


Kurzfassung

Halbleiterbauelemente – hauptsächlich Logiktransistoren und Speicherzellen – wurden mittlerweile für
ein halbes Jahrhundert erfolgreich in ihrer Größe reduziert, welches eine gesteigerte Rechenleistung und
reduzierte Kosten mit sich brachte, wodurch Elektronik ubiquitär in unserem täglichen Leben wurde.
Die seit Langem vorausgesehenen durch die Physik bedingten Grenzen der Skalierung rücken derzeit
sehr rapide näher und die Erfordernis von neuen Bauelementkonzepten immer stringenter. Auf der
Jagd nach neuen Konzepten für Nanoelektronik werden Simulationswerkzeuge weiter an Bedeutung
gewinnen und eine fundamentale Rolle bei der Hilfe zu deren Verständnis und der Machbarkeit von
Materialien, Bauelementen und Systemen spielen.

Bisher wurde beim Entwurf von nanoelektronischen Bauelementen quantenmechanische Effekte
meistens nur berücksichtigt anstatt diese aktiv zu nutzen. Das bessere Verständnis und praktische
Erfahrung im Umgang mit der Quantenmechanik ermöglicht es uns quantenmechanische Prinzipien
für die Entwicklung von Bauelementen und Systemen gezielt einzusetzen. Die Verfügbarkeit von Si-
mulationswerkzeugen, um beim Verständnis und Entwurf von solchen Bauelementen und Systemen
zu helfen, ist von höchster Priorität. Die Simulation des Elektronentransportes in Halbleitern stellt
eine fundamentale Simulationsfähigkeit für nanoelektronische Forschung dar und wird in dieser Arbeit
durch die Verwendung der Wigner-Boltzmann Gleichung verwirklicht.

Der Wigner-Formalismus bietet eine intuitivere Beschreibung des quantenmechanischen Transpor-
tes im Vergleich zur Operatormechanik, da dieser im Phasenraum mit Funktionen und Variablen
formuliert ist, was eine Adaption von Modellen und Analogien aus dem semiklassischen Transport
erlaubt. Die wichtigste Konsequenz daraus, ist die Möglichkeit die Wigner-Quantentransportgleichung
mit Boltzmann-Streuungsmodellen zu erweitern, wodurch die Wigner-Boltzmann Gleichung entsteht.

Die Berücksichtigung von Streuung im Quantentransport ist essenziell, um die Dekoherenz von
verschränkten Elektronenzuständen, welche Qubits – die grundlegenden Bausteine für Quantenrech-
ner – darstellen können, zu studieren. Die Simulation des zeitaufgelösten Quantentransports kann
dabei helfen das Verhalten von stark miniaturisierten, durch quantenmechanische Effekte bestimmten
Schaltkreisen zu verstehen, da diese ein Verhalten aufweisen, z.B. Oszillationen, welches mit klassi-
scher Schaltkreistheorie nicht erklärt werden kann. Derzeit ist der einzige rechengestützte umsetzbare
streuungsberücksichtigende zeitaufgelöste Quantentransportformalismus die Wigner-Boltzmann Glei-
chung.

In dieser Arbeit wird ein Simulationswerkzeug vorgestellt, welches die Gleichung in zwei Dimen-
sionen löst unter Verwendung eines Monte Carlo Zuganges basierend auf Partikeln mit Affinität, die
die Quanteninformation trägt – die signed-particle Methode. Der Fortschritt der letzten Jahre, speziell
im Bezug auf Berechnungsprobleme, Algorithmen und deren praktische Implementierung, wird hier
dargelegt.

Die Algorithmen, die in dieser Arbeit präsentiert werden, stellen den aktuellen Stand der Technik
der signed-particle Methode dar und wurden im Wigner Ensemble Monte Carlo Simulationswerkzeug,
als Teil der frei verfügbaren ViennaWD Simulations-Sammlung, implementiert um als Referenzimple-
mentierung zu dienen.

Der entwickelte Simulator erlaubt das Studium von Einzelelektronen in der Wellenpaket-Darstellung.
Erste Untersuchungen des dynamischen Verhaltens und der Manipulation von solchen Wellenpaketen,
unter Verwendung des Konzeptes von elektrostatischen Linsen, werden gezeigt. Eine Anwendung solch
einer Linse, um den Ansteuerungsstrom in einem nano-skalierten Kanal zu erhöhen, wird vorgestellt.



Abstract

Semiconductor devices – primarily logic transistors and memory cells – have now been successfully
scaled down in size for half a century, which brought about the increased performance and reduced
costs making electronics ubiquitous in our daily lives. However, the long-predicted limits to scaling
imposed by physics are now rapidly being approached and the need for novel device concepts is
becoming a pressing issue. In this pursuit of novel concepts for nanoelectronics, simulation tools will
further gain in importance and play a fundamental role to help understand and explore the feasibility
of new materials, devices and systems.

Up to now, the effects of quantum mechanics have mostly been accounted for, instead of harnessed,
in the design of nanoelectronic devices. A better understanding and practical grasp of quantum
mechanics has opened the door to using quantum principles to engineer devices and systems. The
need for simulation tools to help understand and design such quantum devices is of utmost importance.
The simulation of electron transport in a semiconductor presents a fundamental simulation capability
for nanoelectronics research and is approached in this work using the Wigner-Boltzmann equation.

The Wigner formalism provides a more intuitive description of quantum mechanics, compared to
operator mechanics, since it is formulated in the phase space with functions and variables, which allows
the adoption of models and analogies from semi-classical transport. The most important consequence
of this is the ability to augment the Wigner quantum transport equation with Boltzmann scattering
models, which yields the Wigner-Boltzmann equation.

The consideration of scattering in quantum transport is essential to study the decoherence of en-
tangled electron states, which can represent qubits – the fundamental building blocks for quantum
computing. The simulation of time-resolved quantum transport can help to understand highly minia-
turized circuits dominated by quantum effects, which exhibit behaviour, e.g. oscillations, that cannot
be explained using classical circuit theory. Currently, the only computationally viable formalism for
scattering-aware, time-resolved quantum transport is found in the Wigner-Boltzmann equation.

This work presents a simulation tool which solves the equation in two dimensions using a Monte
Carlo approach, based on particles with an affinity which carries the quantum information – the signed-
particle method. The progress that has been made in recent years regarding, especially, computational
issues, algorithms and their practical implementation is reported here.

The algorithms presented in this work represent the current state of the art for the signed-particle
method and have been implemented in the Wigner Ensemble Monte Carlo tool, which forms part of
the freely available ViennaWD simulation suite, to serve as a reference implementation.

The developed simulator allows the study of single electrons represented as wavepackets. First
investigations of the dynamic behaviour and manipulation of such wavepackets is shown, using the
concept of electrostatic lenses. An application of such a lens to improve the drive-current in a nano-
scaled channel is demonstrated.
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Chapter 1

Introduction

This chapter motivates the need for utilising technology computer-aided design in semiconductor de-
vices and related research fields. An overview of the most common charge carrier transport models is
given, along with their range of applicability and limitations. In light of this, the motivation for de-
veloping a solver based on the Wigner(-Boltzmann) quantum transport equation is given. Thereafter,
an outline of the topics to be covered in this dissertation is presented.

1.1 Need for TCAD in electronics

Technology computer-aided design (TCAD) is a field of electronic design automation (EDA) activity
with software, which encompasses the physics-based simulation of semiconductor devices and the
associated manufacturing processes, referred to as device TCAD and process TCAD, respectively.
Process TCAD simulations predict the structure and material properties resulting from a series of
manufacturing steps, like etching, ion implantation and annealing. Device TCAD receives the structure
and material composition of a device (provided by process TCAD and/or experimental measurements)
as an input and predicts the electrical, optical, thermal and/or mechanical behaviour of the device.

The value of TCAD is two-fold: i) it serves as a predictive tool – as evidenced by its use in the
international technology roadmap for semiconductors (ITRS) [1] – to verify concepts and ascertain the
effects of changes in the structure and/or process on the performance of a device before manufacturing.
This allows the design space, which needs to be explored with experimentally manufactured devices, to
be greatly constrained, thereby saving both time and cost. ii) TCAD also aides in the understanding
of process and device physics; insight into microscopic physical quantities that cannot be measured or
visualized experimentally is provided.

TCAD is increasingly centred around the manufacturing process, where a concurrent optimization
of the material system, manufacturing process and device design takes place [2]. Device TCAD for
ultra-scaled devices has become very complex, incorporating a multitude of models which describe
the electrical, optical and thermal processes at play, operating over different scales [3]. Indeed, there
are very few devices that can be modelled completely using a single tool [4]. Therefore, the concur-
rent consideration of many physical effects – so-called multiscale, multiphysics simulations – and the
robust coupling of the various tools and models is a major thrust in (especially commercial) TCAD
development. On the other hand, the advancement of models to appropriately describe the physics
presents another driver for TCAD development. The charge carrier transport models are fundamental
to predicting the electrical performance of devices with TCAD simulation. Quantum transport mod-
els are already indispensable to appropriately model certain modern devices and will further gain in
relevance.

Only a few devices have exploited quantum mechanical principles up to now, e.g. resonant tun-
nelling diodes (RTD), whereas other devices merely consider quantum effects to ensure the desired
behaviour is retained. With end of downscaling in devices looming, new avenues must be explored to
design novel devices for the beyond CMOS era. Quantum considerations will be fundamental in the
design of nanoscale structures that will make truly ubiquitous computing and power-efficient sensor
networks a reality [5]. Prototypical nano-circuits, which are formed by simple nanostructures, exhibit

1



CHAPTER 1. INTRODUCTION 2

electrical behaviour that cannot be explained by classical theory. Time-resolved simulations of quan-
tum transport will help to resolve the questions that surround the frequency response of quantum
capacitors and resistances.

In the following a brief overview is given of the most common transport models in use for the
simulation of existing and novel devices.

1.2 Overview of carrier transport models

Semiconductor devices and nanostructures are open systems that interact with their environment,
e.g. through leads/contacts, phonons or electromagnetic fields. The effect of these interactions,
especially the electric field created by the voltage applied between the contacts1, is so strong that the
statistical distribution of particles (charge carriers) strongly deviates from the statistics applicable in
equilibrium, e.g. the Fermi-Dirac distribution. The results of linear response theory, e.g. the relaxation
time approximation, are no longer sufficient for an accurate description [6, 7]. The non-equilibrium
distribution can be determined by solving a transport equation which describes the movement of
particles under the influence of external forces.

There exists a plethora of transport models, each having its limitations and advantages. The
choice of a model depends on the application (phenomena) to be simulated and the computational
resources/time available. From a physical point of view it is attractive to choose the most fundamental
models, but these may not computationally feasible, nor required, for a given task. The aim of this
section is to provide an overview of the most important transport models used for semiconductor
devices and nanostructures. The capabilities and limitations of the models are highlighted to be able
to appreciate the position and capabilities of transport simulations based on the Wigner formalism.

In the following the most important semi-classical transport models will be covered first, be-
cause they still find application today in nanoscale devices when augmented with quantum mod-
els/corrections. Thereafter, the full-fledged quantum transport models are introduced. The consid-
erations are presented based on intuitive concepts, like particles and distribution functions, which
characterize the historical evolution of the field of transport models. Many of these classical at-
tributes are retained in the Wigner formalism which bridges the two limiting transport regimes (semi-
classical/diffusive and quantum/coherent) presented hereafter.

In the following a single-particle description is deemed sufficient to describe a particle ensemble in a
statistical manner [8]. Moreover, only interactions between different kinds of particles are considered,
e.g. electron with phonons. Many-particle phenomena, like Coulomb interaction, that occur between
particles of the same kind are not considered explicitly and are only accounted for via the Poisson
equation.

1.2.1 Classification of transport models

The physics that governs carrier transport depends on three characteristic lengths as related to the
dimensions of a device [9]:

1. De Broglie wavelength: the wavelength associated to a particle with a momentum p by λ = |p|/h.
For an electron in silicon at room temperature λ ≈ 8 nm [8], whereas in GaAs λ ≈ 17 nm [10].

2. Mean free path (MFP): the mean distance a carrier travels before a momentum-altering scatter-
ing event occurs, e.g. inelastic phonon scattering. The MFP depends on the electric field but is
in the order of 5 − 10 nm for an electron in silicon at room temperature and up to an order of
magnitude longer for GaAs [11, 12].

3. Phase relaxation length (PRL): the mean distance a carrier travels before a phase-changing
scattering event occurs, e.g. electron-electron scattering. In semiconductors the relation between

1To retain electrostatic control of the channel in transistors, the applied voltage should be larger than the thermal
voltage and, therefore, cannot scale down at the same rate as the dimensions of the device. A continuous increase of the
electric fields in transistors has been the result.
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croscopic transport models describe the evolution of the distribution function (semi-classical) or state
(quantum) of the system, from which all physical quantities (observables) of interest can be calcu-
lated. Macroscopic models are derived from the microscopic transport equations and directly solve
for physical quantities – often termed engineering quantities – like electron concentration or current
density. The computational efficiency afforded by macroscopic models comes at the cost of a loss in
generality – certain assumptions are made, which limit the scope where the models remain valid. A
thorough treatment of the mathematical derivations of both semi-classical and quantum macroscopic
models is given in [8].

A hierarchy of models can be set up ranging from, at the most fundamental level, a quantum
microscopic model to a semi-classical macroscopic description of carrier transport. Table 1.1 presents
such a hierarchy, along with the device dimensions and applications at which each model is applicable.

Table 1.1: Hierarchy of carrier transport models incorporating dissipative interactions with typical
active region of devices and the physical quantity which governs the device physics.

Model Active region Governed by

Non-Equilibrium Green’s Function < 10 nm Potential
Density matrix / Wigner < 100 nm Potential

Boltzmann < 1µm Sharp field
Hydrodynamic / Energy transport 100 nm÷ 1µm Sharp field

Drift-diffusion > 1µm Smooth field

1.2.2 Poisson equation

The Poisson equation describes the electrostatics in a device based on the distribution of charges.
A self-consistent solution3 of the Poisson equation with the transport models takes the long-range
Coulomb interaction – a many-identical-particle effect – into account.

The Poisson equation follows from Gauss’s law, which relates the divergence of the electric displace-
ment vector to charge density. The electric field displacement vector can be related to the electrostatic
potential under the assumption of a time-independent permittivity, a negligible magnetic field and no
polarization effects [16]. These assumptions are reasonable for many semiconductor devices for which
the Poisson equation is defined as

∇ · (−κ∇V ) = ρc, (1.1)

where κ, V and ρc denote the dielectric permittivity, electrostatic potential and charge density, re-
spectively. The charge density is typically determined by free charge carriers and ionized impurities
in the semiconductor.

In semiconductor materials with very strong polarization effects, e.g. galliumnitride, or devices
where piezoelectric or ferromagnetic phenomena come into play, the Poisson equation, in the form of
(1.1) is no longer sufficient [16].

1.2.3 Semi-classical models

The Boltzmann transport equation (BTE) has been the cornerstone of semi-classical device TCAD
for many years and appropriately describes carrier transport in the diffusive regime. The BTE is
introduced here and will be referred to again in Chapter 2, where accompanying scattering models are
used to augment the Wigner transport equation.

The BTE is classified as semi-classical, because the treatment of carrier transport is classical (New-
tonian), but some quantum concepts are considered, like the band structure (in the group velocity) and

3The Poisson equation and the transport model are coupled through the dependence of the potential on the charge
distribution and vice-versa. A self-consistent solution solves both equations such that both are satisfied simultaneously
with the same potential and charge distribution.
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the Pauli exclusion principle (in the collision operator). The BTE provides microscopic insight into
device operation but its high dimensionality makes its solution computationally expensive. Various
macroscopic models, e.g. drift-diffusion, can be derived from the BTE and directly solve macroscopic
quantities, thereby greatly reducing the numerical complexity of the simulation.

1.2.3.1 Boltzmann transport equation

The BTE describes the evolution of the distribution function f (r,k, t), which gives the number of
particles per unit volume of the phase space at time t. The phase space encompasses all possible
values of the position r and the wavevector k (related to the crystal momentum by p = �k) that a
particle can attain.

The movement of a particle in the phase space is described by its Newton trajectories, parametrized
in time and initialized at the point (r0,k0) at t0:

r (t) = r0 +

ˆ t

t0

�k
m∗dt; (1.2)

k (t) = k0 +

ˆ t

t0

Fdt. (1.3)

The (differentiable and conservative) force is defined as

F = �
dk (t)

dt
= −e (E+ vg ×B) , (1.4)

where e, E and B denote the magnitude of an elementary charge, electric field and magnetic field,
respectively. The group velocity is given by

vg =
dr(t)

dt
=

1

�
∇k� (k) , (1.5)

where � (k) denotes the dispersion relation.
The Liouville theorem states that along the Newton trajectories the distribution function remains

constant, i.e.
df

dt
=

∂f

∂t
+

dr(t)

dt
∇rf +

dk (t)

dt
∇kf = 0. (1.6)

This is known as the Vlasov equation [8] and describes the evolution of the distribution function. The
spatial gradient term ∇rf accounts for driving forces due to diffusion, thermoelectric and thermomag-
netic effects. All external forces are encompassed in the term dk(t)

dt .
The Vlasov equation gives an exact description of a semi-classical carrier moving in a perfect lattice;

all lattice-carrier interactions are accounted for through the group velocity vg, which depends on the
band structure of the semiconductor lattice through the dispersion relation � (k). Lattice imperfections,
lattice vibrations (phonons) and carrier-carrier interactions, however, introduce internal forces in the
lattice which perturb the motion of the carriers. These perturbations in the trajectory of a carrier are
known as collisions and are described by statistical laws (in the form of a collision operator), because
an explicit consideration by the laws of dynamics is not feasible [16].

The collision operator augments the right-hand side of (1.6) and describes the effect of collisions
on the distribution function such that

df

dt
= Ĉ [f (r,k, t)] . (1.7)

The collision operator Ĉ [·] is given by

Ĉ [f (r,k, t)] =

ˆ �
f
�
k	 S �

k	,k
 − f (k)S

�
k,k	 � dk	 (1.8)

and describes the scattering rate of carriers into (from) a state with wavevector k (k	) from (into)
a state with a wavevector k	 (k). The Pauli exclusion principle (not included here) prescribes that
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the in- and out-scattering only takes place if the final states are available. However, this is a many-
identical-particle effect [7] and consequently is omitted in (1.8). The neglect of the exclusion principle
is reasonable under non-degenerate conditions (low carrier density).

The scattering rate between the states of different wavevectors is specified by the function S, which
compounds the expressions describing the various scattering mechanisms, e.g. carrier-phonon inter-
actions, which change the momentum of a particle and make the system dissipative. The scattering
rate for a specific mechanism is calculated using overlap integrals [7]. A more detailed treatment of
the scattering models is given in Chapter 2.

The consideration of collisions, through the collision operator (1.8), in the Vlasov equation (1.6)
yields what is known as the Boltzmann transport equation:�

∂f
∂t + vg∇rf + F∇kf =

´ {f (k	, t)S (k	,k)− f (k, t)S (k,k	)} dk	

f (r,k, t0) = f (r0,k0)
(1.9)

An initial condition at t0 must be specified to have a well-posed problem.
The mean value �AT � of any physical quantity A (r,k), like carrier concentration or energy, at time

t = T can be calculated, if the distribution function is known:

�AT � =
ˆ ˆ

drdkA (r,k) f (r,k, T ) . (1.10)

For instance, the carrier concentration for a volume Ω can be calculated by

n (r) =
1

Ω

ˆ
dkf (r,k) (1.11)

and the current density as

J (r) = − e

Ω

ˆ
dkf (r,k)vg (k) . (1.12)

The validity of the BTE rests upon the assumptions [17] that

• point-like particles are exactly localized in the phase space and their transport is accurately
described by the semi-classical Newton laws;

• particle scattering takes place instantaneously at a fixed position, i.e. particles do not move
during a scattering process.

From a quantum mechanical point of view the BTE fails to account for the quantum effects that
appear due to the wave nature of charge carrier motion, like non-locality, interference and correlation
effects. The fact that the momentum and position are defined exactly at the same time with f (r,k, t)
makes the classical nature of the BTE obvious.

The Heisenberg uncertainty principle imposes limits on the range of validity of the BTE but
they are not (yet) reached for most devices. The uncertainty relation ΔrΔp ≥ �/2 requires that the
potential within a device should change only negligibly over the De Broglie wavelength of the carriers.
The latter, assuming an electron in silicon at room temperature, is in the order of 8 nm [8]. Once the
dimensions of the active regions of a device approach the De Broglie wavelength of the charge carriers,
the BTE should be substituted by a wave equation to describe carrier transport [17].

A further constraint is given by the relation, ΔEΔt ≥ �, which requires that the momentum
relaxation time should be much smaller compared to the period of the operating frequency – this
limits the validity of BTE to operation frequencies under approximately 6THz [17].

1.2.3.2 Macroscopic models

Macroscopic transport models can be formally derived from the BTE and have been extensively treated
in the literature [17, 18, 19, 20]. The basic principle is to calculate moments of the BTE, which yields
equations describing the conservation and flux of physical quantities, like mass, momentum or energy.
A hierarchy of macroscopic models can be derived by considering moments of increasing order (in k),
ranging from the drift-diffusion model to the six-moment model. In each case a so-called closure
relation encapsulates the assumptions made on higher-order moments of the distribution needed to
make the system of equations fully determined.
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Drift-diffusion: The drift-diffusion (DD) model was originally proposed based on phenomenological
arguments [21]. The derivation considers the first two moments of the BTE and assumes a cold
Maxwellian for the distribution function as a closure relation. The resulting equations describe the
conservation of mass – the carrier concentration n – and the flux of mass – the current density Jn:

∂tn− 1

e
∇Jn = Gn; (1.13)

Jn = e (Dn∇n− µnn∇V ) , (1.14)

where Dn and µn denote the material-dependent diffusion coefficient and carrier mobility, respectively.
The net generation-recombination rate Gn relates to the scattering operator in the BTE. The solution
of (1.13) and (1.14) directly yields the quantities calculated with the distribution function in (1.11)
and (1.12).

The fast, robust numerical solvers available for the DD model in commercial and open source
TCAD software makes it the (highly parametrized) workhorse of industry for daily engineering tasks.
The self-consistent solution obtained with the Poisson equation is also routinely used as an initial
guess to improve the convergence of more complex transport models. The DD model is suitable to
simulate devices for which the mobility can be satisfactorily modelled as a function of the electric field
and thermal effects (carrier heating) are unimportant. These conditions are often met in low-power
devices with an active region exceeding 1µm.

Energy transport (hydrodynamic): The energy transport (ET) model4 was originally proposed
in [22] to account for hot carrier effects, like impact ionization and velocity overshoot, occurring in
devices smaller than 1µm. The ET model considers two additional moments of the BTE, compared to
the DD model, and was formally derived in [23]. A multitude of derivations and closure relations for
the ET model exist [8, 22, 24]. Compared to (1.14), the gradient of the carrier temperature enters the
mass flux equation as an additional driving force of the current. The additional moments introduce
equations which enforce the conservation of energy and define the energy flux.

Six moments: The six-moment model considers a further two moments of the BTE [18, 19]. The
conservation of a third quantity, related to the kurtosis (skewness) of the distribution function, is
enforced, which allows to better model hot carrier phenomena. However, the strong coupling between
the equations and the choice of appropriate closure relations has made the realization of a robust
numerical solver very challenging [25]. As a result the six-moment model has not found wide-spread
use and remains largely of academic interest.

1.2.4 Quantum models

The passage to quantum mechanics is opened by abandoning the idea that the state of a particle
is represented by a single point in the phase space (as done in the BTE). The Heisenberg uncer-
tainty principle does not allow the exact specification of two conjugate quantities, like position and
momentum, simultaneously. The minimum uncertainty is given by

ΔrΔp ≥ �
2
, (1.15)

where Δr and Δp refer to the uncertainty (or standard deviation) in position and momentum in a
specific direction and � is the reduced Planck constant.

There exists a plethora of quantum transport models. Certain formalisms may be better suited,
or simpler, than others for a specific application and every formalism has its (dis)advantages from
a computational point of view. The focus here shall be placed on the formulations which enjoy the
most widespread use, namely the Schrödinger equation, density matrix and non-equilibrium Green’s

4The names energy transport and hydrodynamic are usually used synonymously in device TCAD. Strictly speaking,
the ET model presents a simplification of the full hydrodynamic transport equation – a name inspired by the similarity
to Euler’s equations for incompressible fluid flow made to avoid difficulties in its numerical solution – and is the prevalent
form.
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function (NEGF). The essential aspects of each model are highlighted in the following to enable a
comparison with the Wigner formulation which will be detailed in Chapter 2.

1.2.4.1 Preliminaries

Quantum mechanics relies on two important concepts to model physical systems: i) the state of the
system is described by a vector in a complex Hilbert space and ii) observables which describe physical
quantities, like energy, are represented by Hermitian operators which act on the state.

Vectors and Operators: The state vector can be expressed using an orthonormal basis formed by
the eigenstates of the Hermitian operator (observable) under consideration:

|ψ� =
%
j

cj |φj� , cj = �φj | ψ� , (1.16)

where cj is the projection of the state vector |ψ� on the basis vector |φj�. The basis vectors are
obtained by solving the eigenvalue problem for the observable represented by the operator Â:

Â |φj� = aj |φj� . (1.17)

One can distinguish between pure states and mixed states. A pure state implies complete knowledge
of the state a system is in; the classical equivalent would be to have a complete knowledge of the
position and momentum of every particle in a system (i.e. no single-particle description). A mixed
state, however, introduces some uncertainty and assigns a probability pk to each possible pure state''ψk

�
, where

&
k pk = 1. This is the quantum equivalent of a distribution function.

A mixed state is to be distinguished from a mixture (superposition/linear combination) of states.
While the former conveys the probability of a system being in a certain state, the latter describes a
single state composed of two (or more) other states – an entangled state. In general one has incomplete
information about the quantum system under observation and the initial state from which the evolution
starts. However, the probability of a state occurring is often known from statistical distributions, e.g
the statistical mixture of eigenstates of energy in thermal equilibrium. A mixed state allows to model
this uncertainty. It should be noted that the uncertainty about the state of a system acts in addition
to the uncertainty introduced by Heisenberg’s principle.

Picture and Representations: The so-called picture adopted in quantum mechanics refers to the
state vectors and observables (linear operators) chosen to represent the physical state and dynamical
variables of a system. The Schrödinger picture makes the state time-dependent with the evolution of
the system whereas the observables remain unchanged; the Heisenberg picture is the converse5. In the
interaction picture the time evolution is split between the observable and the state [6] – this is useful
if the Hamiltonian (observable) has a time-dependent part, e.g. phonon interactions.

The choice of the basis vectors used to represent the vectors and operators corresponding to the
chosen picture is known as the representation. The value of a physical observable is independent of the
representation chosen. The coordinate representation is usually the most intuitive due to the complex
shape of the potential profile V (r). The state vector projected in the chosen representation is known
as a wave function.

Hamiltonian: A quantum system is described by a Hamiltonian which states the energy of a system,
i.e. an observable. The Hamiltonian can encapsulate all interactions in the system under observation
and interactions with external systems. The complexity of the Hamiltonian can be extended as needed
to model the physics of interest or as computationally feasible. If adopting the interaction picture, the
Hamiltonian can be separated in a part describing time-independent effects, e.g. the band structure,
and a part describing the time-dependent perturbations to the Hamiltonian from the ’outside world’,
e.g. interactions with time-varying electromagnetic fields:

5A ’picture’ can be freely chosen and one can move between different pictures by applying a unitary transform
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Ĥ = Ĥ0 + Ĥint, (1.18)

where Ĥ0 is the non-interacting part, which is assumed to be exactly solvable and Ĥint contains all
the interactions, such as carrier-carrier, carrier-phonon, impurity scattering and so forth.

In a coordinate representation under the assumption of a parabolic dispersion relation with effective
mass m∗, the Hamiltonian is expressed as

Ĥ0 = − �2

2m∗∇2
r + V (r) (1.19)

and will be used throughout this text, unless specified otherwise. The potential V (r) encapsulates
the electrostatic potential (from mobile electrons, ionized impurities and externally applied voltages)
and changes in the conduction band (e.g. at heterojunctions) and can be obtained from (1.1) as in
the semi-classical case.

1.2.4.2 Schrödinger equation

The Schrödinger equation is the fundamental equation of motion describing the evolution of a pure
quantum state |ψ� in a system described by the Hamiltonian operator Ĥ:

i�
∂

∂t
|ψ� = Ĥ |ψ� . (1.20)

The presence of an imaginary term alludes to the wave nature of the equation. The time-independent
version of (1.20),

Ĥ |ψ� = λ |ψ� , (1.21)

presents a specific case of (1.17), which yields the stationary states |ψj� and associated eigenvalues λj

(energies) of the Hamiltonian. A pure state does not necessarily correspond to an eigenvector of the
observable. The state vector can expressed in terms of the resulting basis

|ψ� =
%
j

cj |ψj� , cj ∈ C. (1.22)

Since a mixed state cannot be represented by a single vector, (1.20) must be solved for each possible
state separately. Equation (1.20) can be expressed in a coordinate representation as

i�
∂

∂t
ψ (r, t) = Hψ (r, t) . (1.23)

If the state is not an eigenstate of the observable, there is an uncertainty in the value which will
be measured for the observable. The average of a physical quantity represented by an operator Â at
time τ can be calculated by

�Aτ � = �ψ| Â |ψ� =
ˆ

dr �ψt| r� �r| Â |ψt� . (1.24)

Macroscopic quantities, like the probability density and current density, can be obtained from the
wave functions forming the mixed state:

n (r, t) =
%
j

λj |ψj (r, t)|2 ; (1.25)

J (r, t) = − e�
m∗

%
j

λjIm
�
ψ̄j (r, t)∇ψj (r, t)

�
. (1.26)

The Schrödinger equation as presented above is applicable to a closed (bounded) system. To be
useful for semiconductor devices the system must be ’opened up’ to allow the specification of bound-
ary conditions, which gives rise to current-carrying (scattering) states. The quantum transmitting
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boundary method (QTBM) [26] allows the specification of the incoming flux from a lead to a device
by a boundary condition for the wave function at the device/lead interface. The QTBM can provide
the solution (wave function) inside the device and the transmission and reflection coefficients at the
leads. Under the assumption of a constant potential in the leads, the form of solution in the leads
is known to consist of incoming and outgoing waves and exponentially decaying evanescent waves
along the interface. The QTBM employs this fact to specify boundary conditions at the lead/device
interface expressed in terms of this known solution.

The Schrödinger equation is only well-suited to describe ballistic transport. Models for out-
scattering, inspired by the relaxation time approximation, have been theoretically proposed (by adding
an imaginary potential to the Hamiltonian), but numerical implementations have proven problem-
atic [25].

1.2.4.3 Density matrix

The density matrix provides a convenient description of mixed states by specifying the relation between
the states which comprise the mixed state.

The density matrix can be derived from the Schrödinger picture following the derivation in [20].
By adding unitary operators, expressed in the coordinate basis and the observable’s basis, (1.24) can
be rewritten as

�Aτ � =
ˆ

dr	
ˆ

drα
�
r, r	

 
ψ∗
t

�
r	
 
ψt (r) . (1.27)

This introduces the density matrix

ρ
�
r, r	, t

 
= ψ∗

t

�
r	
 
ψt (r) = �r |ψt� �ψt| r	

�
(1.28)

with the corresponding density operator

ρ̂t ≡ |ψt� �ψt| , (1.29)

which can be shown to be unitary using (1.22).
It follows that (1.27) can be expressed as

�Aτ � =

ˆ
dr	
ˆ

dr �r| ρ̂t
''r	� �r	'' Â |r�

=

ˆ
dr �r| ρ̂tÂ |r�

= Tr
�
ρ̂tÂ

�
. (1.30)

Therefore, the expected value of a physical observable A can be calculated by applying the trace
operator, which sums the diagonal terms of the resulting matrix.

Accordingly, the probability density can be calculated by

n (r, t) = 2Tr (ρt) = ρ (r, r, t) (1.31)

and the current density by

J (r, t) =
i�e
m∗ lim

r�→r
(∇r� −∇r) ρ

�
r, r	, t

 
. (1.32)

The Liouville-Von Neumann equation describes the evolution of the density matrix

i�
∂ρ

∂t
= [H, ρ] , (1.33)

where [·, ·] denotes the commutator bracket and H the Hamiltonian defined in (1.19), such that

i�
∂ρ

∂t
= Hρ− ρH

= − �2

2m∗
�∇2

r −∇2
r�
 
ρ+

�
V (r)− V

�
r	
  

ρ. (1.34)
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The density operator has a complete orthonormal set of eigenfunctions and eigenvalues, where
each eigenpair can be associated with the solution of a Schrödinger equation. Therefore, a set of
Schrödinger equations can also be used to represent a mixed state.

The introduction of a scattering operator in (1.34) which maintains the positive-definite character
(physical validity) of the density matrix under all circumstances has proven challenging. Recently, the
derivation of a more robust operator has been proposed [27], which has analogies with the scattering
models for the Wigner equation (Chapter 2). However, due to the non-local nature of the density
matrix, the models are more difficult to interpret.

1.2.4.4 Wigner function

For completeness the Wigner function is briefly introduced here. A thorough discussion is deferred to
Chapter 2.

The Wigner function is obtained by applying the Wigner transform to the density matrix:

fw (r,k, t) =
1

(2π)3

ˆ
dr	e−ik·r�ψ

�
r− r	

2

!
ψ∗

�
r+

r	

2

!
. (1.35)

Similarly, a Fourier transform of the Von Neumann equation for the density matrix (1.34) yields the
evolution equation for the associated Wigner function:

∂

∂t
fw (r,k, t) +

�k
2m∗

∂

∂r
fw (r,k, t) =

ˆ
dk	Vw

�
r,k	 − k, t

 
fw

�
r,k	, t

 
, (1.36)

where Vw denotes the Wigner potential.
The Wigner function uses the phase-space variables, instead of the two spatial variables in the

density matrix, which allows the scattering models from the Boltzmann transport equation to be
adopted (to be discussed in Chapter 2).

1.2.4.5 Non-equilibrium Green’s function

The non-equilibrium Green’s function provides a general framework to describe weakly interacting
quantum systems. It introduces a correlation in time in addition to the space correlation considered
in the density matrix / Wigner function. Consider (1.28) for the case for which t �= t	: ρ (r, r	, t, t	) =
ψ (r, t)ψ∗ (r	, t	). The Green’s function (assuming a coordinate representation) describes how the
amplitude of a wave function (an excitation) at point r	 at time t	 is propagated to a point r at time
t.

The time evolution of a wave function – the solution to the Schrödinger equation in (1.23) – can
be calculated by

ψ (r, t) = i�
ˆ

drG
�
r, t, r	, t	

 
ψ
�
r	, t	

 
. (1.37)

The Green’s function – also known as the propagator – can be viewed as a generalization of the
scattering matrix, commonly used in radio frequency (RF) electronics, which relates the input and
output at different ports, because it relates the response at an arbitrary point in the the system
(device) to the excitation(s) at any other point(s).

The evolution of the time-resolved Green’s function is described by the Dyson equation [28], but
its high dimensionality of 2d + 2 makes it numerically extremely challenging to solve in two and
three spatial dimensions (d). Only very recently have such efforts even started [29, 30]. Therefore,
the steady-state, where only the difference between the time variables appears, is considered in the
following (as is routinely done in NEGF simulations).

A Fourier transform of the time difference t− t	 yields the energy E, which appears as parameter
in the Green’s function G (r, r	;E)6.

6The steady-state semi-classical distribution function only has 2d dimensions, whereas the Green’s correlation function
has 2d+ 1. In the semiclassical case the wavevector can be clearly related to an energy through the dispersion relation.
Such a relation does not exist in the quantum mechanical case, because the potential does not vary smoothly. Therefore,
the energy appears explicitly as an additional variable.
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The Green’s function is calculated by solving the differential equation

[E −H (r)]G
�
r, r	

 
= δ

�
r− r	

 
, (1.38)

which permits two solutions, since the inverse of a differential operator, i.e. the Hamiltonian, is not
uniquely specified without boundary conditions [9]. The two solutions correspond to a propagation
forward and backward in time and are known as the advanced and retarded Green’s function, re-
spectively. A unique solution arises once the boundary conditions are introduced in the form of a
self-energy representing the effect of semi-infinite leads coupled to the device. In the following, the
retarded Green’s function is implied without introducing additional notation.

The self-energy encompasses all possible interactions between the electron and its environment.
Each interaction has its own self-energy, which is calculated using many-body perturbation theory
under the presumption that systems are weakly interacting [28]. The self-energy accounting for the
coupling of the device to semi-infinite leads reduces the system to a finite size and follows from similar
arguments as used in the QTBM, i.e. plane waves are injected from a lead assumed to be at a
constant potential. The calculation of the self-energies for other interactions, like phonon scattering,
can become very computationally demanding and various approximations are routinely made to keep
simulations tractable..

The coordinates in equation in (1.38) can be discretized and a representation in terms of matrices
follows:

G = [EI −H − Σ]−1 , (1.39)

where I is the identity matrix, E denotes the energy, H is the Hamiltonian matrix and Σ is the self-
energy matrix. The numerical task at hand is to invert the matrix in (1.39) for every energy value in
the chosen range7. Therefore, the size of the matrix should be kept as small as possible, which limits
the size of devices which can be practically investigated.

The correlation function8 Gn (r, r	, t, t	) is used to calculate physical observables and is related to
the Green’s function G by

Gn = GΣinG†, (1.40)

where G† is the Hermitian conjugate of G and Σin is the self-energy which accounts for in-scattering
of electrons from leads and other interactions, like phonons. The function Gn can be regarded as the
quantum mechanical equivalent of the distribution function f in the semi-classical BTE.

Following [9], the electron and current density at a certain energy can be calculated by

n (r, E) =
Gn (r, E)

2π
; (1.41)

J (r, E) =
ie�
2m∗

1

2π
lim
r�→r

(∇r −∇r�)G
n (r, E) . (1.42)

The total densities are obtained by integrating the expression (1.41) and (1.42) over all considered
energy values and accounting for spin-degeneracy (multiplication by two).

The NEGF formalism is the most general of all the transport models reviewed here and is arguably
the most popular formalism currently in use in the computational electronics community. However,
the theoretical generality is accompanied by great computational demands and simplifications – as
alluded to above – are routinely employed to make simulations numerically feasible. Therefore, the
theoretical capabilities of a formalism should not be considered in isolation, but the extent to which
these can be realized in simulations is equally important.

1.2.4.6 Quantum-corrected models

Quantum-corrected models refer to semi-classical models that are modified to capture important
quantum effects. This allows the (relatively) computationally efficient semi-classical transport models
to be used to approach the results obtained with a full-fledged quantum simulation. The modifications,

7The energy range is chosen to be a few multiples of the thermal energy kBT around the Fermi energy level
8this is equivalent to the quantity iG< (r, r�, t, t�)
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however, introduce some fitting parameters which must be appropriately calibrated to a specific device
to realise the desired improvements in accuracy.

The most prominent quantum effect in transistors is the quantization of energy levels. Spatial
confinement leads to the separation of sub bands and is accompanied by an increase in interurban
scattering, which can be accounted for by using degenerate statistics in Monte Carlo simulations of the
BTE [31]. To calculate the true occupation of the discrete sub bands requires a self-consistent solution
of the Schrödinger-Poisson system, but the charge distribution can be replicated in a semi-classical
model using various approaches: The density of states (DOS) can be modified using various means,
e.g. introducing a spatial dependence, or artificially modifying the energy band gap [31, 32].

A further option to account for the confinement effects is to apply a quantum correction to the
potential [33]. There exists a multitude of models and derivations for the quantum potential [31, 34,
35], although all of them have a similar qualitative effect. The self-consistent potential obtained from
semi-classical simulation is smoothed by a convolution with a Gaussian kernel. This effective potential
indirectly models the uncertainty in the position of the electrons dictated by quantum mechanics using
classical calculations and, therefore, can be applied to both the BTE and macroscopic models.

Quantum versions of the macroscopic models can also be derived from the Wigner(-Boltzmann)
equation using the method of moments as done in the semi-classical case with the BTE. The corrective
term (Ohm potential), as defined in [31], is simply added to the classical potential in (1.14) such that

Jn = e

�
Dn∇n− µnn∇

�
V − �2

2m∗
∇2√n√

n

!!
. (1.43)

The conservation equation for mass (1.13) is retained in the quantum DD model, but the additional
gradient operators in (1.43) – hence, the name density gradient method – increase the order of the
resulting partial differential equation and, therefore, additional boundary conditions must be specified.
The use of a generalized electron quasi-Fermi potential can, however, reduce the order of the differential
equation [36], which is preferable for a solution by numerical methods.

The density-gradient method has also been used to account for tunnelling effects in the gate stack
and from source to drain [37]. The tunnelling effect can also be replicated in semi-classical models by
introducing an additional generation (recombination) rate in (1.14) [38].

In addition to the expected computational efficiency, a further advantage of using quantum macro-
scopic models is that physically relevant boundary conditions are easier to specify than for the
Schrödinger equation. The quantum-corrected models have been successfully applied for device simu-
lation [35, 39], but some numerical challenges are faced with high-frequency oscillations which occur
due to the dispersive nature of the equation [40].

Many approaches have been used to model quantum effects in a computationally efficient way by
combining and modifying different equations, as sketched above. However, this ad hoc approach works
well only for specific cases and lacks the generality of a full-fledged quantum model.

1.2.5 Summary

Whereas the relation between the semi-classical transport models is rather obvious – they all stem
from the BTE – the relation between the different quantum transport models is slightly obscured by
the use of different terms and terminology. Before the motivation for using Wigner-based transport
models is given, it is valuable to briefly summarize and evaluate the models discussed up to now.

The semi-classical transport is based on the BTE and allows an accurate description in devices
where transport takes place in the diffusive regime. Macroscopic models that directly solve for physical
quantities can be derived from the BTE and are much less computationally demanding. Certain
quantum mechanical effects can selectively be accounted for in semi-classical models with quantum-
correction terms, but the quantum physics is not treated on a fundamental level.

A fundamental description of the wave nature of particles is required to describe quantum me-
chanical effects. The Schrödinger equation describes the evolution of a pure state and can describe
the stationary states, but the inclusion of scattering is problematic. A generalization towards mixed
states requires the density matrix, which describes the correlation between different states. The in-
clusion of scattering in the Von Neumann equation is possible, but the non-local nature makes the
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interpretation not very intuitive. The Wigner function is related to the density matrix through the
unitary Fourier transform and gives a phase space description of quantum mechanics, which allows
the adoption of familiar semi-classical scattering models. The most general formalism is the NEGF,
which also takes time correlations into account. The high dimensionality of the Green’s function im-
poses significant computational demands, which makes the inclusion of scattering only tractable with
simplifying assumptions.

1.3 Motivation for Wigner formalism based simulation

The preceding section reviewed the transport models commonly used in device TCAD and nanoelec-
tronics research. In light of this the main advantages of using Wigner-based simulations for quantum
transport are i) the classical analogies that arise from the phase-space formalism, ii) the quite straight-
forward inclusion of scattering effects allowing decoherence to be investigated and iii) the ability to
simulate time-resolved quantum transport with reasonable computational effort. These three points
are elaborated upon in the following, whereafter some problems well-suited to be solved in this for-
malism are presented.

1.3.1 Classical analogies

The Wigner formulation of quantum mechanics retains many classical concepts and notions, which
makes it a convenient approach to describe the transport phenomena characterizing the evolution
of electrons in nanostructures. The Wigner formalism expresses quantum mechanics using functions
and phase space variables, as opposed to wave functions and operators, as used in the Schrödinger
equation. This phase space formulation offers a more intuitive interpretation of quantum phenomena.

The phase space representation of the Wigner formalism provides a clear analogy to classical
notions. The most striking example of this is the (initially phenomenological) augmentation of the
Wigner equation with the semi-classical scattering models used in the Boltzmann transport equation;
a formal derivation introducing the scattering terms to the Wigner equation has now been shown [41].
Furthermore, the phase space formulation is advantageous to specify and recover classical distributions
at boundaries [42].

Some caution, however, is justified when trying to apply concepts from classical physics to interpret
the Wigner picture. A common mistake is interpreting the Wigner function as a true probability
density function, which it is not. Unlike a distribution function, the Wigner function may attain
negative values, which are a manifestation of the uncertainty relation in the phase space [43, 44].
Nonetheless, the Wigner function retains the necessary properties of a true distribution function,
which allows the calculation of physical averages using the same expressions as used in the case of
the Boltzmann formulation. Therefore, the Wigner function is sometimes called a quasi-distribution
function. Alternative phase space formulations, like the Husimi function [45], recover a positive definite
function by smoothing the Wigner function over a wavelength with a Gaussian kernel, but fail in other
respects [45].

1.3.2 Decoherence and scattering

The straight-forward inclusion of scattering mechanisms in the Wigner formalism enables the descrip-
tion of decoherence processes which are of fundamental interest, when investigating the evolution of
quantum states. A hierarchy of Wigner transport models with scattering can be derived: These be-
gin with the simple relaxation time approximation, the Wigner-Boltzmann equation [41, 46], which
accounts for scattering by phonons and impurities at the classical transport level, and end with the
quite complicated Levinson and Barker-Ferry equations, which account for the quantum character
of the interaction with the sources of decoherence [47]. Of central interest is the Wigner-Boltzmann
equation which, as the name suggests, unifies the two theories and ensures a seamless transition be-
tween purely coherent and classical transport [48] – the Wigner function gradually turns into the
Boltzmann distribution function. This transition occurs either, when phonon scattering is significant
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or the potential varies very smoothly [20, 49]. The Wigner formalism bridges the gap between purely
quantum (ballistic) and classical (diffusive) transport in a seamless fashion.

Currently, the Wigner-Boltzmann equation presents the only computationally attractive quantum
model to consider scattering effects in multi-dimensional simulations. Nanoscale devices, e.g. silicon
nanowires [50], which exploit coherent quantum phenomena, should be able to operate at room tem-
perature to be viable as a commercial technology. Since phonon scattering increases with temperature,
the inclusion of scattering in simulation is of significant importance to simulate the decoherence effects
taking place.

1.3.3 Transient capability

The transient evolution of quantum states is of considerable interest in nanoelectronic devices as
“Many basic concepts remain to be clarified in the area of time-dependent current flow as well as cur-
rent fluctuations” [9]. Nano-circuits, which are formed by simple nanostructures, exhibit an electrical
behaviour which cannot be explained by classical theory. Time-resolved simulations of quantum trans-
port will help to resolve the questions which surround the frequency response of quantum capacitors
and resistances. The Wigner formalism easily allows the time-dependent behaviour, like oscillations
and switching times, to be investigated. This is an aspect which cannot currently be investigated by
NEGF simulations due to the excessive computational costs.

Wigner-based simulations require the consideration of seven dimensions, whereas NEGF simula-
tions require eight. The higher dimensionality of the NEGF simulations makes it inherently more
computationally demanding, but allows the description of temporal correlations. This theoretical ad-
vantage has not been exploited up to now due to the exorbitant computational demands, although the
first promising efforts are emerging [29, 30]. Transient simulations, neglecting temporal correlations,
can be naturally treated in the Wigner picture. Admittedly, this is also possible with the Schrödinger
equation/density matrix, however, the inclusion of scattering effects is problematic.

1.3.4 Suitable problems

Problems with (some of) the following properties are deemed well-suited to be investigated using the
Wigner formalism [42, 51]:

• highly transient phenomena;

• time evolution of contact states;

• energy resolution is of lesser importance;

• many closely-spaced states participate in current flow;

• far from equilibrium where quantum effects are small;

• phase space picture is useful, e.g. chaos, boundary conditions with classical distributions.

1.4 Outline of dissertation

The body of this dissertation is arranged as follows: Chapter 2 gives an introduction to the Wigner
formalism of quantum mechanics and the associated Wigner transport equation. The latter is aug-
mented with the Boltzmann scattering models to yield the Wigner-Boltzmann equation. An overview
of the existing deterministic and stochastic solvers for this equation is given. Chapter 3 presents the
integral form of the Wigner-Boltzmann equation from which the signed-particle method is derived;
the corresponding Monte Carlo approach and the basic building blocks of its algorithm are discussed.
Chapter 4 gives a detailed presentation of the various optimizations which have been made to the
signed-particle algorithms within the scope of this thesis. The improvements include algorithms with
better computational efficiency, statistical enhancements and increased physical accuracy by miti-
gating discretization artefacts. A validation of the simulation results to illustrate the impact of the
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enhancements is also shown. Chapter 5 treats the parallelization of the Wigner Monte Carlo (WMC)
solver in a distributed-memory environment. The spatial domain decomposition approach is shown
and its performance is analysed using a few benchmark tests. Chapter 6 illustrates some applications
of the WMC simulator by investigating the various aspects the interaction of wavepackets with elec-
trostatic lenses. Finally, in Chapter 7 the contributions which have been made in the scope of this
thesis are reviewed and evaluated.



Chapter 2

Wigner Formalism of Quantum
Mechanics

This chapter first discusses the Wigner transport equation and its derivation. Thereafter, the addition
of scattering models to the Wigner equation is discussed, which leads to the Wigner-Boltzmann equa-
tion (WBE). The semi-discrete form of the Wigner equation is then presented. Finally, an overview
of the existing solvers for the WBE is given.

2.1 Wigner equation

2.1.1 History and derivation

The Wigner function was introduced by Eugene Wigner in 1932 [52] with the motivation to add a
quantum correction to the configuration of gases at low temperatures. He also derived the Wigner
equation which describes the temporal evolution of the Wigner function. The Wigner formalism was
originally deduced from the operator formalism. However, later a fully independent derivation was
developed based on the Moyal bracket [53, 54].

The Wigner representation of an arbitrary physical quantity, like energy, is a function of the
phase space coordinates. A mapping of the involved phase space functions to quantum mechanical
operators is needed. Since quantum mechanical operators corresponding to position and momentum
are not commutative, the ordering in which the variables appear matters in general and a simple
correspondence principle is not sufficient to define a unique mapping. To remove the ambiguity in the
mapping an additional ’rule’ is imposed, which defines the quantization scheme. Various quantization
schemes have been proposed: normal ordering in which the position operator always precedes the
momentum operator, anti-normal ordering (the converse) and fully symmetrized ordering (a mixture
of both).

Another quantization scheme is the Weyl transform introduced by Hermann Weyl in 1927 [55].
The inverse mapping, from operators to functions, is known as the Wigner transform and is defined
as

A (r,k, t) =

ˆ ∞

−∞
dse−ik·s

�
r+

s

2

'''Â''' r− s

2

�
. (2.1)

The Wigner transform is applied to the density operator and yields the Wigner function

fw (r,k, t) =

ˆ ∞

−∞
dse−ik·sρ

�
r+

s

2
, r− s

2
, t
�
, (2.2)

which amounts to a Fourier transform of the density matrix, expressed in the mean and difference of
coordinates:

r ≡ r1 + r2
2

; (2.3)

s ≡ r1 − r2. (2.4)
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Therefore,

ρ (r1, r2, t) = ρ
�
r+

s

2
, r− s

2
, t
�
. (2.5)

The Liouville-Von Neumann equation (1.34), introduced in Chapter 1, describes the evolution of
the density matrix and is expressed here using the variables defined in (2.3):
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Only a single differential operator remains – this is a convenience afforded by the assumption of a
parabolic dispersion relation. However, the incorporation of more complicated bandstructures in the
Wigner formalism has been approached by [56, 57].

The Wigner transport equation is derived by applying the Wigner transform (2.1) to (2.6); the
left-hand side (LHS) immediately yields the time derivative of the Wigner function. The transform of
the first term on the right-hand side (RHS), related to the spatial derivatives, gives
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where the derivative ∂
∂s corresponds to a multiplication by ik in the transformed space. The transform

of the remaining, potential-related terms on the RHS makes use of the property
f (s) =

´
dr2δ (s− r2) f (r2) to change the variable in the density matrix and yields
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The property δ (s− r2) =
1

(2π)3

´
dk	eik�·(s−r2) then introduces a third integral such that (2.8) finally
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where Vw is referred to as the Wigner potential and is defined as
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Take note of the sign in the exponent, which differs from the Wigner transform defined in (2.1). These
calculations are combined and finally yield the Wigner transport equation:
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2.1.2 Properties

The Wigner function may assume both positive and negative values, which is a manifestation of the
quantum uncertainty principle [44]. Nonetheless, a critical property of a probability distribution is
retained: ˆ

dk

ˆ
dr fw (r,k, t) = 1, (2.12)
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which allows the Wigner function to be used (but not interpreted) in the same way as a classical
distribution function to calculate physical averages. Therefore, the Wigner function is often termed a
quasi-distribution function. The non-negativity of the Wigner distribution function is only guaranteed
for wave functions of the form ψ (r) = exp

�−rTA (t) r− ra (t)− b (t)
 
, where A(t), a(t) and b(t) are

a complex-valued matrix, vector and number, respectively [58].
The use of Wigner functions to describe quantum transport in semiconductor devices, which rep-

resent open quantum systems, is reviewed in [59]: the Wigner function of pure states is introduced
in terms of generalized functions and, furthermore, it is proven that the mean value of an observable
can be calculated as a weighted average of the mean values of the observable for the pure state. The
convergence problems that arise when a potential difference occurs between the boundaries of the
domain – as is the case for open quantum systems – can be treated by introducing a damping factor
to the Wigner potential (2.10) [60].

The Wigner transport equation is a linear pseudo-differential equation. The Wigner equation (2.11)
reduces to the Vlasov equation (collision-less Boltzmann equation) for quadratic and linear poten-
tials [52]. This can be readily shown by expressing the potential as a Taylor expansion in (2.11) [61].
Therefore, dynamic quantum effects manifest themselves as derivatives of the potential of third-order
and higher. In the semi-classical limit (� → 0) the Vlasov equation is recovered, regardless of the
potential profile.

2.2 Wigner-Boltzmann equation

The Wigner equation introduced in Section 2.1 describes ballistic carrier transport. A widespread
adoption of a semiconductor device technology requires operation at room temperature where phonon
scattering plays an important role. One of the major advantages of the Wigner formalism is that the
treatment of scattering is relatively simple compared to other quantum mechanical formalisms.

The phase-space description used in the Wigner formalism invites the use of the semi-classical
scattering operator used in the Boltzmann equation. The addition of this semi-classical scattering
model to the WTE was first proposed in [62], as an ad hoc solution to treating scattering in RTDs.
This raised questions whether the use of semi-classical scattering is justified in the Wigner formalism. A
rigorous derivation within the Wigner formalism for both phonon [41, 63] and impurity scattering [64],
has shown that the semi-classical scattering models can be obtained as a limiting case of full quantum
models. This derivation is outlined in the following.

2.2.1 Derivation

The Wigner equation can be generalized to account for electron-phonon interactions by considering
the interactions of an electron with a quantum field; a classical field interaction is not sufficient [64].
A general system comprising both the electron and phonon populations is required, but under certain
approximations the effects of the phonons on the electrons can be averaged. The phonon population
is described by a collection of integers {ng}, giving the number of phonons (n) in the phonon mode
g. This introduces two additional variables to the Wigner function: fw

�
r,k, {ng} ,

�
n	
g

�
, t
 
.

A general procedure to incorporate additional physical phenomena in the Wigner formalism is to i)
express the appropriate Hamiltonian for the phenomenon to be described, ii) expand the commutator
bracket in the Liouville-Von Neumann equation (2.6), iii) apply the Wigner transform and iv) perform
mathematical calculations and physically-motivated approximations to obtain a tractable equation.
In the following, this procedure for the derivation of the scattering models for phonon and impurity
scattering in the Wigner formalism is outlined.
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2.2.1.1 Phonon scattering

The Hamiltonian (1.19), describing a free electron, must be augmented to account for the free phonons
and their interaction with the electron:

Ĥ = Ĥ0 + Ĥph + Ĥe−ph

=
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The second term yields the energy of all phonons: �ωg denotes the energy of a phonon with wavevector

(mode) g; the creation and annihilation operators, denoted by a†g and ag, form the number operator

a†gag. The third term describes the energy exchanged between electrons and phonons: the function
F (g) describes the coupling of electrons to phonons specific to the type of phonon scattering being
considered (refer to Appendix A). Each contribution to the total Hamiltonian (2.13) can be considered
separately and transformed; the additional terms arising from Ĥph and Ĥe−ph augment the Wigner
equation (2.11).

The contribution of the second term in (2.13) yields a contribution to the RHS of (2.11) of
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where � ({ng}) is the total energy of the phonons, given by

� ({ng}) =
%
g

ng�ωg. (2.15)

The contribution of the third term in (2.13) gives rise to four terms of a similar form:
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The first (last) two terms in the curly braces correspond to phonon creation (absorption). The
notation {ng}±g� signifies that the integer corresponding to mode g	 is increased/decreased by one,
i.e. ng� → ng� ± 1.

The addition of (2.14) and (2.16) to (2.11) gives a generalized Wigner equation describing the
interaction of a single electron with a many-phonon system in a quantum mechanical manner. This
equation, however, is computationally completely intractable: each term in the summation for a given
mode g	 involves the Wigner function of mode ng� ±1 – a recursion is formed. Since the summation is
over all modes g	 (infinite), a closure relation is needed to obtain some tractable form of the equation.

The aim is to obtain with appropriate assumptions a reducedWigner function, fw (·, {ng} , {ng} , ·) ,
which describes only the electron subsystem. The phonon subsystem is ’traced out’ such that only
the first off-diagonal terms of the phonon population are considered.

The weak-coupling limit considers the electron interacting with only a single phonon, i.e. the time
between two consecutive scattering events is assumed to be long enough such that the first event is
completed before the next one starts. In the weak-coupling limit F (g) is assumed to be so small that
F 2 (g) becomes negligible, i.e. the diagonal terms of the phonon states are considered (n = n	) to
interact only with the the first off-diagonal elements. This implies that

fw
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= 0, (2.17)
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if |n− n	| > 1. Correlations and many-phonon processes are thus ignored.
The phonon distribution {ng} is determined using the assumption that phonons remain in equi-

librium, regardless of the intensity of the interactions with the electron. The equilibrium distribution
of phonons follows Bose-Einstein statistics, such that the probability of n phonons being in mode g is
given by

P (ng) =
1

n̄g + 1
exp

�
−ng

�ωg

kBT

!
, (2.18)

where n̄g denotes the mean occupation number, given by

n̄g =
%
ng

ngP (ng) =
1
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. (2.19)

The generalized Wigner function can be expressed as the product

fw (r,k, {ng} , {ng} , t) = fw (r,k, t)
"
g

P (ng) , (2.20)

under the assumption that the equilibrium conditions in the phonon distribution is instantaneously
recovered after an interaction.

After performing a trace operation over all the phonon states, the transport equation for the
reduced Wigner function can be expressed as an integral equation:
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where cc denotes the complex conjugate of the first two terms in the same braces. The auxiliary
functions f1,2 account for the phonon emission/absorption processes that start and end on the diagonal
element f1,2

�
r,k± q

2

 
[41]. The simplification which has been gained is obvious in comparison to

(2.16), where phonon modes infinitely far away from the diagonal are considered. Indeed, a substitution
of f1,2 into (2.21) yields the desired closed equation for the reduced Wigner function.

Equation (2.21), known as the Levinson equation, is quantum mechanically correct in the weak-
coupling limit and accounts for collisional broadening, intra-collisional field effect (ICFE) and retar-
dation effects.

For the case of a constant homogeneous electric field, the auxiliary equation f1,2 can be solved and
the summation of the phonon-scattering terms in (2.21) reduces to
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where
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The scattering rate is defined by
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An electron-phonon interaction does not occur instantaneously, but over a finite amount of time (as
evidenced by the time integral in (2.21)). An electron slowly starts to ’feel’ the oscillations of phonons.
This is approximately the time an electron requires to travel one wavelength of a phonon [7]. From a
classical point of view, the collision duration can be defined as the amount of time an electron feels
the presence of the scattering (phonon) field it interacts with. Energy is conserved by the end of the
interaction. In quantum mechanics, however, the position of a particle is not precisely known and the
collision duration must be defined according to the chosen uncertainty in energy (various definitions
have been proposed for this [7]). The energy of the electron after a scattering event is no longer
known exactly – this is termed collisional broadening. If the collision duration is longer than the mean
time between scattering events, the scattering events are no longer independent. In other words, the
uncertainty in position of an electron should be less than the mean free path, such that an electron is
involved in only a single scattering event at a time.

During the duration of the electron-phonon interaction, external forces still act on the electron,
thereby changing its wavevector. Therefore, the state of the electron changes (and thereby the scatter-
ing rate) during the collision – this is known as the ICFE. Modern semiconductor devices are subject
to electric fields which are strong enough such that ICFE becomes significant and the scattering rates
of instantaneous collisions do no longer apply [7].

The time scale of the phonon interaction appears in (2.26) as

� (kτ )− � (k	
τ ) + �ω(k�−k)

�
(2.27)

and can be assumed to be much faster than the time scale associated with the electron dynamics, i.e.
significant changes in the value of fw. This amounts to the assumption of instantaneous collisions,
already mentioned for the Boltzmann collision operator in Chapter 1. In the classical limit (� → 0)
the time integration can be approximated and (2.25) takes the form
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which recovers the Boltzmann scattering term for phonon scattering and neglects the ICFE.
The above derivations illustrate well how the Wigner picture gives the opportunity to account

for electron-phonon interactions at different levels, forming a hierarchy ranging from a full quan-
tum mechanical description of scattering to the semi-classical description of scattering as used in
the Boltzmann equation, which is more practical due to the much smaller computational demands.
This presents a big advantage of using the Wigner formalism for scattering-aware quantum transport
simulations.

2.2.1.2 Impurity scattering

An ionized impurity (dopant) exerts a force on an electron due to the Coulomb potential associated
with it. To account for Coulomb interactions in microscopic simulations requires several considera-
tions [65]. The Poisson equation appropriately models the long-range effects of a screened Coulomb
potential in a continuous distribution of impurities (dopants). However, the short-range Coulomb
interaction between an electron and an impurity is not captured by the Poisson equation alone. The
short-range interaction is accounted for by a scattering mechanism.

The appropriate model in the Wigner formalism can be derived – as has been shown in [64] – by
calculating the Wigner potential (2.10) using the Coulomb potential instead of the Hartree potential.
The Coulomb potential of a discrete distribution of ionized dopants is given by

Ve−ii (r) =
e2

4πκ

%
j

exp (−β |r− rj |)
|r− rj | , (2.29)
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where κ denotes the dielectric constant, β the screening factor (inverse of Debye length) and rj the
position of dopant j. The corresponding evolution term emerges as

e2

i�π3κ

ˆ
dk	fw

�
r,k	 1

4 (k− k	)2 + β2
×
%
j

�
e−2i(k−k�)·(r−rj) − e2i(k−k�)·(r−rj)

�
(2.30)

Under the assumption of a sufficiently high concentration of impurities, such that the sum can be
approximated by an integral and the assumption of instantaneous collisions, this expression becomes
identical to the one used in the Boltzmann equation to describe the impurity scattering (see Ap-
pendix A).

2.3 Discretization of momentum space

2.3.1 Semi-discrete Wigner equation

The Wigner function (2.2) is defined with the Wigner transform (2.1) calculated over an infinite range.
However, the finite dimensions of the simulation domain impose bounds on the variables defined by
(2.3) such that the maximum value that s can attain is limited by the dimensions of the device (Ldev).
Therefore, the Wigner function (2.2) must be calculated over finite dimensions:

fw (r,k, t) =
1

L

ˆ L/2

−L/2
dse−i2k·sρ (r+ s, r− s, t) , (2.31)

with the substitution of variables s
2 → s. The value L is termed the coherence length and can be

chosen freely subject to certain physical and computational considerations, which are investigated in
Chapter 4. An isotropic coherence length is chosen such that |L| = L.

A continuous function f(s) can be written as a Fourier series:

f (s) =
∞%

n=−∞
Ane

i 2πns
L , (2.32)

where the Fourier coefficients {An} are given by

An =
1
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ˆ L/2

−L/2
ds f(s)e−i 2πns

L . (2.33)

Therefore, a finite value of L requires k to become discretized to form a complete orthogonal basis
set

�
e−i2πqΔk·s�, where q is an integer multi-index and Δk = π

L , which denotes the resolution of the
discretized wavevector.

From the above considerations, the discrete Fourier transform (DFT) follows, such that

fw (r,qΔk, t) =
1

L

%
q

e−iqΔk·sρ (r+ s, r− s, t) , (2.34)

where Δk is, henceforth, omitted from the function arguments for brevity. Applying the same argu-
ments to (2.11) yields:�
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The Wigner potential (which may also be time-dependent) is defined accordingly as

VW (r,q) ≡ 1

i�L

ˆ L/2

−L/2
ds e−i2qΔk·sδV (2.36)

δV (s; r) ≡ V (r+ s)− V (r− s) . (2.37)

The equations (2.35) - (2.36) define the semi-discrete Wigner equation, which has been the subject
of detailed mathematical analyses [66, 67].
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2.4 Transport problems

The WTE can be used to solve stationary and transient transport problems. In both cases the
specification of appropriate boundary conditions and initial conditions is paramount. This will be
discussed in the following.

2.4.1 Boundary and initial conditions

To have a well-posed problem (2.35) must be specified with an initial condition at time t0, which
specifies the Wigner function at t0 over the entire phase space. In a finite domain the initial condition
is specified only in the phase space represented by the domain while the boundary conditions reflect the
influence (if any) of the initial condition outside the domain under observation for all times t ≥ t0 [68,
69]. The specification of boundary conditions in open quantum systems has been the subject of intense
investigation over many years and is a critical aspect, regardless of the formalism used to describe the
problem, see e.g. [62, 70].

The phase-space formulation of the Wigner function makes the adoption of classical, equilibrium
distributions at the boundaries an attractive proposition, foremost because these distributions are
known a priori and the experience gained from semi-classical Monte Carlo simulations [71] can be
built upon. However, due to the spatial correlations that exist in the WTE (through the integrand and
theWigner potential (2.36)), the boundary conditions of an equilibrium distribution should be specified
infinitely far away to avoid correlations with the non-equilibrium distribution in the active region of
the device. As specified in Section 2.3, based on physical and computational considerations, a finite
coherence length is chosen. Therefore, once the potential changes negligibly within the coherence
length, it is reasonable to assume that the distribution approaches equilibrium values within the
applicable relaxation time. These conditions are given in metals (contacts), where processes are at
play which destroy coherence.

Numerical studies have demonstrated that the solution of the WTE indeed depends on the size
of the contact regions (extensions from the active region) [72]. What constitutes sufficiently far away
for the classical distribution to be recovered depends on the device being simulated and a sensitivity
analysis should be performed to obtain the optimal distance. A distance of 30 nm (Si) to 60 nm(GaAs)
for single and double barrier structures has been suggested [73] for simulations at room temperature; at
lower temperatures a larger separation is required, because the coherence length increases as scattering
decreases. It is desirable to place the boundaries as close as possible to the active region to reduce the
computational burden.

The use of device-specific boundary conditions has been proposed [74], where the influence of the
electrostatic potential inside the device on the distribution function at the boundary is taken into
consideration, thereby allowing the boundaries to be placed closer to the active region. The unbiased
(equilibrium) solution is used to specify the boundary condition for the non-equilibrium case. This
requires the wave function under equilibrium conditions to be obtained from analytic solutions (only
possible for simple potential barriers) or a numerical solution of the Schrödinger equation, from which
the Wigner function can be obtained. However, the required calculations incur additional (once-off)
computational, which must be weighed against the savings gained by having a smaller domain.

It is important to note that the specification of initial and boundary conditions which are physically
valid and justified is of critical importance [75]. If physical aspects are left out of consideration – as was
done in [76] – the WTE can yield non-physical solutions. The question of what constitutes a physically
admissible Wigner function has been investigated in [54, 75]. The appropriate initial condition for
the Wigner function can be obtained from a density matrix, which can be calculated using techniques
outlined in [77].

One can distinguish between three types of boundary conditions:

Absorbing: An absorbing boundary is based on the assumption that physical processes are in
place, which make the boundary reflection-less. The absorbing boundary conditions for the Wigner
transport equation have been mathematically derived in [78] and analysed in [79]. The implementation



CHAPTER 2. WIGNER FORMALISM OF QUANTUM MECHANICS 25

of absorbing boundaries in Monte Carlo simulations is straight-forward: All particles cease to exist at
the boundary and the boundary does not influence the evolution of the problem.

Injecting / in-flow: The in-flow boundary conditions retain the properties of absorbing boundaries,
but also inject particles into the domain according to a specified distribution. An injecting boundary
functions analogously to a black-body for radiation in that it emits (injects) electrons according to a
thermal equilibrium distribution (say), regardless of the electrons that are absorbed [80]. This requires
the energy relaxation in the contacts to be sufficiently fast for the contact to be regarded as memory-
less and treated in a Markovian manner [81], i.e. the electron is absorbed/emitted by the boundary
irrespectively of the electrons that were absorbed/emitted in the time prior. The in-flow boundary
conditions for the Wigner formalism were first applied in the study of RTDs [80].

Reflecting: Particles are specularly reflected from the boundary and no particles are injected from
the boundary. This approximates a boundary to an infinite potential step and assumes that no par-
ticles exist outside the domain under observation, at the time of initialization, which could enter
the domain through the boundary. Reflecting boundaries are useful to approximate interfaces be-
tween semiconductors and oxide, where the wave function rapidly decays towards zero. The reflecting
boundary corresponds to a zero Dirichlet boundary condition.

2.4.2 Stationary

A stationary transport problem demands a non-equilibrium solution to the transport equation (2.35)
that does not change with time, i.e. ∂fw

∂t = 0. Stationary (steady-state) solutions are of particular
interest in logic devices where the response in the ’on’ and ’off’ state is of primary interest and the
time scales associated with the transient responses are much shorter than those associated with the
operating frequency.

The relative importance of the initial and boundary conditions depends on the simulation time,
domain size and the specifics of the system, e.g. the potential profile. The effect of the initial condition
can become insignificant after a sufficiently long simulation time, once the particles that represented
the initial condition have been absorbed by the boundaries and were replaced by particles determined
solely by the boundary conditions. Conversely, if the particles that constitute the initial condition
are concentrated inside the domain without ever reaching the boundary, e.g. an electron trapped in a
deep quantum well, the boundary conditions are not influential and the initial condition determines
the stationary solution that will be achieved.

The eigenstates of a system cannot be obtained by solving the WTE, however, the equation does
’retain’ the eigensolutions, if these are correctly introduced with the initial condition.

The Wigner transport equation reduces to the Boltzmann equation for potentials of second order
(quadratic) or lower. Quantum effects can be present, nonetheless, for such potentials, e.g. a quantum
harmonic oscillator with a parabolic potential displays quantization effects [82]. To correctly capture
these quantum effects, the boundary conditions must be specified appropriately and the time-derivative
set to zero [77]. However, the time derivative ∂fw

∂t term, in the WTE, can only be discarded beforehand
with valid physical reasoning [75].

2.4.3 Transient

A transient transport problem investigates the time-dependent solution to the transport equation
(2.35). The transient solution is of interest for quantum systems subjected to time-varying boundary
conditions, e.g. RF circuits, or devices stimulated by electro-magnetic fields. While the simulation of
quantum systems in the stationary state has been dealt with extensively, especially using the NEGF
method, the transient problems remain largely under-investigated. This can be explained by the
computational challenges faced by time-resolved quantum transport simulations using NEGF and the
challenges in the metrology (photoluminscence).

In the simplest case, the transient behaviour of a quantum system can be observed by following the
evolution of the initial condition while keeping the boundary conditions fixed. For systems that are
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used for RF applications or are stimulated by electro-magnetic field, time-varying Dirichlet boundary
conditions are used for the potential, which emulate the time-dependent potential or electromagnetic
field1.

2.5 Overview of existing solvers

The theoretical accomplishments of the Wigner formalism are accompanied by challenging and some-
times peculiar numerical aspects, when solving the associated transport equation. Several numerical
methods have been explored over the years to solve the WTE. An overview of the development of
the most important deterministic and stochastic solution approaches is given in the following. All the
solvers mentioned below are restricted to a single spatial dimension, due to computational constraints.

2.5.1 Deterministic methods

The first deterministic solvers for the WTE applied the finite difference (FD) scheme [62, 77, 80, 83,
84] and used a relaxation time approximation for the collision operator. The numerical solution of the
WTE allowed the study of physically relevant boundary conditions and demonstrated the feasibility of
applying the Wigner formalism to study quantum structures, like the resonant tunnelling diode (RTD).
Various refinements and additions to the FD-based solvers were made over the years [85]. However,
two disadvantages of applying the finite difference scheme have become clear: The discretization of
the WTE yields a dense matrix, which is numerically expensive to invert. Furthermore, the solution
is sensitive to the chosen discretization of the diffusion term, due to the highly oscillatory nature of
the Wigner function in regions with rapid changes in the electrostatic potential [64]. As a result, finite
difference schemes remain limited in their application to single-dimensional structures of few tens of
nanometres, with moderate potential variations in the active regions. Nonetheless, the high precision
offered by deterministic methods remains very desirable, which motivates the continued pursuit of
novel deterministic approaches.

The need to find a more efficient discretization of the non-local Wigner kernel, motivated the
first alternative approach to the FD method using the spectral collocation method [86], which was
later augmented with an operator-splitting technique [87]. After some years of relative inactivity,
fresh efforts have started on the deterministic solvers: The spectral element method has recently been
introduced [88], which intrinsically has the property of mass conservation. A weighted essentially non-
oscillatory (WENO) finite difference solver [89], has tackled the numerical difficulties of the advection
term with an adaptive grid in the k-space. A solution based on the integral formulation has also been
demonstrated [90].

Phase space formulations always suffer under the curse of dimensionality, which makes a determin-
istic solution challenging in higher dimensions due to the fine discretization required to accommodate
the highly oscillatory nature of the Wigner function. A good finite-dimensional characterization of
the solution is required to reduce the size of the linear systems. Recent advancements in deterministic
solvers for the BTE using wavelets may also become useful to solve the Wigner equation [91]. The
application of a spherical harmonics expansion [92, 93] may also prove promising, but has only been
attempted for steady-state solutions [94].

A deterministic solver for multi-dimensional problems still remains out of reach, which motivates
the use of stochastic (Monte Carlo) approaches.

2.5.2 Stochastic methods

Stochastic methods offer an alternative to deterministic methods and their application to solve the
Wigner equation has been inspired by the great success of the Monte Carlo approaches to the very
similar Boltzmann transport equation [95, 96]. Many classical concepts have been revised and adapted

1If the dimension of the simulation domain is small compared to the wavelength of the electromagnetic stimulation, i.e.
(Lx, Ly) � λ

10
, the magnitude of the field can be approximated to be constant across the domain and only the temporal

dependence of the field has to be considered. In other cases, a full coupling to a solver for the Maxwell equations is
required.
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to develop numerical models for computing the quantum quasi-distribution function. Nonetheless, the
basis of the method remains the association of trajectories to a single or an ensemble of particles.

Wigner trajectories have been defined with the help of a quantum force [97]. They give insight
in quantum phenomena like tunnelling processes, but can be created or destroyed making the impor-
tant consequences of the Liouville theorem invalid for this particle model. Another particle model
introduces the concept of Wigner paths [98]. Here, the action of the Wigner potential operator is
interpreted as scattering, which links pieces of classical trajectories to Wigner paths.

Two more recent particle models – the affinity and signed-particle method – exhibit improved
numerical efficiency and higher functionality. They unify classical and quantum regions within a single
transport picture and allow the consideration of fully three-dimensional wavevector spaces in multi-
dimensional devices. The affinity model represents the Wigner function as a sum of Dirac excitations in
the phase-space, each weighted by an amplitude, called affinity [99]. The affinities are updated by the
Wigner potential during the particle evolution and contain all the information on the quantum state
of the system. The affinities can assume positive or negative values, which act as weighting factors
in the reconstruction of the Wigner function and consequently in the computation of all physical
averages [100]. This approach was also adopted in [64, 101] where the potential is decomposed in a
’slow’ and a ’fast’ varying part, representing the classical electric field (first derivative of potential)
and higher-order quantum effects of the potential, respectively; only the fast-varying quantum part of
the potential is used to update particle affinities.

The signed-particle method is based on the alternative interpretation of the Wigner potential as a
generator of signed particles. The signed-particle method makes use of integer affinities (+1 and −1),
which is very advantageous from a computational point of view. In all other aspects the evolution of
the particle is field-less and classical. Two particles with opposite sign, which meet in the phase space,
may annihilate each other, since they have an equivalent probabilistic future but make an opposite
contribution in the process of averaging. Due to the ergodicity of such systems, a single particle Monte
Carlo algorithm has been developed [63] and more recently the method has been generalized to also
treat transient transport [49].

Indeed, currently the signed-particle method is the only computationally tractable method to solve
the WTE in multiple dimensions. The signed-particle method forms the basis of this thesis and will
be extensively discussed in Chapters 3 to 5.



Chapter 3

Signed-Particle Method

This chapter discusses the mathematical foundation of the signed-particle method used to solve the
Wigner-Boltzmann equation using Monte Carlo techniques. The integral formulation of the WBE
is introduced. The integral form is developed into a Neumann series, which is evaluated using
Monte Carlo integration. Finally, the basic building blocks and architecture of the algorithm im-
plemented in the Wigner Ensemble Monte Carlo (WEMC) simulator – as part of the open source
project ViennaWD [102] – are presented.

3.1 Background

The Monte Carlo technique was developed in 1946 by Ulam and Von Neumann [103] to solve neutron
transport problems in the scope of the development of the atomic bomb. Monte Carlo simulation was
later also adopted for kinetic transport problems in semiconductors, around 1966, by Kurosawa [104]
and others. Monte Carlo algorithms were initially developed with the idea to emulate the physical
behaviour of particles rather than to solve the Boltzmann transport equation per se. However, as the
supporting mathematical theory in statistical sampling developed, it emerged that the Monte Carlo
technique can be used as a general mathematical tool with applications going far beyond solving
kinetic transport equations.

Indeed, there is a well-established Monte Carlo theory to solve (especially higher-dimensional)
integrals or large systems of linear equations and integral equations efficiently [105]. Monte Carlo al-
gorithms are better suited, compared to deterministic methods, to solve problems with a low regularity
(smoothness) [106] and can be much more memory efficient, if large systems/domains are considered.

One can distinguish between grid and grid-free Monte Carlo algorithms to solve an equation: The
former approach entails a discretization of the equation, whereafter the resulting system of linear
algebraic equations is solved using Monte Carlo techniques. In certain cases, e.g. large integration
domains, grid Monte Carlo algorithms show a superior computational complexity compared to grid-
free algorithms [107]. Grid-free Monte Carlo algorithms, on the other hand, consider the integral form
of the equation – this approach is applied to solve the WBE in this chapter.

The Monte Carlo approach is by now very well established in the field of semiconductor transport
simulations; the de facto standard reference literature on the topic [108, 109, 110] can be consulted for
an in-depth treatment of the topic. Gradually Monte Carlo algorithms have moved beyond a direct
emulation of particle behaviour and issues of statistical enhancement were approached by adding a
statistical weight to particles [111], or using backward-in-time trajectories [112]. These techniques
were quickly recognised to be special cases of solving the BTE expressed as an integral equation and
applying numerical Monte Carlo integration techniques [113]. This generalized approach to devising
Monte Carlo algorithms has been used to develop the novel signed-particle method to solve the semi-
discrete Wigner-Boltzmann equation and will be discussed in the remainder of this chapter.

28
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3.2 Outline

In the following an evolution problem posed by an initial condition is considered, where the boundaries
of the simulation domain are assumed to be far enough away to have no influence on the evolution.
If a bounded domain is considered, the initial condition must be replaced by a boundary condition
when a particle reaches the boundary (refer to [114] for a rigorous treatment). Injecting boundary
conditions, which are used in stationary problems, are not considered here, but only boundaries of a
computational nature, i.e. the finite range of the phase space. The case for stationary problems is
analysed in [63].

First the WBE is written as a Fredholm integral equation. The adjoint equation of the latter
is then used to express the mean value of an arbitrary physical quantity as a Neumann series. The
value of this series represents the solution to the computational problem and can be determined by
a stochastic sampling. This sampling procedure is performed using numerical particles, which follow
Newton trajectories and are scattered between different states as determined by the Wigner potential
and other scattering mechanisms.

3.3 Integral formulation

The WBE, introduced in Chapter 2, is written here as�
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. (3.2)

The first term on the RHS of (3.1) denotes the in-scattering and the second term denotes the out-
scattering (at a rate λ). The Wigner potential will later emerge to be interpretable as a scatter-
ing mechanism. Although the scattering rates and the Wigner potential are assumed to be time-
independent, introducing a time-dependence does not present a conceptual problem.

The Wigner potential can be decomposed as

Vw (r,k) = V +
w (r,k)− V −

w (r,k) ;

V +
w (r,k) ≡ max (0, Vw) ;

V −
w (r,k) ≡ max (0, −Vw) .

(3.3)

The quantity, which will emerge to be the scattering rate associated with the Wigner potential, is
defined as
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ˆ
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The term γ (r) fw (r,k, t) is added to both sides of (3.1), such that�
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This is expressed in the more compact form�
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µ (r,k) ≡ λ (r,k) + γ (r) ; (3.7)
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The partial differential equation represented in (3.6) can be transformed into an ordinary dif-
ferential equation by introducing the characteristics of the Wigner function, which correspond to
Newton trajectories in the physical sense. The trajectory of position (assuming parabolic bands and
no electro-magnetic fields) can be parametrized with τ as

R(τ ; rn,kn, tn) = Rn (τ) = rn +

ˆ τ

tn

vg (kn) d+ = rn +
�kn

m∗ (τ − tn) ;

Rn(τ = tn) = rn.

(3.9)

The trajectoryRn is initialized by the values (rn,kn, tn) (which represent values in this context and
not variables). Depending on the choice of the initialization time tn, the trajectory is either forward
in time (τ > tn) or backward in time (τ < tn). The trajectory of the wavevector is constant, since the
LHS of (3.1) does not have a force term that accelerates the particle and is formally introduced as

K (τ ; rn,kn, tn) = Kn (τ) = kn ∀τ. (3.10)

In the following the initialization parameters are only explicitly stated where it aides clarity.
The LHS of (3.6) can represent the full derivative of fw (with respect to parameter τ). To achieve

this, the following property, for an arbitrary function g, is used:
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´ x
b g(y)dy + g(x)e

´ x
b g(y)dyf(x) =



∂

∂x
+ g (x)

�
f (x) e

´ x
b g(y)dy.

The value of b (integration limit) can be chosen freely and is chosen as t0 in the following.

Both sides of (3.6) are multiplied by the term exp
�
− ´ t0τ µ (R (y) ,k) dy

�
to yield

d

dτ

�
fw (R (τ ; r,k, t0) ,k, τ) e

− ´ t0τ µ(R(y),k)dy
�
=ˆ

dk	Γ
�
R (τ) ,k,k	, τ

 
fw

�
R (τ) ,k	, τ

 
e−
´ t0
τ µ(R(y),k)dy.

(3.11)

This equation can be formally integrated on the interval τ ∈ (t, t0) to finally yield the integral form
of (3.6):

fw(r,k, t0) =fw,i (r,k) e
− ´ t0t µ(R(y),k)dy+

+

ˆ t0

t
dt	


ˆ
dk	Γ

�
R (τ) ,k,k	, τ

 
fw

�
R

�
t	
 
,k	, t	

 
e−
´ t0
t� µ(R(y),k)dy

�
.

(3.12)

This equation evaluates the Wigner function at the phase space point (r,k) at time t0 using the initial
condition fw,i (r,k) = fw(R (t; r,k, t0) ,k, t), which is assumed to be known at time t.

The integral equation (3.12) has a form analogous to the Chamber’s path integral [115], but with
the contributions of the Wigner potential added. The introduction of the exponential term in (3.11)
actually relates to an analytical summation of all out-scattering – the term µ could, alternatively, also
be retained on the RHS of (3.1) and integrated otherwise, thereby suppressing the exponential term.
However, the form of (3.12) is preferable as it gives a clear physical interpretation, which is useful
when devising the Monte Carlo algorithm (Section 3.6).

The exponential term e−
´ t0
t µ(R(y),k)dy gives the probability of a particle to remain on its trajectory,

i.e. not be scattered, from time t until time t0. Therefore, the first term of (3.12) gives the contribution
of particles initialized at (R (t; r,k, t0) ,k) to reach point (r,k) without being scattered, whereas the
second term gives the contribution of all particles scattered into the appropriate trajectory (according
to in-scattering rate Γ) at time t	 to remain on the trajectory to reach point (r,k) at time to.
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3.3.1 Fredholm integral form

Fredholm integral equations of the second kind1 have the form:

f (Q) = fi (Q) +

ˆ
dQ1K(Q,Q1)f (Q1) , (3.13)

where the free term fi and the kernel K are known and describe the initial/boundary conditions and
the propagation of particles, respectively; Q is a multi-variable representing e.g. (r,k, t).

To express (3.12) in the form of (3.13), the integral must be augmented by the variable2 r1 to
complete Q1 = (r1,k1, t1):

fw(r0,k0, t0) = fi (r0,k0, t0) +

+

ˆ t0

−∞
dt1

ˆ
dr1

ˆ
dk1K (R0 (t1) ,k0, t0, r1,k1, t1) fw (r1,k1, t1) ;(3.14)

fi (r0,k0, t0) ≡ f(R0 (t1) ,k0, t1)e
− ´ t0t1 µ(R0(y),k)dy (3.15)

K (r0,k0, t0, r1,k1, t1) ≡ Γ (r1,k0,k1, t1) δ (r1 −R0 (t1)) e
− ´ t0t1 µ(R0(y),k)dyθ (t0 − t1) . (3.16)

This is a linear Fredholm integral equation of the second kind, which has a unique solution (if one
exists) [116]. The step function θ is added to the kernel to retain the limits of the time integral.
Similarly, an indicator function can be added to limit the spatial domain, but is omitted here for
brevity.

A very wide variety of physical phenomena can be described by integral equations of the form
(3.13) and a strong theory has evolved surrounding the solution of such Fredholm integral equations
using Monte Carlo algorithms [117].

It is possible to formulate an integral representation of the WBE for the entire (global) domain.
Sometimes, however, the operator of the equation under consideration is too complicated to be able
to formulate a global integral representation. In such a case, local integral representations are used
based on the Green’s function3 Monte Carlo algorithm [105]. The theory of Green’s function Monte
Carlo algorithms keeps on developing [118, 119, 120] and is often applied to solve non-linear physical
problems, e.g. [121].

3.3.2 Adjoint equation

The adjoint form of integral equations, of the form as in (3.13), is often easier to solve [106, 122].
The integral form of the WBE in (3.12) and (3.14) describes a backward-in-time equation as seen

from the limits of the time integral. To obtain the corresponding forward-in-time equation the adjoint
equation is required [123].

The kernel of (3.13) can be interpreted as a propagator: K (Q,Q1) describes the propagation from
Q1 to Q. The adjoint equation to (3.13) solves for the function g (to which no particular physical
meaning is attached at this stage) and uses the (self-)adjoint kernel K† (Q1, Q) = K (Q,Q1), which
exchanges the position of the integration variable:

g (Q1) = gi (Q1) +

ˆ
dQK(Q,Q1)g (Q) , (3.17)

where gi is the free term.
Using the newly introduced adjoint equation it can be shown thatˆ

dQfi (Q) g (Q) =

ˆ
dQ1gi (Q1) f (Q1) . (3.18)

1A Fredholm equation of the second kind is identified by the function fw appearing both inside and (as an initial
value) outside of the integral.

2The property used is: f(x) =
´
dx�f(x�)δ(x− x�).

3The Green’s function should be interpreted here purely in the mathematical sense and does not imply the use of the
quantum mechanics formalism based on the non-equilibrium Green’s function (NEGF).
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This result is obtained, if (3.13) is multiplied by g(Q) and integrated by
´
dQ and (3.17) is multiplied

by f(Q1) and integrated by
´
dQ1; the two resulting equations are subtracted. It follows

ˆ
dQfi (Q) g (Q) =

ˆ
dQ1 gi (Q1) f (Q1) iff (3.19)

ˆ
dQ1 fi (Q1) g (Q1) =

ˆ
dQgi (Q) f (Q) .

This formulation will emerge to be very convenient for solving the computational task, described in
Section 3.6.

3.4 Neumann series

To develop a Neumann series of a general Fredholm equation, the function appearing in the integrand
is expanded recursively. The first expansion yields

f (Q0) = fi (Q0) +

ˆ
dQ1K(Q0, Q1)



fi (Q1) +

ˆ
dQ2K(Q1, Q2)f (Q2)

�
= fi (Q0)� �� 	

f0

+

ˆ
dQ1K(Q0, Q1)fi (Q1)� �� 	

f1

+

ˆ
dQ1

ˆ
dQ2K(Q0, Q1)K(Q1, Q2)f (Q2)� �� 	

f2+f3+···+fn

.
(3.20)

The Neumann series is formed by an iterative application of the kernel K to the free term fi. The
term fn corresponds to n applications of the kernel:

f =
∞%
n=0

fn; (3.21)

fn (Qn) =

�´
dQnK(Qn−1, Qn)f

n−1 (Qn) if n > 0

fi (Q0) if n = 0.
(3.22)

The evaluation of a Neumann series formally solves the Fredholm integral equation [124].

3.5 Monte Carlo integration

The terms comprising a Neumann series contain high-dimensional integrals which can be efficiently
calculated using stochastic sampling by Monte Carlo techniques.

Consider an integral

I ≡
ˆ b

a
dxφ (x) =

ˆ
dx p (x)ψ (x) , (3.23)

where p is a probability density function such that
´ b
a dx p (x) = 1 and ψ (x) = φ(x)

p(x) . The integral I

corresponds to the mean value of ψ (x).
The choice of the distribution p determines various qualities of the Monte Carlo algorithm [106],

namely the computational efficiency, the convergence rate and the associated trade-off with reliability
(variance in the result). Often physical considerations are used to choose the distribution p.

Consider the random variables X and Ψ [X]: A sequence of N numbers {xi} is generated according
to p and is used to sample Ψ [X], thereby approximating the mean value by an expected value:

I ≈ E [Ψ [X]] =
1

N

N%
i=1

ψ (xi) . (3.24)

This establishes the link between the Neumann series and the Monte Carlo algorithm, which will
be discussed in Section 3.7.
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3.6 Computational task

The computational task at hand is to calculate the statistical mean of an arbitrary physical quantity,
represented by A (r,k), at time T using the Wigner function:

�AT � =
ˆ

dr

ˆ
dkfw (r,k, T )A (r,k) . (3.25)

The mean of a physical quantity is often of greater interest than the Wigner function itself (one can
solve for fw by setting A (r,k) = δ (r)).

It is formally proven in [117] that a linear functional of the form (3.25) can be solved by calculating
the statistical expectation value of a random variable, which is calculated using the procedure discussed
in Section 3.5.

The RHS of (3.18) represents an inner product between gi and f , which is reminiscent of the inner
product (3.25). Therefore, either f or g can be solved to obtain the mean value of a physical quantity.
In the latter case the free term gi of the adjoint equation (3.17) is chosen to correspond to the physical
quantity A, augmented with the time variable, such that:

gi (Q) = A (r,k) δ (t− T ) = AT (Q) . (3.26)

The statistical mean of AT can be expressed as:

�AT � =
ˆ

dQg (Q) fi (Q) , (3.27)

which can be developed into a Neumann series of the form

�AT � =
∞%
n=0

�AT �n . (3.28)

The first expansion of g as a Fredholm equation, with the free term (3.26) yields:ˆ
dQ1fi (Q1) g (Q1) =

ˆ
dQ1 fi (Q1)AT (Q1) +

ˆ
dQ1fi (Q1)

ˆ
dQK (Q,Q1)AT (Q)+

+

ˆ
dQ1fi (Q1)

ˆ
dQ

ˆ
dQ2K (Q,Q1)K (Q2, Q) g (Q2) .

(3.29)

The first two terms of (3.28) are written here to convey the principle. The zero-th term simply contains
the free term (3.26):

�AT �0 =

ˆ
dQfi (Q)AT (Q)

=

ˆ ∞

t0

dt1

ˆ
dk1

ˆ
dr1fi (r1,k1) e

− ´ t1t0 µ(R1(y),k1)dyA (R1 (t1) ,k1) δ (t1 − T )

=

ˆ
dk1

ˆ
dr1fi (r1,k1) e

− ´ Tt0 µ(R1(y),k1)dyA (R1 (T ) ,k1) . (3.30)

The meaning of the term is as follows: a particle initialized at (r1,k1, t0) follows a trajectory R1 and

reaches the point (R1(T ),k1, T ) with a probability of e−
´
T
t0

µ(R1(y),k1)dy and makes a contribution of
A (R1 (T ) ,k1) to the statistical mean of A. If the particle is scattered from its trajectory, it contributes
through another term in the series.

�AT �1 =

ˆ
dQ1fi (Q1)

ˆ
dQK (Q,Q1)AT (Q)

=

ˆ ∞

t0

dt1

ˆ
dk1

ˆ
dr1fi (r1,k1)



µ (R1 (t1) ,k1) e

− ´ t1t0 µ(R1(y),k1)dy
�

� �� 	
I

× θD (r1)

ˆ ∞

t1

dt

ˆ
dk



Γ (r1,k,k1)

µ (R1 (t1) ,k1)

�
e
− ´ tt1 µ(R1(y),k)dyA (R1 (t) ,k) δ (t− T )� �� 	

II

. (3.31)
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As before, a particle initialized at (r1,k1, t0) follows a trajectory R1, but only until time t1 where it is
scattered. By extracting µ as a common factor, the term in the first set of braces can be interpreted as
the probability for a particle to not be scattered until time t1 (the exponential) and then to be scattered
in the interval dt1 thereafter (µ (R1 (t1) ,k1) dt1). The term in the braces of term II describes the
probability of scattering from k1 to k and the exponential term again gives the probability that the
scattered particle will not be scattered again until time T , where it contributes A (R1 (T ) ,k) to the
statistical mean of A. If the particle is scattered again before time T , it contributes through another
term in the series.

Further terms of the series can be written down in a similar manner to reveal the general structure:
A particle that scatters n times before time T makes a contribution to �AT � through the term �AT �n
in the series. The braced terms in the integrals of I and II represent probabilities, which clearly
establishes the link to the Monte Carlo integration introduced in Section 3.5.

3.6.1 Wigner potential as a scattering mechanism

The term Γ(r1,k,k1)
µ(R1(t1),k1)

appearing in term II represents the total scattering probability, including both

phonons and the ’scattering’ (particle generation) associated to the Wigner potential. Phonon scatter-
ing occurs with a probability λ

µ and is described in Section 3.7.5; the Wigner-related term is selected

with a probability γ
µ =

�
1− λ

µ

�
and can then be written as

3



1/3

V +
w (r,k	 − k)

γ (r)
− 1/3

V −
w (r,k	 − k)

γ (r)
+ 1/3δ

�
k− k	 � . (3.32)

Each term is normalized by gamma to represent a probability, which follows from the definition

γ (r) ≡
ˆ

dkV +
w (r,k) ≥ 0.

Two interpretations of (3.32) are possible: If considered as a scattering mechanism, one of the terms
is selected, each with a probability 1/3 and the particle is generated with a weight of ±3 at wavevector
±k	. Alternatively, all three terms can be chosen simultaneously and take a weight of ±1, i.e. two
additional particles are created with wavevector ±k	 and weight ±1; the original particle, associated
with the δ, persists unchanged. The algorithm to select the wavevectors of the generated particles
is discussed in Section 3.7 and revisited in Chapter 4, which considers the semi-discrete form of the
WBE.

3.7 Algorithm

The preceding sections introduced the Neumann series with which the statistical mean of an arbitrary
physical quantity can be represented. The value of the latter can be obtained by stochastic sampling
of the Neumann series using numerical particles (each particle represents a sampling). A particle is
evolved through free-flight and scattering up to time T , which selects one of the terms in the series.
The contribution of the selected term is determined by sampling the integral associated with that
term. The mean value of all the sampled values approximates the value of the Neumann series.

An algorithm to perform this task uses the physical interpretation of the various terms to propagate
numerical particles along trajectories and scatter them to different wavevectors or spawn additional
particles with different wavevectors. This physical interpretation corresponds to the notion of free-
flight and scattering used in semi-classical Monte Carlo simulation and allows the adoption of many
established algorithms.

The conditions for obtaining a unique solution to (3.25) using this Monte Carlo algorithm and the
associated error analysis are formally discussed in [122].

The implementation of this algorithm is discussed in the following subsections, starting with an
outline of the basic structure of the algorithm. Thereafter, the basic aspects of the important steps
are discussed. A detailed discussion of certain algorithmic aspects is postponed to Chapter 4.
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3.7.1 Structure

The basic structure of the algorithm to solve the WBE is illustrated in Figure 3.1 and highlights the
aspects differentiating the Wigner ensemble Monte Carlo simulation from semi-classical equivalents.

The simulation commences with an initialization step, which receives inputs describing the geom-
etry, potential profile and parameters (e.g. time step, simulation time) used for the simulation and
computing the (stationary) Wigner potential. An ensemble of particles representing the initial con-
dition of the evolution problem is initialized. Thereafter, the time loop commences which tracks the
trajectories of the particles over time. The position and wavevector of each particle in the ensemble
is recorded on a histogram, taking the particle signs into account, at regular time intervals Δt (the
observation time), which approximates the distribution function fw(r,k, t).

The time loop consists of the evolution and annihilation modules, which are executed alternately
until the total simulation time is reached. The evolution module entails the drift (free-flight) and scat-
tering/generation of particles. Particles are drifted classically according to their momentum value. If
a particle experiences a generation event, two new particles are generated and added to the particle
ensemble. If a scattering event occurs, the wavevector of the particle is modified according to the
selected Boltzmann scattering mechanism. The processes of drift and generation/scattering are re-
peated in an iterative fashion for all particles in the (growing) ensemble until the end of the time-step
is reached.

The annihilation procedure is only performed when needed, i.e. if the size of the particle ensemble
will exceed the set maximum in the next time step. This is preferable to performing it at every time
step since the annihilation introduces approximations, which can have undesirable effects (discussed
in Section 4.3.1). After the annihilation, the remaining particles are regenerated and the time loop
continues until the final time is reached.

3.7.2 Discretization

The integral form for the semi-discrete version of the Wigner equation follows directly from (3.12) by
omitting all terms related to phonon scattering and substituting the integral

´
dk with the summation&

q and the wavevector with its discretized form k → qΔk:

fw(r,q, t) = e−
´ t
0 γ(r(y))dyfi(r(0),q) +

ˆ t

0
dt	

%
q�

fw(r(t
	),q	, t	)Γ(r(t	),q,q	)e−

´ t
t� γ(r(y))dy. (3.33)

Real-valued wavevectors can be retained for the Boltzmann scattering terms, given certain consider-
ations discussed in Appendix B.

The calculation of the Wigner potential requires the discretization of the position coordinate, which
will be stipulated in Section 4.1.1.

3.7.3 Particle initialization

The initial condition from which the evolution starts is represented by an ensemble of N particles.
Each particle in the ensemble carries the following attributes:

• position (vector of positive real numbers);

• momentum (vector of integer multipliers of Δk);

• space cell/node closest to particle (vector of positive integers);

• particle sign (a = ±1) (integer);

• free-flight time (τ) (positive real number);

• time remaining in time step(δt) (positive real number).
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The position and momentum of the particles is initialized according to a chosen distribution or a
previously calculated initial condition. The particle signs should only take negative values if the
Wigner function, representing the initial condition, is calculated from a physically valid wavefunction.

The Gaussian minimum uncertainty wavepacket is often used as an initial distribution and is
defined by

fw (r,q) = N e−
(r−r0)2

σ2 e−(qΔk−k0)
2σ2

, (3.34)

where r0 and k0 represent the mean position and the mean wavevector, respectively; σ is the standard
spatial deviation and N represents a normalization constant. Each wavepacket, consisting of many
numerical particles, represents a single electron and captures both the particle- and wave-like properties
of the electron [125].

3.7.4 Free-flight

3.7.4.1 Drift

Particle drift or free-flight refers to the movement of a carrier, according to Newtonian laws, between
scattering events. The electromagnetic forces do not appear explicitly in the Wigner(-Boltzmann)
equation, therefore a particle experiences no acceleration due to forces during free-flight and its
wavevector remains constant. The position of a particle changes according to

δr =
�(qΔk)

m∗ t∗, (3.35)

where t∗ is given by
t∗ = min(τ, δt). (3.36)

Here, δt represents the time remaining in the time step Δt. Therefore, the particle drifts up to the
end of the current time step or the next scattering event – whichever comes first. The value of δt is
updated continuously and the drift and scattering processes alternately repeat until δt is zero, i.e. the
end of the time interval Δt is reached.

3.7.4.2 Free-flight time

A particle that has completed a scattering event at time t0 will not be scattered again until time τ ,
i.e. it will undergo free-flight between t0 and τ , with a probability given by

P (τ ; r0,k0) = e
− ´ τt0 µ(R0(y),k0)dy. (3.37)

The total scattering rate µ, given in (3.7), is a function of time, since the scattering rate changes
with position due to the spatial dependence of the Wigner potential and should be integrated along
the trajectory R initialized by (r0,k0). Since the particle is not accelerated, the wavevector k is only
modified by scattering and remains constant during the free-flight.

Using the concept of self-scattering [126] a value is added to the scattering rate such that it is
kept constant (θ) over space and time. Thereby, the need to calculate the integral in the exponent is
avoided and the probability (P ) is given by

r = e−θτ (3.38)

where r ∈ [0, 1] is a uniformly distributed random number. This considerably simplifies the determi-
nation of the duration of free-flight:

τ = − ln r

θ
. (3.39)
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3.7.5 Scattering

3.7.5.1 Scattering rates

The total scattering rate Γ is calculated once (for a given potential), according to the generation
rate (3.4) and the scattering rates given in Appendix A, during the initialization of the simulator and
is retained in a look-up table. The scattering mechanism to be used for a scattering event is randomly
selected from the normalized scattering Table [109] by generating a uniformly distributed random
number r ∈ [0, 1]. The selected mechanism can either be one of the phonon scattering mechanisms or
a particle generation event.

3.7.5.2 Particle generation

A generation event entails the creation of two additional particles with complementary signs and
offsets +1 and +2, with respect to the wavevector k of the generating particle; one particle will have a
wavevector k++1 and the other particle, with the complementary sign (affinity), will have a wavevector
k++2. The Wigner potential (Vw; defined in Chapter 2) defines the rate at which particles are generated
and the probability distributions used to select momentum offsets.

The two momentum offsets, +1 and +2, are determined by sampling the quantities V +
w (r,�1)
γ(r) and

V −
w (r,�2)
γ(r) , which represent probabilities, as discussed in Section 3.6.1. Due to the antisymmetry of the

Wigner potential4:
V −
w (·, +) = V +

w (·,−+) . (3.40)

both distributions can be sampled by a single random number generation, which yields a symmetric
momentum offset ±+. A uniformly distributed random number r ∈ [0, 1] is generated to determine
the offset + such that

r =

ˆ �

0
dy

V +
w (r, y)

γ (r)
(3.41)

holds true.
The single sampling is attractive from a computational point of view and also a valid approach,

if a sufficiently large number of particles is considered in the simulation (law of large numbers). The
finite range of the wavevectors considered, however, requires a closer analysis, which is deferred to
Section 4.2.

The process of particle generation leads to an exponential increase in the number of particles. The
increase in particles within a time step is described by

Ntn+1 = Ntne
2γ(tn+1−tn) (3.42)

where Ntn+1 and Ntn represent the number of particles at times tn+1 and tn, respectively, and γ is
the generation rate given by (3.4). The generation rate is in the order of 1015 s−1for potential profiles
where the largest potential differences are in the order of 100meV. Therefore, the particle number
increases so rapidly that simulations beyond a few femtoseconds become computationally infeasible.

This numerically debilitating increase in the number of particles is counteracted by the notion
of particle annihilation, which keeps the number of particles under control, as discussed in the next
section.

3.7.5.3 Phonon scattering

The treatment of the conventional phonon scattering mechanisms follows the standard references for
Monte Carlo simulation [109, 110]. The equations for the considered scattering mechanisms (specified
in Appendix A) theoretically are only valid in bulk semiconductors with a continuous spectrum of
energy and wavevectors. The use of the phonon scattering models with a discretized k-grid necessitates
some rounding of values, which can introduce an increase in energy. However, experiments have
established that the discretization errors accumulate to an insignificant amount over simulation times
of interest (several picoseconds). Appendix B can be consulted for details.

4The anti-symmetry of the Wigner potential implies VW (r,k) = −VW (r,−k)
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real-valued and require additional consideration, which will be given in Section 4.3.1. New values for
the free-flight time are generated for each particle using the procedure discussed in Section 3.7.4. Due
to the Markovian character of the evolution the values the particles had prior to annihilation need not
be considered.

3.7.7 Implementation

The models and algorithms presented in the preceding sections (and elsewhere in this work) have been
implemented in the WEMC module of the ViennaWD suite of particle-based simulation tools [102].
In addition to the WEMC simulator, ViennaWD includes two additional simulators: i) The Phonon
Decoherence (PD) simulator, which uses the single particle Monte Carlo method to simulate the
evolution of an entangled quantum state under the influence of phonon scattering in one dimension and
ii) the Classical Ensemble Monte Carlo (CEMC) simulator, which allows the self-consistent solution
of the BTE for two-dimensional MOSFET structures.

The WEMC simulator is written in C and uses the Message Passing Interface (MPI) for parallel
execution in a distributed-memory computing environment (see Chapter 5). ViennaWD is an open
source project, publicly available on SourceForge [102], and the development of the WEMC simula-
tor presents a major contribution to enabling other researchers to use and investigate Wigner-based
simulation for time-resolved quantum transport.

User interaction with the WEMC simulator is facilitated through input files, which are specified
as command line arguments at execution. The simulation parameters, like time step and simulation
domain, are specified using a text-based input file, implemented using scripts written in Lua [127].
The potential profile and/or initial condition can also be specified with text files, using a simple text
format. Alternatively, the potential profile and the initial conditions can be generated directly in the
simulator with analytical functions and distributions.

Post-processing of the output data is handled by Python scripts, which merge data files (if needed)
and execute further scripts, which generate the requested graphical output. Plots of output data, e.g.
density or k-distribution, are automatically generated (if selected) using gnuplot scripts.

The complete documentation on the use of the simulator has been made available through the
ViennaWD user manual [102].



Chapter 4

Optimized Algorithms for the
Signed-Particle Method

This chapter highlights the improvements and contributions that have been made to optimize the
algorithms of the signed-particle method. The contributions encompass algorithms for increased com-
putational efficiency, statistical enhancement and address certain discretization effects which can lead
to erroneous behaviour in simulations. Finally, the accuracy of the signed-particle method with the
optimized algorithms is demonstrated by a comparison of numerical results to the exact solution of a
physical problem.

4.1 Wigner potential

The Wigner potential (WP) is of central importance in the signed-particle method as it dictates the
particle generation statistics (see Section 3.7.5). This section summarizes the contributions made in
this thesis related to the WP, aiming at an optimized computational implementation. First, the full dis-
cretization of the WP is shown, which introduces the computational task (Section 4.1.1). Thereafter, a
highly efficient algorithm to calculate the two-dimensional (2D) WP is presented (Section 4.1.2), which
is of importance in the pursuit of self-consistent solutions. Finally, the implications the choice of the
coherence length has on physical and computational aspects is discussed (Section 4.1.3); a physically
relevant example clearly illustrates how the encountered discretization effects can be mitigated.

4.1.1 Full discretization

The semi-discrete WP

VW (r,q) ≡ 1

i�L

ˆ L/2

−L/2
ds e−i2qΔk·sδV (4.1)

δV (s; r) ≡ V (r+ s)− V (r− s) , (4.2)

considers s to be bounded by a finite coherence length, L (Section 2.3). The length and position
vectors are discretized and are defined here as

r ≡ (xΔr, yΔr)

s ≡ (mΔs, nΔs)

L ≡ (MΔs,NΔs)

qΔk ≡
�
p

π

MΔs
, q

π

NΔs

�
.

(4.3)
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4.1.2.1 Algorithm

The BDFT algorithm expands on the idea of the 1D sliding DFT [132, 133]: The sliding DFT calculates
the Fourier coefficients of a sequence {xc..xc+N−1} using the coefficients calculated for {xc−1..xc+N−2}:

Xc(p) = ei
2πp
N (Xc−1(p) + xc+N−1 − xc−1) . (4.5)

Each application of (4.5) consists of two real additions and two complex multiplications, which
have to be repeated for each value of p. Therefore, the sliding DFT has a computational complexity
of O(N). To apply the sliding DFT, as in (4.5), the two sequences under consideration must differ
by only a single value; the potential values of each row (column) of the coherence boxes associated
with two horizontally (vertically) adjacent nodes in the domain also differ only by a single value. This
observation is exploited to calculate the 2D WP in an efficient manner.

Unlike the potential values, all the values of the potential difference (4.2) change between adjacent
nodes. To allow a direct application of (4.5) to calculate (4.4), (4.1) is reformulated using a substitution
of variables (Fourier shift theorem), such that

VW (r,q) =
2

�L
Im
ˆ L/2

−L/2
dse−i2qΔk·sV (r+ s) . (4.6)

This formulation has the additional advantage that it avoids the calculation of the potential dif-
ference, saving further computation time. It can be noted that (4.5) allows, unlike the FFT, to easily
compute only selected momentum (p, q) values, which do not have to be uniformly spaced. This can
be of interest under certain physical considerations, e.g. uniformly spaced energy grid, and offers an
additional possibility to reduce computational costs.

The BDFT algorithm is applied to calculate the WP at each node in the domain, using the
following procedure (as visualized in Figure 4.3): First, the 1D DFT of the first N 	 potential values
in each of the M rows in the domain are calculated, using an FFT algorithm (Figure 4.3(b)); the
resulting Fourier coefficients are retained in an array of size N 	 × M . Thereafter, the 1D DFTs of
the first M 	 Fourier coefficients of each of the N 	 columns are calculated (Figure 4.3(c)), which yields
an M 	 × N 	 matrix of Fourier coefficients representing the WP for the top-left node, VW (0, 0, p, q).
After this initialization, the coherence box is moved downwards to the next node for which the WP
is calculated by simply applying (4.5) to calculate the DFTs of the columns (Figure 4.3(d),(e)). Once
the WP has been calculated for each node in the first column of the domain, the N 	 × M array is
developed to the right (Figure 4.3(f)), again using (4.5). From there the same procedure as used for
the first column (Figure 4.3(a)-(e)) is repeated for the second column of nodes (Figure 4.3(g),(h)) etc.,
until the entire domain has been covered. Variations of the initialization approach can be envisioned,
but the presented procedure shows favourable serial performance and cache complexity; a parallelized
implementation would require multiple (modified) initializations.

4.1.2.2 Performance evaluation

The BDFT algorithm was benchmarked against an FFT implementation using the FFTW library
[129], with a setup detailed in Table 4.1. The FFT implementation was optimized by exploiting the
fact that (4.2) is real-valued and anti-symmetric and therefore must yield a purely imaginary output
with conjugate symmetry.

Table 4.2 makes it evident that the BDFT reduces the computation time by at least a factor
of five over a range of (plausible) domain sizes, as visualized in Figure 4.4. Table 4.2 also reveals
that the performance of the FFT implementation strongly depends on the transform size (which is
proportional to the coherence length), because the algorithms selected by the FFTW library perform
best with transform sizes that are products of small prime numbers. The BDFT algorithm, on the
other hand, is insensitive to the transform size and scales at a constant rate with size.

It is concluded that the presented box discrete Fourier transform (BDFT) algorithm is an efficient
approach to compute the WP in a 2D domain, with a significant reduction in computation time. The
BDFT algorithm can easily be extended to three dimensions and makes self-consistent solutions of the
Wigner equation more feasible.
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both particles and sample the distribution again, until a momentum offset appears which renders both
momenta valid simultaneously. Such a rejection technique clearly influences the statistics. Moreover,
the probability for a valid particle pair to be generated decreases, the closer the momentum of the
generating particle is to the limit ±K, as illustrated in Figure 4.11. In such a case, a small momentum
offset is more likely to produce a pair of generated particles with valid momenta, thereby unfairly
promoting the generation of particles with small offsets in momenta and influencing the momentum
distribution of the particle ensemble as a whole. Due to this biasing, particles with a high momentum
persist much longer, since it becomes impossible for particles to be generated with significantly different
momenta.

(a) (b)

Figure 4.11: A particle can generate a particle pair only with momenta in the valid range [−K,K] (a).
If a symmetric offset (q	) is use for both generated particles the statistics are biased towards smaller
offsets such that the new momenta remain in the valid range (b).

To avoid this systematic biasing of the statistics, the generated particles should not be rejected
in pairs, if one is assigned a momentum which is out of bounds, but rather only a single momentum
offset for the invalid particle should be regenerated until a valid momentum (inside the finite bounds)
is obtained. In practice, if no valid momentum can be obtained after a set number of attempts, both
of the generated particles are ’destroyed’. This ensures that the balance between positive and negative
particles is maintained at all times.

This optimized particle generation algorithm enables particles with a high momentum to again
return to a lower momentum; the persistence of high-momentum particles is no longer promoted by
the generation statistics.

4.3 Annihilation process

The concept of particle annihilation has been introduced in Section 3.7.6. The annihilation procedure
is the crucial aspect of the signed-particle method, which has made multi-dimensional simulations
computationally feasible. For this reason the effects of the approximations that are made are given
careful consideration in this section. Moreover, two alternative implementations of the annihilation
algorithm are presented, which reduce or completely eliminate the huge memory demands of the
conventional annihilation algorithm.

4.3.1 Numerical diffusion

The phenomena of numerical diffusion brought about by the regeneration of particles has been iden-
tified in [139] and is reviewed in the following.

After the annihilation of particles within a cell has taken place, the remaining particles have to
be regenerated. The conventional approach to selecting the position of the regenerated particles is
to spread the particles uniformly across the cell. This approach, however, may lead to a ’numerical
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diffusion’ of particles, which causes the global particle ensemble to propagate at a different rate
than dictated by its k-distribution. To demonstrate this numerical artefact the following example is
considered.

A 1D minimum uncertainty wavepacket of the form (3.34) with ro = −50 nm, k0 = 6
�
π
50

 
nm−1

and σ = 10nm propagates in a domain with zero potential. The evolution of the wavepacket is
compared in Figure 4.12 using three different approaches: i) an analytical solution, ii) a Monte Carlo
approach without any regeneration and iii) a Monte Carlo approach with a (forced) regeneration
procedure at each time step (a typical value for the annihilation of 0.1 fs is chosen). It is evident
that the approaches i) and ii) correspond exactly, however, the wavepacket which is subjected to the
regeneration procedure spreads out faster. This discrepancy must be attributed to the regeneration
procedure and is analysed in the following.

Consider an ensemble of N particles, with positions {rj} j = 1 . . . N, rj ∈ Ωi, within the cell (i, q)
at time t0. The mean position of the ensemble at time t0 is

r̄t0 =
1

N

N%
j=1

rj

= ri +
1

N

N%
j=1

δrj , (4.10)

where the position is expressed as rj = ri + δrj , δrj ∈ [0,Δr]. The particles of the ensemble evolve
(drift; cf. Section 3.7.4) for a time period Δt, whereafter the mean position of the ensemble at time
t1 is

r̄t1 =
1

N

N%
j=1

rj + vjΔt

= ri +
1

N

N%
j=1

δrj + vjΔt, (4.11)

where vj denotes the velocity of particle j, which is assumed to be small enough such that the particle
remains within the bounds of the cell for one time step. Since only a single discrete momentum value
is associated with the cell, all particles within the cell have the same velocity (vm). Therefore,

r̄t1 = r̄t0 + vmΔt. (4.12)

Now, suppose that before the particle evolution commences an annihilation step is performed, where-

after N 	 particles are regenerated within the cell with positions


r	j
�
j = 1 . . . N 	 ≤ N . If the particles

are uniformly distributed over the cell, one imposes

r̄	t0 =
ri + ri+1

2
= ri +

Δr

2
. (4.13)

Consequently, the mean position of the ensemble at time t1 will be

r̄	t1 = ri +
Δr

2
+ vmΔt, (4.14)

which, when compared to (4.12), introduces an artificial propagation/retardation depending on the
spatial distribution of particles before the annihilation procedure.

The original spatial distribution of the particles within a cell can be perfectly recovered, if all
(infinitely many) of the moments of the distribution before the annihilation are known (and the Carle-
man’s condition for uniqueness is satisfied [140]). The mean position represents the first moment of the
local distribution and already retains the most important information. By uniformly distributing the
particles over a distance Δr around the pre-annihilation mean, the ’numerical diffusion’ is effectively
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A possibility to reduce the memory requirements of the annihilation algorithm is to reduce the
spatial resolution of the grid on which the particles are recorded for annihilation; the resolution of
the k-values and the potential mesh remain unaltered. The concept is depicted in Figure 4.15. To
counteract the loss in resolution, the spatial distribution of the particles in the enlarged cell is fitted
to a statistical distribution before annihilation ensues. The obtained distribution is then used to
regenerate the particles which remain after the annihilation – essentially, the approach presented in
Section 4.3.1 to counteract numerical diffusion is applied here for a bigger spatial area to reduce the
memory requirements.

Figure 4.16 compares the regeneration of particles, annihilated on a coarsened grid, using a uniform
distribution and a Gaussian distribution around the pre-annihilation mean position of particles. The
former follows the true solution much better than the Gaussian distribution which provides a poor
approximation of the distribution in each cell; this is consistent with the observations made in the
preceding section. The use of a Gaussian distribution artificially re-introduces information which
conflicts with the assumption made to perform annihilation, namely that all particles in a cell are
considered to be indistinguishable regardless of their position. The uniform distribution best reflects
this state of information.

Regenerating particles over an area corresponding to one annihilation cell, centred on the mean
position of all particles (both positive and negative) before the annihilation, is justified by the observa-
tion that the area of the cell that is highly populated has better statistics (lower variance). Therefore,
the variance is minimized in some sense by generating particles across the area of a cell centred at the
pre-annihilation mean, instead of uniformly across the cell (i.e. a mean forced to be at the centre of
the cell).

In summary, a reduction of the spatial resolution of the phase space grid used for annihilation
reduces the memory requirements. By fitting the pre-annihilation spatial distribution of particles in a
cell to a statistical distribution, the loss in resolution can be mitigated. Under the assumptions made
for annihilation the uniform distribution is best-suited; other common statistical distributions, like
Gaussian distributions, are ill-suited for the fitting and require some extra memory and computation
to calculate the additional moment of the distribution (the standard deviation).

4.3.3 Ensemble sorting

The representation of the phase-space as an array to record the signs of particles is a direct reflection
of the physical concept underlying particle annihilation. However, the annihilation concept can be also
realized with an algorithm which avoids representing the phase space by an array, thereby completely
avoiding the huge memory demands associated with it. This novel algorithm presents a significant
contribution to making WMC simulations computationally more accessible and is presented in the
following.

4.3.3.1 Algorithm

An integer index can be associated to the position and momentum attributed to each particle. These
indices are mapped to a single integer H, uniquely identifying the cell of the phase space in which the
particle resides:

(ix, jy, qx, qy, qz) → H. (4.15)

All the particles with the same value of H are in the same cell of the phase space and their signs must
be accumulated. To search an ensemble consisting of N particles, to find particles with matching
values of H, requires an algorithm with an O �

N2
 
time complexity. As N can be several millions,

the additional computation time is not tolerable.
The situation is greatly improved by first sorting the array, representing the particle ensemble,

according to the values H. This can be efficiently performed by a quicksort algorithm which has a
O (N log2N) time complexity [141]. In the sorted particle ensemble, all particles in the same cell
of the phase space (i.e. the same value of H) now appear consecutively in the array – this is also
beneficial for the memory access speed. The sorted array allows the sum of signs and mean positions
of the particles to be calculated in-place without the need of any additional memory. A flow-chart of
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Table 4.3: Simulation parameters of benchmark examples for the annihilation algorithm

A.1 A.2 B.1 B.2

Max. ensemble size [×106] 20 10 5 5
Annihilations performed 23 210 24 33

Simulation time [fs] 100 100 100 100
Domain [nm] 100× 150 100× 150 100 100

Δx (= Δy) [nm] 1 1 1 1
Coherence length L [nm] 30 30 30 60

Table 4.4: Simulation times for different annihilation algorithms

Reference [s] Sort-based [s] Change

A.1 2041 2425 +19%
A.2 1717 2028 +18%
B.1 427 455 +7%
B.2 508 548 +8%

The impact of the sorting on the overall computation time depends on i) the regularity of the anni-
hilation (the generation rate) and ii) the threshold value for the number of particles in the ensemble
(N) at which annihilation (sorting) occurs. To characterize the performance impact of the algorithm,
the simulation time of two examples are compared with different parameters, as listed in Table 4.3.

The results in Table 4.4 reveal the sorting-based annihilation algorithm increases the computation
time between 7% and 19%. In the investigated examples, the peak memory demand of the simulation
is not strongly affected by the type of annihilation algorithm, since the chosen resolution of the phase
space is coarse and, therefore, the representation of the phase space in memory is small. Indeed, if
sufficient memory is available, there are no advantages to using the sort-based algorithm. However, it
should be noted that in certain practical cases – as exemplified in Chapter 5 – the memory demands
of the conventional annihilation algorithm exceed the capacities of a workstation. Therefore, this
algorithm makes two-dimensional Wigner Monte Carlo simulations accessible to users that have limited
computational resources. This presents a great step towards a wider adoption of Wigner Monte Carlo
simulations.

In summary, the annihilation algorithm based on ensemble sorting eradicates the memory demands
associated with particle annihilation almost entirely. The trade-off is a slight increase in computa-
tion time, which depends on the parameters of the particular simulation problem. The sort-based
annihilation algorithm allows two-dimensional Wigner Monte Carlo simulations to be performed on
conventional workstations with limited memory resources, also when using high-resolution meshes,
which significantly improves the accessibility of multi-dimensional time-dependent quantum transport
simulations.

4.3.4 Particle growth prediction

The concept of particle annihilation relies on some approximations and, as has transpired from Sec-
tion 4.3.1, the process may also introduce undesired numerical side-effects. It is therefore desirable
not to perform the annihilation step unless needed (to ensure the total number of particles do not
exceed the chosen maximum number).

The conventional approach is to choose (guess) an annihilation frequency (as a multiple of the
time step Δt) such that the ensemble maximum is never exceeded. This approach requires some trial-
and-error in choosing the most appropriate value, which is very unattractive from a usability point of
view. Moreover, a fixed frequency of the annihilation may induce annihilation when it is not needed.

A superior manner to handle the problem is to induce an annihilation only when needed. For this
purpose the increase in the number of particles, due to generation (Section 3.7.5), is predicted using
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the current number of particles and the generation rate (which is known from the WP):

Nt+Δt = Nt

�
1 +

Nt%
i=1

γ (ri)Δt

�
, (4.16)

where ri in this case refers to the position of the i-th particle.
Since the particle generation is a stochastic process (which depends on the generation of random

numbers), the exact number of generated particles can only be estimated. The estimate improves
as the size of the particle ensemble increases. However, smaller ensemble sizes may occur, e.g. in
subdomains of the spatial domain decomposition in parallelized code (discussed in Chapter 5), and
then the estimate can deviate considerably from the actual change. Depending on the specific imple-
mentation of the algorithm this can be problematic, e.g. when allocating memory in accordance to the
growth prediction. It is advisable to overestimate the particle increase. For this reason the reference
implementation in ViennaWD uses only the maximum value of γ for all particles, such that

Nt+Δt = Nt

�
1 + max

i
γ (ri)Δt

!
. (4.17)

This presents an upper bound on the particle growth, which would only occur if all particles are in
the region where the generation rate is at its maximum. A further advantage is that no summation
has to be performed, allowing a faster calculation of the prediction.

4.4 Validation

The improvements which have been made to the algorithms of the signed-particle method, presented
in this chapter, have increased the accuracy of WMC simulations. To illustrate this fact (and for
validation purposes) a comparison is made here between the exact solution of the time-dependent
Schrödinger equation and results obtained by the WMC method.

A general, exact solution of the time-dependent Schrödinger equation can be calculated by

ψ (x, t) =

ˆ
dx	K

�
x, t;x	, t0

 
ψ
�
x	, t0

 
, (4.18)

where K (·) is the propagator function associated to the stationary Hamiltonian describing the system
and ψ (·, t0) is the initial condition of the wave function.

As a benchmark problem a wavepacket travelling towards a square potential barrier, to its right,
within a closed system is considered here. The minimum uncertainty wavepacket, which serves as an
initial condition, is defined as

ψ (x, t0) =
�
2πσ2

 −1/4
e−

(x−x0)
2

4σ2 eik0z, (4.19)

with parameters given in Table 4.5. The potential considered here (square barrier) gives rise to analytic
expressions for the propagator [142], allowing an exact solution of the Schrödinger equation to be
obtained by a numerical integration of (4.18). This exact solution avoids approximations associated
to numerical treatments and serves as a reliable basis for validation of the results obtained by the
WMC simulator.

The Wigner transform is applied to (4.19) to obtain the corresponding Wigner function, which
serves as an initial condition for the WMC simulation:

f (x,m, t0) =
1

π
e−

(x−x0)
2

2σ2 e−(mΔk−k0)
22σ2

. (4.20)

Table 4.5: Simulation parameters for validation example

x0 [nm] σ [nm] Lcoh [nm] k0 [nm−1] Δx [nm]

-29.5 10 100 12Δk 0.1
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Figure 4.18 compares the solution obtained by the WMC method and the exact solution of the
corresponding Schrödinger equation, over a time sequence, for a 4 nm wide, 0.1 eV barrier – the mean
energy of the wave package is 0.067 eV. The transmitted and reflected components of the wavepacket
are evident, as supported by the k-distributions in Figure 4.19. Previous comparisons between results
obtained by the Schrödinger equation and Wigner Monte Carlo simulations have failed to show a truly
quantitative match [143]. Here, an excellent match between the stochastic solution of the Wigner
equation and an exact solution of the Schrödinger equation is evident (as was first reported in [144])
thanks to the optimized algorithms and considerations presented in this chapter. The Monte Carlo
solution shows some noise, due to the stochastic nature of the method, especially the particle generation
process.

Figure 4.20 and Figure 4.21 show the result of the same wave package approaching a 0.3 eV barrier,
which leads to almost complete reflection. The simulation required a fine spatial resolution (0.1 nm)
to appropriately represent the sharp edges of the square barrier along with an appropriately chosen
coherence length (cf. Table 4.5).

Unlike for the discussed analytical method, the ability to include an arbitrary, time-dependent
potential in the WMC simulator is a big advantage. This, however, requires the WP, Vw, to be
recomputed at each time step. The computational cost of the latter can be high (especially in higher
dimensions), but can be significantly reduced by using the specialised, box discrete Fourier transform
(discussed in Section 4.1.2), which exploits the correlation between the values of Vw amongst adjacent
nodes. As a validation of the WMC results, incorporating a time-dependent potential, the potential
barrier is made to rapidly oscillate between 0.04 eV and 0.1 eV with a period of 20 fs, and the result is
compared to the bounds set by the exact solutions of the limiting (static) cases in the spatial domain,
as illustrated in Figure 4.22. Figure 4.23 shows the k-distributions of the stochastic solutions for
the dynamic potential and the two limiting, static potentials – the solution for the oscillating barrier
remains within the set static bounds. Moreover, a reflection of the wavepacket (0.067 eV) against the
static 0.04 eV barrier can be identified, which is consistent with the expected quantum behaviour.

The increased accuracy is attributed primarily to improved generation statistics (Section 4.2) and
the use of a sufficient wavevector resolution (through the choice of the coherence length). The increase
in the computational demands of a large coherence length can be significant in 2D simulations but
can be alleviated by the algorithms presented in Sections 4.3 and 4.1.2.

The presented benchmark tests show that the WMC method has been matured to the point of
providing highly accurate results, thanks to appropriate handling of the particle-generation statistics
(Section 4.2) and the appropriate choice for the mesh resolution. The presented considerations con-
ceptually extend to higher dimensions, thereby paving the way for the accurate numerical analysis of
mesoscopic semiconductor devices using the Wigner formalism.





Chapter 5

Parallelization of the Wigner Monte
Carlo Simulator

This chapter first outlines the possibilities to parallelize the Wigner Ensemble Monte Carlo (WEMC)
algorithm to motivate the parallelization approach. Thereafter, a detailed discussion of the spatial
domain decomposition approach is given, along with results demonstrating its parallel scaling perfor-
mance in one- and two-dimensional simulations.

5.1 Background

Scientific computation has become an integral part in most fields of modern research. Apart from
the derivation and analysis of the models underlying the computation – as has been done in Chap-
ters 3 and 4 for the WEMC method – the feasibility and optimization of the numerical calculations
is paramount to obtain simulation results in a reasonable amount of time. Parallel computation is
now the primary method1 to speed up, or even enable, computations on systems ranging from single
workstations with multi-core CPUs to large supercomputers consisting of thousands of nodes2. An
efficient utilization of high performance computation resources requires consideration to be given to
the architecture of the system on both a physical (hardware) and a logical (software) level. The most
common system architectures for high-performance computing are outlined in the following.

5.1.1 Shared memory

A shared-memory system refers to an architecture in which multiple CPUs share a common memory
space, i.e. every CPU can access the entire memory. The simplest scenario is a single workstation with
a multi-core CPU where each core has access the same memory space. In terms of hardware, a shared-
memory architecture is usually limited to a single computation node, which limits the total number of
CPUs and memory which can be used. Although there exist supercomputers that facilitate a (logical)
shared memory space distributed between many computation nodes, they are not widespread.

The advantage of a shared memory space is that no replication of data is required and data can be
accessed/exchanged between different CPUs with little to no additional communication latency. The
disadvantage is that special care must be taken to avoid race conditions and that the computations
of one CPU do not inadvertently affect the data/variables another CPU is using – the computations
are not isolated.

The parallelization of code in a shared-memory architecture usually makes use of computation
threads, which can be implemented with OpenMP [146], for instance. This allows a simple paralleliza-
tion of for-loops and other control statements commonly used in programming.

1In the course of the 2000’s the increase in clock frequencies of CPUs, which ensured a direct scaling in performance,
gradually stopped [145] due to limitations imposed by thermal power dissipation.

2In this context a node refers to a computer, consisting of several CPUs (cores), which is part of a larger cluster.
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5.1.2 Distributed memory

A distributed memory system refers to an architecture where each CPU has its own dedicated memory
space, which cannot be directly accessed by other CPUs. Distributed memory systems are most
common in large-scale supercomputers, which consist of multiple computation nodes connected by
network interfaces. A distributed memory environment can also be emulated on a single workstation,
where the same physical memory is logically separated.

The advantage of a distributed memory system is that vast computational resources can be utilized
to solve problems which would otherwise be computationally intractable on a single node/workstation.
The disadvantage is that the network interfaces are very slow (compared to the CPU-RAM bus) and
communication to access data on other nodes is accompanied by a latency which can be a significant
factor in the performance of parallel code.

The parallelization of code for distributed memory systems requires special consideration for the
data structures and the timing of data communication. The communication of data between processes3

is commonly handled using the message passing interface (MPI) [147]. The programmer is forced to
explicitly consider these aspects in the design of the algorithms, which makes the code more robust
for scaling up to many CPUs.

5.1.3 Hybrid systems

The shared- and distributed-memory approaches can be combined to what is referred to as a hybrid
system. One can, for instance, use parallelization by threads on a single node (shared memory) and use
an MPI communication between the nodes (distributed memory). The optimal combination depends
on the computational problem and the system on which it is run.

5.1.4 Accelerator cards

Accelerator cards are enjoying increased popularity in scientific computing as they offer significant raw
computation power at low cost/energy. Examples of accelerator cards are dedicated graphical adapters,
like the nVidia Tesla, or co-processors, like the Intel Xeon Phi. Accelerators are especially useful for
problems where many calculations have to be performed with relatively little data; communication to
obtain data is slow due to the limited bandwidth of the bus connecting the cards to the RAM.

Various frameworks are available for programming with accelerator cards in mind, like OpenCL.

5.2 Parallelization approaches for Monte Carlo simulation

Monte Carlo code is often termed embarrassingly parallel as a high parallel efficiency is easily achieved
in general: If the particles of an ensemble are independent of each other, smaller subensembles can be
handled by separate computational units4 without the need for further communication. The results
of the subensembles are later merged to yield the global solution. An independent computation
necessitates that the entire simulation domain is available on each computational unit.

The parallelization of the Wigner Monte Carlo code, however, is complicated by the annihilation
step, which hinders the independent treatment of subensembles for two reasons: i) The annihilation
step must be performed on the entire (global) ensemble of particles since (here) the subensembles
are not regarded to be big enough to be statistically representative5. The latter necessitates some
communication and/or synchronization between the computational units.

The second obstacle the annihilation step presents to parallelization is ii) the exorbitant memory
demands of the annihilation algorithm when treating higher-dimensional problems. Although the
alternative sort-based annihilation algorithm (Section 4.3.3) effectively avoids this problem, the faster,

3A process, in the context of MPI, refers to a logical computation entity. A process can be associated with a single
core/CPU/node.

4A computational unit in this general context can be e.g. a separate computer(s), a core of a CPU or a graphics card.
5If a subensemble is big enough to yield a statistically representative solution to the simulation task, the ’paralleliza-

tion’ simply amounts to a simultaneous repetition of the same experiment on different computational units, the results
of which are averaged.
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conventional algorithm is considered here, in the spirit of high-performance computing this chapter
follows. The annihilation step requires the phase-space to be represented in the memory using an
array of integers, each storing the sum of particle signs inside one cell ((Δr)d (Δk)d

�
) of the phase

space grid. While for one-dimensional simulations the memory footprint of this array remains small,
the memory consumption grows rapidly for higher-dimensional simulations. Consider a 2D spatial
domain of 100 nm × 100 nm with a resolution of Δx = 1nm and a 3D k-space with 100 k-values per
direction. The associated phase-space grid would consist of 1002 × 1003 cells, each represented by an
integer of (at least) 2 bytes. This would demand a total memory consumption of O �

210
 
bytes, i.e.

approximately 20GB. A higher resolution increases the memory demands dramatically because they
grow to the power of (d+ d	), as discussed in Section 4.3.2.

The need for synchronization/communication amongst subensembles and the high memory de-
mands of the annihilation algorithm make the parallelization of a Wigner Monte Carlo code much
more challenging than other Monte Carlo codes. Possible parallelization approaches are evaluated in
the following with reference to the architectures introduced in Section 5.1.

5.2.1 Shared-memory

In a shared-memory setting the particle ensemble is partitioned amongst the threads and only a single
instance of the simulation (the domain and all subensembles) exists in memory and all threads have
shared access to it. The communication required to perform the annihilation on the global ensemble is
thereby avoided to a major extent, but a synchronization amongst the threads is still needed. By using
appropriate parallel loop-scheduling techniques the computation load can be well balanced amongst
the threads, which ensures that no thread is left idle for long periods of time before the annihilation
is performed on the global ensemble.

Although simple to implement, a pure shared-memory approach is confined to a single computation
node with a limited number of CPU cores and memory. The latter restricts the simulation problems
that can be investigated, based on acceptable run-times and the memory demands of the simulation.
Especially the high-memory demands of the annihilation algorithm limit the simulations to large-
memory nodes6, which are less prevalent in shared computation facilities.

Therefore, a pure shared-memory approach is best suited for small-scale parallelization cases.

5.2.2 Distributed-memory

A large-scale, MPI-based parallelization approach, is not restricted by the computational resources of
a single node, thereby considerably expanding the scope of the simulations, which can be handled from
a computational point of view. The particle ensemble is split into many subensembles, each of which
is assigned to a separate MPI process7 for computation. It is more challenging to dynamically react
to computational load imbalances amongst processes, compared to the loop-scheduling techniques for
threads available with OpenMP. However, physical insight into the problem and experience can help
mitigate this disadvantage.

5.2.2.1 Domain replication

Since the processes do not share a single memory space, the simulation environment must be replicated
for each process; this is referred to as domain replication. Due to the high memory demands of the
annihilation algorithm domain replication – as is common for classical Monte Carlo simulation –
is problematic in a distributed-memory environment: Today’s large-scale clusters typically provide
between 2 − 4GB of memory per CPU core. If each process is assigned to one CPU core – this is
desirable for an optimal utilization of the computational resources – the memory available to each
process (2− 4GB) can be insufficient for a complete representation of the phase-space array in multi-
dimensional problems (20GB in the example presented before).

6In supercomputers large-memory nodes refer to nodes that contain significantly more memory than the common
nodes, but are less prevalent.

7For the remainder of this work, the term process refers to an MPI process.



CHAPTER 5. PARALLELIZATION OF THE WIGNER MONTE CARLO SIMULATOR 69

One possibility to circumvent this problem is using a large-memory node to perform the anni-
hilation of the global particle ensemble. In such a case, the subensemble of every process must be
communicated to the master node at each time step, where they are all combined and the annihilation
step is performed. If a sufficient number of worker processes are in operation, the communication
bandwidth of the master process’ node will quickly saturate – the worker processes remain idle while
waiting for all other processes to complete their communication and, thereafter, for the annihila-
tion step to be completed. The post-annihilation particle ensemble is split up again and distributed
amongst the processes. All this communication severely impacts parallel efficiency. Indeed, without
domain replication, achieving good parallel efficiencies becomes more challenging.

5.2.2.2 Domain decomposition

An alternative to domain replication is domain decomposition, which entails splitting up the simulation
domain amongst the processes. Each process represents a subdomain (i.e. a part of the global domain)
and only handles particles, which fall within its own subdomain. Thereby, the memory requirements
to represent the (localized) phase-space, as well as all other space-dependent quantities, are scaled
down with the number of processes (subdomains) used. This makes the approach very attractive to
large-scale parallelization as it avoids the problems of the aforementioned approaches, i.e. a large
memory footprint, centralized communication and limited scalability/accessibility.

In light of the above, the domain decomposition approach is found to be best-suited for a future-
proof parallelization of the WEMC method and its implementation is discussed in the remainder of
this chapter.

5.3 Domain decomposition for Wigner Monte Carlo simulator

The adoption of the domain decomposition approach requires consideration to be given to exactly how
the domain decomposition is performed and how the process of annihilation is affected.

5.3.1 Domain decomposition

There are three design choices that must be made for the domain decomposition: i) the physical
quantity to be decomposed, ii) the number of dimensions in this quantity to be decomposed and iii)
the size of the subdomains. These three issues are discussed below.

5.3.1.1 Decomposed quantity

The decomposition of the domain (phase space) can be either according to the spatial position or the
wavevector (or a combination of both). The WBE presents a transport problem where the particles
move in the domain (phase space) and have to be passed between subdomains, which necessitates a
regular communication between the processes representing the subdomains. Moreover, in the signed-
particle method (Chapter 3) particles are scattered/generated to/with new wavevectors, which can
differ considerably from the original value/generating particle.

A decomposition of the k-space is not attractive from a performance point of view, because it is
very likely that the new wavevector of the generated/scattered particle lies in a part of the k-space
which is represented on another process and requires the particles to be transferred to this process.
Considering the high particle generation rate (cf. Section 3.7.5) the additional communication required
would be debilitating for parallel efficiency.

A decomposition of the spatial domain avoids such problems, since the position of particles change
in a continuous, gradual fashion as they propagate; the position of newly generated particles also
corresponds to that of the generating particle. As the particles propagate through the domain they
are passed between neighbouring subdomains as they cross their boundaries. It should be pointed out
that the boundaries between the subdomains are only of a computational nature and inconsequential
to the mathematical formulation of the evolution, presented in Chapter 2.
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5.3.1.2 Dimension of decomposition

For two- or three-dimensional problems one can choose the number of spatial dimensions to be parti-
tioned. In the 2D case one has the choice between slab- and block-decomposition, which correspond
to partitioning in one and two directions, respectively. Which decomposition method is best-suited
depends on the computational resources and computational demands of the investigated problem; the
physical behaviour of the problem also plays a deciding role. The case for 2D WEMC simulations is
investigated here.

Slab-decomposition: A slab-decomposition splits the domain along a single direction (Figure 5.1a).
The advantage of this approach is that the transfer of particles only has to be handled on two bound-
aries, thereby the communication is limited to only two other processes, which is advantageous for the
parallel efficiency. Slab-decomposition will work well in simulation problems where there is a large
degree of uniformity in one direction, e.g. the flow of particles is predominantly in one direction. In
such a case, the domain is partitioned in the direction orthogonal to the flow. A judicious choice is
important to achieve good load-balancing.

Since each subdomain/slab has a minimum width (one mesh cell), the maximum number of sub-
divisions/subdomains is limited. This places a maximum on the number of processes which can be
used. Furthermore, the ’thinner’ the slabs are, the less particles can be accommodated in the subdo-
main – this gives rise to the situation where the computational load becomes too small in relation to
the communication overhead incurred to transfer the particles between adjacent domains. Although
these limits arise for all decomposition approaches, the slab-decomposition reaches these limits first.
Nonetheless, the slab-decomposition method has been successfully applied to one- and two-dimensional
Wigner Monte Carlo simulations [148, 149], as evidenced by the results in Section 5.5.

Block-decomposition: A partitioning in two spatial dimensions – a block decomposition – holds
the promise to delay the onset of the limitations set out for the slab decomposition. Overall one
attains greater granularity in the decomposition and can accommodate many more MPI processes.
The number of communication links increases from 2 (slab-decomposition) to 8 per process since
movement in the the diagonal directions must also be accounted for (Figure 5.1b). The additional
communication channels which need to be set up with each time step introduce a significant overhead
for the MPI communication back-end. Moreover, additional logic is required to identify to which
subdomain particles have to be transferred to.

5.3.1.3 Subdomain size

The computational load a process must handle is proportional to the number of particles in its sub-
domain. The domain decomposition approach allows a process to only treat the particles that are
physically located in its subdomain. This complicates the task of load-balancing, since in a transport
problem, by definition, there is a non-uniform distribution of particles moving about in the domain.

The size of the subdomains can be chosen such that the particles are more equally distributed (on
average over time) between the processes, but this requires some heuristics as the optimal decompo-
sition will differ considerably between different simulation problems. The situation is complicated by
the fact that particles are also generated non-uniformly across the domain.

A possibility to make an a priori estimate of the particle distribution is to use the particle gener-
ation rate (assuming a time-independent potential is used; see Section 3.7.5) to weigh the size of the
subdomains. The reasoning is that the most particles will end up being in the regions where there is
the highest generation rate. This is only an approximation based on the assumption of a homogeneous
initial distribution of particles across the entire domain. It is important to note that the distribution
of the numerical particles does not correspond to the physical density, which takes the sign of the
numerical particles into account.

The issue of load-balancing will not be treated further here; the remaining discussion and presented
results (Section 5.5) assume a uniform decomposition of the spatial domain (and achieve reasonable
scaling nonetheless).
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The MPI communication takes place between each process and its spatially neighbouring subdo-
mains, along with some minimal communication (one character (the flag) per time step) to the master
process for coordination of the annihilation step. Such a decentralized approach avoids a constant
querying of the master process, which – due to increased latency and bandwidth limitations – would
impede scaling for increasing numbers of processes. The transfer (communication) of particles between
processes only occurs once at the end of each time-step. This necessitates a small overlap between
adjacent subdomains, which serves as buffer to accommodate particles travelling towards a neighbour-
ing subdomain, until they get transferred to the subdomain at the end of the time step. The exact
extent of the overlap should consider the maximum distance a particle can travel within the chosen
time-step as well as its direction of travel. It is desirable to make the overlap between the subdomains
as small as possible to avoid data redundancy which negatively affects the parallel efficiency (in terms
of memory scaling).

5.4.2 Initialization

As illustrated in Figure 5.2, the master process performs the initialization of the simulation environ-
ment, which entails receiving external input data (just like in the serial case), performing the discussed
domain decomposition and finally communicating this data to the worker processes.

The initial condition for the simulation is given by an (arbitrary) ensemble of particles, which is
distributed by the master process amongst the various worker processes by assigning each particle
to an appropriate subdomain based on its position. The particles associated to each subdomain
are first collected and then communicated to the associated worker process by the master process.
Furthermore, the master process broadcasts the potential profile and global parameters, needed for a
localized simulation setup, to all worker processes.

After receiving setup parameters and its initial particles ensemble (in case of worker processes),
each process initializes localized versions of the required data structures, specific to its subdomain.
Thereby, the memory demands of each process scale down with the number of processes/subdomains.
Moreover, the localization of the WP allows its computation to be distributed amongst the processes,
which is beneficial when problems with time-dependent potentials are considered.

5.4.3 Time loop

After the initialization phase, each process performs the evolution of its ensemble of particles for a
single time-step – this is identical to the serial case discussed in Section 3.7. After the time-step is
completed, each process performs a growth prediction for its subensemble of particles, the result of
which is communicated to the master process in the form of an annihilation flag (1-byte character)
in order to facilitate a synchronized annihilation amongst all processes. After the master process has
received the flags from all worker processes, it broadcasts a global annihilation flag back to the worker
processes. The global annihilation flag is true, if the annihilation flag of at least one process is true,
otherwise it is false. The annihilation step ensues (or not) locally within each subdomain, depending
on the global annihilation flag received. The communication step associated with the annihilation flag
implicitly serves as a synchronization point between the processes, which is required anyway due to
the need to transfer the boundary particles at the end of each time step. Therefore, communicating
the annihilation flag does not impede parallel efficiency.

After the (possible) annihilation step, each process identifies the particles in its subdomain, which
qualify for transfer to its adjacent subdomains. These particles are collected and sent to the appro-
priate process, which is implicitly known due to the sequential ordering discussed above. Likewise,
particles are also received from the neighbour processes. This communication is non-blocking, how-
ever, a synchronization barrier is used to ensure all transfers are complete before the next time-step
commences. Since the processes already will have been synchronized shortly before by the annihila-
tion communication, and the fact that the execution time of the annihilation procedure does not vary
significantly between the processes, this second synchronization is not as detrimental to the efficiency
of the parallelization as it initially appears. The reason for performing the transfer after the annihi-
lation, is that after an annihilation step the size of the particle ensemble will be significantly smaller,
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consequently the number of particles to be transferred will have been reduced.
This sequence of evolution, annihilation and transfer is repeated until the total simulation time

has been reached. The simulation results of each process are written to disks locally by each process,
which increases efficiency by avoiding a global reduction step issued by the master process. The
simulation results are merged in a straightforward manner via a separate post-processing step (e.g.
on a personal workstation) after the simulation has ended and the reserved computational resources
have been released.

5.5 Evaluation

This section presents results obtained by the parallel algorithm introduced in the preceding section.
First the parallelized algorithm is validated, whereafter its performance is evaluated with physical
representative examples. The most important results obtained in [148] and [150], for 1D and 2D cases,
are summarized here.

5.5.1 Validation

The spatial-decomposition approach must be validated to ensure that it yields the same results as the
serial algorithm, regardless of the number of processes used, and does not introduce some (obvious)
systematic errors, when the domain is split up.

Figure 5.3 shows the solution of a validation example – similar to the one described in Section 4.4 –
for 16, 32 and 64 processes and compares it to the analytical solution. The parameters for the
wavepacket and simulation are given in Table 5.1. An exact correspondence between the simulated
results (within the bounds of the stochastic noise) is evident, irrespective of the number of processes
used. This ensures the validity of the spatial domain decomposition approach. The slight deviation
from the analytical solution – unlike the solution in Section 4.4 – is attributed to the much lower
spatial resolution, which effectively gives the potential barrier a trapezoidal shape.

Table 5.1: Simulation parameters for validation example of parallelization scheme

x0 [nm] σ [nm] Lcoh [nm] k0 [nm−1] Δx [nm]

40 7 100 18Δk 0.1

5.5.2 Performance

The parallel efficiency is evaluated based on the execution times of representative, physical examples in
one and two dimensions. The simulations are first run with a single process, to acquire a baseline, and
then repeated using 16, 32, 64 and 128 (2D case) processes. This procedure is repeated for different
values for the maximum allowed ensemble size (8, 16 and 32 million particles). The maximum number
of particles per process is scaled with the number of processes, e.g. a set maximum of 32 million
particles for a simulation using 32 process, implies a maximum of 1 million particles per process.
This scaling is necessary to allow a fair comparison. The execution time is recorded from the point
where the master process starts the serial initialization and ends, when all process have completed the
parallel time-loop (cf. Figure 5.2). All file output is disabled during the benchmarking.

The presented simulation results were obtained using (a part of) the VSC-3 supercomputer [151],
which consists of 2020 nodes. Each node provides 16 cores (two 8-core Intel Xeon Ivy Bridge-EP
E5-2650v2, 2.6GHz, Hyperthreading) and 64GB of system memory; the nodes are connected via an
Intel QDR-80 dual-link high-speed InfiniBand fabric.

5.5.2.1 One-dimensional results

The parallel efficiency has been investigated in [148] at the hand of two examples presented in the
following.
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It is important at this point to underline the actual benefits of utilizing the presented parallelization
approach in day to day research: the single barrier example, running on 64 processes with 60%
efficiency, translates into a speed-up of around 40 times. In terms of execution time, the serial
runtime of around 47 minutes was reduced to just 70 seconds. In the same vein, a simulation problem
(of sufficient complexity), which would normally require two days of computation can be completed
in approximately one hour. This aspect opens up a new realm of simulation problems, which can be
investigated using the Wigner formalism.

5.5.2.2 Two-dimensional results

The impact of the decomposition approach, slab- versus block-decomposition has been investigated
in [150]. The main results are summarized here.

An example problem is considered with three minimum-uncertainty wave packages evolving over
a 128 nm × 128 nm spatial domain. Sixteen non-identical acceptor dopants (positively charged) are
spread across the domain, which yields the potential profile shown in Figure 5.9a and the corresponding
particle generation rate γ depicted in Figure 5.9b. The particle generation rate is concentrated around
each dopant within the region corresponding to the coherence length of 30 nm. All boundaries are
reflective, therefore, no particles leave the simulation domain. The maximum number of particles for
the entire domain is limited to 64 · 107 particles; the local maximum for each process depends on the
total number of processes used.

Figure 5.10 depicts the parallel execution performance for the slab and the block decomposition ap-
proach. The slab decomposition technique offers a significantly better parallel execution performance.
The block decomposition method introduces a significant communication and requires additional logic,
resulting in inferior performance relative to the slab decomposition approach. Especially for 128 MPI
processes, the overhead triggers a stagnation of the scalability as the number of particles (work load)
per process is too small relative to the additional communication overhead.

The memory consumption of the block-decomposition approach is slightly higher than for the slab-
decomposition approach, due to the greater overhead for the communication and the related logic.
However, this is negligible compared to memory requirements for sorting the particle ensemble and
performing the annihilation algorithm.

Although the load balance with the block decomposition appears to be better at the various
time steps shown in Figure 5.11, the method’s performance is inferior to the approach using slab-
decomposition. This is attributed to the additional communication and logic overhead incurred when
using the block decomposition, which is between 1.5 to 4 times greater than in the case of slab-
decomposition [150]. This result is particularly interesting, as the load balance does not appear to
have a significant impact on the parallel scalability.

The annihilation procedure considerably reduces the number of particles (load) in a subdomain
and is performed on an ’as-needed’ basis, which will differ for the various decomposition approaches.
An average of the load over the entire simulation time paints the most realistic picture. Nonetheless,
the snapshots of load balance at various times shown in Figure 5.11 already are useful, as they make
clear that such differences exist.

5.5.3 Summary

This chapter has described the parallelization of the WEMC simulator using spatial domain de-
composition, which has been deemed to be the best-suited for a large-scale parallelization in a
distributed-memory system. The performance of the developed code has been evaluated and the
slab-decomposition approach shows excellent parallel efficiency for two-dimensional simulations. This
result has enabled the efficient use of high performance computing for two-dimensional Wigner Monte
Carlo quantum simulations which facilitated the applications shown in Chapter 6.







Chapter 6

Applications

This chapter demonstrates the application of the Wigner Monte Carlo simulator which has been
discussed in the preceding chapters. The simulation of electrostatic lenses is presented in Section 6.1
along with investigations into the emerging field of quantum control of electron wavepackets. An
application of electrostatic lenses to improve the performance of actual devices is demonstrated in
Section 6.2. The calculation of a steady-state solution using 2D WMC simulation is shown, which
presents a novel result that has been made possible by the optimized algorithms (Chapter 4) and the
parallelization (Chapter 5) presented before.

6.1 Electrostatic lenses

6.1.1 Introduction

An electrostatic lens refers to a specially shaped potential with convex/concave features, similar to
optical lenses, used to steer coherent electrons. The concept was first demonstrated experimentally in
1990 in [152, 153], in low-temperature, high-mobility semiconductors, which ensured that the coherent
electrons had a sufficiently long mean free path to conduct experiments with structures made with
the lithographic capabilities at that time. An experimental realization of the electrostatic lenses is
illustrated in Figure 6.1.

The astounding decrease of the feature sizes in semiconductor devices, along with novel materials
like graphene, has made (semi-)ballistic electron transport applicable at room temperature [154]. This
has sparked new interest in applying electrostatic lenses in nanoelectronic devices, e.g. [155] suggests
the use of lenses to focus electrons to the centre of nanowires, thereby avoiding rough interfaces and
increasing mobility.

6.1.2 Law of refraction

Electrostatic lenses use analogous concepts from geometrical optics: Snell’s law describes the refraction
of a light beam traversing an interface between two different media of propagation, e.g. air and glass.
An equivalent law of refraction can be derived for electrostatic lenses using the principle of energy
conservation.

A particle with a wavevector k has a kinetic energy

Ek =
�2 |k|2
2m∗ , (6.1)

where � denotes the reduced Planck constant and m∗ the effective mass. As a particle traverses the
interface between regions at different potentials (illustrated in Figure 6.2), its kinetic and potential
energies change. The change in kinetic energy is attributed only to the change of the component of
the wavevector normal to the interface (red); the component parallel to the interface (blue) is left
unchanged. It follows that

|k1| sin θ1 = |k2| sin θ2, (6.2)
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Figure 6.2: The wavevector of a particle is changed from k1 to k2 as the interface between regions at
different potentials is traversed. The decomposition of each wavevector into its components normal
(blue) and parallel (red) to an interface is shown. The normal component is modified according to the
potential change, whereas the parallel component remains unchanged. The illustrated case assumes
a positive potential step, where V2 > V1, such that the particle is refracted away from the normal to
the interface.

6.1.4 Wavepacket control

The converging lens demonstrated in the preceding section, follows from classical analogues in geo-
metrical optics. It is possible, however, to extend the concept of electrostatic lenses much further:
engineered potential profiles can be used to dynamically control wavepackets, e.g. creating entangled
states by splitting up wavepackets. It should be noted that the electron is not physically split; it is a
single electron in an entangled state.

Figure 6.6 shows a rhomboid-like potential shape, along with the corresponding generation rate,
which forms a lens that is able to realize such a function. The behaviour of the lens can be manipulated
by changing the magnitude of the potential. This can be done dynamically, if the lens is realized with a
structure similar to the one shown in Figure 6.1, using a time-dependent potential bias on the contact.
Figure 6.7 illustrates the effect of the lens at different potential values. The density peaks indicate
regions with a higher probability to find an electron. In Figure 6.7b (peak potential energy 70meV)
the wavepacket almost fully traverses the lens and is split into two parts. The same lens shape, but
with a potential energy of 120meV, splits the wavepacket into four parts (Figure. 6.7b): The front
edges splits off a portion of the wavepacket by reflection, while the concave-shaped rear edges focus
the transmitted parts again (applying the principle of Section 6.1.3). In the first case, with two peaks
(the most-probable components of the state), the y-component of the wavevector remains positive,
whereas for the second case, at a higher potential energy, the wavevector of the scattered state also
has a negative y-component. This example clearly illustrates how specially shaped potentials can be
used to influence the scattering pattern of an electron wavepacket. By varying the potential energy
the electron can be guided in a certain direction with a controllable probability. This can be of use
in the field of quantum computing to generate a (modifiable) entangled state and direct it to other
computing elements.

6.2 Drive-current enhancement

The application of electrostatic lenses to focus electrons can be used to increase the performance of
actual devices. This novel concept is presented here (based on [156]).
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This observation is supported by the associated difference of the kx-distributions. Figure 6.11 (a)
shows the change in kx-distributions corresponding to Figure 6.10 (a); the reduction in the kinetic
energy of the wavepackets due to the barrier presented by the lens is clearly shown. However, once the
steady-state is reached (at approximately t = 140 fs; Figure 6.11 (b)) a reduction in the probability of
left-moving (negative kx) particles is observed, indicating the lens leads to reduced reflections overall;
the forward-moving particles (around 5Δk) are enhanced.

The steady-state current is calculated for wavepackets with a standard deviation of 3 nm and 5 nm,
as shown in Figure 6.12. The addition of the lens consistently increases the drive current; the gains
made by focusing the wavepackets into the channel are larger than the losses from reflections by the
lens, which presents a small barrier to the electrons. The lens shows a better effect, when a (spatially)
broader wavepacket is focused and increases the channel current by 15% if σ = 5nm, compared to an
8% increase if σ = 3nm. Some uncertainty exists about the true value of the standard deviation for
the wavepacket [34]. Moreover, the Gaussian wavepacket spreads out as it propagates. The current
gradually rises as the domain is filled with particles before it converges to a steady-state value after
approximately 140 fs.

It is concluded that the addition of a converging electrostatic lens in the source region of a transistor
can be used to effectively focus electron wavepackets into a nanoscale channel by reducing reflections
from the oxide surrounding the aperture. Moreover, the results illustrate for the first time how a
steady-state current is obtained with a two-dimensional WEMC simulator, allowing it to be applied
to investigate practical issues of semiconductor devices.









Chapter 7

Summary and Evaluation

This chapter briefly summarizes the work which has been presented in the preceding chapters. There-
after, the major contributions made in the scope of this thesis to advance the field are summarized.
Finally an overall conclusion is drawn.

7.1 Summary of content

The preceding chapters have introduced all the aspects relevant to the simulation of time-resolved
quantum transport, in two dimensions, using a Wigner Monte Carlo approach. The work has been
presented in six chapters.

Chapter 1 motivated the need for utilizing TCAD in the research and design of nanoelectronics.
An overview of the most widespread transport models was given with the qualities and limitations of
each. It was found that the Wigner-Boltzmann transport model offers some unique qualities in that
it makes time-resolved quantum transport with scattering computationally feasible, while providing
many classical analogies to be used. This presented the motivation for the development of a solver for
the Wigner-Boltzmann transport equation.

Chapter 2 presented the Wigner formalism of quantum mechanics, which gives a formulation in the
phase space. From this background the derivation of the Wigner transport equation was presented.
Thereafter, the augmentation of the Wigner equation with semi-classical phonon scattering models
was shown to be justified by outlining the rigorous derivation, which finally yielded the Wigner-
Boltzmann equation. The semi-discrete form of the Wigner equation, which follows from considering
a finite spatial domain, was presented. The various transport problems that can be approached with
assigned simulations and the handling of boundary conditions was outlined. Finally, an overview of
existing solvers for the Wigner-Boltzmann equation, for one-dimensional problems, was given.

Chapter 3 introduced the signed-particle method – the Monte Carlo approach which has made the
solution of the Wigner equation in two spatial dimensions computationally feasible. The mathematical
foundation of the signed-particle method was presented to be based on the integral formulation of the
Wigner-Boltzmann equation, which is developed into a Neumann series that can be evaluated using
Monte Carlo integration. Armed with this theoretical background, the basic building blocks and
architecture of an algorithmic implementation of the signed-particle method was shown.

Chapter 4 highlighted the improvements and contributions made by the author to the signed-
particle method’s algorithms. The contributions encompass optimized algorithms for increased com-
putational efficiency, statistical enhancements and treatment of discretization effects, which can lead
to non-physical behaviour. Finally, the considerably improved accuracy of the signed-particle method,
using the optimized algorithms, was demonstrated by a comparison of the numerical results to an exact
solution of a physical problem.

Chapter 5 treated the parallelization of the Wigner Ensemble Monte Carlo code, which was de-
veloped in the scope of this thesis, using a spatial domain-decomposition approach, which is well-
positioned for large scale parallelization. The latter was motivated by evaluating the possible par-
allelization approaches to Wigner Monte Carlo simulations with due consideration to the typical
hardware architecture of supercomputers. Finally, the parallel efficiency of the selected approach was
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demonstrated using one- and two-dimensional examples.
Chapter 6 demonstrated an application of the Wigner Monte Carlo simulator to investigate elec-

trostatic lenses, which were applied to manipulate the dynamics of wavepackets. The latter is of
interest in the emerging field of quantum control, but also for actual devices. The improvement of the
drive-current in a nano-scaled channel was shown by focussing electrons using a converging lens. The
calculation of a steady-state solution was shown for the first time and has been made practical by the
parallelization presented in Chapter 5.

7.2 Summary of contributions

Chapters 1 to 3 provide the contextual and theoretical background of this thesis. The existing body of
literature has been reviewed and summarized to establish the state of the art from where this research
started from. In Chapters 4 to 6 the main contributions and achievements made in the scope of this
thesis are reported and are reiterated here:

1. Optimized algorithms for the most fundamental building blocks of the signed-particle method
were designed and implemented. This entails the Wigner potential, the particle generation and
the particle annihilation algorithms:

(a) An algorithm to speed up the calculation of the two-dimensional Wigner potential by at
least a factor of five was presented.

(b) An analysis of the physical and computational implications of choosing a finite coherence
length was given.

(c) The origin of non-physical behaviour in certain simulations was discovered to be attributable
to the Wigner potential, which governs the statistics of particle generation. The application
of a tapering window to the potential has been demonstrated to mitigate this problem and
greatly improved the quality of the Wigner Monte Carlo simulation results.

(d) A potential statistical biasing when generating the momentum offsets for generated particles
was identified and an approach to avoid this was shown.

(e) It was discovered that the particle annihilation process can introduce a numerical diffusion
and a method to counteract this has been devised.

(f) Two alternative realizations of the annihilation algorithm have been shown, which greatly
reduce, or completely eradicate, the huge memory demands of the annihilation step.

(g) A method to anticipate the increase in the number of particles in a time step was introduced,
which has enabled an automatic activation of the annihilation process without user input,
greatly simplifying the use of the simulator for non-expert users.

2. A Wigner Ensemble Monte Carlo simulator was developed, which implements the signed-particle
method with all the optimized algorithms presented. This entailed:

(a) Writing over 8000 lines of code in C and various scripts for data post-processing and plotting
functionality. The usability of the simulator has been considerably improved by facilitating
control through input files for simulation parameters, potential profiles, initial conditions
and the automatic selection of (some) simulation parameters.

(b) The developed simulator now forms part of the open source suite of ViennaWD tools,
which is freely available online and has been published on a website with examples and
a user manual for the simulator1. The code serves as a reference implementation for the
state-of-the-art of the signed-particle method.

(c) A parallelized version of the code for high performance computing was designed. The data
structures and logic needed for the parallelization of the code using MPI were implemented
and the performance of the parallel code was characterized.

1The ViennaWD code and documentation is freely available under http://viennawd.sourceforge.net
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3. The developed simulator has been applied to the simulation of electrostatic lenses, used for
electron state control. The most important results include:

(a) Demonstrating the control of the dynamics of wavepackets, making it possible to focus
them or split them to create an entangled state, using special potential profiles.

(b) Applying a converging lens to increase the drive-current through a nano-scaled channel.

(c) Approximating a steady-state solution by the periodic injection of wavepackets from a
boundary and calculating the corresponding current.

7.3 Conclusion

The preceding two sections encapsulate the research which has been performed and the contributions
that have been made by the author of this thesis to advance the state of the art in Wigner Monte
Carlo simulations over the course of approximately three years. The optimization of the algorithmic
implementation of the signed-particle method has significantly increased its accuracy. Moreover,
the development of a reliable simulation tool which can be run in a high performance computing
environment presents a major step forward. These two facts combined, now enable the investigation
of many interesting problems through the ability to simulate time-resolved quantum transport in
two-dimensional structures with scattering mechanisms.

7.4 Outlook

The future research on simulations using the Wigner formalism can be pursued along three avenues,
which all go hand in hand: Theoretical aspects of the Wigner formalism and their implementation
with the signed-particle method, algorithmic and computational issues, and the application of the
simulator to investigate quantum processes in nanostructures.

The extension of the Wigner Monte Carlo simulator to three spatial dimensions and the capability
to calculate a self-consistent solution with the Poisson equation presents the most straight-forward
continuation the work presented in this thesis. The challenge is of a computational nature since the
existing algorithms must be extended for this purpose.

To garner a wider interest in Wigner Monte Carlo simulation within the semiconductor device
research community, the development of features which would enable real device geometries to be
simulated with common current-voltage curves as an output would be very beneficial. For this the
treatment of boundaries and especially contacts should be further investigated; the consideration of
non-uniform meshes will become a necessity to treat complex geometries.

The transient behaviour of quantum point contacts, which essentially form a nanocircuit with
quantum resistance and capacitance, is not correctly explained by existing circuit theory. This is
a problem which could be investigated with two-dimensional Wigner Monte Carlo simulations, using
time-dependent boundary conditions. Moreover, the typical size of these structures could make phonon
scattering important.

The inclusion of the vector potential (magnetic field) in the Wigner formalism, and specifically
the signed-particle method, is very desirable, since an increasing number of devices is utilizing mag-
netic fields to operate, e.g. magnetic tunnel junctions. Furthermore, the consideration of magnetic
fields will give the capability to investigate the quantum mechanical behaviour demonstrated in many
experiments, e.g. Aharanov-Bohm rings, to improve our understanding and interpretation.

The capability to simulate time-resolved quantum transport with phonon scattering, magnetic
fields and electrostatics taken into account, will provide the possibility to research a wide range of
problems in nanoelectronics. Topics of immediate interest are an investigation of structures like
nanowires and how discrete dopants and scattering affect the dynamics of single electrons. More novel
concepts, like qubits, where entanglement and decoherence are of primary interest, can also be readily
investigated, since phonon scattering can be accounted for.

It is an exciting time to be involved in research of nanoelectronics and in light of the above,
simulations based in the Wigner formalism can make a valuable contribution to this undertaking.



Appendix A

Phonon Scattering Models

In the following the most important scattering mechanisms for silicon are recollected along with the
associated equations for the scattering rates, as are used in the semi-classical Boltzmann transport
equation.

The provided equations stem from [110] and assume:

• deformation potential interaction mechanism (covalent materials, e.g. Si);

• ellipsoidal, parabolic bands;

• electrons;

• isotropic phonon scattering.

The values for the scattering parameters for silicon are very well-established. The values presented
here are taken from [162], which references the standard literature [108, 163], and provides a complete
summary of the scattering parameters for both silicon and germanium.

Phonons are the dominant scattering mechanism at room temperature and can be divided into in-
tervalley and intravalley mechanisms. The total scattering rates for the latter are required to construct
a scattering table for Monte Carlo simulations.

Intravalley scattering

Intravalley scattering refers to processes where the initial and final valley of the scattered electron is
the same. The scattering can take place through acoustic or optical phonons.

Acoustic phonons

The scattering by acoustic phonons in the same valley is assumed to be elastic by the equipartition
approximation. The total scattering rate is given by

Pe−,ac (E) =

√
2mDOSkBTΞ

2

π�4u2ρD

√
E; (A.1)

u =
1

3
(2ut + ul) ; (A.2)

mDOS =
�
mlm

2
t

 1
3 . (A.3)

The meaning and value of the parameters is given in Table A.1.
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Table A.1: Parameters for intravalley acoustic phonon scattering

Symbol Meaning Value

mDOS effective mass for density of states –
ml effective mass in longitudinal direction 0.98mo

mt effective mass in transverse direction 0.19mo

m0 mass of an electron 9.11× 10−31 kg
ρD material (silicon) density 2338.0 kg ·m−3

u average sound (acoustic phonon) velocity –
ul sound velocity in transverse direction 5.410× 107m · s−1

ut sound velocity in longitudinal direction 9.033× 107m · s−1

Ξ scalar representing average of potential deformation tensor 7.2 eV

Table A.2: Parameters for intravalley optical phonon scattering

Symbol Meaning Value

DtK optical coupling constant 2.2× 1010 eV ·m−1

ωop radial frequency of optical phonon –
�ωop optical phonon energy 0.0612 eV

Optical phonons

Intravalley scattering by optical phonons is inelastic; energy is lost (gained) through the emission
(absorption) of an optical phonon.

The total scattering rate as a function of energy is given by

Pe−,op (E) =
(DtK)2mDOS√

2π�3ρDωop

�
Nop

Nop + 1

�$
E ± �ωop, (A.4)

where the top branch corresponds to the rate for absorption and the bottom branch corresponds to
the rate for emission.

The value Nop denotes the mean occupancy number for optical phonons under equilibrium condi-
tions and is given by a Bose-Einstein distribution:

Nop =

�
�ωop

kBT
− 1

!−1

. (A.5)

The meaning and value of the other newly-introduced parameters are given in Table A.2.
Intravalley scattering with optical phonons is forbidden in the X- and Γ-valleys of silicon, due to

symmetry considerations; only the L-valley electrons can undergo intravalley scattering in silicon [164].

Intervalley scattering

Intervalley scattering takes place between different valleys by both acoustic and optical phonons. The
total scattering rate, as a function of energy, is given by

Pe−,op (E) =
(DtK)imDOSZf√

2π�3ρωi

�
Ni

Ni + 1

�$
E ± �ωop −ΔEfi; (A.6)

Ni =

�
�ωi

kBT
− 1

!−1

. (A.7)
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The equation is formally equivalent to the case of intravalley scattering by optical phonons, when
setting Zf and ΔEfi equal to 1 and 0, respectively. As for the intravalley optical phonons, the top
(bottom) branch of the equation yields the rate for absorption (emission).

Scattering can take place between equivalent valleys, e.g. X-X or L-L, or between non-equivalent
valleys, e.g. X-L – different scattering parameters apply in each respective case. For a given transition
one can distinguish between g-type phonons, which induce transitions between opposite valleys on the
same axis in space, and f -type phonons, which induce transitions among orthogonal axes. The case
for scattering between equivalent X-valleys is currently implemented, using the values in Table A.3.

Table A.3: Parameters for intervalley scattering (equivalent X-valleys)

Symbol Meaning Value

Zf number of equivalent final valleys (f -process) 4
Zf number of equivalent final valleys (g-process) 1
Δfi difference in energy between the minima of the initial and final valley 0.0 eV
�ωi transition energy (f -process) 0.01896 eV
�ωi transition energy (g-process) 0.01206 eV



Appendix B

Scattering in Discretized k-Space

The scattering models presented in Section 2.2 assume a bulk semiconductor with a continuous spec-
trum of energy and wavevectors. It is well established that the spatial confinement in nanostructures
leads to energy quantization and thereby also influences the scattering rates. However, these effects
only become appreciable, if the confinement is below 10 nm. Since the coherence length chosen for a
simulation typically easily exceeds this value, the effects of introducing a discretized k-space in the
Wigner-Boltzmann equation are subtle and are discussed in the following.

Elastic scattering

An elastic scattering mechanism conserves the kinetic energy of an electron: The magnitude of the
k-vector is maintained, whereas its direction changes. The after-scattering components are determined
using trigonometric relations, which yield real values for the components of the k-vector that cannot
necessarily be represented as an integer multiple of Δk. These real values are rounded up/down to
the nearest integer multiple of Δk. These ’residuals’ of each component of the k-vector are uniformly
distributed over Δk. However, since the kinetic energy of a particle is proportional to |k|2, rounding
up adds more energy than rounding downwards. Thereby, a systematic increase in energy with every
elastic scattering event is introduced. Therefore, on average, the ’loss’ of values rounded up will match
the ’gain’ of values rounded down.

Inelastic scattering

An inelastic scattering mechanism, like phonon scattering, makes an electron emit/absorb energy of
�ωq. The number of unique energy values representable by the discrete k-values is determined by the
number of unique sum of squares:

S = n2
1 + n2

2 + n2
3, n1,2,3 ∈ [0,K − 1] . (B.1)

The resulting energy grid is non-uniform, but remains approximately uniform for energies under
∼ 0.8 eV (for Δk = π

100 nm
−1). At higher energies the grid becomes more non-uniform and coarser.

The energy gained/lost through phonon absorption/emission (�ωg) in general will not exactly
correspond to an interval in the discretized energy grid and therefore will be rounded up/down. The
approximation introduced by this rounding is below 1meV for most points in the energy grid. However,
at higher energy values, where the energy grid is coarser, the energy gained/lost by optical phonon
can be under- or overestimated.

Magnitude of discretization error

Practical computations have shown that, on average, the additional energy introduced per scattering
event lies in the order of 10−10 eV, when using a coherence length of 100 nm. This equates to about
2− 3meV over 100 ps using scattering rates for silicon at room temperature. This error will increase
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for coarser k-grids (shorter coherence lengths). Nonetheless, the error can be considered negligible for
typical simulation times, which do not surpass a few picoseconds.



Appendix C

Modelling of Surface Roughness

To retain adequate electrostatic control of the conduction channel in a transistor, different archi-
tectures, finFETs or UTB-SOI structures are used. The increased surface-to-volume ratio in these
architectures has made the effects of scattering due to surface roughness between material interfaces
a significant factor in the electrical performance. Surface scattering is now one of the dominant
scattering mechanisms in devices with quasi-ballistic transport.

Interface roughness can be modelled by adding random perturbations to a smooth interface. The
perturbations are statistically characterized by an autocorrelation function with parameters signifying
the mean offset and the correlation length. Measurements have revealed that Si/SiO2 interfaces can
be characterized by an exponential autocorrelation function with a variance and a correlation length.
The mean offset can range between 0.1 nm and 0.3 nm for a Si/SiO2 interface [165, 166].

A numerical synthesis of the one-dimensional roughness, exhibiting the desired statistical proper-
ties, can be obtained by first generating a sequence of (uncorrelated) random numbers, which is then
convolved with a impulse response (to be chosen) such that a random number sequence is produced
with the desired degree of correlation. The Wiener-Kinchin theorem states that the spectral compo-
nents of an autocorrelation function are given by the power spectral density (PSD) of the sequence
used to obtain said function:

F {rxx} = P (k) . (C.1)

It is desired that F {rzz} has a PSD of an exponential autocorrelation function. Since rxx is generated,
its PSD is known (or can be calculated); the transfer function H (k) = F {h}, such that

F {rzz} = F {rxx} |F {h}|2 . (C.2)

A sequence of perturbations {Δx} is generated by which the ideal (smooth) interface is displaced.
Figure C.1 shows an example of a roughened interface with the parameters given in the caption. To
appropriately resolve such perturbations requires a very fine spatial resolution for the potential profile.
The latter leads to very high memory demands for the annihilation algorithm, which can be handled
by the algorithms presented in the Section 4.3.
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Waśniewski. Vol. 9374. Lecture Notes in Computer Science. Springer International Publishing,
2015, pp. 277–284. isbn: 9783319265193. doi: 10.1007/978-3-319-26520-9_30.

[6] J. Cervenka, P. Ellinghaus and M. Nedjalkov. ‘Deterministic Solution of the Discrete Wigner
Equation’. In: Numerical Methods and Applications. Ed. by I. Dimov, S. Fidanova and I. Lirkov.
Springer International Publishing, 2015, pp. 149–156. isbn: 9783319155845. doi: 10.1007/978-
3-319-15585-2_17.

[7] J. Cervenka, P. Ellinghaus, M. Nedjalkov and E. Langer. ‘Optimization of the Deterministic
Solution of the Discrete Wigner Equation’. In: Lecture Notes in Computer Science. Ed. by I.
Lirkov, S. Margenov and J. Wasniewski. Vol. 9374. Springer International Publishing, 2015,
pp. 269–276. isbn: 9783319265193. doi: 10.1007/978-3-319-26520-9{\_}29.

[8] J. Weinbub, P. Ellinghaus and S. Selberherr. ‘Parallelization of the Two-Dimensional Wigner
Monte Carlo Method’. In: Large-Scale Scientific Computing. Ed. by I. Lirkov, S. D. Margenov
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