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Kurzfassung

3D-Integration ist eine neuartige Technologie in der Mikroelektronik und eine Not-
wendigkeit für die Entwicklung von leistungsfähigeren Systemen in Bezug auf Größe,
Geschwindigkeit und Energieverbrauch. Dabei werden die einzelnen Chips übereinan-
der gestapelt, wodurch kürzere elektrische Verbindungen (Interconnects) möglich sind.
Für die Verbindungen zwischen den gestapelten Chips sorgen neuartige elektrische Ver-
bindungselemente wie offene Through-Silicon-Vias. Wie alle Interconnect-Strukturen
sind auch diese der Elektromigration unterworfen. Elektromigration ist der gerichtete
Materialtransport in Metallen ausgelöst durch die heutzutage gebräuchlichen hohen
Stromdichten. An Stellen an denen Material abtransportiert wird, führt dies zu er-
heblichen mechanischen Spannungen. Dieser Materialtransport kann auch zur Unter-
brechung der Schaltkreise führen. Elektromigrationsbedingter Leitungsausfall in Hin-
blick auf Leitungsunterbrechungen kann auf zwei unterschiedliche Arten entstehen. Bei
der ersten Art führt die mechanische Belastung zu einem Riss quer durch das Intercon-
nect und unterbricht damit die leitende Verbindung, welche damit zu einem abrupten
Widerstandssprung führt. Im Gegensatz dazu führt bei der zweiten Art die mechani-
sche Spannung zur Bildung eines Voids, also zu einem Hohlraum in dem kein Metall
mehr vorliegt, welches die Leiterbahn nicht vollständig unterbricht und damit keinen
Leitungsausfall hervorruft. Dieses Void kann dann in weiterer Folge in dem Metall
durch die Elektromigration wandern und wachsen, was mit der Zeit den Widerstand der
Leitung erhöht, bis dieser die Anforderungen des integrierten Schaltkreises übersteigt.

Traditionell werden Interconnect-Strukturen experimentell unter beschleunigten Test-
bedingungen getestet. Diese Experimente dauern jedoch sehr lange und die Planung
hat äußerst sorgfältig zu geschehen, um aussagekräftige Ergebnisse für die Beurteilung
der Zuverlässigkeit zu gewährleisten. Daher ist der verstärkte Einsatz von Modellen
und Simulationen dieses Phänomens ein wichtiges Hilfsmittel, um die Entwicklung von
integrierten Schaltungen zeitsparender und kostengünstiger zu gestalten.

In dieser Arbeit wurde ein Elektromigrationsmodel in ein kommerzielles Softwarepacket
implementiert um eine möglichst einfache und breite Verwendbarkeit in der Industrie zu
gewährleisten. Diese Software basiert auf der Finite-Elemente-Methode. Hierfür wurden
die neuesten Modelle herangezogen und diese erlauben die Simulation der beiden oben
beschriebenen Interconnect-Ausfallarten. Für die Implementierung des Voidwachstums
wurde auf die Phasenfeldmethode zurückgegriffen. Diese erlaubt die Simulation von
Voids, ohne dass nach einer Bewegung der Voidoberfläche erneut ein Gitter erzeugt wer-
den muss. Dies ist möglich, da das Void sowie das Metall des Interconnects in der selben
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Domäne liegen und die Unterscheidung nur durch den Wert des Ordnungsparameters
realisiert wird.
Weiters wurde erstmalig die Implementierung zur Untersuchung der Widerstands-

fähigkeit eines offen Through-Silicon-Vias gegen Elektromigration verwendet. Dabei
wurden im ersten Schritt die Stellen lokalisiert, welche der höchsten Elektromigartions-
belastung ausgesetzt sind. Diese sind dort zu finden, wo die lokale Stromdichte am
höchsten ist und in Folge dessen Current-Crowding auftritt. Diese Stellen sind ins-
besondere an Ecken und Kanten in der leitenden Struktur zu finden, welche besonders
an den Stellen ausgeprägt sind, an denen das Aluminium mit dem Wolfram überlappend
für die Galvanische Verbindung sorgt. Weiters ist der Vakanzenfluss durch Elektromi-
gration vom Aluminium zum Wolfram blockiert, da Wolfram eine wesentlich höhere
Beständigkeit gegen Elektromigration aufweist. Dadurch sammeln sich die Vakanzen
nahe der Grenzfläche an und es bildet sich mechanische Spannung aus. In weiterer
Folge sammeln sich im gesamten Aluminiumgebiet weitere Vakanzen an und die mech-
anische Spannung steigt weiter. Für den Eintritt einer Rissbildung wurde eine Span-
nung definiert und Simulationen für unterschiedliche Stromstärken durchgeführt. Die
dadurch erhaltenen Zeitspannen bis zum Ausfall (time to failure) wurden dann anhand
der Black ’schen Gleichung zu einem Kompaktmodell kalibriert und zeigen eine gute
Übereinstimmung zu den Vorhersagen Blacks. Auch das Auftreten eines Voids und
dessen zeitliche Entwicklung wurde simuliert. Hierfür wurde an die vorausgegangenen
Simulationen angeknüpft und ein Void an jene Stelle gesetzt, bei der die höchste mech-
anische Spannung zu beobachten war. Die Simulation zeigte, dass das Void in Richtung
des Aluminium-Wolfram-Übergangs zu wandern begann und dort angekommen weiter
an Größe zunahm. Dadurch erhöhte sich der Widerstand bis die Leiterbahn eine Unter-
brechung aufwies, welche letztlich zu einem abrupten Widerstandsanstieg führte. Auch
diese Simulationen wurden für verschiedene Stromstärken durchgeführt und mittels der
Black ’schen Gleichung gefittet. Die beiden gefitteten Kompaktmodelle erlauben die
Vorhersage der Ausfallzeiten für diese Struktur unter Berücksichtigung verschiedener
Parameter (z.B. Stromdichten, Temperatur) und sind damit ein wichtiges Werkzeug für
die Entwicklung von integrierten Schaltungen.

ii



Abstract

3d-Integration is a novel technology in microelectronics and a necessity for the devel-
opment of systems with enhanced performance with respect to size, speed, and power
consumption. Thereby, the individual chips are stacked on top of each other, thus short-
ened electrical connections (interconnects) are possible. For the connections between
the stacked chips novel electrical connection elements such as open through-silicon-vias
are utilized. As all interconnect structures also these suffer from electromigration. Elec-
tromigration is the directed material transport in metals triggered by the nowadays
common high current densities. At locations where material transport occurs, this leads
to significant mechanical stress. The material transport can also lead to an interruption
in the circuit. Electromigration mediated line failure with respect to line disruptions can
arise from two different modes. In the first mode the mechanical load leads to a crack
across the interconnect and through this to an interruption of the conducting connection,
which results in an abrupt resistance jump. In contrast to this, in the second mode, the
mechanical stress leads to the formation of a void, thus to a hollow region where metal
can no longer be found which does not fully interrupt the metal track and thereby does
not generate a line failure. This void can further migrate and grow in the metal, which
with time increases the line resistance, until the specification of the integrated circuit is
exceeded.

Traditionally interconnect structures are tested experimentally under accelerated test
conditions. These experiments last very long and the planing must be very carefully
carried out, in order to ensure meaningful results for the evaluation of the reliability.
Therefore, the increased utilization of models and simulation of this phenomenon is an
important tool to develop integrated circuits more economically regarding time and cost.

In this work an electromigration model was implemented in a commercial software
in order to ensure the easiest and broadest exploitation in industry. This software is
based on the finite-element-method. For this the newest models were considered, which
allow for the simulation of both above-mentioned interconnect failure modes. For the
implementation of void evolution a phase-field-model was facilitated. This allows for the
simulation of voids without requiring remeshing after the void surface movement. This
is possible, since the void and the interconnect metal lie within the same domain and
the distinction is realized only through the value of the order parameter.

Furthermore, for the first time, this implementation for the assessment of the dura-
bility of an open through-silicon-via under electromigration was employed. In the first
step the regions were localized which experience the highest electromigration load. They
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are found at the locations were the current density is highest and subsequently current
crowding appears. These locations are found especially in corners and edges of the
conducting structure, which are particularly pronounced at the overlapping area of the
aluminium and the tungsten, which realizes the galvanic connection. Further is the va-
cancy flow through electromigration from the the aluminium to the tungsten blocked,
since tungsten possesses a much higher durability against electromigration. Thus, va-
cancies gather close by the interface and a mechanical stress is formed. Subsequent
thereto more vacancies are accumulated in the entire aluminium region and the mechan-
ical stress rises further. For the occurrence of a crack formation a threshold was defined
and simulations for different current values were performed. The gained times to failure
were used to calibrated a compact model via the Black equation and showed good agree-
ment in comparison to Black ’s predictions. Also the occurrence of a void and its time
evolution have been simulated. For this purpose previous simulations were continued
and a void was placed at the location were the highest mechanical stress was observed.
This simulation revealed that the void started to migrate towards the aluminium/tung-
sten interface and after reaching it further grew in size. Thus, the resistance increased,
until the metal line showed a disruption which lead also to an abrupt resistance jump.
Also these simulations were carried out for different current values and fitted with the
Black equation. These two fitted compact models allow the prediction of the time to
failure for the structure under consideration with different parameters (e.g. current den-
sity, temperature) and therefore are an important tool for the development of integrated
circuits.
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Chapter 1
Introduction

Traditionally integrated circuits (IC) are manufactured by mounting a single die in
a package. Thus, bigger dies in terms of space are needed to realize more complex
circuits for a given technology node. This approach leads to a higher length of the
interconnects. In contrast to the transistors the propagation velocity of interconnects
did not increase by scaling, leading to higher signal run times. On the other hand more
complex circuits can also be achieved through higher integration densities. This approach
is restricted by limitations of the endurable power density. To avoid these circumstances
three-dimensional (3D) integration was proposed [46] and is widely used for applications
reaching from the miniaturization of portable devices to power efficient high performance
computing, for instance servers and supercomputers [108]. Thereby opportunities for
improved power efficiency, increased band width, and lower latency can be harvested [80].
This technology uses the third dimension by stacking the dies one above the other. With
the introduction of this technology heterogeneous integration and smaller footprints
became possible, leading to the opening of new product possibilities [47]. In the process
of designing 3D integrated circuits some factors, e.g. heat generation and dissipation,
stress development due to the stacking, must be considered to avoid reliability issues
and break down of systems [119].

For 3D integration not only planar interconnects, providing the connections of the
devices on a single die, but also vertically connecting structures, applying the connections
between the stacked dies, are required [108]. These vertically connecting structures
include solder bumps for the connections between the dies in contrast to a thinning and
bonding process. Furthermore, through silicon vias (TSV) are used for the connection
trough the dies. Due to the introduction of these components new reliability issues
arise. These issues include delamination and cracking due to residual stress introduced
from the fabrication process as well as thermal expansion [83] and void formation and
growth because of electromigration (EM) [5, 72] among others [20, 24, 44]. Therefore,
an adequate characterization of the vertically connecting structures is necessary to get
a deeper insight of the failure mechanisms degrading these components.

The aim of this thesis is the implementation of EM degeneration models in the sim-
ulation tool COMSOL [30], based on the soft failure phase, and the EM assessment of
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the open TSV technology. Thereby the prediction of the lifetime of open TSVs and the
localization of the areas with the highest failure occurrence probability are addressed.
Furthermore, the results of simulations based on the finite elements method (FEM),
taking all aspects regarding the two different phases of EM into account, are used for
the calibration of a compact model.

1.1. Interconnect Structures in Microelectronics

Interconnect structures are responsible for the transmission of signals within electronic
circuits. The first structures in use were single wire connections between the active,
as electronic tubes and transistors, and passive elements like resistors, capacitors, and
inductors found in old days radios. The next step was the development of printed
circuit boards. These boards consist of copper layers laminated on polymeric substrates.
By etching lithographically developed patterns into the copper, conductive tracks are
obtained. This planar structure connecting the electric components exhibits low aspect
ratios and allows the application of low cost wet etching techniques [146].
In integrated circuits the active components are placed in the substrate, usually silicon,

whereon planar interconnect structures are grown. Besides the conducting lines several
other layers are placed between them such as dielectric, etch stop, anti-reflective coating,
diffusion barriers, and plugs realizing vertical connections, and thereby realizing multiple
metallization layers [108].
The function of interconnection in integrated circuit is the distribution of the clock

signals, the power, and the transmission of signals over the chip connecting various
system functions. Due to the desired development of fast integrated circuits the inter-
connects have to meet the high speed requirements for the clocks, the signals, as well
as the down-scaling of sizes. A typical parameter for interconnect speed is the RC time
delay given by the product of the resistance and the capacitance of the line. To minimize
this delay the interconnect structures have to be properly designed and material sys-
tems with conducting materials exhibiting low resistance as well as isolation materials
between the lines with low permittivity have to be developed and implemented [146].
The conducting materials should fulfill the following requirements:

• low resistance

• high thermal conductivity

• high melting temperature

• compatibility to the isolation materials, the barrier, and capping layers

• compatibility to the back-end-of-line process

The two materials primarily used for IC metallization are aluminium and copper. In
Table 1.1 their most important material parameters are summarized.
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Physical property Aluminium Copper
Specific electrical resistivity (μΩ cm) 2.72 1.71
Thermal conductivity (W/mK) 238 327.7
Melting point (K) 933.5 1358

Table 1.1.: Material properties of aluminium and copper [146].

1.2. Aluminium Based Interconnect Fabrication

For the fabrication of interconnects two strategies are currently used. The subtractive
method and the inlaid method also called damascene process. For aluminium the first
process mentioned is used and the process flow for one metallization layer is depicted
in Figure 1.1. In the first step a silicon oxide is deposited (cf. Figure 1.1a) followed by the
deposition of a photoresist. The photoresist is exposed to a UV light, transferring the
pattern from the mask to the photoresist layer. After dissolution of the areas exposed
to the UV light, the photoresist shows the pattern of the mask and serves in the etching
process as an etch mask for the silicon oxide layer. After etching the oxide (cf. Fig-
ure 1.1b) the resist is removed and sequentially a barrier layer and a tungsten layer
are deposited, filling the etched holes and forming a layer as shown in Figure 1.1c. To
remove the unwanted barrier and tungsten layer, the wafer is polished leaving only the
filled holes back (depicted in Figure 1.1d). These holes form the vias responsible for the
vertical connections between the metallization layers and between the metallization and
the devices. Thereafter a diffusion barrier, an aluminium layer, and another diffusion
barrier are deposited (cf. Figure 1.1e). The diffusion barriers are formed by titanium
and titanium nitride preventing the aluminium to diffuse into the silicon and as an an-
tireflective coating for lithography purposes [146, 148]. In the next step a photoresist is
deposited and exposed to UV light to transfer the pattern from the mask. After dissolu-
tion of the exposed photoresist and etching the aluminium exhibits the desired pattern
depicted in Figure 1.1f. The last steps for this metallization layer are the removal of the
unexposed photoresist and the deposition of an isolating oxide (cf. Figure 1.1g), which
is polished to receive a flat surface for eventually further following metallization layers.
By repeating this procedure a multi-layer interconnect structure is obtained [119].

1.3. Copper Based Interconnect Fabrication

IBM began to developed metallization technologies based on copper in the 1990s [2, 81].
One benefit, as shown in Table 1.1, is the reduced resistance compared to aluminium
of about 40%. The process of fabrication had to be modified as there is no reactive
ion etching process for mass-production, quite contrary to aluminium [146]. Therefore
the fabrication process for aluminium fabrication is adopted in the following way. After
the deposition of the silicon oxide a second oxide layer is grown. This oxide is covered
with a photoresist which in turn is exposed to UV light for the pattern transfer from
the mask and subsequently dissoluted. After the etching process the oxide remains
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other side 3D integration also allows the stapling of dies based on different technologies,
which is called heterogeneous integration (e.g. analog, digital, sensors, antennas, and
power electronics) and different technology nodes [71].
Bonding is the process of mounting one wafer or die onto another. The first method

is termed wafer bonding. Thereby two wafers are bonded before the wafers are cut
into single dies. Due to the easier alignment this method was developed first. The
second possibility is called chip-to-wafer bonding. With this method the dies can have
different dimensions giving more flexibility as one chip can carry more then an other chip.
Figure 1.3 shows a possible combination of different dies connected by solder bumps in
the chip-to-wafer configuration [108].
The available bonding processes can be divided into two kinds. The first is called direct

bonding, where no intermediate layer is separating them. This type is separable into
molecular bonding and anodic bonding. The second is the bonding with intermediate
layers, where polymer, glass [79] or solder bumps are put in between them to hold the
wafers together [140]. In the next section TSV structures are introduced with a special
focus on the direct bonding method, based on a device presented by Kraft et al. [83].

1.5. Open TSV Structure

A recent TSV design is realized by filled copper TSVs and has the advantage of a
low contact resistance [81]. However, the price of a high mechanical stress due to the
mismatch of the thermal expansion coefficient of the TSV materials and the substrate has
to be paid [122]. Furthermore, the depth of the TSV structure is limited to approximately
50μm determined by the limitation of the aspect ratio of the etching process and the
limited thicknesses of copper deposited by electroplating. Therefore, the open TSV
structure was introduced, where the filling of the vertical cylindrical structure is replaced
by a metallization layer plated on the cylindrical wall leaving it hollow, as depicted in
Figure 1.4. The fabrication of the open TSV structure is carried out after the front-end
and back-end metallizations are performed in a regular CMOS process. In the following
sections the steps for the open TSV fabrication are presented for a sensor chip which is
wafer bonded on a CMOS wafer [83].

1.5.1. Wafer Bonding

After the final via layer has been processed the top wafer gets thinned to a thickness
of 250μm and fine polished at the backside to a roughness of Rmax < 0.5nm to obtain
a suitable surface quality for the wafer bonding. The bond interface of the bottom
wafer is prepared by oxide deposition employing a plasma-enhanced chemical vapor
deposition (PECVD) technique [45], a densification step, and a chemical-mechanical
polishing step which results in a low surface roughness without any nano-topology larger
than 10nm. After removing organic contamination and small particles with a cleaning
step, the bond surfaces are activated by a nitrogen plasma, followed by a further cleaning
step, and aligning of the bottom and the top wafers to each other. By bringing them
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and polymer deposition cycles. For the etching process sulfur hexafluoride SF6 together
with a carrier gas (mostly argon) is injected into the reactor containing the wafer. By
the generation of a high energetic plasma the SF6 is transformed into a highly reactive
gas realizing an isotropic, chemical etching reaction. This etching is combined with a
physical etching realized by the sputtering of ions adding an anisotropy. This step is
followed by polymerization, where the before created structure is passivated by coating
it with a polymer layer. For this step fluorocarbons such as C4F8 and a carrier gas is led
into the reactor. This mixture is activated and forms a polymer passivation layer on the
mask as well as on the sidewalls and on the bottom of the etched trench. The polymer-
ization step is followed by a further etching cycle. In this cycle due to the anisotropy
of the etching process the passivation layer in the bottom of the trench is first etched
through. Therefore at the bottom the etching of the silicon starts again, whereas the
sidewalls are still protected by the passivation layer, attaining the anisotropy of the over-
all alternating process. The trench narrows as the depth increases and the polymer is
continuously recoating the structure. These two cycles are repeated, until the requested
TSV depth is achieved.

(a) Wafer coated with
photoresist

(b) Photoresist washed
away by the developer.

(c) Passivation by coating
with a polymer.

(d) Etching of the polymer
till the bottom silicon is
free.

(e) Etching of another well.
This step is followed by
the passivation step (c).

Figure 1.5.: Schematic of the Bosch process.

1.5.3. Isolation and Metallization of the Open TSV

After the sequentially repeated etching and passivation processes have reached the met-
allization layer of the bottom wafer isolation, lining and passivation processes have to be
carried out. For the isolation of the conductive TSV lining against the semiconducting
silicon bulk, a region of silicon oxide is introduced. The process temperature must not
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exceed 300◦C as the aluminium metallization is already present in the bottom wafer.
Therefore Kraft et al. [83] chose a sequence of three layers consisting of a PECVD layer,
a sub atmospheric chemical vapor deposition (SACVD) layer, and another layer made
by PECVD. The PECVD process reaches a temperature of 350◦C and the SACVD layer
a temperature of 400◦C. The SACVD process is interposed due to its good gap filling
property and the high conformity of the film deposited, in contrast to PECVD. Before
the metallization can be deposited the isolation and the metal oxide at the bottom to
the adjacent metal pad have to be removed, which is accomplished by a deep spacer
reactive ion etching (RIE) step. The metallization layers are deposited in the following
sequence. First a titanium and a titanium nitride layer is placed as an adhesion layer
by a physical vapor deposition (PVD) sputtering process [63]. As sputtering processes
provide low side wall deposition [65] the quite novel self ionized plasma option was em-
ployed, offered by the newest generations of sputter tools [83]. The actual conducting
tungsten layer is then deposited by a metal CVD and removed at the top of the wafer by
a maskless back-etch process using SF4. This process is an anisotropic RIE step leaving
the tungsten behind at the sidewalls and does not reach to the bottom metallization.
The titanium as well as the titanium nitride act for the etching process as a stopping
layer in the TSV top region. At the last metallization step aluminium is sputtered con-
necting the top interconnection structure to the tungsten at the sidewalls. To protect
the metallization against moisture passivation layers are placed in the same schema as
the isolation to the bulk silicon, finalized by a silicon nitride layer.

1.6. Failure Mechanisms in Interconnects

In interconnects, failures are the variation of parameters beyond critical values which
prevents the designated function of integrated circuits. The typical parameters are the
resistance of the interconnect and the resistive and capacitive isolation to neighboring
components like interconnects, devices, or to the bulk. Differences between the experi-
enced parameters and the designed parameter can be caused by defect-related problems
or by wear-out.

Defect-related problems are caused by the fabrication process. Missing process steps
and especially dirt contamination can be responsible for regions where the conducting
material is missing, leading to higher resistance than designed [92, 109]. Furthermore,
the isolating layers can be thinner than engineered, leading to higher leakage currents
and capacitive coupling into other system parts, affecting there function.

Wear-out, in contrast, is a failure phenomenon, which occurs or evolves under the
operation of the devices. This can even occur under normal operating conditions. Wear-
out phenomena are for example material diffusion from the metal into the semicon-
ductor or the isolation/dielectric leading to a change in the electrical characteristics,
or temperature induced phenomena leading to stress induced failure (e.g. cracking or
delamination) [134].
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1.8. Outline of this Thesis

The main aim of this dissertation is to investigate the open TSV technology regarding
EM failure. This investigation includes the two phases of EM degeneration, where the
first phase is the phase where stress is built up leading to cracking or void formation. In
the case where a void is formed, the first phase is followed by the second phase where
the void moves within the metal structure and expands leading to failure. In order to
cover the full range of failure development, models for both phases are implemented
into the Finite Elements Method (FEM) simulation software COMSOL [30] to provide
the ability to analyze the lifetime of interconnect structures as well as to examine the
impact of design changes on the lifetime. The validity of the implemented model is
demonstrated. The first phase model is verified by comparing the results originating
from the TCAD tool FEDOS developed at the institute. The results of the evaluation of
the models for the second phase are qualitatively compared to results from experiments.
This accomplishment is the basis for the EM failure assessment of interconnect structures
taking also voiding into account.
This thesis is logically structured into 6 chapters. Chapter 2 gives a historic outline of

the discovery of EM and the development of its modeling originating from the compact
model developed by Black [10] relating current densities and lifetime. This is followed
by Blech’s findings [14], a critical length times current product for the occurrence of
EM induced voiding and hillock development. After the description of these simple
models more advanced and complex models are introduced, where the impact of the
vacancy dynamics and the stress build-up is gradually incorporated, finally resulting
in the state of the art model for EM. The chapter closes with the introduction of the
quantum mechanical EM force calculation giving a fundamental understanding of the
different resistances of materials and interfaces against EM.
In Chapter 3 the models for a physics based EM assessment are presented in detail.

To describe EM failure a variety of different physical phenomena have to be considered,
resulting in the need to simulate a multiphysics problem. This includes in bulk regions
the electro-thermal problem, as the current is the driving force for EM, the vacancy
dynamics, and the continuum mechanical model. For interfaces, different behaviors are
known including the fast diffusivity, differing equilibrium concentration, and segregation
and are therefore described in this section. To detect the starting point of phase two a
critical stress value is needed as a threshold value as explained in the void nucleation
section. For the second phase, after a void is formed, the void evolution has to be tracked
according to the phase field model explained in Section 3.6.
Subsequently Chapter 4 deals with the details of the essential implementations of the

simulation models and how they are carried out for the two simulation tools employed for
this work. First the required basis of FEM and its derivation are pointed out, building the
principle method of computation for the simulations in FEDOS and COMSOL. Second
the specifics concerning the process flow and the model implementation are presented.
Chapter 5 discuses the entire assessment of an interconnect structure with simulation

results and their implications. After opening with an analysis of the current crowding
effect, reasoning the locations of high current densities at corners of the conducting
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structure, the vacancies pile-up at the interface of two different metals due to a blocking
behavior is surveyed. The typical characteristic of EM induced vacancy accumulation
featuring a three phase behavior in time is used as an initial verification and is therefore
discussed subsequently. Thereafter the stress build-up in the structure is simulated to
evaluate the time until cracking or void formation for different current densities and is
followed by the void evolution simulation. The assessment is completed by a fitting of
the times resulting from the two phase simulations to Black ’s equation.
Finally, the thesis is concluded in Chapter 6 giving an outline for possible further

improvements by taking atomistic and micro structural properties into account.
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Chapter 2
Physics

2.1. Historic Outline of Electromigration

Electromigration was first discovered by the french physicist M. Gerardin in 1861 [104].
In the 1950s systematic studies of electromigration were carried out by W. Seith and
H. Wever [120] showing the correlation between the direction of the current flow and
the material transport. In the 1960s electromigration was recognized as one of the main
failure phenomena leading to the development of different failure criteria and physically
based models [143].

2.1.1. Black ’s Equation

While working for Motorola in the 1960s, James R. Black was involved in the under-
standing of the “cracked stripe” problem [95]. This phenomenon was found to be elec-
tromigration induced. He carried out a systematic investigation and derived a model
for the failure time prediction [10]. The model is based on the concept that a failure
criterion is reached, if a structure specific mass is transported away.

TTF ·R ∝ 1 (2.1)

R is the mass transported per time. This leads to the inverse proportionality of the TTF
to the rate of mass transport.

TTF ∝ 1

R
(2.2)

This rate R is modeled by the proportionality

R ∝ neΔpNa (2.3)

with ne being the conducting electron concentration, Δp the impulse transferred from
the electrons to the atoms while scattering, and Na the density of thermal activated
atoms. The first two variables ne and Δp are proportional to the current density j and
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the density of activated atoms is modeled by the Arrhenius law [137]

Na ∝ exp

�
− Ea

kBT

�
, (2.4)

with the activation energy Ea, the Boltzmann constant kB and the temperature T . The
combination of (2.2)-(2.4) leads to Black ’s equation.

TTF =
A

j2
exp

�
Ea

kBT

�
(2.5)

The constant A comprises the material properties as well as the geometry and must be
empirically determined [11, 12, 13].
The inverse j2 dependence is a special case which can be extended to the generalized

Black ’s equation

TTF =
A

jn
exp

�
Ea

kBT

�
, (2.6)

by substituting the exponent 2 by a second parameter n called the current exponent.
The correct value for this parameter was extensively debated [77, 93]. According to
Clement [26] lifetime models can be roughly classified into two groups. Void growth
models, where the failure is triggered by the growth of a void over a critical size and
nucleation models, where the failure is triggered by the stress build-up in the structure
exceeding a critical value. For the void growth model the current exponent is found to
be 1, because the mass transported is proportional to the current resulting in an inverse
relation to the TTF [126]. Models based on the nucleation show an exponent of 2 as in
the original Black equation due to the stress induced back flow flux [5, 91].
For the prediction of the TTF the generalized Black equation is used to extrapolate

the results from accelerated test conditions with increased currents and elevated tem-
peratures to normal operation conditions. In this application the current exponent is a
second fitting parameter beside the parameter A. Measurements reported in the litera-
ture show values for n ranging form slightly greater than one to six [107]. Values above
two are explained by the improper treatment of the Joule heating. Values in the range
between one and two are interpreted as a failure based on a mixture of the two models,
where a void is first nucleated and followed by a growth phase.

2.1.2. Blech Effect

Ian A. Blech from the Technion in Israel carried out a study, where he deposited golden
islands onto a refractory underlay made out of titanium nitride. In his experiments he
stressed the film with high current densities [14]. Due to the much higher resistivity of
the underlayer the current mainly passed through the gold in the gold covered regions.
By observing the movement of the islands he discovered a length dependent behavior.
For long islands the edge, where the electrons pass into the gold, moved in the direction
of the stripes with the velocity ve

ve =
Da|Z∗|eρj

kBT
, (2.7)
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where Da is the self diffusion coefficient, Z∗ the effective valance, e the unit charge,
ρ the specific electrical resistance, and j the current density. At the other side of the
island extrusions were formed. For islands short enough the movement of the ends was
not observed. For islands in between, the side, where the electrons entered, also moved
with ve but stopped after a certain time, when a critical length was reached. At the
other end no extrusion was formed. Blech discovered a critical value for the product
of current density j and the length l of the islands under which electromigration does
not occur. This finding leads to the concept of the Blech length as a critical value for a
given current density.

The explanation for this phenomenon was found in the fact that different densities of
mass in the island lead to a mechanical back stress working against the electromigration
force. This compression stress has to be below the critical value of extrusion forming.
While the islands are in steady state, the back flux induced by the stress gradient is
totally compensating the EM flux. This back flux is proportional to the gradient of
the tensile stress. Therefore, the maximum stress divided by the island length l is
proportional to the back flux. With the fact that the EM flux is proportional to the
current j the following can be deduced.

σ

l
∝ j ⇒ σ ∝ (jl) (2.8)

By taking a critical stress value into account a critical product (jl)c follows [125, 142].
As the stress build-up due to electromigration in microelectronic structures is highly
depending on the surrounding materials, on the physical design and on the fabrication
process, the Blech length or product can hardly be pre-determined. Therefore, this
concept was never seriously considered [95].

2.1.3. Korhonen ’s Model

The coupling of the stress development with the vacancy dynamics was first introduced
by Korhonen et al. [82]. They consider a thin narrow interconnect line deposited on
a silicon oxide substrate covered by a dielectric passivation layer of infinite length. At
moderate temperatures the electromigration induced flux is mainly flowing along the
grain boundaries. Therefore the effective diffusion coefficient for the whole interconnect
can be calculated by

Deff =
δ

d
DGB, (2.9)

where δ is the grain boundary width, d is the grain size, and DGB is the grain bound-
ary diffusion coefficient. However, in certain cases, like bamboo structures, the grain
boundaries are nearly perpendicular to the line and the simplification of zero bulk flux
from (2.9) is not applicable. A diffusion flux arises due to a difference in the chemical
potential in the interconnect, which can be written [29, 57] by

μ = μ0 − Ωσ, (2.10)
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where Ω is the atomic volume and σ is the tensile stress. For thermal equilibrium of
the vacancies μ0 must be set to zero. The atomic flux including the electromigration
induced flux is then represented by

Ja = −DaCa

kBT

�
∂μ

∂x
+ Z∗eE

�
. (2.11)

For the equilibrium concentration of the vacancies in the presence of stress Korhonen et
al. [82] derived the equation

Cv = Ceq
v exp

�
Ωσ

kBT

�
, (2.12)

which leads to the vacancy flux

Jv = −Dv

�
∂Cv

∂x
− Z∗eE

kBT
Cv

�
(2.13)

and the conservation law for the vacancies

∂Cv

∂t
+

∂Jv
∂x

+ γ = 0, (2.14)

where the γ added by Clement [26] represents a sink or source term. This model was
extensively studied and presented in [26, 27, 28].
Under the assumption of a low vacancy concentration compared to the atomic con-

centration and climbing grain boundary dislocations consuming the net flux divergence,
Korhonen et al. [82] developed a PDE for the build-up stress.

∂σ

∂t
=

∂

∂x
DaB

�
Ω

kBT

∂σ

∂x
+

Z∗eE
kBT

�
(2.15)

B is the applicable mechanical modulus for an aluminium line in a confined silicon matrix
ranging form 0.5 to 0.75 times the Young modulus [82].
These equations were generalized for 3D calculations, allowing to simulate 3D struc-

tures which are more complex then straight interconnect lines. This formulation was
used to investigate structures with grain boundaries explicitly given [118].

2.1.4. Kirchheim ’s Fluxes

In the model presented in the previous chapter the stress is only included in the calcula-
tion of the equilibrium concentration of the vacancies. This was argued with the stress
being in local equilibrium with the vacancy concentration. Kirchheim [76] added an
extra driving force due to a gradient of the stress leading to the driving force approach
allowing the stress and the concentration being out of equilibrium.

Jv,σ = Dv
fΩ

kBT
Cv∇σ (2.16)
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f is a relaxation factor. Tan and Roy [139] showed that the typical order of the stress
induced flux and the electromigration induced flux are of the same order and therefore
the flux driven by the stress gradient can not be neglected. An additional important
physically induced flux is the flux due to a temperature gradient. This flux arises from
the non-isothermal second Fick law [74].

Jv,th =
DvQ

∗

kBT 2
∇T (2.17)

Q∗ stands for the heat of transport, which relates the temperature to the chemical energy
by [114]

μT = Q∗ lnT. (2.18)

For the calculation of the stress in the structure, the volume change due to the
sink/source γ has to be taken into account by [100]

1

V

∂V

∂t
= Ω(1− f) γ. (2.19)

The state of the art model is entirely based on the physical phenomena and its
mathematical description was developed by Korhonen et al. [82] and the extension of
Clement ’a [28] and Kirchheim’s [74] work.

2.1.5. Towards the State of the Art Model

The equations of Kirchheim are derived for one-dimensional problem sets and are there-
fore only capable to model straight lines. In these lines the values of the concentration,
the stress etc. are assumed to be the same in every cross section. The extension of
this equations by Sarychev et al. [116] to three-dimensional problems, while also tak-
ing the inelastic strain due to mass displacement into account, allows the simulation of
EM in complex interconnect structures. Furthermore, the directional dependence of the
diffusion was included by introducing a diffusion coefficient tensor. This constitutes a
self-consistent model connecting the transport dynamics of the vacancies and the stress
build-up in the conducting materials under EM.

Some extensions are required for interfaces like grain boundaries and interfaces to sur-
rounding isolation or dielectric materials regarding, but not limited to, different diffusion
coefficients. For instance, the segregation model of Lau et al. [90] was applied [22] to
self diffusion and EM, furthermore, the Fischer model [42] was implemented to include
a possible accumulation behavior of grain boundaries [4, 34].

The diffusion coefficients obeying an Arrhenius law were extended by a second de-
pendence on the stress [136]. Also the equilibrium concentration of the vacancies was
extended by an Arrhenius law [22, 55]. The full mathematics of the model PDE and
the connecting quantities are presented in detail in Chapter 3.
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2.2. Quantum Mechanical Electromigration

Description

The force due to EM is modeled in continuum mechanical problems as described above
by

F = Z∗eρJ , (2.20)

where the Z∗ is called effective valence or effective charge. The EM induced force on
an atomic scale was theoretically studied by Huntington et al. [64]. They used some
simplifications, such as the defects are decoupled from the lattice, the electrons are
scattered by atoms only, and the creation or annihilation of phonons is neglected. Under
these assumptions the x-directional momentum transferred from the scattered electrons
to the defects per time is given by

dMx

dt
= −

�
1

4π3

�2 �� �m0

�

��
∂E

∂k�
x

− ∂E

∂kx

�
f(k)(1− f(k�))Wd(k,k

�)dkdk�, (2.21)

where f(k) is the distribution function of the electrons and Wd(k,k
�) is the transition

probability per unit time of an electron in state k to jump into state k�. By separating
the two energies’ differentiation into two integrals, interchanging the primed and the
unprimed variables of the second integration, and employing the substitution

f (k)− f0 (k)

τa
=

�
f(k)(1− f(k�))Wd(k,k

�)− f(k�)(1− f(k�))Wd(k
�,k)

dkdk�

4π2
(2.22)

equation (2.21) can be written in the form

dMx

dt
=

�
m0

τa�

��
∂E

∂kx
f (k)

dk

4π3
, (2.23)

where τa is the relaxation time of the electrons. As a common assumption for metals,
the relaxation time is taken to be constant over all states k. f0 (k) describes the electron
distribution at equilibrium and integrates to zero. The current density in the x-direction
can be expressed by [3, 78]

Jx =
−e

4π2

�
f (k)

∂E (k)

�∂kx
dk. (2.24)

By comparison of (2.21) and (2.24) the relation

dMx

dt
=

Jxm0

eτa
(2.25)

is obtained. With the density of defects Na, the density of the conducting electrons n,
and the contribution of the defects to the resistivity ρd = |m∗|/ne2τa the force can be
expressed by

Fwind = −neJxρdm0

Nd|m∗| = −eExz
Nρd
ρN

m0

|m∗| , (2.26)
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where the density of the conducting electrons is substituted by n = zN , where N is
the density of the lattice atoms, and z is the number of conducting electrons per lattice
atom. For an ion at a saddle point between two vacant position the interaction of the ion
and the conducting electron is the strongest, whereas the interaction at lattice points
is the weakest. On the way from one lattice point to an other the interaction varies
and as this position dependent interaction is not known, Huntington et al. [64] chose a
sinusoidal form leading to

F (y) = Fm sin2
�πy
a

�
, (2.27)

where a is the jump distance, and Fm is the maximum force. For a jump path j with
an angle θj between the path and the force Fm, the energy required for a jump can be
calculated by

ΔVj =

aj
2�

0

F (y) · dy =
1

4
ajFwind cos θj. (2.28)

The net flow of atoms due to EM in the current direction is the sum of the probabilities
of jumps (along the paths j) times the jump length in the current direction [78].

Jwind =
�
j

Cν0 exp

�
− V

kBT

�
aj cos (θj) sinh

�
ΔVj

kBT

�
(2.29)

ν0 is the atomic vibration frequency, C the concentration of the ions in the metal, and
V the saddle point energy including the formation energy and the motion energy of
vacancies. This equation can be linearized and rewritten to

Jwind =
cDFwind

2kBT
(2.30)

with D being the diffusion coefficient.

D =
1

2
ν0 exp

�
− V

kBT

��
j

a2j cos (θj) (2.31)

The resulting equation (2.30) differs form the Nernst-Einstein relation by the factor 2
in the denominator, which is the average of the chosen position dependent interaction of
the conducting electrons and the ions on their path from one lattice point to an other. In
addition to the force due to the electron wind also the force due to the electric potential
gradient has to be included, leading to the effective charge

e� = eZ∗ = ez

�
1

2

�
ρdN

ρNd

m0

|m∗|
�
− 1

�
(2.32)

and to the effective valence Z∗. Using the Einstein relation for field assisted diffusion
in a potential the drift velocity can be expressed by [94]

vEM =
DF

kBT
=

DZ∗eρJx

kBT
. (2.33)
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2.2. Quantum Mechanical Electromigration Description

This was the first quantum mechanical expression of the EM induced ion velocity. Within
the ballistic model [96] it was shown that there is a linear relation between the EM
induced flux and the current density.
For a quantum mechanical force calculation another equation was developed and

widely used, based on the scattering states of the conducting electrons [15, 117, 124,
132, 128] obtained from the linear response theory of Kubo [84],

Fwind =
eΩ

4π3

���
FS

d2k

|∇Ek|τEk
vF (k)

���
ψ∗
k (r)∇RV (|R− r|)ψk (r) d

3r

	
·E. (2.34)

The considered atom is located at positionR and V (|R− r|) is the effective one-electron
potential. E is the electric field, Ω is the volume of the unit cell, τE is the relaxation time
of the scattered electron, vF (k) is the k-dependent Fermi velocity, and ψk is the wave
function of the electron, which can be calculated with the Schröedinger equation [37]

−1

2
∇2ψk + V (r)ψk (r) = Ekψk (r) (2.35)

In (2.34) the first part on the right hand side has the meaning of the effective charge,
has the form of a tensor of second order, and reflects the possible dependence of the
crystal orientation on the current direction of the EM force especially for non-cubic
crystal metals (e.g. zinc) [59]. For periodic structures the integral (2.34) is always equal
0. The reason is the symmetry of the wave functions regarding the crystal wave vector

ψk (x) = ψ∗
−k (x) , (2.36)

making the result of the integration over space an even function in k due to the fact
that the potential is a real valued function,���

ψ∗
k (r)∇RV (|R− r|)ψk (r) d

3r =

���
ψ∗
−k (r)∇RV (|R− r|)ψ−k (r) d

3r.

(2.37)
Furthermore, the Fermi velocity is an odd function in k leading to a vanishing result of
the integration over the Fermi sphere. This causes the necessity of calculations of non-
periodic problems. For bulk materials the calculations were performed using the pseudo
potential and the KKR method [129, 130, 131, 144, 145]. Bly et al. [15, 111, 112] showed
how a calculation for a single adatom can be carried out by employing the LKKR method
[97, 98]. They used the muffin-tin approximation by confining the atomic potential to
non-overlapping spheres with a constant interstitial potential [101]. The advantage of
this method is the simplicity and the computational economy payed by an insufficient
description of valence electron potentials in covalent open structures [147] compared to
full potential calculations [105] The electron wave function was defined by

ψk (r) =
4π√
Ω

�
lm

ilAlm (k)Rl (r)Ylm (r) , (2.38)
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Figure 2.1.: The dependence of the effective valence on the distance of an adatom to a
semi-infinite metal surface for two different location above the crystal lattice
shown on the right [15]. τ is the time scale of relaxation of the electronic
charge density.

where Ylm (r) is a spherical harmonic [150], Alm (k) is the coefficient from the spherical
wave expansion, evaluated by the LKKR calculation, and Rl (r) is the spherical solution
of the Schrödinger equation [141], which can be expressed as

Rl (r) =
�
jl (κr) + h

(1)
l (κr)

�
ieiδ

a
l sin (δal ) . (2.39)

Here κ =
√
2Ek, jl is a spherical Bessel function [150], h

(1)
l is the spherical Henkel

function [150] of the first kind, and δal characterizes the scattering phase shift of each
atom. The results show that the effective valance of an adatom is strongly dependent on
the height of the atom relative to the metal surface (c.f. Figure 2.1). This dependence is
quite well described by a simple ballistic model, if the reduced electron density relative to
the bulk is taken into account [15]. This calculation was extended to islands of adatoms
on a substrate modeled by the jellium model showing that the distance to islands has a
huge impact on the effective valance of single adatoms [113].
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Chapter 3
Models

In this section the models used for the analysis of the failure mechanisms are described.
In Section 3.1 the electro-thermal model is explained followed by the different EM models
regarding bulk metals, interfaces between conducting materials, and the mechanical
model for elastic materials influenced by plastic deformation due to EM induced material
transport. This section is followed by the elucidation of void nucleation. The last section
of this chapter deals with the evolution model which gives the ability to track the cross
section reduction and thereby the resistance development in interconnect structures.

3.1. Electro-Thermal Model

For an ohmic material the current density and the electrical field is linearly related by
the conductivity σE.

J = σEE (3.1)

For a conservative electrical field the field can be expressed as the gradient of an electrical
potential φE.

E = −∇φE (3.2)

Inserting (3.2) into (3.1) and applying the divergence results in [138]

∇ · J = −∇ · (σE∇φE) . (3.3)

The left side of this equation must be 0 in a charge free region due to the conservation of
charge. Under the assumption of a constant conductivity the equation can be simplified
to Laplace’s equation [66].

∇2φE = 0 (3.4)

For interfaces with normal vector n between a conducting material and a non-conducting
material the current density has to vanish and obey therefore

J · n = 0. (3.5)
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3.2. Electromigration in Bulk Metals

Applying (3.4) results in
∂φE

∂n
= 0. (3.6)

The heat flow in materials can be written in the form [121]

ρMcT
∂T

∂t
= ∇ · (λT∇T ) + q̇, (3.7)

where ρM is the material density, cT is the specific heat capacity, λT is the thermal
conductivity, and q̇ is the heat generation per time. The heat generated in interconnect
systems is the Joule heat given by

q̇ = J · E = σE|E|2 = σE|∇φE|2. (3.8)

3.2. Electromigration in Bulk Metals

The mass transport due to electromigration is modeled as the flow of vacancies. First the
equations for EM in bulk were written in this form in [116] and further developed in [34,
136]. The governing equation of the vacancy concentration is given by the conservation
law

∂Cv

∂t
= −∇ · Jv +G, (3.9)

with a flow term and a generation/annihilation term. The flow is the sum of the four
flows driven by diffusion, by EM, a gradient of the pressure, and a gradient of the
temperature distribution.

Jv = JD + JEM + JS + JT (3.10)

The first flow contribution is a diffusion induced flow expressed by

JD = −Dv · ∇Cv, (3.11)

where Dv is the diffusion coefficient tensor. This coefficient is in general a tensor of
second order as shown in Section 2.2.
The second component is the electromigration induced flow given by

JEM = Dv · |Z
∗|e

kBT
CvE, (3.12)

where Z∗ is the effective valence, e is the elementary charge, kB the Boltzmann constant,
T the temperature, and E the electrical field.
Due to a gradient in the hydraulic pressure σ a flux is driven which is modeled by the

third term as

JS = −Dv · fΩ

kBT
Cv∇σ (3.13)

with f being the relation between the volume of a vacancy and the volume of an atom
Ω. Therefore, f is in the range between zero and one. For the crystal lattice of metals
the ratio is in the range of f = 0.2− 0.4 [39, 41].
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The fourth term is the flow driven by temperature gradient.

JT = Dv · Q∗

kBT 2
Cv∇T (3.14)

For vacancies there is an equilibrium concentration to which the concentration con-
verges in the absence of any outer perturbation. This phenomenon is modeled by the so
called Rosenberg-Ohring term [21, 110].

G =
Cv,eq − Cv

τ
(3.15)

Cv,eq is the equilibrium concentration and τ is the characteristic relaxation time of
the vacancy concentration. The equilibrium concentration depends on the temperature
according to an Arrhenius law [102]

Cv,eq = Cv,0e
− Ea

kBT . (3.16)

3.3. Electromigration at Interfaces

Interfaces regarding EM are the domains which connect either bulk metal domains of
the same metal kind or bulk materials of two different kinds. In the second case the
interface can separate two conducting materials or a conducting material from a non-
conducting material. In all three cases the interface can have a diffusion coefficient
higher then the coefficient of the bulk material or a lower equilibrium concentration.
How to handle this behavior is shown in the two next subsections. This is followed by a
subsection explaining the case of an interface between two conducting materials, where
the interface can have a segregation behavior.

3.3.1. Fast Diffusivity Paths at Interfaces

The crystal structure is highly disturbed at interfaces as there crystals with different ori-
entations or even crystals with other lattice kinds or lattice parameters meet. This leads
to atoms with a decreased binding energy compared to the atoms located in the undis-
turbed lattice of a bulk material. This increases the probability for those atoms to jump
and therefore increases also the diffusion coefficient as shown by Sørensen et al. [133].
This jumping is limited by the two-dimensional plane of the interface embedded in the
3D space. Therefore, interfaces show a highly direction depending diffusion coefficient
giving it the form of a second order tensor. Since for interfaces the real thickness can
hardly be defined, for simulation normally the interface is modeled by a domain with
a small but finite thickness. As a smaller thickness leads to a higher amount of mesh
elements to ensure a reasonable mesh quality, a thicker layer is desired. For these reasons
in the further description of the modeling of fast diffusivity paths a thickness δ is chosen
to be the modeled interface thickness and its influence is pointed out.
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Figure 3.1.: Segment with an interface domain and a neighboring bulk domain for the
diffusion coefficient calculation.

In Section 2.1.3 the effective diffusion coefficient was calculated by (2.9), where the
diffusion in the bulk was taken to be negligibly small compared to the diffusion in the
GB. Extending this equation for a finite diffusion coefficient in the bulk leads to the
expression for the effective diffusion coefficient [136] for a structure shown in Figure 3.1
with an interface and an bulk segment.

Deff =
δ

d
DI +

d− δ

d
Dbulk (3.17)

If the effective diffusion coefficient is known from experimental data this equation can
be rearranged to

DI (δ) = Dbulk +
d

δ
(Deff −Dbulk) , (3.18)

giving a functional dependence on the interface thickness and the interface diffusion
coefficient.
This value is the diffusion coefficient in the directions parallel to the interface surface,

whereas the value perpendicular to the interface surface is given by the bulk diffusion
coefficient, leading to a tensor form of the diffusion coefficient. For very small inter-
face thicknesses this distinction of the direction is not needed, shown by the following
gedankenexperiment. The flow of vacancies perpendicular to the interface is calculated
for the structure shown in Figure 3.1 for predetermined vacancy concentrations at the
left and right side of the structure in the following way:

JD = D
∂Cv

∂x
(3.19)
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ΔCv = Cv,right − Cv,left =

left�
right

J

D (x)
dx (3.20)

For the case of an infinite small interface (δ → 0) this leads to

ΔCv,δ→0 = Jδ→0
d

Dbulk

, (3.21)

whereas for a finite interface it results in

ΔCv,δ = Jδ

�
d− δ

Dbulk

+
δ

DI

�
. (3.22)

Setting both equations to the concentration difference assumed at the beginning, sub-
stituting DI form (3.18) and calculating the relative error gives

� =
Jδ + Jδ→0

Jδ→0

=
δ (Deff −Dbulk)

d (−Deff +Dbulk) + δ (Deff − 2Dbulk)
, (3.23)

and establishes a rule under which the directional dependence of the diffusion can be
neglected.

3.3.2. Interfaces with Lower Equilibrium Concentrations

Interfaces can have, due to their disorder, a lower vacancy equilibrium concentration, as
in the bulk, where vacancies can be easily filled by surrounding atoms as their binding
energy is lower there. This is modeled by an extra region with a lower equilibrium con-
centration between the bulk materials in the Rosenberg-Ohring term inside the domain
in contrast to the surrounding domains. This phenomenon is particularly important
at interfaces between voids and bulk materials, as there at one side a lattice is formed,
whereas on the other side no material is present. Therefore, this behavior is given special
attention in the phase field model for voids in Section 3.6.

3.3.3. Segregation Model

Surfaces between different conducting materials play a special role in EM. The current
at these interfaces passes from one conducting material to another. But for vacancies
passing the interface can be hindered leading to a segregation in the vicinity of those
interfaces. The segregation at interfaces was modeled by Lau et al. [90] based on the
work of Grove et al. [52]. The interface in this model makes use of a trap density T ,
where the filled traps are denoted by Td and the empty ones by T0. These traps are
dynamically coupled to the bulk materials’ concentrations C1 and C2 by the flows

F1 = t1T0C1 − e1Td (3.24)

and
F2 = t2T0C2 − e2Td, (3.25)
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3.3. Electromigration at Interfaces
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Figure 3.2.: Schematics for the derivation of the segregation model according to [90].

respectively, where the ei are the emission probabilities and ti are the trapping probabil-
ities. These equations can be put together to calculate the time derivative of the filled
trap density Td by

∂Td

∂t
= F2 + F1 = t2T0C2 − e2Td + t1T0C1 − e1Td. (3.26)

With the assumption of an equilibrium, where the filled trap density is constant in time,
(3.26) can be rearranged to

T0 (t2C2 + t1C1) = Td (e2 + e1) . (3.27)

Using the fact that the filled and the empty traps are the sum of the total traps density

T = Td + T0, (3.28)

leads to the filled trap density

Td =
T (C1 + C2α)

C1 + C2α + β
, (3.29)

where α and β are given by

α =
t2
t1

(3.30)

β =
e1 + e2

t1
. (3.31)
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Figure 3.3.: Schematics for the derivation of the segregation model as an infinite thin
representation of an interface with δ thickness.

Inserting the filled trap density in the flow equations (3.24) and (3.25) keeping in mind
(3.28) results in

F = F1 = −F2 = T
t1e2

t1C1 + t2C2 + e2 + e1

�
C1 − e1t2

e2t1
C2

�
= h (C1 −mC2) , (3.32)

with h named the transport coefficient, and m the segregation coefficient. In the calcu-
lations the segregation coefficient is taken to be constant.
In the following it is shown that the segregation model can also be used for an infinitely

thin representation of a domain with a thickness δ and a diffusion coefficient DI, if m is
set to one. As the domain thickness is small compared to a characteristic length (e.g.
grain radius) the concentration profile in this thin domain can be approximated with
the first order Taylor expansion (c.f. Figure 3.3)

C (x) = C0 +
x

δ
(Cδ − C0) , (3.33)

where C0 can be identified as the concentration in the left bulk material equaling C1

and Cδ as the concentration in the right bulk material C2. Differentiation of (3.33) with
respect to x and putting the result in the flux driven by diffusion (cf. (3.11)) regarding
only the x direction leads to

JD,2→1 =
DI,x

δ
(C2 − C1) , (3.34)
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3.4. Continuum Mechanical Model

giving exactly the result of the segregation model shown above. It should be emphasized
that this interface has in the limit of an infinitely small thickness no capability to store
any vacancies, as all the flow from the left side is compensated by an equal flow on
the right side. This behavior has to be taken into account as for mechanical stress
calculations in FEM there is no easy way to handle a volume decrease due to the pile-up
of vacancies in infinitely thin interfaces exhibiting zero volume.

3.4. Continuum Mechanical Model

The vacancy flux due to the mechanisms described above and the generation and anni-
hilation of vacancies has an influence on the stress inside the structure, as the volume
is smaller for vacancies then for atoms. The ratio of the atom volume and the vacancy
volume is represented by f . Therefore the inelastic strain due to vacancy flow is given
by

∂�vflow,ij

∂t
= Ω(1− f)∇ · Jvδij, (3.35)

where the negative divergence of the vacancy flux, representing an accumulation of
vacancies, leads to a contraction of the material. For the generation/annihilation term
inelastic strain is built up due to the creation of a lattice position where no atom is
present, occupying a volume of fΩ leading to the tensor components of the inelastic
strain

∂�vG,ij

∂t
= ΩfGδij. (3.36)

These equations connect the solid mechanics to the vacancy dynamics. The solid me-
chanics model is given by Hook ’s law

σ = S :
�
�− �v − �T

�
, (3.37)

where the inelastic strain due to thermal expansion is already included and S stands for
the elastic tensor with its components given by

Sijkl = λδijδkl + μ (δilδjk + δikδjl) (3.38)

where μ and λ are the Lamé parameters. The components of the strain tensor of the
thermal expansion are given by

�Tij = αT (T − Tref) δij, (3.39)

where αT is the thermal expansion coefficient. The connection between the strain tensor
and the displacement field is given component-wise by

�ij =
1

2

�
∂ui

∂xj

+
∂uj

∂xi

�
. (3.40)

The momentum conservation is expressed by

ρ
∂2u

∂t2
−∇ · σ = fbody, (3.41)
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where fbody is the body force density, the first term stands for the acceleration according
to Newton’s law, and the second is the force due to the stress in the structure. For
EM calculations the only body force is gravity and can be neglected. Furthermore, the
accelerations in the structure are low and negligible leading to

∇ · σ = 0. (3.42)

Putting (3.36), (3.37), and (3.39) into the equation above leads to the mechanical prob-
lem for the displacement field u.

μ∇2ui + (λ+ μ)
∂

∂xi

(∇ · u) = μ(3λ+ 2μ)

λ+ μ

∂

∂xi

Tr
�
�v + �T

�
(3.43)

3.5. Void Nucleation

In early days void nucleation was understood as a vacancy condensation in the structure.
For the vacancy condensation an unrealistic high concentration of the vacancies is needed
to reach the supersaturation for condensation. Therefore, the process of condensation
under classical thermodynamics can not be responsible for the void nucleation due to
EM [49].
In contrast to the process of void nucleation mentioned above, various authors have

determined the cause for void nucleation by the excess of the mechanical stress over
a critical threshold [34]. Gleixner et al. [49] investigated nucleation rates within an
interconnect line and gave a formula for the free energy F change due to the void
formation in aluminium.

ΔF = −σVvoid + γAlAAl (3.44)

Vvoid is the volume of the void, AAl the area, σ the hydraulic pressure, and γAl the surface
energies of aluminium. The first part stands for the energy freed by the dissipation of
the elastic strain energy and the second denotes the energy consumed by the creation of
new surfaces. The calculations of Gleixner et al. [49] revealed small rates for nucleation
at grain boundaries, at interfaces of metals and surrounding isolation layers, and even at
grain boundary intersecting metal/isolation interfaces. Therefore, this mechanism can
be responsible for void nucleation.
Nevertheless, the nucleation of voids at interfaces between a isolation layer and a metal

are frequently observed at positions where they intersect with grain boundaries. This
phenomenon was resolved by Flinn [43], who assumed that the void forms at preexisting
free surfaces. Free surfaces are formed due to contamination, while the line is fabricated.
This contamination lowers the adhesion between the metal and the isolation layer. Based
on this assumption, he derived a threshold stress σth for a flaw of the radius Rp.

σth =
2γs
Rp

(3.45)

Clemens et al. [25] showed that the formula of Flinn is only valid as long as the void
grows on the free surface of the contaminated region. As the void grows further beyond
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3.6. Void Evolution

the flaw area, the contact angle θc is in the range 0 < θc < 90◦ leading to a reduced
threshold stress given by

σth =
2γs sin θc

Rp

. (3.46)

Both equations show an inverse dependence of the threshold stress on the flaw radius.
The stress required to form a void is in the order of 350MN/m2 and can therefore be
reached by the mechanical stress build-up by thermal stress [21]. For bigger flaw radii in
the range of 100nm the threshold stress is in the range of 70MN/m2 and can therefore
also be built up by EM [34, 50].

3.6. Void Evolution

The void evolution phenomenon causes degradation by increasing the resistance of an
interconnect after the void has nucleated. This process is modeled by equations tracking
the movement of an interface, representing the boundary between the interconnect metal
and the void [73]. For the calculations Bhate et al. [8, 9] introduced a local coordinate
system at the void surface (shown in Figure 3.4). The chemical potential of the surface,
when no current is present, is given by [58]:

μs = Ω(−γsκ+W ) (3.47)

κ is the surface curvature, γs is the surface energy, and W is the elastic strain energy
density.

W =
1

2
� : σ =

1

2
� : C� (3.48)

Void

Metal

x

y

n

s

Figure 3.4.: Local coordinate system.
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The “double-dot” operator is defined for the tensors A and B by

A : B =
�
i,j

AijBij (3.49)

and Aij, Bij stands for the components of the tensor A and B, respectively. The flux
parallel to the surface is driven by the chemical potential of the surface and the EM flux
summing up to

Js = −Dsδs
kBT

�
∂μs

∂s
− eZ∗∂φE

∂s

�
, (3.50)

where the derivatives are taken along the interface and the surface diffuse coefficient Ds

obeys an Arrhenius law

Ds = Ds,0 exp

�
− EA

kBT

�
. (3.51)

Furthermore, a flux normal to the surface due to a flow of vacancies from the bulk to
the surface, reasoned by the difference of the chemical potentials in the bulk and at the
surface, is given by

Jnv = D̂ (μbv − μsv) , (3.52)

where D̂ controls the rate of vacancy exchange between the bulk and the surface. For
the chemical potential of the vacancies at the surface the negative chemical potential of
the surface is taken as given by (3.47). For the bulk the chemical potential is given by:

μbv = kBT ln

�
Cv

Cv,eq

�
− (f − 1)Ωσ (3.53)

Given these equations and considering the mass conservation the normal velocity of the
void surface can be expressed as:

vn = −∂Js

∂s
− Jnv (3.54)

A problem with this model arises from the need to track the interface for every simu-
lation time step, if the FEM is employed as the simulation domains have to be separated
in a void region and a metal region and these regions change in shape. The metal region
has to be remeshed for every time step, increasing the simulation complexity. Therefore
a model was proposed by Bhate et al. [9] according to Cahn et al. [19], where the bound-
ary between the void and the metal is not modeled by a sharp interface, but by a thin
region called the diffuse interface. To distinguish between the three regions a function
called the order parameter φ (Cx, t) is defined, which has the property to be 1 in the metal
decreasing smoothly in the interface region and being −1 in the void region. The free
energy functional is defined by

F (φ, �) =

�
F (φ,∇φ, �) dV (3.55)

=

� �
2γs
�pfπ

�
f (φ) +

1

2
�2pf|∇φ|2

�
+W (�, φ)

�
dV, (3.56)
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Figure 3.5.: Two shapes proposed for the bulk free energy function f(φ). The quadratic
double well potential in black and the double obstacle potential in red.

where W (�, φ) is the elastic strain energy density given by

W (�, φ) =
1

2
� : C (φ) � (3.57)

and f (φ) is the bulk free energy function. The shape of this function has to meet the
requirements to be positive everywhere and zero for φ equaling one or minus one. Two
shapes proposed by different authors are shown in Figure 3.5. The black line is the
quadratic double well potential proposed by Mahadevan et al. [99]. The red line is the
double obstacle potential proposed by Oono et al. [106]. This potential was employed
by Bhate et al. [9] in a calculation utilizing the finite-difference method, as it reduces the
computational effort only to those areas, where the interface is located and the potential
has a finite value. The second term in the energy functional stands for the energy cost
due to a gradient of the phase field. �pf is the parameter which controls the thickness of
the interface and has therefore to be chosen carefully, taking into account the meshing
diameter and the minimum curvatures of the interface which can occur.
From this energy functional the chemical potential can be calculated by [36] employing

the variational principle [53, 54].

μφ =2Ω
δF

δφ
(3.58)

=2Ω

�
∂F

∂φ
−∇ · ∂F

∂∇φ

�
(3.59)

=2Ω

�
2γs
�pfπ

�
df (φ)

dφ
− �2pfΔφ

�
+

∂W

∂φ

�
(3.60)

Adopting the flow of the surface (3.50) leads to the phase field flux

Jφ = −2D (φ)

�pfπ
(∇μφ − eZ∗∇φE) (3.61)
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and the conservation equation derived from the equation of the normal velocity of the
surface

∂φ

∂t
= −∇ · Jφ − 4

�pfπ
Jnv, (3.62)

where the flux from the bulk to the interface Jnv as a function of the order parameter
has to vanish outside the interface and is expressed by

Jnv = D̂f (φ) (μbv − μsv) . (3.63)

As described above the phase field model is an approximation of the sharp interface
model for EM. In Section A it is shown, that for the limit, where the interface control-
ling parameter �pf goes to zero, the phase field model converges to the sharp interface
model [99].
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Chapter 4
Numerical Implementation

Finding the analytical solution for partial differential equations in three dimensions is
in general only for quite simple problems regarding

• geometries,

• boundary conditions,

• boundaries between domains with different material behavior, and

• material behavior

possible. General TCAD simulations are to complicated and numerical methods have to
be used. Numerical methods produce approximations of the solutions. One of the meth-
ods mainly used and widespread for Partial Differential Equations (PDEs) in engineering
is the Finite Element Method (FEM). Due to the availability of powerful computers since
the mid 20th century this method got practicable. Since this method was used for the
simulations in this work, the basics will be described in this, followed by a discussion of
the implementation of the EM model in the two software packages used.

4.1. Finite Element Method

The finite element method is a common approach to solve PDEs [67]. Thereby the sim-
ulation region is filled with a mesh and the solution is approximated by a linear combi-
nation of weighted base functions, which is called the Ritz-Galerkin-approximation [17].
This approach enables the software to approximate the solution by solving a system of
linear equations representable by matrix equations.
A second order PDE can generally be written as

d�
i,j=1

∂

∂xi

aij(x)
∂u

∂xj

+
d�
i

ai(x)
∂u

∂xi

+ a(x)u = f(x), x ∈ Ω (4.1)

for Ω ⊂ Rd. Without loss of generality it can be assumed that aij = aji, which easily
can be achieved due to the commutativity of the differentiation order.
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4.1. Finite Element Method

Definition 1. The differential equation 4.1 is elliptic in x ∈ Ω, iff all eigenvalues of the
matrix (aij) have the same sign and are not equal to zero.

Definition 2. The differential equation 4.1 is elliptic (in Ω), iff it is elliptic in (almost)
all x ∈ Ω.

For the further description d will be set to three, as the simulations are carried out in
the three-dimensional real space and the time derivatives are realized by time stepping
to reduce the problem order by solving it iteratively approximated by a finite differences
schema. Furthermore, the material parameters in EM are rotationally symmetric leading
to the following simplified form of the differential equations, where the symbols ∇ and
Δ are used for the nabla and the Laplace operator, respectively.

∇ · (α(x)∇u(x)) + β(x) · ∇u(x) + γ(x)u(x) = b(x) x ∈ Ω (4.2)

4.1.1. Weak Formulation of PDEs

In order to derive the weak formulation of (4.2) one first has to multiply (4.2) by a test
function φ(x) and then integrate the result over the domain Ω giving [17]�

Ω

(∇ · (α(x)∇u(x)) + β(x) · ∇u(x) + γ(x)u(x)− b(x))φ(x)dV = 0. (4.3)

For FEM based simulations only gradients of the solution u(x) and of the test function
φ(x) occur in the integral, allowing the usage of solution functions with lower smooth-
ness. This makes the employment of Green’s first identity necessary.

Theorem 1. Divergence theorem: If F is a vector field and n is an outward pointing
normal vector of the surface ∂Ω surrounding the volume Ω, then the volume integral of
the divergence of F can be converted to the flux integral through the surface by�

Ω

∇ · F dVn =



∂Ω

F · n dSn−1. (4.4)

Applying Theorem 1 to a vector field defined by F = αψ∇φ leads to Green’s first
identity [70].

Theorem 2. Green’s first identity�
Ω

(ψ∇ · (α∇ϕ) + α∇ϕ · ∇ψ) dV =



∂Ω

αψ (∇ϕ · n) dS =



∂Ω

αψ∇ϕ · dS (4.5)

Employing Theorem 2 to (4.3) results in the so called weak formulation of the problem,
which is given by


∂Ω

α (x)φ(x)∇u(x) · dS+�
Ω

(−α(x)∇u(x) · ∇φ(x) + β(x) · ∇u(x)φ(x) + γ(x)u(x)φ(x)− b(x)φ(x)) dV = 0,

(4.6)
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where the first part is a surface integral and the second integral is carried out over the
whole volume. For the further discussion it is assumed that a (x) is a material parameter
being piecewise constant and therefore not depending on the position. For example in
the drift-diffusion equation of the vacancies it is proportional to the diffusion coefficient
(c.f. Section 3.2).

4.1.2. Meshing of the Simulation Domains

Before the actual solving of the PDE can be started, the simulation domain has to be
meshed. The meshing procedure subdivides the simulation domain into many small
elements, described by nodes, edges, and faces. The generated mesh can either be
structured by simple subdivision rules or unstructured for arbitrary domains. Typical
shapes used for FEM are triangles (cf. Figure 4.1a) and quadrilaterals (cf. Figure 4.1b)
for two-dimensional (2D) domains and tetrahedrons (cf. Figure 4.1c) and hexahedrons
(cf. Figure 4.1d) in 3D simulation domains [6]. Figure 4.2 shows an example triangular
mesh for an L shaped 2D domain. The mesh is refined at locations of higher interest
and smaller geometrical features. In this example this is the fillet, as the boundary is a
quarter of a circle.

(a) Triangle (b) Quadrilateral

(c) Tetrahedron (d) Hexahedron

Figure 4.1.: Example meshing elements for 2D and 3D domains.

Based on the meshing and its element type a simple reference element can be chosen
establishing a mapping. For triangular meshing this mapping is shown in Figure 4.3. Due
to this mapping the integration of every element can be formulated as an integration
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4.1. Finite Element Method

Figure 4.2.: An example mesh for an L shaped structure with a fillet.

over the reference element by employing the determinant J (x (s, t)) of the Jacobian
matrix. If the mapping can be written as a linear combination of the vectors spanning
the element, where the origin of the element is one of the corner coordinates, the integral
melts down to the volume of the original element times an integral not depending on
the original element giving the possibility to precompute the integrals of (4.6). For
triangular meshing elements (cf. Figure 4.3) the transformation of the integral over an
element and the reference element is given by [68]

�
T

f(x)dV =

�
0≤s+t≤1
0≤s,t≤1

f(x(s, t))J (x (s, t)) dsdt =

�
0≤s+t≤1
0≤s,t≤1

f(x(s, t))
���x1 − x0,x1 − x0

��� dsdt = 2Vol(T )

�
0≤s+t≤1
0≤s,t≤1

f(x)dsdt. (4.7)

Important for the transformation is the preservation of the orientation. Choosing for
this meshing a test function space Vh and, therefore, a solution space leads to the
Ritz-Galerkin-approximation [17].
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The same procedure can be applied to the other two meshing points of this triangle
leading to the functions

fj,(s,t) (x) = s (4.21)

and
fk,(s,t) (x) = t. (4.22)

The weak formulation (4.6) can now be transformed in a summation of integrals over
each of the N triangles Tl, leading to

N�
l=1



∂Tl∩∂Ω

αφ(x)∇u(x) · dS+

N�
l=1

�
Tl

(−α∇u(x) · ∇φ(x) + β(x) · ∇u(x)φ(x) + γ(x)u(x)φ(x)− b(x)φ(x)) dV = 0

(4.23)

and by applying the approximation of all functions as a linear combination of the hat
functions given by

g(x) =
M�
i=1

gifi(x) (4.24)

for M mesh points it follows

M�
i=1

M�
j=1

ujφi

N�
l=1


 

∂Tl∩∂Ω

αfi(x)∇fj(x) · dS−

α

�
Tl

∇fj(x) · ∇fi(x)dV +
M�
k=1

βk

�
Tl

fk(x) · ∇fj(x)fi(x)dV+

M�
k=1

γk

�
Tl

fk(x)fj(x)fi(x)dV

�
−

M�
k=1

N�
l=1

bk

�
Tl

fk(x)fi(x)dV = 0. (4.25)

As this result has to be valid for every function φ it is enough to choose only one hat
function at a time.

M�
j=1

uj

� N�
l=1

2Vol(Tl)

� 

∂Tl∩∂Ω

αfi(x)∇fj(x) · dS�−

α

�
Tl

∇fj(x) · ∇fi(x)dV
� + βk

�
Tl

fk(x) · ∇fj(x)fi(x)dV
�+

γk

�
Tl

fk(x)fj(x)fi(x)dV
�
��

=
N�
l=1

bk

�
Tl

fk(x)fi(x)dV
� ∀i ∈ {1, · · · ,M} (4.26)
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The primed coordinate system is the coordinate system of the reference system and al-
lows the calculation of every integral in advance. This leads to the matrix representation

A(β,γ)u = Cb. (4.27)

The elements of matrix A are defined by

Aij =
N�
l=1

2Vol(Tl)

� 

∂Tl∩∂Ω

αfi(x)∇fj(x) · dS� − α

�
Tl

∇fj(x) · ∇fi(x)dV
�+

βk

�
Tl

fk(x) · ∇fj(x)fi(x)dV
� + γk

�
Tl

fk(x)fj(x)fi(x)dV
�
�

(4.28)

and of matrix C by

Cik =
N�
l=1

bk

�
Tl

fk(x)fi(x)dV
� (4.29)

and bk, uj, and γk is represented by the vectors b, u, and γ, respectively. The βk are
joined into the matrix β�. These are sparse matrices as only those integrals in (4.26),
where the i, j and k are edges of the triangle that is integrated over are not zero.

4.2. Implementation in FEDOS

FEDOS (Finite Element Diffusion and Oxidation Simulator) is a general FEM simulation
software developed at the Institute for Microelectronics [60]. It is capable to handle
every PDE of first order in time and arbitrary differential order in space. Furthermore,
it can handle coupled PDE [62]. The generation of the geometry and the meshing are
preformed by external programs. As output FEDOS can write a solution file for every
time step or only for the end of the simulation. FEDOS output can be used for the
presentation and interpretation in external programs (e.g. visualization tools) as well as
a list of maximal and minimal values for every time step. The capability of outputting
the maximum and minimum values makes it a very useful tool for EM simulations, as
the maximum tensile stress in the structure is a key parameter for cracking and void
formation.

4.2.1. Implementation of Models in FEDOS

To set up a new model in FEDOS a model file is written, where the assembly rules
for the matrix A and C of (4.27) are specified. Due to the element-wise assembly this
definition is used for each triangle giving its nodes as input and returning the values
which have to be passed into the matrices. Models can be implemented for domains,
for boundaries between domains or for boundaries of the simulation domain, realizing
thereby boundary conditions.
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4.2.2. Simulation Stepping

After starting the simulation, FEDOS solves the modeled problems sequentially. Fig-
ure 4.5 depicts the sequence of an EM simulation in a flow chart. First the electro-
thermal problem is solved and the values needed for the vacancy dynamics are passed
to the next simulation phase. There the vacancy dynamics is simulated, followed by
a stress calculation in the solid mechanics simulation step. After all these steps are
performed the accuracy of the solution is checked. If a given precision of the solution
result is reached, the solution is accepted and the maximum stress is compared against
a threshold for the void formation or for cracking. If the error threshold of the solution
is exceeded, the time step size is reduced by multiplying it with a user chosen factor
(smaller 1) and the simulation of the last time step is reperformed. The time step size
gets multiplied by the inverse of the same factor, if the solution of the following time
steps are in a given error range.

4.3. Implementation in COMSOL

COMSOL [30] is a commercial program widely used in industry and research for the
simulation of FEM based problems. It offers a complete solution for various physics and
engineering applications starting from the geometry generation over the modeling to the
simulation and evaluation with various plotting tools and data exporting capabilities. In
addition it offers a material data base from where material parameters can be imported.

4.3.1. Electro-Mechanical Model

The electro-mechanical model is a preconfigured model including the electric potential

E = −∇V (4.30)

J =

�
σ + �0�r

∂

∂t

�
E+ Je (4.31)

∇ · J = Qe, (4.32)

where V stands for the electric potential, J for the current density, Je for a user prede-
fined current density, Qe for the free charge distribution and σ for the conductivity. The
Joule heating modeling is formulated by the equation system

Q = E · J (4.33)

ρCp
∂T

∂t
+ ρCpu · ∇T = ∇ · (k∇T ) +Q, (4.34)

where Q stand for the thermal energy dissipated per time, Cp for the thermal expansion
coefficient under constant pressure, ρ for the volumetric mass density, k for the thermal
conductivity, and u for the velocity field. The mechanical stress modeling is implemented
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is used to includes the strain arising from the vacancy flux and vacancy generation/an-
nihilation in the EM model.

4.3.2. PDE as Electromigration Model

Since not for all physical problems models are included in COMSOL, it provides the
“Coefficient Form PDE”, which allows to express a huge set of technical relevant linear
and non-linear PDEs. This general PDE has the following form:

ea
∂2u

∂t2
+ da

∂u

∂t
−∇ · (c∇u+αu− γ) + β · ∇u+ au = f (4.39)

EM is represented by two differential equations, one for the vacancy flux and one for
the strain due to the movement of the vacancies as well as their generation/annihilation.
The vacancy dynamics is modeled by a conservation law with a generation/annihilation
term given by (3.9). By comparing this equation against (4.39) it follows that ea, γ
and β have to be set to zero and da has to be set to one. Taking this into account and
rearranging the equation leads to

∂u

∂t
= ∇ · (c∇u+αu) + (f − au) . (4.40)

The equation parameters have to be set as follows to model vacancy dynamics.

c = −Dv (4.41)

α = Dv

� |Z∗|e
kBT

E− fΩ

kBT
∇σ +

Q∗

kBT 2
∇T

�
(4.42)

f =
Ceq

τv,eq
(4.43)

a =
1

τeq
(4.44)

The electric field E and the hydraulic pressure σ are taken from the electro-mechanical
model (cf. Section 4.3.1).
For the strain build-up by the vacancy dynamics and generation/annihilation the same

general equation (4.39) can be used with the parameters set as following:

c = −Ω (1− f) (4.45)

α = Ω(1− f)

� |Z∗|e
kBT

E− fΩ

kBT
∇σ +

Q∗

kBT 2
∇T

�
(4.46)

f = Ωf
Ceq

τv,eq
(4.47)

a = Ωf
1

τeq
(4.48)
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Since also the strain build-up is described by a first derivative in time analogously the
parameters ea, γ, and β are set to zero and da to one. It should be emphasized that the
vacancy dynamics model is connected through the stress gradient to the solid mechanics
model, which by itself depends on the strain build-up by the vacancies as an input value
making those models highly nonlinear.

4.3.3. Phase Field Model

In COMSOL a phase field model is implemented by the equation

∂φ

∂t
+ u · ∇φ = ∇ · γλ

�2pf
∇ψ (φ) , (4.49)

where u is a velocity field. Taking into account that the velocity field is divergence free
(∇ · u = 0) this equation can be rearranged to

∂φ

∂t
= ∇ ·



−uφ+

γλ

�2pf
∇ψ (ψ)

�
. (4.50)

Independent of the form of the function ψ (φ), this equation has the form of a conserva-
tion.

∂φ

∂t
= ∇ · J (4.51)

Therefore, the phase field model of COMSOL is not suitable to implement the vacancy
exchange between the bulk and the interface of the void evolution model, described in
Section 3.6, represented by the last term of

∂φ

∂t
=

2

�pfπ
∇ · Ds(φ) (∇μs − eZE)− 4A

�pfπ
(μs − μv). (4.52)

Therefore, for the implementation of the phase field model the “Coefficient Form PDE”
(4.39) has to be chosen with the parameters set as follows:

ea = 0, (4.53)

γ =
2

�pfπ
Ds(φ) (∇μs − eZE) , (4.54)

β = 0, (4.55)

c = 0, (4.56)

α = 0, (4.57)

f = − 4A

�pfπ
(μs − μv), (4.58)

a = 0. (4.59)
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4.3.4. Time Stepping

COMSOL offers two methods to compute the solution. The first method called “Fully
Coupled” generates the matrices A and C of (4.27) where all differential equations are
included at once. These matrices depend on the solution vector (e.g. the coupling of the
vacancy flux and the stress equations) and therefore, first (4.27) is solved where β and
γ is retrieved from the old solution vectors. This step is followed by a regeneration of
the matricies using β and γ calculated from the new solution vector and solving again.
These steps are repeated untill convergence is reached. The simulation is terminated
under user chosen conditions (e.g. maximum step number), if the problem does not
converge. After the solution has converged, the next time step is computed. The time
step size depends on various conditions (e.g. step size to the next chosen output time).
The second method called “Segregated Step” generates the matricesA and C in (4.27)

for every system separately and calculates the solutions sequentially. The number and
the included differential equations of the systems can by chosen by the user. For EM
without void modeling the sequence is depicted in Figure 4.6 and for EM modeling with
void modeling in Figure 4.7. This method is the method of choice as the “Fully Coupled”
method often needs too much memory, since the size of the matrices grows with second
order of the number of mesh points.
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Chapter 5
Results and Discussion

The reliability of interconnects in ICs is a key issue for the overall quality of electronic
systems. In this section the assessment of a structure called open TSV is presented.
Open TSVs are 3D structures made out of different materials, which exhibit corners and
interfaces. These regions suffer from current crowding which breaks the homogeneity
of the current density. Thereby, the available cross section is not optimally used. Fur-
thermore, the interfaces between the different conducting layers show a behavior which
promotes the EM induced effects. Therefore, current crowding is of major interest and
analyzed in detail. This is followed by a full EM study of this structure regarding the
most prominent locations, where EM leads to a failure. This failure is examined for two
different modes. The first mode is the so called early mode, where a crack leads to an
open circuit and an immediate failure. In the second so called late failure mode not a
crack but a void is formed. This does not lead to an instant failure, but initializes a
phase where the void grows and evolves. This evolution leads to a failure as soon as the
void has grown big enough to block a significant part of the current conducting cross
section, leading to an open circuit or a resistance increase over a critical value. These
results are fitted to the generalized Black equation which is a widely used compact model
for EM [12].

5.1. Current Crowding

Current crowding is the effect of peaks in the current density due to locations of non-
homogeneous material parameters (e.g. lower resistance regions) or areas of elevated
electrical field strength. These effects lead in metals to areas with raised Joule heating,
which influence the material parameters and their behavior (e.g. Kirkendall effect [51]).
Therefore, these areas are particularly studied for open TSV structures with respect to
the geometry and the resistance of the conducting materials.

Corners are typical regions where current crowding occurs. Sabelka [115] gave an ana-
lytic solution for a corner with an arbitrary angle α shown in Figure 5.1. For this geom-
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where the application of the boundary conditions, no normal flux at the metal edges (cf.
Figure 5.1),

eϑ ·
�
− J

σE

�
= eϑ · ∇φ = eϑ ·

�
∂φ

∂ρ
eρ +

1

ρ

∂φ

∂ϑ
eϑ

�
=

1

ρ

∂φ

∂ϑ
= 0 (5.7)

for the angles ϑ = 0◦ and ϑ = α only allows solutions of the form

Θ (ϑ) = C1,n cos
�
ϑ
nπ

α

�
∀n ∈ N0. (5.8)
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Figure 5.2.: The current density at corners for different angles versus the radial distance.
The current densities are normalized to J0 at the radius r0. The lower the
angle of the corner, the higher the current density rises in the vicinity of
the corner. In the last plot the three curves are put together to facilitate
comparison.
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For the second equation with
√
a = nπ

α
the solution has the form

P (ρ) = D1,nρ
nπ
α +D2,nρ

−nπ
α , (5.9)

where only the first term has a physical meaning as the second has a singularity at the
origin. Putting (5.8) and (5.9) together results in

φ (ρ, ϑ) = Cnr
nπ
α cos

�
ϑ
nπ

α

�
, (5.10)

with Cn = C1,nD1,n and the gradient for positive non-zero n is given by�
− J

σE

�
= ∇φ =

∂φ

∂ρ
eρ +

1

ρ

∂φ

∂ϑ
eϑ

= Cn
nπ

α
ρ−1+nπ

α cos
�
ϑ
nπ

α

�
eρ − Cn

nπ

α
ρ−1+nπ

α sin
�
ϑ
nπ

α

�
eϑ. (5.11)

The gained solutions can show a singularity at the origin, where the exponent of ρ gets
negative. This is true for those sections where n meets the condition

0 < n <
α

π
, (5.12)

which is only possible, when α is between π and two times π and n equals one. The
norm of the current density for n = 1 is given by

|J| = C1σ
π

α
ρ−1+ π

α . (5.13)

Figure 5.2 shows the radial dependence of the current density for different angles. As
the exponent of the equation points out, corners with higher angles show higher current
densities in the vicinity of the corner, which is called current crowding.
In conventional vias and TSVs the whole vertically connecting structure is filled by the

conducting metal. At present there are two kinds of material systems in use. The first
one is the copper system, where the vertical and the horizontal connections are made
out of copper, and the second is the aluminium tungsten system, where the horizontal or
planar connections are made out of aluminium and the vertically connecting structures
are made out of tungsten. For the later configuration, Figure 5.3 shows the current
density at the interface of the planar interconnect and the via for different ratios of
the via height and the via width. For higher ratios the current density at the interface
between the horizontal interconnect and the vertical structure has a higher variation than
for lower ratios. The highest current densities are found at the edges of the structures,
where the right corner values are significantly higher compared to the left ones. In
Figure 5.3a the current at the right corner is 3.5 times larger compared to the left
corner.
The open TSV [83] is constructed as a hollow cylinder consisting of a tungsten coating,

where at the top an aluminium cylinder is placed, overlapping the tungsten from the
inside. Figure 5.4 depicts the structure, where the aluminium is shown in yellow, the
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(a) 1:1 (b) 1:2 (c) 1:3

(d) 1:5 (e) 1:10 (f) 1:100

Figure 5.3.: The current density is presented by the red arrows at the interface between
the planar connecting structure and the via, for different ratios of the via
width and the via height. The lines represent the electric flow lines.

Figure 5.4.: Profile view of the TSV structure: Aluminium in yellow, tungsten in green,
and substrate and seal layer in red. The tungsten cylinder is shortened to
10% of the real length.
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aluminium layer on the top is kept constant and the thickness of the tungsten layer
at the bottom is varied. There the assumption of equal conductivities is chosen to
particularly see the impact of different thicknesses. In Figure 5.6 it can be seen that
the current crowding takes place on both edges in the same range for a ratio of 1, as
the red current density arrows are equal at both edges (cf. Figure 5.6). The smaller the
thickness of the tungsten, the more current is transferred at the right corner, whereas
the current crowding at the left corner gets smaller. In the studied TSV structure the
ratio is in the range of 4, which is the reason that the higher current crowding takes
place at the right corner.

(a) 4:4 (b) 4:3

(c) 4:2 (d) 4:1

Figure 5.7.: The current density is shown by the red arrows at the interface between the
planar connecting structure and the via for different ratios of the resistances
of the upper and the lower layer. The lines represent the electric flow lines.

In the simulations for different thicknesses the assumption of equal conductivity was
chosen. This is in the case of tungsten and aluminium not true as tungsten has ap-
proximately half the conductivity of aluminium. In Figure 5.7 the conductivity of the
aluminium is varied in multiples of the conductivity of tungsten with both layers having
the same thickness to examine only the influence of resistance differences. The black
lines are the current streamlines and the red arrows show the current density close to the
interface. The upper ones show the current density in the aluminium and the lower ones
show the same in the tungsten. The higher the ratio, the more deviation is present in the
current densities between the materials. Furthermore, the current crowding is shifted to
the right corner, the higher the ratio gets. Therefore, the current transfer between the
two metals mainly occurs at the right side of the interface due to its special geometry
on one hand and the difference in conductivities on the other hand, which leads to the
high current crowding depicted in Figure 5.8.
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Figure 5.8.: The current density is shown by the red arrows at the interface between the
planar connecting structure and the via. The lines represent the electric
flow lines and show that the transfer of current between the two metals is
mainly occurring closed to the right interface end.

The current densities at the ends of the interface show a saturation in relation to the
interface length. For short interfaces the transfer of current between the two metals takes
place over the whole interface length, whereas for an interface length over a characteristic
length l0 the middle part of the interface carries only current densities parallel to the
interface and therefore, does not contribute to the current transfer between the metals.
The characteristic length l0 is in the range of six times the layer thickness. In Figure 5.9
the current density component normal to the interface is depicted, showing this behavior
in the middle of the interface.
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Figure 5.9.: Component of the current density vector normal to the interface.
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5.2. Interface Vacancy Pile-Up

This study deals with the question of how different interface structures change the va-
cancy concentrations at the interface. Interfaces can limit the flux of vacancies, according
to the segregation model (c.f. Section 3.3.3), as well as they can act as high diffusive
paths for the vacancies along them [34]. For the tungsten/aluminium interface the in-
terface behavior was studied for different parameters to get an idea, which results have
to be expected for the structure shown in Figure 5.5.
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Figure 5.10.: Segregation model: Variation of the transport coefficient h. Vacancy con-
centration in aluminium and in tungsten versus the location of the inter-
face.

Figure 5.10 shows the vacancy concentration close to the interface in the aluminium
represented by the upper curves and the tungsten by the lower curves for different
interface conductivities normalized by the equilibrium concentration. Due to the partial
blocking of the interface, vacancies are piled up in the aluminium layer close to the
interface, whereas in the tungsten layer the vacancies close to the interface flow away and
cannot be recovered. Therefore, the concentration in this region is lower compared to the
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5.2. Interface Vacancy Pile-Up
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Figure 5.11.: Simulation of a highly blocking interface (h = 10−5mm/s) for different time
steps in arbitrary t0 units.

equilibrium concentration. The highest deviations from the equilibrium concentrations
are found at the edges of the interface. There, as shown in Section 5.1, the highest
perpendicular component of the current density is found. This component of the current
density is responsible for the delivery of vacancies to the interface in the aluminium and
for the transport of vacancies away from the interface in the tungsten region. This
phenomenon gets stronger the more the interface exhibits a blocking behavior. As
explained in the segregation model (cf. Section 3.3.3) the interface can be understood
as the infinitely thin limit of a region with a diffusion coefficient low against the other
materials. Seen form this point, the interface has a high divergence due to the deviation
of the diffusion coefficient which explains the observed results. Farther away from the
interface the concentration converges back to the equilibrium.

Figure 5.11 shows the development of the vacancy pile-up in time for a chosen highly
blocking value. At the corners the deviation increases fast compared to the middle
region. After some time the concentration in the tungsten starts to increase in the
middle region in contrast to the edge areas. This is caused by the vacancies that at
first diffuse form the edge area in the aluminium to the middle part of the aluminium
interface region and then are transported back through the interface into the tungsten,
as they experience there a lower EM induced driving force. It should be remarked that
also for an interface without segregation a deviation from the equilibrium concentration
can be observed, due to current crowding at the edges. However, this effect is of equal
strength in both layers.

A second phenomenon which can occur at interfaces between materials is a higher
vacancy equilibrium concentration in the Rosenberg-Ohring term (c.f. Section 5.7).
Figure 5.12 depicts the results of simulations, where the equilibrium concentration of
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the interface is varied. The black line represents the result for a simulation where
the interface behaves exactly like the metal layers. The increase of the concentration
is driven by the in-homogeneous current, which again has the highest impact at the
interface edges due to current crowding. For lower interface equilibrium concentrations
the results decrease as the interface annihilates vacancies. Here, current crowding at
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Figure 5.12.: Variation of the equilibrium concentration in the interface region.
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5.3. The Three Phases of the Electromigration Induced Vacancy Accumulation

the edges floods the interface region with vacancies and, therefore, to some degree the
impact of the vacancy annihilation is compensated. Figure 5.13 shows the evolution
in time for the lowest possible equilibrium concentration of the interface of Cinter = 0.
For short periods the EM induced vacancy transport at the left corner overwhelms the
process of annihilation, as can be seen by the slightly positive vacancy concentration.
Whereas after longer time periods the behavior flips into an annihilation dominated one.

The results show that the worst case behavior is the total blocking interface, as there
the pile-up of vacancies in the aluminium layer and the depletion in the tungsten layer
lead to the highest deviation from the equilibrium concentration. Furthermore, for the
annihilation behavior there are two extremes observable. For equilibrium concentrations
the vacancy concentrations at the corners increase relative to the outer regions, whereas
for highly annihilating interfaces the concentrations of the vacancies decrease compared
to the outer regions. Therefore, for the aluminium layer in addition to the segregation
behavior, the non-annihilating interface is the worst case. In contrast, for the tungsten
layer the highly annihilating interface is the worst case. As the diffusion constant of
the tungsten is much lower compared to the aluminium, for the following simulation the
blocking interface with non-annihilation character is admissible.

5.3. The Three Phases of the Electromigration

Induced Vacancy Accumulation

The time development of the maximum vacancy concentration for the test structure
introduced in Figure 5.5 is shown in Figure 5.14. As can be readily seen, the development
of the maximum vacancy concentration can be divided into three phases [75]. In the
first phase extending from the beginning of the simulation till approximately one second
the vacancies show a linear dependence in time. The curvature is introduced due to
the logarithmic scale of the time axis. In this period the flux is only driven by the
EM induced driving force. This phase is followed by the second phase with a constant
maximum vacancy concentration. In this phase the EM induced flow is compensated
by the flows due to concentration and stress gradients on the one hand side and on the
other hand side by the generation and annihilation modeled with the Rosenberg-Ohring
term. Generation/annihilation leads to an increase in stress (build-up) in the structure.
After approximately 104s the maximum vacancy concentration rises rapidly. This is the
beginning of the third phase.

Figure 5.15 shows the development of the stress in the structure. In the first phase
of the vacancy pile-up the stress increases linearly in time as the inelastic strain is only
sustained by the shift of vacancies in the structure. After a short time the concentration
of vacancies has reached a certain threshold value and the back flow due to the other flux
phenomena reduces the stress growth rate leading to a sub-linear stress development. In
the third phase the stress level has obtained a value where cracking or void nucleation
is expected and, therefore, these phenomena have to be taken into account. This is the
point, where a soft failure has to be expected.
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Figure 5.15.: Maximum Von Mises stress build-up at the interface.

5.4. Electromigration Induced Stress at the

Interfaces of Open TSVs

As described in Section 1.5 the open TSV technology is based on a hollow cylinder
of overlapping conducting metal layers reaching from one side of the die to the other
(cf. Figure 5.4). For FEM based simulation these arrangements with metal layer thick-
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5.4. Electromigration Induced Stress at the Interfaces of Open TSVs

Figure 5.16.: Segment of the TSV closest to the current introducing planar interconnect
line. The inset shows the half of the upper open TSV structures aluminium
cylinder at the top and tungsten cylinder at the bottom. The blue line
indicates the cross section for which the following simulation results are
plotted. In this zone the highest current densities are foreseen and therefore
EM has the biggest influence.

nesses in the order of tenth of a micrometer and the TSV diameter in the range of
hundreds of micrometers make the meshing for 3D computations close to impossible.
Therefore, a representative small segment of the open TSV has to be chosen in order to
carry out simulations. This segment is located centrally under the planar interconnec-
tion which connects the open TSV with the integrated circuit, as shown in Figure 5.16.
There the aspect ratio of the layer thicknesses and the overall structure is in the range
of one to hundred, leading to an acceptable meshing quality inside the metal layers.
Furthermore, as the results of Section 5.2 show, that a blocking interface has the highest
impact on the vacancy pile-up and the high resistance of tungsten against EM, due to
its low diffusion coefficient compared to aluminium, the vacancy flux calculations were
restricted to the aluminium based structures.

Figure 5.17 shows the appearance of the current crowding effect, as described in
Section 5.1. This current crowding influences especially the vacancy pile-up for short
times, as the highest vacancy concentration in the structure is found at the corner for a
simulated time period in the range of one second shown in Figure 5.18a. In the phase
of quasi-equilibrium, where the maximum vacancy concentration stays constant, the
vacancies pile-up in the whole structure due to the concentration gradient and stress
gradient induced fluxes till the third phase starts. The vacancy concentration in this
second phase is depicted in Figure 5.18b and shows that the vacancies are not transported
to the interface but accumulated already before. In the third picture (Figure 5.18c) the
vacancy concentration has very high values at the tungsten/aluminium interface, but also
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Figure 5.17.: Current density in 103A/cm2 in the simulated segment of the open TSV. At
the bottom of the aluminium cylinder the current crowding is pronounced.

at the silicon oxide/aluminium interfaces. This behavior will get clear by considering
the Von Mises stress distribution inside the open TSV shown in Figure 5.19.

For short times the stress is mainly driven by the shift of vacancies. Therefore, the
highest stress, as shown in Figure 5.19a, is located in those areas where the highest
vacancy concentrations are found (c.f. Figure 5.18a) with a linear dependence between
them. As soon as phase two starts the stress increases over time and spreads out into the
areas further away from the interface shown in Figure 5.19b according to the behavior
described in Section 5.3. The vacancy concentration stays constant at the interface
and the concentration in the rest of the aluminium rises asymptotically to the one of
the interface. After this second phase the stress reaches a value where the vacancy
concentration diverges. Due to the tendency of the aluminium to shrink, while the
surrounding material tends to stay in size, a high stress is built up at the interfaces (cf.
Figure 5.19c) leading in the real structure to cracking or the formation of voids. At this
point the simulation can be interrupted as a so called soft failure has been reached [35].

The development of the maximum Von Mises stress in the structure versus time is
shown in Figure 5.20. By choosing a stress threshold for cracking or void formation
according to Section 3.5 for every current density a TTF can be found and fitted to
Black ’s equation. In Figure 5.21 the data points for a threshold Von Mises stress of
200MN/m2 are shown. Furthermore, the graph of a fit to Black ’s equation is shown.
Due to the chosen logarithmic scale of the axis the fitted graph is represented by a
straight line. The fitted exponent of the current density in (2.6) was found to be 0.74.
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5.4. Electromigration Induced Stress at the Interfaces of Open TSVs

(a) tsim = 1s

(b) tsim = 103s

(c) tsim = 106s

Figure 5.18.: Relative vacancy concentration deviation (Cv/Cv,eq − 1) piled up in the
structure for three different simulated time periods. The cross section is
the cut of the blue line in Figure 5.16.
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(a) tsim = 1s

(b) tsim = 103s

(c) tsim = 106s

Figure 5.19.: Von Mises stress in N/m2 build-up in the structure for three different
simulated time periods. The cross section is the cut of the blue line in
Figure 5.16.
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5.4. Electromigration Induced Stress at the Interfaces of Open TSVs
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5.5. Void Growth and Evolution

After a certain stress is reached in the structure a crack or a void forms. In the case
that a crack forms it can lead to an open circuit failure causing a malfunction of the
whole integrated circuit. For the scenario of a phase one failure the estimation of the
TTF ends with the analysis shown in the section before.

In the second case the formation of a void is the result of the first phase. Thereby, the
structure does not fail immediately, but a void will get formed in the structure. This
void starts to move in the structure due to EM at its surface as well as it might grow.
For the open TSV segment (cf. Figure 5.16) this simulation was performed using the
phase field method described in Section 3.6. Thereby, a void is placed in the aluminium
at the region where the highest stress was found in the simulation before. As the highest
stress was located at the interface between the aluminium and the tungsten close to the
corner in the aluminium, the void was placed under the interconnect joining the TSV to
the planar metallization structure. Due to the symmetry of the problem with respect to
the blue line indicated in Figure 5.16, only one half of the structure was simulated with
appropriate boundary conditions at the boundary formed by cutting through the blue
line. These boundary conditions are vanishing fluxes for electric currents, vacancies, and
the phase field function as well as free to slip at the cutting surface for the mechanical
calculations. The results of this simulations are shown in Figure 5.22.

First the void starts to move in the structure. The movement is in the same direction
as the current density and therefore in the direction towards the tungsten. This phase
is depicted in Figure 5.22a. It shows the aluminium layer from the direction where the
tungsten is placed. The tungsten layer was left out to reveal the void. On the right side
the cut due to the mirror symmetry is located. In Figure 5.22b the void has reached the
end of the aluminium structure, where the aluminium touches the silicon oxide. Due to
the tendency of the void to minimize the surface energy the before circular void reforms
into a semicircle minimizing the surface area. From now on the void stops moving
and only continuous to grow as depicted in Figure 5.22c. This evolution of the void
influences the cross section of the conducting metal and therefore, affects the resistance
of the metallization of ICs.

5.6. Resistance Development due to Void Evolution

The simulation of the void evolution is accompanied by a resistance evaluation. In
Figure 5.23 the resistance development in time is shown for different current densities.
Due to the growth of the void the conducting cross section decreases leading to a higher
resistance. Furthermore, the current density at the void surface increases too, leading
to higher EM driving forces at the void surface accelerating the resistance growth.

Here, the failure is caused by an increase of the resistance above a certain value
depending on the circuit the open TSV is used in. Therefore, a criterion has to be
chosen by the circuit designers with regard to the circuit. For the fit to Black ’s equation
an increase of the resistance to twice the value and three times the value of the initial
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Figure 5.24.: Fitting of the TTF to Black ’s equation.

resistance was chosen. In Figure 5.24 the data points of the TTF for different currents
for both criteria are plotted and the graphs of the two fits are sketched, again using a
log-log plot. For the double value criterion a current exponent of 0.81 and for the triple
value of 0.87 were obtained.
Changes in the residual stress, due to the fabrication process or surrounding elements

as well as actual operating temperature distributions, have to be accounted for in order
to gain meaningful TTF predictions.
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Chapter 6
Summary and Outlook

For many decades Moore’s law has been the main driving force behind transistor scaling
and miniaturization efforts in the semiconductor industry. For each technology node
the technological problems become more pronounced and will inevitable reach funda-
mental physical limits in the near future. Thus, alternative trends in technological
advancements, which attempt to deal with the integration of devices beyond memory
and logic, dubbed More-than-Moore, gain in importance. One of those trends is the
addition of technologies which do not scale according to Moore’s Law but nevertheless
add functionality and complement to the trend to integrate digital logic, analog/RF,
memory, sensors, actuators, bio chips, etc. in a single package. This requires the three-
dimensional stacking of different technologies by using TSVs. The resulting benefits are
denser device packaging, lower power consumption, and reduced RC-delay.
Although TSVs present many advantages, there are still significant reliability concerns

with this technology, such as permissible thermal budget, mechanical stability, process
variability, and device reliability, which must be addressed before mass production is
viable. One of the main concerns for the reliability of open TSVs is their degradation
under EM.
This work concerns itself with the quantum mechanical understanding of EM. Fur-

thermore, the development of the continuum mechanical descriptions of EM including
the material flow and the thereby arising long-time failure issues is addressed. Finally
the state of the art models, which cover the two different modes of failure are presented
and their implementation in a commercial tool is described. The two failure modes differ
in the way the device malfunction is triggered, as previously studied in dual-damascene
interconnects. In the first mode a crack interrupts the conduction of the metallization
structure due to an increased mechanical stress, while in the second mode a void is
formed which does not immediately trigger a failure. This void migrates and grows in-
side the metallization, until its induced resistance overcomes a critical value needed for
the system to operate uninterruptedly. In this study it was found that open TSV struc-
tures are prone to the same modes of failure as interconnects, while particular attention
must be paid to the metal-metal interfaces.
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In order to assess the reliability of a state-of-the-art open TSV structure, the EM
through the metal layers in the TSV is analyzed. Two different metals are employed in
the TSV design: aluminium for the top and bottom wafer contacts and tungsten for the
current conduction through the wafer. The first step was the analysis and identification
of the parameters showing the highest EM impact and their relations to the adjoining
metal layers. In order to achieve this the interface behavior between the metals was
studied to determine the worst case scenario. It was found that, for certain material
combinations, a blocking behavior between the metals leads to a vacancy pile up at
the interface resulting in an increased stress, which eventually triggers one of the two
possible failure modes. This worst case is unfortunately the scenario when using a
metal combination of tungsten and aluminium as employed in the considered open TSV
structure. Therefore, it was found that a vacancy pile-up and thereby increased stress
can be found at the top and bottom of the TSV, where the tungsten and aluminum
layers are in contact.
Since EM is driven by the divergence of the current density, locations where current

crowding occurs are highly relevant. Therefore, these locations were identified and are
typically situated at corners and sharp edges. They are further augmented at interfaces
with conductivity discontinuities. As this is a feature found in the particular device
under investigation a variation of the geometry and conductivity was carried out in
order to investigate methods to minimize the current crowding. For the studied device,
current crowding was found to be most pronounced at the tungsten/aluminium overlap
at the TSV top. As a general rule regarding overlapping metal lines the layer with the
higher resistance should have a proportionally higher layer thickness to achieve a more
homogeneous current density at the interface. This was found not to be the case for the
studied structure, meaning that increasing the tungsten thickness would alleviate the
interface current crowding.
Due to the high aspect ratios present in the TSV, a fully three-dimensional EM simu-

lation of the entire structure using the finite element approach is only manageable with
a fairly coarse mesh, reducing the accuracy of the results. Therefore, only a segment
of the TSV structure was selected for detailed analysis, taking into account the current
crowding simulations carried out previously. In addition, considering the fact that tung-
sten has a higher EM resistance than aluminium, a separate consideration was made for
the top of the TSV. These simulations revealed the locations, where the highest tensile
stress is located. The location is typically close to the interfaces between the aluminium
and the tungsten as well as the aluminium and the silicon dioxide. Void nucleation or
cracking will appear there as soon as a critical threshold stress is exceeded.
Assuming a critical stress in the order of 200MN/m2 the time to failure varies between

about 110 days and 65 days under accelerated conditions, while the applied current is
varied from 1.5MA/cm2 to 3MA/cm2, respectively. The results were further used to
calibrate the well known Black equation. This calibration showed the validity of the
compact model based on Black equation and allows for an extrapolation to normal
operating conditions for the technology under consideration and thus completes the
assessment of the first mode of failure under EM.
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Following this simulation the void evolution model was employed to examine the
second failure mode under EM. Since the phase field model allows for the simulation of
the void propagation without computationally expensive remeshing, it was implemented
in the finite element code for the second failure mode to study open TSV structures.
For the study an initial void was placed at the locations where the previous simulations
showed high stress levels. This void begins to migrate in the aluminium in the direction
of the current, while continuously increasing the resistance of the metal line.
While in the initial failure mode a critical stress determined failure, the mode studied

in the second section deals with a failure due to an increased resistance. Reaching the
threshold resistance determines the time to failure for a given device. The time to failure
for the open TSV was analyzed and compiled within a compact model, suitable for failure
predictions under non-accelerated operating conditions. Assuming a failure is reached,
when the resistance increases to double or triple the unvoided metal resistance, a failure
will occur after operating for 870 days or 1270 days, respectively, under accelerated
conditions, when a current density of 1MA/cm2 is applied.
The demonstrated EM results and simulations provide circuit designers with a useful

tool based on TCAD methods to estimate the time-to-failure due to EM of modern
interconnect structures. Nevertheless further extensions for EM simulations should be
addressed. In future studies the residual stress emerging from the fabrication process,
which has a significant impact on the device reliability must be taken into account.
Therefore, this stress must also be evaluated and included in the simulations. As this
stress is not only dependent on the metal line itself, but also on the surrounding struc-
tures and materials, the variability of the material properties has to be considered as
well. The influence of the process variability on the device performance is usually mod-
eled using a statistical approach. Furthermore, the micro-structure of the metallization
(eg. bamboo structure) and the surrounding interfaces can impact the EM behavior
significantly and should be also taken into account.
The impact of the micro-structure, grain boundaries, and interfaces to the surround-

ing materials are especially pronounced in nano-interconnects. Nano-sized interconnects
are connectors between the metal lines and the drains or sources of nano-sized transis-
tors. An approach to model EM in these structures must be examined. The question,
if the continuum model implemented in this work is still valid, has to be answered and
the EM behavior at grain boundaries and interfaces must be properly addressed. Fur-
thermore, the coefficient Z∗ is currently treated as a material-dependent, but geometry-
independent constant. Due to an increased number of scattering sources, such as at a
rough metal interface, Z∗ will likely need to be adjusted according to the metal thickness
or grain sizes.
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Appendix A
The Asymptotic Limit of the Phase Field
Model

In this chapter the behavior of the phase field model in its asymptotic limit is discussed,
as described by Bhate et al. [9]. The analysis shows that in the limit of an infinitely thin
interface the phase field model equations converge to the equations of the sharp interface
model. The interface thickness, described in Section 3.6, is controlled by the parameter
�pf and, therefore, the asymptotic limit to an infinitely thin interface is accomplished by
driving this parameter against zero [38].

For an easier handling the governing equations are rewritten in a dimensionless form [9]:

∂φ

∂t̃
=

2

�̃π
∇̃ ·

�
D̃s

�
∇̃μ̃− χ∇̃φ̃E

��
− 4

�̃π
J̃nv, (A.1)

=
2

�̃π
∇̃ ·

�
D̃s∇̃μ̃∗

�
− 4

�̃π
J̃nv, (A.2)

where in ∇̃μ̃∗ both the gradient of the chemical potential ∇̃μ̃ and the therm due to the
electric field −χ∇̃φ̃E are added and

μ̃ =
4

�̃π

�
f � (φ)− �̃2Δ̃φ

�
+ 2Λ

∂W̃

∂φ
, (A.3)

where the connection between the dimensionless quantities and the quantities with units
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Figure A.1.: Illustration of the partitioning of the void metal region into interface, void,
and metal domains for the inner expansion [9].

are given by

�pf = �̃a, (A.4)

x = x̃a, (A.5)

t = t̃
a4

ΩγsDs

, (A.6)

φE = φ̃EE
∗a, (A.7)

W = W̃W ∗, (A.8)

Jnv = J̃nv
ΩγsDs

a3
, (A.9)

μ = μ̃
Ωγs
a

. (A.10)

There a is a characteristic length, E∗ is a characteristic electric field strength, and W ∗

is a characteristic strain energy. Furthermore, Ω is the volume of an atom in the lattice,
γs is the surface energy of the metal/void interface, and Ds is the diffusion coefficient at
the metal surface.
In the further discussion the tilde sign above the dimensionless values will be omitted

for easier reading. If a distinction is needed, it will be explicitly pointed out. The
parameters in (A.1) and (A.3) are given by

χ =
eZ∗E∗a2

Ωγs
, (A.11)

Λ =
W ∗a
γs

, (A.12)

where the quantities χ and Λ are dimensionless numbers characteristic for the formulated
problem.
For the derivation a local coordinate system is chosen, as already used for the sharp

interface model. This coordinate system is extended to the region of the diffuse interface
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and splits up the simulation domain into three regions. The regions are the metal region,
the void region, and the interface region separating the two former (cf. Figure A.1).
The derivations for the asymptotic limit is carried out in two steps. First the formulas

are transformed into the local coordinate system. This step is followed by the introduc-
tion of the Taylor expansion in � of the functions and a splitting of the equations in
terms of �-orders.
For the local coordinate system, some definitions are required regarding the calculation

of the normal vector n
n = −∇xr (A.13)

and the curvature κ for the φ = 0 contour.

κ = Δxr (A.14)

The subscript x is used for the common differential operators. Furthermore, the nor-
mal velocity of the interface is expressed by the time derivative of the φ = 0 contour
(interface)

vn =
∂r

∂t
, (A.15)

and the r-coordinate of the local coordinate system is normalized as

ρ =
r

�
. (A.16)

As the asymptotic expansion is carried out in the local coordinate system all functions
have to be expressed in this coordinate system as well:

ψ (x) = Ψ (r (x), s (x)) (A.17)

For the time derivative the chain rule gives

∂ψ

∂t
= Ψ,t +Ψ,s

∂s

∂t
+Ψ,r

∂r

∂t
, (A.18)

where the indices after the comma stand for the derivative

Ψ,k =
∂Ψ

∂k
. (A.19)

By again employing the chain rule the ∇x operator can be expressed in the new coordi-
nate system by

∇xψ = Ψ,s∇xs+Ψ,r∇xr. (A.20)

The last needed differential operator is the Laplace operator given by

Δxψ = ΔsΨ+Ψ,rΔxr +Ψ,rr|∇r|2 (A.21)

in the new coordinate system, where the first term, containing only functions Ψ differ-
entiated with respect to s, is defined by

ΔsΨ = Ψ,ss|∇s|2 +Ψ,sΔxs. (A.22)

83



The boundary conditions for the Γ− and Γ+ contour for the phase field function (cf. Fig-
ure A.1) are given by

lim
x→Γ±

φ = ±1 (A.23)

as there the pure metal or the pure void starts and

lim
x→Γ±

∂φ

∂n
= 0, (A.24)

as the phase field function has to be a smooth function everywhere and, therefore, also
at the boundary contours between the metal and the interface and between the void and
the interface. The flux at the interface has to be limited to the interface leading to a
third boundary condition of zero flux from the interface into the metal or the void given
by

lim
x→Γ±

�
2Ds

�π
(∇μ− χ∇ϕ)

�
= 0. (A.25)

The inner expansion of the order parameter and the chemical potential, where the
EM therm is included, is the Taylor expansion with respect to the interface thickness
controlling parameter �.

φ = φ0 + �φ1 + �2φ2 +O(�3) (A.26)

μ = μ0 + �μ1 + �2μ2 +O(�3) (A.27)

μ∗ = μ∗
0 + �μ∗

1 + �2μ∗
2 +O(�3) (A.28)

The constant multipliers 1
n!

from the Taylor expansion are absorbed into the functions
φn, μn and μ∗

n. First the differential operators (A.18)-(A.21) for functions in the local
coordinate system in (A.1) are employed, resulting in

∂φ

∂t
= φ,t + φ,s����

=0

∂s

∂t
+ φ,r

∂r

∂t
(A.29)

= ∇ ·
�
2Ds

�π
∇μ∗

�
− 4

�π
Jnv =

2

�π
∇Ds · ∇μ∗ +

2

�π
DsΔμ∗ − 4

�π
Jnv

=
2

�π
(
∂Ds

∂φ
φ,s����
=0

∇xs+
∂Ds

∂φ
φ,r∇xr) ·

�
μ∗
,s∇xs+ μ∗

,r∇xr
�
+

2

�π
DsΔμ∗ − 4

�π
Jnv

=
2

�π
(
∂Ds

∂φ
φ,rμ

∗
,s ∇xr · ∇xs� �� �

=0

+
∂Ds

∂φ
φ,rμ

∗
,r ∇xr · ∇xr� �� �

=1

) +
2

�π
DsΔμ∗ − 4

�π
Jnv

=
2

�π
(
∂Ds

∂φ
φ,rμ

∗
,r) +

2

�π
Ds(Δsμ

∗ + μ∗
,rΔxr + μ∗

,rr)−
4

�π
Jnv,

where the derivatives of the phase field function with respect to the tangential direction
are zero as in this direction the phase field function is constant (zero). Furthermore,
∇r and ∇s are orthogonal to each other and due to the normalization of n, the inner
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product of ∇r with itself is equal to one. Using ∂
∂r

= 1
�

∂
∂ρ

(e.g. μ∗
,r =

μ∗
,ρ

�
), derived from

(A.16), results in

�2
π

2
φ,t + �

π

2
φ,ρ

∂r

∂t
=

1

�

∂Ds

∂φ
φ,ρμ

∗
,ρ + �DsΔsμ

∗ +Dsμ
∗
,ρκ+

1

�
Dsμ

∗
,ρρ − 2Jnv. (A.30)

Inserting the inner expansions (A.26) and (A.28) defined above and taking only terms
to the first order in � into account leads to the equation

�
π

2
φ0,ρ

∂r

∂t
+O(�2) =

1
�
∂Ds
∂φ

φ,ρμ∗
,ρ� �� �

1

�

∂Ds

∂φ
φ0,ρμ

∗
0,ρ +

∂Ds

∂φ
φ0,ρμ

∗
1,ρ + �

∂Ds

∂φ
φ0,ρμ

∗
2,ρ +O(�2)+

�DsΔsμ∗� �� �
�DsΔsμ

∗
0 +O(�2)+

Dsμ∗
,ρκ� �� �

Dsμ
∗
0,ρκ+ �Dsμ

∗
1,ρκ+O(�2)+

1
�
Dsμ∗

,ρρ� �� �
1

�
Dsμ

∗
0,ρρ +Dsμ

∗
1,ρρ + �Dsμ

∗
2,ρρ +O(�2)−2Jnv. (A.31)

Reordering the equation by collecting the terms with the same order of � and leaving
away the terms of the second order leads to the equation

�
π

2
φ0,ρ

∂r

∂t
=

1

�

�
∂Ds

∂φ
φ0,ρμ

∗
0,ρ +Dsμ

∗
0,ρρ

�
+

�
Dsμ

∗
0,ρκ+

∂Ds

∂φ
φ0,ρμ

∗
1,ρ +Dsμ

∗
1,ρρ

�
+ �

�
DsΔsμ

∗
0 +Dsμ

∗
1,ρκ+

∂Ds

∂φ
φ0,ρμ

∗
2,ρ +Dsμ

∗
2,ρρ − 2Jnv

�
(A.32)

and the different orders of � can be handled separately giving the following set of equa-
tions:

O �
�−1

�
: 0 =

(Dsμ∗
0,ρ),ρ=0� �� �

∂Ds

∂φ
φ0,ρμ

∗
0,ρ +Dsμ

∗
0,ρρ (A.33)

O �
�0
�
: 0 = Ds

=0����
μ∗
0,ρ κ+

(Dsμ∗
1,ρ),ρ=0� �� �

∂Ds

∂φ
φ0,ρμ

∗
1,ρ +Dsμ

∗
1,ρρ (A.34)

O �
�1
�
:

π

2
φ0,ρ

∂r

∂t
= DsΔsμ

∗
0 +Dsμ

∗
1,ρκ+

∂Ds

∂φ
φ0,ρμ

∗
2,ρ +Dsμ

∗
2,ρρ − 2Jnv (A.35)

The first over-brace in (A.33) shows that the term Dsμ
∗
0,ρ is constant in ρ. With the

definition of the diffusion coefficient

Ds (φ) =

�
1 if |φ| < 1,

0 otherwise
, (A.36)
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it can be concluded that
μ∗
0 = F (s, t) (A.37)

and the first over-brace in (A.34) is zero as μ∗
0 is independent of ρ and the second

over-brace in (A.34) can be handled like the first over-brace in (A.33).

μ∗
1 = G (s, t) (A.38)

Applying the same procedure of the transformation into the local coordinate system
and applying the Taylor expansion to the chemical potential results in the equation

π

4
(μ0 + �μ1 +O(�2)) =

1

�
(−φ0,ρρ + f �(φ0))

+

�
−φ0,ρκ− φ1,ρρ + f ��(φ0)φ1 +

π

2
Λ
∂W0

∂φ0

�
+O(�), (A.39)

and a separation of the equation into a set of equations ordered by the order in � gives

O �
�−1

�
: 0 = −φ0,ρρ +

−φ0� �� �
f �(φ0) (A.40)

O �
�0
�
:

π

4
μ0 = −φ0,ρκ− φ1,ρρ + f ��(φ0)φ1 +

π

2
Λ
∂W0

∂φ0

, (A.41)

where the double obstacle function defined in Section 3.6 was used for the bulk free
energy defined by

f (φ) =

�
1
2
(1− φ2) if |φ| < 1,

∞ otherwise
. (A.42)

Setting the term of the order 1
�
equal zero leads to the differential equation

φ0,ρρ + φ0 = 0 (A.43)

with the solutions
φ0 = A sin (ρ) + B cos (ρ) , (A.44)

where, due to the boundary conditions (A.23) and (A.24), A equals one and B equals
zero and the thickness of the interface in the ρ coordinate is π. Taking the terms of the
zeroth order of � of (A.39) and rearranging them leads to

φ1,ρρ − f ��(φ0)φ1 = −π

4
μ0 − φ0,ρκ+

π

2
Λ
∂W0

∂φ0

= R, (A.45)

where R is not a function of φ1. This equation has the same structure as the derivative
of (A.43) with respect to ρ. Therefore only the trivial solution can meet the boundary
conditions given by (A.24) and

φ1

�
±π

2
, s, t

�
= 0. (A.46)
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Integrating (A.45) in ρ direction over the whole interface region results in

π

4
μ0

Γ−�
Γ+

φ0,ρdρ

� �� �
2

= −κ

Γ−�
Γ+

φ2
0,ρdρ� �� �
π
2

+
π

2
Λ

Γ−�
Γ+

∂W0

∂φ0

φ0,ρdρ

� �� �
[[W0]]

, (A.47)

where the under-braces give the results of the integrals. With the assumption of zero
elastic strain energy in the void this leads to

μ0 = −κ+ ΛW0. (A.48)

This is the same equation as (3.47) and shows that the chemical potential in the asymp-
totic limit converges to the sharp interface model. Coming back to (A.32), taking the
terms of first order in �, and again integrating over the interface in ρ gives

π

2

vn����
∂r

∂t

2� �� �
Γ−�

Γ+

φ0,ρdρ = DsΔsμ
∗
0

π� �� �
Γ−�

Γ+

dρ+

Γ−�
Γ+

Ds

0����
μ∗
1,ρ κdρ+

Γ−�
Γ+

�
∂Ds

∂φ
φ0,ρμ

∗
2,ρ +Dsμ

∗
2,ρρ

�
� �� �

(Dsμ∗
2,ρ),ρ=0

dρ−
Γ−�

Γ+

2Jnvdρ, (A.49)

where for the third term on the right hand side the zero flux condition was employed,
resulting in the equation for the normal velocity of the sharp interface model

vn = Δsμ
∗
0 − D̂ (μbv − μsv) (A.50)

= Δsμ0 − χΔsφE − D̂ (μbv − μsv) .

These evaluations show that the phase field model for �pf going to zero converges to the
sharp interface model and can therefore be used for the simulations of voids as long as
�pf is chosen carefully. The upper limit is in the order of the smallest curvature occurring
at the surface of the voids. The lower limit is given by the meshing resolution. From one
side of the boundary region to the other a minimum of five meshing elements is needed
to guarantee the stability of the FEM simulation, as was found by empirical studies.
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Appendix B
Vacancies in a Crystal Lattice

According to [16, 51] the appearance of vacancies in a lattice can be explained by ther-
modynamical arguments. Suppose atoms are taken away from lattice positions and
migrated to the surface leaving back vacancies. This kind of defects are called Schottky
defects illustrated in Figure B.1. By assuming an atom positioned on a lattice site has
the energy −� and an empty position has zero energy the state energy of a lattice with
N0 defects can be expressed by

U = �N0. (B.1)

Figure B.1.: Crystal lattice with atoms migrated to the surface leaving back Schottky
defects [51].

As the vacancies are indistinguishable the number of distinct ways of distributing N0

vacancies in a lattice with N lattice sites is given by

NΓ =
N !

N0!(N −N0)!
. (B.2)

For a micro-canonical assembly, the entropy is defined by

S = kB lnNΓ. (B.3)
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Employing Stirling ’s approximation for big N

lnn! ≈ n lnn− n+
1

2
ln 2πn, (B.4)

and omitting the terms of the order of lnn results in

S = kB

�
N lnN −N0 lnN0 − (N −N0) ln (N −N0)

�
. (B.5)

With (B.1) the entropy can be expressed as a function of the state energy and can further
be related to the temperature by

1

T
=

�
∂S

∂U

�
N

, (B.6)

resulting in

1

T
= kB

�
∂S

∂N0

�
N

∂N0

∂U
(B.7)

= kB

�
ln (N −N0)− lnN0

�∂N0

∂U
(B.8)

=
kB
�
ln

N −N0

N0

. (B.9)

The final result can be rewritten giving

N0

N
=

1

e
�

TkB − 1
, (B.10)

which makes only sense when the ratio is much less then one. Otherwise the solid would
by perforated with holes and collapse. For a typical energy value � of 1eV �/TkB is in
the range of 39 and the ratio of vacancies to the total available sites is in the order of
10−17 at room temperature. For small temperature the vacancy to lattice sites ratio
function converges to

N0

N
= e

− �
kBT (B.11)

and has the form of an Arrhenius law used in the modeling of electromigration introduced
in Chapter 3.
The specific heat for vacancy formation can be calculated by [48]

C =
∂U

∂T
=

∂ (�N0)

∂T
= NkB

�
�

2kBT

�2

sech

�
�

2kBT

�2

(B.12)

and vanishes at low temperature due to the excitation gaps. At high temperature the
energy spectrum is bounded from above. For practically used materials not only the
configuration entropy but also other entropies like the vibration entropy are present.
Still the derivation shows that in a real crystal lattice vacancies are always present.
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