaches. The task proved to be quite difficult
for both models, so we decided to predict only the TCP SYN flag. For pre-training the
model is provided masked data as input sequence and the unmasked data is the target.
The loss is calculated as the MAE (L1Loss with mean reduction) between the obscured
features of predicted logits and the target data sequences. A depiction of the proxy task
can be seen in figure 5.4.

5.1.5 Auto-Encoder (AUTO)

As explained in section 2.10, for the auto-encoder the model is tasked with compressing
and decompressing the data as lossless as possible. With an LSTM model, this means
having two consecutive LSTM models where the first is to encode the sequence and the
second is to decode the sequence as depicted in figure 5.5. As template we used the
model proposed by Nitish Srivastava et al. in their paper "Unsupervised Learning of
Video Representations using LSTMs" [SMS15], but similar proposals for auto-encoders
with LSTMs can be found in [SK19b] or [YLZ20].

The encoder LSTM compresses the whole input sequence x
(t)
e = x

(1)
e , x

(2)
e , ..., x

(n)
e into

44

5.1. Self-supervised Pre-training for Long Short-Term Memory Networks

Figure 5.3: Depiction of data flow, input and output of the LSTM model during pre-
training on the Mask Packet proxy task (MASK).

the hidden state h
(n)
e and cell state C

(n)
e of the last stage where n is the length of the

input sequence. The decoder LSTM is then initialized with the hidden and cell state
of the last stage from the encoder LSTM h

(1)
d = h

(n)
e , C

(1)
d = C

(n)
e and is tasked with

reconstructing the input sequence in reverse order. The reverse order target sequence is
used to shorten the paths of the input tokens to their respective target tokens. After
every stage of the decoder, either the output x̂(t) or the target token of the current stage
x(t), the ground truth, is then fed into the model as input token x

(t)
d = x̂(t−1) for the next

stage. Providing the ground truth again at the decode stage is also called teacher forcing.
Note that for the decoder indices are processed in reverse order. The first input token for
the decoder is a zero vector which functions as a start-of-sequence token xzero = [0, ..., 0]T .
The encoder is forced to store as much information about the sequence as possible in
the hidden state and as the size of the hidden state is constrained, it has to find an
abstract representation of the sequence. For supervised fine-tuning and validation, only
the encoder part of the model is used. After trying both approaches, we decided to use
teacher forcing as it produced slightly better results.

45

5. Experiments

Figure 5.4: Depiction of data flow, input and output of the LSTM model during pre-
training on the Obscure Feature proxy task (OBSCURE).

46

5.1. Self-supervised Pre-training for Long Short-Term Memory Networks

Figure 5.5: Depiction of data flow, input and output of the LSTM model during pre-
training on Auto-Encoder proxy task (AUTO). The fully connected layer is omitted from
the graphic.

47

5. Experiments

5.1.6 Composite Model (COMPOSITE)
For the composite model we recreated the network proposed by Nitish Srivastava et al.
in their paper "Unsupervised Learning of Video Representations using LSTMs" [SMS15]
as summarized in section 3.2.2. As a self-supervised pre-training proxy task, the model is
fed the first part of the packet sequence of a flow and is tasked with both reconstructing
the part of the sequence it had access to, and predicting the missing part of the flow
which it had no access to.

The output of the model is a sequence x̂(t) of length equal to the original input sequence
x(t) of which the first half is reconstructed and the second half is predicted by the model.
The loss is again calculated as the MAE (L1Loss with mean reduction) between the
original input and the output sequence of the model. The model consists of three LSTMs
which can be labeled encoder, decoder and predictor as can be seen in figure 5.6. For
an input sequence of length n, the encoder processes the first m tokens of the sequence,
constructing an abstract representation in its hidden state. The hidden state of the last
stage of the encoder LSTM is then copied to both the decoder and predictor LSTMs as
initial hidden state. Like the auto-encoder from the previous section 5.1.5, the decoder
LSTM tries to recreate the partial input sequence x(t) : t = 1, ..., m. Initialized with the
final hidden state of the encoder, the predictor LSTM tries to foretell future packets of the
flow, i.e. target sequence x(t) : t = m, ..., n. At every stage of the predictor (or decoder)
LSTM (except the first), either the output x̂p

(t−1) (or x̂d
(t+1)) of the previous stage or

the target token x(t−1) (or x(t+1)) of the previous stage is used as input token for the
next stage. The authors of [SMS15] label those two methods conditioned and uncondition
as is further explained in section 3.2.2. We tried both approaches and found that the
model performs better with conditioning, so for our experiments both the predictor and
decoder model use the output of its previous stage as input for the next. In our case, m
was chosen to be half the sequence length rounded up so m = n

2 . The data flow in the
model is depicted in figure 5.6.

48

5.2. Self-supervised Pre-training for Transformer Encoder Networks

Figure 5.6: Depiction of data flow, input and output of the LSTM model during pre-
training with the Composite proxy task (COMPOSITE). The fully connected layer is
omitted from the graphic.

5.2 Self-supervised Pre-training for Transformer Encoder
Networks

Like with the LSTM, we devised a series of proxy tasks for pre-training the model in
self-supervised fashion. Since the information flow is different in transformer models
than it is in LSTMs, the pre-training task Predict Packet 5.1.2 we used for the LSTM is
no longer feasible. While the LSTM at each stage only has access to all the tokens it
processed up to this point, the transformer has access to all input tokens at each stage of
the execution, which is one of the benefits of self-attention [VSP+17a]. Contrary to our
expectations, supervised training with 90% of the dataset on the transformer takes longer
to converge than on the LSTM in terms of real time. In other words, when training the
LSTM and the transformer network with the same amount of data for the same amount
of time, the LSTM produces better results. In the following sections we describe the
pre-training methods we used to pre-train the transformer network.

49

5. Experiments

Dataset Subset Training % Training Eps. Proxy Task Pretr. % Pretr. Eps.
3.1.1 CIC-IDS2017 - 10 50 NONE 0 0
3.1.2 CIC-IDS2017 - 10 50 AUTO 80 10
3.1.3 CIC-IDS2017 - 10 50 OBSCURE 80 10
3.1.4 CIC-IDS2017 - 10 50 MASK 80 10
3.2.1 CIC-IDS2017 - 1 200 NONE 0 0
3.2.2 CIC-IDS2017 - 1 200 AUTO 80 10
3.2.3 CIC-IDS2017 - 1 200 OBSCURE 80 10
3.2.4 CIC-IDS2017 - 1 200 MASK 80 10
3.3.1 CIC-IDS2017 CIC17_10 - 600 NONE 0 0
3.3.2 CIC-IDS2017 CIC17_10 - 600 AUTO 80 10
3.3.3 CIC-IDS2017 CIC17_10 - 600 OBSCURE 80 10
3.3.4 CIC-IDS2017 CIC17_10 - 600 MASK 80 10
3.4.1 UNSW-NB15 - 10 50 NONE 0 0
3.4.2 UNSW-NB15 - 10 50 AUTO 80 10
3.4.3 UNSW-NB15 - 10 50 OBSCURE 80 10
3.4.4 UNSW-NB15 - 10 50 MASK 80 10
3.5.1 UNSW-NB15 - 1 200 NONE 0 0
3.5.2 UNSW-NB15 - 1 200 AUTO 80 10
3.5.3 UNSW-NB15 - 1 200 OBSCURE 80 10
3.5.4 UNSW-NB15 - 1 200 MASK 80 10
3.6.1 UNSW-NB15 UNSW15_10 - 600 NONE 0 0
3.6.2 UNSW-NB15 UNSW15_10 - 600 AUTO 80 10
3.6.3 UNSW-NB15 UNSW15_10 - 600 OBSCURE 80 10
3.6.4 UNSW-NB15 UNSW15_10 - 600 MASK 80 10

Table 5.4: Training and pre-training configurations for transformer model with different
proxy tasks.

To make the effect of pre-training on the transformer more salient, we tried different
approaches like using two consecutive transformer encoder models in serial configuration.
Only the first transformer model is pre-trained and for supervised fine-tuning it feeds its
output, which hopefully constitutes an abstraction of the data, into the second model
which is then trained with labeled data. Another approach was to reset the deeper layers
of the transformer model, as an abstract data representation might have formed in the
earlier layers. The later layers might have been used to solve the proxy task based on
this representation which are not needed and even disadvantageous for classification. We
also tried tweaking the dropout rate, the number of attentions heads and the number of
layers to improve performance. None of these methods achieved consistent improvements
in our case.

5.2.1 Obscure Features (OBSCURE)
Analogous to the Mask Features proxy task for the LSTM, we used the same method for
pre-training the transformer. A depiction for the data flow during pre-training can be
seen in figure 5.7.

50

5.2. Self-supervised Pre-training for Transformer Encoder Networks

Figure 5.7: Depiction of data flow, input and output of the transformer encoder model
during pre-training with the Obscure Feature proxy task (OBSCURE).

51

5. Experiments

5.2.2 Auto-Encoder (AUTO)
Auto-encoders are an established concept when it comes to self-supervised learning
2.10. With this method input and target data are the same and the network is tasked
with reconstructing the input data at the output. To prevent the network from simply
"transporting" the input tokens through the network without having to learn anything,
a form of regularization is introduced to force the network into learning an abstract
representation of the data [BKG21]. In our case, we used a dropout rate of 20% to
introduce artificial noise into the input data.

Figure 5.8: Depiction of data flow, input and output of the transformer encoder model
during pre-training with the Auto-Encoder proxy task (AUTO).

5.2.3 Mask Packet (MASK)
Same as with for the LSTM, one packet token is replaced with a mask vector xmask =
[−1, ..., −1]T containing −1 for each feature. The model is then tasked with reconstructing
the omitted input. While for our LSTM model we found that this proxy task performs
better if we also include the non-masked tokens into the loss calculation, here we calculate
the loss only based on the difference between the masked token and the predicted token.
For the LSTM, this task is very similar to the PREDICT task in section 5.1.2 with the

52

5.2. Self-supervised Pre-training for Transformer Encoder Networks

Figure 5.9: Depiction of data flow, input and output of the transformer encoder model
during pre-training with the Mask Packet proxy task (MASK).

difference that it is to predict only one token instead of every subsequent token. The
transformer however is able to also take "future" packets, i.e. later packet tokens in the
input sequence into account. Since a packet in a flow can be seen as a word in a sentence,
and the feature representation of a packet is similar to an embedded word vector, this
pre-training task is analogous to the method used in BERT [DCLT18].

53

CHAPTER 6
Results

In this chapter, we present the results from experiments proposed in the previous chapter.
Like with the experiments section, we will be looking at the results from LSTM and the
transformer model independently. An in-depth look into the datasets and the workings of
the differently trained models based on Partial Dependence (PD) plots, neuron data plots
and the outputs of a fitted DTC follow in the section 6.3. For a complete list of parameters
used during training we refer to tables 5.1, 5.1, 5.3 and 5.4 and the experiments section in
general. To analyze the results, we devised two types of tables: In one we are analyzing
all result metrics which are listed in section 2.12 together with some training metrics like
the time it took the model to produce the best sampled results and in the other we are
looking at attack category specific accuracy results. Epochs Supervised states how many
epochs the model was trained during fine-tuning, i.e. on the amount of labeled data it was
provided, denoted by Training percentage. The label Best epoch constitutes the training
epoch in which the highest accuracy score was achieved by the model on the validation
subset and Time to best epoch constitutes the time it took during fine-tuning to achieve
this result. To track in which epoch the model performed best, validation accuracy was
tested every 6 epochs for trainings with 600 epochs, every 2 epochs for trainings with 200
epochs and every epoch for trainings with <100 epochs. This was done to keep training
times reasonable, as, especially in the cases where only the specialized subsets were used
for fine-tuning, validation takes longer than an epoch of training. Higher accuracy scores
might have occurred during epochs in which validation accuracy was not tested. In the
tables we are looking for cases where pre-training affected the classification behavior of
the model i.e. where scores differ from the NONE baseline column.

55

6. Results

6.1 Long Short-Term Memory Model
As a baseline, we look at results where the model has been trained in a purely supervised
fashion with different amounts of data of the two datasets. The results are comparable
to previous experiments with deep neural networks on these datasets [SYZ20] and even
slightly better in some instances. Looking at tables 6.1, 6.3 we can already see that very
little supervised data is needed to achieve fairly high accuracy. For the LSTM model,
going from 90% of training data (exp. 1.1.1 and 1.2.1) to 10% (exp. 2.1.1 and 2.4.1)
only amounts to an absolute drop of 0.164% and 0.276% accuracy for CIC-IDS2017 and
UNSW-NB15 datasets respectively. Most astounding are also the results when dropping
from millions of records when training with 90% of the datasets to just the specialized
subsets containing a couple of hundred entries in total and only 10 records of each attack
class. Withholding most of labeled data in the datasets, this constraint only amounts
to an absolute accuracy decrease of 4.114% and 1.176% for datasets CIC-IDS2017 and
UNSW-NB15 respectively. While this is fairly pleasant in general, it means that results
will be harder to improve as any benefit pre-training provides might be overshadowed by
the effectiveness of supervised training, even with very little data.

1.1.1 2.1.1 2.2.1 2.3.1
Proxy task NONE NONE NONE NONE

Epochs Supervised 50 50 200 600
Training percentage 90.00 % 10.00 % 1.00 %
Specialized subset CIC17_10

Training metrics
Best epoch 45 49 191 593

Time to best epoch 10h 8m 1h 34m 1h 14m 0h 43m

Performance metrics
Accuracy 99.796 % 99.632 % 99.385 % 95.682 %

Detection rate 99.306 % 98.828 % 98.408 % 90.088 %
Precision 99.885 % 99.711 % 99.153 % 92.624 %
Specificity 99.961 % 99.903 % 99.716 % 97.574 %

F1-Measure 99.595 % 99.268 % 98.779 % 91.338 %
False alarm rate 0.115 % 0.289 % 0.847 % 7.376 %

Missed alarm rate 0.694 % 1.172 % 1.592 % 9.912 %

Table 6.1: Experiments 1.1.1, 2.1.1, 2.2.1 and 2.3.1 with LSTM model trained in a purely
supervised fashion on different percentages of data from dataset CIC-IDS2017.

56

6.1. Long Short-Term Memory Model

1.1.1 2.1.1 2.2.1 2.3.1
Class # NONE NONE NONE NONE

Botnet ARES 0 94.667% 94.667% 98.667% 94.737%
FTP-Patator 1 92.000% 72.000% 30.769% 96.000%
SSH-Patator 2 100.000% 98.024% 93.254% 100.000%
DDoS LOIT 3 100.000% 99.979% 99.979% 99.530%

DoS GoldenEye 4 100.000% 100.000% 99.460% 97.981%
DoS Hulk 5 100.000% 99.996% 100.000% 98.740%

DoS Slowhttptest 6 100.000% 99.763% 99.284% 99.286%
DoS slowloris 7 100.000% 100.000% 96.875% 92.727%
Heartbleed 8 100.000% 100.000% 100.000% 100.000%
Infiltration 9 94.906% 92.913% 91.557% 63.608%

Benign 10 99.961% 99.903% 99.716% 97.574%
PortScan - Firewall off 11 99.981% 99.299% 98.839% 83.707%
PortScan - Firewall on 12 100.000% 83.784% 78.947% 81.579%

SQL Injection 13 100.000% 100.000% 0.000% 100.000%
XSS 14 88.060% 91.045% 50.000% 80.303%

Benign 10 99.961% 99.903% 99.716% 97.574%
Attack !10 99.306% 98.828% 98.408% 90.088%
Overall ALL 99.796% 99.632% 99.385% 95.682%

Table 6.2: Per category accuracy analysis of experiments 1.1.1, 2.1.1, 2.2.1 and 2.3.1 with
LSTM model trained in a purely supervised fashion on different percentages of data from
dataset CIC-IDS2017.

57

6. Results

1.2.1 2.4.1 2.5.1 2.6.1
Proxy task NONE NONE NONE NONE

Epochs Supervised 50 50 200 600
Training percentage 90.00 % 10.00 % 1.00 %
Specialized subset UNSW15_10

Training metrics
Best epoch 41 25 159 77

Time to best epoch 8h 38m 0h 44m 0h 52m 0h 6m

Performance metrics
Accuracy 98.930 % 98.654 % 98.305 % 97.754 %

Detection rate 82.936 % 80.684 % 78.846 % 65.595 %
Precision 86.315 % 81.166 % 74.673 % 69.315 %
Specificity 99.517 % 99.313 % 99.019 % 98.934 %

F1-Measure 84.592 % 80.924 % 76.703 % 67.404 %
False alarm rate 13.685 % 18.834 % 25.327 % 30.685 %

Missed alarm rate 17.064 % 19.316 % 21.154 % 34.405 %

Table 6.3: Experiments 1.2.1, 2.4.1, 2.5.1 and 2.6.1 with LSTM model trained in a purely
supervised fashion on different percentages of data for UNSW-NB15.

1.2.1 2.4.1 2.5.1 2.6.1
Class # NONE NONE NONE NONE

Analysis 0 26.415% 28.846% 43.396% 80.392%
Backdoors 1 97.436% 90.000% 80.000% 85.000%

DoS 2 93.862% 84.733% 78.261% 81.679%
Exploits 3 95.878% 93.625% 87.431% 85.498%
Fuzzers 4 50.459% 51.254% 59.632% 47.315%
Generic 5 98.131% 93.897% 80.189% 69.484%
Normal 6 99.517% 99.313% 99.019% 98.934%

Reconnaissance 7 98.825% 96.888% 92.017% 44.155%
Shellcode 8 96.104% 74.510% 82.237% 39.610%
Worms 9 94.737% 94.737% 78.947% 57.895%

Benign 6 99.517% 99.313% 99.019% 98.934%
Attack !6 82.936% 80.684% 78.846% 65.595%
Overall ALL 98.930% 98.654% 98.305% 97.754%

Table 6.4: Per category accuracy analysis of experiments 1.2.1, 2.4.1, 2.5.1 and 2.6.1 with
LSTM model trained in a purely supervised fashion on different percentages of data from
dataset UNSW-NB15.

58

6.1. Long Short-Term Memory Model

6.1.1 Pre-training of the LSTM model with CIC-IDS2017 Dataset

Next, we will be looking at results for pre-training with the different proxy tasks and
different amounts of data used for supervised fine-tuning. Tables 6.5, 6.7 and 6.9 show
results for experiments 2.1.1 - 2.1.6, 2.2.1 - 2.2.6 and 2.3.1 - 2.3.6 on dataset CIC-IDS2017
conducted with 10%, 1% and only a very small fraction of data as defined in subset
CIC17_10. Looking at the performance metrics, we can see that there is some variance
in the resulting data. The NumPy and PyTorch random seeds are the same for all
experiments which means that pre-training, supervised fine-tuning and validation have
been conducted with the exact same subsets of the original dataset which means that
differences in results can only come from pre-training with different proxy tasks. This
establishes the fact that pre-training in general, and also different methods of pre-training
have an effect on final performance. Starting with table 6.5, we can see that pre-training
with some proxy tasks improves performance while others have almost no effect or even
a negative effect.

For accuracy, the highest positive delta 0.101% in experiments 2.1.1-6 in table 6.5 can
be observed for pre-training with the COMPOSITE proxy task 5.1.6 closely followed by
pre-training with the ID proxy task 5.1.1 with a delta of 0.095%. The highest negative
delta in accuracy, -0.010%, can be observed for the OBSCURE feature proxy task 5.1.4.
It should be noted, that for detection rate, the highest delta is 0.343% also occurring
after COMPOSITE pre-training. This shows that the improvement in accuracy stems
from improved attack detection capability achieved through pre-training.

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6
Proxy task NONE PREDICT OBSCURE AUTO ID COMPOSITE

Epochs Supervised 50 50 50 50 50 50
Training percentage 10.00 % 10.00 % 10.00 % 10.00 % 10.00 % 10.00 %
Specialized subset

Training metrics
Best epoch 49 47 49 46 48 47

Time to best epoch 1h 34m 1h 35m 1h 40m 1h 59m 1h 43m 3h 13m

Performance metrics
Accuracy 99.632 % 99.705 % 99.620 % 99.630 % 99.727 % 99.733 %

Detection rate 98.828 % 99.108 % 98.877 % 98.871 % 99.146 % 99.171 %
Precision 99.711 % 99.722 % 99.616 % 99.663 % 99.771 % 99.771 %
Specificity 99.903 % 99.907 % 99.871 % 99.887 % 99.923 % 99.923 %

F1-Measure 99.268 % 99.414 % 99.245 % 99.265 % 99.457 % 99.470 %
False alarm rate 0.289 % 0.278 % 0.384 % 0.337 % 0.229 % 0.229 %

Missed alarm rate 1.172 % 0.892 % 1.123 % 1.129 % 0.854 % 0.829 %

Table 6.5: Experiments 2.1.1-6 with LSTM model finetuned with 10% of dataset CIC-
IDS2017.

59

6. Results

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6
Class # NONE PREDICT OBSCURE AUTO ID COMPOSITE

Botnet ARES 0 94.667% 93.333% 94.737% 93.243% 94.737% 93.333%
FTP-Patator 1 72.000% 96.154% 53.846% 3.846% 88.462% 92.308%
SSH-Patator 2 98.024% 99.206% 99.206% 99.209% 99.608% 99.209%
DDoS LOIT 3 99.979% 99.989% 100.000% 100.000% 99.989% 99.989%

DoS GoldenEye 4 100.000% 100.000% 100.000% 100.000% 99.865% 100.000%
DoS Hulk 5 99.996% 99.996% 99.996% 99.996% 99.996% 99.996%

DoS Slowhttptest 6 99.763% 99.761% 99.282% 99.284% 99.282% 99.284%
DoS slowloris 7 100.000% 99.740% 99.740% 99.741% 99.740% 99.742%
Heartbleed 8 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%
Infiltration 9 92.913% 93.865% 93.549% 93.209% 93.924% 94.181%

Benign 10 99.903% 99.907% 99.871% 99.887% 99.923% 99.923%
PortScan - Firewall off 11 99.299% 99.874% 99.179% 99.578% 99.943% 99.905%
PortScan - Firewall on 12 83.784% 70.270% 86.486% 73.684% 86.486% 86.486%

SQL Injection 13 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%
XSS 14 91.045% 86.765% 94.118% 59.701% 91.045% 91.176%

Benign 10 99.903% 99.907% 99.871% 99.887% 99.923% 99.923%
Attack !10 98.828% 99.108% 98.877% 98.871% 99.146% 99.171%
Overall ALL 99.632% 99.705% 99.620% 99.630% 99.727% 99.733%

Table 6.6: Per category accuracy analysis of experiments 2.1.1-6 with LSTM model
finetuned with 10% of dataset CIC-IDS2017.

Looking at table 6.7 we can inspect for which attack categories improvement is most
salient. When comparing training with supervised methods only in experiment 2.1.1 with
the on the COMPOSITE proxy task pre-trained model in experiment 2.1.6 we can see
major improvements for detection of FTP-Patator brute force attacks. Accuracy jumped
from 72% for supervised only training to 92.308% for the COMPOSITE trained model
and even 96.154% for the PREDICT proxy task, constituting a positive delta of 24.154%.
For experiment 2.1.4, pre-training with the auto-encoder task, the accuracy for detection
of the FTP-Patator attack category dropped to 3.846%. Such high variance in results
shows again that the LSTM model is susceptible to different pre-training strategies.
Other attack classes which have seen improvement in detection accuracy are port scans
with firewall on and off (#11-12) with positive deltas of 2.702% and 0.606% respectively
and infiltration (#9) and SSH-Patator (#2) with deltas of 1.269% and 1.185%.

Looking at results for experiments 2.2.1-6 (table 6.7) fine-tuned with 1% of the CICIDS-
2017 dataset - ceteris paribus - the maximum delta in accuracy increased to 0.178%,
which in this iteration is observed after pre-training with the PREDICT proxy task
5.1.2. The positive delta for the COMPOSITE proxy tasks increased to 0.136% and
the delta for the ID proxy task remained almost the same at 0.094%. PREDICT, ID
and COMPOSITE proxy tasks have shown improvements in accuracy and performance
overall for experiments 2.1.1-6 and 2.2.1-6, but the pattern breaks down when looking at
experiments 2.3.1-6 with fine-tuning performed with subset CIC17_10 where improvement
is now only present for pre-training with the ID proxy task where the positive deltas in

60

6.1. Long Short-Term Memory Model

2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6
Proxy task NONE PREDICT OBSCURE AUTO ID COMPOSITE

Epochs Supervised 200 200 200 200 200 200
Training percentage 1.00 % 1.00 % 1.00 % 1.00 % 1.00 % 1.00 %
Specialized subset

Training metrics
Best epoch 191 185 199 173 177 171

Time to best epoch 1h 14m 1h 19m 1h 30m 1h 14m 1h 15m 2h 25m

Performance metrics
Accuracy 99.385 % 99.563 % 99.310 % 99.378 % 99.479 % 99.521 %

Detection rate 98.408 % 98.781 % 98.386 % 98.192 % 98.617 % 98.686 %
Precision 99.153 % 99.486 % 98.876 % 99.339 % 99.319 % 99.416 %
Specificity 99.716 % 99.827 % 99.622 % 99.779 % 99.771 % 99.804 %

F1-Measure 98.779 % 99.132 % 98.631 % 98.762 % 98.967 % 99.050 %
False alarm rate 0.847 % 0.514 % 1.124 % 0.661 % 0.681 % 0.584 %

Missed alarm rate 1.592 % 1.219 % 1.614 % 1.808 % 1.383 % 1.314 %

Table 6.7: Experiments 2.2.1-6 with LSTM model finetuned with 1% of dataset CIC-
IDS2017.

2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6
Class # NONE PREDICT OBSCURE AUTO ID COMPOSITE

Botnet ARES 0 98.667% 97.333% 98.649% 98.684% 96.053% 94.737%
FTP-Patator 1 30.769% 44.000% 0.000% 45.833% 40.000% 44.000%
SSH-Patator 2 93.254% 98.431% 99.605% 91.732% 100.000% 98.425%
DDoS LOIT 3 99.979% 99.979% 99.989% 100.000% 100.000% 100.000%

DoS GoldenEye 4 99.460% 99.865% 96.486% 99.322% 98.787% 99.866%
DoS Hulk 5 100.000% 99.892% 99.991% 99.948% 99.935% 99.966%

DoS Slowhttptest 6 99.284% 99.760% 99.761% 99.758% 99.762% 99.762%
DoS slowloris 7 96.875% 100.000% 97.416% 97.172% 97.674% 99.742%
Heartbleed 8 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%
Infiltration 9 91.557% 92.904% 90.980% 91.028% 91.943% 92.051%

Benign 10 99.716% 99.827% 99.622% 99.779% 99.771% 99.804%
PortScan - Firewall off 11 98.839% 99.489% 99.357% 98.594% 99.294% 99.413%
PortScan - Firewall on 12 78.947% 65.789% 57.895% 62.162% 75.676% 76.316%

SQL Injection 13 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
XSS 14 50.000% 64.706% 1.493% 1.471% 75.000% 65.672%

Benign 10 99.716% 99.827% 99.622% 99.779% 99.771% 99.804%
Attack !10 98.408% 98.781% 98.386% 98.192% 98.617% 98.686%
Overall ALL 99.385% 99.563% 99.310% 99.378% 99.479% 99.521%

Table 6.8: Per category accuracy analysis of experiments 2.2.1-6 with LSTM model
finetuned with 1% of dataset CIC-IDS2017.

61

6. Results

2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6
Proxy task NONE PREDICT OBSCURE AUTO ID COMPOSITE

Epochs Supervised 600 600 600 600 600 600
Training percentage
Specialized subset CIC17_10 CIC17_10 CIC17_10 CIC17_10 CIC17_10 CIC17_10

Training metrics
Best epoch 593 407 407 35 257 41

Time to best epoch 0h 43m 0h 30m 0h 30m 0h 2m 0h 19m 0h 5m

Performance metrics
Accuracy 95.682 % 94.073 % 93.355 % 94.938 % 96.276 % 94.229 %

Detection rate 90.088 % 82.494 % 79.470 % 84.706 % 93.690 % 82.552 %
Precision 92.624 % 93.274 % 93.236 % 94.708 % 91.750 % 93.874 %
Specificity 97.574 % 97.988 % 98.050 % 98.399 % 97.151 % 98.178 %

F1-Measure 91.338 % 87.553 % 85.804 % 89.428 % 92.710 % 87.850 %
False alarm rate 7.376 % 6.726 % 6.764 % 5.292 % 8.250 % 6.126 %

Missed alarm rate 9.912 % 17.506 % 20.530 % 15.294 % 6.310 % 17.448 %

Table 6.9: Experiments 2.3.1-6 with LSTM model finetuned with subset CIC17_10 of
dataset CIC-IDS2017.

accuracy and detection rate have increased to 0.594% and 3.602% respectively. All other
pre-training resulted in strongly reduced performance most salient with the OBSCURE
proxy task with a negative delta in accuracy of -2.327%.

It shall be noted that training with this little data entails a high variability in validation
accuracy and loss over the course of training as the model might start to overfit very early.
From figures 6.1 and 6.2 showing the mean training and validation loss per epoch over
the duration of fine-tuning, we can derive that this is indeed the case. While training loss
diminishes for all models over almost the whole fine-tuning period, the validation loss
progresses very differently for the different models, even though they are fine-tuned with
the exact same subset. While models pre-trained with the AUTO and COMPOSITE
proxy task converge quite early after around 40 epochs, deteriorating monotonically
afterwards, the mean loss of other models fluctuates heavily. For the model which was not
pre-trained and the model pre-trained with the OBSCURE proxy task, the fluctuation
even seems to have a downward trend which, even though least validation loss does not
necessarily mean highest validation accuracy, is also congruent with the results from
table 6.9 where the best epoch for NONE and OBSCURE where 593 and 407. Plots
depicting training and validation loss progression can be found in the appendix for every
experiment.

It also shall be noted that for training with the CIC17_10 and UNSW15_10 the ratio
of samples between categories has changed when compared to the original dataset or
the stratified sampled 10% and 1% subsets. For CIC17_10 and UNSW15_10, the same
amount of samples per category are included. This does not impact the comparison

62

6.1. Long Short-Term Memory Model

2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6
Class # NONE PREDICT OBSCURE AUTO ID COMPOSITE

Botnet ARES 0 94.737% 100.000% 100.000% 93.421% 95.946% 98.667%
FTP-Patator 1 96.000% 100.000% 65.385% 65.385% 100.000% 100.000%
SSH-Patator 2 100.000% 99.219% 99.219% 98.800% 100.000% 98.425%
DDoS LOIT 3 99.530% 97.181% 97.811% 99.915% 99.989% 99.861%

DoS GoldenEye 4 97.981% 99.194% 96.774% 97.294% 96.900% 98.113%
DoS Hulk 5 98.740% 74.322% 65.846% 66.460% 98.434% 70.648%

DoS Slowhttptest 6 99.286% 100.000% 98.333% 98.565% 100.000% 98.568%
DoS slowloris 7 92.727% 100.000% 93.782% 96.073% 97.135% 99.741%
Heartbleed 8 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%
Infiltration 9 63.608% 77.447% 69.639% 89.872% 80.716% 77.644%

Benign 10 97.574% 97.988% 98.050% 98.399% 97.151% 98.178%
PortScan - Firewall off 11 83.707% 86.145% 91.537% 98.643% 88.805% 90.155%
PortScan - Firewall on 12 81.579% 71.053% 68.421% 75.676% 71.053% 70.270%

SQL Injection 13 100.000% 100.000% 100.000% 100.000% 100.000% 0.000%
XSS 14 80.303% 80.597% 0.000% 60.294% 82.353% 89.706%

Benign 10 97.574% 97.988% 98.050% 98.399% 97.151% 98.178%
Attack !10 90.088% 82.494% 79.470% 84.706% 93.690% 82.552%
Overall ALL 95.682% 94.073% 93.355% 94.938% 96.276% 94.229%

Table 6.10: Per category accuracy analysis of experiments 2.3.1-6 with LSTM model
finetuned with subset CIC17_10 of dataset CIC-IDS2017.

between pre-trained and non-pre-trained models but takes from the comparability between
results of experiments 2.3.1-6 in table 6.9 and the results of experiments 2.1.1-6 in table
6.5 and 2.2.1-6 in table 6.7.

63

6. Results

Figure 6.1: Plot of mean training loss per epoch during fine-tuning on the LSTM model
with specialized subset CIC17_10.

Figure 6.2: Plot of mean validation loss per epoch during fine-tuning on the LSTM model
with specialized subset CIC17_10.

64

6.1. Long Short-Term Memory Model

6.1.2 Pre-training of the LSTM model with UNSW-NB15 Dataset
A similar pattern emerges from the results of tests on the UNSW-NB15 dataset. For
experiments 2.4.1-6 in table 6.11 fine-tuned with 10% of the dataset minor improvement
can again be observed for the pre-trained models. The highest positive delta of 0.086%
occurred after pre-training with de identity function proxy task in experiment 2.4.5 when
comparing to the purely supervised training in experiment 2.4.1. Training with other
proxy tasks shows comparably minor improvements to accuracy.

Looking at class specific accuracy in table 6.12 we can see that contrary to the results
from experiments 2.1.1-6 on dataset CIC-IDS2017, here the increase in overall accuracy
stems from minor improvements on benign flow classification i.e. an increase in specificity
rather than an increase in detection rate. In fact, detection rate drops for all pre-trained
models in experiments 2.4.1-6 most salient in results from experiment 2.4.6 trained on the
COMPOSITE proxy-task where detection rate drops by 1.273% but specificity increased
by 0.084% when compared to supervised only training in experiment 2.4.1 resulting in
an improvement in accuracy of 0.037% due to 96.64% of the UNSW-NB15 dataset being
benign flows.

The maximum delta between supervised only trained and pre-trained models increases
to 0.137% in experiments 2.5.1-6 in table 6.13, this time occurring for proxy task
AUTO with all other proxy tasks also showing minor improvements in accuracy. Just
looking at experiment 2.5.4, contrary to experiments 2.4.1-6 in table 6.11, specificity and
detection rate increased slightly when compared to baseline experiment 2.5.1. While in

2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6
Proxy task NONE PREDICT OBSCURE AUTO ID COMPOSITE

Epochs Supervised 50 50 50 50 50 50
Training percentage 10.00 % 10.00 % 10.00 % 10.00 % 10.00 % 10.00 %
Specialized subset

Training metrics
Best epoch 25 23 25 13 25 15

Time to best epoch 0h 44m 0h 40m 0h 44m 0h 29m 0h 44m 0h 56m

Performance metrics
Accuracy 98.654 % 98.737 % 98.721 % 98.699 % 98.740 % 98.691 %

Detection rate 80.684 % 80.227 % 80.397 % 80.542 % 80.342 % 79.411 %
Precision 81.166 % 83.374 % 82.971 % 82.258 % 83.460 % 82.802 %
Specificity 99.313 % 99.414 % 99.394 % 99.364 % 99.415 % 99.397 %

F1-Measure 80.924 % 81.770 % 81.664 % 81.391 % 81.871 % 81.071 %
False alarm rate 18.834 % 16.626 % 17.029 % 17.742 % 16.540 % 17.198 %

Missed alarm rate 19.316 % 19.773 % 19.603 % 19.458 % 19.658 % 20.589 %

Table 6.11: Experiments 2.4.1-6 with LSTM model finetuned with 10% of dataset
UNSW-NB15.

65

6. Results

2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6
Class # NONE PREDICT OBSCURE AUTO ID COMPOSITE

Analysis 0 28.846% 38.462% 28.302% 30.189% 26.415% 21.154%
Backdoors 1 90.000% 87.500% 77.500% 73.684% 80.000% 75.000%

DoS 2 84.733% 82.952% 81.888% 85.751% 80.612% 81.980%
Exploits 3 93.625% 94.055% 93.134% 93.061% 93.272% 92.610%
Fuzzers 4 51.254% 50.820% 52.972% 53.256% 51.812% 51.092%
Generic 5 93.897% 89.647% 91.589% 91.589% 91.355% 91.274%
Normal 6 99.313% 99.414% 99.394% 99.364% 99.415% 99.397%

Reconnaissance 7 96.888% 95.101% 95.784% 95.186% 97.386% 95.956%
Shellcode 8 74.510% 78.710% 71.429% 69.079% 73.377% 62.338%
Worms 9 94.737% 100.000% 94.737% 94.737% 94.737% 94.737%

Benign 6 99.313% 99.414% 99.394% 99.364% 99.415% 99.397%
Attack !6 80.684% 80.227% 80.397% 80.542% 80.342% 79.411%
Overall ALL 98.654% 98.737% 98.721% 98.699% 98.740% 98.691%

Table 6.12: Per category accuracy analysis of experiments 2.4.1-6 with LSTM model
finetuned with 10% of dataset UNSW-NB15.

2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6
Proxy task NONE PREDICT OBSCURE AUTO ID COMPOSITE

Epochs Supervised 200 200 200 200 200 200
Training percentage 1.00 % 1.00 % 1.00 % 1.00 % 1.00 % 1.00 %
Specialized subset

Training metrics
Best epoch 159 121 191 89 183 109

Time to best epoch 0h 52m 0h 40m 1h 3m 0h 33m 1h 1m 1h 15m

Performance metrics
Accuracy 98.305 % 98.413 % 98.348 % 98.442 % 98.404 % 98.329 %

Detection rate 78.846 % 81.994 % 81.274 % 79.185 % 81.114 % 78.066 %
Precision 74.673 % 75.308 % 74.419 % 77.306 % 75.531 % 75.491 %
Specificity 99.019 % 99.014 % 98.974 % 99.148 % 99.037 % 99.071 %

F1-Measure 76.703 % 78.509 % 77.696 % 78.234 % 78.223 % 76.757 %
False alarm rate 25.327 % 24.692 % 25.581 % 22.694 % 24.469 % 24.509 %

Missed alarm rate 21.154 % 18.006 % 18.726 % 20.815 % 18.886 % 21.934 %

Table 6.13: Experiments 2.5.1-6 with LSTM model finetuned with 1% of dataset UNSW-
NB15.

66

6.1. Long Short-Term Memory Model

2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6
Class # NONE PREDICT OBSCURE AUTO ID COMPOSITE

Analysis 0 43.396% 72.222% 64.151% 51.852% 65.385% 55.556%
Backdoors 1 80.000% 76.923% 72.500% 72.500% 75.000% 65.000%

DoS 2 78.261% 82.952% 78.426% 79.442% 82.995% 75.448%
Exploits 3 87.431% 91.129% 89.687% 89.184% 90.358% 86.885%
Fuzzers 4 59.632% 63.702% 65.394% 57.358% 60.941% 59.478%
Generic 5 80.189% 90.888% 84.813% 88.345% 86.150% 86.150%
Normal 6 99.019% 99.014% 98.974% 99.148% 99.037% 99.071%

Reconnaissance 7 92.017% 90.833% 90.244% 91.253% 92.172% 91.906%
Shellcode 8 82.237% 64.516% 71.711% 74.026% 78.710% 48.684%
Worms 9 78.947% 88.889% 83.333% 83.333% 88.889% 88.889%

Benign 6 99.019% 99.014% 98.974% 99.148% 99.037% 99.071%
Attack !6 78.846% 81.994% 81.274% 79.185% 81.114% 78.066%
Overall ALL 98.305% 98.413% 98.348% 98.442% 98.404% 98.329%

Table 6.14: Per category accuracy analysis of experiments 2.5.1-6 with LSTM model
finetuned with 1% of dataset UNSW-NB15.

2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6
Proxy task NONE PREDICT OBSCURE AUTO ID COMPOSITE

Epochs Supervised 600 600 600 600 600 600
Training percentage
Specialized subset UNSW15_10 UNSW15_10 UNSW15_10 UNSW15_10 UNSW15_10 UNSW15_10

Training metrics
Best epoch 77 203 449 29 161 47

Time to best epoch 0h 6m 0h 18m 0h 40m 0h 2m 0h 14m 0h 8m

Performance metrics
Accuracy 97.754 % 97.759 % 97.639 % 97.764 % 97.665 % 97.586 %

Detection rate 65.595 % 62.626 % 64.033 % 63.501 % 68.435 % 60.904 %
Precision 69.315 % 70.788 % 67.511 % 70.390 % 66.479 % 67.698 %
Specificity 98.934 % 99.050 % 98.871 % 99.021 % 98.736 % 98.933 %

F1-Measure 67.404 % 66.457 % 65.726 % 66.768 % 67.443 % 64.122 %
False alarm rate 30.685 % 29.212 % 32.489 % 29.610 % 33.521 % 32.302 %

Missed alarm rate 34.405 % 37.374 % 35.967 % 36.499 % 31.565 % 39.096 %

Table 6.15: Experiments 2.6.1-6 with LSTM model finetuned with subset UNSW15_10
of dataset UNSW-NB15.

experiments 2.4.1-6 in table 6.11, all pre-trained models show a decrease in detection rate,
in experiments 2.5.1-6 in table 6.13 all pre-training methods except the COMPOSITE
proxy-task result in an improved detection rate.

The pattern of improved accuracy breaks again when looking at fine-tuning with the
specialized subset UNSW15_10 in table 6.15 for experiments 2.6.1-6. Here, almost no
improvement is measurable and for the COMPOSITE proxy task accuracy even dropped

67

6. Results

2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6
Class # NONE PREDICT OBSCURE AUTO ID COMPOSITE

Analysis 0 80.392% 81.132% 83.019% 78.846% 82.353% 74.510%
Backdoors 1 85.000% 80.000% 65.000% 72.500% 65.000% 71.795%

DoS 2 81.679% 76.081% 72.843% 70.229% 74.169% 69.289%
Exploits 3 85.498% 84.933% 82.993% 86.811% 84.419% 77.747%
Fuzzers 4 47.315% 37.735% 45.516% 33.799% 54.493% 38.443%
Generic 5 69.484% 81.352% 72.131% 78.960% 75.177% 70.960%
Normal 6 98.934% 99.050% 98.871% 99.021% 98.736% 98.933%

Reconnaissance 7 44.155% 39.193% 44.229% 51.222% 51.345% 53.070%
Shellcode 8 39.610% 56.494% 56.863% 48.684% 46.753% 45.161%
Worms 9 57.895% 94.737% 73.684% 84.211% 94.737% 84.211%

Benign 6 98.934% 99.050% 98.871% 99.021% 98.736% 98.933%
Attack !6 65.595% 62.626% 64.033% 63.501% 68.435% 60.904%
Overall ALL 97.754% 97.759% 97.639% 97.764% 97.665% 97.586%

Table 6.16: Per category accuracy analysis of experiments 2.6.1-6 with LSTM model
finetuned with subset CIC17_10 of dataset UNSW-NB15.

by 0.168% when for fine-tuning with 1% and 10% it showed slight improvement. The
only increases in accuracy are measurable for the PREDICT and AUTO proxy tasks
with very minor accuracy increases of 0.005% and 0.010% with all other pre-training
methods resulting in lower accuracy scores best represented by experiment 2.6.6 with the
COMPOSITE proxy-task where accuracy dropped by 0.168%.

68

6.2. Transformer Model

6.2 Transformer Model

The transformer model without pre-training produces state of the art results, similar
to experiments with the LSTM model but performs slightly worse: For 90% of data for
supervised training only 0.138% and 0.187% absolute difference for CIC-IDS2017 and
UNSW-NB15 datasets respectively 6.17. For UNSW-NB15 for 10% and 1% fine-tuning
no improvements were achieved, except for a 0.03% plus in accuracy for 3.5.4 (table 6.23)
which is most likely just variance.

1.3.1 3.1.1 3.2.1 3.3.1
Proxy task NONE NONE NONE NONE

Epochs Supervised 50 50 200 600
Training percentage 90.00 % 10.00 % 1.00 %
Specialized subset CIC17_10

Training metrics
Best epoch 45 47 83 125

Time to best epoch 7h 35m 1h 16m 0h 28m 0h 11m

Performance metrics
Accuracy 99.658 % 99.448 % 99.189 % 93.154 %

Detection rate 98.884 % 98.576 % 98.640 % 82.865 %
Precision 99.762 % 99.236 % 98.161 % 89.271 %
Specificity 99.920 % 99.743 % 99.374 % 96.633 %

F1-Measure 99.321 % 98.905 % 98.400 % 85.949 %
False alarm rate 0.238 % 0.764 % 1.839 % 10.729 %

Missed alarm rate 1.116 % 1.424 % 1.360 % 17.135 %

Table 6.17: Experiments 1.3.1, 3.1.1, 3.2.1 and 3.3.1 with transformer encoder model
trained in a purely supervised fashion on different amounts of data from dataset CIC-
IDS2017.

6.2.1 Pre-training of the transformer model with CIC-IDS2017
Dataset

In experiments with the CIC-IDS2017 dataset and increase in classification accuracy was
only achieved in experiment 3.3.3 (table 6.21) for pre-training with the OBSCURE proxy
task and fine-tuning with the specialized subset CIC17_10. Results for pre-training with
10 an 1 percent of the dataset can be seen in tables 6.19 and 6.20 respectively. Results
for training with specialized subset CIC17_10 can be found in table 6.21.

69

6. Results

1.4.1 3.4.1 3.5.1 3.6.1
Proxy task NONE NONE NONE NONE

Epochs Supervised 50 50 200 600
Training percentage 90.00 % 10.00 % 1.00 %
Specialized subset UNSW15_10

Training metrics
Best epoch 47 47 191 563

Time to best epoch 7h 0m 1h 5m 1h 0m 0h 52m

Performance metrics
Accuracy 98.743 % 98.545 % 98.328 % 97.684 %

Detection rate 79.300 % 88.111 % 84.212 % 58.910 %
Precision 84.283 % 75.079 % 72.790 % 70.721 %
Specificity 99.457 % 98.928 % 98.845 % 99.106 %

F1-Measure 81.716 % 81.075 % 78.086 % 64.277 %
False alarm rate 15.717 % 24.921 % 27.210 % 29.279 %

Missed alarm rate 20.700 % 11.889 % 15.788 % 41.090 %

Table 6.18: Experiments 1.4.1, 3.4.1, 3.5.1 and 3.6.1 with transformer encoder model
trained in a purely supervised fashion on different amounts of data from dataset UNSW-
NB15.

3.1.1 3.1.2 3.1.3 3.1.4
Proxy task NONE MASK OBSCURE AUTO

Epochs Supervised 50 50 50 50
Training percentage 10.00 % 10.00 % 10.00 % 10.00 %
Specialized subset

Training metrics
Best epoch 47 49 49 48

Time to best epoch 1h 16m 1h 17m 1h 21m 1h 13m

Performance metrics
Accuracy 99.448 % 99.411 % 98.724 % 99.313 %

Detection rate 98.576 % 98.584 % 97.927 % 98.427 %
Precision 99.236 % 99.079 % 97.052 % 98.851 %
Specificity 99.743 % 99.690 % 98.994 % 99.613 %

F1-Measure 98.905 % 98.831 % 97.488 % 98.639 %
False alarm rate 0.764 % 0.921 % 2.948 % 1.149 %

Missed alarm rate 1.424 % 1.416 % 2.073 % 1.573 %

Table 6.19: Experiments 3.1.1-6 with transformer encoder model finetuned with 10% of
dataset CIC-IDS2017.

70

6.2. Transformer Model

3.2.1 3.2.2 3.2.3 3.2.4
Proxy task NONE MASK OBSCURE AUTO

Epochs Supervised 200 200 200 200
Training percentage 1.00 % 1.00 % 1.00 % 1.00 %
Specialized subset

Training metrics
Best epoch 83 109 123 83

Time to best epoch 0h 28m 0h 38m 0h 43m 0h 29m

Performance metrics
Accuracy 99.189 % 99.105 % 99.168 % 99.091 %

Detection rate 98.640 % 98.746 % 98.718 % 98.679 %
Precision 98.161 % 97.736 % 98.004 % 97.748 %
Specificity 99.374 % 99.226 % 99.320 % 99.231 %

F1-Measure 98.400 % 98.239 % 98.360 % 98.211 %
False alarm rate 1.839 % 2.264 % 1.996 % 2.252 %

Missed alarm rate 1.360 % 1.254 % 1.282 % 1.321 %

Table 6.20: Experiments 3.2.1-6 with transformer encoder model finetuned with 1% of
dataset CIC-IDS2017.

3.3.1 3.3.2 3.3.3 3.3.4
Proxy task NONE MASK OBSCURE AUTO

Epochs Supervised 600 600 600 600
Training percentage
Specialized subset CIC17_10 CIC17_10 CIC17_10 CIC17_10

Training metrics
Best epoch 125 191 419 281

Time to best epoch 0h 11m 0h 18m 0h 39m 0h 26m

Performance metrics
Accuracy 93.154 % 92.099 % 93.832 % 92.398 %

Detection rate 82.865 % 84.338 % 84.675 % 82.987 %
Precision 89.271 % 84.401 % 90.310 % 86.396 %
Specificity 96.633 % 94.725 % 96.928 % 95.581 %

F1-Measure 85.949 % 84.370 % 87.402 % 84.657 %
False alarm rate 10.729 % 15.599 % 9.690 % 13.604 %

Missed alarm rate 17.135 % 15.662 % 15.325 % 17.013 %

Table 6.21: Experiments 3.3.1-6 with transformer encoder model finetuned with subset
CIC17_10 of dataset CIC-IDS2017.

71

6. Results

3.4.1 3.4.2 3.4.3 3.4.4
Proxy task NONE MASK OBSCURE AUTO

Epochs Supervised 50 50 50 50
Training percentage 10.00 % 10.00 % 10.00 % 10.00 %
Specialized subset

Training metrics
Best epoch 47 1 48 49

Time to best epoch 1h 5m 0h 2m 1h 5m 1h 7m

Performance metrics
Accuracy 98.545 % 96.728 % 98.184 % 98.527 %

Detection rate 88.111 % 25.951 % 98.897 % 81.500 %
Precision 75.079 % 58.556 % 66.337 % 77.864 %
Specificity 98.928 % 99.326 % 98.157 % 99.151 %

F1-Measure 81.075 % 35.964 % 79.409 % 79.641 %
False alarm rate 24.921 % 41.444 % 33.663 % 22.136 %

Missed alarm rate 11.889 % 74.049 % 1.103 % 18.500 %

Table 6.22: Experiments 3.4.1-6 with transformer encoder model finetuned with 10% of
dataset UNSW-NB15.

6.2.2 Pre-training of the transformer model with UNSW-NB15
Dataset

For experiments 3.6.1-4 6.24 on dataset UNSW-NB15 with subset UNSW15_10 both the
AUTO proxy task yielded minor improvements of 0.295% accuracy but with the MASK
proxy task the model accuracy fell by 1.213% as the model defaulted to guessing negative
i.e. detection rate: 0%. The accuracy improvements in experiment 3.6.4 stems from a
major increase in detection rate of an absolute 29.424% when compared to experiment
3.6.1 i.e. performance of the model without pre-training.

Surprisingly, the MASK proxy task yielded the worst results overall when looking at
accuracy as it dropped for 4/6 experiment series even though it is the most similar proxy
task used compared to the one used in Google BERT. To avoid cluttering this section
with tables we moved the per category results for the transformer model to the appendix.

6.3 Explainability
In this section we analyze the mechanisms involved in generating the results in the
previous section and analyze the datasets used. As with machine learning in general,
complete explainability is hard to achieve, hence the following attempts are our best
efforts to make sense of the results. We try to answer the questions

72

6.3. Explainability

3.5.1 3.5.2 3.5.3 3.5.4
Proxy task NONE MASK OBSCURE AUTO

Epochs Supervised 200 200 200 200
Training percentage 1.00 % 1.00 % 1.00 % 1.00 %
Specialized subset

Training metrics
Best epoch 191 129 197 197

Time to best epoch 1h 0m 0h 41m 1h 2m 1h 3m

Performance metrics
Accuracy 98.328 % 98.165 % 98.256 % 98.331 %

Detection rate 84.212 % 98.260 % 85.553 % 82.106 %
Precision 72.790 % 66.208 % 71.088 % 73.749 %
Specificity 98.845 % 98.162 % 98.722 % 98.927 %

F1-Measure 78.086 % 79.111 % 77.653 % 77.704 %
False alarm rate 27.210 % 33.792 % 28.912 % 26.251 %

Missed alarm rate 15.788 % 1.740 % 14.447 % 17.894 %

Table 6.23: Experiments 3.5.1-6 with transformer encoder model finetuned with 1% of
dataset UNSW-NB15.

• Did the pre-training have any effect on the model behavior and if yes: how did
predictions change?

• Which features were relevant for classification?

• Why did the model perform so well, even with very little training data?

• Were the datasets suited to be used for the conducted experiments?

To answer these questions, we conducted a series of tests including plotting neuron
activation data, a PD analysis, and fitting a DTC to discern the value thresholds of
features which lead to correct classifications.

6.3.1 Neuron Activation Plots
To answer the question whether pre-training had any effect at all on the behavior of the
LSTM model, we looked at neuron activations of the last stage of the LSTM, i.e. the
hidden state of the last stage of the last layer of the model after having processed the
whole data sequence, after pre-training and after fine-tuning. The plots are category
specific and where generated by processing all records of the stated attack category in
the respective dataset. The plot is then the average of all obtained values and describes
the mean neuron activation response of the model to this category.

73

6. Results

3.6.1 3.6.2 3.6.3 3.6.4
Proxy task NONE MASK OBSCURE AUTO

Epochs Supervised 600 600 600 600
Training percentage
Specialized subset UNSW15_10 UNSW15_10 UNSW15_10 UNSW15_10

Training metrics
Best epoch 563 155 161 137

Time to best epoch 0h 52m 0h 13m 0h 15m 0h 12m

Performance metrics
Accuracy 97.684 % 96.471 % 97.456 % 97.979 %

Detection rate 58.910 % 0.000 % 69.498 % 88.334 %
Precision 70.721 % 100.000 % 62.702 % 65.989 %
Specificity 99.106 % 100.000 % 98.482 % 98.333 %

F1-Measure 64.277 % 0.000 % 65.925 % 75.544 %
False alarm rate 29.279 % 0.000 % 37.298 % 34.011 %

Missed alarm rate 41.090 % 100.000 % 30.502 % 11.666 %

Table 6.24: Experiments 3.6.1-6 with transformer encoder model finetuned with subset
UNSW15_10 of dataset UNSW-NB15.

The assumption was, that if the information the model learned during pre-training proved
useful for classification the neurons which were activated after pre-training would still
be activated after fine-tuning. The same neuron activations not being present after fine-
tuning does however not mean, that pre-training had no positive effect on classification.
As we are only looking at the last stage of the last layer of the LSTM, the learned
information might have been used in a previous layer of the LSTM to influence later
layers towards a more accurate classification which would not show in these results. To
have some form of quantitative metric, we calculated the L1 loss, as a measurement
of difference between the neurons activation after pre-training and the same neurons
after fine-tuning. Instances where the neurons were not activated in either tensor, i.e.
activation level < 0.1, are omitted from the plots (but not the L1 loss calculation) to
increase readability. L1 is defined as L1 = mean(|hpretraining − hsupervised|).
As we can see in figures 6.3 and 6.4, neurons that are activated after pre-training tend to
remain activated after fine-tuning which was the case in most instances. This gives us
slightly more confidence that the model deems the information learned during pre-training
usable and does not tend to overlearn it during fine-tuning. For the reasons stated above,
no clear conclusions can be derived from these plots and metrics about the effectiveness of
pre-training. We only wanted to ensure that the models did not completely unlearn all the
information gathered during pre-training in the fine-tuning stage. This does not appear
to be the case but can also not be ruled out completely as the neuron activations might

74

6.3. Explainability

Figure 6.3: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan - Firewall off in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure 6.4: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Infiltration in dataset CIC-
IDS2017. The model was pre-trained with the ID proxy task and afterwards fine-tuning
with specialized subset CIC17_10.

coincidentally align after pre-training and fine-tuning even though they don’t correlate.
We can’t rule this out completely as we don’t know the expected value distributions of
the activated neurons.

6.3.2 Partial Dependency Plots
We started with the PD analysis on some of the features to discern their effect on the
classification of each attack type in the dataset. The resulting PDPs were generated with
the models from experiments 6.9, 6.15, 6.21, 6.24 because we assumed that pre-training
has the most impact on models trained on very little labeled training data. The features
we looked at were source port number, destination port number, protocol identifier and
packet length.

For both datasets, we generated plots to inspect how the predictions of the model change
after altering the value of the feature - ceteris paribus. The value range of each feature
was within the highest and lowest occurring value of said feature in the dataset. The
colored graph lines represent the predictions, i.e. the activation level of the output neuron
of the model trained with the respective proxy task denoted in the graph legend in the
top left corner. The histogram depicted in gray together with the right-hand side vertical
axis describes the number of flows in the used testset with this feature value. The testset
used to generate each plot contained all records of the specified category contained in the
dataset. Examples of these plots can be seen in figures 6.5 and 6.6. After we generated
the data for each tuple of (dataset x model x feature x attacktype) we generated plots
to compare the results of the different models yielding a total of 160 plots. Most of them
are of little interest as often the inspected feature had no or very little impact on the

75

6. Results

classification of the attack type. A full list of all generated PD plots can be found in the
appendix.

Figure 6.5: Partial dependency plot between feature packet length and classification
of SSH Patator attacks in the CIC-IDS2017 dataset. The histogram describes the
distribution of occurring values for feature packet length in flows of type SSH Patator.

What is immediately apparent from the the plots is that even though the final metrics
of the experiments with different proxy tasks were similar, the general behavior of the
models trained with different proxy tasks is affected by pre-training. In the range where
the actual feature values relevant for classification of specific attack categories lay, the
models behave very similar which leads to correct classification. An example of this
can be seen in figure 6.6 where, deducing from the plots and from a later inspection of
the decision tree thresholds of the fitted DTC, the source port is an important feature
when it comes to classifying SSH Patator attacks. Varying this feature leads to different
behavior of the differently trained models, but in the value range the feature actually
takes on in the dataset, i.e. the relevant section, the models behave very similar. We will
take a deeper look into this issue later in the section when we look at the structure of
the decision tree used to classify each attack category. If no such clear pattern in the
plot emerges like e.g. in plot 6.5, it means that there the value of the feature has little
impact on the classification of the attack type which is also congruent with the results
generated by the DTC which can be found later in this chapter.

76

6.3. Explainability

Figure 6.6: Partial dependency plot between feature source port and classification of SSH
Patator attacks in the CIC-IDS2017 dataset. The histogram describes the distribution of
occurring values for feature source port in flows of type SSH Patator.

6.3.3 Decision Tree Classifier

Due to the high accuracy rates the models achieved with very little training data i.e. the
specialized subsets as specified in section 4.1.1, we suspected that the datasets might
simply be easy to classify. To get additional information on how the models might
classify the data and discern benign from attack traffic, we fitted a DTC on both used
datasets and plotted the resulting decision trees. In table 6.27 we evaluated the accuracy
of the decision tree classifier with different maximum depths when tasked with binary
classification of the datasets.

The accuracy scores listed in tables 6.25 and 6.26 are based on per packet classification
so they are not completely comparable to the results from the DNN models as their
validation metrics are based on the classification of the extracted flows and not packets.
The results were generated with the exact same stratified training and validation splits
as were used for training the DL models to keep some comparability. The results were
generated with a maximum depth of 20 and 16 for datasets CIC-IDS2017 and UNSW-
NB15 respectively. With these parameters the DTC achieves peak performance before it
starts to overfit as depicted in table 6.28. This indicates that records of CIC-IDS2017
dataset might be slightly harder to classify. The high accuracy achieved by the DTC on
a packet basis without having any concept of flows or sequences might indicate that the
datasets indeed might be simply very easy to classify.

A more detailed comparison between results yielded from the DTC and the DL models
without pre-training can be found in table 6.28, again with the caveat that the DTC is
evaluated on packets and not flows, hence shifting the ratio of attack to benign records

77

6. Results

90.00 % 10.00 % 1.00 %
Actual depth 20 20 20

Fittings time [s] 288.68 29.28 2.38

Accuracy 98.193 % 97.849 % 96.874 %
Detection rate 95.101 % 94.507 % 92.718 %

Precision 94.399 % 93.140 % 89.513 %
Specificity 98.832 % 98.547 % 97.739 %

F1-Measure 94.749 % 93.819 % 91.087 %
False alarm rate 5.601 % 6.860 % 10.487 %

Missed alarm rate 4.899 % 5.493 % 7.282 %

Table 6.25: Results of a DTCs with max. depth 20 fitted to different amounts of data of
the CIC-IDS-2017 dataset.

90.00 % 10.00 % 1.00 %
Actual depth 16 16 16

Fittings time [s] 453.49 47.94 3.58

Accuracy 99.472 % 99.373 % 99.186 %
Detection rate 82.131 % 78.172 % 72.275 %

Precision 85.627 % 84.000 % 77.801 %
Specificity 99.766 % 99.741 % 99.647 %

F1-Measure 83.842 % 80.981 % 74.936 %
False alarm rate 14.373 % 16.000 % 22.199 %

Missed alarm rate 17.869 % 21.828 % 27.725 %

Table 6.26: Results of a DTCs with max. depth 16 fitted to different amounts of data of
the UNSW-NB15 dataset.

slightly. The validation subset for CIC-IDS2017 consisting of 2,493,032 packets and is
composed of 82.86% benign packets and 17.14% attack packets. In flow representation,
the dataset consists of 74.72% benign and 25.28% attack records. The validation subset
for UNSW-NB15 consisting of 6,228,573 packets and is composed of 98.33% benign
packets and 1.67% attack packets. In flow representation, the dataset consists of 96.64%
benign and 3.36% attack records. Only looking at accuracy, the DTC performs similarly
to the DL models, but other metrics e.g. FAR and MAR, are considerably worse especially
when comparing results for the cases where the models had access to 90% of the datasets.

Next we tried to fit a DTC on subsets of the datasets containing only benign flows and
flows of one attack category to obtain thresholds for the feature values which lead to the
correct classification of the different attack types. We used a maximum depth of 5 as a

78

6.3. Explainability

CIC-IDS2017 UNSW-NB15

max. depth accuracy fitting time accuracy fitting time

1 82.8558% 202.97s 98.7241% 212.02s
2 82.8558% 216.38s 98.7695% 227.32s
3 89.3871% 216.94s 98.8434% 249.41s
4 90.9993% 226.19s 98.8562% 268.7s
5 91.6236% 242.34s 98.9273% 285.73s
6 93.3365% 241.75s 99.0839% 312.4s
7 93.6416% 252.43s 99.1811% 330.9s
8 96.4964% 259.8s 99.2847% 347.64s
9 96.9901% 271.28s 99.3517% 363.32s
10 97.3088% 266.96s 99.3894% 381.01s
11 97.6354% 265.23s 99.4337% 399.33s
12 97.7696% 269.61s 99.4546% 415.14s
13 97.9199% 273.56s 99.4596% 429.8s
14 98.0323% 277.4s 99.4671% 454.4s
15 98.0646% 274.03s 99.4715% 455.26s
16 98.0982% 281.64s 99.472% 453.49s
17 98.1472% 274.37s 99.472% 457.97s
18 98.1662% 275.86s 99.468% 461.35s
19 98.1792% 276.26s 99.4609% 457.48s
20 98.1928% 288.68s 99.4531% 457.15s
21 98.1906% 297.94s 99.4447% 475.83s
22 98.167% 309.79s 99.4244% 502.92s
23 98.1783% 310.07s 99.4131% 498.34s
24 98.1524% 313.42s 99.4028% 506.54s
25 98.154% 312.18s 99.4058% 486.02s

Table 6.27: Performance of DTC for binary classification fitted on 90% of data from the
respective dataset with different maximum depth values. Accuracy was calculated on the
remaining 10% of data not used for fitting.

trade-off between accuracy and readability of the resulting decision trees. An overview of
all the results can be seen in tables 6.29 and 6.30.

The resulting trees can be inspected to discern which features are important for classifying
the different attack types. E.g. in figure 6.7 the decision tree for the classification of
SSH-Patator flows in the CIC-IDS2017 dataset is depicted. The tree is to be interpreted
as following: each node constitutes a binary split in the data. The first line in each node
contains a threshold of a feature value e.g. Destination port <= 22.5 in the root node.
All samples in the branch to the left fulfill the criterion, all samples to the right don’t.
The label gini indicates the quality of the split measured with the Gini impurity. The

79

6. Results

Trained with CIC-IDS2017 UNSW-NB15

90.00 % LSTM Transformer DTC* LSTM Transformer DTC*

Accuracy 99.796 % 99.658 % 98.193 % 98.930 % 98.743 % 99.453 %
DR 99.306 % 98.884 % 95.101 % 82.936 % 79.300 % 82.125 %

Precision 99.885 % 99.762 % 94.399 % 86.315 % 84.283 % 84.628 %
Specificity 99.961 % 99.920 % 98.832 % 99.517 % 99.457 % 99.747 %

F1-Measure 99.595 % 99.321 % 94.749 % 84.592 % 81.716 % 83.358 %
FAR 0.115 % 0.238 % 5.601 % 13.685 % 15.717 % 15.372 %
MAR 0.694 % 1.116 % 4.899 % 17.064 % 20.700 % 17.875 %

10.00% LSTM Transformer DTC* LSTM Transformer DTC*

Accuracy 99.632 % 99.448 % 97.849 % 98.654 % 98.545 % 99.322 %
DR 98.828 % 98.576 % 94.507 % 80.684 % 88.111 % 76.731 %

Precision 99.711 % 99.236 % 93.140 % 81.166 % 75.079 % 82.350 %
Specificity 99.903 % 99.743 % 98.547 % 99.313 % 98.928 % 99.714 %

F1-Measure 99.268 % 98.905 % 93.819 % 80.924 % 81.075 % 79.441 %
FAR 0.289 % 0.764 % 6.860 % 18.834 % 24.921 % 17.650 %
MAR 1.172 % 1.424 % 5.493 % 19.316 % 11.889 % 23.269 %

1.00% LSTM Transformer DTC* LSTM Transformer DTC*

Accuracy 99.385 % 99.189 % 96.874 % 98.305 % 98.328 % 99.124 %
DR 98.408 % 98.640 % 92.718 % 78.846 % 84.212 % 69.783 %

Precision 99.153 % 98.161 % 89.513 % 74.673 % 72.790 % 76.189 %
Specificity 99.716 % 99.374 % 97.739 % 99.019 % 98.845 % 99.626 %

F1-Measure 98.779 % 98.400 % 91.087 % 76.703 % 78.086 % 72.846 %
FAR 0.847 % 1.839 % 10.487 % 25.327 % 27.210 % 23.811 %
MAR 1.592 % 1.360 % 7.282 % 21.154 % 15.788 % 30.217 %

Table 6.28: Comparison between model performances without pre-training for 90%, 10%
and 1% of training data with random seed 500 and stratified sampling. DTC performance
is only partly comparable as it operates on packets and not flows.

label samples states how many samples have been passed on to this node. The label
value the current guess of the classifier for how the current set is comprised. The first
value constitutes a guess of the DTC on how many benign samples are still in the set and
second value of how many attack samples remain. The proportion of remaining benign
and attack values is also depicted in the color of the node. The label class indicates the
best guess of the DTC at this point in the tree. As the graphical representation is too
small to be printed if all leafs of the tree are present, we present only the textual tree
representation as generated by the scikit-learn ML python library [BLB+13] for those
instances. A list of all generated trees can be found in the appendix.

80

6.3. Explainability

Category # dth fit.t.[s] val.acc. tr.acc. benign[%] attack[%] > guess
Botnet ARES 0 5 154.09 99.9865 99.9865 99.9455 0.0545 Yes
FTP-Patator 1 5 152.0 99.99 99.9901 99.9762 0.0238 Yes
SSH-Patator 2 5 160.35 99.7815 99.7939 99.3285 0.6715 Yes
DDoS LOIT 3 5 180.66 96.5979 96.6016 94.2669 5.7331 Yes

DoS GoldenEye 4 5 169.65 99.5204 99.5242 99.4889 0.5111 Yes
DoS Hulk 5 5 181.88 95.1116 95.1345 90.6977 9.3023 Yes

DoS Slowhttptest 6 5 185.27 99.9043 99.9052 99.8125 0.1875 Yes
DoS slowloris 7 5 176.51 99.8859 99.878 99.7809 0.2191 Yes
Heartbleed 8 4 153.24 100.0 100.0 100.0 0.0 No
Infiltration 9 5 188.35 99.5406 99.5552 98.8194 1.1806 Yes

PortScan - Firewall off 11 5 201.47 99.8179 99.8208 98.477 1.523 Yes
PortScan - Firewall on 12 5 181.81 99.9951 99.9942 99.9934 0.0066 Yes

SQL Injection 13 5 155.59 99.9995 99.9994 99.9995 0.0005 No
XSS 14 5 166.3 99.9713 99.9717 99.9713 0.0287 No

Table 6.29: Results of the DTC discerning between benign packets and packets of a
certain attack type of dataset CIC-IDS-2017

Category # dth fit.t.[s] val.acc. tr.acc. benign[%] attack[%] > guess
Analysis 0 5 301.7 99.9933 99.9932 99.9933 0.0067 No

Backdoors 1 5 299.67 99.9942 99.9949 99.994 0.006 Yes
DoS 2 5 296.34 99.9013 99.8971 99.8954 0.1046 Yes

Exploits 3 5 305.68 99.3061 99.2947 99.0393 0.9607 Yes
Fuzzers 4 5 295.38 99.7286 99.7259 99.679 0.321 Yes
Generic 5 5 287.15 99.8845 99.8843 99.8711 0.1289 Yes

Reconnaissance 7 5 300.48 99.952 99.9531 99.8951 0.1049 Yes
Shellcode 8 5 289.53 99.9941 99.9938 99.9895 0.0105 Yes
Worms 9 5 290.39 99.9961 99.9936 99.9961 0.0039 No

Table 6.30: Results of the DTC discerning between benign packets and packets of a
certain attack type of dataset UNSW-NB15

81

6. Results

Figure 6.7: Decision tree yielded from a DTC fitted to the a subset of the CIC-IDS2017
dataset (99.329% benign samples, 0.671% attack samples) containing only benign flows
and attack flows of category SSH-Patator. The DTC achieved an accuracy of 99.781%.

82

6.3. Explainability

Tables 6.31, 6.32 and 6.33 constitute a closer look at the importance of different features
for binary classification. The values in the tables constitute the Gini importance or mean
decrease impurity which are defined as the total decrease in node impurity i.e. the Gini
impurity in our case [BLB+13].

In table 6.31 the importances of the different features from both datasets are compared.
The destination port and the packet length were the most valuable features for binary
classification for the CIC-IDS2017 and UNSW-NB15 datasets respectively. The URG,
ECE, CWR and NS flags seem to be of no importance to classification, but that is
probably due to the fact that they are rarely used. Noteworthy is that for the two
datasets different features are of high importance which suggests the conclusion that they
are easy to classify due to different reasons.

Gini importance
CIC-IDS2017

(max depth = 20)
UNSW-NB15

(max depth = 16)
Source port 0.1007 0.0270

Destination port 0.3987 0.1916
Protocol 0.0081 0.0043

Packet Length 0.1279 0.5227
Interarrival time 0.2409 0.0848

Direction 0.0373 0.0083
SYN Flag 0.0084 0.0057
FIN Flag 0.0174 0.0005
RST Flag 0.0261 0.0004
PSH Flag 0.0234 0.1318
ACK Flag 0.0110 0.0230
URG Flag 0.0000 0.0000
ECE Flag 0.0000 0.0000

CWR Flag 0.0000 0.0000
NS Flag 0.0000 0.0000

Table 6.31: Normalized Gini importances of features resulting from a DTC fitted on 90%
of data from the respective dataset. Highest values are marked bold.

In tables 6.32 and 6.33 the normalized feature importance was calculate for trees fitted
on subsets containing only benign flows and one selected attack category, processed by
a DTC or depth 5. The most important feature for classifying the respective attack
category is again marked bold. These results are mostly consistent with our results from
the PD plots, even though in that case evaluation was done on flows and not packets.
E.g. the high importance of Source Port feature when classifying the SSH-Patator attack
category is reflected in the PD plot 6.6 above. Features might change in importance
when looked at in a flow context instead of only looking at single packets.

83

6. Results

Bo
tn

et
A

R
ES

FT
P-

Pa
ta

to
r

SS
H

-P
at

at
or

D
D

oS
LO

IT

D
oS

G
ol

de
nE

ye

D
oS

H
ul

k

D
oS

Sl
ow

ht
tp

te
st

D
oS

slo
w

lo
ris

H
ea

rt
bl

ee
d

In
fil

tr
at

io
n

Po
rt

Sc
an

-F
ire

wa
ll

off

Po
rt

Sc
an

-F
ire

wa
ll

on

SQ
L

In
je

ct
io

n

X
SS

Source port 0.14 0.82 0.58 0.04 0.35 0.0 0.05 0.05 0.95 0.06 0.31 0.0 0.58 0.0
Destination port 0.58 0.03 0.26 0.16 0.45 0.5 0.27 0.02 0.05 0.29 0.34 0.0 0.22 0.23

Protocol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.13 0.0 0.0
Packet Length 0.0 0.02 0.01 0.45 0.15 0.17 0.02 0.75 0.0 0.13 0.15 0.42 0.0 0.14

Interarrival time 0.0 0.12 0.14 0.18 0.01 0.22 0.53 0.02 0.0 0.0 0.16 0.07 0.2 0.36
Direction 0.0 0.0 0.0 0.0 0.04 0.0 0.05 0.0 0.0 0.04 0.0 0.35 0.0 0.0
SYN Flag 0.0 0.0 0.0 0.07 0.0 0.0 0.02 0.04 0.0 0.4 0.0 0.01 0.0 0.0
FIN Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.27
RST Flag 0.13 0.02 0.0 0.09 0.0 0.0 0.01 0.02 0.0 0.09 0.04 0.01 0.0 0.0
PSH Flag 0.0 0.0 0.0 0.0 0.0 0.01 0.04 0.1 0.0 0.0 0.0 0.0 0.0 0.0
ACK Flag 0.14 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
URG Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ECE Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CWR Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NS Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6.32: Normalized Gini importances of features for classification of attack categories
as decerned by a DTC of max. depth 5 fitted on 90% of dataset CIC-IDS-2017. The
highest value is marked bold.

A
na

ly
sis

Ba
ck

do
or

s

D
oS

Ex
pl

oi
ts

Fu
zz

er
s

G
en

er
ic

R
ec

on
na

iss
an

ce

Sh
el

lc
od

e

W
or

m
s

Source port 0.23 0.1 0.02 0.0 0.06 0.0 0.01 0.03 0.1
Destination port 0.61 0.3 0.55 0.21 0.3 0.39 0.73 0.46 0.2

Protocol 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.01
Packet Length 0.16 0.47 0.34 0.55 0.6 0.3 0.26 0.23 0.05

Interarrival time 0.0 0.06 0.02 0.06 0.01 0.08 0.0 0.28 0.11
Direction 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.15
SYN Flag 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FIN Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RST Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PSH Flag 0.0 0.0 0.07 0.16 0.02 0.16 0.0 0.0 0.38
ACK Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
URG Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ECE Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CWR Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NS Flag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6.33: Normalized Gini importances of features for classification of attack categories
as decerned by a DTC of max. depth 5 fitted on 90% of dataset UNSW-NB15. The
highest value is marked bold.

84

CHAPTER 7
Discussion

In this thesis we set out to inspect the possible benefits of pre-training on LSTM and
transformer encoder models to answer the questions:

• R1: Can self-supervised pre-training improve the flow classification capabilities of
an LSTM model?

• R2: Can self-supervised pre-training improve the flow classification capabilities of
a transformer encoder model?

• R3: Which pre-training tasks improve accuracy and which do not?

• R4: If improvement is possible, how can it be explained?

The results of our experiments appear to be inconclusive. Some experiments have shown
minor improvements, but later experiments with the same proxy task and less data have
shown either no improvement or worse performance. As can be seen in tables 7.1 and
7.2, the LSTM model seems to be more receptive for pre-training but no clear pattern
emerges which could point at a proxy-task that generally improves accuracy when used
in pre-training. The first and second research questions, R1 and R2, must therefore be
answered with "it depends":

• A1: Yes, pre-training can improve flow classification accuracy of LSTM models in
some instances, but it can not be concluded that this is generally so.

Referring to section 7.2 it can be seen that pre-training seems to have even less positive
impact on the transformer model compared to the LSTM model in general, but still
yielded some positive results for experiments with very little supervised data, i.e. the
dedicated subsets used for experiments 3.3.3 and 3.6.4 as can be seen in tables 6.21 and
6.24.

85

7. Discussion

• A2: Yes, pre-training can improve flow classification accuracy of transformer encoder
models in very specific instances, but in most cases, it does not.

We could name the predict packet (PREDICT) and surprisingly the identity function
(ID) proxy task as most likely to improve final accuracy of the LSTM model. In table
7.1 we can see that the highest overall absolute increase in accuracy of 0.594% was also
achieved with pre-training with the ID proxy task in experiment 2.3.5 6.9.

• A3: The predict packet (PREDICT) and identity function (ID) proxy tasks where
most effective in increasing flow classification accuracy for LSTM models in our
experiments. For transformer encoder models it was the auto-encoder (AUTO)
proxy task with 20% dropout rate.

As is often the case, complete explainability for NNs is hard to achieve. From the PD
plots we can deduce that pre-training had a significant impact on the internal behavior of
the models. The differences in neuron activations after pre-training with different proxy
tasks suggests the same thing. We can therefore conclude that the internal representation
of data is influenced in a positive way in the instances where pre-training improved
classification accuracy when compared to a model with randomly initialized weights.

• A4: Pre-training can be seen as a non-random weight initialization before conducting
supervised training which leads to an alternate internal data representation in the
hidden state and ultimately to an increase in flow classification accuracy.

The fact that any improvement was observable at all is already promising, when consider-
ing that the baseline results of exclusively supervised trained models are already very high
when compared to other state-of-the-art results for the used datasets in contemporary
research. Increasing accuracy ever so slightly without the need for more labeled data
might make an ML based IDS feasible in a real world scenario when before it was not.
There could be several reasons why no conclusive pattern can be found in the results:

The achieved accuracy scores by the models when fine-tuned with 90% of data were in the
high 99.x percent 6.28 and even with only one percent of data used for training, accuracy
was still over 99%. The flow representation used omits the packet payload, so payload
based attacks like SQL Injection or XSS attacks are very hard, if not impossible, to
detect. There might simply be very little room for improvement. So even if pre-training
were effective, it would not show up in our results. One approach to mitigate this effect
would be to switch to multinomial classification of the exact attack type instead of binary
classification. This approach increases fine-tuning training time, but since unsupervised
pre-training takes disproportionately longer than fine-tuning at the moment, overall
training time would not increase significantly.

86

Experiments (#) PREDICT(2) OBSCURE(3) AUTO(4) ID(5) COMPOSITE(6)

CIC-IDS2017
10% (2.1.x) 0.073% -0.012% -0.002% 0.095% 0.101%
1% (2.2.x) 0.178% -0.075% -0.007% 0.094% 0.136%

CIC2017_10 (2.3.x) -1.609% -2.327% -0.744% 0.594% -1.453%
UNSW-NB15

10% (2.4.x) 0.083% 0.067% 0.045% 0.086% 0.037%
1% (2.5.x) 0.108% 0.043% 0.137% 0.099% 0.024%

UNSW15_10 (2.6.x) 0.005% -0.115% 0.010% -0.089% -0.168%
Max. absolute

accuracy increase 0.178% 0.067% 0.137% 0.594% 0.136%

Table 7.1: Absolute differences of validation accuracy between differently pre-trained
LSTM model and the same model without pre-training. The highest value of each row is
marked bold.

Experiments (#) MASK(2) OBSCURE(3) AUTO(4)

CIC-IDS2017
10% (3.1.x) -0.037% -0.724% -0.135%
1% (3.2.x) -0.084% -0.021% -0.098%

CIC2017_10 (3.3.x) -1.055% 0.678% -0.756%
UNSW-NB15

10% (3.4.x) -1.817% -0.361% -0.018%
1% (3.5.x) -0.163% -0.072% 0.003%

UNSW15_10 (3.6.x) -1.213% -0.228% 0.295%
Max. absolute

accuracy increase 0.037% 0.678% 0.295%

Table 7.2: Absolute differences of validation accuracy between differently pre-trained
transformer model and the same model without pre-training. The highest value of each
row is marked bold.

87

7. Discussion

In accordance with the last point, the datasets we used seem to be easy to classify.
Even though not completely comparable, the results from the DTC alone show that
records in both datasets can be classified with high accuracy, i.e. about 97% or more
6.28 even without access to flow information. The lack of complexity of the data might
be another reason why pre-training in this case showed no improvement as supervised
training was always sufficient to extract all relevant information from the input data. To
inspect this hypothesis, a more challenging dataset should be used or a combination of
different datasets. Ideal would be actual captured traffic of a mid size company during a
penetration test.
Word embeddings are an integral part of modern NLP systems. This aspect is not included
in our process since our feature vectors were already given. As our feature representation
contains some qualitative features which are mapped to a mostly arbitrary number e.g.
the IP protocol identifier and port numbers, creating embeddings for qualitative features
and tuning them to the task at hand might lead to improvement in overall accuracy,
independent of whether pre-training is used or not.
Insufficient data or model complexity might be another reason why pre-training has
produced no consistent improvement. Google BERT [DCLT18] uses a model with 110
million parameters in its BASE version and 340 million in its LARGE version. In
comparison, our LSTM model consists of 5.3 million parameters and the transformer
encoder model only contains 74 thousand parameters. In the original paper about BERT,
google claims to have pre-trained their model on a corpus of about 3.3 billion words.
During our work on this thesis many new NLP models like Googles T5 [RSR+19], Nvidias
Megatron [SPP+19] were presented with the largest one being OpenAIs GPT-3 with 175
billion parameters, pre-trained on 410 billion tokens [BMR+20]. The datasets we are
using contain around 25 million packets each which is two magnitudes smaller than the
corpus Googles BERT was trained on. Larger models or significantly larger datasets
would not have been feasible in our case due to lack of computational resources. One of
these two reasons, i.e. either lack of model complexity or pre-training data, might be the
cause of our inconclusive results. This hypothesis is of course not easily checked without
the necessary resources. As already stated above, the dataset used for unsupervised
pre-training could be magnified by merging multiple datasets together or even using
available unlabeled network traffic data for pre-training.
Unsuited proxy tasks could also be a reason why pre-training showed little effect. The
used proxy tasks appeared to us as most intuitive but other choices might have been
more effective. There is also the possibility of pre-training using labeled data e.g. where a
custom dataset is constructed where flows are labeled with the application layer protocol
the flow is part of. Other unsupervised training methods might also be feasible e.g.
energy-based unsupervised learning [RBCL07]. The possible approaches here are many
and we have by no means explored all our options.
Looking at the validation and training loss progression during supervised fine-tuning, it
shows that especially in experiments where models are trained on only 1% of the dataset
or even less, i.e. with the specialized subsets, the models start to overfit heavily. It

88

might be that the effects of overfitting in these scenarios mitigates any positive effect
pre-training might have had. During fine-tuning the model learns two things: Patterns
in the data based on the label, but also how to classify data at all. At the very least, the
fully connected layer must be trained for classification in the fine-tuning phase. During
pre-training the model might have constructed a perfectly useful latent feature space,
but it has not yet learned how to do actual classification based on it. This poses the
difficulty of teaching the model how to classify, but not overfit it on the little data it
has, overwriting any possible gains from pre-training. Deducted from this hypothesis, it
should be a requirement that the time the model takes to converge should be greater
than the time the model learns to classify at all. This problem is implicitly mitigated by
increasing the size of the dataset.

Furthermore, pre-training was performed with parts of the same dataset which was also
used for supervised fine-tuning and for validation. Even though the labels where ignored,
the data used for pre-training contained attack flows. If anything, this is most likely
beneficial for possible positive effects on the final accuracy and metrics and has to be
considered when trying to reproduce the results. This effect could be mitigated e.g. by
using one dataset for pre-training and a different dataset for fine-tuning. In a real world
setting however our scenario is more likely to apply as for pre-training a NIDS it would
make most sense to train the model with network traffic captured within the network the
system is going to protect. This would also mean that it has to be assumed that the data
also contains some attack flows as there is no way of asserting otherwise. For a real world
application this approach also assures that the models learn common patterns of the
specific networks they are going to be used in. It might even make sense to re-train or at
least update the model periodically with recent data. Unfortunately network protocols
are not as universal as natural language which makes transfer learning more difficult .i.e.
it would be hard to teach the model universal patterns of network traffic. An ad-hoc
approach tailored to the traffic of a single specific network is more likely to yield usable
results in the near future.

An unsuited data representation might stifle the effectiveness of the used models. Even
after deciding to use a flow representation, there is a wide selection of feature spaces
[MZIV18]. Our analysis of the datasets in section 6.3.3, in particular table 6.31, shows
that a lot of importance is accumulated in a few features while others are mostly
irrelevant which shows that the selection of the correct feature and data representation
has a significant effect on the performance of the models. Omitting unused or irrelevant
features from the data representation would drastically decrease training time, but it is
of course impossible to tell a priori if a feature is going to be relevant for classification of
the data at hand. There are however feature selection and feature reduction methods
that can and should be applied.

We used a flow representation of per-packet feature vectors instead of the often used
approach of aggregating all packets of a flow into a single feature vector containing
statistical data. This was, as already explained in earlier sections, to enable the use of
machine learning techniques used in NLP which almost exclusively expect a sequences of

89

7. Discussion

Experiment # PREDICT(2) OBSCURE(3) AUTO(4) ID(5) COMPOSITE(6)

CIC-IDS2017
10% (2.1.x) Yes No No Yes Yes
1% (2.2.x) Yes No No Yes Yes

CIC2017_10 (2.3.x) No No No Yes No

UNSW-NB15
10% (2.4.x) Yes Yes Yes Yes Yes
1% (2.5.x) Yes Yes Yes Yes Yes

UNSW15_10 (2.6.x) Yes No Yes No No
Cases in which

pre-training
improved accuracy

5/6 2/6 3/6 5/6 4/6

Table 7.3: Table of comparisons whether accuracy improved for pre-trained LSTM models
when compared to supervised only trained baseline experiments.

Experiments (#) MASK(2) OBSCURE(3) AUTO(4)

CIC-IDS2017
10% (3.1.x) No No No
1% (3.2.x) No No No

CIC2017_10 (3.3.x) No Yes No
UNSW-NB15

10% (3.4.x) No No No
1% (3.5.x) No No Yes

UNSW15_10 (3.6.x) No No Yes
Cases in which

pre-training
improved accuracy

0/6 1/6 2/6

Table 7.4: Table of comparisons whether accuracy improved for pre-trained transformer
models when compared to supervised only trained baseline experiments.

tokens as input. When considering the immense overhead of using sequences instead of a
single vector and looking at the results of the DTC which has no concept of flows but
still performs reasonably well, there might be better ways to build meaningful sequences.
A possible approach is to use a sequence constituting of aggregated data over specified
consecutive time frames comes to mind, which has already been used in other papers like
[TICE19], [MDES18].

90

While machine learning researchers in the realm of NLP are already trying to move past
the pre-training / fine-tuning paradigm [BMR+20], it is yet to be explored in the context
of NID. We contributed by applying these established methods in an attempt to harness
them for the very needed improvement of machine learning based NID. Although by no
means exhaustive, we managed to achieve a useful primer by using both state-of-the-art
models and techniques combined with careful inspection of the obtained results and
the used data. The tables 7.3 and 7.4 serve as a final overview on the instances in
which pre-training actually improved classification accuracy. Considering the difficulties
and shortcomings stated above, the fact that it was possible to improve classification
accuracy in some instances remains an encouraging pointer towards the feasibility of the
approach overall. Taking into account that the datasets used seem to be a mismatch for
our experiments and the fact that results from experiments with the specialized subsets
should be ignored due to the negative effects of overfitting, the results for the LSTM
model become a lot more promising. The facts that improvements were only minor and
that our experiments were quite narrow in the sense that we only performed them on two
datasets and with the same random seed, remain. For these reasons further inquiry is
needed, applying the lessons we learned with our research, to confirm that the results are
generalizable for sequence2sequence models in the context of deep learning based NID.

91

CHAPTER 8
Conclusion

The goal of our research was to explore possible applications of advancements made in
other domains like NLP or visual computing to the field of NIDS. In particular we looked
at pre-training with proxy tasks that has been successfully applied to solve NLP problems.
Possible combinations of different data representations, models, parameterization and
techniques span a vast design space which we carefully navigated to cover as much ground
as was possible with the resources, computational and temporal, at hand. For this we
selected two promising models for sequence processing: A RNN with LSTM cells and
the attention based transformer model to perform binary classification on the NIDS
datasets CIC-IDS2017 and UNSW-NB15. For pre-training, we devised different tasks
for the models which would force them to find patterns and structure in the data and
which could be evaluated without the need for human made labels. With the powerful
PyTorch suite at its core, we developed a framework in about 5000 lines of Python code to
automate training and results generation to make them as reproducible as possible. With
an array of 66 experiments we tried to unearth any potential improvements pre-training
might yield. As even this was not enough to give us a definitive direction to pursue, we
dug deeper into the inner workings of the models and the structure of the data to maybe
shed light on what worked and what did not and why. The result of our endeavor is
a broad overview of possible approaches to self-supervised training on state-of-the-art
machine learning models and an in-depth look into the patterns and structures in the
data which allow the models to learn and improve during training. Although results
where mostly inconclusive or insufficient for generalization, it is to consider that our
experiments were far from exhaustive. As we discussed in previous sections, the datasets
might simply be too easy to classify and there might have been little room for results to
be improved by pre-training when compared to purely supervised training. One might
try pre-training with more data, or with a different dataset than is used for supervised
training. Different, cleverer proxy tasks might be a way to make pre-training effective.
Just trying out different kinds of auto-encoders, of which there are many by now, might

93

8. Conclusion

yield interesting results. We contributed to the topic at hand by delivering a promising
primer and ideas which might act as a venture point for further inquiries. The code we
produced and the lessons we learned during the way are documented and will hopefully
guide future approaches of self-supervised machine learning based NID.

94

APPENDIX A
95

A. Appendix

Appendix

A.1 Transformer per Category Results

1.3.1 3.1.1 3.2.1 3.3.1
Class # NONE NONE NONE NONE

Botnet ARES 0 93.243% 93.333% 96.053% 97.333%
FTP-Patator 1 64.000% 44.000% 3.846% 73.077%
SSH-Patator 2 99.203% 96.850% 92.126% 98.431%
DDoS LOIT 3 99.989% 99.915% 99.936% 99.679%

DoS GoldenEye 4 100.000% 99.325% 96.486% 90.566%
DoS Hulk 5 100.000% 99.996% 99.970% 66.554%

DoS Slowhttptest 6 99.760% 98.804% 98.329% 92.271%
DoS slowloris 7 100.000% 99.742% 94.241% 90.181%
Heartbleed 8 100.000% 100.000% 100.000% 100.000%
Infiltration 9 94.491% 93.066% 92.637% 90.164%

Benign 10 99.920% 99.743% 99.374% 96.633%
PortScan - Firewall off 11 99.142% 98.889% 99.736% 92.416%
PortScan - Firewall on 12 73.684% 73.684% 86.486% 94.737%

SQL Injection 13 0.000% 0.000% 0.000% 100.000%
XSS 14 4.412% 0.000% 0.000% 29.412%

Benign 10 99.920% 99.743% 99.374% 96.633%
Attack !10 98.884% 98.576% 98.640% 82.865%
Overall ALL 99.658% 99.448% 99.189% 93.154%

Table A.1: Per category accuracy analysis of experiments 1.3.1, 3.1.1, 3.2.1 and 3.3.1 with
transformer encoder model trained in a purely supervised fashion on different amounts
of data from dataset CIC-IDS2017.

96

A.1. Transformer per Category Results

3.2.1 3.2.2 3.2.3 3.2.4
Class # NONE MASK OBSCURE AUTO

Botnet ARES 0 96.053% 92.000% 88.158% 93.333%
FTP-Patator 1 3.846% 0.000% 44.000% 8.000%
SSH-Patator 2 92.126% 94.882% 94.444% 98.425%
DDoS LOIT 3 99.936% 99.989% 99.925% 99.968%

DoS GoldenEye 4 96.486% 98.649% 97.820% 97.564%
DoS Hulk 5 99.970% 99.927% 99.957% 99.948%

DoS Slowhttptest 6 98.329% 99.282% 97.108% 94.724%
DoS slowloris 7 94.241% 96.891% 95.822% 94.026%
Heartbleed 8 100.000% 100.000% 100.000% 100.000%
Infiltration 9 92.637% 93.096% 93.001% 92.772%

Benign 10 99.374% 99.226% 99.320% 99.231%
PortScan - Firewall off 11 99.736% 99.748% 99.773% 99.817%
PortScan - Firewall on 12 86.486% 76.316% 72.973% 75.000%

SQL Injection 13 0.000% 0.000% 0.000% 0.000%
XSS 14 0.000% 0.000% 0.000% 0.000%

Benign 10 99.374% 99.226% 99.320% 99.231%
Attack !10 98.640% 98.746% 98.718% 98.679%
Overall ALL 99.189% 99.105% 99.168% 99.091%

Table A.2: Per category accuracy analysis of experiments 3.2.1-6 with transformer encoder
model finetuned with 1% of dataset CIC-IDS2017.

97

A. Appendix

3.3.1 3.3.2 3.3.3 3.3.4
Class # NONE MASK OBSCURE AUTO

Botnet ARES 0 97.333% 97.368% 97.368% 100.000%
FTP-Patator 1 73.077% 61.538% 38.462% 88.462%
SSH-Patator 2 98.431% 86.667% 94.466% 98.828%
DDoS LOIT 3 99.679% 98.121% 99.251% 99.808%

DoS GoldenEye 4 90.566% 90.946% 96.221% 93.631%
DoS Hulk 5 66.554% 64.833% 66.073% 76.947%

DoS Slowhttptest 6 92.271% 96.659% 96.394% 95.433%
DoS slowloris 7 90.181% 96.114% 90.439% 90.415%
Heartbleed 8 100.000% 100.000% 100.000% 100.000%
Infiltration 9 90.164% 92.623% 91.751% 63.775%

Benign 10 96.633% 94.725% 96.928% 95.581%
PortScan - Firewall off 11 92.416% 99.773% 99.123% 89.737%
PortScan - Firewall on 12 94.737% 83.333% 88.889% 76.316%

SQL Injection 13 100.000% 0.000% 0.000% 0.000%
XSS 14 29.412% 100.000% 4.478% 73.529%

Benign 10 96.633% 94.725% 96.928% 95.581%
Attack !10 82.865% 84.338% 84.675% 82.987%
Overall ALL 93.154% 92.099% 93.832% 92.398%

Table A.3: Per category accuracy analysis of experiments 3.3.1-6 with transformer encoder
model finetuned with subset CIC17_10 of dataset CIC-IDS2017.

98

A.1. Transformer per Category Results

3.1.1 3.1.2 3.1.3 3.1.4
Class # NONE MASK OBSCURE AUTO

Botnet ARES 0 93.333% 94.595% 3.947% 1.316%
FTP-Patator 1 44.000% 3.846% 0.000% 3.846%
SSH-Patator 2 96.850% 94.902% 0.000% 92.126%
DDoS LOIT 3 99.915% 99.968% 99.947% 99.979%

DoS GoldenEye 4 99.325% 98.654% 91.757% 98.922%
DoS Hulk 5 99.996% 99.991% 99.909% 99.991%

DoS Slowhttptest 6 98.804% 98.801% 95.943% 98.558%
DoS slowloris 7 99.742% 97.172% 96.382% 99.741%
Heartbleed 8 100.000% 100.000% 100.000% 100.000%
Infiltration 9 93.066% 93.237% 91.982% 92.937%

Benign 10 99.743% 99.690% 98.994% 99.613%
PortScan - Firewall off 11 98.889% 98.980% 99.704% 98.946%
PortScan - Firewall on 12 73.684% 81.579% 76.316% 86.486%

SQL Injection 13 0.000% 100.000% 0.000% 100.000%
XSS 14 0.000% 0.000% 0.000% 0.000%

Benign 10 99.743% 99.690% 98.994% 99.613%
Attack !10 98.576% 98.584% 97.927% 98.427%
Overall ALL 99.448% 99.411% 98.724% 99.313%

Table A.4: Per category accuracy analysis of experiments 3.1.1-6 with transformer encoder
model finetuned with 10% of dataset CIC-IDS2017.

99

A. Appendix

1.4.1 3.4.1 3.5.1 3.6.1
Class # NONE NONE NONE NONE

Analysis 0 22.642% 25.000% 69.811% 75.000%
Backdoors 1 87.500% 100.000% 76.923% 72.500%

DoS 2 87.595% 87.468% 85.751% 67.595%
Exploits 3 93.370% 93.899% 90.283% 66.793%
Fuzzers 4 46.258% 73.537% 67.714% 43.258%
Generic 5 93.224% 96.028% 90.187% 67.849%
Normal 6 99.457% 98.928% 98.845% 99.106%

Reconnaissance 7 94.510% 97.561% 94.458% 55.228%
Shellcode 8 96.129% 98.710% 96.711% 89.032%
Worms 9 94.737% 94.737% 100.000% 89.474%

Benign 6 99.457% 98.928% 98.845% 99.106%
Attack !6 79.300% 88.111% 84.212% 58.910%
Overall ALL 98.743% 98.545% 98.328% 97.684%

Table A.5: Per category accuracy analysis of experiments 1.4.1, 3.4.1, 3.5.1 and 3.6.1 with
transformer encoder model trained in a purely supervised fashion on different amounts
of data from dataset UNSW-NB15.

3.4.1 3.4.2 3.4.3 3.4.4
Class # NONE MASK OBSCURE AUTO

Analysis 0 25.000% 19.231% 100.000% 19.231%
Backdoors 1 100.000% 7.500% 85.000% 70.000%

DoS 2 87.468% 18.066% 97.222% 72.222%
Exploits 3 93.899% 14.340% 98.383% 87.880%
Fuzzers 4 73.537% 31.864% 99.517% 63.628%
Generic 5 96.028% 30.374% 98.829% 90.845%
Normal 6 98.928% 99.326% 98.157% 99.151%

Reconnaissance 7 97.561% 42.617% 99.916% 97.315%
Shellcode 8 98.710% 52.903% 100.000% 99.355%
Worms 9 94.737% 15.789% 100.000% 89.474%

Benign 6 98.928% 99.326% 98.157% 99.151%
Attack !6 88.111% 25.951% 98.897% 81.500%
Overall ALL 98.545% 96.728% 98.184% 98.527%

Table A.6: Per category accuracy analysis of experiments 3.4.1-6 with transformer encoder
model finetuned with 10% of dataset UNSW-NB15.

100

A.1. Transformer per Category Results

3.5.1 3.5.2 3.5.3 3.5.4
Class # NONE MASK OBSCURE AUTO

Analysis 0 69.811% 96.296% 59.259% 29.630%
Backdoors 1 76.923% 85.000% 76.923% 61.538%

DoS 2 85.751% 97.710% 81.218% 73.858%
Exploits 3 90.283% 97.619% 89.099% 87.483%
Fuzzers 4 67.714% 98.936% 77.183% 68.837%
Generic 5 90.187% 96.503% 88.028% 90.376%
Normal 6 98.845% 98.162% 98.722% 98.927%

Reconnaissance 7 94.458% 99.916% 93.182% 92.593%
Shellcode 8 96.711% 98.701% 87.662% 98.052%
Worms 9 100.000% 100.000% 88.889% 100.000%

Benign 6 98.845% 98.162% 98.722% 98.927%
Attack !6 84.212% 98.260% 85.553% 82.106%
Overall ALL 98.328% 98.165% 98.256% 98.331%

Table A.7: Per category accuracy analysis of experiments 3.5.1-6 with transformer encoder
model finetuned with 1% of dataset UNSW-NB15.

3.6.1 3.6.2 3.6.3 3.6.4
Class # NONE MASK OBSCURE AUTO

Analysis 0 75.000% 0.000% 77.358% 100.000%
Backdoors 1 72.500% 0.000% 75.000% 82.500%

DoS 2 67.595% 0.000% 67.513% 91.349%
Exploits 3 66.793% 0.000% 57.846% 92.509%
Fuzzers 4 43.258% 0.000% 75.676% 88.389%
Generic 5 67.849% 0.000% 61.321% 95.093%
Normal 6 99.106% 100.000% 98.482% 98.333%

Reconnaissance 7 55.228% 0.000% 86.207% 73.249%
Shellcode 8 89.032% 0.000% 99.355% 94.839%
Worms 9 89.474% 0.000% 78.947% 100.000%

Benign 6 99.106% 100.000% 98.482% 98.333%
Attack !6 58.910% 0.000% 69.498% 88.334%
Overall ALL 97.684% 96.471% 97.456% 97.979%

Table A.8: Per category accuracy analysis of experiments 3.6.1-6 with transformer encoder
model finetuned with subset CIC17_10 of dataset UNSW-NB15.

101

A. Appendix

A.2 Training and Validation Loss

Figure A.1: Plot of mean validation loss per epoch progression during fine-tuning on the
LSTM model with 10% of dataset CIC-IDS2017.

A.3 Partial Dependency Plots

102

A.3. Partial Dependency Plots

Figure A.2: Plot of mean training loss per epoch progression during fine-tuning on the
LSTM model with 10% of dataset CIC-IDS2017.

Figure A.3: Plot of mean validation loss per epoch progression during fine-tuning on the
LSTM model with specialized subset UNSW15_10.

103

A. Appendix

Figure A.4: Plot of mean training loss per epoch progression during fine-tuning on the
LSTM model with specialized subset UNSW15_10.

Figure A.5: Plot of mean validation loss per epoch progression during fine-tuning on the
LSTM model with 10% of dataset UNSW-NB15.

104

A.3. Partial Dependency Plots

Figure A.6: Plot of mean training loss per epoch progression during fine-tuning on the
LSTM model with 10% of dataset UNSW-NB15.

Figure A.7: Plot of mean validation loss per epoch progression during fine-tuning on the
LSTM model with 1% of dataset CIC-IDS2017.

105

A. Appendix

Figure A.8: Plot of mean training loss per epoch progression during fine-tuning on the
LSTM model with 1% of dataset CIC-IDS2017.

Figure A.9: Plot of mean validation loss per epoch progression during fine-tuning on the
LSTM model with 1% of dataset UNSW-NB15.

106

A.3. Partial Dependency Plots

Figure A.10: Plot of mean training loss per epoch progression during fine-tuning on the
LSTM model with 1% of dataset UNSW-NB15.

Figure A.11: Plot of mean validation loss per epoch progression during fine-tuning on
the LSTM model with specialized subset CIC17_10.

107

A. Appendix

Figure A.12: Plot of mean training loss per epoch progression during fine-tuning on the
LSTM model with specialized subset CIC17_10.

Figure A.13: Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with 10% of dataset CIC-IDS2017.

108

A.3. Partial Dependency Plots

Figure A.14: Plot of mean training loss per epoch progression during fine-tuning on the
Transformer model model with 10% of dataset CIC-IDS2017.

Figure A.15: Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with specialized subset UNSW15_10.

109

A. Appendix

Figure A.16: Plot of mean training loss per epoch progression during fine-tuning on the
Transformer model model with specialized subset UNSW15_10.

Figure A.17: Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with 10% of dataset UNSW-NB15.

110

A.3. Partial Dependency Plots

Figure A.18: Plot of mean training loss per epoch progression during fine-tuning on the
Transformer model model with 10% of dataset UNSW-NB15.

Figure A.19: Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with 1% of dataset CIC-IDS2017.

111

A. Appendix

Figure A.20: Plot of mean training loss per epoch progression during fine-tuning on the
Transformer model model with 1% of dataset CIC-IDS2017.

Figure A.21: Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with 1% of dataset UNSW-NB15.

112

A.3. Partial Dependency Plots

Figure A.22: Plot of mean training loss per epoch progression during fine-tuning on the
Transformer model model with 1% of dataset UNSW-NB15.

Figure A.23: Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with specialized subset CIC17_10.

113

A. Appendix

Figure A.24: Plot of mean training loss per epoch progression during fine-tuning on the
Transformer model model with specialized subset CIC17_10.

Figure A.25: PDP showing the influence of value variations of feature Destination port
on classification of DoS Slowhttptest attacks of the LSTM pre-trained with proxy tasks
as define in 5.1 finetuned with specialized subset CIC17_10.

114

A.3. Partial Dependency Plots

Figure A.26: PDP showing the influence of value variations of feature Destination port
on classification of XSS attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset CIC17_10.

Figure A.27: PDP showing the influence of value variations of feature Protocol on
classification of Benign attacks of the LSTM pre-trained with proxy tasks as define in 5.1
finetuned with specialized subset CIC17_10.

115

A. Appendix

Figure A.28: PDP showing the influence of value variations of feature Source port on
classification of FTP-Patator attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

Figure A.29: PDP showing the influence of value variations of feature Destination port on
classification of Infiltration attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

116

A.3. Partial Dependency Plots

Figure A.30: PDP showing the influence of value variations of feature Packet Length on
classification of FTP-Patator attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

Figure A.31: PDP showing the influence of value variations of feature Source port on
classification of XSS attacks of the LSTM pre-trained with proxy tasks as define in 5.1
finetuned with specialized subset CIC17_10.

117

A. Appendix

Figure A.32: PDP showing the influence of value variations of feature Destination port
on classification of DoS GoldenEye attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.33: PDP showing the influence of value variations of feature Packet Length on
classification of Benign attacks of the LSTM pre-trained with proxy tasks as define in 5.1
finetuned with specialized subset CIC17_10.

118

A.3. Partial Dependency Plots

Figure A.34: PDP showing the influence of value variations of feature Protocol on
classification of PortScan - Firewall off attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.35: PDP showing the influence of value variations of feature Destination port
on classification of DoS Hulk attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

119

A. Appendix

Figure A.36: PDP showing the influence of value variations of feature Destination port
on classification of Benign attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset CIC17_10.

Figure A.37: PDP showing the influence of value variations of feature Packet Length
on classification of DoS slowloris attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

120

A.3. Partial Dependency Plots

Figure A.38: PDP showing the influence of value variations of feature Packet Length on
classification of DoS Slowhttptest attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.39: PDP showing the influence of value variations of feature Protocol on
classification of DoS Hulk attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset CIC17_10.

121

A. Appendix

Figure A.40: PDP showing the influence of value variations of feature Packet Length on
classification of SSH-Patator attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

Figure A.41: PDP showing the influence of value variations of feature Packet Length on
classification of DoS GoldenEye attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

122

A.3. Partial Dependency Plots

Figure A.42: PDP showing the influence of value variations of feature Source port on
classification of DoS GoldenEye attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.43: PDP showing the influence of value variations of feature Packet Length on
classification of Infiltration attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

123

A. Appendix

Figure A.44: PDP showing the influence of value variations of feature Source port on
classification of Infiltration attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

124

A.3. Partial Dependency Plots

Figure A.45: PDP showing the influence of value variations of feature Source port on
classification of PortScan - Firewall on attacks of the LSTM pre-trained with proxy tasks
as define in 5.1 finetuned with specialized subset CIC17_10.

125

A. Appendix

Figure A.46: PDP showing the influence of value variations of feature Protocol on
classification of DDoS LOIT attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

Figure A.47: PDP showing the influence of value variations of feature Source port on
classification of DDoS LOIT attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

126

A.3. Partial Dependency Plots

Figure A.48: PDP showing the influence of value variations of feature Protocol on
classification of Infiltration attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

Figure A.49: PDP showing the influence of value variations of feature Source port on
classification of Botnet ARES attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

127

A. Appendix

Figure A.50: PDP showing the influence of value variations of feature Source port on
classification of SSH-Patator attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

Figure A.51: PDP showing the influence of value variations of feature Packet Length
on classification of PortScan - Firewall on attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10.

128

A.3. Partial Dependency Plots

Figure A.52: PDP showing the influence of value variations of feature Destination port
on classification of PortScan - Firewall on attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.53: PDP showing the influence of value variations of feature Source port on
classification of DoS Slowhttptest attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

129

A. Appendix

Figure A.54: PDP showing the influence of value variations of feature Destination port
on classification of DoS slowloris attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.55: PDP showing the influence of value variations of feature Protocol on
classification of Botnet ARES attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

130

A.3. Partial Dependency Plots

Figure A.56: PDP showing the influence of value variations of feature Protocol on
classification of DoS Slowhttptest attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.57: PDP showing the influence of value variations of feature Packet Length on
classification of XSS attacks of the LSTM pre-trained with proxy tasks as define in 5.1
finetuned with specialized subset CIC17_10.

131

A. Appendix

Figure A.58: PDP showing the influence of value variations of feature Destination port
on classification of Botnet ARES attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.59: PDP showing the influence of value variations of feature Protocol on
classification of FTP-Patator attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

132

A.3. Partial Dependency Plots

Figure A.60: PDP showing the influence of value variations of feature Protocol on
classification of SSH-Patator attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

Figure A.61: PDP showing the influence of value variations of feature Packet Length on
classification of DDoS LOIT attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

133

A. Appendix

Figure A.62: PDP showing the influence of value variations of feature Destination port
on classification of PortScan - Firewall off attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.63: PDP showing the influence of value variations of feature Destination port
on classification of SSH-Patator attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

134

A.3. Partial Dependency Plots

Figure A.64: PDP showing the influence of value variations of feature Protocol on
classification of XSS attacks of the LSTM pre-trained with proxy tasks as define in 5.1
finetuned with specialized subset CIC17_10.

135

A. Appendix

Figure A.65: PDP showing the influence of value variations of feature Source port on
classification of Benign attacks of the LSTM pre-trained with proxy tasks as define in 5.1
finetuned with specialized subset CIC17_10.

Figure A.66: PDP showing the influence of value variations of feature Destination port
on classification of FTP-Patator attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

136

A.3. Partial Dependency Plots

Figure A.67: PDP showing the influence of value variations of feature Source port on
classification of DoS Hulk attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset CIC17_10.

Figure A.68: PDP showing the influence of value variations of feature Protocol on
classification of DoS slowloris attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

137

A. Appendix

Figure A.69: PDP showing the influence of value variations of feature Source port on
classification of PortScan - Firewall off attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.70: PDP showing the influence of value variations of feature Packet Length
on classification of PortScan - Firewall off attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10.

138

A.3. Partial Dependency Plots

Figure A.71: PDP showing the influence of value variations of feature Protocol on
classification of PortScan - Firewall on attacks of the LSTM pre-trained with proxy tasks
as define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.72: PDP showing the influence of value variations of feature Packet Length
on classification of Botnet ARES attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

139

A. Appendix

Figure A.73: PDP showing the influence of value variations of feature Destination port
on classification of DDoS LOIT attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

Figure A.74: PDP showing the influence of value variations of feature Source port on
classification of DoS slowloris attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset CIC17_10.

140

A.3. Partial Dependency Plots

Figure A.75: PDP showing the influence of value variations of feature Packet Length on
classification of DoS Hulk attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset CIC17_10.

Figure A.76: PDP showing the influence of value variations of feature Protocol on
classification of DoS GoldenEye attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset CIC17_10.

141

A. Appendix

Figure A.77: PDP showing the influence of value variations of feature Packet Length on
classification of Worms attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.78: PDP showing the influence of value variations of feature Destination port
on classification of DoS attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

142

A.3. Partial Dependency Plots

Figure A.79: PDP showing the influence of value variations of feature Destination port
on classification of Reconnaissance attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset UNSW15_10.

Figure A.80: PDP showing the influence of value variations of feature Protocol on
classification of Exploits attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

143

A. Appendix

Figure A.81: PDP showing the influence of value variations of feature Packet Length on
classification of Generic attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.82: PDP showing the influence of value variations of feature Destination port
on classification of Worms attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

144

A.3. Partial Dependency Plots

Figure A.83: PDP showing the influence of value variations of feature Packet Length on
classification of Shellcode attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

145

A. Appendix

Figure A.84: PDP showing the influence of value variations of feature Destination port
on classification of Shellcode attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset UNSW15_10.

Figure A.85: PDP showing the influence of value variations of feature Source port on
classification of Backdoors attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

146

A.3. Partial Dependency Plots

Figure A.86: PDP showing the influence of value variations of feature Protocol on
classification of Backdoors attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.87: PDP showing the influence of value variations of feature Destination port
on classification of Backdoors attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset UNSW15_10.

147

A. Appendix

Figure A.88: PDP showing the influence of value variations of feature Packet Length on
classification of Fuzzers attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.89: PDP showing the influence of value variations of feature Protocol on
classification of Normal attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

148

A.3. Partial Dependency Plots

Figure A.90: PDP showing the influence of value variations of feature Destination port
on classification of Exploits attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset UNSW15_10.

Figure A.91: PDP showing the influence of value variations of feature Protocol on
classification of Generic attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

149

A. Appendix

Figure A.92: PDP showing the influence of value variations of feature Destination port
on classification of Normal attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset UNSW15_10.

Figure A.93: PDP showing the influence of value variations of feature Protocol on
classification of Shellcode attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

150

A.3. Partial Dependency Plots

Figure A.94: PDP showing the influence of value variations of feature Protocol on
classification of Fuzzers attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.95: PDP showing the influence of value variations of feature Source port on
classification of Worms attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

151

A. Appendix

Figure A.96: PDP showing the influence of value variations of feature Packet Length on
classification of Backdoors attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.97: PDP showing the influence of value variations of feature Packet Length on
classification of Reconnaissance attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset UNSW15_10.

152

A.3. Partial Dependency Plots

Figure A.98: PDP showing the influence of value variations of feature Packet Length on
classification of Normal attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.99: PDP showing the influence of value variations of feature Destination port
on classification of Generic attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset UNSW15_10.

153

A. Appendix

Figure A.100: PDP showing the influence of value variations of feature Destination port
on classification of Fuzzers attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset UNSW15_10.

Figure A.101: PDP showing the influence of value variations of feature Protocol on
classification of Analysis attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

154

A.3. Partial Dependency Plots

Figure A.102: PDP showing the influence of value variations of feature Packet Length on
classification of DoS attacks of the LSTM pre-trained with proxy tasks as define in 5.1
finetuned with specialized subset UNSW15_10.

155

A. Appendix

Figure A.103: PDP showing the influence of value variations of feature Source port on
classification of Fuzzers attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.104: PDP showing the influence of value variations of feature Destination port
on classification of Analysis attacks of the LSTM pre-trained with proxy tasks as define
in 5.1 finetuned with specialized subset UNSW15_10.

156

A.3. Partial Dependency Plots

Figure A.105: PDP showing the influence of value variations of feature Source port on
classification of Shellcode attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.106: PDP showing the influence of value variations of feature Source port on
classification of Analysis attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

157

A. Appendix

Figure A.107: PDP showing the influence of value variations of feature Protocol on
classification of Worms attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.108: PDP showing the influence of value variations of feature Protocol on
classification of Reconnaissance attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset UNSW15_10.

158

A.3. Partial Dependency Plots

Figure A.109: PDP showing the influence of value variations of feature Source port on
classification of Exploits attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.110: PDP showing the influence of value variations of feature Source port on
classification of Normal attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

159

A. Appendix

Figure A.111: PDP showing the influence of value variations of feature Packet Length on
classification of Exploits attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.112: PDP showing the influence of value variations of feature Source port on
classification of Generic attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

160

A.3. Partial Dependency Plots

Figure A.113: PDP showing the influence of value variations of feature Packet Length on
classification of Analysis attacks of the LSTM pre-trained with proxy tasks as define in
5.1 finetuned with specialized subset UNSW15_10.

Figure A.114: PDP showing the influence of value variations of feature Source port on
classification of DoS attacks of the LSTM pre-trained with proxy tasks as define in 5.1
finetuned with specialized subset UNSW15_10.

161

A. Appendix

Figure A.115: PDP showing the influence of value variations of feature Source port on
classification of Reconnaissance attacks of the LSTM pre-trained with proxy tasks as
define in 5.1 finetuned with specialized subset UNSW15_10.

Figure A.116: PDP showing the influence of value variations of feature Protocol on
classification of DoS attacks of the LSTM pre-trained with proxy tasks as define in 5.1
finetuned with specialized subset UNSW15_10.

162

A.3. Partial Dependency Plots

Figure A.117: PDP showing the influence of value variations of feature Packet Length on
classification of Worms attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.118: PDP showing the influence of value variations of feature Destination port
on classification of DoS attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

163

A. Appendix

Figure A.119: PDP showing the influence of value variations of feature Destination port
on classification of Reconnaissance attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.120: PDP showing the influence of value variations of feature Protocol on
classification of Exploits attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

164

A.3. Partial Dependency Plots

Figure A.121: PDP showing the influence of value variations of feature Packet Length on
classification of Generic attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.122: PDP showing the influence of value variations of feature Destination port
on classification of Worms attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

165

A. Appendix

Figure A.123: PDP showing the influence of value variations of feature Packet Length on
classification of Shellcode attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.124: PDP showing the influence of value variations of feature Destination port
on classification of Shellcode attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

166

A.3. Partial Dependency Plots

Figure A.125: PDP showing the influence of value variations of feature Source port on
classification of Backdoors attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.126: PDP showing the influence of value variations of feature Protocol on
classification of Backdoors attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

167

A. Appendix

Figure A.127: PDP showing the influence of value variations of feature Destination port
on classification of Backdoors attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.128: PDP showing the influence of value variations of feature Packet Length on
classification of Fuzzers attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

168

A.3. Partial Dependency Plots

Figure A.129: PDP showing the influence of value variations of feature Protocol on
classification of Normal attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.130: PDP showing the influence of value variations of feature Destination port
on classification of Exploits attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

169

A. Appendix

Figure A.131: PDP showing the influence of value variations of feature Protocol on
classification of Generic attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.132: PDP showing the influence of value variations of feature Destination port
on classification of Normal attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

170

A.3. Partial Dependency Plots

Figure A.133: PDP showing the influence of value variations of feature Protocol on
classification of Shellcode attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.134: PDP showing the influence of value variations of feature Protocol on
classification of Fuzzers attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

171

A. Appendix

Figure A.135: PDP showing the influence of value variations of feature Source port on
classification of Worms attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.136: PDP showing the influence of value variations of feature Packet Length
on classification of Backdoors attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

172

A.3. Partial Dependency Plots

Figure A.137: PDP showing the influence of value variations of feature Packet Length on
classification of Reconnaissance attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

173

A. Appendix

Figure A.138: PDP showing the influence of value variations of feature Packet Length on
classification of Normal attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.139: PDP showing the influence of value variations of feature Destination port
on classification of Generic attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

174

A.3. Partial Dependency Plots

Figure A.140: PDP showing the influence of value variations of feature Destination port
on classification of Fuzzers attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.141: PDP showing the influence of value variations of feature Protocol on
classification of Analysis attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

175

A. Appendix

Figure A.142: PDP showing the influence of value variations of feature Packet Length on
classification of DoS attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.143: PDP showing the influence of value variations of feature Source port on
classification of Fuzzers attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

176

A.3. Partial Dependency Plots

Figure A.144: PDP showing the influence of value variations of feature Destination port
on classification of Analysis attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.145: PDP showing the influence of value variations of feature Source port on
classification of Shellcode attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

177

A. Appendix

Figure A.146: PDP showing the influence of value variations of feature Source port on
classification of Analysis attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.147: PDP showing the influence of value variations of feature Protocol on
classification of Worms attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset UNSW15_10.

178

A.3. Partial Dependency Plots

Figure A.148: PDP showing the influence of value variations of feature Protocol on
classification of Reconnaissance attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.149: PDP showing the influence of value variations of feature Source port on
classification of Exploits attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

179

A. Appendix

Figure A.150: PDP showing the influence of value variations of feature Source port on
classification of Normal attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.151: PDP showing the influence of value variations of feature Packet Length on
classification of Exploits attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

180

A.3. Partial Dependency Plots

Figure A.152: PDP showing the influence of value variations of feature Source port on
classification of Generic attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.153: PDP showing the influence of value variations of feature Packet Length on
classification of Analysis attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset UNSW15_10.

181

A. Appendix

Figure A.154: PDP showing the influence of value variations of feature Source port on
classification of DoS attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset UNSW15_10.

Figure A.155: PDP showing the influence of value variations of feature Source port on
classification of Reconnaissance attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10.

182

A.3. Partial Dependency Plots

Figure A.156: PDP showing the influence of value variations of feature Protocol on
classification of DoS attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset UNSW15_10.

183

A. Appendix

Figure A.157: PDP showing the influence of value variations of feature Destination port
on classification of DoS Slowhttptest attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.158: PDP showing the influence of value variations of feature Destination port
on classification of XSS attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset CIC17_10.

184

A.3. Partial Dependency Plots

Figure A.159: PDP showing the influence of value variations of feature Protocol on
classification of Benign attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.160: PDP showing the influence of value variations of feature Source port on
classification of FTP-Patator attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

185

A. Appendix

Figure A.161: PDP showing the influence of value variations of feature Destination port
on classification of Infiltration attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.162: PDP showing the influence of value variations of feature Packet Length on
classification of FTP-Patator attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

186

A.3. Partial Dependency Plots

Figure A.163: PDP showing the influence of value variations of feature Source port on
classification of XSS attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.164: PDP showing the influence of value variations of feature Destination port
on classification of DoS GoldenEye attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

187

A. Appendix

Figure A.165: PDP showing the influence of value variations of feature Packet Length on
classification of Benign attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.166: PDP showing the influence of value variations of feature Protocol on
classification of PortScan - Firewall off attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

188

A.3. Partial Dependency Plots

Figure A.167: PDP showing the influence of value variations of feature Destination port
on classification of DoS Hulk attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.168: PDP showing the influence of value variations of feature Destination port
on classification of Benign attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset CIC17_10.

189

A. Appendix

Figure A.169: PDP showing the influence of value variations of feature Packet Length on
classification of DoS slowloris attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.170: PDP showing the influence of value variations of feature Packet Length
on classification of DoS Slowhttptest attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

190

A.3. Partial Dependency Plots

Figure A.171: PDP showing the influence of value variations of feature Protocol on
classification of DoS Hulk attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.172: PDP showing the influence of value variations of feature Packet Length on
classification of SSH-Patator attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

191

A. Appendix

Figure A.173: PDP showing the influence of value variations of feature Packet Length on
classification of DoS GoldenEye attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.174: PDP showing the influence of value variations of feature Source port on
classification of DoS GoldenEye attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

192

A.3. Partial Dependency Plots

Figure A.175: PDP showing the influence of value variations of feature Packet Length
on classification of Infiltration attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

193

A. Appendix

Figure A.176: PDP showing the influence of value variations of feature Source port on
classification of Infiltration attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.177: PDP showing the influence of value variations of feature Source port on
classification of PortScan - Firewall on attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

194

A.3. Partial Dependency Plots

Figure A.178: PDP showing the influence of value variations of feature Protocol on
classification of DDoS LOIT attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.179: PDP showing the influence of value variations of feature Source port on
classification of DDoS LOIT attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

195

A. Appendix

Figure A.180: PDP showing the influence of value variations of feature Protocol on
classification of Infiltration attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.181: PDP showing the influence of value variations of feature Source port on
classification of Botnet ARES attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

196

A.3. Partial Dependency Plots

Figure A.182: PDP showing the influence of value variations of feature Source port on
classification of SSH-Patator attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.183: PDP showing the influence of value variations of feature Packet Length
on classification of PortScan - Firewall on attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

197

A. Appendix

Figure A.184: PDP showing the influence of value variations of feature Destination port
on classification of PortScan - Firewall on attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.185: PDP showing the influence of value variations of feature Source port on
classification of DoS Slowhttptest attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

198

A.3. Partial Dependency Plots

Figure A.186: PDP showing the influence of value variations of feature Destination port
on classification of DoS slowloris attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.187: PDP showing the influence of value variations of feature Protocol on
classification of Botnet ARES attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

199

A. Appendix

Figure A.188: PDP showing the influence of value variations of feature Protocol on
classification of DoS Slowhttptest attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.189: PDP showing the influence of value variations of feature Packet Length on
classification of XSS attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset CIC17_10.

200

A.3. Partial Dependency Plots

Figure A.190: PDP showing the influence of value variations of feature Destination port
on classification of Botnet ARES attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.191: PDP showing the influence of value variations of feature Protocol on
classification of FTP-Patator attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

201

A. Appendix

Figure A.192: PDP showing the influence of value variations of feature Protocol on
classification of SSH-Patator attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.193: PDP showing the influence of value variations of feature Packet Length on
classification of DDoS LOIT attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

202

A.3. Partial Dependency Plots

Figure A.194: PDP showing the influence of value variations of feature Destination port
on classification of PortScan - Firewall off attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10.

203

A. Appendix

Figure A.195: PDP showing the influence of value variations of feature Destination port
on classification of SSH-Patator attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.196: PDP showing the influence of value variations of feature Protocol on
classification of XSS attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset CIC17_10.

204

A.3. Partial Dependency Plots

Figure A.197: PDP showing the influence of value variations of feature Source port on
classification of Benign attacks of the Transformer model pre-trained with proxy tasks as
define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.198: PDP showing the influence of value variations of feature Destination port
on classification of FTP-Patator attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

205

A. Appendix

Figure A.199: PDP showing the influence of value variations of feature Source port on
classification of DoS Hulk attacks of the Transformer model pre-trained with proxy tasks
as define in 5.2 finetuned with specialized subset CIC17_10.

Figure A.200: PDP showing the influence of value variations of feature Protocol on
classification of DoS slowloris attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset CIC17_10.

206

A.4. Neuron Plots

A.4 Neuron Plots

Figure A.201: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Infiltration in dataset
CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.202: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Botnet ARES in dataset
CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.203: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS Slowhttptest in
dataset CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and
afterwards fine-tuning with specialized subset CIC17_10.

207

A. Appendix

Figure A.204: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Benign in dataset
CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.205: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category FTP-Patator in dataset
CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.206: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category DDoS LOIT in dataset
CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.207: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan - Firewall off
in dataset CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and
afterwards fine-tuning with specialized subset CIC17_10.

208

A.4. Neuron Plots

Figure A.208: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category XSS in dataset
CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.209: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category DoS GoldenEye in dataset
CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.210: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category DoS Hulk in dataset
CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.211: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category SSH-Patator in dataset
CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

209

A. Appendix

Figure A.212: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan - Firewall on in
dataset CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and
afterwards fine-tuning with specialized subset CIC17_10.

Figure A.213: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category DoS slowloris in dataset
CIC-IDS2017. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.214: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Shellcode in dataset
UNSW-NB15. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.215: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Analysis in dataset
UNSW-NB15. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

210

A.4. Neuron Plots

Figure A.216: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Generic in dataset
UNSW-NB15. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.217: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Exploits in dataset
UNSW-NB15. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.218: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Backdoors in dataset
UNSW-NB15. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.219: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Fuzzers in dataset
UNSW-NB15. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

211

A. Appendix

Figure A.220: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Worms in dataset
UNSW-NB15. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

212

A.4. Neuron Plots

Figure A.221: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Reconnaissance in dataset
UNSW-NB15. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.222: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS in dataset
UNSW-NB15. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.223: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Shellcode in dataset UNSW-
NB15. The model was pre-trained with the COMPOSITE proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

213

A. Appendix

Figure A.224: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Analysis in dataset UNSW-
NB15. The model was pre-trained with the COMPOSITE proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.225: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Generic in dataset UNSW-
NB15. The model was pre-trained with the COMPOSITE proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.226: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Exploits in dataset UNSW-
NB15. The model was pre-trained with the COMPOSITE proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.227: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Backdoors in
dataset UNSW-NB15. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset UNSW15_10.

214

A.4. Neuron Plots

Figure A.228: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Fuzzers in dataset UNSW-
NB15. The model was pre-trained with the COMPOSITE proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.229: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Worms in dataset UNSW-
NB15. The model was pre-trained with the COMPOSITE proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.230: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Reconnaissance in
dataset UNSW-NB15. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset UNSW15_10.

Figure A.231: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category DoS in dataset UNSW-
NB15. The model was pre-trained with the COMPOSITE proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

215

A. Appendix

Figure A.232: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Infiltration in
dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

Figure A.233: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Botnet ARES in
dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

Figure A.234: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS Slowhttptest in
dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

Figure A.235: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Benign in dataset CIC-
IDS2017. The model was pre-trained with the COMPOSITE proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

216

A.4. Neuron Plots

Figure A.236: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category FTP-Patator in
dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

Figure A.237: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DDoS LOIT in
dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

Figure A.238: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan - Firewall off
in dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

Figure A.239: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category XSS in dataset CIC-
IDS2017. The model was pre-trained with the COMPOSITE proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

217

A. Appendix

Figure A.240: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS GoldenEye in
dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

Figure A.241: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS Hulk in
dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

Figure A.242: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category SSH-Patator in
dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

218

A.4. Neuron Plots

Figure A.243: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan - Firewall on in
dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

Figure A.244: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS slowloris in
dataset CIC-IDS2017. The model was pre-trained with the COMPOSITE proxy task
and afterwards fine-tuning with specialized subset CIC17_10.

Figure A.245: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Shellcode in dataset
UNSW-NB15. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.246: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Analysis in dataset
UNSW-NB15. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

219

A. Appendix

Figure A.247: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Generic in dataset
UNSW-NB15. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.248: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Exploits in dataset
UNSW-NB15. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.249: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Backdoors in dataset
UNSW-NB15. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.250: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Fuzzers in dataset
UNSW-NB15. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

220

A.4. Neuron Plots

Figure A.251: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Worms in dataset
UNSW-NB15. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.252: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Reconnaissance in dataset
UNSW-NB15. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.253: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS in dataset
UNSW-NB15. The model was pre-trained with the PREDICT proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.254: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Infiltration in dataset
CIC-IDS2017. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

221

A. Appendix

Figure A.255: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Botnet ARES in dataset
CIC-IDS2017. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.256: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS Slowhttptest
in dataset CIC-IDS2017. The model was pre-trained with the AUTO proxy task and
afterwards fine-tuning with specialized subset CIC17_10.

Figure A.257: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Benign in dataset
CIC-IDS2017. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.258: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category FTP-Patator in dataset
CIC-IDS2017. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

222

A.4. Neuron Plots

Figure A.259: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category DDoS LOIT in dataset
CIC-IDS2017. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.260: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan - Firewall off
in dataset CIC-IDS2017. The model was pre-trained with the AUTO proxy task and
afterwards fine-tuning with specialized subset CIC17_10.

Figure A.261: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category XSS in dataset
CIC-IDS2017. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

223

A. Appendix

Figure A.262: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category DoS GoldenEye in dataset
CIC-IDS2017. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.263: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category DoS Hulk in dataset
CIC-IDS2017. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.264: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category SSH-Patator in dataset
CIC-IDS2017. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.265: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan - Firewall on
in dataset CIC-IDS2017. The model was pre-trained with the AUTO proxy task and
afterwards fine-tuning with specialized subset CIC17_10.

224

A.4. Neuron Plots

Figure A.266: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category DoS slowloris in dataset
CIC-IDS2017. The model was pre-trained with the AUTO proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.267: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Shellcode in dataset UNSW-
NB15. The model was pre-trained with the ID proxy task and afterwards fine-tuning
with specialized subset UNSW15_10.

Figure A.268: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Analysis in dataset UNSW-
NB15. The model was pre-trained with the ID proxy task and afterwards fine-tuning
with specialized subset UNSW15_10.

Figure A.269: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Generic in dataset UNSW-
NB15. The model was pre-trained with the ID proxy task and afterwards fine-tuning
with specialized subset UNSW15_10.

225

A. Appendix

Figure A.270: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Exploits in dataset UNSW-
NB15. The model was pre-trained with the ID proxy task and afterwards fine-tuning
with specialized subset UNSW15_10.

Figure A.271: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Backdoors in
dataset UNSW-NB15. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.272: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Fuzzers in dataset UNSW-
NB15. The model was pre-trained with the ID proxy task and afterwards fine-tuning
with specialized subset UNSW15_10.

Figure A.273: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Worms in dataset UNSW-
NB15. The model was pre-trained with the ID proxy task and afterwards fine-tuning
with specialized subset UNSW15_10.

226

A.4. Neuron Plots

Figure A.274: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Reconnaissance in
dataset UNSW-NB15. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset UNSW15_10.

Figure A.275: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category DoS in dataset UNSW-
NB15. The model was pre-trained with the ID proxy task and afterwards fine-tuning
with specialized subset UNSW15_10.

Figure A.276: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Infiltration in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.277: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category Botnet ARES in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

227

A. Appendix

Figure A.278: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS Slowhttptest in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.279: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Benign in dataset CIC-
IDS2017. The model was pre-trained with the ID proxy task and afterwards fine-tuning
with specialized subset CIC17_10.

Figure A.280: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category FTP-Patator in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

A.5 Decision Trees
|--- SYN Flag <= 0.50
| |--- Interarrival time <= 12788.12
| | |--- Source port <= 39778.50
| | | |--- Destination port <= 84.00
| | | | |--- RST Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- RST Flag > 0.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 84.00
| | | | |--- Protocol <= 3.50
| | | | | |--- class: 0.0
| | | | |--- Protocol > 3.50
| | | | | |--- class: 0.0
| | |--- Source port > 39778.50
| | | |--- Source port <= 50686.50
| | | | |--- Destination port <= 80.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 80.50
| | | | | |--- class: 0.0
| | | |--- Source port > 50686.50

228

A.5. Decision Trees

Figure A.281: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DDoS LOIT in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.282: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan - Firewall off in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.283: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category XSS in dataset CIC-
IDS2017. The model was pre-trained with the ID proxy task and afterwards fine-tuning
with specialized subset CIC17_10.

Figure A.284: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS GoldenEye in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

229

A. Appendix

Figure A.285: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS Hulk in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.286: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category SSH-Patator in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.287: Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan - Firewall on in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

Figure A.288: Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS slowloris in
dataset CIC-IDS2017. The model was pre-trained with the ID proxy task and afterwards
fine-tuning with specialized subset CIC17_10.

230

A.5. Decision Trees

Figure A.289: Decision tree resulting from a DTC with depth 5 fitted on flows of category
SQL Injection filtered from 90% of dataset specialized subset CIC17_10. The subset
constituted of 99.999% benign records and 0.001% attack records. The resulting validation
accuracy was 99.999%, tested with the remaining 10% of data not used for training.

231

A. Appendix

| | | | |--- class: 0.0
| |--- Interarrival time > 12788.12
| | |--- Interarrival time <= 13104.19
| | | |--- Source port <= 50764.00
| | | | |--- Destination port <= 101.50
| | | | | |--- class: 1.0
| | | | |--- Destination port > 101.50
| | | | | |--- class: 0.0
| | | |--- Source port > 50764.00
| | | | |--- class: 0.0
| | |--- Interarrival time > 13104.19
| | | |--- Packet Length <= 67.50
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 1.0
| | | |--- Packet Length > 67.50
| | | | |--- Packet Length <= 402.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 402.50
| | | | | |--- class: 0.0
|--- SYN Flag > 0.50
| |--- Interarrival time <= 2003.49
| | |--- Interarrival time <= 995.84
| | | |--- Source port <= 39778.50
| | | | |--- Destination port <= 84.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 84.00
| | | | | |--- class: 0.0
| | | |--- Source port > 39778.50
| | | | |--- Source port <= 50686.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 50686.50
| | | | | |--- class: 0.0
| | |--- Interarrival time > 995.84
| | | |--- Direction <= 0.50
| | | | |--- class: 0.0
| | | |--- Direction > 0.50
| | | | |--- Destination port <= 261.50
| | | | | |--- class: 1.0
| | | | |--- Destination port > 261.50
| | | | | |--- class: 0.0
| |--- Interarrival time > 2003.49
| | |--- Destination port <= 107.50
| | | |--- Source port <= 50658.50
| | | | |--- Packet Length <= 56.00
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 56.00
| | | | | |--- class: 1.0
| | | |--- Source port > 50658.50
| | | | |--- class: 0.0
| | |--- Destination port > 107.50
| | | |--- class: 0.0

.

Listing A.1: Decision tree resulting from a DTC with depth 5 fitted on flows of category
DoS Slowhttptest filtered from 90% of dataset specialized subset CIC17_10. The subset
constituted of 99.812% benign records and 0.188% attack records. The resulting validation
accuracy was 99.904%, tested with the remaining 10% of data not used for training.

|--- Destination port <= 547.50
| |--- Destination port <= 20.50
| | |--- Source port <= 16396.00
| | | |--- class: 0.0
| | |--- Source port > 16396.00
| | | |--- Source port <= 44529.50
| | | | |--- class: 1.0
| | | |--- Source port > 44529.50
| | | | |--- Source port <= 44562.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 44562.50
| | | | | |--- class: 1.0
| |--- Destination port > 20.50
| | |--- RST Flag <= 0.50
| | | |--- SYN Flag <= 0.50
| | | | |--- Packet Length <= 34.00

232

A.5. Decision Trees

| | | | | |--- class: 1.0
| | | | |--- Packet Length > 34.00
| | | | | |--- class: 0.0
| | | |--- SYN Flag > 0.50
| | | | |--- Destination port <= 473.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 473.00
| | | | | |--- class: 1.0
| | |--- RST Flag > 0.50
| | | |--- Destination port <= 435.00
| | | | |--- Destination port <= 88.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 88.50
| | | | | |--- class: 1.0
| | | |--- Destination port > 435.00
| | | | |--- Destination port <= 473.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 473.00
| | | | | |--- class: 1.0
|--- Destination port > 547.50
| |--- Source port <= 32785.50
| | |--- Source port <= 32681.50
| | | |--- Protocol <= 3.50
| | | | |--- Packet Length <= 42.00
| | | | | |--- class: 1.0
| | | | |--- Packet Length > 42.00
| | | | | |--- class: 0.0
| | | |--- Protocol > 3.50
| | | | |--- class: 0.0
| | |--- Source port > 32681.50
| | | |--- Destination port <= 30750.50
| | | | |--- Protocol <= 11.50
| | | | | |--- class: 1.0
| | | | |--- Protocol > 11.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 30750.50
| | | | |--- RST Flag <= 0.50
| | | | | |--- class: 1.0
| | | | |--- RST Flag > 0.50
| | | | | |--- class: 0.0
| |--- Source port > 32785.50
| | |--- Packet Length <= 60.50
| | | |--- RST Flag <= 0.50
| | | | |--- Interarrival time <= 0.00
| | | | | |--- class: 1.0
| | | | |--- Interarrival time > 0.00
| | | | | |--- class: 0.0
| | | |--- RST Flag > 0.50
| | | | |--- Interarrival time <= 0.31
| | | | | |--- class: 1.0
| | | | |--- Interarrival time > 0.31
| | | | | |--- class: 0.0
| | |--- Packet Length > 60.50
| | | |--- Interarrival time <= 0.00
| | | | |--- Source port <= 38372.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 38372.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 0.00
| | | | |--- class: 0.0

.

Listing A.2: Decision tree resulting from a DTC with depth 5 fitted on flows of category
PortScan - Firewall off filtered from 90% of dataset specialized subset CIC17_10. The
subset constituted of 98.477% benign records and 1.523% attack records. The resulting
validation accuracy was 99.818%, tested with the remaining 10% of data not used for
training.

|--- Destination port <= 22.50
| |--- Protocol <= 11.50
| | |--- RST Flag <= 0.50
| | | |--- SYN Flag <= 0.50
| | | | |--- Source port <= 60730.00
| | | | | |--- class: 0.0
| | | | |--- Source port > 60730.00

233

A. Appendix

| | | | | |--- class: 0.0
| | | |--- SYN Flag > 0.50
| | | | |--- Packet Length <= 48.00
| | | | | |--- class: 1.0
| | | | |--- Packet Length > 48.00
| | | | | |--- class: 0.0
| | |--- RST Flag > 0.50
| | | |--- Direction <= 0.50
| | | | |--- class: 0.0
| | | |--- Direction > 0.50
| | | | |--- Interarrival time <= 0.00
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 0.00
| | | | | |--- class: 1.0
| |--- Protocol > 11.50
| | |--- class: 1.0
|--- Destination port > 22.50
| |--- RST Flag <= 0.50
| | |--- SYN Flag <= 0.50
| | | |--- Packet Length <= 4387.50
| | | | |--- Source port <= 35652.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 35652.50
| | | | | |--- class: 0.0
| | | |--- Packet Length > 4387.50
| | | | |--- Packet Length <= 4388.50
| | | | | |--- class: 1.0
| | | | |--- Packet Length > 4388.50
| | | | | |--- class: 0.0
| | |--- SYN Flag > 0.50
| | | |--- Packet Length <= 46.00
| | | | |--- Interarrival time <= 0.00
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 0.00
| | | | | |--- class: 0.0
| | | |--- Packet Length > 46.00
| | | | |--- Packet Length <= 58.00
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 58.00
| | | | | |--- class: 0.0
| |--- RST Flag > 0.50
| | |--- Destination port <= 80.50
| | | |--- Packet Length <= 46.00
| | | | |--- Interarrival time <= 0.87
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 0.87
| | | | | |--- class: 0.0
| | | |--- Packet Length > 46.00
| | | | |--- Interarrival time <= 5.53
| | | | | |--- class: 1.0
| | | | |--- Interarrival time > 5.53
| | | | | |--- class: 0.0
| | |--- Destination port > 80.50
| | | |--- ACK Flag <= 0.50
| | | | |--- class: 0.0
| | | |--- ACK Flag > 0.50
| | | | |--- Direction <= 0.50
| | | | | |--- class: 0.0
| | | | |--- Direction > 0.50
| | | | | |--- class: 0.0

.

Listing A.3: Decision tree resulting from a DTC with depth 5 fitted on flows of category
PortScan - Firewall on filtered from 90% of dataset specialized subset CIC17_10. The
subset constituted of 99.993% benign records and 0.007% attack records. The resulting
validation accuracy was 99.995%, tested with the remaining 10% of data not used for
training.

|--- Packet Length <= 4443.50
| |--- Destination port <= 80.50
| | |--- Source port <= 45762.50
| | | |--- Source port <= 32767.50
| | | | |--- class: 0.0
| | | |--- Source port > 32767.50
| | | | |--- Destination port <= 79.50

234

A.5. Decision Trees

| | | | | |--- class: 0.0
| | | | |--- Destination port > 79.50
| | | | | |--- class: 0.0
| | |--- Source port > 45762.50
| | | |--- Source port <= 58951.50
| | | | |--- class: 0.0
| | | |--- Source port > 58951.50
| | | | |--- Destination port <= 66.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 66.50
| | | | | |--- class: 0.0
| |--- Destination port > 80.50
| | |--- class: 0.0
|--- Packet Length > 4443.50
| |--- Destination port <= 261.50
| | |--- Direction <= 0.50
| | | |--- Interarrival time <= 0.04
| | | | |--- Packet Length <= 4444.50
| | | | | |--- class: 1.0
| | | | |--- Packet Length > 4444.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 0.04
| | | | |--- Source port <= 47230.00
| | | | | |--- class: 1.0
| | | | |--- Source port > 47230.00
| | | | | |--- class: 1.0
| | |--- Direction > 0.50
| | | |--- class: 0.0
| |--- Destination port > 261.50
| | |--- class: 0.0

.

Listing A.4: Decision tree resulting from a DTC with depth 5 fitted on flows of category
DoS GoldenEye filtered from 90% of dataset specialized subset CIC17_10. The subset
constituted of 99.489% benign records and 0.511% attack records. The resulting validation
accuracy was 99.520%, tested with the remaining 10% of data not used for training.

|--- Destination port <= 547.50
| |--- Source port <= 3664.50
| | |--- Source port <= 1331.50
| | | |--- Source port <= 1248.50
| | | | |--- Source port <= 137.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 137.50
| | | | | |--- class: 0.0
| | | |--- Source port > 1248.50
| | | | |--- Destination port <= 443.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 443.50
| | | | | |--- class: 0.0
| | |--- Source port > 1331.50
| | | |--- Destination port <= 444.00
| | | | |--- Source port <= 2636.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 2636.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 444.00
| | | | |--- Destination port <= 455.00
| | | | | |--- class: 1.0
| | | | |--- Destination port > 455.00
| | | | | |--- class: 0.0
| |--- Source port > 3664.50
| | |--- Destination port <= 20.50
| | | |--- Source port <= 50140.50
| | | | |--- Source port <= 49985.00
| | | | | |--- class: 1.0
| | | | |--- Source port > 49985.00
| | | | | |--- class: 0.0
| | | |--- Source port > 50140.50
| | | | |--- class: 1.0
| | |--- Destination port > 20.50
| | | |--- Destination port <= 473.00
| | | | |--- URG Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- URG Flag > 0.50
| | | | | |--- class: 1.0

235

A. Appendix

| | | |--- Destination port > 473.00
| | | | |--- Source port <= 50370.50
| | | | | |--- class: 1.0
| | | | |--- Source port > 50370.50
| | | | | |--- class: 1.0
|--- Destination port > 547.50
| |--- SYN Flag <= 0.50
| | |--- Destination port <= 3263.00
| | | |--- Direction <= 0.50
| | | | |--- Source port <= 1210.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 1210.50
| | | | | |--- class: 1.0
| | | |--- Direction > 0.50
| | | | |--- Destination port <= 1042.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 1042.50
| | | | | |--- class: 0.0
| | |--- Destination port > 3263.00
| | | |--- Source port <= 34022.00
| | | | |--- Source port <= 1329.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 1329.50
| | | | | |--- class: 0.0
| | | |--- Source port > 34022.00
| | | | |--- RST Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- RST Flag > 0.50
| | | | | |--- class: 1.0
| |--- SYN Flag > 0.50
| | |--- Packet Length <= 46.00
| | | |--- Source port <= 50376.00
| | | | |--- Source port <= 43882.00
| | | | | |--- class: 1.0
| | | | |--- Source port > 43882.00
| | | | | |--- class: 1.0
| | | |--- Source port > 50376.00
| | | | |--- class: 1.0
| | |--- Packet Length > 46.00
| | | |--- Destination port <= 1045.00
| | | | |--- Destination port <= 934.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 934.00
| | | | | |--- class: 1.0
| | | |--- Destination port > 1045.00
| | | | |--- Source port <= 3699.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 3699.50
| | | | | |--- class: 0.0

.

Listing A.5: Decision tree resulting from a DTC with depth 5 fitted on flows of category
Infiltration filtered from 90% of dataset specialized subset CIC17_10. The subset consti-
tuted of 98.819% benign records and 1.181% attack records. The resulting validation
accuracy was 99.541%, tested with the remaining 10% of data not used for training.

|--- Destination port <= 80.50
| |--- Destination port <= 79.50
| | |--- class: 0.0
| |--- Destination port > 79.50
| | |--- Interarrival time <= 14.95
| | | |--- Packet Length <= 51.50
| | | | |--- ACK Flag <= 0.50
| | | | | |--- class: 1.0
| | | | |--- ACK Flag > 0.50
| | | | | |--- class: 0.0
| | | |--- Packet Length > 51.50
| | | | |--- Packet Length <= 452.50
| | | | | |--- class: 1.0
| | | | |--- Packet Length > 452.50
| | | | | |--- class: 0.0
| | |--- Interarrival time > 14.95
| | | |--- Packet Length <= 1499.50
| | | | |--- ACK Flag <= 0.50
| | | | | |--- class: 1.0
| | | | |--- ACK Flag > 0.50

236

A.5. Decision Trees

Figure A.290: Decision tree resulting from a DTC with depth 5 fitted on flows of
category SSH-Patator filtered from 90% of dataset specialized subset CIC17_10. The
subset constituted of 99.329% benign records and 0.671% attack records. The resulting
validation accuracy was 99.781%, tested with the remaining 10% of data not used for
training.

237

A. Appendix

Figure A.291: Decision tree resulting from a DTC with depth 5 fitted on flows of
category FTP-Patator filtered from 90% of dataset specialized subset CIC17_10. The
subset constituted of 99.976% benign records and 0.024% attack records. The resulting
validation accuracy was 99.990%, tested with the remaining 10% of data not used for
training.

238

A.5. Decision Trees

| | | | | |--- class: 0.0
| | | |--- Packet Length > 1499.50
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 1.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
|--- Destination port > 80.50
| |--- class: 0.0

.

Listing A.6: Decision tree resulting from a DTC with depth 5 fitted on flows of category
DoS Hulk filtered from 90% of dataset specialized subset CIC17_10. The subset consti-
tuted of 90.698% benign records and 9.302% attack records. The resulting validation
accuracy was 95.112%, tested with the remaining 10% of data not used for training.

|--- Destination port <= 80.50
| |--- Packet Length <= 40.50
| | |--- Source port <= 14097.00
| | | |--- RST Flag <= 0.50
| | | | |--- Source port <= 5118.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 5118.50
| | | | | |--- class: 0.0
| | | |--- RST Flag > 0.50
| | | | |--- Source port <= 5116.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 5116.50
| | | | | |--- class: 0.0
| | |--- Source port > 14097.00
| | | |--- Interarrival time <= 22.07
| | | | |--- Interarrival time <= 0.20
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 0.20
| | | | | |--- class: 1.0
| | | |--- Interarrival time > 22.07
| | | | |--- RST Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- RST Flag > 0.50
| | | | | |--- class: 1.0
| |--- Packet Length > 40.50
| | |--- Packet Length <= 4334.00
| | | |--- SYN Flag <= 0.50
| | | | |--- Packet Length <= 2874.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 2874.50
| | | | | |--- class: 0.0
| | | |--- SYN Flag > 0.50
| | | | |--- Interarrival time <= 0.73
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 0.73
| | | | | |--- class: 0.0
| | |--- Packet Length > 4334.00
| | | |--- Interarrival time <= 0.04
| | | | |--- Interarrival time <= 0.03
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 0.03
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 0.04
| | | | |--- Direction <= 0.50
| | | | | |--- class: 1.0
| | | | |--- Direction > 0.50
| | | | | |--- class: 0.0
|--- Destination port > 80.50
| |--- class: 0.0

.

Listing A.7: Decision tree resulting from a DTC with depth 5 fitted on flows of category
DDoS LOIT filtered from 90% of dataset specialized subset CIC17_10. The subset
constituted of 94.267% benign records and 5.733% attack records. The resulting validation
accuracy was 96.598%, tested with the remaining 10% of data not used for training.

239

A. Appendix

Figure A.292: Decision tree resulting from a DTC with depth 5 fitted on flows of
category Heartbleed filtered from 90% of dataset specialized subset CIC17_10. The
subset constituted of 100.000% benign records and 0.000% attack records. The resulting
validation accuracy was 100.000%, tested with the remaining 10% of data not used for
training.240

A.5. Decision Trees

Figure A.293: Decision tree resulting from a DTC with depth 5 fitted on flows of category
XSS filtered from 90% of dataset specialized subset CIC17_10. The subset constituted of
99.971% benign records and 0.029% attack records. The resulting validation accuracy
was 99.971%, tested with the remaining 10% of data not used for training.

|--- Interarrival time <= 12815.46
| |--- Interarrival time <= 196.03
| | |--- Destination port <= 80.50
| | | |--- RST Flag <= 0.50
| | | | |--- SYN Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- SYN Flag > 0.50
| | | | | |--- class: 0.0
| | | |--- RST Flag > 0.50
| | | | |--- Destination port <= 79.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 79.50
| | | | | |--- class: 0.0
| | |--- Destination port > 80.50
| | | |--- class: 0.0
| |--- Interarrival time > 196.03
| | |--- SYN Flag <= 0.50
| | | |--- Packet Length <= 282.50
| | | | |--- Interarrival time <= 199.31
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 199.31
| | | | | |--- class: 0.0
| | | |--- Packet Length > 282.50
| | | | |--- Packet Length <= 283.50
| | | | | |--- class: 1.0
| | | | |--- Packet Length > 283.50
| | | | | |--- class: 0.0
| | |--- SYN Flag > 0.50

241

A. Appendix

Figure A.294: Decision tree resulting from a DTC with depth 5 fitted on flows of category
Botnet ARES filtered from 90% of dataset specialized subset CIC17_10. The subset
constituted of 99.945% benign records and 0.054% attack records. The resulting validation
accuracy was 99.987%, tested with the remaining 10% of data not used for training.

242

A.5. Decision Trees

| | | |--- Source port <= 54467.50
| | | | |--- Source port <= 33352.00
| | | | | |--- class: 0.0
| | | | |--- Source port > 33352.00
| | | | | |--- class: 0.0
| | | |--- Source port > 54467.50
| | | | |--- Packet Length <= 58.00
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 58.00
| | | | | |--- class: 1.0
|--- Interarrival time > 12815.46
| |--- Packet Length <= 282.50
| | |--- Packet Length <= 60.50
| | | |--- PSH Flag <= 0.50
| | | | |--- Destination port <= 107.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 107.50
| | | | | |--- class: 0.0
| | | |--- PSH Flag > 0.50
| | | | |--- Packet Length <= 59.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 59.50
| | | | | |--- class: 1.0
| | |--- Packet Length > 60.50
| | | |--- class: 0.0
| |--- Packet Length > 282.50
| | |--- Packet Length <= 291.50
| | | |--- Destination port <= 261.50
| | | | |--- class: 1.0
| | | |--- Destination port > 261.50
| | | | |--- class: 0.0
| | |--- Packet Length > 291.50
| | | |--- Interarrival time <= 12845.78
| | | | |--- Destination port <= 261.50
| | | | | |--- class: 1.0
| | | | |--- Destination port > 261.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 12845.78
| | | | |--- Destination port <= 234.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 234.50
| | | | | |--- class: 0.0

.

Listing A.8: Decision tree resulting from a DTC with depth 5 fitted on flows of category
DoS slowloris filtered from 90% of dataset specialized subset CIC17_10. The subset
constituted of 99.781% benign records and 0.219% attack records. The resulting validation
accuracy was 99.886%, tested with the remaining 10% of data not used for training.

|--- Packet Length <= 51.50
| |--- Destination port <= 4028.50
| | |--- Packet Length <= 31.00
| | | |--- Packet Length <= 29.50
| | | | |--- class: 0.0
| | | |--- Packet Length > 29.50
| | | | |--- Source port <= 18790.00
| | | | | |--- class: 1.0
| | | | |--- Source port > 18790.00
| | | | | |--- class: 1.0
| | |--- Packet Length > 31.00
| | | |--- Destination port <= 83.50
| | | | |--- Source port <= 35128.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 35128.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 83.50
| | | | |--- Destination port <= 513.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 513.50
| | | | | |--- class: 0.0
| |--- Destination port > 4028.50
| | |--- Packet Length <= 44.50
| | | |--- SYN Flag <= 0.50
| | | | |--- Interarrival time <= 89.31
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 89.31

243

A. Appendix

| | | | | |--- class: 0.0
| | | |--- SYN Flag > 0.50
| | | | |--- class: 0.0
| | |--- Packet Length > 44.50
| | | |--- Source port <= 5724.50
| | | | |--- Source port <= 1127.00
| | | | | |--- class: 0.0
| | | | |--- Source port > 1127.00
| | | | | |--- class: 0.0
| | | |--- Source port > 5724.50
| | | | |--- Destination port <= 48089.50
| | | | | |--- class: 1.0
| | | | |--- Destination port > 48089.50
| | | | | |--- class: 0.0
|--- Packet Length > 51.50
| |--- Interarrival time <= 47.02
| | |--- Interarrival time <= 31.99
| | | |--- Packet Length <= 1480.00
| | | | |--- Interarrival time <= 11.75
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 11.75
| | | | | |--- class: 0.0
| | | |--- Packet Length > 1480.00
| | | | |--- Packet Length <= 1481.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 1481.50
| | | | | |--- class: 0.0
| | |--- Interarrival time > 31.99
| | | |--- Interarrival time <= 31.99
| | | | |--- Source port <= 5833.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 5833.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 31.99
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| |--- Interarrival time > 47.02
| | |--- PSH Flag <= 0.50
| | | |--- Destination port <= 6967.00
| | | | |--- Interarrival time <= 47.02
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 47.02
| | | | | |--- class: 0.0
| | | |--- Destination port > 6967.00
| | | | |--- Destination port <= 6975.00
| | | | | |--- class: 1.0
| | | | |--- Destination port > 6975.00
| | | | | |--- class: 0.0
| | |--- PSH Flag > 0.50
| | | |--- Destination port <= 7499.00
| | | | |--- Source port <= 1452.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 1452.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 7499.00
| | | | |--- Destination port <= 7500.50
| | | | | |--- class: 1.0
| | | | |--- Destination port > 7500.50
| | | | | |--- class: 0.0

.

Listing A.9: Decision tree resulting from a DTC with depth 5 fitted on flows of category
Backdoors filtered from 90% of dataset specialized subset UNSW15_10. The subset
constituted of 99.994% benign records and 0.006% attack records. The resulting validation
accuracy was 99.994%, tested with the remaining 10% of data not used for training.

|--- Packet Length <= 48.50
| |--- Destination port <= 115.00
| | |--- Destination port <= 110.50
| | | |--- Destination port <= 45.00
| | | | |--- Destination port <= 22.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 22.50
| | | | | |--- class: 0.0

244

A.5. Decision Trees

| | | |--- Destination port > 45.00
| | | | |--- Source port <= 62711.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 62711.50
| | | | | |--- class: 0.0
| | |--- Destination port > 110.50
| | | |--- Interarrival time <= 1110.27
| | | | |--- Source port <= 5090.50
| | | | | |--- class: 1.0
| | | | |--- Source port > 5090.50
| | | | | |--- class: 1.0
| | | |--- Interarrival time > 1110.27
| | | | |--- Interarrival time <= 1111.02
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 1111.02
| | | | | |--- class: 1.0
| |--- Destination port > 115.00
| | |--- Source port <= 118.50
| | | |--- Source port <= 110.50
| | | | |--- Source port <= 50.00
| | | | | |--- class: 0.0
| | | | |--- Source port > 50.00
| | | | | |--- class: 0.0
| | | |--- Source port > 110.50
| | | | |--- Destination port <= 44653.00
| | | | | |--- class: 1.0
| | | | |--- Destination port > 44653.00
| | | | | |--- class: 1.0
| | |--- Source port > 118.50
| | | |--- Packet Length <= 29.50
| | | | |--- Source port <= 20334.50
| | | | | |--- class: 1.0
| | | | |--- Source port > 20334.50
| | | | | |--- class: 0.0
| | | |--- Packet Length > 29.50
| | | | |--- class: 0.0
|--- Packet Length > 48.50
| |--- Interarrival time <= 46.06
| | |--- Protocol <= 11.50
| | | |--- Interarrival time <= 33.80
| | | | |--- Interarrival time <= 16.80
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 16.80
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 33.80
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | |--- Protocol > 11.50
| | | |--- Interarrival time <= 0.01
| | | | |--- Destination port <= 99.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 99.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 0.01
| | | | |--- class: 0.0
| |--- Interarrival time > 46.06
| | |--- PSH Flag <= 0.50
| | | |--- Packet Length <= 379.50
| | | | |--- Packet Length <= 99.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 99.50
| | | | | |--- class: 0.0
| | | |--- Packet Length > 379.50
| | | | |--- Packet Length <= 536.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 536.50
| | | | | |--- class: 0.0
| | |--- PSH Flag > 0.50
| | | |--- Source port <= 65474.50
| | | | |--- Packet Length <= 220.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 220.50
| | | | | |--- class: 0.0
| | | |--- Source port > 65474.50
| | | | |--- Source port <= 65475.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 65475.50
| | | | | |--- class: 0.0

245

A. Appendix

.

Listing A.10: Decision tree resulting from a DTC with depth 5 fitted on flows of category
Reconnaissance filtered from 90% of dataset specialized subset UNSW15_10. The subset
constituted of 99.895% benign records and 0.105% attack records. The resulting validation
accuracy was 99.952%, tested with the remaining 10% of data not used for training.

|--- Packet Length <= 51.50
| |--- Destination port <= 110.50
| | |--- Destination port <= 22.50
| | | |--- Destination port <= 15.50
| | | | |--- class: 1.0
| | | |--- Destination port > 15.50
| | | | |--- Source port <= 32919.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 32919.50
| | | | | |--- class: 0.0
| | |--- Destination port > 22.50
| | | |--- Destination port <= 74.00
| | | | |--- Interarrival time <= 58.37
| | | | | |--- class: 1.0
| | | | |--- Interarrival time > 58.37
| | | | | |--- class: 1.0
| | | |--- Destination port > 74.00
| | | | |--- Source port <= 64125.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 64125.50
| | | | | |--- class: 0.0
| |--- Destination port > 110.50
| | |--- Destination port <= 384.00
| | | |--- Destination port <= 163.50
| | | | |--- Destination port <= 137.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 137.00
| | | | | |--- class: 1.0
| | | |--- Destination port > 163.50
| | | | |--- class: 0.0
| | |--- Destination port > 384.00
| | | |--- Destination port <= 444.00
| | | | |--- Source port <= 55821.50
| | | | | |--- class: 1.0
| | | | |--- Source port > 55821.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 444.00
| | | | |--- Destination port <= 3332.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 3332.00
| | | | | |--- class: 0.0
|--- Packet Length > 51.50
| |--- Interarrival time <= 45.08
| | |--- Packet Length <= 1415.50
| | | |--- Interarrival time <= 13.16
| | | | |--- Interarrival time <= 0.02
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 0.02
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 13.16
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | |--- Packet Length > 1415.50
| | | |--- Interarrival time <= 0.73
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 0.73
| | | | |--- Direction <= 0.50
| | | | | |--- class: 0.0
| | | | |--- Direction > 0.50
| | | | | |--- class: 0.0
| |--- Interarrival time > 45.08
| | |--- PSH Flag <= 0.50
| | | |--- Packet Length <= 52.50
| | | | |--- Destination port <= 5901.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 5901.00

246

A.5. Decision Trees

| | | | | |--- class: 0.0
| | | |--- Packet Length > 52.50
| | | | |--- Packet Length <= 1496.00
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 1496.00
| | | | | |--- class: 0.0
| | |--- PSH Flag > 0.50
| | | |--- Packet Length <= 56.50
| | | | |--- Destination port <= 23.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 23.00
| | | | | |--- class: 1.0
| | | |--- Packet Length > 56.50
| | | | |--- Direction <= 0.50
| | | | | |--- class: 0.0
| | | | |--- Direction > 0.50
| | | | | |--- class: 0.0

.

Listing A.11: Decision tree resulting from a DTC with depth 5 fitted on flows of category
DoS filtered from 90% of dataset specialized subset UNSW15_10. The subset constituted
of 99.895% benign records and 0.105% attack records. The resulting validation accuracy
was 99.901%, tested with the remaining 10% of data not used for training.

|--- Packet Length <= 48.50
| |--- Destination port <= 83.50
| | |--- Destination port <= 61.00
| | | |--- class: 0.0
| | |--- Destination port > 61.00
| | | |--- Source port <= 41321.50
| | | | |--- Source port <= 41269.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 41269.50
| | | | | |--- class: 1.0
| | | |--- Source port > 41321.50
| | | | |--- Protocol <= 11.50
| | | | | |--- class: 0.0
| | | | |--- Protocol > 11.50
| | | | | |--- class: 1.0
| |--- Destination port > 83.50
| | |--- Source port <= 95.00
| | | |--- Destination port <= 37545.50
| | | | |--- Destination port <= 37351.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 37351.50
| | | | | |--- class: 1.0
| | | |--- Destination port > 37545.50
| | | | |--- Destination port <= 63236.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 63236.50
| | | | | |--- class: 0.0
| | |--- Source port > 95.00
| | | |--- class: 0.0
|--- Packet Length > 48.50
| |--- Packet Length <= 1499.50
| | |--- Interarrival time <= 52.22
| | | |--- Packet Length <= 362.50
| | | | |--- Interarrival time <= 44.46
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 44.46
| | | | | |--- class: 0.0
| | | |--- Packet Length > 362.50
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | |--- Interarrival time > 52.22
| | | |--- Interarrival time <= 52.22
| | | | |--- Packet Length <= 325.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 325.50
| | | | | |--- class: 1.0
| | | |--- Interarrival time > 52.22
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50

247

A. Appendix

| | | | | |--- class: 0.0
| |--- Packet Length > 1499.50
| | |--- Interarrival time <= 0.00
| | | |--- PSH Flag <= 0.50
| | | | |--- Direction <= 0.50
| | | | | |--- class: 0.0
| | | | |--- Direction > 0.50
| | | | | |--- class: 0.0
| | | |--- PSH Flag > 0.50
| | | | |--- class: 0.0
| | |--- Interarrival time > 0.00
| | | |--- Interarrival time <= 0.01
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 0.01
| | | | |--- Interarrival time <= 0.05
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 0.05
| | | | | |--- class: 0.0

.

Listing A.12: Decision tree resulting from a DTC with depth 5 fitted on flows of
category Worms filtered from 90% of dataset specialized subset UNSW15_10. The
subset constituted of 99.996% benign records and 0.004% attack records. The resulting
validation accuracy was 99.996%, tested with the remaining 10% of data not used for
training.

|--- Packet Length <= 51.50
| |--- Destination port <= 8100.00
| | |--- Destination port <= 3372.50
| | | |--- Destination port <= 1069.50
| | | | |--- class: 0.0
| | | |--- Destination port > 1069.50
| | | | |--- Destination port <= 1648.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 1648.00
| | | | | |--- class: 0.0
| | |--- Destination port > 3372.50
| | | |--- Destination port <= 7959.50
| | | | |--- Packet Length <= 47.00
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 47.00
| | | | | |--- class: 0.0
| | | |--- Destination port > 7959.50
| | | | |--- class: 0.0
| |--- Destination port > 8100.00
| | |--- Packet Length <= 46.50
| | | |--- Interarrival time <= 0.02
| | | | |--- SYN Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- SYN Flag > 0.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 0.02
| | | | |--- Interarrival time <= 79.54
| | | | | |--- class: 1.0
| | | | |--- Interarrival time > 79.54
| | | | | |--- class: 0.0
| | |--- Packet Length > 46.50
| | | |--- Source port <= 1177.50
| | | | |--- Source port <= 779.00
| | | | | |--- class: 0.0
| | | | |--- Source port > 779.00
| | | | | |--- class: 0.0
| | | |--- Source port > 1177.50
| | | | |--- Destination port <= 49198.00
| | | | | |--- class: 1.0
| | | | |--- Destination port > 49198.00
| | | | | |--- class: 1.0
|--- Packet Length > 51.50
| |--- Protocol <= 11.50
| | |--- Interarrival time <= 38.08
| | | |--- Interarrival time <= 33.91
| | | | |--- Interarrival time <= 18.98

248

A.5. Decision Trees

| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 18.98
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 33.91
| | | | |--- Interarrival time <= 33.91
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 33.91
| | | | | |--- class: 0.0
| | |--- Interarrival time > 38.08
| | | |--- Destination port <= 6916.50
| | | | |--- Destination port <= 1069.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 1069.00
| | | | | |--- class: 0.0
| | | |--- Destination port > 6916.50
| | | | |--- Packet Length <= 131.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 131.50
| | | | | |--- class: 0.0
| |--- Protocol > 11.50
| | |--- Packet Length <= 160.50
| | | |--- Destination port <= 1834.50
| | | | |--- Destination port <= 1334.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 1334.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 1834.50
| | | | |--- Interarrival time <= 0.07
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 0.07
| | | | | |--- class: 0.0
| | |--- Packet Length > 160.50
| | | |--- Destination port <= 5624.00
| | | | |--- Destination port <= 2825.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 2825.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 5624.00
| | | | |--- Packet Length <= 894.50
| | | | | |--- class: 1.0
| | | | |--- Packet Length > 894.50
| | | | | |--- class: 0.0

.

Listing A.13: Decision tree resulting from a DTC with depth 5 fitted on flows of
category Shellcode filtered from 90% of dataset specialized subset UNSW15_10. The
subset constituted of 99.990% benign records and 0.011% attack records. The resulting
validation accuracy was 99.994%, tested with the remaining 10% of data not used for
training.

|--- Packet Length <= 51.50
| |--- Destination port <= 1726.00
| | |--- Destination port <= 444.00
| | | |--- Destination port <= 21.50
| | | | |--- Source port <= 59638.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 59638.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 21.50
| | | | |--- Destination port <= 79.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 79.50
| | | | | |--- class: 0.0
| | |--- Destination port > 444.00
| | | |--- Destination port <= 446.50
| | | | |--- Source port <= 12843.00
| | | | | |--- class: 1.0
| | | | |--- Source port > 12843.00
| | | | | |--- class: 1.0
| | | |--- Destination port > 446.50
| | | | |--- Destination port <= 1718.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 1718.50
| | | | | |--- class: 0.0
| |--- Destination port > 1726.00

249

A. Appendix

| | |--- Source port <= 446.50
| | | |--- Source port <= 444.00
| | | | |--- Source port <= 130.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 130.50
| | | | | |--- class: 0.0
| | | |--- Source port > 444.00
| | | | |--- Destination port <= 46333.50
| | | | | |--- class: 1.0
| | | | |--- Destination port > 46333.50
| | | | | |--- class: 1.0
| | |--- Source port > 446.50
| | | |--- Source port <= 1738.50
| | | | |--- Source port <= 1709.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 1709.50
| | | | | |--- class: 0.0
| | | |--- Source port > 1738.50
| | | | |--- class: 0.0
|--- Packet Length > 51.50
| |--- Interarrival time <= 50.79
| | |--- Packet Length <= 1420.50
| | | |--- Interarrival time <= 34.80
| | | | |--- Protocol <= 11.50
| | | | | |--- class: 0.0
| | | | |--- Protocol > 11.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 34.80
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | |--- Packet Length > 1420.50
| | | |--- Direction <= 0.50
| | | | |--- Source port <= 734.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 734.50
| | | | | |--- class: 0.0
| | | |--- Direction > 0.50
| | | | |--- Destination port <= 47.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 47.00
| | | | | |--- class: 0.0
| |--- Interarrival time > 50.79
| | |--- Source port <= 140.00
| | | |--- Source port <= 123.00
| | | | |--- Destination port <= 65252.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 65252.00
| | | | | |--- class: 0.0
| | | |--- Source port > 123.00
| | | | |--- Interarrival time <= 1841.84
| | | | | |--- class: 1.0
| | | | |--- Interarrival time > 1841.84
| | | | | |--- class: 1.0
| | |--- Source port > 140.00
| | | |--- PSH Flag <= 0.50
| | | | |--- Destination port <= 127.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 127.00
| | | | | |--- class: 0.0
| | | |--- PSH Flag > 0.50
| | | | |--- Packet Length <= 56.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 56.50
| | | | | |--- class: 0.0

.

Listing A.14: Decision tree resulting from a DTC with depth 5 fitted on flows of
category Fuzzers filtered from 90% of dataset specialized subset UNSW15_10. The
subset constituted of 99.679% benign records and 0.321% attack records. The resulting
validation accuracy was 99.729%, tested with the remaining 10% of data not used for
training.

|--- Packet Length <= 51.50

250

A.5. Decision Trees

| |--- Destination port <= 110.50
| | |--- Destination port <= 24.00
| | | |--- Packet Length <= 50.50
| | | | |--- Interarrival time <= 65.88
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 65.88
| | | | | |--- class: 0.0
| | | |--- Packet Length > 50.50
| | | | |--- Interarrival time <= 74.03
| | | | | |--- class: 1.0
| | | | |--- Interarrival time > 74.03
| | | | | |--- class: 0.0
| | |--- Destination port > 24.00
| | | |--- Destination port <= 74.00
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 1.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 74.00
| | | | |--- Interarrival time <= 64.67
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 64.67
| | | | | |--- class: 0.0
| |--- Destination port > 110.50
| | |--- Destination port <= 1810.50
| | | |--- Destination port <= 154.50
| | | | |--- Destination port <= 142.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 142.00
| | | | | |--- class: 1.0
| | | |--- Destination port > 154.50
| | | | |--- Destination port <= 384.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 384.00
| | | | | |--- class: 0.0
| | |--- Destination port > 1810.50
| | | |--- Destination port <= 3109.50
| | | | |--- Source port <= 1860.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 1860.50
| | | | | |--- class: 1.0
| | | |--- Destination port > 3109.50
| | | | |--- Packet Length <= 47.00
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 47.00
| | | | | |--- class: 0.0
|--- Packet Length > 51.50
| |--- Interarrival time <= 1281.08
| | |--- Packet Length <= 1415.50
| | | |--- Interarrival time <= 45.54
| | | | |--- Packet Length <= 224.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 224.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 45.54
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | |--- Packet Length > 1415.50
| | | |--- Interarrival time <= 0.01
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 1.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 0.01
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| |--- Interarrival time > 1281.08
| | |--- Protocol <= 11.50
| | | |--- Packet Length <= 90.50
| | | | |--- Packet Length <= 53.00
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 53.00
| | | | | |--- class: 0.0
| | | |--- Packet Length > 90.50
| | | | |--- Packet Length <= 92.50
| | | | | |--- class: 1.0
| | | | |--- Packet Length > 92.50
| | | | | |--- class: 0.0
| | |--- Protocol > 11.50

251

A. Appendix

| | | |--- Packet Length <= 61.00
| | | | |--- Destination port <= 286.50
| | | | | |--- class: 1.0
| | | | |--- Destination port > 286.50
| | | | | |--- class: 0.0
| | | |--- Packet Length > 61.00
| | | | |--- Destination port <= 318.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 318.50
| | | | | |--- class: 0.0

.

Listing A.15: Decision tree resulting from a DTC with depth 5 fitted on flows of
category Generic filtered from 90% of dataset specialized subset UNSW15_10. The
subset constituted of 99.871% benign records and 0.129% attack records. The resulting
validation accuracy was 99.885%, tested with the remaining 10% of data not used for
training.

|--- Packet Length <= 51.50
| |--- Destination port <= 154.50
| | |--- Source port <= 64254.50
| | | |--- Destination port <= 61.00
| | | | |--- Destination port <= 22.50
| | | | | |--- class: 1.0
| | | | |--- Destination port > 22.50
| | | | | |--- class: 1.0
| | | |--- Destination port > 61.00
| | | | |--- Destination port <= 137.00
| | | | | |--- class: 1.0
| | | | |--- Destination port > 137.00
| | | | | |--- class: 1.0
| | |--- Source port > 64254.50
| | | |--- Destination port <= 61.00
| | | | |--- Destination port <= 22.50
| | | | | |--- class: 0.0
| | | | |--- Destination port > 22.50
| | | | | |--- class: 1.0
| | | |--- Destination port > 61.00
| | | | |--- Destination port <= 137.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 137.00
| | | | | |--- class: 1.0
| |--- Destination port > 154.50
| | |--- Destination port <= 1731.50
| | | |--- Destination port <= 381.00
| | | | |--- Source port <= 64340.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 64340.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 381.00
| | | | |--- Destination port <= 444.00
| | | | | |--- class: 1.0
| | | | |--- Destination port > 444.00
| | | | | |--- class: 0.0
| | |--- Destination port > 1731.50
| | | |--- Interarrival time <= 120.89
| | | | |--- ACK Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- ACK Flag > 0.50
| | | | | |--- class: 1.0
| | | |--- Interarrival time > 120.89
| | | | |--- Packet Length <= 47.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 47.50
| | | | | |--- class: 1.0
|--- Packet Length > 51.50
| |--- Interarrival time <= 46.05
| | |--- Packet Length <= 1414.50
| | | |--- Interarrival time <= 33.84
| | | | |--- Interarrival time <= 0.04
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 0.04
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 33.84
| | | | |--- PSH Flag <= 0.50

252

A.5. Decision Trees

| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | |--- Packet Length > 1414.50
| | | |--- Interarrival time <= 0.72
| | | | |--- PSH Flag <= 0.50
| | | | | |--- class: 0.0
| | | | |--- PSH Flag > 0.50
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 0.72
| | | | |--- Destination port <= 6725.00
| | | | | |--- class: 0.0
| | | | |--- Destination port > 6725.00
| | | | | |--- class: 0.0
| |--- Interarrival time > 46.05
| | |--- PSH Flag <= 0.50
| | | |--- Packet Length <= 52.50
| | | | |--- Direction <= 0.50
| | | | | |--- class: 0.0
| | | | |--- Direction > 0.50
| | | | | |--- class: 0.0
| | | |--- Packet Length > 52.50
| | | | |--- Packet Length <= 1499.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 1499.50
| | | | | |--- class: 0.0
| | |--- PSH Flag > 0.50
| | | |--- Packet Length <= 56.50
| | | | |--- Destination port <= 131.00
| | | | | |--- class: 1.0
| | | | |--- Destination port > 131.00
| | | | | |--- class: 1.0
| | | |--- Packet Length > 56.50
| | | | |--- Direction <= 0.50
| | | | | |--- class: 0.0
| | | | |--- Direction > 0.50
| | | | | |--- class: 0.0

.

Listing A.16: Decision tree resulting from a DTC with depth 5 fitted on flows of
category Exploits filtered from 90% of dataset specialized subset UNSW15_10. The
subset constituted of 99.039% benign records and 0.961% attack records. The resulting
validation accuracy was 99.306%, tested with the remaining 10% of data not used for
training.

|--- Packet Length <= 51.50
| |--- Destination port <= 83.50
| | |--- Destination port <= 79.50
| | | |--- Destination port <= 24.00
| | | | |--- class: 0.0
| | | |--- Destination port > 24.00
| | | | |--- Packet Length <= 46.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 46.50
| | | | | |--- class: 0.0
| | |--- Destination port > 79.50
| | | |--- Source port <= 65386.00
| | | | |--- Source port <= 42629.00
| | | | | |--- class: 0.0
| | | | |--- Source port > 42629.00
| | | | | |--- class: 0.0
| | | |--- Source port > 65386.00
| | | | |--- Source port <= 65403.50
| | | | | |--- class: 0.0
| | | | |--- Source port > 65403.50
| | | | | |--- class: 0.0
| |--- Destination port > 83.50
| | |--- Source port <= 95.00
| | | |--- Destination port <= 65382.00
| | | | |--- Source port <= 77.00
| | | | | |--- class: 0.0
| | | | |--- Source port > 77.00
| | | | | |--- class: 0.0
| | | |--- Destination port > 65382.00
| | | | |--- Destination port <= 65404.50

253

A. Appendix

| | | | | |--- class: 1.0
| | | | |--- Destination port > 65404.50
| | | | | |--- class: 0.0
| | |--- Source port > 95.00
| | | |--- class: 0.0
|--- Packet Length > 51.50
| |--- Interarrival time <= 76.56
| | |--- Interarrival time <= 49.69
| | | |--- Interarrival time <= 30.86
| | | | |--- Interarrival time <= 16.23
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 16.23
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 30.86
| | | | |--- Interarrival time <= 30.86
| | | | | |--- class: 0.0
| | | | |--- Interarrival time > 30.86
| | | | | |--- class: 0.0
| | |--- Interarrival time > 49.69
| | | |--- Interarrival time <= 49.69
| | | | |--- Source port <= 9057.00
| | | | | |--- class: 0.0
| | | | |--- Source port > 9057.00
| | | | | |--- class: 0.0
| | | |--- Interarrival time > 49.69
| | | | |--- Packet Length <= 216.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 216.50
| | | | | |--- class: 0.0
| |--- Interarrival time > 76.56
| | |--- Source port <= 65383.50
| | | |--- Destination port <= 65534.50
| | | | |--- Packet Length <= 212.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 212.50
| | | | | |--- class: 0.0
| | | |--- Destination port > 65534.50
| | | | |--- Source port <= 129.50
| | | | | |--- class: 1.0
| | | | |--- Source port > 129.50
| | | | | |--- class: 0.0
| | |--- Source port > 65383.50
| | | |--- Packet Length <= 214.50
| | | | |--- class: 0.0
| | | |--- Packet Length > 214.50
| | | | |--- Packet Length <= 254.50
| | | | | |--- class: 0.0
| | | | |--- Packet Length > 254.50
| | | | | |--- class: 0.0

.

Listing A.17: Decision tree resulting from a DTC with depth 5 fitted on flows of
category Analysis filtered from 90% of dataset specialized subset UNSW15_10. The
subset constituted of 99.993% benign records and 0.007% attack records. The resulting
validation accuracy was 99.993%, tested with the remaining 10% of data not used for
training.

254

List of Figures

2.1 Depiction of an unrolled RNN with x(t) being the input sequence, ŷ(t)

the output sequence, and h(t) the internal state of the RNN after each
processing stage. 9

2.2 One LSTM memory cell [Lip15] . 10
2.3 Self attention layer of Transformer by [VSP+17b] 11
2.4 Transformer encoder model as proposed by [VSP+17b] 12
2.5 Visualization of an auto-encoder. The input is encoded and subsequently

decoded yielding and approximate reconstruction of the image [BKG20] 13

3.1 Our design decisions (blue) and alternatives (green) based on the data
source taxonomy proposed by Hongyu Liu et al. [LL19]. 18

3.2 Our design decisions (blue) and alternatives (green) based on the detec-
tion method taxonomy proposed by Hongyu Liu et al. [LL19]. 18

3.3 Composite model for input reconstruction and future prediction [SMS15] 24
3.4 Data flow in a three layered LSTM network. 25
3.5 Layer-wise pre-training of LSTM-SAE model. [SK19b] 26

4.1 All steps performed in dataset preprocessing to yield pre-training, training
and validation splits. 35

4.2 Depiction of the LSTM model. 36
4.3 Depiction of the transformer encoder model used for classification. . 37

5.1 Depiction of data flow, input and output of the model during pre-training
on the identity function proxy task (ID). 43

5.2 Depiction of data flow, input and output of the model during pre-training
on the prediction proxy task (PREDICT). 44

5.3 Depiction of data flow, input and output of the LSTM model during
pre-training on the Mask Packet proxy task (MASK). 45

5.4 Depiction of data flow, input and output of the LSTM model during
pre-training on the Obscure Feature proxy task (OBSCURE). 46

5.5 Depiction of data flow, input and output of the LSTM model during
pre-training on Auto-Encoder proxy task (AUTO). The fully connected
layer is omitted from the graphic. 47

255

5.6 Depiction of data flow, input and output of the LSTM model during
pre-training with the Composite proxy task (COMPOSITE). The fully
connected layer is omitted from the graphic. 49

5.7 Depiction of data flow, input and output of the transformer encoder model
during pre-training with the Obscure Feature proxy task (OBSCURE). 51

5.8 Depiction of data flow, input and output of the transformer encoder
model during pre-training with the Auto-Encoder proxy task (AUTO). 52

5.9 Depiction of data flow, input and output of the transformer encoder
model during pre-training with the Mask Packet proxy task (MASK). 53

6.1 Plot of mean training loss per epoch during fine-tuning on the LSTM
model with specialized subset CIC17_10. 64

6.2 Plot of mean validation loss per epoch during fine-tuning on the LSTM
model with specialized subset CIC17_10. 64

6.3 Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan
- Firewall off in dataset CIC-IDS2017. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 75

6.4 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Infiltration in dataset CIC-IDS2017. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 75

6.5 Partial dependency plot between feature packet length and classification
of SSH Patator attacks in the CIC-IDS2017 dataset. The histogram
describes the distribution of occurring values for feature packet length in
flows of type SSH Patator. 76

6.6 Partial dependency plot between feature source port and classification
of SSH Patator attacks in the CIC-IDS2017 dataset. The histogram
describes the distribution of occurring values for feature source port in
flows of type SSH Patator. 77

6.7 Decision tree yielded from a DTC fitted to the a subset of the CIC-
IDS2017 dataset (99.329% benign samples, 0.671% attack samples) con-
taining only benign flows and attack flows of category SSH-Patator. The
DTC achieved an accuracy of 99.781%. 82

A.1 Plot of mean validation loss per epoch progression during fine-tuning on
the LSTM model with 10% of dataset CIC-IDS2017. 102

A.2 Plot of mean training loss per epoch progression during fine-tuning on
the LSTM model with 10% of dataset CIC-IDS2017. 103

A.3 Plot of mean validation loss per epoch progression during fine-tuning on
the LSTM model with specialized subset UNSW15_10. 103

256

A.4 Plot of mean training loss per epoch progression during fine-tuning on
the LSTM model with specialized subset UNSW15_10. 104

A.5 Plot of mean validation loss per epoch progression during fine-tuning on
the LSTM model with 10% of dataset UNSW-NB15. 104

A.6 Plot of mean training loss per epoch progression during fine-tuning on
the LSTM model with 10% of dataset UNSW-NB15. 105

A.7 Plot of mean validation loss per epoch progression during fine-tuning on
the LSTM model with 1% of dataset CIC-IDS2017. 105

A.8 Plot of mean training loss per epoch progression during fine-tuning on
the LSTM model with 1% of dataset CIC-IDS2017. 106

A.9 Plot of mean validation loss per epoch progression during fine-tuning on
the LSTM model with 1% of dataset UNSW-NB15. 106

A.10 Plot of mean training loss per epoch progression during fine-tuning on
the LSTM model with 1% of dataset UNSW-NB15. 107

A.11 Plot of mean validation loss per epoch progression during fine-tuning on
the LSTM model with specialized subset CIC17_10. 107

A.12 Plot of mean training loss per epoch progression during fine-tuning on
the LSTM model with specialized subset CIC17_10. 108

A.13 Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with 10% of dataset CIC-IDS2017. . . 108

A.14 Plot of mean training loss per epoch progression during fine-tuning on
the Transformer model model with 10% of dataset CIC-IDS2017. . . 109

A.15 Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with specialized subset UNSW15_10. . 109

A.16 Plot of mean training loss per epoch progression during fine-tuning on
the Transformer model model with specialized subset UNSW15_10. . 110

A.17 Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with 10% of dataset UNSW-NB15. . . 110

A.18 Plot of mean training loss per epoch progression during fine-tuning on
the Transformer model model with 10% of dataset UNSW-NB15. . . . 111

A.19 Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with 1% of dataset CIC-IDS2017. 111

A.20 Plot of mean training loss per epoch progression during fine-tuning on
the Transformer model model with 1% of dataset CIC-IDS2017. . . . 112

A.21 Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with 1% of dataset UNSW-NB15. . . . 112

A.22 Plot of mean training loss per epoch progression during fine-tuning on
the Transformer model model with 1% of dataset UNSW-NB15. . . . 113

A.23 Plot of mean validation loss per epoch progression during fine-tuning on
the Transformer model model with specialized subset CIC17_10. . . 113

A.24 Plot of mean training loss per epoch progression during fine-tuning on
the Transformer model model with specialized subset CIC17_10. . . 114

257

A.25 PDP showing the influence of value variations of feature Destination port
on classification of DoS Slowhttptest attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 114

A.26 PDP showing the influence of value variations of feature Destination port
on classification of XSS attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 115

A.27 PDP showing the influence of value variations of feature Protocol on
classification of Benign attacks of the LSTM pre-trained with proxy tasks
as define in 5.1 finetuned with specialized subset CIC17_10. 115

A.28 PDP showing the influence of value variations of feature Source port
on classification of FTP-Patator attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 116

A.29 PDP showing the influence of value variations of feature Destination port
on classification of Infiltration attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 116

A.30 PDP showing the influence of value variations of feature Packet Length
on classification of FTP-Patator attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 117

A.31 PDP showing the influence of value variations of feature Source port on
classification of XSS attacks of the LSTM pre-trained with proxy tasks
as define in 5.1 finetuned with specialized subset CIC17_10. 117

A.32 PDP showing the influence of value variations of feature Destination port
on classification of DoS GoldenEye attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 118

A.33 PDP showing the influence of value variations of feature Packet Length
on classification of Benign attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 118

A.34 PDP showing the influence of value variations of feature Protocol on clas-
sification of PortScan - Firewall off attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 119

A.35 PDP showing the influence of value variations of feature Destination
port on classification of DoS Hulk attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 119

A.36 PDP showing the influence of value variations of feature Destination port
on classification of Benign attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 120

A.37 PDP showing the influence of value variations of feature Packet Length
on classification of DoS slowloris attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 120

A.38 PDP showing the influence of value variations of feature Packet Length on
classification of DoS Slowhttptest attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 121

258

A.39 PDP showing the influence of value variations of feature Protocol on
classification of DoS Hulk attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . . 121

A.40 PDP showing the influence of value variations of feature Packet Length
on classification of SSH-Patator attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 122

A.41 PDP showing the influence of value variations of feature Packet Length
on classification of DoS GoldenEye attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 122

A.42 PDP showing the influence of value variations of feature Source port on
classification of DoS GoldenEye attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 123

A.43 PDP showing the influence of value variations of feature Packet Length
on classification of Infiltration attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 123

A.44 PDP showing the influence of value variations of feature Source port on
classification of Infiltration attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 124

A.45 PDP showing the influence of value variations of feature Source port
on classification of PortScan - Firewall on attacks of the LSTM pre-
trained with proxy tasks as define in 5.1 finetuned with specialized subset
CIC17_10. 125

A.46 PDP showing the influence of value variations of feature Protocol on
classification of DDoS LOIT attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 126

A.47 PDP showing the influence of value variations of feature Source port on
classification of DDoS LOIT attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 126

A.48 PDP showing the influence of value variations of feature Protocol on
classification of Infiltration attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 127

A.49 PDP showing the influence of value variations of feature Source port
on classification of Botnet ARES attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 127

A.50 PDP showing the influence of value variations of feature Source port
on classification of SSH-Patator attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 128

A.51 PDP showing the influence of value variations of feature Packet Length
on classification of PortScan - Firewall on attacks of the LSTM pre-
trained with proxy tasks as define in 5.1 finetuned with specialized subset
CIC17_10. 128

259

A.52 PDP showing the influence of value variations of feature Destination
port on classification of PortScan - Firewall on attacks of the LSTM
pre-trained with proxy tasks as define in 5.1 finetuned with specialized
subset CIC17_10. 129

A.53 PDP showing the influence of value variations of feature Source port on
classification of DoS Slowhttptest attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 129

A.54 PDP showing the influence of value variations of feature Destination port
on classification of DoS slowloris attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 130

A.55 PDP showing the influence of value variations of feature Protocol on
classification of Botnet ARES attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 130

A.56 PDP showing the influence of value variations of feature Protocol on
classification of DoS Slowhttptest attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 131

A.57 PDP showing the influence of value variations of feature Packet Length
on classification of XSS attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . . 131

A.58 PDP showing the influence of value variations of feature Destination port
on classification of Botnet ARES attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 132

A.59 PDP showing the influence of value variations of feature Protocol on
classification of FTP-Patator attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 132

A.60 PDP showing the influence of value variations of feature Protocol on
classification of SSH-Patator attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 133

A.61 PDP showing the influence of value variations of feature Packet Length
on classification of DDoS LOIT attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 133

A.62 PDP showing the influence of value variations of feature Destination
port on classification of PortScan - Firewall off attacks of the LSTM
pre-trained with proxy tasks as define in 5.1 finetuned with specialized
subset CIC17_10. 134

A.63 PDP showing the influence of value variations of feature Destination port
on classification of SSH-Patator attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 134

A.64 PDP showing the influence of value variations of feature Protocol on
classification of XSS attacks of the LSTM pre-trained with proxy tasks
as define in 5.1 finetuned with specialized subset CIC17_10. 135

260

A.65 PDP showing the influence of value variations of feature Source port
on classification of Benign attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 136

A.66 PDP showing the influence of value variations of feature Destination port
on classification of FTP-Patator attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 136

A.67 PDP showing the influence of value variations of feature Source port on
classification of DoS Hulk attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . 137

A.68 PDP showing the influence of value variations of feature Protocol on
classification of DoS slowloris attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 137

A.69 PDP showing the influence of value variations of feature Source port
on classification of PortScan - Firewall off attacks of the LSTM pre-
trained with proxy tasks as define in 5.1 finetuned with specialized subset
CIC17_10. 138

A.70 PDP showing the influence of value variations of feature Packet Length
on classification of PortScan - Firewall off attacks of the LSTM pre-
trained with proxy tasks as define in 5.1 finetuned with specialized subset
CIC17_10. 138

A.71 PDP showing the influence of value variations of feature Protocol on clas-
sification of PortScan - Firewall on attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 139

A.72 PDP showing the influence of value variations of feature Packet Length
on classification of Botnet ARES attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 139

A.73 PDP showing the influence of value variations of feature Destination port
on classification of DDoS LOIT attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 140

A.74 PDP showing the influence of value variations of feature Source port
on classification of DoS slowloris attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 140

A.75 PDP showing the influence of value variations of feature Packet Length
on classification of DoS Hulk attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset CIC17_10. . . . 141

A.76 PDP showing the influence of value variations of feature Protocol on
classification of DoS GoldenEye attacks of the LSTM pre-trained with
proxy tasks as define in 5.1 finetuned with specialized subset CIC17_10. 141

A.77 PDP showing the influence of value variations of feature Packet Length
on classification of Worms attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 142

261

A.78 PDP showing the influence of value variations of feature Destination port
on classification of DoS attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 142

A.79 PDP showing the influence of value variations of feature Destination port
on classification of Reconnaissance attacks of the LSTM pre-trained
with proxy tasks as define in 5.1 finetuned with specialized subset
UNSW15_10. 143

A.80 PDP showing the influence of value variations of feature Protocol on
classification of Exploits attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 143

A.81 PDP showing the influence of value variations of feature Packet Length
on classification of Generic attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 144

A.82 PDP showing the influence of value variations of feature Destination port
on classification of Worms attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 144

A.83 PDP showing the influence of value variations of feature Packet Length
on classification of Shellcode attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 145

A.84 PDP showing the influence of value variations of feature Destination port
on classification of Shellcode attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 146

A.85 PDP showing the influence of value variations of feature Source port on
classification of Backdoors attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 146

A.86 PDP showing the influence of value variations of feature Protocol on
classification of Backdoors attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 147

A.87 PDP showing the influence of value variations of feature Destination port
on classification of Backdoors attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 147

A.88 PDP showing the influence of value variations of feature Packet Length
on classification of Fuzzers attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 148

A.89 PDP showing the influence of value variations of feature Protocol on
classification of Normal attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 148

A.90 PDP showing the influence of value variations of feature Destination port
on classification of Exploits attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 149

A.91 PDP showing the influence of value variations of feature Protocol on
classification of Generic attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 149

262

A.92 PDP showing the influence of value variations of feature Destination port
on classification of Normal attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 150

A.93 PDP showing the influence of value variations of feature Protocol on
classification of Shellcode attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 150

A.94 PDP showing the influence of value variations of feature Protocol on
classification of Fuzzers attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. . 151

A.95 PDP showing the influence of value variations of feature Source port
on classification of Worms attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. . 151

A.96 PDP showing the influence of value variations of feature Packet Length on
classification of Backdoors attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 152

A.97 PDP showing the influence of value variations of feature Packet Length
on classification of Reconnaissance attacks of the LSTM pre-trained
with proxy tasks as define in 5.1 finetuned with specialized subset
UNSW15_10. 152

A.98 PDP showing the influence of value variations of feature Packet Length
on classification of Normal attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 153

A.99 PDP showing the influence of value variations of feature Destination port
on classification of Generic attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 153

A.100 PDP showing the influence of value variations of feature Destination port
on classification of Fuzzers attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 154

A.101 PDP showing the influence of value variations of feature Protocol on
classification of Analysis attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 154

A.102 PDP showing the influence of value variations of feature Packet Length
on classification of DoS attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 155

A.103 PDP showing the influence of value variations of feature Source port
on classification of Fuzzers attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 156

A.104 PDP showing the influence of value variations of feature Destination port
on classification of Analysis attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 156

A.105 PDP showing the influence of value variations of feature Source port on
classification of Shellcode attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 157

263

A.106 PDP showing the influence of value variations of feature Source port on
classification of Analysis attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 157

A.107 PDP showing the influence of value variations of feature Protocol on
classification of Worms attacks of the LSTM pre-trained with proxy tasks
as define in 5.1 finetuned with specialized subset UNSW15_10. . . . 158

A.108 PDP showing the influence of value variations of feature Protocol on clas-
sification of Reconnaissance attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 158

A.109 PDP showing the influence of value variations of feature Source port on
classification of Exploits attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 159

A.110 PDP showing the influence of value variations of feature Source port on
classification of Normal attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 159

A.111 PDP showing the influence of value variations of feature Packet Length
on classification of Exploits attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 160

A.112 PDP showing the influence of value variations of feature Source port on
classification of Generic attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. 160

A.113 PDP showing the influence of value variations of feature Packet Length
on classification of Analysis attacks of the LSTM pre-trained with proxy
tasks as define in 5.1 finetuned with specialized subset UNSW15_10. . 161

A.114 PDP showing the influence of value variations of feature Source port on
classification of DoS attacks of the LSTM pre-trained with proxy tasks
as define in 5.1 finetuned with specialized subset UNSW15_10. 161

A.115 PDP showing the influence of value variations of feature Source port
on classification of Reconnaissance attacks of the LSTM pre-trained
with proxy tasks as define in 5.1 finetuned with specialized subset
UNSW15_10. 162

A.116 PDP showing the influence of value variations of feature Protocol on
classification of DoS attacks of the LSTM pre-trained with proxy tasks
as define in 5.1 finetuned with specialized subset UNSW15_10. . . . 162

A.117 PDP showing the influence of value variations of feature Packet Length
on classification of Worms attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 163

A.118 PDP showing the influence of value variations of feature Destination
port on classification of DoS attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 163

264

A.119 PDP showing the influence of value variations of feature Destination port
on classification of Reconnaissance attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset UNSW15_10. 164

A.120 PDP showing the influence of value variations of feature Protocol on
classification of Exploits attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 164

A.121 PDP showing the influence of value variations of feature Packet Length
on classification of Generic attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 165

A.122 PDP showing the influence of value variations of feature Destination
port on classification of Worms attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 165

A.123 PDP showing the influence of value variations of feature Packet Length
on classification of Shellcode attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 166

A.124 PDP showing the influence of value variations of feature Destination
port on classification of Shellcode attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 166

A.125 PDP showing the influence of value variations of feature Source port
on classification of Backdoors attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 167

A.126 PDP showing the influence of value variations of feature Protocol on clas-
sification of Backdoors attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 167

A.127 PDP showing the influence of value variations of feature Destination
port on classification of Backdoors attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset UNSW15_10. 168

A.128 PDP showing the influence of value variations of feature Packet Length
on classification of Fuzzers attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 168

265

A.129 PDP showing the influence of value variations of feature Protocol on
classification of Normal attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 169

A.130 PDP showing the influence of value variations of feature Destination
port on classification of Exploits attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 169

A.131 PDP showing the influence of value variations of feature Protocol on
classification of Generic attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 170

A.132 PDP showing the influence of value variations of feature Destination
port on classification of Normal attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 170

A.133 PDP showing the influence of value variations of feature Protocol on clas-
sification of Shellcode attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 171

A.134 PDP showing the influence of value variations of feature Protocol on
classification of Fuzzers attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 171

A.135 PDP showing the influence of value variations of feature Source port on
classification of Worms attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 172

A.136 PDP showing the influence of value variations of feature Packet Length
on classification of Backdoors attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 172

A.137 PDP showing the influence of value variations of feature Packet Length
on classification of Reconnaissance attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset UNSW15_10. 173

A.138 PDP showing the influence of value variations of feature Packet Length
on classification of Normal attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 174

266

A.139 PDP showing the influence of value variations of feature Destination
port on classification of Generic attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 174

A.140 PDP showing the influence of value variations of feature Destination
port on classification of Fuzzers attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 175

A.141 PDP showing the influence of value variations of feature Protocol on
classification of Analysis attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 175

A.142 PDP showing the influence of value variations of feature Packet Length
on classification of DoS attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 176

A.143 PDP showing the influence of value variations of feature Source port on
classification of Fuzzers attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 176

A.144 PDP showing the influence of value variations of feature Destination
port on classification of Analysis attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 177

A.145 PDP showing the influence of value variations of feature Source port
on classification of Shellcode attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 177

A.146 PDP showing the influence of value variations of feature Source port on
classification of Analysis attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 178

A.147 PDP showing the influence of value variations of feature Protocol on
classification of Worms attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 178

A.148 PDP showing the influence of value variations of feature Protocol on
classification of Reconnaissance attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 179

267

A.149 PDP showing the influence of value variations of feature Source port on
classification of Exploits attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 179

A.150 PDP showing the influence of value variations of feature Source port on
classification of Normal attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 180

A.151 PDP showing the influence of value variations of feature Packet Length
on classification of Exploits attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 180

A.152 PDP showing the influence of value variations of feature Source port on
classification of Generic attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 181

A.153 PDP showing the influence of value variations of feature Packet Length
on classification of Analysis attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 181

A.154 PDP showing the influence of value variations of feature Source port
on classification of DoS attacks of the Transformer model pre-trained
with proxy tasks as define in 5.2 finetuned with specialized subset
UNSW15_10. 182

A.155 PDP showing the influence of value variations of feature Source port
on classification of Reconnaissance attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset UNSW15_10. 182

A.156 PDP showing the influence of value variations of feature Protocol on clas-
sification of DoS attacks of the Transformer model pre-trained with proxy
tasks as define in 5.2 finetuned with specialized subset UNSW15_10. 183

A.157 PDP showing the influence of value variations of feature Destination port
on classification of DoS Slowhttptest attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 184

A.158 PDP showing the influence of value variations of feature Destination port
on classification of XSS attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10. 184

A.159 PDP showing the influence of value variations of feature Protocol on
classification of Benign attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10. 185

268

A.160 PDP showing the influence of value variations of feature Source port
on classification of FTP-Patator attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 185

A.161 PDP showing the influence of value variations of feature Destination
port on classification of Infiltration attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 186

A.162 PDP showing the influence of value variations of feature Packet Length
on classification of FTP-Patator attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 186

A.163 PDP showing the influence of value variations of feature Source port on
classification of XSS attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10. 187

A.164 PDP showing the influence of value variations of feature Destination port
on classification of DoS GoldenEye attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 187

A.165 PDP showing the influence of value variations of feature Packet Length on
classification of Benign attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10. 188

A.166 PDP showing the influence of value variations of feature Protocol on
classification of PortScan - Firewall off attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 188

A.167 PDP showing the influence of value variations of feature Destination
port on classification of DoS Hulk attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 189

A.168 PDP showing the influence of value variations of feature Destination
port on classification of Benign attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 189

A.169 PDP showing the influence of value variations of feature Packet Length
on classification of DoS slowloris attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 190

A.170 PDP showing the influence of value variations of feature Packet Length
on classification of DoS Slowhttptest attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 190

269

A.171 PDP showing the influence of value variations of feature Protocol on clas-
sification of DoS Hulk attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10. 191

A.172 PDP showing the influence of value variations of feature Packet Length
on classification of SSH-Patator attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 191

A.173 PDP showing the influence of value variations of feature Packet Length
on classification of DoS GoldenEye attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 192

A.174 PDP showing the influence of value variations of feature Source port
on classification of DoS GoldenEye attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 192

A.175 PDP showing the influence of value variations of feature Packet Length
on classification of Infiltration attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 193

A.176 PDP showing the influence of value variations of feature Source port
on classification of Infiltration attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 194

A.177 PDP showing the influence of value variations of feature Source port on
classification of PortScan - Firewall on attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 194

A.178 PDP showing the influence of value variations of feature Protocol on
classification of DDoS LOIT attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 195

A.179 PDP showing the influence of value variations of feature Source port
on classification of DDoS LOIT attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 195

A.180 PDP showing the influence of value variations of feature Protocol on clas-
sification of Infiltration attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10. 196

A.181 PDP showing the influence of value variations of feature Source port
on classification of Botnet ARES attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 196

270

A.182 PDP showing the influence of value variations of feature Source port
on classification of SSH-Patator attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 197

A.183 PDP showing the influence of value variations of feature Packet Length on
classification of PortScan - Firewall on attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 197

A.184 PDP showing the influence of value variations of feature Destination
port on classification of PortScan - Firewall on attacks of the Trans-
former model pre-trained with proxy tasks as define in 5.2 finetuned with
specialized subset CIC17_10. 198

A.185 PDP showing the influence of value variations of feature Source port
on classification of DoS Slowhttptest attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 198

A.186 PDP showing the influence of value variations of feature Destination
port on classification of DoS slowloris attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 199

A.187 PDP showing the influence of value variations of feature Protocol on
classification of Botnet ARES attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 199

A.188 PDP showing the influence of value variations of feature Protocol on
classification of DoS Slowhttptest attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 200

A.189 PDP showing the influence of value variations of feature Packet Length on
classification of XSS attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10. 200

A.190 PDP showing the influence of value variations of feature Destination
port on classification of Botnet ARES attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 201

A.191 PDP showing the influence of value variations of feature Protocol on
classification of FTP-Patator attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 201

A.192 PDP showing the influence of value variations of feature Protocol on
classification of SSH-Patator attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 202

271

A.193 PDP showing the influence of value variations of feature Packet Length
on classification of DDoS LOIT attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 202

A.194 PDP showing the influence of value variations of feature Destination
port on classification of PortScan - Firewall off attacks of the Trans-
former model pre-trained with proxy tasks as define in 5.2 finetuned with
specialized subset CIC17_10. 203

A.195 PDP showing the influence of value variations of feature Destination
port on classification of SSH-Patator attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 204

A.196 PDP showing the influence of value variations of feature Protocol on
classification of XSS attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10. 204

A.197 PDP showing the influence of value variations of feature Source port on
classification of Benign attacks of the Transformer model pre-trained with
proxy tasks as define in 5.2 finetuned with specialized subset CIC17_10. 205

A.198 PDP showing the influence of value variations of feature Destination
port on classification of FTP-Patator attacks of the Transformer model
pre-trained with proxy tasks as define in 5.2 finetuned with specialized
subset CIC17_10. 205

A.199 PDP showing the influence of value variations of feature Source port
on classification of DoS Hulk attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 206

A.200 PDP showing the influence of value variations of feature Protocol on
classification of DoS slowloris attacks of the Transformer model pre-
trained with proxy tasks as define in 5.2 finetuned with specialized subset
CIC17_10. 206

A.201 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Infiltration in dataset CIC-IDS2017. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 207

A.202 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Botnet ARES in dataset CIC-IDS2017. The model was pre-trained with
the PREDICT proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 207

272

A.203 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS
Slowhttptest in dataset CIC-IDS2017. The model was pre-trained with
the PREDICT proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 207

A.204 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Benign in dataset CIC-IDS2017. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 208

A.205 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
FTP-Patator in dataset CIC-IDS2017. The model was pre-trained with
the PREDICT proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 208

A.206 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DDoS LOIT in dataset CIC-IDS2017. The model was pre-trained with
the PREDICT proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 208

A.207 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
PortScan - Firewall off in dataset CIC-IDS2017. The model was pre-
trained with the PREDICT proxy task and afterwards fine-tuning with
specialized subset CIC17_10. 208

A.208 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category XSS
in dataset CIC-IDS2017. The model was pre-trained with the PREDICT
proxy task and afterwards fine-tuning with specialized subset CIC17_10. 209

A.209 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS
GoldenEye in dataset CIC-IDS2017. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 209

A.210 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS Hulk in dataset CIC-IDS2017. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 209

273

A.211 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
SSH-Patator in dataset CIC-IDS2017. The model was pre-trained with
the PREDICT proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 209

A.212 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
PortScan - Firewall on in dataset CIC-IDS2017. The model was pre-
trained with the PREDICT proxy task and afterwards fine-tuning with
specialized subset CIC17_10. 210

A.213 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS slowloris in dataset CIC-IDS2017. The model was pre-trained with
the PREDICT proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 210

A.214 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Shellcode in dataset UNSW-NB15. The model was pre-trained with the
AUTO proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 210

A.215 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Analysis in dataset UNSW-NB15. The model was pre-trained with the
AUTO proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 210

A.216 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Generic in dataset UNSW-NB15. The model was pre-trained with the
AUTO proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 211

A.217 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Exploits in dataset UNSW-NB15. The model was pre-trained with the
AUTO proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 211

A.218 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Backdoors in dataset UNSW-NB15. The model was pre-trained with
the AUTO proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 211

274

A.219 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Fuzzers in dataset UNSW-NB15. The model was pre-trained with the
AUTO proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 211

A.220 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Worms in dataset UNSW-NB15. The model was pre-trained with the
AUTO proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 212

A.221 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Reconnaissance in dataset UNSW-NB15. The model was pre-trained
with the AUTO proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 213

A.222 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS in dataset UNSW-NB15. The model was pre-trained with the
AUTO proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 213

A.223 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Shellcode in dataset UNSW-NB15. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 213

A.224 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Analysis in dataset UNSW-NB15. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 214

A.225 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Generic in dataset UNSW-NB15. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 214

A.226 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Exploits in dataset UNSW-NB15. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 214

275

A.227 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Backdoors in dataset UNSW-NB15. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 214

A.228 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Fuzzers in dataset UNSW-NB15. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 215

A.229 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Worms in dataset UNSW-NB15. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 215

A.230 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Reconnaissance in dataset UNSW-NB15. The model was pre-trained with
the COMPOSITE proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 215

A.231 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS in dataset UNSW-NB15. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 215

A.232 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Infiltration in dataset CIC-IDS2017. The model was pre-trained with
the COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 216

A.233 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Botnet ARES in dataset CIC-IDS2017. The model was pre-trained with
the COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 216

A.234 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS
Slowhttptest in dataset CIC-IDS2017. The model was pre-trained with
the COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 216

276

A.235 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Benign in dataset CIC-IDS2017. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 216

A.236 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
FTP-Patator in dataset CIC-IDS2017. The model was pre-trained with
the COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 217

A.237 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DDoS LOIT in dataset CIC-IDS2017. The model was pre-trained with
the COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 217

A.238 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
PortScan - Firewall off in dataset CIC-IDS2017. The model was pre-
trained with the COMPOSITE proxy task and afterwards fine-tuning
with specialized subset CIC17_10. 217

A.239 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
XSS in dataset CIC-IDS2017. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 217

A.240 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS
GoldenEye in dataset CIC-IDS2017. The model was pre-trained with
the COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 218

A.241 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS Hulk in dataset CIC-IDS2017. The model was pre-trained with the
COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 218

A.242 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
SSH-Patator in dataset CIC-IDS2017. The model was pre-trained with
the COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 218

277

A.243 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
PortScan - Firewall on in dataset CIC-IDS2017. The model was pre-
trained with the COMPOSITE proxy task and afterwards fine-tuning
with specialized subset CIC17_10. 219

A.244 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS slowloris in dataset CIC-IDS2017. The model was pre-trained with
the COMPOSITE proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 219

A.245 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Shellcode in dataset UNSW-NB15. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 219

A.246 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Analysis in dataset UNSW-NB15. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 219

A.247 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Generic in dataset UNSW-NB15. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 220

A.248 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Exploits in dataset UNSW-NB15. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 220

A.249 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Backdoors in dataset UNSW-NB15. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 220

A.250 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Fuzzers in dataset UNSW-NB15. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 220

278

A.251 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Worms in dataset UNSW-NB15. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 221

A.252 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Reconnaissance in dataset UNSW-NB15. The model was pre-trained with
the PREDICT proxy task and afterwards fine-tuning with specialized
subset UNSW15_10. 221

A.253 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS in dataset UNSW-NB15. The model was pre-trained with the
PREDICT proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 221

A.254 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Infiltration in dataset CIC-IDS2017. The model was pre-trained with
the AUTO proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 221

A.255 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Botnet ARES in dataset CIC-IDS2017. The model was pre-trained with
the AUTO proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 222

A.256 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS Slowhttptest in dataset CIC-IDS2017. The model was pre-trained
with the AUTO proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 222

A.257 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Benign in dataset CIC-IDS2017. The model was pre-trained with the
AUTO proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 222

A.258 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
FTP-Patator in dataset CIC-IDS2017. The model was pre-trained with
the AUTO proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 222

279

A.259 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DDoS LOIT in dataset CIC-IDS2017. The model was pre-trained with
the AUTO proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 223

A.260 Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan
- Firewall off in dataset CIC-IDS2017. The model was pre-trained with
the AUTO proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 223

A.261 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category XSS
in dataset CIC-IDS2017. The model was pre-trained with the AUTO
proxy task and afterwards fine-tuning with specialized subset CIC17_10. 223

A.262 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS GoldenEye in dataset CIC-IDS2017. The model was pre-trained
with the AUTO proxy task and afterwards fine-tuning with specialized
subset CIC17_10. 224

A.263 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS Hulk in dataset CIC-IDS2017. The model was pre-trained with the
AUTO proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 224

A.264 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
SSH-Patator in dataset CIC-IDS2017. The model was pre-trained with
the AUTO proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 224

A.265 Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan
- Firewall on in dataset CIC-IDS2017. The model was pre-trained with
the AUTO proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 224

A.266 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS slowloris in dataset CIC-IDS2017. The model was pre-trained with
the AUTO proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 225

280

A.267 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Shellcode in dataset UNSW-NB15. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 225

A.268 Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Analysis
in dataset UNSW-NB15. The model was pre-trained with the ID proxy
task and afterwards fine-tuning with specialized subset UNSW15_10. 225

A.269 Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Generic
in dataset UNSW-NB15. The model was pre-trained with the ID proxy
task and afterwards fine-tuning with specialized subset UNSW15_10. 225

A.270 Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Exploits
in dataset UNSW-NB15. The model was pre-trained with the ID proxy
task and afterwards fine-tuning with specialized subset UNSW15_10. 226

A.271 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Backdoors in dataset UNSW-NB15. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 226

A.272 Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Fuzzers
in dataset UNSW-NB15. The model was pre-trained with the ID proxy
task and afterwards fine-tuning with specialized subset UNSW15_10. 226

A.273 Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category Worms
in dataset UNSW-NB15. The model was pre-trained with the ID proxy
task and afterwards fine-tuning with specialized subset UNSW15_10. 226

A.274 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Reconnaissance in dataset UNSW-NB15. The model was pre-trained
with the ID proxy task and afterwards fine-tuning with specialized subset
UNSW15_10. 227

A.275 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS
in dataset UNSW-NB15. The model was pre-trained with the ID proxy
task and afterwards fine-tuning with specialized subset UNSW15_10. 227

281

A.276 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Infiltration in dataset CIC-IDS2017. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 227

A.277 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Botnet ARES in dataset CIC-IDS2017. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 227

A.278 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS Slowhttptest in dataset CIC-IDS2017. The model was pre-trained
with the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 228

A.279 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
Benign in dataset CIC-IDS2017. The model was pre-trained with the ID
proxy task and afterwards fine-tuning with specialized subset CIC17_10. 228

A.280 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
FTP-Patator in dataset CIC-IDS2017. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 228

A.281 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DDoS LOIT in dataset CIC-IDS2017. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 229

A.282 Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan
- Firewall off in dataset CIC-IDS2017. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 229

A.283 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
XSS in dataset CIC-IDS2017. The model was pre-trained with the ID
proxy task and afterwards fine-tuning with specialized subset CIC17_10. 229

A.284 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS GoldenEye in dataset CIC-IDS2017. The model was pre-trained
with the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 229

282

A.285 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category DoS
Hulk in dataset CIC-IDS2017. The model was pre-trained with the ID
proxy task and afterwards fine-tuning with specialized subset CIC17_10. 230

A.286 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
SSH-Patator in dataset CIC-IDS2017. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 230

A.287 Neuron comparison plot of the average neuron activation level of the latest
stage of the LSTM model after processing all flows of category PortScan
- Firewall on in dataset CIC-IDS2017. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 230

A.288 Neuron comparison plot of the average neuron activation level of the
latest stage of the LSTM model after processing all flows of category
DoS slowloris in dataset CIC-IDS2017. The model was pre-trained with
the ID proxy task and afterwards fine-tuning with specialized subset
CIC17_10. 230

A.289 Decision tree resulting from a DTC with depth 5 fitted on flows of
category SQL Injection filtered from 90% of dataset specialized subset
CIC17_10. The subset constituted of 99.999% benign records and 0.001%
attack records. The resulting validation accuracy was 99.999%, tested
with the remaining 10% of data not used for training. 231

A.290 Decision tree resulting from a DTC with depth 5 fitted on flows of category
SSH-Patator filtered from 90% of dataset specialized subset CIC17_10.
The subset constituted of 99.329% benign records and 0.671% attack
records. The resulting validation accuracy was 99.781%, tested with the
remaining 10% of data not used for training. 237

A.291 Decision tree resulting from a DTC with depth 5 fitted on flows of
category FTP-Patator filtered from 90% of dataset specialized subset
CIC17_10. The subset constituted of 99.976% benign records and 0.024%
attack records. The resulting validation accuracy was 99.990%, tested
with the remaining 10% of data not used for training. 238

A.292 Decision tree resulting from a DTC with depth 5 fitted on flows of category
Heartbleed filtered from 90% of dataset specialized subset CIC17_10.
The subset constituted of 100.000% benign records and 0.000% attack
records. The resulting validation accuracy was 100.000%, tested with
the remaining 10% of data not used for training. 240

283

A.293 Decision tree resulting from a DTC with depth 5 fitted on flows of
category XSS filtered from 90% of dataset specialized subset CIC17_10.
The subset constituted of 99.971% benign records and 0.029% attack
records. The resulting validation accuracy was 99.971%, tested with the
remaining 10% of data not used for training. 241

A.294 Decision tree resulting from a DTC with depth 5 fitted on flows of
category Botnet ARES filtered from 90% of dataset specialized subset
CIC17_10. The subset constituted of 99.945% benign records and 0.054%
attack records. The resulting validation accuracy was 99.987%, tested
with the remaining 10% of data not used for training. 242

284

List of Tables

3.1 Evaluation metrics of DL models with the five data sets in binary classifi-
cation. [SYZ20] . 20

3.2 Evaluation metrics of DL models with the five data sets in binary classifi-
cation. P denotes precision, R recall and F1-M the F1 measure. [SYZ20] 20

3.3 Model performance comparison for CIC-IDS2017 dataset [TICE19] . . . 21
3.4 Summary of results on Action Recognition [SMS15] 24
3.5 The results of DLSTM and LSTM-SAE using data set 1 [SK19b] . . . 27
3.6 The results of DLSTM and LSTM-SAE using data set 2 [SK19b] . . . 27

4.1 UNSW-NB15 dataset record distribution by attack category [MS15]. . 30
4.2 CIC-IDS2017 dataset record distribution by attack category. [PB18]. . . 31
4.3 Subset CIC17_10 devised for CIC-IDS2017 to include a minimal amount

of records amounting to approximately 0.023% of the total dataset. . . 32
4.4 Subset UNSW15_10 devised for UNSW-NB15 to include a minimal

amount of records amounting to approximately 0.11% of the total dataset. 32
4.5 Packet features [PB18]. 34

5.1 List of baseline training runs used for comparison with results from pre-
trained models. 40

5.2 Devised proxy tasks for pre-training of DL models. 41
5.3 Training and pre-training configurations for LSTM model with different

proxy tasks. 42
5.4 Training and pre-training configurations for transformer model with differ-

ent proxy tasks. 50

6.1 Experiments 1.1.1, 2.1.1, 2.2.1 and 2.3.1 with LSTM model trained in a
purely supervised fashion on different percentages of data from dataset
CIC-IDS2017. 56

6.2 Per category accuracy analysis of experiments 1.1.1, 2.1.1, 2.2.1 and 2.3.1
with LSTM model trained in a purely supervised fashion on different
percentages of data from dataset CIC-IDS2017. 57

6.3 Experiments 1.2.1, 2.4.1, 2.5.1 and 2.6.1 with LSTM model trained in a
purely supervised fashion on different percentages of data for UNSW-NB15. 58

285

6.4 Per category accuracy analysis of experiments 1.2.1, 2.4.1, 2.5.1 and 2.6.1
with LSTM model trained in a purely supervised fashion on different
percentages of data from dataset UNSW-NB15. 58

6.5 Experiments 2.1.1-6 with LSTM model finetuned with 10% of dataset
CIC-IDS2017. 59

6.6 Per category accuracy analysis of experiments 2.1.1-6 with LSTM model
finetuned with 10% of dataset CIC-IDS2017. 60

6.7 Experiments 2.2.1-6 with LSTM model finetuned with 1% of dataset
CIC-IDS2017. 61

6.8 Per category accuracy analysis of experiments 2.2.1-6 with LSTM model
finetuned with 1% of dataset CIC-IDS2017. 61

6.9 Experiments 2.3.1-6 with LSTM model finetuned with subset CIC17_10
of dataset CIC-IDS2017. 62

6.10 Per category accuracy analysis of experiments 2.3.1-6 with LSTM model
finetuned with subset CIC17_10 of dataset CIC-IDS2017. 63

6.11 Experiments 2.4.1-6 with LSTM model finetuned with 10% of dataset
UNSW-NB15. 65

6.12 Per category accuracy analysis of experiments 2.4.1-6 with LSTM model
finetuned with 10% of dataset UNSW-NB15. 66

6.13 Experiments 2.5.1-6 with LSTM model finetuned with 1% of dataset
UNSW-NB15. 66

6.14 Per category accuracy analysis of experiments 2.5.1-6 with LSTM model
finetuned with 1% of dataset UNSW-NB15. 67

6.15 Experiments 2.6.1-6 with LSTM model finetuned with subset UNSW15_10
of dataset UNSW-NB15. 67

6.16 Per category accuracy analysis of experiments 2.6.1-6 with LSTM model
finetuned with subset CIC17_10 of dataset UNSW-NB15. 68

6.17 Experiments 1.3.1, 3.1.1, 3.2.1 and 3.3.1 with transformer encoder model
trained in a purely supervised fashion on different amounts of data from
dataset CIC-IDS2017. 69

6.18 Experiments 1.4.1, 3.4.1, 3.5.1 and 3.6.1 with transformer encoder model
trained in a purely supervised fashion on different amounts of data from
dataset UNSW-NB15. 70

6.19 Experiments 3.1.1-6 with transformer encoder model finetuned with 10%
of dataset CIC-IDS2017. 70

6.20 Experiments 3.2.1-6 with transformer encoder model finetuned with 1% of
dataset CIC-IDS2017. 71

6.21 Experiments 3.3.1-6 with transformer encoder model finetuned with subset
CIC17_10 of dataset CIC-IDS2017. 71

6.22 Experiments 3.4.1-6 with transformer encoder model finetuned with 10%
of dataset UNSW-NB15. 72

6.23 Experiments 3.5.1-6 with transformer encoder model finetuned with 1% of
dataset UNSW-NB15. 73

286

6.24 Experiments 3.6.1-6 with transformer encoder model finetuned with subset
UNSW15_10 of dataset UNSW-NB15. 74

6.25 Results of a DTCs with max. depth 20 fitted to different amounts of data
of the CIC-IDS-2017 dataset. 78

6.26 Results of a DTCs with max. depth 16 fitted to different amounts of data
of the UNSW-NB15 dataset. 78

6.27 Performance of DTC for binary classification fitted on 90% of data from
the respective dataset with different maximum depth values. Accuracy
was calculated on the remaining 10% of data not used for fitting. . . . 79

6.28 Comparison between model performances without pre-training for 90%,
10% and 1% of training data with random seed 500 and stratified sampling.
DTC performance is only partly comparable as it operates on packets and
not flows. 80

6.29 Results of the DTC discerning between benign packets and packets of a
certain attack type of dataset CIC-IDS-2017 81

6.30 Results of the DTC discerning between benign packets and packets of a
certain attack type of dataset UNSW-NB15 81

6.31 Normalized Gini importances of features resulting from a DTC fitted on
90% of data from the respective dataset. Highest values are marked bold. 83

6.32 Normalized Gini importances of features for classification of attack cate-
gories as decerned by a DTC of max. depth 5 fitted on 90% of dataset
CIC-IDS-2017. The highest value is marked bold. 84

6.33 Normalized Gini importances of features for classification of attack cate-
gories as decerned by a DTC of max. depth 5 fitted on 90% of dataset
UNSW-NB15. The highest value is marked bold. 84

7.1 Absolute differences of validation accuracy between differently pre-trained
LSTM model and the same model without pre-training. The highest value
of each row is marked bold. 87

7.2 Absolute differences of validation accuracy between differently pre-trained
transformer model and the same model without pre-training. The highest
value of each row is marked bold. 87

7.3 Table of comparisons whether accuracy improved for pre-trained LSTM
models when compared to supervised only trained baseline experiments. 90

7.4 Table of comparisons whether accuracy improved for pre-trained trans-
former models when compared to supervised only trained baseline experi-
ments. 90

A.1 Per category accuracy analysis of experiments 1.3.1, 3.1.1, 3.2.1 and 3.3.1
with transformer encoder model trained in a purely supervised fashion on
different amounts of data from dataset CIC-IDS2017. 96

A.2 Per category accuracy analysis of experiments 3.2.1-6 with transformer
encoder model finetuned with 1% of dataset CIC-IDS2017. 97

287

A.3 Per category accuracy analysis of experiments 3.3.1-6 with transformer
encoder model finetuned with subset CIC17_10 of dataset CIC-IDS2017. 98

A.4 Per category accuracy analysis of experiments 3.1.1-6 with transformer
encoder model finetuned with 10% of dataset CIC-IDS2017. 99

A.5 Per category accuracy analysis of experiments 1.4.1, 3.4.1, 3.5.1 and 3.6.1
with transformer encoder model trained in a purely supervised fashion on
different amounts of data from dataset UNSW-NB15. 100

A.6 Per category accuracy analysis of experiments 3.4.1-6 with transformer
encoder model finetuned with 10% of dataset UNSW-NB15. 100

A.7 Per category accuracy analysis of experiments 3.5.1-6 with transformer
encoder model finetuned with 1% of dataset UNSW-NB15. 101

A.8 Per category accuracy analysis of experiments 3.6.1-6 with transformer
encoder model finetuned with subset CIC17_10 of dataset UNSW-NB15. 101

288

Acronyms

ANN Artificial Neural Network

BCE Binary Cross Entropy
BERT Bidirectional Encoder Representations from

Transformers
Bi-LSTM Bidirectional Long Short-Term Memory

CEL Cross Entropy Loss
CLF Conditional Random Fields
CNN Convolutional Neural Network
CNN-LSTM Convolutional Neural Network Long Short-

Term Memory

DL Deep Learning
DLSTM Deep Long Short-Term Memory
DNN Deep Neural Network
DR Detection Rate
DTC Decision Tree Classifier

FAR False Alarm Rate
FF Feed Forward
FN False Negative
FNR False Negative Rate
FP False Positive
FPR False Positive Rate

GPU Graphics Processing Unit
GRU Gated Recurrent Unit

289

IAT Interarrival Time
IDS Intrusion Detection System
IoT Internet of Things

LSTM Long Short-Term Memory
LSTM-AE LSTM-based Auto-Encoder
LSTM-SAE LSTM-based Stacked Auto-Encoder

MAE Mean Absolute Error
MAR Missed Alarm Rate
ML Machine Learning
MLM Masked LM
MSE Mean Squared Error
MTS Multivariat Time Series

NID Network Intrusion Detection
NIDS Network Intrusion Detection System
NLP Natural Language Processing
NN Neural Network
NSP Next Sentence Prediction

PD Partial Dependence
PDP Partial Dependence Plot

R2L Remote to Local
ReLU Rectified Linear Unit
RMSE Root Mean Square Error
RNN Recurrent Neural Network

SDA Scaled Dot-Product Attention
SDSA Scaled Dot-Product Self-Attention
SEL Squared Error Loss
SGD Stochastic Gradient Descent
SMAPE Symmetric Mean Absolute Percentage Error

TN True Negative
TP True Positive

U2R User to Root

290

291

Bibliography

[ASR21] Nikita Araslanov, Simone Schaub-Meyer, and Stefan Roth. Dense unsuper-
vised learning for video segmentation. CoRR, abs/2111.06265, 2021.

[BKG20] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders, 03 2020.

[BKG21] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders, 2021.

[BLB+13] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gram-
fort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian
Holt, and Gaël Varoquaux. API design for machine learning software: expe-
riences from the scikit-learn project. In ECML PKDD Workshop: Languages
for Data Mining and Machine Learning, pages 108–122, 2013.

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. CoRR, abs/2005.14165, 2020.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
CoRR, abs/1810.04805, 2018.

[ea16] Adam Paszke et al. Pytorch, 2016.

[Elm90] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211,
1990.

[Gin91] Paul Ginsparg. arxiv, 1991.

[HBFZ19] Alexander Hartl, Maximilian Bachl, Joachim Fabini, and Tanja Zseby. Ex-
plainability and adversarial robustness for rnns. CoRR, abs/1912.09855,
2019.

293

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997.

[JEP+21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl,
Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav
Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska,
Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals,
Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hass-
abis. Highly accurate protein structure prediction with alphafold. Nature,
596(7873):583–589, Aug 2021.

[KB14] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. International Conference on Learning Representations, 12 2014.

[KSCP21] Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park. Rebooting
ACGAN: auxiliary classifier gans with stable training. CoRR, abs/2111.01118,
2021.

[Lip15] Zachary Chase Lipton. A critical review of recurrent neural networks for
sequence learning. CoRR, abs/1506.00019, 2015.

[LL19] Hongyu Liu and Bo Lang. Machine learning and deep learning methods for
intrusion detection systems: A survey. Applied Sciences, 9(20), 2019.

[MBM+18] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Dominik
Breitenbacher, Asaf Shabtai, and Yuval Elovici. N-baiot: Network-based de-
tection of iot botnet attacks using deep autoencoders. CoRR, abs/1805.03409,
2018.

[MDES18] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune:
An ensemble of autoencoders for online network intrusion detection. CoRR,
abs/1802.09089, 2018.

[MS15] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set). 11 2015.

[MZIV18] Fares Meghdouri, Tanja Zseby, and Félix Iglesias Vázquez. Analysis of
lightweight feature vectors for attack detection in network traffic. Applied
Sciences, 8:2196, 11 2018.

[oT19] Vienna University of Technology. go-flows, 2019.

[PB18] Ranjit Panigrahi and Samarjeet Borah. A detailed analysis of cicids2017
dataset for designing intrusion detection systems. 7:479–482, 01 2018.

294

[PKBB19] Aditya Phadke, Mohit Kulkarni, Pranav Bhawalkar, and Rashmi Bhattad.
A review of machine learning methodologies for network intrusion detection.
In 2019 3rd International Conference on Computing Methodologies and
Communication (ICCMC), pages 272–275, 2019.

[PNI+18] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. CoRR, abs/1802.05365, 2018.

[Pow08] David Powers. Evaluation: From precision, recall and f-factor to roc, in-
formedness, markedness and correlation. Mach. Learn. Technol., 2, 01 2008.

[RATS18] Benjamin J. Radford, Leonardo M. Apolonio, Antonio J. Trias, and Jim A.
Simpson. Network traffic anomaly detection using recurrent neural networks.
CoRR, abs/1803.10769, 2018.

[RBCL07] Marc’Aurelio Ranzato, Y-Lan Boureau, Sumit Chopra, and Yann LeCun.
A unified energy-based framework for unsupervised learning. In Marina
Meila and Xiaotong Shen, editors, Proceedings of the Eleventh International
Conference on Artificial Intelligence and Statistics, volume 2 of Proceedings
of Machine Learning Research, pages 371–379, San Juan, Puerto Rico, 21–24
Mar 2007. PMLR.

[RJL18] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know:
Unanswerable questions for squad. CoRR, abs/1806.03822, 2018.

[RSR+19] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the
limits of transfer learning with a unified text-to-text transformer. CoRR,
abs/1910.10683, 2019.

[Rud16] Sebastian Ruder. An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747, 2016.

[SGSG19] Jenni A. M. Sidey-Gibbons and Chris J. Sidey-Gibbons. Machine learning
in medicine: a practical introduction. BMC Medical Research Methodology,
19(1):64, Mar 2019.

[SK19a] Alaa Sagheer and Mostafa Kotb. Time series forecasting of petroleum
production using deep lstm recurrent networks. Neurocomputing, 323:203–
213, 2019.

[SK19b] Alaa Sagheer and Mostafa Kotb. Unsupervised pre-training of a deep lstm-
based stacked autoencoder for multivariate time series forecasting problems.
Scientific Reports, 9:19038, 12 2019.

295

[SLG18] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward
generating a new intrusion detection dataset and intrusion traffic characteri-
zation. In Proceedings of the 4th International Conference on Information
Systems Security and Privacy - Volume 1: ICISSP,, pages 108–116. INSTICC,
SciTePress, 2018.

[SMS15] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised
learning of video representations using lstms. CoRR, abs/1502.04681, 2015.

[SPP+19] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter
language models using model parallelism. CoRR, abs/1909.08053, 2019.

[SYS+20] Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres
Cubillos-Ruiz, Nina M. Donghia, Craig R. MacNair, Shawn French, Lindsey A.
Carfrae, Zohar Bloom-Ackermann, Victoria M. Tran, Anush Chiappino-Pepe,
Ahmed H. Badran, Ian W. Andrews, Emma J. Chory, George M. Church,
Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay, and James J. Collins.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702.e13,
2020.

[SYZ20] Ahmed Samy, Haining Yu, and Hongli Zhang. Fog-based attack detection
framework for internet of things using deep learning. IEEE Access, PP:1–1,
04 2020.

[TBLG09] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. A
detailed analysis of the kdd cup 99 data set. In 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, pages 1–6,
2009.

[Tea15] Google Brain Team. Tensorflow, 2015.

[TICE19] Mengxuan Tan, Alfonso Iacovazzi, Ngai-Man Man Cheung, and Yuval Elovici.
A neural attention model for real-time network intrusion detection. In 2019
IEEE 44th Conference on Local Computer Networks (LCN), pages 291–299,
2019.

[VR19] Abhishek Verma and Virender Ranga. Evaluation of network intrusion
detection systems for rpl based 6lowpan networks in iot. Wireless Personal
Communications, 108:1571–1594, 10 2019.

[VSP+17a] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. CoRR, abs/1706.03762, 2017.

[VSP+17b] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. CoRR, abs/1706.03762, 2017.

296

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and
Jeffrey Dean. Google’s neural machine translation system: Bridging the gap
between human and machine translation. CoRR, abs/1609.08144, 2016.

[WSM+18] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. GLUE: A multi-task benchmark and analysis platform
for natural language understanding. CoRR, abs/1804.07461, 2018.

[WZA06] Nigel Williams, Sebastian Zander, and Grenville Armitage. A preliminary
performance comparison of five machine learning algorithms for practical
ip traffic flow classification. Computer Communication Review, 36:5–16, 10
2006.

[YLZ20] Lun-Pin Yuan, Peng Liu, and Sencun Zhu. Recomposition vs. prediction: A
novel anomaly detection for discrete events based on autoencoder. CoRR,
abs/2012.13972, 2020.

[YSHZ19] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A Review of
Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural
Computation, 31(7):1235–1270, 07 2019.

[ZKZ+15] Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies:
Towards story-like visual explanations by watching movies and reading books.
CoRR, abs/1506.06724, 2015.

297

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Research Questions
	Approach
	Contribution
	Structure

	Background
	Notation
	Machine Learning
	Artificial Neural Networks
	Stochastic Gradient Descent
	Backpropagation
	Recurrent Neural Networks
	Long Short-Term Memory
	Attention and Transformers
	Self-supervised Learning
	Auto-Encoder
	Pre-Training and Fine-Tuning
	Performance Metrics

	State of the art
	Machine Learning for Network Intrusion Detection
	Self-supervised Pre-training for LSTMs and Transformer Networks

	Methodology
	Datasets
	Data Representation
	Machine Learning Models
	Framework and Training
	Metrics and Validation

	Experiments
	Self-supervised Pre-training for Long Short-Term Memory Networks
	Self-supervised Pre-training for Transformer Encoder Networks

	Results
	Long Short-Term Memory Model
	Transformer Model
	Explainability

	Discussion
	Conclusion
	Appendix
	Transformer per Category Results
	Training and Validation Loss
	Partial Dependency Plots
	Neuron Plots
	Decision Trees

	List of Figures
	List of Tables
	Acronyms
	Bibliography

