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Abstract

Volumetric mesh generation plays an important role in computer-aided engineering processes.
Often, objects used in computer-aided engineering, for example a gear, show symmetries or
similarities. So far, available volumetric mesh generation and adaptation algorithms do not
consider symmetries or similarities and thus ignore potential memory and algorithm optimizations.
For example, instead of generating and storing a mesh of a regular 16-polygon, the mesh of one
single slice can be generated and stored together with the information that this so-called mesh
template is copied and rotated 16 times to yield the desired 16-polygon mesh. In this particular
case, improvements in memory and algorithm runtime of a factor of 16 are expected.

This work investigates how the generation, usage, and storage of volumetric meshes can benefit
from symmetries and similarities. In particular, impacts and optimizations in memory usage,
algorithm runtime, and mesh element quality are investigated. For this reason, a theory based on
so-called templated structures is developed. These templated structures contain mesh templates
which are instanced (potentially) multiple times using geometrical transformations to obtain the
resulting mesh. The proposed theory uses an abstract approach to support both, symmetries
as well as similarities. Furthermore, theoretical mechanisms are developed to tackle potential
conformity issues at mesh instance interfaces.

Based on these theoretical approaches, data structures and algorithms for adapting and
generating templated meshes are developed in this thesis. In particular, two different algorithms
for templated mesh generation are proposed and investigated. These algorithms are also specialized
for symmetries, being reflective and rotational symmetries and their combinations. Additionally,
a selection of popular mesh adaptation algorithms is investigated for their use with templated
structures.

The benefits of the proposed data structures and algorithms are investigated and discussed in
a benchmark-based survey. Expected memory savings and runtime speedups of the templated
mesh generation process are indeed achieved for all considered two-dimensional and most three-
dimensional objects. For three-dimensional objects with high rotational symmetry orders, the
improvements are lower than expected but at least a factor of 15. Memory savings drop significantly
when including memory requirements for the system matrix of a finite element method. Therefore,
a templated matrix data structure is developed, which compensates these losses. Mesh element
qualities of templated meshes are as good as conventionally generated meshes in most scenarios
and minimally worse otherwise.

Additionally, effects of symmetric and non-symmetric meshes on finite element based simula-
tions are investigated. If the simulation domain is symmetric, the mathematical solution to the
boundary value problem with boundary conditions transformed by the symmetry transformation
is equal to the transformed solution of the initial problem. However, an analysis shows, that a
symmetric mesh is required for this statement to hold for the numerical solutions with a finite
element method.
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Zusammenfassung

Die Erzeugung von volumetrischen Gittern spielt eine wichtige Rolle in diskretisierungs-basierten
rechnergestützten Entwicklungsprozessen. In diesem Zusammenhang relevante Objekte besitzen
oft Symmetrien oder bestehen aus gleichartigen Bausteinen, welche jedoch von Algorithmen zur
Erzeugung oder Adaptierung von volumetrischen Gittern bisher nicht berücksichtigt werden, was
zu ungenutztem Speicher- und Laufzeitoptimierungspotential führt. Beispielsweise kann bei einem
regulären 16-Eck anstelle des Gitters des Gesamtobjekts nur das Gitter eines Tortenecks generiert
und gespeichert werden. In diesem Fall ist eine Ersparnis an Speicherbegarf und Laufzeit von
einen Faktor 16 zu erwarten, auch wenn die benötigte Zusatzinformation, in diesem Fall die
16-malige Kopie und Rotation des Tortenecks, einen zusätzlichen Aufwand bedeutet.

In dieser Arbeit wird untersucht, ob und wie Symmetrien und Ähnlichkeiten bei Erzeugung,
Verwendung, und Speicherung von volumetrischen Gittern vorteilhaft genutzt werden können. Im
Speziellen werden Auswirkungen und Optimierungen auf den Speicherverbrauch, die Algorithmen-
laufzeit, und die Gitterelementqualität analysiert. Zu diesem Zweck wird eine Theorie entwickelt,
welche sich mit potentiell mehrfacher Instanzierung von sogenannten Vorlagenstrukturen anhand
von geometrischer Transformationen beschäftigt. Die vorgestellte Theorie benutzt einen abstrak-
ten Ansatz, um sowohl Symmetrien als auch andere Ähnlichkeiten zu unterstützen. Zusätzlich
werden Mechanismen vorgestellt, welche die Kohärenz der Schnittstellen von verschiedenen
Vergitterungsinstanzen sicherstellen.

Basierend auf diesen theoretischen Ansätzen werden Datenstrukturen und Algorithmen zum
Erzeugen und Adaptieren von Gittern entwickelt. Konkret werden zwei Algorithmen zum
Erzeugung von Vorlagengittern vorgestellt und untersucht, welche auch für Spiegelungs- und Ro-
tationssymmetrien sowie deren Kombinationen spezialisiert werden. Zusätzlich wird eine Auswahl
von populären Gitteradaptierungsalgorithmen auf deren Benutzbarkeit mit Vorlagenstrukturen
untersucht.

Die Vorteile der vorgestellten Datenstrukturen und Algorithmen werden in einer Leistungsver-
gleichstudie untersucht und diskutiert. Für alle zwei-dimensionalen und für die meisten drei-
dimensionalen Objekte sind die Verbesserungen beim Speicherverbrauch und in der Algorith-
menlaufzeit von der Erzeugung von Vorlagengittern mindestens so hoch wie erwartet. Für drei-
dimensionale Objekte mit hoher Rotationssymmetrieordnung sind die Verbesserungen geringer,
allerdings mindestens ein Faktor 15. Wenn der Speicherverbrauch der Systemmatrix einer Finite-
Elemente-Methode berücksichtigt wird, sinken die Verbesserungen im Speicherverbrauch allerdings
sigifikant. Um diese Verluste zu kompensieren, wird eine Datenstruktur für die Systemmatrix
entwickelt, welche auf den Konzepten der Vorlagengitter basiert. Die Qualität der Gitterele-
mente von Vorlagengittern ist in den meisten Fällen mindestens so gut wie die von konventionell
erzeugten Gittern und minimal schlechter sonst.

Zusätzlich werden die Effekte von symmetrischen und nicht symmetrischen Gittern auf
Simulationen basierend auf der Finite-Elemente-Methode untersucht. Wenn das Simulationsgebiet
symmetrisch ist, dann ist die mathematische Lösung des Simulationsproblems, bei dem die
Randbedingungen des Initialproblem mit der Symmetrietransformation transformiert werden,
gleich der transformierten Lösung des Initalproblems. Eine Analyse zeigt allerdings, dass ein
symmetrisches Gitter benötigt wird damit, die vorige Aussage auch für die nummerischen Lösungen
einer Finite-Elemente-Methode zutrifft.
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Chapter 1

Introduction and Motivation

During the last decades, computer-aided engineering (CAE) methods have become very popular
for simulating the behavior of science and engineering problems. For the vast majority of these
simulations, differential equations, or their higher-dimensional versions – partial differential
equations (PDEs) – are used to mathematically describe the desired physical processes [33]. For
example, in technology computer-aided design (TCAD), the continuity equation with the drift-
diffusion model is used to describe the behavior of the electrostatic potential and electronic charge
carriers within a semiconductor [125]. In computational fluid dynamics (CFD), the Navier-Stokes
equations are used to describe the motion of fluids [25]. The combinations of Euler’s equations of
motions and the Euler-Cauchy stress principle yields a system of PDEs, which is used for stress
analysis in structural mechanics [110].

Besides the mathematical model, a simulation scenario additionally requires a simulation
domain, on which the PDE is applied, and boundary conditions which represent influences
from the outside. This is called a boundary value problem or, generally speaking, a simulation
problem [23]. However, even if the existence and uniqueness of the solution of a boundary
value problem can be proven mathematically, the number of PDEs with an explicit analytical
solution is small [51]. The two examples named above, i.e., the drift-diffusion equations and the
Navier-Stokes equations, do not have explicit analytical solutions in general. Therefore, numerical
approaches have to be used to calculate approximate solutions. Popular numerical approaches
are the finite difference method (FDM) [112], the finite volume method (FVM) [111], and the
finite element method (FEM) [57]. These methods require that the simulation domain, which in
its most general form is represented by a geometry, is decomposed (also referred to as discretized)
into a discrete mesh to obtain a finite representation of the simulation domain. Hence, meshes
are an integral component of a simulation process.

Geometries of objects in CAE scenarios, like a gear in a stress simulation, are usually designed
using computer-aided design (CAD) tools. Many objects in CAE applications inherently require
symmetries to function. For example, a gear which is not rotationally symmetric will not work
properly. Consequently, symmetries (cf. Figure 1.1) and similarities (cf. Figure 1.2) are of special
interest, because they can be used to understand the structure and shape of the geometry. In
particular, objects with symmetries and similarities can be constructed from smaller pieces of the
object using rigid transformations as shown in Figure 1.3.

The main motivation of this work is to leverage symmetries and similarities in objects when cre-
ating, using, and storing meshes which are ignored by conventional mesh generation and adaptation
algorithms. Using the fact that objects with symmetries and similarities can be constructed from
smaller pieces (cf. Figure 1.3), a data structure can be defined, where that piece is only stored once
hence saving memory. The same idea can be applied for mesh generation processes, where generat-
ing a mesh of smaller pieces is considerably less time consuming than meshing the entire geometry.
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(a) Gear, rotational symmetry1 (b) Airplane, reflective symmetry2

(c) Open TSV device [28], rotational symmetry (d) FlexFET device [74], reflective symmetry

Figure 1.1: Objects with symmetries used in CAE

Figure 1.2: A sketch of a bridge3 with similarities

There are multiple parts of this bridge construction, which are similar to each other, for example the bars C
and C1 or A and A1.

1Gear image by Inductiveload [Public domain], via Wikimedia Commons, https://commons.wikimedia.org/wiki/
File%3ASpur_Gear_12mm%2C_18t.svg

2Aircraft image by Kaboldy (Own work) [CC BY-SA 4.0], via Wikimedia Commons, https://commons.wikimedia.
org/wiki/File%3ABoeing_747-400_3view.svg

3Image by Charles Edward Inglis [Public domain], via Wikimedia Commons, https://commons.wikimedia.org/
wiki/File%3AInglis_bridge_patent.png
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(a) Airplane, reflective symmetry (b) Star, rotational symmetry

Figure 1.3: Re-construction of objects with symmetries

The objects can be reconstructed by using smaller pieces, those being one side of the plane and a jag of the
star, respectively. The smaller piece is copied and reflected or rotated around the symmetry center to obtain the
desired object.

(a) Symmetric object (b) Non-symmetric mesh

Figure 1.4: Symmetric geometry and exemplary non-symmetric mesh

Even though the object itself has a rotational and a reflective symmetry, the mesh has neither.

Mesh templates Resulting mesh

(a) Conforming templated mesh

Mesh templates Resulting mesh

(b) Non-conforming templated mesh

Figure 1.5: Templated meshes

The resulting mesh is obtained by applying the transformation functions on the mesh templates. Non-conformities
are visualized by red circles.

Aside from memory and runtime aspects, ignoring symmetries during the mesh generation
process potentially results in non-symmetric meshes (cf. Figure 1.4). If the simulation domain is
symmetric, the boundary conditions can be transformed by the symmetry transformation. The
mathematical solution to the simulation problem with transformed boundary conditions is equal
to the transformed solution to the initial problem. However, this is not the case for a numerical
solution if a non-symmetric mesh is used. It is therefore a central goal of this work to provide
algorithms which generate high-quality meshes having the same symmetry as the corresponding
simulation domain.
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The ideas for the main approaches presented in this work originate from the field of computer
graphics. In particular, the approach is motivated by a technique called geometry instancing [92],
where a mesh template is used to render a high number of instances into a scene. Every instance
has its own location and orientation within the scene and potentially additional differences, like
scaling, color, or textures. In this work, the concepts of geometry instancing are applied to
volumetric meshes used for simulations. The theories developed in this work are focused on
similarities as they also are able to represent symmetries. For example, the slice of an object with
a rotational symmetry is similar to all other slices of that object. A set of mesh templates each
coupled with a set of transformations, called a templated mesh, is used to define a resulting mesh
as visualized in Figure 1.5a. However, most algorithms for meshes used in computer graphics
cannot be directly applied to volumetric meshes used in simulations. In computer graphics and
rendering applications, surface meshes are used rather than volumetric meshes. These surface
meshes are not required to be conforming, meaning that, e.g., the surface mesh is allowed to have
holes or self-intersections. The conformity property, however, is an important requirement for
meshes used in science and engineering as it is mandatory for discretization-based simulation
methods like the FEM. This property is not automatically guaranteed when using templated
meshes as can be seen on the right of Figure 1.5b. Therefore, algorithms for templated mesh
generation and templated mesh adaptation have to take special care to ensure element conformity.

Theoretical approaches for templated meshes are developed in this work. These approaches
are used to formulate new mesh generation and adaptation algorithms for their application with
templated meshes. This work focuses on templated mesh generation algorithms, where two
new general algorithms are proposed. Special (less complicated) mesh generation algorithms
for geometries with symmetries are formulated as well. Additionally, data structures for storing
templated meshes are developed, which optimize memory usage. The proposed data structures
and mesh generation algorithms have been implemented in the open source meshing framework
ViennaMesh [19]. Using these implementations, a benchmark-based survey is performed to
evaluate improvements in memory usage and algorithm runtime as well as element quality and
errors in simulation solutions. In particular, this work addresses the following research questions
with a focus on challenges in micro- and nanoelectronics:

(i) How can templated meshes and templated geometries be defined? Are there any restrictions
or issues? Which restrictions and which issues apply to objects with symmetries?

(ii) How can properties, like the Delaunay property, be abstracted to templated meshes?

(iii) Which algorithms for conventional meshes also work for templated meshes? Which modifi-
cations are required for these algorithms?

(iv) How can a templated mesh be generated based on symmetric geometries?

(v) What are the effects on mesh element quality of a templated mesh generation algorithm
compared to a conventional mesh generation algorithm? How do non-symmetric meshes (of
symmetric geometries) affect the solution of simulation processes?

(vi) How much memory can be saved when using templated meshes?

(vii) What are the effects on the runtime performance for templated mesh generation algorithms?

Chapter 2 introduces general definitions and theorems for geometries and meshes with a
special focus on mesh properties which are important for discretization-based simulation methods,
like the Delaunay property or mesh element quality. The necessary mathematical basics are
covered in Appendix A.

Related work on meshes as well as algorithms for generating and adapting meshes is covered in
Chapter 3. Additionally, the results of a literature search on automatic similarity and symmetry
detection and symmetry-aware mesh processing is provided.
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The theoretical background for templated structures, including definitions and theorems, is
presented in Chapter 4. In this chapter, the major theoretical results of this work are deduced
and discussed.

Two volumetric mesh generation algorithms for templated structures are presented in Chapter 5.
Additionally, this chapter investigates a popular selection of mesh adaptation algorithms for their
use with templated meshes and discusses restrictions and modifications.

In Chapter 6, decomposition methods for shapes, especially shapes with similarities and
symmetries, are presented and special properties of objects with symmetries are discussed.
Additionally, the theoretical results and the proposed algorithms presented in the previous
chapters are applied to symmetric meshes and geometries.

A benchmark-based survey is presented in Chapter 7, which investigates the benefits of the
data structures and algorithms proposed in this work.

The last chapter, Chapter 8, concludes the work by evaluating the research questions and
gives an outlook on possible future work.
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Chapter 2

Geometries and Meshes

Basic definitions and lemmas for geometries and meshes as well as proofs of lemmas essential to
this work are presented in this chapter. Most definitions in this chapter are based on previous
work [52, 127] but are extended to support non-simplex elements. The mathematical and
geometrical fundamentals are covered in Appendix A.

2.1 Geometries

A simulation domain has to be specified by a geometry. To support discretization-based simulation
methods, like the FEM, this geometry is required to have a Lipschitz C0,1 boundary [59]. In this
work the geometry space Ln (cf. Definition A.25) is used to represent geometries.

Definition 2.1 (Geometry, linear geometry). Let G ⊆ Rn. G is called a geometry, if there are
sets G1, . . . , Gm ∈ Ln which are connected and the geometry can be represented as a union
of these sets: G =

m
i=1 Gi. A geometry is linear, if there are polyhedrons Xi, i = 1, . . . , k

with dimension of n and G =
k
i=1 Xi.

A geometry is not required to be connected. However, there always is a finite partition of a
geometry, which consists of connected sets. This is required for guaranteeing meshes with a finite
number of mesh elements. A geometry G is called n-dimensional, if G ∈ Ln and if DIM(G) = n.
If DIM(G) = n− 1, G is called an n-dimensional hull geometry.

It is beneficial to partition the simulation domain for many simulation scenarios. For example,
different parts of a domain to be simulated are made of different materials. It is of advantage
to reflect these parts, called regions, in the geometry as well. An example for a multi-region
geometry is given in Figure 2.1, where the two materials of a hammer are represented by separate
regions.

A simple approach for representing multi-region geometries is to add an additional region
function f : Rn → N, which maps a point of the geometry to its region. However, if a geometry
has more than two regions, this approach might lead to regions which are not closed. Therefore,
a multi-region geometry is defined using a function ξ, which maps a point to the set of regions in
which the point is located. For example, for all points of the interior of a region, the function ξ
maps to just one region and for points, where multiple regions touch, it maps to all regions.
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Figure 2.6: CSG tree1

A cube, a sphere, and a cylinder are used as basic shapes and are combined with union, intersection, and set
difference operations.

2.2 Meshes

A mesh is defined as a finite, face-complete element complex without any dangling elements.

Definition 2.4 (Mesh). Let M ⊆ E be subset of an element complex E . M is called a
mesh, if

(i) M is finite,

(ii) M is face-complete (in E), and
(iii) M has no dangling elements, meaning that every element E ∈ M is either a cell or E

has at least one co-face cell (cf. Definition A.11).

Requirement (iii) ensures that cell elements are the only elements, which are not faces of
any other element (except the cell itself). A mesh M is called n-dimensional, if M ∈ P(Rn)
and if DIMcell(M) = n. If DIMcell(M) = n − 1, M is called an n-dimensional hull mesh or
n-dimensional surface mesh. A mesh M with only simplex elements is called a simplex mesh, a
two-dimensional (2D) mesh M with all cells being quadrilaterals is called an all-quad mesh, and
a three-dimensional (3D) mesh M with all cells being hexahedrons is called an all-hex mesh.

Lemma 2.1 (Intersection of meshes). The intersection of two meshes M1 and M2 is finite, face-
complete, and conforming. If the union of both meshes M1∪M2 is conforming, then the underlying
space of the intersection is also the intersection of the underlying spaces: us(M1 ∩ M2) =
us(M1) ∩ us(M2).

Proof.

(i) To prove: |M1 ∩M2| < ∞:
M1 ∩M2 is finite, because M1 and M2 are meshes and therefore finite.

(ii) To prove: M1 ∩M2 is face-complete:
Every element E ∈ M1 ∩M2 is also an element of M1 and M2. Because M1 and M2 are
meshes, they are both face-complete and faces(E) is a subset of M1 and M2. Therefore,
faces(E) is also a subset of M1 ∩M2 and M1 ∩M2 is face-complete.

1Image by Zottie (Own work) [GFDL or CC-BY-SA-3.0], via Wikimedia Commons, https://commons.wikimedia.
org/wiki/File%3ACsg_tree.png
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Every mesh M is also a multi-region mesh (M, ξ), where the mesh region indicator function ξ
maps every element to {1}. On the other hand, a multi-region mesh (M, ξ), with a mesh region
indicator function ξ mapping all elements to {1}, can be identified by the mesh M. Therefore,
all statements for multi-region meshes also hold for meshes.

Definition 2.7 (Boundary of a mesh, region interface). The boundary of a mesh M is
defined as all elements which are also in the boundary of its underlying space: bnd(M) :=
{E ∈ M|E ⊆ bnd (us(M))}. The interface of multiple mesh regions

region((M, ξ), i1), . . . , region((M, ξ), ik), ij = ig, j = g (2.4)

is defined as all elements which are in all specified regions:

interf((M, ξ), i1, . . . , ik) :=
k

j=1

region((M, ξ), ij) (2.5)

Similar to geometry interfaces, the interface of mesh regions is equal to:

interf((M, ξ), i1, . . . , ik) = {E ∈ M, ∀x ∈ E : {i1, . . . , ik} ⊆ ξ(x)} (2.6)

The boundary bnd(M) of a mesh M is again a mesh with DIMcell(bnd (M)) = DIMcell(M)− 1.
Because a mesh region is also a mesh, the definition of the boundary of a mesh region is the same
as the boundary of a mesh.

A triangulation of a finite point set S ⊆ Rn is a special type of mesh which is important for
constructing high quality meshes. Additionally, proofs for quality-guarantees of mesh generation
algorithms usually require a triangulation [127].

Definition 2.8 (Triangulation). Given a point set S = {s1, . . . , sk} ⊆ Rn, a simplex mesh
M is called a triangulation of S, if us(M) = conv(S) and elem0(M) = S.

2.2.1 Geometry-Conformity

In simulation scenarios, a geometry for the simulation domain is given, for which a mesh has
to be generated. In this section, terms are defined to identify, if a certain mesh is the mesh of
a geometry. At first, the term respect is defined for elements and sets of elements, which are
compatible.

Definition 2.9 (Respect). Let E,X ∈ Ln and E ,M ⊆ Ln be two element spaces. E is said
to respect X, if E ∩ S is either empty or can be represented by a finite union of faces of E:

E ∩X = ∅ ⇒ ∃F1, . . . , Fk ∈ faces(E) : E ∩X =
k

i=1

Fi (2.7)

E is said to respect E , if for all Y ∈ E , E respects Y and M is said to respect E , if every
element M in M respects E .

In words, a set E respects another set X, if the intersection E ∩X can be represented by
a union of faces of E. Figure 2.9 visualizes the respect property for sets and set spaces. The
following holds for the respect property:

Lemma 2.3 (Respectness of intersection). Let E,A,B ∈ Ln be sets, where E respects A and E
also respects B. Then, E respects A ∩B.
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Lemma 2.4 (Respectness of meshes with geometry-conforming property). Let G be a geometry,

M be a mesh which geometry-conforms to G, (G, ξ) be a multi-region geometry, and (M, ξ) be a

multi-region mesh which geometry-conforms to (G, ξ). Then the following holds:

(i) Every element E of the mesh M respects the geometry G.
(ii) Every element E of a mesh region region((M, ξ), i) respects the corresponding geometry

region region((G, ξ), i).
Proof. Every mesh element E ∈ M is a subset of the underlying space of the mesh. Consequently,
E is also a subset of the geometry G and E ∩ G = E. Because every element is a face of itself, E
respects G. The second statement follows from the first.

The term geometry-conforming of a mesh and a geometry is not related to the mesh space
property conforming.

In general, a mesh (M, ξ), which geometry-conforms to a geometry G, is not unique. It is not
even guaranteed that there is a mesh in some given n-manifold complex, which geometry-conforms
to a given geometry. For example, there is no simplex mesh which geometry-conforms to the unit
three-ball. In these cases, a mesh can only approximate a given geometry. However, for each
mesh, there is a unique geometry, to which the mesh is geometry-conforming to.

Definition 2.11 (Geometry of a mesh). Let (M, ξ) be a multi-region mesh. The structure

geo((M, ξ)) = us(M), ξ(x) =
E∈M:x∈E

ξ(E) (2.9)

is called the geometry of the multi-region mesh (M, ξ).

By definition, it is assured that the geometry of a multi-region mesh (M, ξ) is a geometry
and (M, ξ) is geometry-conforming to the geometry geo((M, ξ)).

2.2.2 Mesh Element Quality and Mesh Quality

For many boundary values problems, the shape of the mesh elements directly affects the numerical
convergence and accuracy of the solution [54][105]. A mesh element is said to have a good quality,
if these effects are beneficial. However, it mainly depends on the application, the boundary value
problem, and the element type, which shapes of an element are considered to be good. There are
many different methods on how to measure the quality of mesh elements [66][131]. The following
geometric properties are needed for most of these measures.

Definition 2.12 (Shortest edge, longest edge). Let E be a mesh element. lmin(E) is defined
as the smallest face edge of E, lmax(E) is defined as the largest face edge of E.

Definition 2.13 (Volume, relative volume). Let µ be the Lebesgue measure and Hk be
the k-dimensional Hausdorff measure [77]. The volume of E for E ⊆ Rn is defined as
Vol(E) := µ(E) and the relative volume of E is defined as Vol (E) := HDIM(E)(E).
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Definition 2.18 (Radius ratio). Let E be a simplex mesh element in Rn, the radius ratio
is defined as φradius(E) := Rin(E)/Rcirc(E). The following definition is used for non-simplex
mesh elements: φradius(E) := Rin(E)/Rmin-cont(E).

Definition 2.19 (Volume-length measure). Let E be a mesh element in Rn, the volume-
length is defined as

φvolume-length(E) :=
Vol (E)

F∈faces2(E) Vol (F )2
(2.10)

Based on an element quality measure, a quality score can be calculated. The only difference
between a quality measure and a quality score is, that elements with good quality have a high
score. The fundamental element-level quality score enables to evaluate an entire multi-region
mesh quality.

Definition 2.20 (Quality vector). Let (M, ξ) be a multi-region mesh and Φ be an element
quality measure. The quality vector ΨΦ(M) is defined as the sorted tuple of quality scores
of all cells C ∈ cells(M).

The quality of two meshes can now be compared by using a lexicographically ordering on
the quality vectors. A mesh M1 has a better quality than a mesh M2, if ΨΦ(M1) > ΨΦ(M2).
Creating the entire quality vector of a mesh is too time-consuming. However, identifying the k
worst elements is usually sufficient [75]. Nevertheless, for theoretical analysis, the quality vector
with the lexicographical ordering still plays an important role.

2.3 Delaunay Elements and Meshes

Another very powerful element property for simplex elements is the Delaunay property [31].

Definition 2.21 (Delaunay, strongly Delaunay, locally Delaunay). Let M be a simplex
mesh in Rn. An element S ∈ M is said to be Delaunay in M, if S has an open circumball
Bn
r (x) which does not include any vertices of M. An element S ∈ M is said to be strongly

Delaunay in M, if S has a closed circumball Bn

r (x) which does not include any vertices of
M. A simplex mesh M is called Delaunay, if all cells are Delaunay.

A facet F ∈ M is said to be locally Delaunay in M, if S has an open circumball Bn
r (x)

which does not include any vertices of any co-face cells.

The Delaunay property is visualized in Figure 2.11. While the Delaunay property is a global
property (all mesh vertices have to be checked), locally Delaunay only requires the evaluation
of boundary vertices of neighbor simplices. Locally Delaunay is a weaker property for simplex
elements than Delaunay, but if all facets of a mesh are locally Delaunay, the cells are in fact
Delaunay.

Lemma 2.5 (Delaunay Lemma). Let M be a simplex mesh in Rn with DIMcell(M) = n, the
following statements are equivalent:

• M is Delaunay.

• Every facet of M is Delaunay in M.

• Every facet of M is locally Delaunay in M.
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(a) Triangle which is Delaunay (b) Triangle which is not Delaunay

Figure 2.11: Delaunay property

In (a), a triangle (colored in blue) which is Delaunay in the mesh is shown. (b) visualizes a triangle (colored in
blue) which is not Delaunay due to the red vertex which is inside the triangle’s circumball and therefore breaks
the Delaunay property of the triangle.

A proof for this Lemma can be found in [127]. The Delaunay Lemma guarantees that the
locally Delaunay property of facets, which is easier and more efficient to evaluate, results in the
Delaunay property for cells. For each finite point set S ⊆ Rn, there always exists a triangulation
of S, which is Delaunay.

Delaunay is a very strong property for simplex meshes. For a simplex mesh M which is
Delaunay, the dual is equal to the Voronoi diagram of M. Some discretization-based simulation
methods, like the FVM, utilize the Voronoi diagram during the discretization process [127].
For a given point set S = {s1, . . . , sk} ⊆ R2, a Delaunay triangulation M of S maximizes the
minimum angle and minimizes the largest circumball [127]. Unfortunately, this is not true for
Delaunay triangulations in R3. To improve the quality of these meshes, post-processing, like
mesh adaptation, is required. Additionally, a Delaunay triangulation minimizes the largest
min-containment ball for arbitrary dimensions n [136].

For a mesh M which is generated based on a PLC P, a weaker Delaunay definition is of
advantage.

Definition 2.22 (Visibility). Two points x,y ∈ Rn are visible to each other, if the line
simplex(x,y) (cf. Definition A.17) respects the PLC P.

Definition 2.23 (Constrained Delaunay). Let P be a PLC and (M, ξ) be a multi-region
simplex mesh which respects and geometry-conforms to P. A simplex S ∈ (M, ξ) is called
constrained Delaunay, if all vertices of S are also vertices of the PLC P and if S has an
open circumball Bn

r (x) which only includes mesh vertices of M, which are not visible from
any point of the interior of S. The mesh (M, ξ) is constrained Delaunay, if every cell is
constrained Delaunay.

A simplex which is constrained Delaunay, therefore is Delaunay except for vertices where
the visibility is blocked by the PLC, e.g., on internal interfaces. An example visualizing the
constrained Delaunay property is given in Figure 2.12. A Lemma similar to the Delaunay Lemma
can be formulated for the constrained Delaunay property.
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Figure 2.13: Mesh data structure layout

The vertices are stored in the linear coordinate array vertex_coords illustrated in the top. For each cell, the
indices of all of its vertices are stored in the cell_vertex_indices array. The cell_vertex_index_offsets
is used to determine the first and the last vertex index for each cell in the cell_vertex_indices array. The
cell_types and cell_region arrays are simple linear buffers and not visualized in this illustration.

Listing 2.1: Mesh data structure

1 struct MESH

2 {

3 int point_dimension;

4 int vertex_count;

5 NUMERIC_TYPE vertex_coords [];

6

7 int cell_count;

8 ELEMENT_TYPE cell_types [];

9 INDEX_TYPE cell_vertex_indices [];

10 INDEX_TYPE cell_vertex_index_offsets [];

11 };

Listing 2.2: Multi-region mesh data structure

1 struct MRMESH

2 {

3 MESH mesh;

4 REGION_ID_TYPE cell_region [];

5 };

The only difference between these two mesh data structures is the cell_region array, which is
present in the multi-region mesh data structure but not in the other one. The storage layout of
the data structures, illustrated in Figure 2.13, is motivated by the compressed sparse row format
for sparse matrices [141].

Usually, IEEE 754 32-bit single or 64-bit double floating point types [1] are used as
NUMERIC_TYPE. For each vertex v ∈ vertices((M, ξ)), n numerical values are stored. Therefore the
vertex coordinate array has a size of n× |vertices((M, ξ))| × sizeof(NUMERIC TYPE).

A cell C ∈ cells((M, ξ)) is defined using an identifier for its element type and a tuple of indices
for each boundary vertex v ∈ faces0(C). Only element types which can be uniquely defined using a
tuple of boundary vertices can be used with this method. For example, a generic non-convex poly-
hedron cannot be defined by using only its boundary vertices. However, all elements presented in
this work support this method. The element type identifier can be represented by an integer value
with the size (in bits) equal to the binary logarithm of number of different element types, rounded
up. A total of eight different element types are used in this work, so the size of an element type
identifier is at least three bits. However, due to memory aliasing issues and to avoid bit shifting
operations, an eight bit integer data type is used as ELEMENT_TYPE. The vertex index tuples of each
cell are stored sequentially in the cell vertex index array using an arbitrary ordering of the cells.
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The starting index for the i-th cell is stored in the cell vertex index offset array at location i.
Therefore, the number of vertices for the i-th cell is equal to cell_vertex_index_offsets[i+1]

- cell_vertex_index_offsets[i]. For convenience, the cell vertex index offset array has a size
equal to the number of cells plus one. The last entry of the cell vertex index offset array is the
total number of all vertex indices of all cells. INDEX_TYPE is an integer type with at least 32 bits.
A 64 bit integer type is only required for meshes with more than 232 vertices. For each cell in a
multi-region mesh, there is an additional region identifier which is stored in the cell region array.
Depending on the maximum number of regions supported, REGION_ID_TYPE is an integer type with
either 8, 16, or 32 bits. Meshes with more than 216 regions are very rare, thus a 16 bit integer is
used. A configuration with NUMERIC_TYPE being a 64 bit double floating point type, ELEMENT_TYPE
being an 8 bit integer type, INDEX_TYPE being a 32 bit integer type, and REGION_ID_TYPE being a
16 bit integer type is used in this work.

The total memory usage of a mesh mainly depends on the number of its cells and vertices. For
meshes with only one cell type, like simplex meshes or all-quad meshes, the number of boundary
vertices per cell can be trivially determined for all cells of the mesh. Therefore, the size of the
cell vertex index array can be calculated. However, only an upper bound can be given for mixed
meshes.

Therefore, the upper bound for the memory usage (in byte) of a mesh M and a multi-region
mesh (M, ξ) in Rn is given by:

sizeof(M) ≤ |vertices(M)| × 8× n+ |cells(M)| × 7 + 4× max
C∈cells(M)

(faces0(C)) (2.11)

sizeof((M, ξ)) ≤ |vertices((M, ξ))| × 8×n+ |cells((M, ξ))| × 5 + 4× max
C∈cells((M,ξ))

(faces0(C))

(2.12)
The variables point_dimension, vertex_count, and cell_count are not covered by that formula,

because their size in memory is negligible.
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Chapter 3

Related Work

In this chapter, the results of a literature research on volumetric meshing for simulations is
presented. Section 3.1 covers mesh generation algorithms for simplex and all-quad/all-hex meshes
as well as mesh generation software tools. Mesh adaptation algorithms with a focus on mesh
optimization are presented in Section 3.2. Research on symmetry, similarity, and symmetry-aware
mesh processing is discussed in Section 3.3.

3.1 Mesh Generation

Over time, several algorithms have been developed for generating a mesh based on a given
geometry. An overview on mesh generation techniques has been published, e.g., Owen [121].
Simplex mesh generation (Section 3.1.1) as well as quadrilateral and hexahedral mesh generation
(Section 3.1.2) methods are presented in this section, followed by an overview of a selection of
mesh generation software tools in Section 3.1.3.

3.1.1 Simplex Mesh Generation

There are three primary groups of mesh generation algorithms for simplex meshes [127]:

• Advancing front algorithms

• Delaunay refinement algorithms

• Grid, quad- and octtree algorithms

Advancing front algorithms [39][60] require the boundary of the geometry and all region
interfaces to be represented by a hull mesh. For each region the meshed region boundary is the
starting front. Iteratively, the algorithm constructs volumetric mesh elements on the interior of the
front and updates the front. This process is repeated, until the whole interior is filled with mesh
elements. Figure 3.1 shows how an advancing front algorithm works on a simple two-dimensional
geometry. Advancing front algorithms usually produce elements with high quality at the region
boundaries [127]. However, in situations where the fronts collide, the algorithms have less freedom
when constructing volumetric elements and therefore the element quality degrades.
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License Element Types Input Geometry
CGAL GPL,LGPL Tri,Tet oracle
CUBIT commercial Tri,Tet,Quad,Hex IGES,STEP,STL
Gmsh GPL Tri,Tet IGES,STEP,STL
MeshGems commercial Tri,Tet,Quad,Hex,Mixed IGES,STEP,STL
Netgen LGPL Tri,Tet CSG,STEP,STL
Pointwise commercial Tri,Tet,Quad,Hex,Mixed CSG,IGES,STEP,STL
Tetgen X11/MIT Tet PLC
Triangle commercial,GPL-like Tri PLC
ViennaMesh GPL Tri,Tet CSG,PLC,STEP,STL

Table 3.1: Overview of the meshing software presented in this work

The GNU general public license (GPL) [6], the GNU lesser general public license (LGPL) [6], and the X11/MIT
license [16] are free open source licenses. The listed element types are triangles (Tri), tetrahedrons (Tet),
quadrilaterals (Quad), hexahedrons (Hex), and mixed element types (Mixed). More information on the input
geometry formats can be found in Section 2.1. CGAL itself is a software library rather than a software tool and
uses a generic mechanism called oracle to specify the geometry. Oracle implementations for polyhedrons, implicit
functions and 3D images are provided by CGAL.

3.1.3 Mesh Generation Software

In this section, a selection of volumetric mesh generation software tools is presented. An overview
is given in Table 3.1.

The Computational Geometry Algorithms Library (CGAL) [2] is a free open source library.
Among the rich set of provided geometric algorithms, CGAL offers incremental Delaunay meshing
algorithms for two- and three-dimensional geometries. A peculiarity of CGAL is the generic
software design which significantly increases flexibility [36].

CUBIT [15] is a commercial mesh generation tool developed at the Sandia National Lab-
oratories. It supports a wide range of different mesh generation algorithms with a focus on
quadrilateral and hexahedral mesh generation.

Gmsh [5][35] is a free open source meshing framework providing a couple of meshing algorithms
such as structured and unstructured mesh generation of two- and three-dimensional meshes.
Gmsh uses other free open source meshing tools and combines these with pre- and post-processing
steps. Unlike other meshing applications, Gmsh also includes a scripting language for controlling
the meshing process.

MeshGems [7] is a commercial mesh generation software which supports triangular and
quadrilateral surface mesh generation as well as tetrahedral, hexahedral, and mixed volumetric
mesh generation. Additionally, the tool offers multiple algorithms for CAD geometry enhancement
and error cleaning.

Netgen [9][130] is a free open source tetrahedral advancing front mesh generation tool with
support for CSG and triangular hull mesh input geometries. Additional post-processing steps
ensure the Delaunay property of the resulting meshes.

Pointwise [10] is a commercial mesh generation software supporting a wide range of CAD
input geometries. It is capable of generating simplex, quadrilateral, hexahedral, and mixed
element meshes.

Tetgen [14][53] is a free open source 3D incremental Delaunay mesh generation software with
support for multiple regions. The tool uses PLCs as input geometries and is related to Triangle
as the algorithms, the concepts, and the programming interface are very similar.

Triangle [17][64] is a very popular and widespread free open source 2D incremental Delaunay
mesh generation software tool.

ViennaMesh [19][49] is a flexible free open source meshing framework based on a module
approach. Besides providing a unified interface to several external meshing tools, it also provides
additional mesh adaptation algorithms via an extensible platform.
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Figure 3.4: Edge flipping operation for triangles

The edge shared by the triangles is flipped to the other diagonal of the quadrilateral which is formed by the
union of two triangles. The flipping operation requires the quadrilateral to be convex, otherwise the underlying
space changes. In this particular example, the triangles are Delaunay (cf. Section 2.3) after the flipping operation
is applied.

3.2 Mesh Adaptation Algorithms

A mesh adaptation algorithm takes a multi-region mesh (M, ξ) as the input to create a resulting

mesh (M, ξ), for which the underlying space of all regions is the same: ∀i = 1, . . . , rc((M, ξ)) :

us(region((M, ξ), i)) = us(region((R, ξ), i)). In other words, the input mesh and the resulting
mesh conform to the same geometry.

Mesh adaptation algorithms can roughly be split into three groups, those being topological
operations (cf. Section 3.2.1), geometrical operations (cf. Section 3.2.2), and mixed operations
(cf. Section 3.2.3). These operations are often used for mesh improvement, as discussed in
Section 3.2.4. At last, Section 3.2.5 gives an overview of a selection of mesh adaptation software
tools.

3.2.1 Topological Operations

Topological operations are operations which do not insert, delete, or move any vertices. The most
popular topological operations are flips, where a number of neighboring cells are replaced by
another configuration of cells. For example, an edge flip, visualized in Figure 3.4, is an operation,
where two triangles sharing one edge are replaced by two different triangles. Flip operations
for 2D triangle meshes have a special role as they can make any mesh Delaunay. It can be
shown, that for a triangulation every edge E is either locally Delaunay or E is flippable and the
flipped edge is locally Delaunay [127]. It can also be shown, that the algorithm which recursively
flips every edge which is not locally Delaunay terminates and therefore results in a Delaunay
mesh [127]. The 3D extension of the 2D flips are called bistellar flips [50]. However, bistellar
flips are fairly complex and cannot be applied to all configurations of neighboring tetrahedrons.
Additionally, recursively performing bistellar flips on tetrahedral meshes only results in a mesh
which is Delaunay for edge-protected PLCs [67]. However, it has been proven, that there are
algorithms using flip operations which result in a simplex Delaunay mesh for arbitrary dimensions
n [136]. Flip operations can be defined for arbitrary element types by using the projections of an
element of the same type with one dimension higher [83].

3.2.2 Geometrical Operations

Geometrical operations, or vertex smoothing algorithms, are operations which only move vertices
but do not insert or delete any elements. Vertex smoothing algorithms are very popular algorithms
for improving mesh element quality, because they do not alter the mesh topology. Since they do not
delete or insert any new elements, they are also easy to handle from the data structure point of view.
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(a) Before Laplacian smoothing (b) After Laplacian smoothing

Figure 3.5: Laplacian smoothing

The triangles after the Laplacian smoothing operation, especially those near the boundary, are less skinny and
have better quality (cf. Section 2.2.2).

Simple movement algorithms, like Laplacian smoothing visualized in Figure 3.5, have been
shown to improve the overall mesh quality in many applications [41]. Laplacian smoothing
also works well for non-simplex meshes [116]. However, to ensure geometry-conformity, the
vertex smoothing algorithms have to be modified by restricting vertex movements of boundary
vertices [124]. More complex smoothing algorithms, for example vertex smoothing based on the
optimal Delaunay triangulation [78] or using local quality measure optimization [95], have also
been proposed.

3.2.3 Mixed Operations

There are operations which can neither be classified as purely topological or purely geometrical.
The most popular operations, being mesh refinement algorithms, are presented in this section.

Mesh refinement algorithms are similar to flips, where a number of cells is replaced by another
configuration of cells. In contrast to flips, mesh refinement algorithms also require that every cell
of the input mesh is a union of cells of the refined mesh. In other words, the refined mesh has to
respect the original mesh.

Definition 3.1 (Refined mesh). Let (M, ξ) and (R, ξ) be multi-region meshes. (R, ξ) is

called a refinement of (M, ξ), or a refined mesh of (M, ξ), if every cell C in (R, ξ) can be

represented by a union of cells C1, . . . , Ck of (M, ξ): C =
k
i=1 Ci.

The main advantage of a refined mesh is that for every refined cell there is exactly one parent
cell in the original mesh. This is particularly useful when transferring additional meta information
stored on elements from the original mesh to the refined mesh or vice versa. Figure 3.6 shows an
example of a mesh refinement. A popular type of refinement uses edge bi- or trisection operations,
where an edge is marked for refinement and split into two or three new edges. For each element
type there are rules on how to replace a cell with a specific configuration of marked edges by
refined cells. To ensure element quality, additional edges can be marked for refinement. For
example, a popular refinement strategy using this approach is red-green-blue refinement [34]. Such
types of refinement algorithms have lower bounds for some element qualities, like the smallest
angle [55]. Trisection of quadrilaterals and hexahedrons is frequently used in favor of bisection [114].
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(a) Before refinement (b) After refinement

Figure 3.6: 2D simplex refinement

Every triangle of the initial mesh is refined into four new triangles.

Mesh refinement is often utilized in adaptive processes for boundary value problems, where
error estimators are used to locally increase the accuracy of the solution. Error estimators detect
mesh elements, where the difference of the numerical solution and the real solution is high, and
mark those for refinement.

A related algorithm is Delaunay mesh refinement of simplex meshes [21]. Delaunay mesh
refinement cannot be considered a classical refinement algorithm, because in general there are
cells in the refined mesh which do not respect the original mesh. Delaunay mesh refinement
incrementally inserts vertices in a mesh, which already is Delaunay. A popular Delaunay mesh
refinement algorithm is the Bowyer-Watson algorithm [42]. Given a specific point p ∈ Rn, all
cells C of a mesh are removed where p ∈ Bn

(C). Every facet of these cells, which is also in the
boundary of the union of these cells, is then connected to the point p to form a new simplex cell.
It has been shown, that the new mesh is also Delaunay, if the original mesh is Delaunay. This
statement also holds for constrained Delaunay with the modification that only cells which are
visible to the newly inserted point are deleted. Optimal locations for Delaunay mesh refinement
can be determined by using a conflict graph [73].

3.2.4 Mesh Quality Improvement

The main goal of many mesh adaptation algorithms is to improve the mesh element quality.
Mesh element quality improvement algorithms are available for both simplex and all-quad/all-hex
meshes. There are algorithms for simplex meshes, which generate meshes with guaranteed element
quality. Usually, mesh quality improvement algorithms have a set of local operations which
they test on a set of elements: If an operation locally increases the mesh element quality, it is
applied. For simplex, all-quad, and all-hex meshes, it is often sufficient to perform a combination
of mesh smoothing and flip operations to obtain meshes with a good quality [75][79]. However,
for tetrahedral meshes, these operations might lead to poor local quality optima. More aggressive
methods, like vertex insertion, are required to further increase the mesh element quality [32]. In
contrast to triangular meshes, algorithms which optimize the radius-edge ratio of tetrahedral
meshes still might generate slivers (cf. Section 2.2.2). Sliver exudation algorithms must be applied
after mesh generation to remove this type of element [129]. Approaches for smoothing algorithms
can be extended to various element types [76]. There are optimization algorithms for quadrilateral
and hexahedral meshes operating on the dual mesh, which, however, might be non-local [108][115].
Many algorithms even consider complete mesh re-sampling to improve mesh element quality [139].
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3.2.5 Mesh Adaptation Software

Similar to Section 3.1.3, a selection of software tools for mesh adaptation and quality improvement
is presented here.

The commercial software tool CUBIT [133] offers, in addition to its mesh generation algo-
rithms, a wide range of optimization methods for different element types using various metrics.
Similar to its mesh generation infrastructure, the software focuses on quadrilateral and hexahedral
meshes.

Mesquite [8][85] is an open source mesh optimization software with a rich set of different
optimization algorithms, including support for mixed element meshes, anisotropic smoothing, and
local size control.

The commercial software tool Pointwise [11] includes mesh optimizations methods with a
focus on CFD applications.

Stellar [12] is an open source mesh optimization software which mainly improves dihedral an-
gles of tetrahedral meshes. The software is based on the aggressive tetrahedral mesh improvement
algorithm [32].

Verdict [18][109] is an open source software for measuring mesh element quality. However,
the software does not provide any mesh adaptation and is therefore strictly speaking not a mesh
adaptation software.

3.3 Symmetry and Similarity

The main goal of this work is to take advantage in storing and generating meshes of geometries
with symmetries and similarities. The identification process of these properties is non-trivial but
crucial. Two different geometrical properties are of interest: Symmetries and similarities. In the
literature, similarities are often referred to as local symmetries or partial symmetries.

In general, the detection of symmetries and similarities is a very challenging task. One has to
distinguish between exact and approximate symmetries or similarities. The first rarely occurs in
practice due to numerical issues or inaccuracies in geometric modeling. The latter does not suffer
from such issues. Section 3.3.1 and Section 3.3.2 covers detection of symmetries and similarities,
respectively. Symmetry-aware mesh processing is discussed in Section 3.3.3.

3.3.1 Symmetry Detection

Detection of symmetries is easy for linear geometries in R2. The initially devised algorithms
create string literals based on the points and lines of the linear geometries for elements with the
same distance to the center of gravity and using circular rotations and reversal of these literals to
detect rotational and reflective symmetries [94]. These approaches can be extended to linear 3D
geometries, however, additional information, like the axis of symmetry, is required [58]. Another
approach uses surface sampling and clustering to detect symmetries for 2D and 3D geometries [98].
This algorithm is also capable of detecting not only exact but also approximate symmetries. A
technique called generalized moment has also proven to be robust for identifying symmetries of a
geometry in R3 [26]. This approach uses a spherical harmonics representation to efficiently find
extrema of the generalized moment, which indicate potential symmetry candidates. However,
a post processing step has to validate these candidates to filter out false positives. A similar
algorithm uses the planar-reflective symmetry transform for detecting reflective symmetries [63].
The latter three algorithms can also be used for approximate symmetry detection.
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3.3.2 Similarity Detection

In contrast to symmetry detection, automatic similarity detection is much harder and more
time-consuming. Some algorithms for symmetry detection also cover similarity detection [96][98].
A framework for identifying regular and similar shapes in 3D objects was proposed [91]. Other
approaches even support transformation functions which are not required to be rigid [20]. The
symmetry factored embedding and the symmetry factored distance can be used to analyze sym-
metries in points sets [140]. A hierarchical approach was proposed for building a graph of all
subparts of an object [142]. Usually, all of these algorithms use the surface of the object to sample
points and detect local features to find matching similarities [84]. A good overview of symmetry
and similarity detection algorithms is given in [99].

3.3.3 Symmetry-Aware Mesh Processing

Symmetry-aware mesh processing is a popular area of research in the field of computer graphics,
for example symmetrization [97][137]. Symmetries and similarities are used in re-construction
and mesh healing processes after 3D scanning [30][68][123]. As mentioned in the introduction
(cf. Chapter 1), one of the main approaches for this work is a technique in the area of computer
graphics called instancing : With instancing, a high number of instances of a single object template
is rendered into a scene at different locations [37][47][71][92].

However, most algorithms and concepts in the field of computer graphics only work for
surface geometries or surface meshes. Some of the properties vital for simulation in science and
engineering, like conformity, are, however, not important in the field of computer graphics. For
example, in a rendering process, meshes are not required to be watertight or intersection-free [132].

A more general approach for symmetry-aware mesh processing, which also supports volumetric
meshes, uses group theory and the generalized Fourier transform [72]. This work, however,
only covers symmetries and lacks support of general similarities. Benchmarks for rotational
symmetry-aware 3D volumetric mesh generation yield possible performance gains of factors of
up to 50 [48]. Improvements of these concepts and approaches for supporting other types of
symmetries and similarities are presented and discussed in Section 5.1.2.

A topic related to similarity in meshes concerns periodic meshes, where one part of the
mesh is repeated in several directions. Generation of periodic meshes has been investigated and
implemented in the CGAL software library [29][86].

As motivated in the introduction (cf. Chapter 1), mesh generation and mesh adaptation algo-
rithms would benefit from a theoretical approach which considers symmetries and/or similarities.
However, there is no literature for such an approach which at the same time takes symmetries
and similarities in account and additionally supports multi-region geometries and meshes.
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Chapter 4

Templated Geometries and
Meshes

The main objective of this work is inspired by a concept in the field of computer graphics called
instancing. In instancing approaches, a geometry template is defined which is then inserted into
a scene multiple times at different locations, often also slightly modified. Figure 4.1 shows a
simple example of instancing in computer graphics. The main idea of this work is to decompose
geometries and meshes into smaller parts, called blocks, where as many blocks as possible are
similar to each other to obtain high improvements in memory usage and algorithm runtime. In
this chapter, geometry and mesh templates – and their instances – are defined and some of their
properties are presented and discussed. General decompositions as well as the basics of templated
structures are covered in Section 4.1. Section 4.2 discusses interfaces of templated structures as
well as conformity issues. The boundary patch partition, a mechanism to identify dependencies
and constraints, is presented in Section 4.3. The Delaunay property for templated meshes is
discussed in Section 4.4. Finally, in Section 4.5, two different data structures for storing templated
meshes are presented.

4.1 Decomposition of Geometries and Meshes, Templated
Structures

First, decompositions of geometries and meshes are defined. Geometry and mesh decompositions
are similar to manifold partitions and mesh partitions, respectively, with the difference that they
support multiple regions.

Definition 4.1 (Geometry decomposition, geometry block, geometry template, geometry

instance). Let (G, ξ) be an n-dimensional multi-region geometry. ((G1, ξ1), . . . , (Gk, ξk)) is

called a geometry decomposition of (G, ξ), if
(i) (G1, . . . ,Gk) is a manifold partition where all elements have the same dimension n and

(ii) all region indicator functions ξi are the restriction of ξ on the corresponding interior of

the geometry partition element: ξi = ξ|int (Gi).

A multi-region geometry (T , ζ) is called a geometry template of (Gi, ξi), if there is an

invertible function T : Rn → Rn, for which (T (T ), ζ ◦ T−1) = (Gi, ξi). (Gi, ξi) is called a

geometry instance of (T , ζ) with a transformation function T .
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4.2 Instance Interfaces and Conformity

Instances of templated structures, which are not disjoint, form interfaces. Due to Requirement 4.2,
these interfaces have a dimension which is lower than the dimension of the templated structure.
These interfaces between instances are especially important for templated meshes, where AT(Γ)
has to be a valid conforming multi-region mesh: Issues might arise on interfaces between mesh
instances, where the conformity can break. For example, if an algorithm performs an operation
on a mesh template and ignores other mesh templates where at least two instances of each mesh
template touch each other, a non-conformity will potentially be induced in the structure instance.

The main goal of this section is to identify which properties a templated structure with mesh
templates has to fulfill to be a templated mesh. Identifying mesh instance interfaces and defining
neighborhood terms is therefore crucial.

Definition 4.6 (Instance interface, geometry instance interface). Let X be a templated
structure. The interface of multiple instances with transformation functions T1, . . . , Tm ∈
tf(X) is defined as the intersection of the instances:

interf(X, T1, . . . , Tm) :=
m

i=1

inst(X, Ti) (4.5)

Additionally, the geometry instance interface is defined as the intersection of the underlying
spaces of the instances:

interfgeo(X, T1, . . . , Tm) :=
m

i=1

us(inst(X, Ti)) (4.6)

The motivation for the definition of interfgeo lies in the fact that for templated structures with
mesh templates, interfaces of two different instance might be empty even though the intersection
of their underlying space is not. For example, the interface of the instances formed by the
transformation function T1,1 and T1,2 of the templated structure visualized in Figure 4.4 only
includes two vertices. However, the geometry instance interface of the same instances includes all
vertices and edges of both instances which touch the other instance. The instance interfaces and
the geometry instance interfaces are the same for templated geometries. For templated meshes,
these two terms are related as indicated by Lemma 4.1.

Lemma 4.1 (Instance interface properties). Let X be a templated structure with mesh templates:

(i) Any instance interface of X respects the corresponding geometry instance interface.

(ii) If X is a templated mesh, the underlying space of any instance interface is equal to the
corresponding geometry instance interface.

(iii) If X is a templated mesh, any instance interface is equal to the set of all boundary elements of
a mesh template, which are included in the inverse geometry instance interface, transformed
by the corresponding transformation function:

interf (X, Ti,j , . . . ) = Ti,j bnd (Xi) |T−1
i,j (interfgeo(X,Ti,j ,... ))

(4.7)

Proof.

(i) Every element E in an instance interface interf(X, T1, . . . , Tk) is in all instances inst(X, Ti)
and therefore also in the underlying space of all instances. Consequently,
E ∩ interfgeo(X, T1, . . . , Tm) = E and E respects the geometry instance interface.

(ii) follows from Lemma 2.1.
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The requirement for a templated mesh given in Definition 4.4, being AT(X) to be a valid
conforming multi-region mesh, is hard to evaluate in practice. Therefore, more practicable lemmas
and instruments are given in this section to verify, if a templated structure with mesh templates
is a templated mesh.

Lemma 4.2 (Interface conformity Lemma). Let Γ be a templated structure with mesh templates.
Γ is a templated mesh, i.e., AT(Γ) is conforming, if for all neighboring instances inst(Γ, i, g) and
inst(Γ, j, h), the following holds:

(i) The underlying space of the instance interface is equal to their geometry instance interface:
us(interf(Γ, Ti,g, Tj,h)) = interfgeo(Γ, Ti,g, Tj,h).

(ii) The boundary elements of both templates transformed to the instance interface are the same:
Ti,g(IPTi,g,Tj,h

) = Tj,h(IPTj,h,Ti,g ), where

IPTi,g,Tj,h
:= bnd(templ(Γ, i))|T−1

i,g (interfgeo(Γ,Ti,g,Tj,h))
. (4.8)

Requirement (i) ensures that the transformed boundary mesh of a template respects the
corresponding geometry instance interface; requirement (ii) states that for every two neighboring
mesh templates, the mesh instance interface is conforming.

Proof. Every mesh template Γi is already conforming, so non-conformities can only occur between
two elements A,B ∈ AT(Γ) which are in different mesh instances. Let A and B be any two elements
in the structure instance AT(Γ) where A is in the instance of template Xi with transformation
function Ti,g and B is in the instance of template Xj with a transformation function Tj,h. Due
to Requirement 4.2 of Definition 4.3, the intersection of A and B is either empty (if Xi and
Xj are no neighbors) or included in the geometry instance interface of the instances. If their
intersection is not empty, Requirement (i) ensures that both A and B are also included in the
geometry instance interface. Due to (ii), A and B are in both interfaces and their intersection is
a face of both. Therefore, AT(Γ) is conforming.

4.3 Boundary Patch Partition

Let Γ be a templated structure with mesh templates. According to Lemma 4.2, Γ requires the
conformity of two neighboring templates for Γ to be a templated mesh. However, as visualized in
Figure 4.7, a templated structure might induce dependencies between two templates which are
not neighboring. If there is such a connection between two templates, these templates are said to
be indirect neighbors. Any algorithm which only relies on Lemma 4.2 might induce additional
non-conformities at interfaces when trying to fix a non-conformity between two direct neighboring
templates. Therefore, there is no guarantee that such an algorithm terminates. An approach to
resolve this issue is the boundary patch approach presented in the following.

A mapping between the boundary of two neighboring templates Xi and Xj with transformation
function Ti,g and Tj,h can be defined.

Definition 4.7 (Template boundary mapping). Let X be a templated structure, Xi and
Xj be two neighboring templates with transformation functions Ti,g and Tj,h: The template
boundary mapping from template Xj to template Xi is defined as the composition of Tj,h

and the inverse of Ti,g:

TTi,g,Tj,h
:= T−1

i,g ◦ Tj,h|T−1
j,h (interfgeo(X,Ti,g,Tj,h))

(4.9)
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1 Algorithm bndpart
input : templated geometry Λ, geometry template T
output : boundary patch partition BT of template T

2 begin
3 FT ← {f ∈ TΛ| dom(f) ⊆ T}
4 BT ← {bnd (T )}
5 foreach f ∈ FT do
6 Bf ← {dom(f), cl(bnd (T ) \ dom(f))}
7 BT ← refine(BT , bf )

8 end

9 end

Algorithm 4.1: Generation of boundary patch partition

Definition 4.8 (Boundary Patch Relation). Let X be a templated geometry, B1 a boundary
patch partition element of the template Xi, and B2 a boundary patch partition element of
the template Xj : B1 is said to be related to B2 (using a binary relation RX), if there is a
template boundary mapping, which maps B1 to B2:

B1∼XB2 ⇔ ∃TTi,g,Tj,h
: B1 = T (B2) (4.10)

The boundary patch relation ∼X is defined as the transitive completion of RX. The boundary
patch relation of a templated mesh Γ is defined the same way except that template boundary
elements are used instead of boundary patch partition elements.

Lemma 4.3 (Boundary patch relation is an equivalence relation). The boundary patch relation
is an equivalence relation.

Proof. ∼X is reflexive because TTi,g,Ti,g
= I is a valid template boundary mapping. ∼X is

symmetric, because T−1
Ti,g,Tj,h

= TTj,h,Ti,g
. ∼X is transitive by definition. Therefore, ∼X is an

equivalence relation.

Because the boundary patch relation is an equivalence relation, it naturally has equiva-
lence classes [a]∼X := {x ∈ bndpart(X)|a∼Xx} and a quotient set: bndpart(X)/∼X := {[x]|x ∈
bndpart(X)}. In the example given in Figure 4.10, boundary patch partition elements which
are related to each other are visualized in the same color. Black elements are just related to
themselves. The quotient set of that boundary patch relation includes every black element and
one representative for each color (green, yellow, and purple).

The boundary patch partition and the boundary patch relation have the following properties:

Lemma 4.4 (Template boundary mapping properties). Let Γ be a templated mesh:

(i) For every two elements A and B of the same equivalence class there is a composition of
template boundary mappings T , which maps A to B: B = T (A).

(ii) Each template boundary mapping TTi,g,Tj,h
maps all boundary mesh template elements which

are included in the domain of TTi,g,Tj,h
to boundary mesh template elements which are

included in the image of TTi,g,Tj,h
:

TTi,g,Tj,h
bnd (Xi) |dom(TTi,g,Tj,h)

= bnd (Xj) |img(TTi,g,Tj,h)
(4.11)

(iii) Every template boundary bnd(Xi) of Γ respects the boundary patch partition of the corre-
sponding geometry template geo(Xi).
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Templated Structure Structure Instance

Figure 4.12: Issues with the Delaunay property of templated meshes

Although the mesh template X1 is Delaunay, the structure instance on the right is not because of the two
triangles visualized in red.

For every two elements of the boundary patch partition A,B, which are related (A∼XB), all
compositions of template boundary mappings F ∈ tf(X, A,B) have to fulfill A = F (B). However,
for templated structures with an irregular instance graph, there are compositions of boundary
template mappings F1 and F2, which are not equal: F1|B = F2|B. Because of the definition of
the boundary patch partition, B is equal to F−1

1 (F2(B)) but at the same time F−1
1 ◦ F2 is not

the identity. Consequently, F−1
1 ◦ F2 has to be a symmetry for B. Although this is not an issue

for templated geometries, it induces additional constraints for templated meshes. Algorithms for
templated meshes with irregular instance graphs are therefore more challenging.

4.4 Template-Aware Delaunay

The Delaunay property (cf.Section 2.3) is a powerful property for simplex meshes. It is therefore
of interest to investigate this property for templated meshes as well.

A simplex element S, which is Delaunay in the structure instance of a templated mesh, is also
Delaunay in all of its mesh templates. However, the converse is generally not true. A simplex
element S ∈ Γi, which is Delaunay in the mesh template Ti,j(E), is not necessarily Delaunay
in the structure instance as visualized in Figure 4.12. As shown in Lemma 2.5, global locally
Delaunay is equivalent to global Delaunay. Therefore, elements, which are not locally Delaunay
in the structure instance of a templated mesh with all mesh templates being Delaunay, have to
be in an instance interface. To identify these elements, the locally Delaunay property is defined
for templated meshes.

Definition 4.10 (Template-aware locally Delaunay). Let Γ be a templated mesh: A simplex
in a mesh template is called template-aware locally Delaunay, if Ti,j(E) is locally Delaunay
(in AT(Γ)) for all transformation functions Ti,j of that mesh template.

With this definition, the following Lemma can be formulated.

Lemma 4.5 (Template-aware Delaunay Lemma). Let Γ be a templated mesh. If all facets of all
mesh templates of Γ are template-aware locally Delaunay, then AT(Γ) is Delaunay.

Proof. Every facet in the structure instance is locally Delaunay because of the template-aware
locally Delaunay property of every template facet. Therefore, the structure instance is Delaunay
due to Lemma 2.5.

In other words, if every mesh template of a templated mesh is Delaunay and every template
boundary element is template-aware locally Delaunay, then AT(Γ) is Delaunay. An algorithm
which adapts a templated mesh to be Delaunay is presented in Section 5.2.5.
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4.5 Mesh Data Structures for Templated Meshes

Similar to Section 2.4, mesh data structures for templated meshes are presented in this section.
Let Γ be a templated n-dimensional mesh. A trivial data structure approach is to simply store
an array of meshes with each having a the set of transformation functions and a set of region IDs.
However, this approach has the issue, that vertices, which are shared between two instances, cannot
be detected in a stable way, because numerical tests are required. Keeping track of these vertex
connections requires additional bookkeeping which in turn results in higher memory requirements.
Therefore, two different data structures are presented, one using the simple approach and one
with shared vertex bookkeeping.

Listing 4.1: Templated mesh data structure without shared vertex bookkeeping

1 struct TRANSFORMATION

2 {

3 NUMERIC_TYPE matrix [];

4 NUMERIC_TYPE translation [];

5 };

6

7 struct MESH_TEMPLATE

8 {

9 MESH mesh;

10

11 int instance_count;

12 int transformation_indices [];

13 REGION_ID_TYPE region_ids [];

14 };

15

16 struct TEMPLATED_MESH

17 {

18 int template_count;

19 MESH_TEMPLATE templates [];

20

21 int transformation_count;

22 TRANSFORMATION transformations [];

23 };

The data structure in Listing 4.1 represents a templated mesh without shared vertex book-
keeping. The mesh data structure presented in Section 2.4 is reused for the mesh templates.
Each rigid transformation function can be represented using an n× n matrix for the affine part
of the transformation and an n-dimensional translation vector. To save additional memory,
transformations in R3 can be represented using unit quaternions [69] instead of the transformation
matrix and in R2, a single angle can be used. However, the data structure will be different for
meshes in R2 and R3. The affine matrix and translation vector representation is used in this
work. All transformation functions are stored in an array located in the TEMPLATED_MESH structure.
For each mesh instance, the index of the corresponding transformation function is stored in the
transformation_indices array and the region indicator is stored in the region_ids array. The
total size of the templated mesh equals the sum of the size of all templates and all transformation
functions. The additional memory space required for the pointers of transformation functions
and all count variables is negligible.
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Listing 4.2: Templated mesh data structure with shared vertex bookkeeping

1

2 struct MESH_TEMPLATE_SVB_INSTANCE

3 {

4 REGION_ID_TYPE region_id;

5 int transformation_index;

6

7 int local_to_global_vertex_mapping_count;

8 int local_to_global_vertex_mapping [];

9 };

10

11 struct MESH_TEMPLATE_SVB

12 {

13 MESH mesh;

14

15 int instance_count;

16 MESH_TEMPLATE_SVB_INSTANCE instances [];

17 };

18

19 struct TEMPLATED_MESH_SVB

20 {

21 int template_count;

22 MESH_TEMPLATE_SVB templates [];

23

24 int transformation_count;

25 TRANSFORMATION transformations [];

26

27 int global_vertex_count;

28 NUMERIC_TYPE global_vertices [];

29 };

The data structure in Listing 4.2 stores a templated mesh with additional shared vertex
bookkeeping (SVB). Shared vertex connections are represented using an array of global vertices
which are all vertices shared by at least two mesh instances. In other words, the global_vertices

array holds all vertices which are in any mesh instance interface. The size of the global_vertices

array therefore is equal to the number of global interface vertices times the geometric dimension
n. For each mesh instance and for all vertices which are shared with any neighboring mesh
instance, there is an additional mapping from the local mesh template vertices to the global
vertices. If the i-th vertex of the template of a mesh instance is shared with another mesh, the
pair (i, j) is inserted in the local_to_global_vertex_mapping array of the corresponding mesh
instance, where j is the index of the global vertex in the global_vertices array. Using this
mapping, any vertex which is shared can be uniquely identified without any numerical tests. For
each local-to-global mapping, two integers, being the two vertex indices, are stored. The size
of the local_to_global_vertex_mapping array therefore is equal to the number of shared local
vertices times 2× sizeof(int). The size of a mesh instance does not only depend on n, but also
on the number of shared vertices with other mesh instances. The transformation functions are
stored similar to the data structure without SVB, i.e., in a global array in the TEMPLATED_MESH_SVB

structure. Each mesh instance stores the array index of the corresponding transformation function
in the transformation_index variable.

The total size of a templated mesh with SVB is the sum of all mesh templates, all instances,
all transformation functions, and the size of the global_vertices array. All other data types are
negligible for sufficiently large meshes. An example for a templated mesh stored with both data
structures is visualized in Figure 4.13. It can be seen, that the data structure with SVB requires
more memory than the data structure without SVB. A comparison of memory usage of templated
meshes is given in Chapter 7.
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Templated Structure Structure Instance

Figure 4.13: Templated mesh stored with and without SVB

The templated mesh has two transformation functions (T1,1 being a translation and T1,2 being a combi-
nation of reflection and translation) where the three vertices v3, v4, and v5 are shared by an instance in-
terface. When using the data structure without SVB (Listing 4.1), only the mesh template X1 is stored
as described in Section 2.4. transformation_indices would be (0, 1) and region_ids would be equal
to (0, 0). The two transformation functions, T1,1 and T1,2, are stored in the transformations array.
When using the data structure with SVB (Listing 4.2), the mesh template X1 as well as the transforma-
tions functions are stored the same way. The global_vertices array would include T1,1(v3), T1,1(v4), and
T1,1(v5). Therefore, the local_to_global_vertex_mapping array of the instance indicated by T1,1 is equal
to ((3, 1), (4, 2), (5, 3)), because the local vertex v3 is associated with the global vertex T1,1(v3) which is the
first entry in the global_vertices array, v4 with T1,1(v4), and v5 with T1,1(v4). For similar reasons, the
local_to_global_vertex_mapping array of the instance indicated by T1,2 is also ((3, 1), (4, 2), (5, 3)).
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Chapter 5

Algorithms for Templated
Geometries and Meshes

Mesh generation and adaptation algorithms for conventional meshes have been presented in
Chapter 3. This chapter covers algorithms for generating and adapting templated meshes.
Templated mesh generation based on templated geometries is covered in Section 5.1. Algorithms
for templated mesh adaptation are discussed in Section 5.2.

5.1 Mesh Generation

In this section two different algorithms for generating a templated mesh based on a templated
geometry are proposed. The first algorithm, presented in Section 5.1.1, individually generates
a mesh for each geometry template and then eliminates potential non-conformities in instance
interfaces. The second algorithm, presented in Section 5.1.2, utilizes the boundary patch partition
to first generate conforming surface meshes for each template and then generating volumetric
mesh templates from these surface meshes.

5.1.1 Independent Mesh Generation and Interface Merging

The algorithms presented in this section start with already generated mesh templates which do not
necessarily yield conforming instance interfaces (cf. Figure 4.4). To obtain a valid templated mesh,
potential non-conformities have to be fixed. The process of making these interfaces conforming is
called interface sewing and consists of two steps: Vertex merging and refinement.

The first algorithm, being vertex merging, eliminates non-conformities in instance interfaces
by identifying vertices which are close to each other and merging them. This vertex merging
algorithm requires an auxiliary algorithm, Algorithm 5.1, which creates a tuple of template vertex
pairs W which are not related to each other (Line 6), are close to each other (Line 7), and which
are in a common geometry instance interface (Line 8). The relation used in Line 6 represents the
boundary patch relation. Each element of the tuple is a tuple itself and includes the distance
between the vertices, the template vertices, the template index, and the transformation functions
(Line 9). In the end, the tuple W is sorted in ascending order by the first argument, i.e., the
vertex distance (Line 13).

Algorithm 5.2 shows the vertex merging algorithm. The maximal distance between two
vertices is specified with the parameter dmax. At first, the helper variables V (the set of all
vertices which are in any instance interface), ∼V (a relation on V where two vertices are related
to each other, if there is a template boundary mapping which maps one to the other), and
Tx,y (the template boundary mappings which are used to create ∼V ) are set up. The set V
represents all template vertices which are included in any geometry instance interface (Line 3).
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1 Algorithm fix nonconformities vertex merging
input : templated structure Γ with mesh templates, maximal vertex distance dmax

output : templated structure Γ
2 begin
3 V ← i{v ∈ elem0(templ(X, i))|v is in any geometry instance interface}
4 foreach v,w ∈ V do
5 if ∃T ∈ TΓ : v = T (w) then
6 Set v ∼V w and w ∼V v
7 Tv,w ← T,Tw,v ← T−1

8 end

9 end
10 W1 ← obtain close vertex pairs(Γ, dmax,∼V )
11 n ← 1
12 repeat
13 for k ← 1 to |Wn| do
14 (d,v,w, i, Ti,g, j, Tj,h) ← Wk[k]

15 z ← v+w
2 , wv ← T−1

i,g (w), ww ← T−1
j,h (w)

16 movement valid ← true
17 if moving v to wv is not valid or moving w to ww is not valid then
18 movement valid ← false
19 end
20 foreach x ∈ V : x ∼V v do
21 if moving x to Tx,v(zv) is not valid then
22 movement valid ← false
23 end

24 end
25 foreach x ∈ V : x ∼V w do
26 if moving x to Tx,w(zw) is not valid then
27 movement valid ← false
28 end

29 end
30 if movement valid then
31 v ← zv,w ← zw
32 foreach x ∈ V : x ∼V v do
33 x ← Tx,v(zv)
34 end
35 foreach x ∈ V : x ∼V w do
36 x ← Tx,w(zw)
37 end
38 foreach x ∈ V : x ∼V v do
39 foreach y ∈ V : y ∼V w do
40 Set x ∼V y
41 Ty,x ← Ty,w ◦ Tv,x,Tx,y ← Tx,v ◦ Tw,y

42 end

43 end
44 goto Line 47

45 end

46 end
47 Wn ← obtain close vertex pairs(Γ, dmax,∼V )
48 n ← n+ 1

49 until Wn = Wn−1

50 end

Algorithm 5.2: Fix non-conformities by vertex merging
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Templated Structure Structure Instance

Figure 5.2: Vertex merging fails to fix all non-conformities

The structure instance has two non-conformities highlighted by the red circles. Although the vertices T1,1(v3)
and T1,2(v1) can be considered close to each other, neither v1 nor v3 can be moved within template X1 because
it would break the geometry-conformity.

The binary relation ∼V represents the boundary patch relation, meaning that it links all template
vertices which can be mapped to each other by a composition of template boundary mappings
(Lines 6). The corresponding composition of template boundary mapping is stored in the Tx,y

variable sets (Line 7). The function obtain close vertex pairs (cf. Algorithm 5.1) is used to obtain
a sorted tuple W1 of all template vertex pairs which are included in the same geometry instance
interfaces and are close to each other (Line 10). The vertex merging algorithm iteratively tests
template vertex pairs if they can be moved to their center (Lines 15-19). Additionally, it also
evaluates if the corresponding movement of the linked template vertices is valid (Lines 20-29). A
vertex movement is considered to be valid, if the movement in the mesh template does not break
the validity of that mesh template (cf. Section 5.2.2). If all movements are valid, they are applied
(Lines 31-37), the corresponding equivalence classes of relation ∼V are merged, and the Tx,y

variables are updated (Lines 38-43). If a template vertex pair with valid movements is found, the
sorted tuple Wn is updated (Line 47) and the process starts again until the sorted tuple Wn does
not change any more (Line 49). The algorithm is visualized in Figure 5.1.

Although Algorithm 5.2 reduces non-conformities, it is, in general, not able fix all non-
conformities as shown in Figure 5.2. Therefore, two additional algorithms are proposed (cf. Al-
gorithm 5.3 and Algorithm 5.4), which fix all remaining non-conformities for simplex meshes
by using refinement and element splitting techniques. It is sufficient to only handle vertex-in-
facet non-conformities for triangle meshes (Algorithm 5.3). However, for tetrahedron meshes,
non-conformities induced by line-line-intersections have to be handled as well (Algorithm 5.4).

At first, Algorithm 5.3 generates the set of all vertex-face pairs (v, f) in the structure instance,
where their intersection is not empty and the vertex v is not a face of f – and therefore creates a
non-conformity (Line 5). As long as there are such pairs, there are non-conformities which must
be fixed. For each vertex-face-pair (v, f) and each template face fT of the structure instance face
f , the vertex vT = T−1

i,j (v) is inserted into the corresponding mesh template (Line 11). For every
template face fT , every co-face cell cT is split into new cells by connecting vT to all vertices of
cT . These new cells are inserted into the mesh template (Line 13) and cT is removed (Line 14).
Depending on the position of vT within cT , a different number of new cells will arise. If vT is
in the interior of fT , the number of new cells is equal to the cell dimension dc. Otherwise, the
number of new cells is higher, because there are additional co-face cells of fT . Afterwards, newly
introduced non-conformities are added to V (Lines 16-22). Finally, all vertex-face pairs (v, f) in
V , where f is no longer present, are removed from V (Lines 24-29). This process is repeated, until
V = ∅ and therefore all vertex-in-facet non-conformities have been eliminated. Although every
iteration step inserts additional vertices and therefore potentially non-conformities, Algorithm 5.3
terminates: Vertices are only inserted at locations which are accessible from another vertex via
compositions of boundary template mappings, which in turn is a finite number. The algorithm is
visualized in Figure 5.3.
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1 Algorithm fix vertex in facet nonconformities
input : templated structure Γ with simplex mesh templates
output : templated simplex mesh Γ

2 begin
3 dc ← DIMcell(Γ)
4 df = dc − 1
5 V ← {(v, f) ∈ elem0(AT(Γ))× elemdf

(AT(Γ)) : v ⊆ f ∧ v /∈ faces0(f)}
6 while V = ∅ do
7 (v, f) ← V [0]
8 foreach fT ∈ templ elem(Γ, f) do
9 T ← templ(Γ, fT )

10 Ti,j ← tf(Γ, f, fT )

11 insert vT = T−1
i,j (v) into mesh template T

12 foreach cT ∈ cofacesdc
(fT ) do

13 insert new simplices into mesh template T by split simplex cell cT using vT

14 remove cT from mesh template T

15 end
16 foreach F ∈ tf(Γ, T ) do
17 foreach g ∈ elemdf

(AT(Γ)) : F (vT ) ⊆ g ∧ F (vT ) /∈ faces0(g) do
18 if (F (vT ), g) = V then
19 V ← V ∪ {(F (vT ), g)}
20 end

21 end

22 end

23 end
24 V ← V \ {(v, f)}
25 foreach (v, f) ∈ V do
26 if f /∈ AT(Γ) then
27 V ← V \ {(v, f)}
28 end

29 end

30 end

31 end

Algorithm 5.3: Fix vertex-in-facet non-conformities
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Although Algorithm 5.3 and Algorithm 5.4 fix all non-conformities for triangle and tetrahedron
meshes, they have the following issues: First, the algorithms potentially insert a lot of new cell
elements at or near the instance interfaces. This might lead to element sizes which are smaller than
desired. Additionally, due to the construction rule for simplices in Algorithm 5.3, the newly created
cell elements have low quality. These effects can be reduced by applying Algorithm 5.2 right
before Algorithm 5.3 and Algorithm 5.4, because the number of non-conformities will potentially
be reduced. Another downside of the algorithms presented in this section are numerical issues
with the inclusion tests in Algorithm 5.3, Line 5, or the three-dimensional line-line intersections
of Algorithm 5.4, Line 3. However, these operations benefit from previous work on numerical
stability for computational geometry [24][65][80][120].

For the algorithms presented in this section, arbitrary volumetric mesh generation algorithms
can be used without any modification, increasing the flexibility in the templated mesh generation
process. However, as mentioned, the element quality of the resulting templated meshes is
potentially inferior.

5.1.2 Templated Mesh Generation Based on the Boundary Patch
Partition

In contrast to the algorithms presented in the previous section, this section focuses on first
generating surface mesh templates which already result in a conforming structure instance.
Afterwards, a mesh generation algorithm generates the volumetric meshes of the geometry
templates without touching the surface meshes. The basic idea is the following:

(i) The boundary patch partition, the boundary relation, and its quotient set of a templated
geometry Λ are created.

(ii) All equivalence classes, being the elements of the quotient set, are sorted by their dimension.

(iii) Starting from the lowest dimension, surface meshes for all elements of the quotient set are
generated considering already generated surface meshes.

Special care has to be taken in step (iii). Ideally, any representative of an equivalence class
can be chosen for surface mesh generation and the resulting mesh can be copied to all other
members of the equivalence class to obtain a conforming structure instance. However, this is not
true for templated geometries with an irregular instance graph (cf. Figure 4.11).

1 Algorithm init templated mesh
input : templated structure Λ
output : templated mesh Γ with empty mesh templates

2 begin
3 foreach TΛ ∈ templ(Λ) do
4 TΓ ← create an empty mesh template for geometry template TΛ in Γ
5 set templ(Γ, TΛ) := TΓ

6 foreach FΛ ∈ tf(Λ, TΛ) do
7 FΓ ← copy transformation function FΛ to TΓ

8 set tf(Γ, FΛ) := FΓ

9 copy region indicators

10 end

11 end

12 end

Algorithm 5.5: Initialize templated mesh
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First, an auxiliary algorithm for initializing a templated mesh based on a templated geometry
is presented, which initializes a templated mesh based on a templated geometry (Algorithm 5.5).
For each geometry template an empty mesh template is created (Line 4) and all transformation
functions and region indicators are copied (Lines 6-10).

1 Algorithm generate templated triangle mesh
input : templated geometry Λ with DIM(Λ) = 2
output : templated triangle mesh Γ which geometry-conforms to Λ

2 begin
3 Γ ← init templated mesh(Λ)
4 B ← bndpart(Λ)/∼Λ

5 foreach [v] ∈ B,DIM([v]) = 0 do
6 foreach vT ∈ templ elem(Λ, [v]) do
7 TΓ ← templ(Γ, templ(Λ,vT ))
8 insert vT into TΓ

9 end

10 end
11 foreach [l] ∈ B,DIM([l]) = 1 do
12 lT ← any representative of [l]
13 TΓ ← templ(Γ, templ(Λ, lt))
14 V ← {v ∈ elem0(TΓ)|v ⊆ lT }
15 create a symmetric line mesh L, where us(L) = lT and V ⊆ elem0(L)

16 foreach lT ∈ [l] do

17 TΓ ← templ(Γ, templ(Λ, lT ))

18 FΓ ← tf(Γ, tf(Λ, lT , lT )[0])

19 insert FΓ(L) into mesh template TΓ

20 end

21 end
22 foreach TΛ ∈ templ(Λ) do
23 TΓ = templ(Γ, TΛ)
24 create a triangle mesh M which geometry-conforms to TΛ and bnd(M) = TΓ

25 copy all triangles from T to TΓ

26 end

27 end

Algorithm 5.6: Templated triangle mesh generation using the boundary patch partition

The templated mesh generation algorithm for 2D templated triangle meshes is presented in
Algorithm 5.6. At first, the resulting templated mesh is initialized based on the templated geometry
(Line 3). Afterwards, the quotient set of the boundary patch relation is calculated (Line 4). For
each vertex in each vertex equivalence class, the vertex is inserted into the corresponding mesh
template (Lines 5-10). Next, for each line equivalence class, a representative lT is chosen (Line 12)
and the vertices V in the corresponding mesh template, which are subsets of lT , are determined
(Line 14). In Line 15, a line mesh L, which respects V , is generated for lT . To support templated
geometries with irregular instance graphs, the line mesh L should have a reflective symmetry
with a reflecting hyperplane which is orthogonal to the line lT . The created line mesh is then
inserted into the templates of the other elements of the line equivalence class (Lines 16-20). At
last, a triangle mesh is generated for each mesh template using the created line meshes of the
template surface (Line 24) and the resulting triangles are copied to the mesh template (Line 25).
Any triangle mesh generation algorithm can be used for this step as long as it does not alter the
surface. For example, the mesh generation tool Triangle offers an option which prohibits the
insertion of additional vertices on the boundary [17].
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Templated Structure Structure Instance

(a) Input templated geometry

Surface Mesh Mesh TemplateBoundary Patch Partition

(b) Surface and template mesh generation

Templated Structure Structure Instance

(c) Output templated mesh

Figure 5.5: Templated mesh generation using surface meshes

The initial templated structure consists of one template which is instanced three times (a). At first, the boundary
patch partition is obtained where a surface mesh is generated for each boundary patch partition element (b).
Using this surface mesh, a volumetric mesh is created using an algorithm which does not alter the surface mesh.
The final templated mesh is visualized on the bottom (c).

The resulting templated output structure of this algorithm is a valid templated mesh which
geometry-conforms to the templated input geometry (cf. Section 4.3). Algorithm 5.6 terminates
for all valid inputs and even works for templated geometries with irregular instance graphs. In
comparison to the algorithms presented in the previous section, Algorithm 5.6 has fewer issues
with poor element quality for elements on or near instance interfaces, because more explicit
control is given to the surface mesh generation process. Additionally, fewer numerical issues arise.
For the inclusion tests, required in Line 14, information from the boundary patch generation process
can be re-used to avoid explicit numerical inclusion tests. Figure 5.5 visualizes Algorithm 5.6
applied to the templated geometry presented in Figure 5.3.

Algorithm 5.7 generates 3D templated tetrahedral meshes based on templated geometries
with regular instance graphs. This algorithm is similar to Algorithm 5.6. The major difference is
in Line 15, where the line mesh is not required to be symmetric. In contrast to Algorithm 5.6,
triangles have to be created for the boundary patches which is done in Lines 22-33. This process
differs from the creation of line meshes in a way, that for the boundary patch triangle mesh
generation previously created lines also have to be taken into account (Line 26). The triangle
mesh generation (Line 27) is similar to the final triangle mesh generation in Algorithm 5.6 and
therefore the same mesh generation algorithms and tools can be applied. Finally, tetrahedral
meshes are generated for each template based on the surface meshes. Like in Algorithm 5.6,
any tetrahedral mesh generation algorithm which does not alter the surface can be used here.
Possible software choices are the advancing front mesh generation tool Netgen [9] or the Delaunay
refinement mesh generation tool Tetgen [14] (with the input surface mesh preservation option
enabled).
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1 Algorithm generate templated tetrahedron mesh
input : templated structure Λ with DIM(Λ) = 3 with regular instance graph
output : templated tetrahedron mesh Γ which geometry-conforms to Λ

2 begin
3 Γ ← init templated mesh(Λ)
4 B ← bndpart(Λ)/∼Λ

5 foreach [v] ∈ B,DIM([v]) = 0 do
6 foreach vT ∈ templ elem(Λ, [v]) do
7 TΓ ← templ(Γ, templ(Λ,vT ))
8 insert vT into TΓ

9 end

10 end
11 foreach [l] ∈ B,DIM([l]) = 1 do
12 lT ← any representative of [l]
13 TΓ ← templ(Γ, templ(Λ, lT ))
14 V ← {v ∈ elem0(TΓ)|v ⊆ lT }
15 create a line mesh L, where us(L) = lT and V ⊆ elem0(L)

16 foreach lT ∈ [l] do

17 TΓ ← templ(Γ, templ(Λ, lT ))

18 FΓ ← tf(Γ, tf(Λ, lT , lT )[0])

19 insert FΓ(L) into mesh template TΓ

20 end

21 end
22 foreach [p] ∈ B,DIM([p]) = 2 do
23 pT ← any representative of [p]
24 TΓ ← templ(Γ, templ(Λ, pT ))
25 V ← {v ∈ elem0(TΓ)|v ⊆ pT }
26 L ← {l ∈ elem1(TΓ)|l ⊆ pT }
27 create a triangle mesh M , where us(M) = pT , V ⊆ elem0(M), and L ⊆ elem1(M)
28 foreach pT ∈ [p] do

29 TΓ ← templ(Γ, templ(Λ, pT )
30 FΓ ← tf(Γ, tf(Λ, pT , pT )[0])

31 insert FΓ(M) into mesh template TΓ

32 end

33 end
34 foreach TΛ ∈ templ(Λ) do
35 TΓ = templ(Γ, TΛ)
36 create a tetrahedron mesh M which geometry-conforms to TΛ and bnd(M) = TΓ

37 copy all tetrahedrons from T to TΓ

38 end

39 end

Algorithm 5.7: Templated tetrahedron mesh generation using the boundary patch partition
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Templated Structure Structure Instance

(a) Initial templated mesh

Templated Structure Structure Instance

(b) Moved vertex

Figure 5.6: Non-locality of operations in the structure instance

Because the operation is actually performed on the corresponding template vertex, the operation is not local in
the structure instance.

As mentioned above, Algorithm 5.7 does not support templated geometries with irregular
instance graphs. To tackle this issue, the line surface mesh generated in Line 15 and the triangle
surface mesh generated in Line 27 have to be symmetric. For the line surface mesh, the same
approach as presented in Algorithm 5.6 can be used. However, for the triangle surface mesh, the
generation process of a symmetric mesh is more complex as rotational symmetries can occur in
addition to reflective symmetries. Algorithms for generating a symmetric mesh are presented in
Section 6.2 and Section 6.3.

Algorithm 5.6 and Algorithm 5.7 can also be modified to generate all-quad or all-hex meshes.
For all-quad meshes, the only difference in Algorithm 5.6 is the usage of the volumetric mesh
generator in Line 24. For all-hex meshes, the triangle surface mesh generator and the tetrahedron
volume mesh generator have to be exchanged with their all-quad and all-hex counterparts (Line 27
and Line 36). All-quad and all-hex approaches based on Paving or sweeping (cf. Section 3.1.2)
are natural choices for surface and volumetric mesh generation (cf. Section 3.1.2).

5.2 Mesh Adaptation

In this section, selected algorithms presented in Section 3.2 are modified for templated meshes.
These modifications are discussed and investigated. Algorithms presented in this section take a
templated mesh Γ as the main input to generate an adapted templated mesh Ω where AT(Γ) and
AT(Ω) geometry-conform to the same geometry. The input and the output of a mesh adaptation
algorithm are even geometry-conforming to the same templated geometry in ideal situations.

Operations on elements in the structure instance of a templated mesh might affect other parts
of the structure instance. Even if an algorithm performs an operation which would be local in
AT(Γ), the effect is potentially non-local as due to the instance-template-relation (cf. Figure 5.6).
For almost every operation performed on a templated mesh, all consequences for AT(Γ) have to
be considered. In some cases, an operation which is beneficial in one area of the mesh potentially
has negative impacts in other areas. For example, a refinement operation of one template element
automatically refines all instances of that element potentially yielding non-desired element sizes in
some ares of the structure instance. However, if such an operation is necessary or highly beneficial,
like mesh refinement in an adaptive process, template splitting and cloning (cf. Section 5.2.1) is
an option.
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Templated Structure Structure Instance

(a) Initial templated mesh

Templated Structure Structure Instance

(b) Moved vertex

Figure 5.7: Conformity issues with operations performed on template boundaries

Moving the vertex (encircled in red) breaks the conformity of the structure instance.

For operations on or near template boundaries, which are part of any instance interface,
Lemma 4.2 has to be fulfilled. This results in less freedom for operations, like vertex movement-
based quality improvement algorithms, and is especially problematic for templated meshes with
irregular instance graphs. However, valid operations in the interior of a template have no negative
effects on the conformity of the structure instance. An example of algorithmic issues due to
Lemma 4.2 is shown in Figure 5.7.

In the following, a selection of mesh adaptation algorithms for templated meshes are presented
and discussed in detail.

5.2.1 Template Cloning, Merging, and Splitting

Template cloning, merging, and splitting are three related algorithms for template management.
Template cloning (cf. Figure 5.8) is a technique where a mesh template Γi is cloned into two

identical mesh templates. Each transformation function of the original mesh template is assigned
to exactly one cloned mesh template. Cloning a template increases the memory consumption
of the templated structure, because the mesh of the template has to be duplicated. If SVB
(cf. Section 4.5) is used, the corresponding book-keeping has to be copied as well. No additional
memory is required for the transformation functions, because each transformation occurs exactly
once in the input and the output structure.

Template merging is the inverse operation to template cloning. If two different mesh
templates Γi and Γj in a templated mesh are identical, these mesh templates can be merged into
one single mesh template. The transformation functions of the resulting mesh template are the
transformation functions of both source mesh templates Γi and Γj . As template merging is the
inverse operation to template cloning, it reduces the memory consumption.

Template splitting (cf. Figure 5.9) splits a template Γi into two different disjunct templates
using a mesh partition of Γi. To ensure that the resulting structure geometry-conforms to the
same geometry, the transformation functions of Γi are copied to all new mesh templates. When
storing the templated mesh without SVB, splitting a mesh template slightly increases the memory
requirement because some vertices have to stored in both new templates and the transformation
functions are copied. On the other hand, with SVB, there is an additional memory increase
because the global vertices array and the local-to-global mapping array will grow due to additional
shared vertices between the two new templates.
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Templated Structure Structure Instance

(a) Initial templated mesh

Templated Structure Structure Instance

(b) Template splitting

Templated Structure Structure Instance

(c) Template cloning

Figure 5.10: Combination of template splitting and cloning

First, a template splitting operation is performed to extract the area visualized in green (b). Then, the template
X3 in the middle templated mesh is cloned (c). For the resulting templated mesh on the bottom, any operation
performed in the area highlighted in yellow is local in the structure instance (because it only affects template
X6).

transformation function leading to the instance which covers A. All other transformation functions
are copied to the other new template. For the resulting templated mesh Ω, the operation is
local in AT(Ω) and no other ares of AT(Ω) are affected. However, the resulting templated mesh
Ω requires more memory, because one template is stored twice. This process is visualized in
Figure 5.10.

5.2.2 Vertex Smoothing

As mentioned in Section 3.2.4, vertex smoothing is an important part in mesh quality improvement
processes. Vertices, which are not part of the boundary of a template, can safely be moved as if
they were in a non-templated structure. For all other vertices Lemma 4.2 has to hold to ensure
the conformity of the output templated mesh. If a vertex is moved, all related templated vertices
(using the boundary patch relation) have to be moved accordingly using a composition of template
boundary mappings. If any movement of a related template vertex invalidates the corresponding
mesh template, the movement is considered invalid.
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5.2.5 Adapt to Delaunay Mesh

An algorithm is presented in this section, which adapts a templated mesh in a way that its
structure instance is Delaunay. As shown in Section 4.4, it is not sufficient that all templates are
Delaunay. Additionally, every facet in the boundary of a mesh template has to be template-aware
locally Delaunay for AT(Γ) to be Delaunay (cf. Lemma 4.5).

1 Algorithm make template mesh delaunay
input : templated simplex mesh Γ
output : templated simplex mesh Γ which’s structure instance is Delaunay

2 begin
3 foreach TΓ ∈ templ(Γ) do
4 make TΓ Delaunay
5 end
6 repeat
7 F ← i{f ∈ facetsi(templ(Γ, i))|f is not template-aware locally Delaunay}
8 foreach f ∈ F do
9 v ← centroid of f

10 Inserting the v in f using the Bowyer-Watson algorithm

11 foreach Template boundary face f̃ : f̃∼Γf do

12 Insert Tf̃ ,f (v) in f̃ using the Bowyer-Watson algorithm (cf. Section 3.2.3)

13 if f̃ ∈ F then

14 F ← F \ f̃
15 end

16 end

17 end

18 until F = ∅
19 end

Technique 5.8: Make templated mesh Delaunay

Technique 5.8 recursively inserts vertices in template boundary facets to make them template-
aware locally Delaunay. At first, all mesh templates are made Delaunay using flip and Delaunay
refinement operations (Line 4). Then, the set F of all template facets which are not template-
aware locally Delaunay is determined (Line 7). For each template facet f in F , its centroid
v is computed (Line 9). In Line 10 this centroid is inserted in the template facet f using the
Bowyer-Watson algorithm (cf. Section 3.2.3). For every template boundary facet f̃ , which is
related to f , the vertex v is inserted using a template composition of boundary mappings Tf̃ ,f ,
which maps f to ṽ (Lines 11-16). The Bowyer-Watson algorithm preserves the Delaunay property
of the mesh templates and does not introduce new vertices (except the centroid which is handled
separately) and therefore does not break the conformity of the structure instance. This process is
repeated, until F is empty.

A visualization of Technique 5.8 is sketched in Figure 5.16. There is no formal guarantee that
Technique 5.8 stops for arbitrary (valid) inputs. For geometries without acute angles, vertex
insertion using the Bowyer-Watson algorithm does not influence other facets which are already
template-aware locally Delaunay. However, for geometries with angles less or equal to 45◦, a
phenomenon called ping-pong encroachment potentially occurs as visualized in Figure 5.17. A
technique called protection balls is used to avoid this issue for classical simplex meshes [90][119][128].
The same approach can also be applied to templated meshes, where the smallest protection ball
of all instance vertices and edges is used to determine a better location for the vertex v (Line 9).
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Templated Structure Structure Instance

(a) Initial templated mesh

Templated Structure Structure Instance

(b) Mesh templates are Delaunay

Templated Structure Structure Instance

(c) Structure instance is Delaunay

Figure 5.16: A templated mesh is made template-aware Delaunay

A valid templated mesh with one mesh template is visualized (a). Neither the mesh template X1 nor the
structure instance is Delaunay (triangles which are not Delaunay are highlighted in red). At first, the mesh
template is made Delaunay using algorithms presented in Section 3.2. The resulting mesh template is Delaunay
but the structure instance is not (b). Inserting vertices at template faces which are not template-aware locally
Delaunay yields the final templated mesh, the structure instance of which is Delaunay (c).

Figure 5.17: The ping-pong encroachment effect near small angles

Starting with vertices x, v1 and w1, bisecting the facet edge simplex(x,w1) using its centroid w2 potentially
results in an edge simplex(x,v1) not being locally Delaunay. When inserting vertex v2 into that edge, the edge
simplex(x,w2) might not be locally Delaunay and so on. This iterative process potentially never stops.

5.2.6 Quality Improvement

Since most quality measures are invariant under rigid transformations, an operation which
increases the quality of an element E ∈ AT(Γ) will have no negative effects on elements in other
locations. A combined flipping and vertex smoothing approach is often sufficient to obtain a
simplex mesh with good quality [32][75]. Both types of operations can safely be performed on the
inside of mesh templates as mentioned in Section 5.2.2 and Section 5.2.3. However, for operations
on the boundary of a mesh template, there are some restrictions. Flip operations cannot be
performed, if at least two elements are in different mesh instances and for vertex smoothing, the
search space for the local optimization of quality measures is restricted to the boundary patches.
With these restrictions the mesh optimization algorithms can be modified for templated meshes.
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Chapter 6

Decompositions and Symmetries

In this chapter, decomposition methods of geometries for templated structures are presented
and discussed. A special focus is laid on geometries with symmetries. Taking care of issues
and dependencies for templated structures in mesh generation and adaptation algorithms is
complicated for objects with general similarities (cf. Chapter 5). However, for objects with
symmetries, most of these issues and dependencies are much easier to handle.

Section 6.1 covers general identification methods for mesh and geometry decompositions.
Special circumstances and algorithms for reflective symmetries and rotational symmetries are
presented and discussed in Section 6.2 and Section 6.3, respectively. Finally, Section 6.4 covers
combinations of symmetries.

6.1 Decomposition Identification

Geometry decompositions and templated meshes and geometries have been introduced in Chapter 4.
This section deals with the identification processes of geometry decomposition and how they are
related to templated structures.

Let (G, ξ) be an n-dimensional multi-region geometry and G = ((G1, ξ|G1), . . . , (Gk, ξ|Gk
)) a

decomposition of (G, ξ). The geometry decomposition G can be represented with a templated
geometry, if the interior of every element of G has just one region. The interior is required,
because points on block interfaces are allowed to be in multiple regions. If the requirement is
fulfilled, a templated geometry Λ is said to be related to the decomposition G, if the structure
instance of Λ is equal to (G, ξ) and for every decomposition element of G, there is an instance in
Λ, which is equal to the decomposition element.

Any given geometry can be represented using a templated structure. For example, for every
multi-region geometry, a trivial templated structure can be defined, which has one template for
every region (being the region). Every template has only one instance indicated by the identity
transformation function and the region indicator of the corresponding region. However, there is
no benefit in using templated structures with this trivial approach. Except for very simple meshes,
the memory consumption of a transformation function is far less than for a mesh. Therefore, it is
advantageous to have a high number of instances per mesh template. Figure 6.1 visualizes the
benefit of using multiple transformation functions with just one small template in contrast to the
trivial decomposition.

On the other hand, according to Lemma 4.2, each instance interface potentially introduces
new constraints and dependencies for the boundary mesh of the corresponding template, as shown
in Figure 6.2. These constraints restrict several operations in algorithms presented in Section 5.2,
which potentially lowers the effect of quality improvement algorithms.
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The boundary patch partition of the sole template is fairly simple and consists of only two
elements, being the boundary which is included in the reflecting hyperplane and the rest of the
boundary. Both boundary patches are only related to itself in the boundary patch relation and
the instance graph is regular. The boundary patch partition and boundary patch relation of a
templated geometry with a reflective symmetry is visualized in Figure 6.5.

A multi-region geometry or a multi-region mesh is said to have a reflective symmetry with the
reflecting hyperplane Hn,d, if all regions have the same reflective symmetry. The corresponding
multi-region templated structure has a template for each region and therefore additional instance
interfaces are possible. However, no new transformation functions (besides I and refln,d) are
introduced for multi-region structures and the instance graph is still regular.

Using the property above, the following important Lemma for templated structures can be
formulated:

Lemma 6.1 (Reflective symmetry conformity). Let n ∈ Rn with n 2 = 1, d ∈ R, and G
be a geometry with n · x ≥ d for all x ∈ G. Then, for any region indicators r1, r2 ∈ {1, 2},
Λ = ((G, (I, refln,d), (r1, r2))) is a templated geometry.

Similarly, for a mesh M with n · x ≥ d for all x ∈ us(M), the templated structure Γ =
((M, (I, refln,d), (r1, r2))) is a templated mesh.

Proof. Λ is a templated structure, because int (I(G)) ∩ int (refln,d(G)) = ∅ and AT(Λ) = I(G) ∪
refln,d(G) is a geometry (by definition of a geometry). Therefore, Λ is a templated geometry.

Γ is a templated structure, because int (us(I(G))) ∩ int (us(refln,d(G))) = ∅. If AT(Γ) =
I(M) ∪ refln,d(M) is not conforming, then non-conformities can only occur on the instance
interface which is included in the reflecting hyperplane. However, the reflecting hyperplane is
invariant under the reflection function and therefore all elements are conforming. Thus, Γ is a
templated mesh.

Lemma 6.1 can also be formulated and proven for multi-region geometries and multi-region
meshes. This implies that any mesh M+ which geometry-conforms to a geometry G+ can be used
as a mesh template and it automatically results in a conforming templated mesh. This drastically
simplifies the process of generating templated meshes based on geometries with reflective symmetry.
Theoretically, any algorithm presented in Section 5.1 can be used for templated mesh generation.
However, due to Lemma 6.1, Algorithm 6.1 presents a much simpler alternative: At first, the

positive multi-region sub geometry (G, ξ)+ is extracted (Line 3). Then, a conventional mesh
generation algorithm is used to create a multi-region mesh (M, ξ)

+
which geometry-conforms

(G, ξ)+ (Line 5). Finally, the resulting templated mesh is obtained by using every region of
(M, ξ)

+
as a mesh template with each two instances indicated by the transformation functions I

and refln,d and the corresponding region indicator (Line 6).

1 Algorithm generate templated mesh reflective symmetry

input : multi-region geometry (G, ξ) having a reflective symmetry with the reflecting
hyperplane Hn,d

output : templated mesh Γ
2 begin

3 (G, ξ)+ ← ({x ∈ G|n · x ≥ d}, ξ)
4 k ← rc((G, ξ)+)
5 (M, ξ)

+ ← generate multi region mesh((G, ξ)+)
6 Γ ← ((region((M, ξ)

+
, 1), (I, refln,d), (1, 1)), . . . , (region((M, ξ)

+
, k), (I, refln,d), (k, k)))

7 end

Algorithm 6.1: Templated mesh generation for geometries with reflecting symmetries
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Even though reflective symmetries are easy to detect automatically (cf. Section 3.3.1) and
the mesh generation process has no conformity and dependence issues, there is a theoretical
upper bound on the improvements in memory and mesh generation runtime of a factor of two.
Benchmark results for the improvements are given in Section 7.2. The approaches presented in
this section can also by applied iteratively, if the geometry or mesh template itself again has a
reflective symmetry.

6.3 Rotational Symmetries

The second main type of symmetries is the rotational symmetry.

Definition 6.2 (Rotational symmetry). A set A ⊆ R2 is said to have a rotational symmetry,
if there exists an angle α ∈ (0◦, 180◦] for which A = rotc,α(A), with c being the center of
gravity of A and

rotc,α(x) :=
cos(α) − sin(α)
sin(α) cos(α)

(x− c) + c (6.3)

c is also called the rotation center and α the rotation angle.
A set B ⊆ R3 is said to have a rotational symmetry, if there exists a normalized vector

v = (vx, vy, vz)
T ∈ R3 and an angle α ∈ (0◦, 180◦] for which B = rotc,v,α(B), with c being

the center of gravity of B and

rotc,v,α(x) :=

 0 −vz vy
vz 0 −vx
−vy vx 0

 sin(α) + I− vvT cos(α) + vvT

 (x− c) + c (6.4)

Again, c is also called the rotation center, v is called the rotation axis, and α is called the
rotation angle.

A general rotation in R2 rotc,α is given by a rotation center c ∈ R2 and a rotation angle
α = 0 mod 360◦. In R3, an additional axis v ∈ R3 is required to specify a rotation. Similar
to reflections, a rotation has also fixed points being the rotation center c for rotations in R2

and every point on the rotation axis for rotations in R3. The general rotation in R3 can also be
written in the following way [104]:

rotc,v,α = R

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

R−1(x− c) + c (6.5)

with

R = I+G sin(θ) +G2(1− cos(θ)) (6.6)

t = v × (0, 0, 1)T (6.7)

θ = cos−1 v · (0, 0, 1)T (6.8)

G =

 0 −tz ty
tz 0 −tx
−ty tx 0

 (6.9)

In this formulation of rotc,v,α, R specifies a coordinate system change, where the rotation is
performed around the z-axis. A set is said to have a rotational symmetry of order n, if n = 360◦/α.
Every set with a rotational symmetry of order n has also a rotational symmetry of order k, if k is
a factor of n. Usually, a set with a rotational symmetry is specified using its largest symmetry
order.
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Figure 6.6: A slice of a set with a rotational symmetry

The slice starting angle is depicted as σ. The slice with a spanning angle of α is embedded between two
hyperplanes with the normal vectors n1 and n2.

In contrast to reflective symmetries, there are infinitely many possible constructing subsets of
a set having a rotational symmetry. Let A be a set with a rotational symmetry of order n. Then
any slice subset S ⊆ A with an angle of 360◦/n can be used to reconstruct A. A slice is defined
as follows:

Definition 6.3 (Slice). Let A ⊆ R2, c ∈ R2, α ∈ [0◦, 360◦], and σ ∈ [0◦, 360◦). The slice
with center c, starting angle σ, and spanning angle α of A is defined as:

Sc,σ,α(A) := {x ∈ A|(x− c) · n1 ≥ 0 ∧ (x− c) · n2 ≥ 0} (6.10)

with

n1 =
− sin(σ)
cos(σ)

(6.11)

n2 =
sin(σ + α)

− cos(σ + α)
(6.12)

For B ⊆ R3 and c,v ∈ R3, the slice of B is given by:

Sc,v,σ,α(B) := {x ∈ B|(x− c) · n1 ≥ 0 ∧ (x− c) · n2 ≥ 0} (6.13)

with

n1 = R

− sin(σ)
cos(σ)

0

 (6.14)

n2 = R

 sin(σ + α)
− cos(σ + α)

0

 (6.15)

R is the coordinate system matrix defined in Equation 6.6.

In other words, a slice is defined as all points which are on the positive side of two hyperplanes
specified by the normal vectors n1 and n2. α is the spanning angle of the slice, i.e., the angle
between the two hyperplanes, and σ is the starting angle. A slice of an object in R2 is visualized
in Figure 6.6.

Let A ⊆ R2 be a set with a rotational symmetry of order n and center c. A can be reconstructed
using a slice with any starting angle σ in the following way:

A =
n−1

k=0

rotc,k 360◦
n

(Sc,σ,α(A)) (6.16)
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1 Algorithm generate bndpart rotational symmetry

input : multi-region geometry (G, ξ) with a rotational symmetry of order n, rotation
center c, and rotation axis v
Starting angle for slice σ

output : templated geometry of slice Λ and boundary patch partitions Bi for each geometry
template

2 begin

3 r ← rc((G, ξ))
4 α ← 360◦

n
5 S ← Sc,v,σ,α(G)
6 H ← starting hyperplane of slice S with starting angle of σ
7 H ← H ∩ S
8 BH ← {H}
9 for i ← 1 to r do

10 Pi ← ip(H, region((G, ξ), i)) ∪ {cl(H \ region((G, ξ), i))}
11 BH ← refine(BH, Pi)

12 end
13 BS ← BH ∪ rotc,v,α(BH)
14 for i ← 1 to r do

15 Ri ← region((G, ξ), 1) ∩ S
16 Bi ← {b ∈ BS |b ⊆ Ri}
17 Bi ← Bi ∪ {bndRi \ cl( b∈Bi

b)}
18 end

19 end

Algorithm 6.2: Boundary patch partition generation of geometries with rotational symme-
tries
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Figure 6.11: Issues with small angles

For sets with a high rotational symmetry order, small angles occur near the rotation center. The smallest angle
of the triangle colored in red is 22.5◦.

If the first and the last angle are equal, than the facet is radial and no additional angles
are introduced between that facet and any potential slice hyperplane (Line 13). The angle of the
first vertex θ[1] and the angle of the last vertex θ[k] are new separation points for the sections in
P and therefore added to P (Line 16). In Lines 17 to 21, the angle (to the x-axis) of the closest
point of the facet f (to the origin) is also added to P , if that angle is in the interval[θ[1], θ[k]]
(cf. Figure 6.10 for an explanation why this is required). The section separation points in P are
then sorted in ascending order (Line 24) and for every two consecutive elements of P , an interval
[P [i], P [i+ 1]] is formed. The angle of a potential slice hyperplane and every facet is linear in
that interval. Therefore, a linear optimization is used to find the slice hyperplane angle σ̃ which
maximizes the smallest newly introduced angle (Line 29). If this maximal smallest angle σ̃ is
larger than any previous best choice σ, σ̃ is used as a new best choice (lines 30-34).

6.3.2 Handling Small Angles

Extracting slices of rotationally symmetric objects with a high symmetry order n might lead
to small angles near the rotation center as visualized in Figure 6.11. In that case, a regular
n-polygon P ⊆ A with its center being the rotation center can be extruded from A to form a
separate block. To minimize newly introduced angles, P should be rotationally aligned in a way
that the slice starting angle σ of A passes through a vertex of P . The remaining set A \ P is still
rotationally symmetric with order n, but the small angle in the center is eliminated. Using this
approach, the geometry can be represented by a templated geometry having two templates, being
the polygon P around the rotation center and a slice of A \ P .

This process is visualized in Figure 6.12. The structure instance of a templated mesh, which
is generated based on that templated geometry, is potentially not rotationally symmetric around
its center any more. However, no angle of 360◦/n is introduced at the center of the slice but
two angles equal to (180◦ + α)/2 = (n + 2)/(2n)180◦ are introduced (cf. Figure 6.13). These
angle are larger than the slice angle of 360◦/n which would have been introduced in the center.
This potentially leads to a better quality of the mesh elements in the slice instances. The mesh
generation of the center template is not required to be rotationally symmetric and the mesh
generation algorithm therefore has more freedom when creating volumetric elements hence leading
to better overall mesh element quality. The approach also works for 3D sets and geometries.
However, the set P , which is cut out around the axis, is not a regular n-prism in general.
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1 Algorithm optimal slicing angle

input : multi-region geometry (G, ξ) ⊆ R3 having a rotational symmetry of order k with
rotation center c = 0 and rotation axis v = (0, 0, 1)T

output : σ
2 begin
3 x̃ = (1, 0, 0)T

4 α ← 360◦
k

5 F ← {f is a facet of (G, ξ)|f ∩ int(Sc,v,0,α(Rn)) = ∅}
6 P ← {0, α}
7 foreach f ∈ F do
8 n ← normalized normal vector of f
9 V ← elem0(f)

10 k ← |V |
11 θ ← arccos V [1]·x̃

V [1] 2
, . . . , arccos V [k]·x̃

V [k] 2

12 Sort θ ascending
13 if θ[1] = θ[k] then
14 continue
15 end
16 P ← P ∪ {θ[1], θ[k]}
17 ṽ ← n(n · V [1])

18 θ̃ ← arccos ṽ·x̃
ṽ 2

19 if θ̃ ∈ [θ[1], θ[k]] then

20 P ← P ∪ {θ̃}
21 end

22 end
23 δmax ← 0
24 Sort P ascending
25 for i ← 1 to |P | − 1 do
26 σ1 ← P [i]
27 σ2 ← P [i+ 1]
28 Fi ← {f ∈ F |f ∩ Sc,v,σ1,σ2

(Rn) = ∅}
29 Use linear optimization to find σ̃ ∈ [σ1, σ2] for which the smallest newly introduced

angle with all facets in Fi is maximal
30 δ ← smallest angle which is newly introduced with hyperplane at angle σ̃ and every

facet
31 if δ > δmax then
32 δmax = δ
33 σ ← σ̃

34 end

35 end

36 end

Algorithm 6.3: Finding optimal slicing angle
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Figure 6.14: Combination of reflective symmetries

The set A has two reflective symmetries indicated by the hyperplanes with the (orthogonal) normal vectors n1

and n2. The reconstruction process uses the subset which is on the positive side of both hyperplanes A+ and the
reflection functions refln1,d1 and refln2,d2 . The missing diagonal set is obtained by applying the combination of
these reflection functions refln1,d1 ◦ refln2,d2 on A+.

Proof. For x ∈ A+,n1,d1 , the following holds:

n1 · refln2,d2
(x) = n1 · (x−2(x ·n2−d2)n2) = n1 ·x−2(x ·n2−d2)n1 · n2

=0

= n1 ·x ≥ d1 (6.23)

Therefore, for every x ∈ refln2,d2
(A+,n1,d1), the inner product of x with n1 is larger or equal to

d1 and refln2,d2(A
+,n1,d1) = A+,n1,d1 .

This lemma also works for sets which have multiple reflective symmetries. Note, that for
A ⊆ Rn, A can have a maximum number of n reflective symmetries which are pairwise orthogonal
to each other. Let A ⊆ Rn be a set with two reflective orthogonal symmetries with their reflecting
hyperplanes Hn1,d1

,Hn2,d2
. The resulting templated geometry is described by using one geometry

template being
A+ := {x ∈ A|x · n1 ≥ d1 ∧ x · n2 ≥ d2} (6.24)

and all possible compositions of the reflection functions I, refln1,d1
, refln2,d2

, refln1,d1
◦ refln2,d2

.
The resulting templated geometry therefore is

Λ = ((A+, (I, refln1,d1
, refln2,d2

, refln1,d1
◦ refln2,d2

), (1, 1, 1, 1))). (6.25)

The same approach can also be applied to objects which have more than two (pairwise
orthogonal) reflective symmetries (cf. Figure 6.14).

The approaches and algorithms presented in Section 6.2 can be modified to work with multiple
reflections as well. The property that for reflective symmetries the instance interfaces are always
conforming, also holds for multiple reflective symmetries. Therefore, Algorithm 6.1 can easily be
adapted to scenarios with multiple reflective symmetries. The modified algorithm is presented in
Algorithm 6.4. Instead of using the positive side of just one hyperplane, the positive side of all
hyperplanes is used as the geometry template (Line 3). Additionally, multiple transformation
functions have to be created for every composition of reflections and identities (Lines 6-8). The
algorithm will generate a total number of 2k transformation functions. Therefore, a theoretical
improvement in memory usage and algorithm runtime of a factor of 2k can be achieved in memory
and runtime optimization.

81





The mesh generation process of a combined reflective-rotationally symmetric multi-region
mesh is presented in Algorithm 6.5. Instead of using a normal slice as presented in Section 6.3,
a half-slice is calculated using the reflecting hyperplane and the reflecting hyperplane rotated
around the axis of rotational symmetry by an angle of α/2 (Lines 4-5). A multi-region mesh
is generated for this half-slice using an arbitrary volumetric mesh generation algorithm with
multi-region support (Line 7). The transformation functions for the templated mesh are obtained
by composing the identity and the symmetry reflection with all rotation angles around the axis of
rotational symmetry (Line 8). The final templated mesh is generated by using the regions of the
generated mesh (M, ξ)

+
as mesh templates, each together with all transformation functions T

(Line 9).
The theoretical improvement in memory and runtime is a factor of 2n for objects with a

reflective symmetry as well as a rotational symmetry of order n. Because the boundary patch
partition is not required, Algorithm 6.5 has much less overhead compared to the mesh generation
process described in Section 6.3. Therefore, performance increases are expected and evaluated in
Chapter 7.

1 Algorithm generate templated mesh rotational reflective symmetries

input : multi-region geometry (G, ξ) having a rotational symmetry of order k with
rotation center c and rotation axis v and also having a reflective symmetry
represented with the reflecting hyperplane Hn,d. The rotation axis v has to be
included in the reflecting hyperplane.

output : templated mesh Γ
2 begin

3 α ← 360◦
k

4 ñ = − rotc,v,α2 (n)

5 (G, ξ)+ ← ({x ∈ G|(x− c) · n ≥ 0 ∧ (x− c) · ñ ≥ 0}, ξ)
6 r ← rc((G, ξ)+)
7 (M, ξ)

+ ← generate multi region mesh((G, ξ)+)
8 T ← (I, refln,d, rotc,v,α, rotc,v,α ◦ refln,d, . . . , rotc,v,(k−1)α, rotc,v,(k−1)α ◦ refln,d)

9 Γ ← ((region((M, ξ)
+
, 1), T, (1, . . . , 1)), . . . , (region((M, ξ)

+
, r), T, (r, . . . , r)))

10 end

Algorithm 6.5: Templated mesh generation for geometries with reflective and rotational
symmetries
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Chapter 7

Results and Applications

In this chapter, the techniques presented in the previous chapters are used for templated mesh
generation benchmarks of synthetic as well as real-world objects are presented. The benchmark
setup is presented in Section 7.1. Objects with reflective symmetries and rotational symmetries are
covered in Section 7.2 and Section 7.3, respectively. Results for objects with general similarities
are covered in Section 7.4. Section 7.5 presents an investigation of a FEM-based symmetry
analysis of the five-pointed star, which will be referred to as Gummel Star. Memory and runtime
benefits in FEM applications are discussed in Section 7.6.

7.1 Benchmark Setup

The benchmarks in this chapter show the benefits of the templated approaches presented in this
work while at the same time preserving or even improving element qualities. To evaluate the
memory savings, the required memory using the data structure MESH (cf. Section 2.4) – or for
multi-region inputs MRMESH – are compared to the templated data structures TEMPLATED_MESH and
TEMPLATED_MESH_SVB (cf. Section 4.5). For runtime analysis, the mesh generation time using a
conventional approach (cf. Section 3.1) is compared to the runtime of a templated mesh generation
process (cf. Section 5 and 6). To obtain better element qualities, mesh generation algorithms
based on Algorithm 5.1.2 (and the specializations presented in Chapter 6) are utilized.

In typical mesh generation use cases an input geometry is meshed using a set of meshing
parameters, e.g., local mesh element size or desired mesh element quality. To reflect these use cases
in the benchmarks, a conventional mesh generation algorithm and a templated mesh generation
algorithm are compared for generating meshes for the same geometry utilizing the same meshing
parameters. However, the resulting mesh of the conventional mesh generation algorithm and
the resulting structure instance (cf. Section 4.1) of the templated mesh differ in general. As
presented later in this chapter, a high correlation between the memory savings and runtime
speedups and cell counts is observed for most benchmarks. To associate the memory saving and
the runtime speedup with one single cell count value, a common ground for the cell count of the
conventionally generated mesh and the templated mesh is required. The average of the cell count
of the conventionally generated mesh and the structure instance of the templated mesh is used in
all cases for which two different meshes are compared. For example, the memory saving of two
meshes with different cell counts will be associated with the average of the cell counts.

To ensure good mesh element quality, mesh element quality statistics of the resulting meshes
and structure instances are generated. This statistic is used to evaluate, if the desired quality has
been achieved. For 2D and 3D meshes, the smallest angle (for 3D meshes the smallest dihedral
angle, cf. Definition 2.16) is used as mesh element quality measure. Benchmarks for 3D meshes
are also performed using the radius-edge ratio quality measure parameter (cf. Definition 2.17).
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In addition to mesh element quality measures, the benchmarks were carried out with differ-
ent mesh element sizes (i.e. the element volume). As symmetry and similarity identification is
not the focus of this work, it is assumed that the input geometry of each benchmark is already
available in a templated form and symmetry or similarity detections are not required. Including
automatic symmetry and similarity detection in the runtime benchmarks reduces the savings of
the templated approaches. However, it has been shown, that the losses are moderate [48].

For the benchmarks in this chapter, a set of benchmark tools has been implemented utilizing
the ViennaMesh software framework [19]. These implementations are published as free open
source software [13]. Triangle and Tetgen are used for 2D and 3D mesh generation, respectively
(cf. Section 3.1.3). All benchmarks have been carried out on an Intel Core i7-3770 workstation
with 16GB of DDR3-1600 memory. The executables have been generated with the clang++ 3.1
compiler [3]. Runtime values are averaged over 100 benchmark executions.

7.2 Reflective Symmetries

The templated mesh generation of objects with reflective symmetries utilizes an implementation
based on the algorithms presented in Section 6.2 and Section 6.4.1. In particular, the mesh
generation software tools Triangle and Tetgen are used to generate a multi-region triangular and
tetrahedral mesh from which the mesh templates are extracted; no special care has to be taken
to ensure interface conformity of the structure instance (cf. Lemma 6.1 and Lemma 6.2).

Benchmarks of three example objects with reflective symmetries are presented:

(i) A 2D aircraft with one reflective symmetry (Figure 7.1a).

(ii) A 2D MOSFET [62] with one reflective symmetry (Figure 7.1c).

(iii) A 3D FinFET [43] with two reflective symmetries (Figure 7.1e).

The benchmark results for these three structures are shown in Figure 7.2. It can be seen
that the runtime speedups for small cell counts are at most moderate. For the aircraft and the
MOSFET, a cell count of at least 104 is required for the templated approach to be as fast as
the conventional approach. It can also be seen that low cell counts result in a quite unstable
runtime speedup behavior for the aircraft due to the fast underlying Triangle software for low cell
counts. However, for high cell counts, the runtime speedups converge to the expected savings
(cf. Section 6.2 and Section 6.4.1), which is a factor of two for the 2D aircraft and the 2D MOSFET
and a factor of four for the 3D FinFET.

Regarding the memory savings, the behavior is similar. The memory savings are moderate for
small cell counts. However, for large cell counts, a convergence to the expected memory savings is
observed. Memory savings of nearly two (1.9 and higher) are achieved for aircraft meshes with cell
counts larger than 104 using the templated data structure without SVB (cf. Section 4.5) and for
cell counts larger than 105 using the templated data structure with SVB. Memory savings larger
than the expected memory savings can be observed for the 2D MOSFET and the 3D FinFET.
The reason for these high memory savings is the conventional multi-region mesh data structure
MRMESH: The region identifier is stored for each cell while in the templated data structures, only
one region identifier is required for a mesh template rather than for each cell. Therefore, for the
2D MOSFET, cell counts larger than 4× 104 and 4× 103 results in memory savings larger than
two using the templated data structure with and without SVB, respectively. For the 3D FinFET,
cell counts larger than 5× 106 and 4× 105 result in memory savings larger than four using the
templated data structure with and without SVB, respectively.

Until now, memory savings are calculated using a conventionally generated mesh and a
templated mesh, both generated with the same parameters. Memory savings of a templated
mesh and its structure instance are visualized in Figure 7.3. It can be seen, that the qualitative
behavior is the same as the memory savings of a templated mesh and a conventionally generated
mesh with the same parameters (cf. Figure 7.2).
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(a) 2D aircraft (b) 2D aircraft template

(c) 2D MOSFET (d) 2D MOSFET template

(e) 3D FinFET (f) 3D FinFET template

Figure 7.1: Benchmark objects with reflective symmetries and their templates

The aircraft (a) and the 2D MOSFET (c) have one reflective symmetry with a vertical reflecting hyperplane.
The 3D FinFET (e) has two reflective symmetries with reflecting hyperplanes which are orthogonal to each other.
While the aircraft geometry does not have any regions, the 2D MOSFET and the 3D FinFET geometry have
multiple regions (indicated by different colors) which reflect different material properties.

As discussed in Section 5.1, a potential issue regarding templated mesh generation is the
resulting mesh quality. To obtain high quality meshes, the corresponding mesh quality parameters
of the mesh generation software are used to obtain a mesh with a specific minimal quality. For
the 2D objects, being the aircraft and the MOSFET, smallest angles of 5◦, 10◦, 20◦, and 30◦ have
been used as quality meshing parameters. All elements of the resulting conventionally generated
meshes as well as the corresponding structure instances of all 2D MOSFET benchmarks have
smallest angles larger or equal than the configured value and therefore meet the desired element
quality constraints. However, the mesh generation algorithm was unable to meet the desired
overall element quality for the 2D aircraft due to sharp angles in the input geometry leading to
particularly bad elements (cg. Figure 7.4).
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(b) Memory savings 2D aircraft
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(d) Memory savings 2D MOSFET
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(e) Runtime speedups 3D FinFET
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(f) Memory savings 3D FinFET

Figure 7.2: Benchmark results for objects with reflective symmetries

The left and right column shows runtime and memory benchmarks, respectively, for different objects and for
varying cell counts. Expected savings (visualized by the green lines) are a factor two for the 2D aircraft and 3D
MOSFET (both having one reflective symmetry) and a factor of four for the 3D FinFET (having two reflective
symmetries).
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(b) Memory savings 2D MOSFET
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(c) Memory savings 3D FinFET

Figure 7.3: Memory benchmark results of structure instance

In contrast to Figure 7.2 memory savings of the templated mesh are calculated based on the memory requirement
of its structure instance rather than a (non-symmetric) conventionally generated mesh of the same geometry.
The expected savings are visualized by green lines.
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A 0.5 6.0◦ 0.0 8.75× 10−7 6.0 ◦ 5.48◦ 0.91
R 1024.0 1.5 2.82× 10−4 5.21× 10−4 1.53 1.57 1.05
R 16.0 1.5 3.04× 10−5 1.11× 10−4 1.56 1.73 1.16
R 8.0 1.5 1.97× 10−5 4.93× 10−5 1.59 1.58 1.05
A 2.0 12.0◦ 0.0 3.03× 10−6 12.0 ◦ 11.58◦ 0.97
R 1.0 2.0 3.16× 10−6 5.27× 10−6 2.13 2.02 1.01
R 1.0 1.5 1.65× 10−5 1.90× 10−5 1.76 1.74 1.16
R 32.0 1.5 4.75× 10−5 1.31× 10−4 1.65 1.67 1.11
R 4.0 1.5 2.92× 10−5 4.59× 10−5 1.59 1.55 1.03
R 256.0 2.5 0.0 2.09× 10−4 2.5 2.51 1
R 1.0 2.5 1.35× 10−6 5.29× 10−6 2.87 3.68 1.47
R 64.0 1.5 1.22× 10−4 1.49× 10−4 1.73 1.54 1.03
R 128.0 1.5 1.21× 10−4 2.12× 10−4 1.56 1.68 1.12
R 4.0 2.0 3.49× 10−6 6.7 × 10−6 2.08 2.03 1.01

Table 7.1: Element quality analysis of 3D FinFET benchmarks. The quality measure is given in
the first column. A minimal dihedral angle quality measure is indicated by A and a radius-edge
ratio quality measure is indicated by R. The relative worst value colored in red indicates elements
with poor element quality in the structure instance. One single cell (located in the thin channel
area) in the mesh template of that particular benchmark has a radius-edge ratio larger than 2.87
(the worst radius-edge ratio of the conventionally generated mesh).

Smallest dihedral angles of 6◦, 12◦, and 18◦ and radius-edge ratios of 2.5, 2, and 1.5 are used as
quality meshing parameters for the 3D FinFET. However, the mesh generation algorithm is not able
to fulfill these required mesh quality settings for all benchmarks. Out of 72 different configurations
of mesh generation parameters, 23 conventionally generated meshes and 14 templated mesh
structure instances did not fulfill the quality parameters. The quality benchmark results of
all benchmarks, where the quality of the structure instance is worse than the quality of the
conventionally generated mesh, are given in Table 7.1. It can be seen, that the worst element
quality value for most benchmarks is at most 16% worse than the configured value. Only for one
benchmark (indicated in red), the worst element quality value is off by 47%. However, in this
extreme case, the number of elements with worse quality than configured is less than 5× 10−6;
considering all benchmarks it is even less than 0.5% elements. Therefore, the mesh quality of the
templated approach is considered as good as the quality of conventionally generated meshes for
the most cases and minimally worse otherwise.
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(a) 2D n-polygon (b) Template (c) Templates with SAO

(d) 3D Open TSV structure (e) Templates (f) Templates with SAO

Figure 7.5: Benchmark objects with rotational symmetries

Both objects have a rotational symmetry order of 16. On the left, the object geometry is visualized. In the
middle, templates for the classical templated approach with one slice are shown. On the right, the small angle
optimization (SAO) templates are given with one slice and the middle part which is a regular 16-polygon or
regular 16-prism. The templates are visualized in different colors.

7.3 Rotational Symmetries

Algorithm 5.6 and Algorithm 5.7 are used to generate the templated meshes for objects with
rotational symmetries. The implementation first creates a line mesh of the geometry using the
requested cell size. For 2D objects, the Triangle software is used to generate a volumetric triangle
mesh using the line mesh as a surface mesh. The surface mesh is not altered. For 3D objects,
Triangle is used to generate triangle surfaces with triangle sizes suitable for the desired volumetric
cell size. These triangle surfaces are used to generate the template surface meshes based on
the boundary patch partition. For each template a volumetric mesh is generated using Tetgen
without inserting Steiner points on any surface mesh.

Two cases with rotational symmetries are investigated:

(i) A 2D n-polygon (Figure 7.5a)

(ii) A 3D open through-silicon via (TSV) structure [28] (Figure 7.5f)

The objects visualized in Figure 7.5 have been synthetically generated. While the first one
(the n-polygon) is merely used for a proof-of-concept, the open TSV structure represents an object
used in microelectronic applications. Geometries with rotational symmetry orders of 8, 16, 32, 64,
and 128 have been generated for both objects. The concepts presented in Section 6.3 (in this
section referred to as slice template or ST) have been applied to all rotationally symmetric objects.
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Additionally, the small angle optimization (SAO) approach (cf. Section 6.3.2) has also been used
in the benchmarks. Therefore, the conventional mesh generation has been benchmarked against a
templated version with and without small angle optimization.

Benchmark results for the 2D n-polygon are given in Figure 7.6. The results are similar to
the ones from the previous section: The expected savings in runtime and memory usage are
achieved for meshes with a high number of cells. The runtime speedups are larger than a factor
of one for cell counts larger than 103 and larger than a factor of five for cell counts larger than
5× 104. The behavior of the memory savings is more stable. Memory savings larger than one are
achieved for almost all benchmarks. Memory savings larger than a factor of five are obtained
for both approaches (ST and SAO) for cell counts larger than 5× 103 using the data structure
without SVB. The data structure with SVB performs worse. However, memory savings larger
than a factor of ten are achieved for large cell count values. The runtime speedups scale well
with the rotational symmetry order for cell counts larger than 105 (cf. Figure 7.6e). Memory
savings also scale well with the rotational symmetry order for meshes with more than 5× 103 cells
(cf. Figure 7.6f). However, memory savings with SVB (visualized using ◦) are smaller. For high
rotational symmetry orders, the memory savings using a data structure with SVB even starts to
decrease (cf. Figure 7.6f) due to the large number of vertices on instance interfaces which increase
the bookkeeping effort.

The smallest angle quality parameters 10◦, 20◦, and 30◦ are used for the rotational symmetry
benchmarks. While the conventional mesh generation algorithm was always able to fulfill the
desired quality parameters, the TS approach has issues due to small angles near the center of
rotation for high rotational symmetry orders (cf. Section 6.3.2). However, the SAO approach
was able to generate meshes with smallest element angles larger than the configured values. A
selection of quality histograms is given in Figure 7.7, example meshes of a selected benchmark
are visualized in Figure 7.8.

Benchmark results for the 3D open TSV structure are given in Figure 7.9. Runtime speedups
from 5 up to 100 can be achieved. However, no correlation to the cell counts of the meshes is
observed for the 3D structure. Memory savings without SVB ranging from 10 to 100 are observed
(cf. Figure 7.9b). However, with SVB, the memory savings are much smaller ranging from a
factor of two to a factor of ten. Similar to the runtime speedup behavior, the memory savings are
not correlated to the cell counts. The memory savings, however, are slightly better as depicted
by Figure 7.9d. The runtime speedups also scale well with the rotational symmetry order of the
object (cf. Figure 7.9e). This is also true for the memory savings when using the data structure
without SVB. The behavior when using the data structure with SVB, however, is completely
different (cf. Figure 7.9f). The memory savings start to decrease for high rotational symmetry
orders. This behavior can be explained by the high vertex count on the instance interfaces for
high rotational symmetry orders. A high number of vertices on instance interfaces increases the
memory usage of the shared vertex bookkeeping in turn resulting in reduced memory savings.

92



 0.1

 1

 10

 100

 1000

10
3

10
4

10
5

10
6

S
p
e
e
d
u
p

Cell count

(a) TS runtime speedups

 0.1

 1

 10

 100

 1000

10
3

10
4

10
5

10
6

M
e
m

o
ry

 s
a
v
in

g
s

Cell count

w/o SVB
w/ SVB

(b) TS memory savings
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(c) SAO runtime speedups
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(d) SAO memory savings
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Figure 7.6: Benchmark results for the 2D n-polygon

The top row (a)-(b) and middle row (c)-(d) visualizes benchmark results for different cell count values for the
TS and SAO approach, respectively. The dashed black lines indicate the expected runtime and memory savings
of the different rotational symmetry orders 8, 16, 32, 64, and 128. Benchmark results for different rotational
symmetry orders are visualized in the bottom row (e)-(f). Only meshes with a minimal cell count of 105 are
considered for the rotational symmetry plots.
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(a) 128-polygon, smallest angle = 20.0◦, cell size = 5× 10−5
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(b) 128-polygon, smallest angle = 30.0◦, cell size = 5× 10−5

 0.001

 0.01

 0.1

 0  10  20  30  40  50  60

Smallest angle

Conventional

 0.001

 0.01

 0.1

 0  10  20  30  40  50  60

Smallest angle

Structure instance

 0.001

 0.01

 0.1

 0  10  20  30  40  50  60

Smallest angle

SAO

(c) 128-polygon, smallest angle = 10.0◦, cell size = 0.0001
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(d) 128-polygon, smallest angle = 20.0◦, cell size = 0.0001
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(e) 128-polygon, smallest angle = 30.0◦, cell size = 0.0001

Figure 7.7: Smallest angle quality histograms for n-polygon benchmarks

A selection of smallest angle quality histograms of meshes of n-polygons. The histogram bins are given in log
scale for better visualization of the bad quality bins. The quality histograms of the conventionally generated
meshes are visualized in the left column. The quality histogram of the structure instance of the TS is given in the
middle column. The right column shows quality histograms of the SAO approach. Bins colored in red indicate
cells with quality worse than the configured value. The smallest angle quality value constraint is visualized using
the black vertical line. The smallest angle of the TS approach structure instance of every presented benchmark
does not fulfill the configured values as indicated by the red histogram bins. Additionally, the mesh quality of
the structure instances of the SAO approach is even better then the quality of the corresponding conventionally
generated mesh as indicated by a slightly higher dominance of larger smallest angles in the quality histograms of
the SAO approach.
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(a) Conventionally generated (b) TS templated approach

(c) SAO templated approach

Figure 7.8: Quality comparison of meshes generated for a 16-polygon

All meshes have been generated with a requested cell size of 2.5× 10−3 and a smallest angle of 30◦. Elements
near the center of (b) have a smallest angle which violates the smallest angle constraint. The conventionally
generated mesh (a) and the SAO approach (c) both fulfill the requested element quality.
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(a) TS runtime speedups
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(d) SAO memory savings
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(f) Memory savings

Figure 7.9: Benchmark results for the 3D open TSV structure

The top row (a)-(b) and middle row (c)-(d) visualizes benchmark results for different cell count values for
the template slice and small angle optimization approach, respectively. The dashed black lines indicate the
expected runtime speedups and memory savings of the different rotational symmetry orders 8, 16, 32, 64, and
128. Benchmark results for different rotational symmetry orders are visualized in the bottom row (e)-(f). Only
meshes with a minimal cell count of 105 are considered for the rotational symmetry plots.
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(a) Bridge beam construction (b) Templates

(c) Multiple open TSV structure (d) Trunk template

Figure 7.10: Benchmark objects with similarities

The geometries of the beam bridge construction and the multiple open TSV structure are visualized in (a)
and (c), respectively. (b) and (d) show the templates for the bridge and the multiple open TSV structure,
respectively. The bridge beam construction has two different templates being the beam and the beam connector.
The templated structure consists of 31 beam instances and 17 beam connector instances. The multiple open
TSV structure has two templates, being the trunk (d) and the slice template used in Section 7.3

7.4 General Similarities

Templated meshes for objects with general similarities are generated using the same setup as
described in Section 7.3. Two objects with similarities, one from the field of structural mechanics
and one from the field of microelectronics, are investigated in this section:

(i) A 2D bridge beam construction (Figure 7.10a)

(ii) A 3D structure with multiple open TSVs [27] (Figure 7.10c)

The expected memory savings and runtime speedups for both objects are not trivial to
calculate due to their heterogeneous templated structures. However, the expected memory savings
for uniform cell sizes are estimated using the ratio of the sum of the template volumes and the
structure instance volume. Memory savings of 28.5 are estimated for the bridge beam construction.
The expected memory savings for the multiple open TSV structure are estimated to be a much
lower value of 1.6. This low estimation originates from the trunk template. It is only instanced
once in the structure instance and has a relative large volume (compared to the volume of the
TSVs).

Benchmark results for the bridge beam construction are given in Figure 7.11. Similar to the
previous chapters, expected runtime speedups and memory savings are observed for cell counts
larger than 106. Runtime speedups range from 10 to 14 for meshes with more than 105 cells and
even exceed 28 for meshes with more than 106 cells.
Memory savings, when using the templated mesh data structure without SVB, are larger than 25
for meshes with more than 4× 104 cells. When using the templated mesh data structure with
SVB, the same memory savings are observed for meshes with more than 4 × 105 cells. These
benchmark results coincide with the (estimated) expected memory savings.

Benchmark results for the multiple 3D open TSV structure are given in Figure 7.12. Runtime
speedups range from 1.2 to 3.2, memory savings range from one to 1.5 when using the data
structure with SVB and from 1.6 to 2.6 when using the data structure without SVB. However,
in contrast to the 2D bridge beam construction, no correlation of the mesh cell count and the
memory savings is observed. These benchmark results also coincide well with the (estimated)
expected memory savings.
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Figure 7.11: Benchmark results for the 2D bridge beam construction

Runtime and memory benchmark results are visualized for different cell count values on the left and on the right,
respectively. The expected runtime speedups and memory savings are observed for high cell counts (larger than
106).

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

10
6

S
p
e
e
d
u
p

Cell count

(a) Runtime speedups

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

10
6

M
e
m

o
ry

 s
a
v
in

g
s

Cell count

w/o SVB
w/ SVB

(b) Memory savings

Figure 7.12: Benchmark results for the multiple open TSV structure

Runtime and memory benchmarks results are visualized for different cell count values on the left and on the
right, respectively. No correlation of the mesh cell count and the memory savings is observed.
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To investigate the effects on the numerical solution, three types of meshes have been generated
for different target cell sizes: a non-symmetric, a rotationally symmetric, and a reflective-
rotationally symmetric mesh. All meshes have been created with a smallest angle quality larger
than 30◦ [109]. Example meshes for each type are visualized in Figure 7.14. For each mesh
and each rotation of the boundary conditions (cf. Figure 7.15), solutions to the boundary value
problem as well as the dual boundary value problem have been calculated using the free open
source FEM software framework FEniCS [4]. These solutions are compared by first rotating (for
the rotated boundary conditions) or reflecting (for the dual problem) them to be aligned and
then applying the maximum norm on the transformed solutions. The solution difference of two
solutions u and v is therefore defined as:

d(u, v) := max
x∈D

u(x)− v(T (x)) ∞ = max
x∈D

|u(c)− v(T (x))| (7.1)

D is the simulation domain and T is the transformation which aligns the solution v to the solution
u. It is to be expected that meshes with rotational symmetries yield numerically equal solutions
when rotating the boundary conditions. Additionally, meshes with reflective symmetries are
expected to yield numerically equal solutions when comparing the initial problem to the dual
problem.

The solution differences for the rotated boundary conditions on meshes with two different
cell counts are given in Table 7.2 and Table 7.3. Each row and each column represents the
solution to the boundary value problem with rotated boundary conditions. The differences on the
non-symmetric meshes are at least two orders of magnitude, for the coarser meshes (cf. Table 7.2)
even three orders of magnitude, larger then the differences on the symmetric meshes. Additionally,
keeping in mind that the largest value of the solution to this boundary value problem is one, the
errors for the non-symmetric mesh range up to 11%.

The solution differences for the initial and the dual problem for meshes with different cell counts
are given in Table 7.4. The solution differences are at least two orders of magnitude smaller when
using a reflective-rotationally symmetric mesh compared to a non-symmetric mesh. Additionally,
due to the lack of reflective symmetry, the solution differences for the rotationally symmetric
mesh are about one order of magnitude larger than the differences for the reflective-rotationally
symmetric mesh.

As expected, meshes with rotational symmetries yield solutions which are (numerically)
equal to each other when rotating the boundary conditions of the Gummel star. Also, meshes
with reflective symmetries yield solutions to the initial and the dual problem which are, again,
numerically equal.
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Non-symmetric mesh with 109 triangles

No rotation 0 5.0× 10−2 1.1× 10−1 7.2× 10−2 4.2× 10−2

Rotation 72◦ 0 1.1× 10−1 7.0× 10−2 5.6× 10−2

Rotation 144◦ 0 1.1× 10−1 1.1× 10−1

Rotation 216◦ 0 1.0× 10−1

Rotation 288◦ 0

Rotationally symmetric mesh with 120 triangles

No rotation 0 1.1× 10−5 9.8× 10−6 6.1× 10−6 8.4× 10−6

Rotation 72◦ 0 1.2× 10−5 6.7× 10−6 9.7× 10−6

Rotation 144◦ 0 7.4× 10−6 6.6× 10−6

Rotation 216◦ 0 8.4× 10−6

Rotation 288◦ 0

Reflective-rotationally symmetric mesh with 130 triangles

No rotation 0 1.6× 10−5 1.2× 10−5 9.4× 10−6 1.6× 10−5

Rotation 72◦ 0 1.6× 10−5 1.0× 10−5 1.2× 10−5

Rotation 144◦ 0 8.5× 10−6 1.0× 10−5

Rotation 216◦ 0 1.6× 10−5

Rotation 288◦ 0

Table 7.2: Solution differences for the rotated boundary conditions on meshes with about 1.2×102

triangles. All solution differences are evaluated by rotating the solutions to a position where they
are aligned and then applying the maximum norm. The solution differences for the non-symmetric
mesh are at least three orders of magnitude larger than the solution differences for the rotationally
and the reflective-rotationally symmetric mesh. The solution differences for the rotationally and
reflective-rotationally symmetric mesh are not exactly zero due to numeric issues and round-off
errors. However, these differences indicate that these solutions are numerically equal.
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Non-symmetric mesh with 13921 triangles

No rotation 0 1.1× 10−2 2.5× 10−2 3.5× 10−2 1.9× 10−2

Rotation 72◦ 0 2.5× 10−2 3.5× 10−2 1.9× 10−2

Rotation 144◦ 0 1.3× 10−2 1.5× 10−2

Rotation 216◦ 0 2.2× 10−2

Rotation 288◦ 0

Rotationally symmetric mesh with 13850 triangles

No rotation 0 9.2× 10−5 8.0× 10−5 7.7× 10−5 9.2× 10−5

Rotation 72◦ 0 8.4× 10−5 7.7× 10−5 8.0× 10−5

Rotation 144◦ 0 7.9× 10−5 8.0× 10−5

Rotation 216◦ 0 8.9× 10−5

Rotation 288◦ 0

Reflective-rotationally symmetric mesh with 14160 triangles

No rotation 0 1.1× 10−4 1.3× 10−4 9.5× 10−5 1.1× 10−4

Rotation 72◦ 0 9.9× 10−5 8.0× 10−5 1.3× 10−4

Rotation 144◦ 0 7.9× 10−5 8.0× 10−5

Rotation 216◦ 0 9.9× 10−5

Rotation 288◦ 0

Table 7.3: Solution differences for the rotated boundary conditions on meshes with about 1.4×104

triangles. All solution differences are evaluated by rotating the solutions to a position where they
are aligned and then applying the maximum norm. The solution differences for the non-symmetric
mesh are at least two orders of magnitude larger than the solution differences for the rotationally
and the reflective-rotationally symmetric mesh. The solution differences for the rotationally and
reflective-rotationally symmetric mesh are not exactly zero due to numeric issues and round-off
errors. However, these differences indicate that these solutions are numerically equal.
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Non-symmetric 109 5.0× 10−2

Rotationally symmetric 120 1.4× 10−2

Reflective-rotationally symmetric 130 1.6× 10−5

Non-symmetric 1758 2.4× 10−2

Rotationally symmetric 1740 3.2× 10−3

Reflective-rotationally symmetric 1750 6.5× 10−5

Non-symmetric 13921 1.2× 10−2

Rotationally symmetric 13850 1.1× 10−3

Reflective-rotationally symmetric 14160 1.1× 10−4

Non-symmetric 111244 1.2× 10−2

Rotationally symmetric 111260 1.1× 10−3

Reflective-rotationally symmetric 111660 2.8× 10−4

Table 7.4: Solution differences of the initial problem and its dual problem for meshes with different
symmetries and cell counts. Solution differences are evaluated by reflecting the dual solution to
make it aligned to the solution of the initial problem and then applying the maximum norm. As
expected, the differences for the reflective-rotationally mesh are always less then the differences
for the non-symmetric or the rotationally symmetric mesh. However, the rotationally symmetric
meshes yields solutions which are more similar than the solutions for the non-symmetric mesh.

103



7.6 Memory and Runtime Benefits in FEM applications

Volumetric meshes are widely used for simulations, especially discretization-based simulations like
the FEM. This section covers memory savings of templated meshes, where also the memory usage
of a FEM simulation is considered. Up to this point, memory savings are calculated by taking
the quotient of the memory usage of a templated mesh and the memory usage of a conventionally
generated mesh. The memory savings in this section, however, also include the required memory
for a FEM simulation for the templated mesh and the conventionally generated mesh.

The FEM discretization is usually stored using a square matrix, called the system matrix,
which is commonly sparse [103]. The size and the sparsity pattern of that matrix depends on
the topology of the mesh on which the simulation is carried out. Different sparse matrix formats
have been proposed. For example, the compressed sparse row (CSR) format, which is used in
this work, is a reasonable, general purpose sparse matrix storage format which usually allows for
good performance [141]. When using linear FEM, the focus in this section, the unknowns in the
system matrix can be identified with the mesh vertices.

A naive approach for storing the system matrix of a templated mesh is to use the system
matrix of its structure instance. Memory benchmark results which include the required memory
size for the system matrix of a linear FEM using this naive approach are given in Figure 7.16.
It can be seen that the memory savings which include the system matrix sizes are significantly
lower than the memory savings without the system matrix sizes. Memory savings including the
system matrix only range from one (no saving) to three.

However, it is possible to use a templated approach for storing the system matrix. Listing 7.1
presents the TCSR_MATRIX data structure which represents the system matrix of a templated mesh
which uses a templated approach for memory optimization. For each mesh template its system
matrix is calculated as usual assuming that every mesh template vertex is an unknown. This
template matrix is stored in the CSR format using the CSR_MATRIX data structure. Additionally,
for each instance a mapping is required to map the local unknowns to global unknowns. This
is achieved by the local_to_global_mapping in the templated CSR matrix data structure. If the
instance of a template mesh vertex within the structure instance is part of a Dirichlet boundary
and therefore not an unknown, the corresponding mesh vertex is mapped to an invalid value, i.e.,
to −1, for that particular mesh instance. Using this mapping, a templated CSR matrix can be
converted to a classical CSR matrix using Algorithm 7.1. This algorithm iterates over all instances
of all templates and adds the matrix entries of the local template matrix to the corresponding
global CSR matrix entries using the local_to_global_mapping. Vertices which are on the inside
of an instance only have neighbor vertices inside that instance. Therefore, these global unknowns
are updated only once in the global CSR matrix. For a local unknown, which associated vertex
is in any instance interface, the local coupling with neighbor vertices is only calculated using
the local cell connections. When transforming these local vertices to the structure instance, the
sum in Line 14 (cf. Algorithm 7.1) adds up all valid couplings of all mesh instances in which
the vertex is. This sum reflects the linearity of the inner product which is used to calculate the
coupling for a FEM problem. Additionally, the evaluation of that coupling is invariant under
rigid transforms [103]. Therefore, the resulting CSR matrix of Algorithm 7.1 with the input being
a templated CSR matrix based on a templated mesh will be the same as the CSR matrix of its
structure instance.
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(a) n-polygon without SVB
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(b) n-polygon with SVB
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(c) Open TSV structure without SVB
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(d) Open TSV structure with SVB

Figure 7.16: Memory benchmark results including the FEM system matrix

The memory savings including the system matrix are calculated using the quotient of the memory usage of
the conventionally generated meshes plus the memory usage for its system matrix and the memory usage of
the templated mesh plus the usage of the system matrix of its structure instance. The rotationally symmetric
objects n-polygon and the open TSV structure presented in Section 7.3 are used for this benchmark.
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Listing 7.1: Templated CSR matrix data structure

1 struct CSR_MATRIX

2 {

3 NUMERIC_TYPE * values;

4 int * column_indices;

5 int * offsets;

6 int size;

7 };

8

9 struct TCSR_INSTANCE

10 {

11 int * local_to_global_mapping;

12 };

13

14 struct TCSR_TEMPLATE

15 {

16 CSR_MATRIX template_matrix;

17 TCSR_INSTANCE * instances;

18 int instance_count;

19 };

20

21 struct TCSR_MATRIX

22 {

23 TSCRTemplate * templates;

24 int template_count;

25 };

input : Templated CSR matrix A
output : CSR matrix B

1 begin
2 B ← zero matrix
3 foreach TSCRTemplate T ∈ A do
4 foreach TCSR_INSTANCE I ∈ T do
5 for row ← 1 to T.template_matrix.size do
6 istart ← T.template_matrix.offsets[row]

7 iend ← T.template_matrix.offsets[row+1]

8 for i ← istart to iend do
9 column ← T.template_matrix.column_indices[i]

10 value ← T.template_matrix.values[i]

11 global_row ← I.local_to_global_mapping[row]

12 global_column ← I.local_to_global_mapping[column]

13 if global_row = −1∧ global_column = −1 then
14 B( global_row, global_column ) ← B( global_row, global_column )+

value
15 end

16 end

17 end

18 end

19 end

20 end

Algorithm 7.1: Convert templated CSR matrix to CSR matrix
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Solution methods for FEMs are typically based on iterative algorithms utilizing Krylov
subspaces, for example the conjugate gradient algorithm [141]. One main advantage of Krylov
subspace methods is, that the system matrix is not altered. The main matrix operation used in
each iteration step is the matrix-vector product. The matrix-vector product for a templated CSR
matrix is presented in Algorithm 7.2.

input : Templated CSR matrix A, vector b

output : Vector result

1 begin
2 result ← zero vector
3 foreach TSCRTemplate T ∈ A do
4 foreach TCSR_INSTANCE I ∈ T do
5 for row ← 1 to T.template_matrix.size do
6 istart ← T.template_matrix.offsets[row]

7 iend ← T.template_matrix.offsets[row+1]

8 for i ← istart to iend do
9 column ← T.template_matrix.column_indices[i]

10 value ← T.template_matrix.values[i]

11 global_row ← I.local_to_global_mapping[row]

12 global_column ← I.local_to_global_mapping[column]

13 if global_row = −1∧ global_column = −1 then
14 result[global_row] ← result[global_row] + value ×

b[global_column]

15 end

16 end

17 end

18 end

19 end

20 end

Algorithm 7.2: Templated CSR matrix-vector product

Memory benchmark results using the templated CSR matrix data structure rather than a
(classical) CSR matrix of the structure instance are presented in Figure 7.17. The memory savings
including the system are significantly higher when using the templated CSR matrix data structure
instead of using a CSR matrix of the structure instance. When storing the templated mesh using
the data structure with SVB, the memory savings including the templated system matrix are as
good as the case without considering the system matrix (compare Figure 7.17b and Figure 7.17d).
In some cases, the memory savings including the templated system matrix are even better than
the memory savings which do not consider any system matrix because the overhead of the shared
vertex bookkeeping is less significant.

The templated CSR matrix-vector product algorithm, however, is more complex due to
the additional array lockup in Algorithm 7.2, Lines 11 and 12. Runtime benchmarks for the
matrix-vector product using a CSR matrix and a templated CSR matrix are given in Figure 7.18.
The matrix-vector product using a templated CSR matrix is about two to six times slower than
the matrix-vector product using a conventional CSR matrix. Therefore, the solution process
is also expected to take two to six times longer. This might be an issue, if computation times
are important. However, for memory-limited computing platforms the templated CSR matrix
approach supports larger simulation meshes.
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(a) n-polygon without SVB
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(b) n-polygon with SVB
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(c) Open TSV structure without SVB

 0.1

 1

 10

 100

 1000

10
5

10
6

M
e
m

o
ry

 s
a
v
in

g
s

Cell count

w/o system matrix
w/ templated system matrix

(d) Open TSV structure with SVB

Figure 7.17: Memory benchmark results using the templated CSR matrix

Memory savings for the templated mesh including the templated CSR matrix are calculated based on the memory
usage of a conventionally (non-symmetric) mesh including the memory usage of its CSR matrix.

For most typical FEM applications, like fluid dynamics or electronic device simulation, linear
solvers suffer from slow convergence as well as lack of robustness [141]. To compensate these
issues, preconditioners are used. Black-box preconditioners, like the ILU factorization or the
block Jacobi preconditioner, require access to the entries of the system matrix. Accessing entries
of the system matrix is a potential issue when using the templated CSR matrix data structure,
because the system matrix entries of boundary vertex unknowns are not directly provided in the
templated CSR matrix data structure. However, matrix-free preconditioners are an active field of
research and complement the presented approach based on templated CSR matrices [45][117].
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(a) n-polygon without SVB
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(b) 3D open TSV structure

Figure 7.18: Runtime benchmark results for templated CSR matrix-vector product

Relative runtime values are calculated by the relation of the templated CSR matrix-vector product runtime and
the CSR matrix-vector product of the conventionally generated mesh system matrix. A correlation between
runtime values and the number of cells can only be observed for the 2D n-polygon structures. For the 3D
open TSV structures, no correlation can be observed because the number of neighbor vertices is less restricted
(compared to 2D high quality meshes) in high quality 3D meshes.
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Chapter 8

Conclusion and Outlook

This thesis presents theoretical approaches as well as algorithms and data structures for storing,
generating, and adapting meshes with symmetries and/or similarities. A theoretical background
for geometries and meshes has been presented in Chapter 2. Related research work has been
investigated and discussed in Chapter 3. A theory for templated structures has been developed
(cf. Chapter 4), which has been used to formulate general mesh generation and adaptation
algorithms (cf. Chapter 5). Special (less complicated) algorithms for reflective and rotational
symmetries (and their combinations) have been proposed in Chapter 6. The developed data
structures and algorithms have been evaluated in Chapter 7.

This last chapter concludes the thesis by re-evaluating the research questions stated in
the beginning (Section 8.1) and provides an outlook to possible further research directions
(Section 8.2).

8.1 Conclusion

The thesis is evaluated in this section by answering the stated research questions (cf. Chapter 1)
based on the conducted research. The general conclusion, however, is that the memory savings and
runtime speedups meet or even exceed the expectations in most cases. Additionally, symmetric
meshes increase the accuracy of FEM solutions in most (about three out of four) cases. In the
following, the research questions will be evaluated one after another.

How can templated meshes and templated geometries be defined? Are there any
restrictions or issues? Which restrictions and which issues apply to objects with
symmetries?

Templated meshes and geometries have been defined in Section 4.1. The definitions and lemmas
provide solid and abstract mechanisms for geometries and meshes with symmetries and/or
similarities.

As discussed in Section 4.2, issues arise at locations where two template instances meet
(cf. Lemma 4.2). The conformity has to be ensured at these locations. To identify and handle
these issues in algorithms, the boundary patch partition (cf. Section 4.3) has been developed.
Additional issues arise for templated structures with irregular instance graphs as some mesh
generation and adaptation algorithms get more intricate (cf. Section 5.1.2 and Section 5.2.2)

However, for objects with reflecting symmetries, there are no issues or restrictions as shown in
Section 6.2 (cf. Lemma 6.1) and Section 6.4.1 (cf. Lemma 6.2), which is also true for objects which
have rotational and reflective symmetries (cf. Section 6.4.2). Conformity issues potentially occur
for objects with rotational symmetries on instance interfaces of slice templates. However, the
boundary patch partition is much easier to determine for such objects and the resulting instance
graph is regular (cf. Section 6.3).
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How can properties, like the Delaunay property, be abstracted to templated
meshes?

The template-aware locally Delaunay property (cf. Section 4.4) is the natural abstraction of the
locally Delaunay property for templated meshes. Similar to the Delaunay Lemma, a lemma for
evaluating the Delaunay property of a templated mesh has been devised (cf. Lemma 4.5) and
proved. Additionally, an algorithm has been developed which adapts a templated mesh in a way
that its structure instance becomes Delaunay (cf. Algorithm 5.8 in Section 5.2.5).

Which algorithms for conventional meshes also work for templated meshes? Which
modifications are required for these algorithms?

Two general mesh generation algorithms for templated meshes have been developed and presented
in Section 5.1:

(i) An algorithm which generates volumetric meshes for each template independently and then
adapts the instance interfaces to ensure conformity (cf. Algorithms 5.1 to 5.4).

(ii) An algorithm which at first generates a conforming surface mesh for all templates and then
uses these surface mesh to generate volumetric mesh templates (cf. Algorithms 5.5 to 5.7).

Both algorithms utilize conventional mesh generation algorithms for surface and volumetric
mesh generation. Thus, existing implementations of mesh generation algorithms can be re-used
for templated mesh generation algorithms. Although the second algorithm requires the boundary
patch partition and thus is more complicated, it is numerically more stable and generates meshes
of higher quality.

Issues and modifications for mesh adaptation algorithms have been discussed and presented in
Section 5.2. Mesh adaptation algorithms do not require any modification as long as they work on
interior elements of a mesh template. If an algorithm alters the surface of a mesh template, the
conformity of the structure instance has to be preserved (cf. Lemma 4.2). Thus, mesh adaptation
algorithms have less freedom in modifying elements on the surface of mesh templates. In some
cases, certain modifications are even forbidden.

How can a templated mesh be generated based on symmetric geometries?

The two general mesh generation algorithms presented in Section 5.1 work for symmetric ge-
ometries. However, due to the simplicity of reflective and rotational symmetries (compared
to general similarities), specializations of these algorithms have been proposed for geometries
with reflective symmetries, rotational symmetries, and their combination (cf. Chapter 6). These
algorithms are less complicated, because they take direct advantage of properties induced by
these symmetries. For example, reflective symmetries do not have conformity issues on instance
interfaces (cf. Lemma 6.1 and Lemma 6.2).

What are the effects on mesh element quality when using a templated mesh
generation algorithm compared to a conventional mesh generation algorithm? How
do non-symmetric meshes (of symmetric geometries) affect the solution of
simulation processes?

It has been shown that the quality of the templated approach is as good as the quality of the
conventional approach in most cases and minimally worse otherwise. An analysis on mesh element
quality for reflective and rotational symmetric objects is given in Section 7.2 and Section 7.3,
respectively.
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If a simulation problem has a symmetric geometry, transforming the boundary conditions with
the symmetry transformation yields a mathematical solution which is equal to the solution of
the initial problem transformed by that same transformation. However, a FEM-based symmetry
analysis yields that utilizing non-symmetric meshes result in numerical solutions which are
numerically not equal (cf. Section 7.5). A symmetric mesh is required to obtain numerically equal
solutions.

How much memory can be saved when using templated meshes?

Expected memory savings are achieved for all 2D benchmark objects when using the data structure
without SVB. For 3D rotational symmetric benchmark objects with high rotational symmetry
orders, the savings are slightly lower than the expected values. When using the data structure
with SVB, memory savings are lower due to the bookkeeping effort. Benchmarks on memory
usage for templated meshes have been presented in Section 7.2, Section 7.3, and Section 7.4. The
best memory savings for each benchmark object is given in Table 8.1.

When additionally considering the memory usage of the FEM system matrix, memory savings
drop significantly. Therefore, a templated matrix data structure based on the CSR matrix format
has been proposed which compensates these losses (cf. Section 7.6). However, due to the increased
complexity of the data structure, the matrix-vector product of that templated CSR matrix format
is two to six times slower than the matrix-vector product using a classical CSR matrix. In cases
where the simulation on a target computing platform is memory-limited or runtime is no issue,
the templated CSR matrix approach enables the use of larger meshes.

What are the effects on the runtime performance for templated mesh generation
algorithms?

Expected runtime speedups are achieved or even exceeded for most benchmark objects. Only
for 3D open TSV objects with a high rotational symmetry order, the speedup is slightly smaller
than expected. Benchmark results on runtime speedup for templated mesh generation have
been presented in Section 7.2, Section 7.3, and Section 7.4. The best runtime speedup for each
benchmark object is given in the rightmost column of Table 8.1.

8.2 Outlook

Although important research questions have been answered (cf. Section 8.1), additional research
is required to further optimize the utilization of symmetries and similarities for mesh generation
processes. Some potential research suggestions are given in the following.

The theory presented in Appendix A is a solid background for this work. However, the sets
used for mesh elements and geometries are restricted to linear sets due to the IPC property
(cf. Definition A.28), which is required by the boundary patch partition. Some mesh elements
used in the literature, e.g., hexahedrons, might not be linear which will exclude them from
the templated approaches in this work. Therefore, further research should investigate, how the
geometry space Ln can be abstracted to include more general sets.

This work primarily focuses on the theory and the generation of templated meshes. However,
there are a lot of mesh adaptation algorithms which have only been briefly discussed. A more-
in-depth investigation of these algorithms would enable an increase of the mesh adaptation
possibilities for templated meshes. Additionally, special cases of these algorithms for symmetric
objects would decrease instance interface issues or issues with irregular instance graphs.

A combined pipeline of automatic symmetry and similarity detection and mesh generation
of symmetric objects has briefly been covered in previous work [48]. A more in-depth study of
a combined approach would increase the usability of templated meshes and their generation.
Furthermore, future research should investigate automatic decomposition of geometries with
similarities or symmetries for templated mesh generation.
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aircraft 2D 2 2 2 2.7
MOSFET 2D 2 2.2 2.1 2.2
FinFET 3D 4 4.2 4 4.4
8-polygon 2D 8 8 7.9 8
16-polygon 2D 16 16 15.4 16.4
32-polygon 2D 32 32.2 27.7 33.2
64-polygon 2D 64 64.4 39.4 64.5
128-polygon 2D 128 128.3 36.5 117
8-TSV 3D 8 9 6 8.2
16-TSV 3D 16 17.8 9 15.8
32-TSV 3D 32 33.3 9.6 26.7
64-TSV 3D 64 54.3 6.7 35
128-TSV 3D 128 92.5 4.8 86.7
bridge 2D 28.5 29 28.4 29.2
multi-TSV 3D 1.6 2.6 1.5 3.1

Table 8.1: The best memory savings and runtime speedups for each benchmark object. n-TSV
refers to a TSV with a rotational symmetry order of n. The aircraft, the MOSFET, and the
FinFET are covered in Section 7.2, n-polygons and n-TSVs are covered in Section 7.3, and the
bridge and multi-TSV structure are covered in Section 7.4. Savings which are at least 10% better
than the expected values are colored in green, and savings which are at least 10% worse then the
expected values are colored in red.

As of yet, investigations on parallelization of the algorithms involved in templated mesh
generation have been conducted. In the light of stagnating single-core performance and ever-
growing core-counts of modern multi-core processors, future research should cover this research
gap to further improve runtime performance and to make efficient use of modern computing
platforms.
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Appendix A

Mathematical and Geometrical
Background

Mathematical and geometrical definitions and lemmas as well as proof of lemmas important for
this work are presented in this appendix. Unless explicitly stated otherwise, the topological vector
space (Rn, τn), n ≥ 1, where τn is the standard topology induced by the Euclidean norm1, is
used throughout this thesis. More specifically, this work focuses on the topological vector spaces
(R2, τ2) and (R3, τ3).

Definition A.1 (Closure, interior, boundary). For X ⊆ Rn, the closure of X based on
the topology τn is denoted as cl(X), the interior is denoted as int(X), and the boundary is
defined as bnd(X) = cl(X) \ int(X)

Definition A.2 (Composition of functions). Let f and g be two functions. The composition
of g and f is defined as:

(g ◦ f)(x) := g(f(x)), x ∈ f−1 (img(f) ∩ dom(g)) (A.1)

g ◦ f therefore maps from the domain dom(g ◦ f) = f−1 (img(f) ∩ dom(g)) to the image
img(g ◦ f) = g (img(f) ∩ dom(g)). The composition of two functions g and f is invalid, if
img(f) ∩ dom(g) = ∅.

Definition A.3 (n-ball, open n-ball, n-half-ball). The following sets are defined for x ∈ Rn:

Bn

r (x) := {y ∈ Rn : y − x 2 ≤ r} (A.2)

Bn
r (x) := {y ∈ Rn : y − x 2 < r} (A.3)

Hn
r (x) := {y ∈ Rn : y − x 2 ≤ r ∧ yn ≥ 0} (A.4)

Bn

r (x) is called the (closed) n-ball with center x and radius r and Bn
:= Bn

1 (0) is called the
(closed) unit n-ball. Bn

r (x) is called the open n-ball and Bn := Bn
1 (0) is called the open unit

n-ball. Hn
r (x) is called the (closed) n-half-ball and Hn := Hn

1 (0) is called the (closed) unit
n-half-ball.

1Euclidean norm for x ∈ Rn: x 2 = n
i=1 x

2
i
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Definition A.7 (Cells, facets). Let E be an element space. The cell dimension of E is
the maximum dimension of all its elements: DIMcell(E) := maxE∈E{DIM(E)}, the facet
dimension is defined as DIMfacet(E) := DIMcell(E) − 1. An element E is called cell if
DIM(E) = DIMcell(E) and facet if DIM(E) = DIMfacet(E).

The set of all elements of a E with dimension k is denoted as elemk(E), the set of all
vertices is denoted as vertices(E) := elem0(E), the set of all cells is denoted as cells(E) :=
elemDIMcell(E)(E) and the set of all facets is denoted as facets(E) := elemDIMfacet(E)(E).

The standard definition of the interior and the boundary is non-intuitive for k-manifolds in Rn

with k < n. For example, the interior of a triangle T in R3 is empty and the boundary (defined
as the closure without the interior) is cl(T ). Therefore, a more intuitive definition of the interior
and the boundary of manifolds is used in this work:

Definition A.8 (Relative interior, relative boundary). The relative interior of a k-manifold
X is defined as the set of all x ∈ X which have a neighborhood based on the topology τn|X
which is homeomorph to Bk. The relative interior of a set X is denoted as intk(X). The
relative boundary of a manifold X is defined as: bndkX := X \ intk(X). If no k is specified,
the dimension of X is used: int (X) := intDIM(X)(X) and bnd (X) := bndDIM(X)(X)

The boundary of a k-manifold is a k − 1-manifold. For example, the closed unit n-ball Bn
is

an n-manifold. The interior of Bn
, int (Bn

), is the open unit n-ball Bn. The boundary of Bn

bnd (Bn
) is the set {x ∈ Rn, x 2 = 1} which is an n− 1-manifold. Some properties of manifolds

are presented in the next lemma.

Lemma A.1 (Manifold properties). Let X,A,B ⊆ Rn be manifolds.

(i) X is a k-manifold if and only if intk(X) = ∅.
(ii) Let A ⊆ B. Then, DIM(A) ≤ DIM(B).

(iii) Let A ⊆ B. Then, for k ≥ DIM(B), intk(A) ⊆ intk(B).

(iv) Let A and B be manifolds. Then, for k ≥ max(DIM(A),DIM(B)), intk(A∩B) = intk(A)∩
intk(B).

Proof.

(i) Follows trivially from the definition of a manifold and the relative interior.

(ii) Assume, DIM(A) > DIM(B), then there is an x ∈ A which is also in B. x has a neighbor
UB based on the topology τn|B which is homeomorph to BDIM(B). x has also a neighborhood
UA based on the topology τn|A which is homeomorph to BDIM(A). Because A ⊆ B, UA is a
subset of B. UA can be scaled down to be a subset of UB . However, there is no neighborhood
UA which is homeomorph to BDIM(A) which is a subset of UB (which is homeomorph to
RDIM(B)) with DIM(A) > DIM(B). Therefore, DIM(A) has to be less or equal to DIM(B).

(iii) For k > DIM(B), intk(A) and intk(B) is empty. Otherwise, for DIM(A) < k (DIM(A) can
not be larger than k due to (ii)), intk(A) is empty.

Let DIM(A) = DIM(B) = k. For every x ∈ intk(A) there is a neighborhood UA of x based
on the topology τn|A which is homeomorph to Bk. Because A ⊆ B, x is also in B. Every
neighborhood of x based on the topology τn|B is either homeomorph to Bk or Hk. Because
UA is also a subset of B, every neighborhood of x based on the topology τn|B has to be
homeomorph to Bk. Therefore, x is in intk(B).
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Figure A.2: Element faces are not minimal

The element space E represents a triangle with two polylines boundary elements and three vertices. The boundary
of the triangle can be represented as the union of the two polylines. However, the line connecting the lower two
vertices occurs twice in that union.

(iv) If DIM(A) < k or DIM(B) < k, intk(A ∩B) and intk(A) ∩ intk(B) are empty.

Let DIM(A) = DIM(B) = k. For x ∈ intk(A) ∩ intk(B), x is in intk(A) and has a
neighborhood UA based on the topology τn|A which is homeomorph to Bk. Also, x is in
intk(B) and has a neighborhood UB based on the topology τn|B which is homeomorph to
Bk. UA ∩ UB is a neighborhood based on the topology τn|A∩B of x which is homeomorph
to Bk. Therefore, intk(A) ∩ intk(B) is a subset intk(A ∩B).

On the other hand, every x ∈ intk(A ∩B) has a neighborhood UA∩B based on the topology
τn|A∩B which is homeomorph to Bk. Every neighborhood UA of x based on the topology
τn|A is either homeomorph to Bk or Hk. The neighborhood UA∩B can be scaled down to
be a subset of UA. Therefore, UA has to be homeomorph to Bk leading to x also being in
intk(A). A similar argument can be applied to the set B. Therefore, x is in intk(A) and in
intk(B) and consequently intk(A ∩B) is a subset of intk(A) ∩ intk(B).

The boundary of manifolds used in this work can be represented as union of other manifolds
with lower dimensions. For example, the boundary of a triangle can be represented as the union
of its three lines. Boundary elements which are maximal, i.e. there are no larger elements which
are included in the boundary, are called facets. The facets and recursively all facets of facets of a
manifold are called faces.

Definition A.9 (Facet of a set, face of a set). Let E be an element space. For E ∈ E , a
manifold F = ∅ ∈ E is called a facet of E if F ⊆ bnd (E) and there is no X ∈ E \ {F,E}
for which X ⊆ bnd (E) and F ⊆ X. The set of all facets of E ∈ E is denoted as facetsE(E).
The set of all faces of an element E ∈ E is defined as follows:

facesE(E) := {E} ∪
F∈facetsE(E)

facesE(F ) (A.6)

facesE,k(E) := {f ∈ facesE(E)|DIM(f) = k} (A.7)

The DIM(E)-dimensional faces of an element E is E itself (facesDIM(E)(E) = {E}) and the
DIM(E)− 1-dimensional faces are the facets (facesDIM(E)−1(E) = facets(E)).

Intuitively, the facets of an element E should be a minimal cover of its boundary bnd (E).
Figure A.2 visualizes an element space where the boundary representation of a cell is not minimal.
Therefore, the term face-complete is introduced:
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Definition A.10 (Face-complete, face-completion). An element space E is called face-
complete, if for every element E ∈ E the union of all facets of E is equal to the relative
boundary of E and the intersection of the relative interior of two different facets of E is
empty.

Let X ⊆ E . The face-completion of X in E is defined as the intersection of all subsets of
E which are face-complete and supersets of X:

fcE(X) :=
X⊆Y⊂E,Y is face-complete

Y (A.8)

If no reference element space is specified, the mesh element space is used:

fc(X) := fcE(X) (A.9)

Similar to the faces and facets, the co-faces and co-facets of an element E are defined as the
elements of which E is a face or a facet, respectively.

Definition A.11 (Co-face, co-facet). The co-faces of an element E of an element space E
are all elements for which E is a face:

cofacesE(E) := {F ∈ E|E ∈ facesE(F )} (A.10)

cofacesE,k(E) := {F ∈ cofacesE(E)|DIM(F ) = k} (A.11)

The co-facets of an element E are the co-faces with one dimension larger than the element
E:

cofacetsE(E) := cofacesE,DIM(E)+1 (A.12)

Elements which share a common face are called neighbors.

Definition A.12 (Neighbor element). The neighbor elements of an element E ∈ E of an
element space E are all elements which have a common face with E:

neighborsE(E) = {N ∈ E|facesE(E) ∩ facesE(N) = ∅} (A.13)

neighborsE,j,k(E) = {N ∈ E|DIM(N) = k ∧ facesE,j(E) ∩ facesE,j(N) = ∅} (A.14)

A very important property, especially for discretization-based simulation methods, is confor-
mity. The intersection of two different elements of a conforming element space is a face of both
elements. This property enables straight-forward interfaces between two neighboring cells which
simplifies interaction between them.

Definition A.13 (Conforming). An element space E is said to be conforming if for every
two sets E1, E2 ∈ E , their intersection E1 ∩ E2 is either empty or a face of both.

Conforming element spaces play a central role in this work.

Definition A.14 (Element complex). A conforming element space is called element complex.

Connected compact k-manifolds are the basic building blocks of meshes, called mesh elements.
Linear mesh elements are the most basic elements used in this work. They are defined using
affine and convex hulls.
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Non-trivial linear elements are called polyhedrons:

Definition A.18 (k-polyhedron, facet of a polyhedron, linear k-cell, linear set, polyhedron
space). The convex hull of a set X = {x1, . . . ,xj} ⊆ Rn with aff(X) being a k-flat is called
a convex k-polyhedron. For a convex k-polyhedron P , a convex k − 1 polyhedron F = ∅ is
called a facet if F ⊆ bnd (P ) and there is no X = F which is a k−1-polyhedron and F ⊆ X.
The set of all facets of P is denoted as facets(P ). The finite union of convex k-polyhedra
P1, . . . , Pj , which lie in a common k-flat, is called a k-polyhedron or linear k-cell. A set
A ⊂ Rn is called linear if it is a polyhedron.

The set of all k-polyhedra in Rn is denoted as
poly

En
k , the set of all j-polyhedra, j ≤ k is

denoted as polyEn
k :=

n
k=0 poly

En
k , and the set of all k-polyhedra, k ≤ n is called polyhedron

space and denoted as polyEn :=poly En
n .

Convex k-polyhedra and linear k-cells are compact k-manifolds. A linear 0-cell is a vertex,
a linear 1-cell is a line, a linear 2-cell is a called a polygon, and a linear 3-cell is called a (not
necessarily convex) polyhedron.

Although this work mainly focuses on simplices, some algorithms and proofs also hold for
a larger class of elements. A hypercube-motivated approach is used to define more elements,
especially quadrilaterals and hexahedrons.

Definition A.19 (Parameterized element). Given a continuous parameterization
f(α1, . . . , αk) : [0, 1]

k → Rn, the set

P(f) := {x ∈ Rn|x = f(α1, . . . , αk), 0 ≤ α1, . . . , αk ≤ 1} (A.17)

is called a parameterized element if the following restrictions are met:

(i) P(f) is a manifold.

(ii) P(f) is not degenerated, meaning that for all parameters 0 < αi < 1, f(α1, . . . , αk) is
in int (P(f)): ∀0 < α1, . . . , αk < 1 : f(α1, . . . , αk) ∈ int (P(f))

(iii) The boundary of the parameter space bnd ([0, 1]k) maps to the boundary of the element
bnd (P(f)): f(bnd ([0, 1]k)) = bnd (P(f)).

To exclude exotic subsets of Rn, only parameterizations which lead to manifolds are allowed
(restriction (i)). Restriction (ii) prevents the parameterized element from being degenerated and
self-intersecting. The third restriction (iii) ensures, that the parameterized element is bounded
and closed and therefore compact. Additionally, (iii) gives a parameterization for the boundary
of the parameterized element.

Definition A.20 (k-interpolation combination). Given an ordered tuple T = (t1, . . . , t2k) , ti ∈
Rn, the function

I(t1,...,t2k)
(α1, . . . , αk) :=

(1 − αk) I(t1,...,t2k−1 )(α1, . . . , αk−1) +

αk I(t
2k−1+1

,...,t
2k

)(α1, . . . , αk−1)
(A.18)

with
I(t1,t2)(α) := (1− α)t1 + αt2 (A.19)

is called a k-interpolation combination.

The definition of the k-interpolation combination is motivated by the recursive parameteriza-
tion of a hypercube. Note, that a k-interpolation combination is not a linear function in general.
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Therefore, when using a parameterized element based on a k-interpolation combination, the ele-
ment does not need to be linear. However, for fixed α1, . . . , αi−1, αi+1, . . . , α2k the k-interpolation
combination is linear in αi.

When using pairwise different points, the parameterized element using a 2-interpolation
combination results in a quadrilateral and using a 3-interpolation combination results in a
hexahedron. The k-interpolation combination is injective for these element types.

Definition A.21 (Quadrilateral). Given an ordered tuple Q = (q1, . . . , q4) , qi ∈ Rn, qi = qj
for i = j, the set

quad(Q) := P(IQ) (A.20)

is called a quadrilateral. For n ≥ 2,
quad

En is defined as the set of all quadrilaterals in

Rn,
quad

En = ∅ otherwise. The recursive set of all quads is denoted as quadEn :=
quad

En ∪simplices En
1 .

Quadrilaterals in R2 are convex and their boundary is piecewise linear. The facets of a
quadrilateral are four lines:

facets
quadEn(quad((q1, q2, q3, q4))) =

simplex({q1, q2}), simplex({q1, q3}),
simplex({q2, q4}), simplex({q3, q4}) (A.21)

Definition A.22 (Hexahedron). Given an ordered tupleH = (h1, . . . ,h8) ,hi ∈ Rn,hi = hj

for i = j, the set
hex(H) := P(IH) (A.22)

is called a hexahedron. For n ≥ 3,
hex

En is defined as the set of all hexahedrons in Rn,
hex

En =
∅ otherwise. The recursive set of all hexahedrons is denoted as hexEn :=

hex
En ∪quad En.

The facets of a hexahedron are six quadrilaterals:

facets
hexEn(hex((h1, . . . ,h8))) =

 quad((h1,h2,h3,h4)), quad((h5,h7,h6,h8)),
quad((h1,h3,h5,h7)), quad((h2,h6,h4,h8)),
quad((h1,h5,h2,h6)), quad((h3,h4,h7,h8))

 (A.23)

While mixed element spaces with triangle and quadrilateral cell elements can be conforming,
more element types are required for 3D element spaces because tetrahedrons and hexahedrons do
not share any facet type. Mixed element spaces are not a focus of this work, however for the sake
of completeness two additional element types are defined using a non-injective k-interpolation
combination. A 3-interpolation combination where the last four points are all the same results in
a pyramid. A 3-interpolation combination, where the 3rd and 4th as well as the 7th and the 8th
point are equal results in a triangular prism, also called wedge.

Definition A.23 (Pyramid). Given an ordered tuple P = (p1, . . . ,p5) ,pi ∈ Rn,pi = pj

for i = j, the set
pyramid(P ) := P(I(p1,p2,p3,p4,p5,p5,p5,p5)) (A.24)

is called a pyramid. For n ≥ 3,
pyramid

En is defined as the set of all pyramids in Rn,

pyramid
En = ∅ otherwise. The recursive set of all pyramids is denoted as pyramidEn :=

pyramid

En ∪quad En ∪simplices En
2 .
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The presented mesh elements are combined in the mesh element space which is defined as
follows:

Definition A.25 (Mesh element space, geometry space). The set of all linear mesh elements
is called mesh element space and is defined as:

En = {A ∈simplices En ∪ quadEn ∪ hexEn ∪ pyramidEn ∪ wedgeEn|A is linear} (A.28)

The geometry space is defined as the set of all finite unions of mesh elements which are also
manifolds:

Ln := A ∈ Mn|A =
k

i=1

Ai, Ai ∈ En (A.29)

Elements of Ln are called geometries. If no reference element space for the facet set, the
face set, the co-facet set, the co-face set, and the neighbor set is specified, the mesh element
space is used. Let E ∈ En be a mesh element.

facets(E) := facetsEn(E) (A.30)

faces(E) := facesEn(E) (A.31)

facesk(E) := facesEn,k(E) (A.32)

cofacets(E) := cofacetsEn(E) (A.33)

cofaces(E) := cofacesEn(E) (A.34)

cofacesk(E) := cofacesEn,k(E) (A.35)

neighbors(E) := neighborsEn(E) (A.36)

neighborsj,k(E) := neighborsEn,j,k(E) (A.37)

The geometry space Ln is equal to the set of all polyhedra which are manifolds: Ln =
Mn ∩poly En. The element spaces simplicesEn

k , quadEn, hexEn, pyramidEn, wedgeEn, and En are
face-complete for k ≥ 0, n ≥ 1.

Definition A.26 (Covering, partition). Let X ⊆ Rn and P = {P1, . . . Pm} with Pi being

non-empty subsets of Rn. P is called a covering of X, if X =
k
i=1 Pi. If, additionally, all Pi

are pairwise disjunct, P is called a partition of X.

However, it is generally not possible to have a non-trivial partition of a closed set consisting
of closed sets. Therefore, a slight abstraction of a partition is defined.

Definition A.27 (Manifold partition). LetX ∈ Mn with DIM(X) = k and S = {S1, . . . , Sm}
be a covering of X with Si ∈ Mn. S is called a manifold partition of X if the intersection
intk(Si) ∩ intk(Sj) is empty for all Si = Sj .

A manifold partition of a k-manifold allows for an arbitrary number of – not necessarily
disjunct – manifolds which have a dimension less than k. For example, the closed unit n-ball can
have a valid manifold partition which consists of the closed unit n-ball itself and its boundary.
Using this definition, it is possible to create a manifold partition of a k-manifold X using manifolds.

The choice of Ln and En only containing linear elements is motivated by the requirements
for the boundary patch partition (cf. Section 4.3), which requires the intersection of sets. This
intersection should be representable by mesh elements or geometries. However, the intersection of
two manifolds is generally not a manifold. This is even true for simple manifolds as visualized
in Figure A.7. Instead of representing the intersection of sets with a single mesh element or
geometry, the approach used in this work is to represent the intersection as a union of mesh
elements or geometries.
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Two manifold partitions of the same set X can be combined to create a finer manifold
partition. The intuitive approach for a refinement of two manifold partitions would look like this:

S1 ∩ S2
?
:= {A ∩B|A ∈ S1, B ∈ S2} (A.40)

However, as mentioned above, the intersection of two manifolds is not a manifold, but for
A,B ∈ Ln the intersection partition can be used. The refinement of two manifold partitions is
defined as follows:

Definition A.30 (Partition refinement). Let X ∈ Ln and S, P be coverings of X. The
refinement of S and P is defined as:

refine(S, P ) :=
A∈S,B∈P

ip(A,B) (A.41)

Lemma A.4 (Refinement of manifold partition is manifold partition). The refinement of two
manifold partitions S, P of a set X ∈ Ln is a manifold partition of X.

Proof.

(i) To prove: | refine(S, P )| < ∞:
The finite combination of finite sets is again finite.

(ii) To prove: ∅ /∈ refine(S, P ):
∅ is not an element of refine(S, P ) due to the definition of intersection partition.

(iii) To prove: refine(S, P ) is a covering of X:
At first, X ⊆ A∈refine(S,P ) A is shown, followed by X ⊇ A∈refine(S,P ) A.

For all x ∈ X there are partition elements A ∈ S and B ∈ P which both contain x. Therefore,
x is in the intersection A ∩B and there is a set C in the intersection partition of A and B
which also contains x. C is an element of refine(S, P ). Consequently, x ∈ D∈refine(S,P ) D.

On the other hand, for all x ∈ A∈refine(S,P ) A, there is a set A ∈ refine(S, P ) which
contains x. In turn, there are partition elements AS ∈ S and AP ∈ P for which A is in their
intersection partition. Because x is in A, x is also AS and AP and consequently also in X.

(iv) To prove: intk(A) ∩ intk(B) = ∅ for all sets A = B of refine(S, P ):
Let k be the dimension of X and A and B two different elements of refine(S, P ). For
A ∈ refine(S, P ), there are partition elements AS ∈ S and AP ∈ P for which A is in the
intersection partition of AS and AP . Similarly, for B ∈ refine(S, P ), there are partition
elements BS ∈ S and BP ∈ P for which B is in the intersection partition of BS and BP .

If AS = BS and AP = BP , then intk(A) ∩ intk(B) is empty due to the definition of the
intersection partition.

Otherwise, from Lemma A.1 and due to the assumption that DIM(A) and DIM(B) are less
or equal to k follows, that

intk(A) ∩ intk(B) = intk(A ∩B) ⊆ intk((SA ∩ PA) ∩ (SB ∩ PB)) =

intk((SA ∩ SB) ∩ (PA ∩ PB)) = intk((SA ∩ SB)) ∩ intk((PA ∩ PB)) (A.42)

However, S and P are manifold partitions and intk((SA ∩ SB)) = intk((PA ∩ PB)) = ∅.
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