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Kurzfassung

Mit der Ausbreitung von Künstlicher Intelligenzen (KI) wird die Cloud zu einem zu-
nehmenden Engpass. Darüber hinaus benötigen Anwendungen immer schnellere Ant-
wortzeiten. Dadurch sind Lösungen gefragt, welche diesem Engpass abschwächen können
und eine schnelle Antwortzeit ermöglichen. Eine mögliche Lösung könnte die dezentrale
Datenverarbeitung sein, welcher dieser Herausforderung gewachsen ist. Dabei werden
die Anfragen nicht zur Cloud gesendet, sondern zu Geräten, welche sich näher zu den
Endgeräten befinden. Diese Lösung bietet nicht nur eine verkürze Wartezeit durch die
verringerte Distanz, sondern auch eine erhöhte Sicherheit. Jedoch sind die Geräte, wel-
che zur Verarbeitung der Anfragen genutzt werden, generell sehr unterschiedlich. Die
Geräte unterscheiden sich in ihrer Größe und Leistung. Darüber hinaus sind sie Leis-
tungstechnisch schlechter als die Cloud, was eine Herausforderung darstellt. Aufgrund
eingeschränkter Netzwerkbedingungen und schwacher Client-Leistung ist das Auslagern
von Aufgaben nicht immer möglich, aber sich ausschließlich auf den Client zu verlassen, ist
ebenfalls ineffizient. Unsere Auslagerungsstrategien zielen darauf ab, die Gesamtleistung
zu verbessern, indem diese Einschränkungen ausgeglichen werden.

In dieser Abschlussarbeit untersuchen wir einen Fall im ‘Erweiterter Realität‘ Bereich.
Ein Endgerät will Bilder durch ein Semantik Segmentation Modell analysieren, welches
Bilder in die unterschiedlichen Objektgruppen aufteilt. Dieses KI-Modell befindet sich
sowohl am Endgerät als auch auf einem Server. Das Endgerät kann den Server über
einen Router erreichen. Um das Systemverhalten zu analysieren, haben wir eine Serie
von Experimenten durchgeführt. Dabei haben wir uns auf die Informationen beschränkt,
welche einem Endgerät immer zur Verfügung stehen und wir nicht davon ausgehen,
dass der Server oder Router uns weitere Informationen zur Verfügung stellt. Da uns
innere Prozesse vorenthalten sind handelt es sich hier um ein Black-Box System. Aus
diesem Grund sind ausschließlich Informationen über das eigene Gerät verfügbar, so-
wie Informationen zum verbundenen Router. In unseren Experimenten betrachten wir
verschiede Ausgangslagen. Diese unterscheiden sich von mehreren Router und Server,
unterschiedliche Umgebungsbedingungen, sowie unterschiedliche Ausgangsbelastungen
am Endgerät. Ziel dieser Experimente ist es Leistungseigenschaften der KI-Modells am
Endgerät zu evaluieren und mit dem Verarbeiten am Server zu vergleichen. Durch die
Analyse soll das abarbeiten von KI-Modell Anfragen im ‘Erweiterter Realität‘ Bereich
optimiert werden.

ix



Die Daten, welche wir durch unsere Experimente sammeln, verwenden wir, um ver-
schiedene Offloading-Ansätze zu erstellen. Diese unterscheiden sich in der Anzahl der
Eingabeparameter und in der Komplexität. Mit den ersten Ansätzen sammeln wir grund-
legende Informationen um die effektivität unserer Offloading-Ansätze zu überprüfen. Die
Ergebnisse zeigen, dass es nicht ausreicht sich auf die Netzwerkinformationen zu verlassen.
Aus diesem Grund sind die weiteren Ansätze ressourcenbewusst. Dies bedeutet, dass
zusätzlich zu den vorhanden Netzwerkinformationen auch Hardwareinformationen, wie
die derzeitige CPU Auslastung, des eingenen Gerätes genutzt werden. Unter den Ansätzen
befindet sich einer mit einem Entscheidungsbaum, sowei einer welcher mit KI-Modellen
arbeitet. Ziel ist es KI-Modelle zu generieren, welche den Ist-Zustand richtig evaluieren
können. Dabei muss das KI-Modell die interne Leistung des Endgerätes, die Netzwerkleis-
tung und Rechenauslastung interpretieren und dementsprechend handeln, mit dem Ziel
die Leistung im dezentralen System zu verbessern um den KI-Anwendungsanforderungen
gerecht zu werden.



Abstract

With the increasing prevalence of artificial intelligence (AI) applications, the strain on
cloud processing resources has become a notable bottleneck. This requires solutions that
can alleviate this strain, particularly as applications increasingly demand faster response
times. Edge computing has emerged as a viable solution to address these challenges by
offloading computational tasks to devices closer to the end-user. Edge computing not
only offers reduced latency due to its proximity to end devices but also provides enhanced
privacy protection. However, the heterogeneity and limited resources of edge devices pose
significant challenges compared to cloud resources. In this thesis, we focus on evaluating
a scenario in which an end device is tasked with processing images using a semantic
segmentation model (SSM). A SSM is deployed on the end device and also on a remote
server, to which clients can offload their images through an access point (AP). Due to
limited network conditions and poor client performance, offloading tasks is not always
feasible, but relying on the client alone is also inefficient. Our offloading strategies aim
to improve overall performance by balancing these limitations. We conduct a series of
experiments in a black-box manner in which only information about the end device and
its connection to the AP is available. Our experiments involve various scenarios. These
scenarios differentiate in diverse AP, diverse servers, varying environmental conditions,
and different load on the client. Through these experiments, our aim is to gain insight into
the performance characteristics of the SSM running on the end devices and to compare
their efficacy with the models deployed on remote servers. The data gathered from these
experiments will be used to construct different offloading approaches. They differ in the
number of input features and in their complexity. The first approaches build a baseline
that shows that the use of network conditions alone is not sufficient for the offloading
decision. Based on that, we formulate two resource-aware offloading approaches as well,
which use hardware resources of the client combined with network information. The
first one works with a decision tree model and the other one works with a selected ML
model. The approaches are compared with each other. The goal is to identify models
that demonstrate remarkable effectiveness in evaluating the current state of edge devices
and guiding appropriate actions. Using these insights and deploying efficient machine
learning models, we aim to optimize the performance of edge computing systems and
enhance their overall effectiveness in meeting the demands of AI applications. With
that, the standard deviation can be improved and therefore increase the stability of the
response times for the requests.
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CHAPTER 1
Introduction

1.1 Motivation
The popularity of artificial intelligence (AI) has increased in the last few years. One
reason is the success in the fields of speech recognition, computer vision, and natural
language processing. This rising popularity leads to a tremendous amount of data that
needs to be sent between devices to fulfill AI requests. These tremendous amounts of data
are mostly sent to the cloud. The reason is that the computation of such requests is very
complex and resource intensive and, therefore, infeasible to be handled by mobile devices
or edge devices themselves. However, using only the cloud for computation includes
several disadvantages. One disadvantage is the long distance between the device sending
the request and the cloud. This large distance leads to a long latency. For many use cases,
it does not matter whether the result of the request has a delay of several seconds or not.
However, there are also use cases where it is important that the result is available in a
fraction of a second. In edge intelligence (EI), many requests have to be offloaded due to
resource constraints, there long latency could have disastrous consequences, e.g. driving
an autonomous vehicle, where a delayed response could lead to a car crash [TLL+20].
Another downside is availability. Using the cloud for computation implies that there
has to be a continuous connection between the devices. However, stable connections
are present mainly in large cities, but are not available within small villages, tunnels,
or sequestered areas in general. Other downsides are poor hardware utilization of edge
devices and privacy concerns, as well. For these reasons, the trend is to execute the
request on edge servers or on edge devices themselves. Edge servers are an alternative to
the cloud. They are more decentralized on the edge of the network, increasing availability
and reducing latency for the request. In addition, it is a better solution in terms of
privacy. However, edge servers and edge devices have, in contrast to the cloud, restricted
hardware components, which is a major disadvantage. This means that the models
used in the cloud to process requests are too heavy and computationally intensive to
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1. Introduction

be executed on edge servers and edge devices. For that reason, some modifications are
necessary to the model or execution to overcome this bottleneck. Such modifications are
not trivial, which means that they should be done in aspects of the current state of the
available resources and the network connection.

In our scenario, we analyze the use case in which a client uses augmented reality (AR) on
his device. This device should be considered to be capable of processing images needed for
AR on its own. Additionally, this device is able to connect to an AP in the surrounding,
however, does not have the possibility to connect to the cloud or to the Internet directly.
These APs allow the client to connect to an edge device, which is also able to process the
requests with an increased speed because of a better hardware compared to the clients’
device hardware. Since there are two options where the client can process the image,
which is local or external, we are interested under which circumstances the client should
execute the requests local or external. For that we can use the different load of our
hardware resources and the information available from the AP we connect to. Therefore,
we investigate several offloading approaches and compare them with each other. The
first approaches are used to build a baseline, measuring the effectiveness of our offloading
strategies under the given network and limited client hardware performance conditions.
The approaches show that resource awareness is required, which means that an offloading
approach uses hardware and network features for their offloading approach. Therefore,
the following approaches are resource-aware. One includes a decision tree, and the other
includes a machine learning model.

1.2 Research Questions
In our work, we want to improve the overall performance of processing images needed in
the AR. We focus on the following Research Questions:

RQ1: Which metrics can be used for offloading in a black box system?
There are already many approaches to build a mathematical equation when it is
better to offload the requests or not, such as the paper by Yue Zhang and Jingqi
Fu. [ZF21], which provide a perfect solution in theory. However, in papers like this,
they make a lot of assumptions which can differ in practice, such as to know the
time a request takes to send to another device. For that reason, it is important to
investigate this topic in a real-world setting.
For that, we first investigate the kind of metrics available in general. Some of them
are perhaps misleading or not related for our purpose. Therefore, we want to filter
the information that we can use for our offloading decision. Furthermore, it is
interesting to know in what quality and frequency we can get this information. As
a result, we expect information we can use for deciding where we should process
the requests.

2



1.2. Research Questions

RQ2: What offloading strategies can be used?
In general, we can think of many different ways in which and where a request can
be executed. The possibilities are restricted by the environment and the capabilities
of the device in use. Offloading strategies introduce some overhead due to decision-
making, so our aim is to keep this overhead minimal while evaluating each request
individually. This is necessary because network and client conditions are constantly
changing. Our offloading decisions are based solely on the information available to
the client, treating it as a black-box approach.
In our approach, we investigate a client with its own device that has the opportunity
to connect to one of the available APs in the area. Connecting to an AP allows the
client to offload the request to a server that is also connected to the AP. Therefore,
there are only two options for the client. Either it processes the images on their
own device, or it offloads them to the server behind the AP. Relying on only the
device on itself or the external is a bad idea because the device on itself is weak and
offloading could be done, although the connection is miserable. Therefore, we want
to offload over the AP when there is a stable connection to the AP, and we can
assume that the request can be processed faster there. For that we are using the
metrics available for our client, which are the information about the used HW with
the current load and the APs the client is able to connect to. As a result, we expect
that the offloading decision we use is aware of the current situation, including HW
load and AP connection, and decides where the requests should be executed.

RQ3: How do ML models handle real-world settings? In our final step, we
are curious whether the use of a ML model can improve the overall result. We
want to train models which are resource-aware, which means that they derive the
current state by analyzing the metrics we collect during the experiments. These
trained models are then used to make the offloading decision for us. Depending
on the resources available for us and the quality of the data, it might still lead to
bad results anyway. This can be the case, when the available resources are not
representative for the current state or the quality is not good enough to distinguish
whether offloading is advisable or not.
However, using an ML model introduces additional latency because the information
has to be processed before the ML model can make a decision where the request
should be processed. Therefore, we train different models and compare them with
each other in a real-world evaluation setting. This means that the models are
compared in experiments that are done in a lab where the client moves during
the experiment to change the network condition. In addition, different loads are
added to the client to simulate different initial states on the client. As a result,
we expect to find a ML model which is able to evaluate the current situation and
offload according to it with the aim of improving overall performance.
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1. Introduction

1.3 Structure of the Thesis
The remainder of this thesis is structured as follows. Chapter 2 covers the relevant
background information of this work, including general information about AI, edge
computing, edge intelligence, and testing techniques, but also the tools we used in this
work. Chapter 3 describes the related work, highlighting the work relevant to this work.
In particular, it covers work in the area of distributed execution, compression, hardware
accelerator, benchmark, and WiFi. Chapter 4 provides information on our approach.
This includes the offloading approaches we compare, the systems and tools we use, the
data we collect, and the mechanism to filter and preprocess the acquired data to train
an ML model. Chapter 5 describes the offloading approaches in a deeper sense and
explains how they are compared to each other. Chapter 6 presents the results of different
experiments performed in this work. In the end, the results are summarized and discussed
in Chapter 7 and Chapter 8 answers the research questions and describes future work
including the boundaries of our work.
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CHAPTER 2
Background

In this section, we cover the fundamentals that are important to this thesis. In Section 2.1
we start with an overview of edge intelligence, including the six-level rating of EI. In
Section 2.2 we provide a general description of AI, continuing with different deep learning
approaches. In Section 2.3 we elaborate edge computing. A common task in Edge
Computing is offloading which is discussed in more detail in Section 2.4. It also provides
some related topics such as offloading decisions, the degree of offloading, machine learning
in general, and the steps needed to train a ML model. Section 2.5 covers testing and
Section 2.6 summarizes the tools used in this thesis.

2.1 Edge Intelligence
Edge intelligence is the fusion of AI and edge computing. It enables performing compu-
tationally intensive tasks, such as AI tasks in the immediate vicinity of the client. In
the past, most data, such as online shopping records, social media content, and business
information, were primarily collected and stored in large data centers. Since social
media data need to be stored in the data center anyway, it is logical to also perform
computationally intensive tasks there. However, with the widespread use of mobile
computing and the Internet of Things, the trend is changing [ZCL+19].

Generally, data collected from mobile devices and IoT devices is sent to the data center
for analysis [HCS15]. However, due to this emerging trend and the growing number of
mobile and IoT devices, a significant amount of data would have to be sent between the
end devices and data centers. Since this occurs on the wide area network (WAN), it can
include prohibitively high monetary cost and transmission delay.

Furthermore, data transmission to the data center can potentially lead to privacy breaches
along the way to the data center [PAB+15]. The privacy problem could be easily solved
by running all AI tasks directly on the IoT device. However, IoT devices are relatively
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2. Background

small with limited resources, resulting in poor performance and energy efficiency. This is
because AI tasks require significant computational power that exceeds the capabilities of
IoT devices. The solution to this problem is edge computing [SCZ+16a], which offloads
tasks from the network core to the network edge, i.e., from end devices to edge devices.
These edge devices are closer to the end devices compared to the cloud and have better
resources compared to IoT devices, making them capable of efficiently executing AI tasks.

2.1.1 Six-Level rating for EI
Different solutions for addressing a given task within a specific environment can be
categorized under various Edge Intelligence (EI) paradigms. Zhou et al. [ZCL+19]
have classified these EI solutions into six levels according to the devices used and their
proximity to the end user. This classification is visually represented in Figure 2.1, with
the following description of where the Deep Neural Network (DNN) model undergoes
training and inference:

1. Cloud Intelligence: Training and inference occur in the cloud.

2. Cloud-Edge Co-inference and Cloud Training: Training is conducted in the
cloud, while inference follows a cloud-edge approach, involving execution partly on
the edge and partly offloaded to the cloud.

3. In-Edge Co-inference and Cloud Training: Training is performed in the cloud,
whereas inference is carried out in an in-edge manner, involving execution primarily
at the end device with partial offloading to edge devices.

4. On-Device Inference and Cloud Training: Training takes place in the cloud,
while inference is performed solely on the end device without any offloading.

5. All In-Edge: Training and inference occur within an in-edge framework.

6. All On-Device: Training and inference are conducted on-device.

Since we are not using the cloud our work is located at level 5, where inference occurs
within an in-edge framework. At this level, we benefit from the short distances between
the devices, which reduces latency compared to the use with the cloud. However, these
devices are rather small compared to the cloud, which in contrast increase the time
needed to process tasks.

6



2.2. Artificial Intelligence

Figure 2.1: Six level of EI defined by Zhi Zhou et al. [ZCL+19]

In the next two sections, we take a closer look at AI and edge computing.

2.2 Artificial Intelligence
The objective of artificial intelligence (AI) is to perform tasks similar to humans. Although
AI has attracted considerable attention in the past decade, it is not a new concept. The
term has existed since 1956.

Given the broad scope of AI, its precise definition is not always clear. The term
is used to simulate behaviors associated with human intelligence, including planning,
learning, problem solving, reasoning, and, to a lesser extent, creativity. Since 1959, AI
has experienced ups and downs, with the most recent resurgence in the 2010s due to
breakthroughs made by deep learning [ZCL+19].

2.2.1 Deep learning
Deep learning enables computational models comprising multiple layers to learn intricate
data representations with varying levels of abstraction. These methodologies have
significantly advanced various fields, including speech recognition, visual object detection,
and object recognition, along with domains such as drug discovery and genomics. By
employing the backpropagation algorithm, deep learning uncovers complex structures
within extensive datasets, guiding the machine on how to adjust its internal parameters
to compute representations at each layer based on the preceding layer’s representation.

7



2. Background

In particular, deep convolutional networks have revolutionized image, video, speech, and
audio processing, while recurrent networks have proven effective in handling sequential
data such as text and speech [LBH15].

Popular Deep Learning Models are covered by Zhi Zhou et al. [ZCL+19]:

Convolution Neural Network (CNN): Designed primarily for image classification
tasks, CNNs excel at learning hierarchical representations from image data.

Recurrent Neural Network (RNN): Tailored for sequential input data, RNNs are
particularly effective in addressing time-series problems. They possess a feedback loop
that allows them to maintain information over time.

Generative Adversarial Network (GAN): Comprising two main components, a
generator and a discriminator, GANs aim to generate realistic data samples. The
generator learns to produce new data points by understanding the underlying data
distribution, while the discriminator evaluates these samples to distinguish between real
and fake data.

Deep Reinforcement Learning (DRL): DRL combines Deep Neural Networks (DNNs)
with Reinforcement Learning (RL) techniques. The objective is to develop efficient
policies that maximize rewards over extended periods, particularly in scenarios with
controllable actions. DRL is often used in tasks that require long-term planning and
decision making.

Neural Networks

An artificial neural network (ANN) consists of interconnected artificial neurons, organized
into three layers: the input layer, the hidden layer(s), and the output layer.

The input layer neurons receive information, such as test data, which is filled in the
input weights and are evaluated using the activation function and transmitted to the
next neuron. Following this, one or more hidden layers further process the input using
the activation function and pass the result to the next neuron. Finally, the output layer,
executing the activation function one last time, delivers the result.

Each connection within the network is characterized by the strength of the connected
pair of nodes, and these connections can adapt over time, initiating a learning process
throughout the ANN. To facilitate learning, the ANN must interact with the environment
multiple times, which is achieved by providing it with test data. The learning process
constitutes a key feature of the ANN, enabling it to comprehend the environment as it
progresses [GB08]. In Figure 2.2 we can see a visualization of a neural network 1.

1https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/
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2.3. Edge Computing

Figure 2.2: Illustration of a neural-network with the three layer separation 2

2.3 Edge Computing
Edge computing involves technologies that enable computational tasks to be executed in
the periphery of the network, handling data downstream of cloud services and upstream
of Internet of Things (IoT) services. The edge refers to any computing and networking
resources located between data sources and cloud data centers, forming a continuous
spectrum.

The edge of the Internet is of distinct significance. Typically placed just one step away
from end devices, it provides an ideal location for rapid processing of data, supporting
various applications like augmented reality, public safety, autonomous driving, smart
manufacturing, and healthcare. This proximity facilitates low-latency offloading infras-
tructure, which is crucial for these emerging applications. In addition, it serves as a
strategic point for collecting, analyzing, and refining data from bandwidth-intensive
sensors such as video cameras [SCZ+16b].

A graphical visualization of edge computing is presented in Figure 2.3 [ZCL+19]. Featured
are various application areas for end devices, including autonomous driving, smart home,
smart glasses, smart traffic, and more. Depending on the service they provide, factors such
as privacy and latency are crucial. However, not only do the end devices vary, but the edge
nodes themselves also differ in size and computational capabilities. Whether from credit
card size to microdatacenter, these differences explain the variations in computational
power. Nevertheless, they all share a common characteristic, their proximity to the end
devices. Using these edge nodes reduces latency, alleviates the overall load on the WAN,
and improves privacy. A common form of edge computing implementation is offloading.

2https://media.geeksforgeeks.org/wp-content/cdn-uploads/20230602113310/
Neural-Networks-Architecture.png
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2. Background

Figure 2.3: Visualization of Edge Computing with different end devices, edge devices
and the cloud by Zhi Zhou et al. [ZCL+19]

2.4 Offloading
The principle of offloading is to increase the computing capacity of less powerful devices,
such as mobile phones, by utilizing more powerful infrastructure, such as edge devices
or cloud servers. In the past, offloading was mainly done to cloud servers with more
powerful devices centralized far away. However, since latency has become an important
factor, closer devices, such as edge devices, are now being used for offloading [LLJL19].

2.4.1 Offloading Decisions
The offloading decision can be made in several ways, depending on various factors. These
include the capabilities of the device that performs the offload, the general offloading
strategy, the target device for the offload, and the quality of connectivity. In the following,
seven different approaches are summarized.

Rule Based approaches have static thresholds on specific criteria such as CPU load.
This approach varies according to the application and needs to be adjusted in updates
[KMDN18].

Heuristic Algorithm use heuristics to find a near-optimal solution for the offloading
decision. It is based on specific criteria such as minimizing latency or maximizing energy
efficiency. This approach heavily depends on expert knowledge or accurate analytical
models [WHM+22].

Optimization technique formulate the offloading decision as an optimization problem
with the aim of maximizing or minimizing specific metrics such as latency or energy
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consumption [KMDN18].

Decision Trees are used to make decisions based on multiple criteria. These criteria
form a tree-like model in which the nodes represent the criteria and the leaves represent
the results [RCC+17]. This approach is used in our thesis.

Machine Learning uses a ML model for the offloading decision. It can be distinguished
into three different approaches called: Reinforcement learning, Supervised and Unsuper-
vised learning [CZL+19]. This approach is also used in our thesis and is elaborated in
more details in Section 2.4.2.

Game-Theory uses an ML model approach in a multi-user manner where the users
interact with each other to achieve a mutually satisfactory solution. It can be distinguished
between Non-cooperative and Cooperative Games. [CC18]

Context-Aware uses an ML model approach with addition information such as time or
location which helps by the offloading decision [CYN22].

2.4.2 Granularity of Offloading

Offloading can be classified into three different categories. The categories differenti-
ate in granularity and are called full computation offloading, task/component, and
method/thread [LLJL19].

Full computation offloading migrates the entire computational workload of applica-
tions, leaving mobile devices responsible only for the user interface, input/output, and
data sensing.

Task / Component involves dividing the application into subtasks. After analyzing
the application workflow, the compute-intensive tasks are sent to a remote infrastructure.
The partitioning is application dependent and can also require different partitioning
strategies for a specific application.

Method/Thread granularity involves fine-grained computing migration. Typically,
an application contains a substantial number of methods, therefore special partitioning
mechanisms to assist at this level are needed. These methods are usually compute-
intensive and involve a small to moderate amount of data transmission.

In our approach, we concentrate on full computation offloading, which presents a simple
approach.

2.4.3 Machine Learning Offloading approach

In the previous section, we discussed various approaches to offloading, including several
that involve Machine Learning (ML). In this thesis, we also use a ML approach. For that
reason, we take a closer look into ML in general and what to consider when using an ML
Model containing data preprocessing and model training.
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Machine Learning

Similar to humans, computers can also learn from experience through a process called
Machine Learning (ML). ML learns in the way of data by utilizing learning algorithms
that analyze and process the provided data to construct a model. This model is able
to predict the outcome of new observations. When this technique is used, the overall
performance of the system can be increased. [Zho21].

For ML training, a large data set D = x1, x2, ..., xm is required. Each entry x in D, also
known as a record or instance, is described by a number of attributes d and an output
that represents the result of the attributes. The value m represents the number of events
stored in the data set.

For example, when considering dogs, attributes could include fur length, color, size, tail
length, and other characteristics. The output could indicate the breed of the dog or a
simple yes/no comparison with other animals. These attributes are referred to as features
and, when combined, form a feature vector. The number of attributes d determines
the dimension of the space. In our dog example, each dog can be placed in the space
according to the attribute values [Jos22].

Typically, the life cycle of machine learning models involves two primary phases: model
training and inference [DZF+20].

2.4.4 Data Pre-processing
The subsequent data is sourced from Volkan Cetin and Oktay Yıldız [CY22] and is
supplemented by other authors, specifically identified in the text. Data preprocessing
is a crucial step in data analysis applications, aimed at improving the quality of raw
data by addressing various flaws such as inconsistencies, out-of-range values, missing
values, noise, and excesses. Failure to address these issues can weaken the performance
of subsequent mining and learning algorithms. To improve the quality of raw data, it
undergoes several pre-processing stages. This involves using various algorithms tailored
to specific tasks, usage scenarios, and underlying algorithms. In recent years, several
effective preprocessing methods have emerged, primarily categorized into three main
branches: data cleaning, data reduction, and data transformation.

1. Data cleaning
Data collected in real-world scenarios frequently contain missing and noisy values.
Addressing these discrepancies is a key challenge in data analytics, as failing to
do so can lead to inaccurate analyzes and unreliable decision-making processes
[CIKW16].

a) Noice Filtering
Inaccurate data gathering from faulty measurements or human errors within
the dataset is referred to as noise. This concept is typically categorized into two
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main types: feature noise, which relates to inaccuracies in the measurement
values themselves, and label noise, which relates to inaccuracies in the class
labels assigned to the data points [PVI+17].

b) Missing value imputation
In the raw data set, the values for one or more properties of some samples
may be missing. When such a data set with missing values is fed into learning
algorithms, it can lead to decreased accuracy rates of the models or even failure
to form a model altogether due to algorithmic limitations. To effectively extract
knowledge from the dataset, it is imperative to clean and pre-process the data,
addressing these missing values.

2. Data Reduction
In addition to increasing complexity and prolonging the time to obtain results, the
presence of unnecessary and irrelevant data in a data set can hinder data analysis
algorithms from extracting accurate information. Therefore, it is essential to reduce
the size of the data set without compromising its quality.

a) Feature selection
Feature selection is a preprocessing technique that aims to identify and select
key attributes relevant to a given problem. This process involves reducing the
number of features, which corresponds to reducing the number of columns in
a data set.

b) Instance selection
In addition to features, irrelevant and redundant instances within the rows
of raw datasets can also occupy unnecessary space. These instances may
adversely affect model performance and time efficiency. Instance selection
involves identifying a subset of the original dataset that best represents its
characteristics without compromising the success of the model.

3. Data transformation
Even after addressing issues such as noise, missing values, and unnecessary features
through data cleaning and reduction methods, the resulting dataset may still not
be suitable for analysis by data analysis applications. Inappropriately structured
data can adversely affect the performance and efficiency of data mining models,
leading to decreased effectiveness. Methods that convert data into a suitable format
for use by data mining algorithms are referred to as data transformation methods.

a) Normalization
Normalization involves scaling the data of a feature to specific intervals, such
as [-1.0, 1.0] or [0.0, 1.0], and is typically necessary when the features in
a dataset have considerably different scales. Failure to normalize features
with significantly different scales may result in decreased effectiveness of
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lower-scaled features, leading to reduced accuracy performance of data mining
models. To address this issue, normalization is applied to bring all features to a
comparable scale. The three most common methods of normalization are min-
max normalization, z-score normalization, and decimal scale normalization.

b) Aggregation
Data aggregation involves presenting data in a condensed or summarized form
by combining two or more attributes under a single attribute. This process is
crucial for converting data collected from various sources into an appropriate
format. Additionally, data aggregation not only transforms the data, but also
reduces the size of the data set, thereby improving memory and time efficiency
during data analysis.

2.4.5 Model training
The process of generating a prediction model involves two phases: learning or training,
and testing. For the data set D is divided into two smaller data sets L and T , for learning
and testing purposes, respectively. It follows that L ∪ T = D and L ∩ T = ∅. The ratio
between L and T can vary, and adjusting this ratio may impact the performance of the
model. Generally L is larger than T , with a ratio of about 80% and 20% for the data set
[Jos22].

During the learning/training process, ML uses the learning data set L, also known as the
learning set. Individual samples in the learning set are called learning examples. Each
training example consists of attributes and an output, also known as a label, which serves
as the ground truth. If the output is discrete, it is called a classifier, and regression
is used otherwise. In the case of a classifier, there are binary and multiclass classifiers
for two or more distinct outputs, respectively. Training examples are used to find or
approximate the ground truth. In addition, a subset of the training set is typically used
for validation during the training process to assess the current accuracy. The validation
process calculates the prediction error of the sample [SBH19].

Following the learning phase, the testing phase is conducted to evaluate the accuracy
of the model. This involves the use of the testing data set T , also known as the test
set. The samples in the test set are called test samples. During testing, ML attempts to
predict the labels of the training samples and records the number of correct predictions
as t. At the end of the testing phase, the accuracy is calculated as |t|

|T | . If the accuracy is
low, the training and testing phases may be repeated.

With this approach, that is, by splitting the data set into training, validation, and test
sets, we avoid overfitting as well. Overfitting means that our model learned aspects
that are not generalized to the population but specific to our provided data. To avoid
overfitting, regularizations are used, which controls the complexity of the model. In this
case, complexity describes the ability to estimate a wide range of functions described by
variables. Therefore, it can be regulated by changing the number of variables used to
train the model. High regulations, which means less variables, tend to reach high bias
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with low variance. Bias in this case means that the prediction is high. However, the
result is more or less constant, which means that the input does not affect the output.
On the other hand, low regulations lead to low bias and high variance [SBH19].

Supervised Learning

Supervised learning, whether deep or not, is the most prevalent form of machine learning.
Let us consider the scenario of developing a system capable of classifying images, such
as identifying whether an image contains pets, people, or devices. Initially, we collect a
substantial dataset comprising images of pets, people, and devices, each tagged with its
respective category. During the training phase, the machine is presented with an image
and generates an output represented as a vector of scores, each score corresponding to a
category.

Ideally, we aim for the correct category to receive the highest score, although this is
unlikely to happen without training. To evaluate the performance of the model, we
calculate an objective function that quantifies the inequality ,or distance, between the
output scores and the desired score distribution. The machine then adjusts its internal
parameters, often referred to as weights, to minimize this error. These weights act as
adjustable "knobs" that define the machine’s input-output relationship. In a typical
deep-learning setup, there could be millions of such adjustable weights, trained with
hundreds of millions of labeled examples.

To effectively fine-tune the weight vector, the learning algorithm computes a gradient
vector. This gradient vector indicates the change in error associated with each weight
when adjusted by a small increment. Subsequently, the weight vector is updated in the
opposite direction to the gradient vector to minimize the error [LBH15].

2.4.6 Analyzing an Image with Artificial Intelligence
Machine learning models are multifaceted and can be applied to various tasks, includ-
ing analyzing images, which is crucial for augmented reality applications. Common
approaches for image analysis include image classification, object detection, and semantic
segmentation. In addition to these, there are two more advanced techniques: instance seg-
mentation and panoptic segmentation, both of which extend the capabilities of semantic
segmentation. These techniques provide a more detailed understanding and interpretation
of images, supporting a wide range of applications in computer vision [HZG20].

Image classification involves assigning one or more category labels to an entire image,
indicating the presence of objects such as people, cars, roads, or buildings. Object
detection takes it further by not only identifying objects, but also pinpointing their
locations within the image using annotated rectangles. Semantic segmentation is even
more demanding as it aims to precisely divide each object region from the background,
accurately delineating their boundaries. Unlike image classification and object detection,
semantic segmentation requires a deeper understanding and precise delineation of objects,
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making it a more challenging task [HZG20]. A visual presentation of the work of Shijie
Haoa, Yuan Zhoua, and Yanrong Guo is presented in Figure 2.4

Figure 2.4: Image analyzing approaches by Shijie Haoa, Yuan Zhoua, Yanrong Guo
[HZG20]

2.5 Testing Techniques - Black, Gray, White Box Testing
Software testing is crucial to identify defects, flaws, or errors in application code that
require correction. It serves as a process for assessing the functionality and accuracy
of the software through analysis. The primary goals of testing include ensuring quality
assurance, estimating reliability, and validating and verifying the software. It plays a
vital role in software quality assurance, involving a thorough review of specifications,
design, and coding. The overarching objective of software testing is to confirm the quality
of the software system under controlled conditions, ensuring completeness, correctness,
and uncovering any previously unnoticed errors [Kha10].

The three main approaches are [Kha10]:

White Box Testing:

It comprises a thorough examination of the internal logic and structure of the code or
system. Testers need to have a comprehensive knowledge of the source code to perform
this type of testing effectively.

Black Box Testing:

Black-box testing focuses on testing the software without any understanding of its internal
workings. Basically, it assesses the external behavior and functionalities of the system
without considering its internal structure.

Gray Box Testing:

Is a combination of white- and black-box testing. Gray-box testing involves assessing
the application with partial knowledge of its internal workings. The testers have some
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understanding of the internal structure, while also considering the fundamental aspects
of the system’s behavior.

2.6 Tools
2.6.1 Galileo
Galileo is a framework designed to perform benchmarks on edge-cloud compute clusters.
During our study, we extended this framework originally created by Raith et al. [RRP+22].

The setup of the framework is illustrated in Figure 2.5. This tool facilitates various tasks,
such as generating requests, hosting applications, distributing messages, and storing data.
Galileo leverages the edge-oriented K3s3 Kubernetes distribution to host applications
and clients. The nodes within the cluster are labeled accordingly, distinguishing between
controller nodes, client nodes, and worker nodes. The worker nodes are responsible for
hosting applications, while the controller node hosts the load-balancing instance. In
our setup, we utilized only one client, and thus the controller node forwarded requests
accordingly. The client node is tasked with executing the requests, which are published
via Redis. Consequently, the client nodes run Galileo and subscribe to Redis. The Galileo
shell serves as the component that initiates the experiment and subscribes to Redis. The
experiment data are stored in InfluxDB and MariaDB.

The framework divides experiments into three phases: pre-experiment, runtime, and
post-experiment. In the pre-experiment phase, users define various parameters such
as workload, applications, clients, and nodes. Galileo supports two types of workload:
parameterized and profile-based. For profile-based workloads, utilized in our study, an
array containing inter-arrival times is required. Each inter-arrival time list is then sent
to a corresponding client.

During the runtime phase, the framework manages the system. It monitors experiment
metadata and data collected during the runtime. For that, a fine-grained monitoring tool,
telemd, is used. Once the experiment is complete, results can be analyzed with Jupyter
Notebooks which provide a gateway to the information stored in InfluxDB and MariaDB.

3https://k3s.io/
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Figure 2.5: Architecture of Galileo by Raith et al. [RRP+22]

2.6.2 TPOT
TPOT is an automated machine learning (AutoML) tool that finds the proper pipelines
for a given data set 4. TPOT searches through the pipeline space considering multiple
ML algorithms with different preprocessing steps. For this reason, to get a proper result
from TPOT it can take up to days. During the pipeline space, it goes through several
generations and, within each generation, through several populations. Generation is the
number of iterations to run the pipeline optimization process, and population size is the
number of individuals to retain in the genetic programming (GP) population for every
generation. This amount is defined by the mutation rate. Using a too small mutation
rate would result in evaluating a small search space, which could lead to getting stuck
in a local optima. Depending on the data set and the available time and space, TPOT
provides different default configurations that provide a good starting point. TPOT comes
with six default configurations.

• Default

– uses 100 generations with each 100 populations,
– searches over a broad range of preprocessors, feature constructors, feature

selections, models, and parameters,
– goal is to minimize the error of the model prediction.

• Light

– restricted search,
4http://epistasislab.github.io/tpot/
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– only simple and fast-running operations,
– finding quick and simple pipeline.

• MDR

– search over Multifactor Dimensional Reduction,
– goal to maximize model prediction accuracy,
– specialized for genome-wide association studies (GWAS).

• Sparse

– uses configuration dictionary with one hot encoder, which is a transformation
to category representation to binary representation,

– support sparse metric, which are datasets with majority of 0.

• NN

– extension of default configuration,
– additionally use neural network estimators

• cuML

– restricted configuration,
– uses GPU-accelerated estimators

These default configurations can also be modified as needed to improve the ML model
for a specific data set.

Genetic Programming

Genetic programming (GP) draws inspiration from Darwinian evolution to solve problems
through computer-based simulations. In simple terms, GP involves creating and evolving
populations of computer programs where these programs are represented using suitable
data structures. In this context, a "population" refers to a group of individual computer
programs represented in a particular format. Each generation of programs undergoes
evolutionary processes such as pairing and mutation, guided by a fitness measure that
evaluates their performance relative to the desired task [BKR+00].
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CHAPTER 3
Related Work

In this chapter, we will outline different approaches presented in existing papers to
improve the overall utilization of devices. Increasing utilization can be achieved in
different ways, such as dividing a task. A task can be divided within a device or over
several devices. Another way is to reduce the time that a task needs by compressing it.
Additionally, hardware accelerators can also be used that are optimized for the execution
of deep neural networks (DNNs). Furthermore, it is important which model is used for
execution, since ML models are specialized for a specific kind of task. Finally, it is also
important that devices such as WiFi access pointers (APs) are not overloaded because
this introduces a lot of latency. The papers presented below use at least one of these
optimization techniques.

3.1 Distributed Execution
One way to reduce overall latency and increase the usage of hardware resources is to
divide the load between different hardware components and processors as well. This can
be separated into internal and external distributions.

3.1.1 Local Distribution
In the local distribution, the load is distributed between different processors such as the
central processing unit (CPU), the graphics processing unit (GPU), and the low power
unit (LPU).

Bhattacharya et al. introduce DeepX, a new software accelerator that allows processing of
a deep learning model on heterogeneous processors such as GPU, LPU, and cloud as well.
To achieve this goal, two inference-time resource control algorithms are used. The control
algorithms are called runtime-layer compression and deep-architecture compression. With
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the first one, the complexity of the layers can be scaled. The second is used to divide the
deep model, so it can be run on different processors [LBG+16].

Georgie et al. introduce LEO, a purpose-built sensing algorithm scheduler designed to
maximize the utilization of sensor applications executed on mobile devices. This scheduler
runs on a LPU consuming a fraction of the battery per day. Parts of the scheduler
are pipeline partitioning, pipeline modularization, and feature sharing. They split the
computation into chunks, group the sensor samplings together, and detect overlaps in
sensor applications [GLRM16].

Romero et al. introduce a modelless system called InFaas. With InFaas, a developer only
needs to define the high-level performance, cost, or accuracy required for the requests.
InFaas helps to handle diverse application requirements and changes in hardware resource
availability by selecting a model variant for each query. It combines VM-level horizontal
scaling to add or remove worker machines and model-level autoscaling, which changes the
model variants to dynamically react to changing application requirements. Additionally,
it automatically manages the place, for example, GPU or CPU, where the model variant
is executed to improve resource utilization [RLYK21].

3.1.2 External Distribution
In the external distribution, the load is distributed between different components. This
is mostly done in a chain starting with the device which has a request itself, or an edge
device in case of a sensor. The next devices in the chain are further away but have more
process power. In many cases, one or more edge servers are next to the edge device. At
the end of the chain is the cloud, which is the most powerful device but also has the
largest distance to the request device.

Bahreini et al. focus on a multi-component application placement problem (MCAPP).
In MCAPP, there are users and servers. A user wants to execute an application that
consists of several components. Servers are either an edge or a cloud server. The users
and servers are placed in a two-grid system that represents the current position. The
position of the users can vary between time slots, but the positions of the servers are fixed.
The goal is to execute the components on the server at minimal cost. First, they use
a variant of the Hungarian method algorithm [Kuh55] to assign components to servers,
without taking into account the communication cost of the components. This is done in
a second step with a local search algorithm called L-SEARCH [BG17].

There are also a lot of papers that answer the question of when it is useful to offload
a request and when it is better to execute it directly on the device. Mengyu Liu and
Yuan Liu [LL18], Yue Zhang and Jingqi Fu. [ZF21], Luan N. T et al. [HPN+21], Junyan
Hu et al. [HLLL20], Xing Chen and Guizhong Liu [CL21], and Qinglin Chen, Zhufang
Kuang, and Lian Zhao [CKZ22] papers present different algorithms for that. Mengyu Liu
and Yuan Liu [LL18], and Xing Chen and Guizhong Liu [CL21] allow partial offloading,
while the other papers only allow full offloading. In Yue Zhang and Jingqi Fu. paper
[ZF21] the edge server gets all the information about the requests and, therefore, has
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good knowledge about the whole system. Each paper simulates the experiments and has
concrete knowledge about the tasks. Therefore, they know how much bandwidth each
user will have, how complex each task is in terms of CPU cycles, and how far the users
are away from the next powerful device like a Mobile Edge Device (MED). These are the
parameters they are using in their algorithms to decide when it is useful to offload and
when it is better to execute it locally. However, we don’t have this kind of information, or
they can vary quite fast. An example is the signal power of the WiFi. The signal power
can change rapidly when the user moves his device away from the access point (AP).

Hyuk-Jin et al. implemented a web app which allows the user to evaluate the content of
an image. For that an image can be uploaded to the website, after pressing the inference
button, the image will be analyzed, and the result is presented in the web app. The
execution of the task is split. The first part is done on the node where the web app is
running. Before the inference part starts, which is the resource intensive part, the client
makes a screenshot of the DOM-tree including all relevant information like the content
of the image and sends the result to the server. The server receives the DOM-tree and
evaluates the image. After the evaluation, another screenshot is taken and sent back to
the client. The client loads the DOM-tree received from the server, which includes the
result of the ML model executed on the server, and presents it on the screen [JJLM18].

[LLB21] Francesc Lordan, Daniele Lezzi, and Rosa M. Badia; in their paper, they
introduce a colony approach. Devices are grouped in a colony and allow other devices in
the colony to use their resources in a Function-as-a-Service manner. For that, a task is
converted into a workflow which splits the task into subtasks including an order. These
subtasks can then be executed on the own device or on other devices in the colony. To
handle tasks, each component of the colony has an agent, which is divided into resource
management (RM), task scheduler (TS), data manager (DM), and execution engine (EE).
When a new task has to be executed, it sends the task to the agent. The TS decides
where the task is executed. If locally missing data are fetched to the DM and executed at
EE after the resources are allocated in the RM. If external, the agent of the other device
is called via the API and the needed data are sent to the other agent.

3.2 Compression
Another technique is to reduce the overall execution time of a request by simplifying the
problem statement.

Montanari et al. implemented a framework called ePerceptive for batteryless sensors.
They were able to build a model that can be used for several resolutions. This is possible
with Global Average Pooling, which reduces the output matrix to the same dimension,
regardless of the chosen resolution. Depending on the energy budget, a different resolution
is taken. In addition, they use Anytime DNN to provide several exit points. It is a
solution where the model has not only one exit point, but several. An exit point at an
earlier stage delivers a faster but less accurate result. However, in the case of energy
depletion, a result with a lower accuracy can be received [MSJ+20].
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A similar approach exists for edge devices. Li et al. introduce Edgent which splits
the computation between an edge server and a mobile device. In addition, it also has
several exit points. The edgent consists of three stages. In the first stage, a model is
generated with several exit points. In the second stage, an exit point is chosen depending
on bandwidth between the devices and a predefined maximum computation latency. In
the last stage, the first part of the model is executed on the edge server. The partial
result is sent to the mobile device, where the remaining model is executed [LZC18].

Teerapittayanon et al. also split the computation and used several exit points. In their
approach, they combine edge devices, the edge, and the cloud. First, the computation
runs on the edge devices directly and a combined result can be taken at the edge. If the
result is below a specific threshold, the edge continues with the computation to improve
the result. After that, the computation can continue on the cloud, which happens if the
result is again below a specific threshold. With this approach, easy cases can be directly
computed on edge devices, which delivers a fast result. Other cases, which need more
computation, are outsourced to the edge and cloud [TMK17].

Bhattacharya and D. Lane implement a framework called SparseSep that modifies neural
networks. SparseSep uses different variants of SVD to adjust the complexity and, therefore,
the computation of layers in DNNs and CNNs. For DNNs, a K-SVD is used on top of a
weight factorization. For CNNs, the calculation of a convolution task is approximated
with two convolutions, which uses a pre-trained filter. However, these adjustments lead
to a reconstruction error. For that reason, there is a variable in both cases that defines
the degree of change. Therefore, changes are made to meet hardware constraints and
keep the reconstruction error as small as possible [BL16].

Liu et al. developed a framework called AdaDeep that uses specific compression techniques
with respect to predefined performance and resource constraints. The novelty in this
paper is the combined usage of different compression techniques. These techniques are
weight compression, convolution decomposition, and special architecture layers [LLZ+18].

Han et al. introduce a new framework that stores different variants of models in a catalog.
These variants are built using different model optimization techniques, such as matrix
factorization, matrix pruning, and architectural changes. Variants are selected with
respect to specific accuracy and time constraints. To further optimize the accuracy, they
introduce two novel techniques, called specialization and sharing. The idea behind the
specialization is that classes are heavily clustered by context, which means that, for
example, a specific category is more often present in the result set than other categories.
With the specialization technique, a specific focus is placed on such inputs to optimize
these cases. With sharing, fractions of models are used for several requests, which
improves utilization [HSP+16].
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3.3 Hardware Accelerators
Finally, it is also possible to use Hardware Accelerators which are optimized for the
execution of DNNs.

Antonini et al. compare different hardware accelerators against each other. In their
study, they compared the memory usage, execution time, and energy consumption of
different accelerators. They are compared with Raspberry Pis (RPi 3B+ and RPi 4B).
The result shows that the accelerators are optimized for different performance features.
Additionally, the execution time and energy overhead depend on the Raspberry Pi. RPi
3B+ has a higher execution time and energy overhead, however, the idle power of it is
much lower. Therefore, the battery life of RPi 3B + will be longer [AVM+19].

Reagen et al. introduce Minerva, an approach operating on the algorithm, architecture,
and circuit level, to optimize DNN hardware accelerators. With their approach, a power
reduction of a factor of eight could be achieved. This is done in five stages. The first two
stages are for choosing the right baseline implementation for the accelerator, this is done
by choosing one of 1000 uniquely trained DNNs. In the last three steps, different novel
optimizations are processed [RWA+16].

3.4 Benchmark
Another important point is to use the right model for the specific problem that it should
solve. Models are mostly specialized for one specific problem and bad for another. They
are also optimized for specific hardware, which means that the performance of a model
depends on the hardware on which it is executed. For that, it is important to compare
the different components available for the specific problem.

Reddi et al. introduced an industry-wide standard for ML benchmarks. In their study,
over 600 inference models were submitted from 14 companies. They differentiated
between three different tasks. These tasks are image classification, object classification,
and machine translation. In addition, they differentiated between different scenarios.
These scenarios are single-stream, multi-stream, server, and offline. Depending on the
scenario, the time between requests and the number of queries per request vary [RCK+20].

3.5 WiFi
Reducing the overhead of devices is also possible by reducing the number of devices who
access it. Aili Ashipala and Joshua A. Abolarinwa demonstrate in different scenarios how
users can be divided between several WiFi APs and a base station. For that, a controller
is used that has all the information about the network topology which includes a base
station (BS), the WiFi APs, and the users. Additionally, the controller knows about the
flow of requests and users per APs. In these scenarios, the idea is to relieve the BS. New
users are added through the controller. Since the controller wants to relieve the BS, it
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checks which access points are in the near surroundings of the user. It will connect a
new user to an AP if the signal power on the AP is good enough and the AP has enough
capacity for an additional user. Only if there are no APs available, it checks whether the
BS has enough capacity for an additional user. The request will be rejected if there is no
capacity available [AA23].

Another idea is introduced by Bhanu Priya and Jyoteesh Malhotra. They implemented
an environment that helps to find the best component for a specific purpose. The
environment contains a cloud, a global Software-defined Networking (SDN) controller,
several local SDN controllers, and several WiFi APs. A user who wants to execute a
task provides information about the service they use, such as the maximum delay. WiFi
APs, which are connected to a specific local SDN controller, provide information about
bandwidth capacity, network delay, and network capacity to the agent in the local SDN
controller. The assignment of the agent is to connect the users to a valid AP. For that,
an agent will use the information provided about the APs, the capabilities and current
workload, together with the information about the service, to find the perfect match
for the user. AP requests are forwarded to the local SDN controller. All local SDN
controllers are connected to a global SDN controller whose task is to handle the tasks
of all local SDN controllers and forward them to the cloud where all tasks are executed
[PM21].
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CHAPTER 4
Approach

In this section, we present our approach to improve the performance of executing machine
learning (ML) requests by evaluating the current state of the system and the environment.
We start by introducing various offloading strategies that are compared in this thesis.
Followed by a description of the different systems and tools we use in our experiments. It
continues with a discussion of feature and data collection, where we explain which tools
we use to collect data and how experiments are differentiated to gather informative data.
Finally, we elaborate on how the collected data are processed to create meaningful test
data, including steps for filtering and preprocessing.

4.1 Resource-Aware Offloading Strategies
With the available hardware resources and information from the Access Point (AP),
various strategies can be implemented. These strategies differ according to the type
of information considered and the way the data is processed. Several approaches are
compared in this theses.

4.1.1 Naive Offloading
In our first offloading approach, we use a naive offloading approach. This approach is
used to establish a baseline and analyze the capabilities of the different components and
effects on the devices. In this approach, the offloading decision is not depending on some
input parameters, rather we focus on collecting and evaluating the output parameters.
Resulting in getting knowledge of the effects of using the local or external device as
executor and how it affects the collected data.

A pseudocode is presented in Algorithm 1. It shows that the offload decision o is an input
parameter and therefore independent of other factors such as image size or hardware
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resources. Depending on the offload parameter o, we process the request ni on our client
machine or send it to the server. The results are stored for our analysis.

Algorithm 1 Naive Offloading Approach
Input Requests: n1, n2, n··· ∈ N
Input Offloading: o ∈ {true, false}
Output List of results: list
Var Result of the request: res

1: function Main(o)
2: for ni ∈ N do
3: res ← offloadHandler(ni, o)
4: list.add(res)
5: end for
6: return list
7: end function

8: function offloadHandler(ni, o) ▷ Is connected with client
and server, where the
modules are running

9: if o then
10: res ← sendToServer(ni)
11: else
12: res ← sendToClient(ni)
13: end if
14: return res
15: end function

4.1.2 Simple Decision Offloading
In this offloading approach, we are interested in whether the system is capable of switching
between local and external execution, in general. For that we take a single variable.
This variable can be one of our available hardware resources, or a value referring to the
connection to the AP.

A pseudocode is presented in Algorithm 2. In addition to our request ni, we need the
resource of interest for our offloading decision rName and the boundary for our offloading
decision rBoundary. The main(...) and offloadHandler(...) functions are similar to the
one presented in Algorithm 1, except that the offload decision o is now calculated by
the function getOffloadDecision(...) with the two parameters rName and rBoundary.
The getOffloadingDecision(...) function is connected to the resource controller, which has
access to all hardware resources and current connection strength to the connected access
point (AP). The actual decision is made in the evalDecisionFuction(...) presented in
Table 4.1. There we can see that the offloading decision varies for the different resources.
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The reason is that the ping increase but the signal power decrease when the distance
between the client and AP increase.

Algorithm 2 Simple Decision Offloading Approach
Input Requsts: n1, n2, n··· ∈ N
Input Resource name of interest : rName
Input Boundary from resource of interest: rBoundary
Output List of results: list
Var Offloading decision: o ∈ {true, false}
Var Current Value from resource of interest: rV alue

1: function offloadHandler(ni, rName, rBoundary)
2: o ← getOffloadingDecision(rName, rBoundary)
3: · · ·
4: end function

5: function getOffloadingDecision(rName, rBoundary)
6: rValue ← callResourceController(rName) ▷ Resource Controller has

access to all Resources at
the current time

7: return evalOffloadingDecision(rName, rV alue, rBoundary)
8: end function

evalOffloadingDecision(rName, rValue, rBoundary)
rName offload
Toggle not Toggle
Signal Power rValue < rBoundary
Ping rValue > rBoundary

Table 4.1: The offload decision depends on the resource of interest. The resources are
the toggle which is a pseudo resource that changes after each iteration, and the two
environment specific resources signal power and ping

4.1.3 Decision Tree Offloading
From the data we derive from our first offloading approach, we build a DT for our
offloading decision. The data we use for the DT are the system variables of the local
device and the connection to the AP. This approach should show whether a DT is capable
of making an accurate decision and how long it takes to evaluate the input parameter.

A pseudocode is presented in Algorithm 3. Compared to the previous Algorith 2 we
now take a list of resources as input parameter, rlist. Therefore, we need to change
the parameters, from one resource r to a list of resources rlist, for our main(...) and
offloadHandler(...) functions. First, the image size is evaluated and stored in imgSize.
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After that, all the resources of interest rlist are collected from the resource controller,
the decision tree (DT) is executed in the evalOffloading(...) function. The resources of
interests are hardware and environment resources. The DT then returns the offloading
decision according to the input resource list rlist and the current image size imgSize.

Algorithm 3 Decision Tree / ML-Based Offloading Approach
Input Requsts: n1, n2, n··· ∈ N
Input Resource names of interest : rNamelist = {rName1, rName2, · · · }
Output List of results: list
Var Offloading decision: o ∈ {true, false}
Var Resource: r
Var Resources of interest: rlist = {r1, r2, · · · }
Var Image size: imgSize

1: function getOffloadingDecision(ni, rNamelist)
2: imgSize ← evalSizeOfImage(ni) ▷ Depending on the byte

size of the image the
result will be small,
medium or large

3: for rName ∈ rNamelist do
4: r ← callResourceController(rName) ▷ Resource Controller has

access to all Resources at
the current time

5: rlist.add(r)
6: end for
7: return evalOffloading(rlist, imgSize) ▷ This functions stores the

median values for our dif-
ferent resources.

8: end function

4.1.4 ML-Based Offloading
Our final approach, ML-based offloading, is by far the most advanced method discussed
in this thesis. For this approach, we need to train an ML model. This approach requires
test data including system data, environment data, and the round-trip time (RTT) to
be able to distinguish when to offload or not. The success of training an effective ML
model that provides meaningful results requires pre-processing of the data in advance.
In Section 2.4.4, we discuss how data need to be preprocessed and in Section 2.4.5, we
explain how a model needs to be trained.

A pseudocode is presented in Algorithm 3. In this offloading approach, the evalOffloading
function executes the ML model of interests, instead of the DT used in the previous
explained approach in Section 4.1.3. Therefore, the ML decides whether the request
should be offloaded with the given input resource list rlist or run on the client machine.

Before going into detail about the approach, we first provide an overview of the system,
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including a description of the two systems and the two tools used in this thesis. Then we
discuss how feature and data are collected.

4.2 Implementation
We execute our experiments on two different setups, which differ in location and number
of devices. For some baseline information, we are working on our first setup because it is
a rudimentary setup that only contains a few devices to be able to run the experiments.
We then change to a more sophisticated setup including more devices. There we focus on
how the feature changes by changing the circumstances. In the following, we call the
first one the preliminary system and the second the evaluation system. In both systems,
we use telemd to monitor our features. In addition, we use edge-chaos in the evaluation
system to change the current state of the client. Our goal is to evaluate the differences
between local and external executions, to be able to decide whether it should be offloaded
or not.

4.2.1 Preliminary System
In our preliminary system, we minimize as much noise as possible by using as few devices
and additional programs as possible. For that reason, the preliminary system only
contains a client and a server which are connected via an AP. Information about the
hardware used can be found in Table 4.2. As we can see in the table, we use a Lenovo
laptop for our client, a common 4G router, and a PC as a server, which represents a
stronger device compared to our client.

DEVICE DESCRIPTION
LAPTOP Lenovo ThinkPad 13-20J2S00G00
ROUTER hh71vm link hub, 4g router
PERSONAL COMPUTER AMD Ryzen 5 2600 Six-Core Processor 3.40 GHz

with 16GB RAM

Table 4.2: Used hardware in the small setup

We also keep the procedure for the experiments as simple as possible. A visualization
of the setup is presented in Figure 4.2. In this representation, we can see the general
approach to evaluating images. In a predefined frequency, the client sends an image in
the form of a request to a handler. Depending on the experiment, the handler decides
which device executes the request. Since both devices, the client and the server, are
running a ML model, the handler can send the request to any of these devices. The
device can then process the image, which can be done with two different ML models on
the client and one ML model at the server, and sends the result back to the handler. The
handler then forwards it to the next level.
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Figure 4.1: Environment overview in the preliminary system

Figure 4.2: Request handling in the preliminary system
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In Table 4.3 the information about the two different models is summarized. As we can
see, the two models differ in depth. For that reason, the one with the lower depth is
faster and smaller. However, this leads to lower accuracy.

Description Model Name Input Size Depth Multi. Latency Model Size
Small MobileNet v2 DeepLab v3 513x513x3 0.5 36.8 ms 1.1 MB
Big MobileNet v2 DeepLab v3 513x513x3 1.0 43.0 ms 2.9 MB

Table 4.3: Summarized information about used semantic segmentation model

4.2.2 Evaluation System

In our evaluation system, we changed to a more realistic test environment. This new
environment contains several APs and a new server as well. A list of all devices with the
description of the underlying hardware is presented in table 4.4.

Device Name Description
Local Device Lenovo ThinkPad 13-20J2S00G00

Iss Linksys WRT1200AC
Starlinke Netgear EX6120
Stargate Netgear EX6120
Server ASRock Industrial

Table 4.4: Hardware description of the environment

A visualization of our setup and the location of the devices is presented in Figure 4.3
We can see that there are three APs, called starlink, stargate, and iss. The APs starlink
and stargate are repeaters and only forward traffic to the third AP iss. Iss is a router
that is connected to repeaters, the server, and the Internet. Additionally, the figure also
contains information on two journeys and the place for our experiments with a fixed
location. The first journey, in green, starts with the green circle and goes through the
whole building according to the arrows. The second journey, in red, starts with the red
circle next to the symbol for the local device. After the client exits the room, the journey
continues by going up and down several times. For experiments in which the client stays
at one place, the location is used next to the AP starlink marked with an X. We will
refer to these different movements of the client’s experiment setup as Journey 1, Journey
2, and Stationary.

The server in this approach runs the same model as before, but has better HW resources,
which allows the server to execute the requests faster, compared to the server in our last
approach. The changes in the new system give us new opportunities. Compared to the
previous system, we now not only have the opportunity to decide whether to execute
it locally or remotely, but also the opportunity to choose between different APs. Using
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Figure 4.3: Setup of the test bed environment with the Journeys 1 and 2

different APs includes different amounts of latency, which is also more realistic compared
to the last system.

We also change the way in which the decision is made about the execution of the request.
Figure 4.4 visualizes it. It presents an extension of the Galileo framework described in
Section 2.6.1. The extension includes the Wifi App Client and the Resource Controller.
We can see that the processing of requests in general is now much more complex than
before, compared to the approach in our preliminary system, visualized in Figure 4.2.

Figure 4.4: Request handling in the evaluation system

Not only is the offload handler much more sophisticated now compared to before, but
it also starts the client a worker. The worker could run on a different device and send
the requests from there. However, we start the worker on our own machine. The worker
is responsible for sending the request in a predefined interval. This worker does not
have any knowledge about the current state of the client or the server. Therefore, it
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is now possible that the worker overloads the server with too many requests, leading
to additional latency. Additionally, the offload handler can now use HW resources and
information about the environment for the offloading decision. For that, the App Client
collects the offload decision from the Wi-Fi App Client and propagates the request with
the offloading decision to the Service Request. The Service Request prepares the request
and propagates it further to the Router, which decides whether the request is offloaded
or not, depending on the decision of the Wi-Fi App Client. The Wi-Fi App Client uses
the Resource Controller, which provides data of telemd which it gets from the Telemetry
Service. We defined different functions in the Wi-Fi App Client, giving us the opportunity
to regulate when requests should be offloaded or not. We also intend to incorporate
another machine learning model into this decision-making process which is now possible
with these changes.

4.3 Tools

In our thesis we are using two tools, which allow us to collect different information during
the experiments. The first tool, called telemd is used to monitor hardware resources and
data from the network connection. The second tool, called edge-chaos is used to cause
chaos on the local machine.

4.3.1 Telemd

Telemd 1 is a lightweight tool that reports fine-grained system runtime data into Redis. It
provides information about the system in general, including CPU, RAM, Freq., etc., and
information about running containers on the system. It also provides information about
the signal power and ping to the currently connected AP. With telemd, it is possible to
decide which information we want to collect and at what frequency we want to collect
them. A list of monitored metrics with associated frequency is presented in Table 4.5.
Most instruments provide information about the current state of the system, e.g., load is
a measure of CPU utilization, where the processes currently executed by the CPU or on
the waitlist are counted 2. However, there are some instruments that store accumulated
information over time. An example is psi, which provides information on pressure stall by
aggregating productivity losses caused by resource scarcity 3. Additionally, the container
measures CPU usage over time. To be able to use these instruments properly and to get
information about the moment, we preprocessed these data. We do that by changing the
value to xnew = xn − xn−1. Therefore, we subtract the current value from the last to
obtain the change in the current period of time. To collect our last feature, the RTT,
we use two timestamps t0 and t1, taken when a request is sent and when the result is
received, respectively. The resulting RTT is calculated by t1 - t0.

1https://github.com/edgerun/telemd
2https://www.digitalocean.com/community/tutorials/load-average-in-linux
3https://www.kernel.org/doc/html/latest/accounting/psi.html
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Instruments Description Frequency
cpu CPU utilization 1s
dockerxy docker container x ∈ {redis, telemd, model} 1s

y ∈ {blkio, cpu, memory} 1s
freq Sum of clock frequencies of the main CPUs 1s
loadx System load average of the last x minutes x ∈ {1,5} 1s
procs number of procs 1s
psix host’s x pressure; x ∈ {cpu, io, memory} 1s
ram RAM used in kilobytes 1s
rd reads 1s
signal_wlp3s0 signal power of the WiFi 1s
wr writes 1s

Table 4.5: Hardware-Resources monitored with telemd

4.3.2 Edge-chaos

Edge-chaos 4 allows the user to start additional programs to disrupt co-located applica-
tions. It runs in another container and waits to receive commands. With this tool, it is
currently possible to provide commands for stress-ng 5 and tc 6. stress-ng is a tool that
will stress the system by executing different operations such as floating-point, integer, bit
manipulation, and control flow. tc is a Linux tool that can modify traffic on the network
interface. A use case would be to limit the available bandwidth. However, we decided to
focus on the stress-ng tool. With stress-ng it is possible to start more than 200 different
attacks. The parameters we use are summarized in Table 4.6 7. With malloc we are able
to increase current CPU usage by 25% per worker. Additionally, malloc-bytes increase
current RAM. Finally, we also include io to simulate save operations, since the data are
stored in the underlying file system. With that, we aim to simulate a different application
running on the system with a roughly static load during the different experiments.

Option Parameter Description
Malloc number of workers calls malloc, calloc, realloc, and free
Malloc-Bytes max. bytes per (re)allocation allocation between 1 and N (parameter) bytes
IO number of workers calling sync

Table 4.6: Used stress-ng parameters

4https://github.com/edgerun/edge-chaos
5https://github.com/ColinIanKing/stress-ng
6https://man7.org/linux/man-pages/man8/tc.8.html
7https://manpages.ubuntu.com/manpages/bionic/man1/stress-ng.1.html
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4.4 Feature Collection
In our approach, we can collect features from three different categories. These three
categories contain information about the HW resources of the client’s device, the envi-
ronment, and the resulting information we collect through our experiments, which are
different time intervals, like the RTT in particular. To collect features from the first two
categories, we use the lightweight open source monitor tool telemd. The third category
is collected by measuring the elapsed time. To be able to collect proper test data, it is
important to get a variance in our features. Our features of the first two categories have
an impact on the feature in our last category, the RTT. Therefore, varying the features
in the first two categories is sufficient.

To vary the features in our first category that contains HW resources, we use the edge-
chaos tool. To vary the feature in the environment category, we have to change the
connection to the AP. Instead of using tc, which is included in the edge-chaos tool, we
decided to move the device during experiments and therefore change the quality of WiFi.

4.4.1 Acquiring of Divergent Data
Our features are collected through different experiments. The goal is to run different
experiments in different scenarios to obtain a large variety in our test data. With that,
we hope to find the characteristics of our features, depending on the current situation. A
scenario is defined by the choice of some variables. We are using different scenarios to
assess the impact of the variables. The following variables, all except the first, are also
later used for training our machine learning (ML) model.

• Devices per experiment

• Device who executes the request

• Kind of model which processes the request

• Distance between the client and the AP

• Size of the request (image size)

• Confounding factors (additional load)

To minimize additional costs, such as latency introduced by transmitting data over
different devices, we first divided the experiments by the number of devices.

We then categorize the experiments on the basis of the location of request execution.
When requests are executed on the same device on which they were created, it is termed
a local experiment, as only one device is involved in sending and processing the request.
An external experiment, on the other hand, includes another device as the request is not
processed on the same device on which it was created.
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For the processing part, we also distinguish the ML Model, which is used to process
the request. For our client, we use two different models summarized in Table 4.3, the
server on the other hand uses the larger model of them, since it represents a stronger
device where the impact of the model execution is negligible compared to the additional
latency costs included through sending the request and receiving the result. In addition,
we categorized the distance between the client and the connected AP.

For local experiments, the distance is irrelevant since the data is not transmitted to
another device. For external experiments, we distinguish between static and dynamic
tests. Static tests refer to experiments where the position of the client remains constant,
while dynamic tests refer to experiments where the client moves during the experiments.

Furthermore, we perform experiments with different image sizes. Using different image
sizes changes the period of time it takes to transmit the request to another device,
depending on the current signal power on the connected AP. Additionally, it changes the
time the ML Model needs to process the request, since the ML Model is designed for
a specific resolution and therefore needs to adjust the resolution depending on the size
of the image. The differences in the images are presented in Table 4.7. For the small
image, we use an open source collection called VOC128. Since they only provide small
images, we have created some images, which we are using for the other two image sizes.
The images were taken on a Samsung Galaxy S9 with the main camera.

Description Resolution Source
Small 512x512 VOC12
Medium 2018×1512 Samsung Galaxy S9
Large 4034×3024 Samsung Galaxy S9

Table 4.7: Description of the used images through all experiments

Finally, we differentiated between experiments where the client only ran the necessary
programs for the tests and those where the client had an additional workload from
running other tasks unrelated to the experiment. To introduce an additional workload,
we utilized the edge-chaos tool, as previously described.

We perform these experiments in the preliminary and evaluation system. In both systems,
we have at least a client, an AP, and a server. In our scenario, the client is running an
Augmented Reality application, where information from images has to be evaluated at a
predefined frequency. Each image is a request and can be processed either directly on
the client or offloaded to the server. For that, the client and the server run a semantic
segmentation ML model. With a semantic segmentation model, different types of objects
can be identified. A more detailed description can be found in Section 2.4.6

In our experiments, we are starting the models on both devices before we start the
experiments. Starting the model from the beginning simplifies the request, since we do

8http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
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not have to consider whether the model is already started or not. In the other case, the
first request would suffer from additional latency since the model would have to start
before it could process the request. An option to prevent that would be a pseudo request
to signal the model to start. However, this would complicate the experiments. Therefore,
our models are running and are ready already at the beginning of our experiments.

4.5 Creating test data
In this section we will describe the steps necessary to gather the proper test data needed
for an DT or ML model Offloading approach.
First, it is important to understand that the data are environment-specific. Therefore, it
is not advisable to mix the data from the preliminary and evaluation system, because it
would distort our data. This means that the different devices and setups we use in the
two systems have an impact on the result. Since the data collected in the preliminary
system lack diversity and are not representative, because we avoided noises when possible,
we use the data from the evaluation system.
Second, we need to define when it is advisable to offload or not. This is also very
important for our supervised learning approach, explained in Section 2.4.5, which we use
to train our ML models. In our case, we label the experiments with 0 and 1 for local and
external execution, respectively.
In the end, it is important to filter and preprocess our test data. This is done according
to our research result mentioned in Section 2.4.4. These steps include removing outliers,
normalization, and adjusting the test size.

Labeling

For the two labels 0 and 1, which represent the experiments that should be performed
locally or externally, respectively, we need to define a common rule. Since we do not
have deadlines to follow, we decided to compare each request with the median value of
the round-trip time (RTT) for the different experiments, presented in Equation 4.1.

tl,s
ref = ∀l∀smedian(

n�
i=0

rl,s
i ) (4.1)

There we can see that the time reference tl,s
ref for a specific load l presented in Table 4.6,

a specific image size presented in Table 4.7 and a specific amount of requests n, is defined
by the median value over all requests rl,s

i , where rl,s
i is the RTT of the request i, for a

specific l and s. The label is defined in Equation 4.2. We can see that the label is 1 when
the request is below and 0 when above the median.

ll,si =
�

1, rl,s
i ≤ tl,s

ref

0, rl,s
i > tl,s

ref

�
(4.2)
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4.5.1 Filter and Preprocessing
Removing outliers

Before normalizing, it is crucial to filter the data to eliminate outliers. Normalization
processes tend to bring all data points closer together, potentially resulting in significant
information loss if outliers are not addressed beforehand.

When outliers are present, normalization can cause most values to converge around a
single point, effectively reducing the variability of the data set. Consequently, the data
would lose much of their informative value, making it challenging to discern meaningful
patterns.

To mitigate this issue, we employ a common outlier removal technique based on the
z-score, which involves removing values that deviate from the mean by more than a
specified multiple of the standard deviation. The choice of this multiple impacts the
extent of the removal of outliers, thereby influencing the meaning and distribution of the
remaining data. Striking a balance is essential, as overly aggressive removal may bias the
dataset, leading to sub-optimal training of the ML model. In contrast, insufficient removal
could result in data points being too closely clustered, making it difficult to differentiate
between them and hindering decision making. Therefore, careful consideration must be
taken to strike an appropriate balance between the removal of outliers and the retention
of valuable information.

Normalization

After we removed the outliers, we continued to normalize our data with min-max
normalization. In Equation 4.3 we can see that we first calculate the min vl,s

min and max
vl,s

max values for each load l and image size s. After that we can calculate the normalized
value by subtracting vl,s

min from the current value vl,s
i and then divide it by the difference

of vl,s
max and vl,s

min. As a result, all values are now between 0 and 1.

vl,s
max = ∀l∀smax(∀iv

l,s
i )

vl,s
min = ∀l∀smin(∀iv

l,s
i )

vl,s
i = ∀l∀s∀i

vl,s
i − vl,s

min

vl,s
max − vl,s

min

(4.3)

Proper test data

Now our data are normalized and free of outliers, however, they are not yet good enough
as test data. The reason is that the ratio of our test data is still biased. Depending on the
stress level and the image size, our data are biased to either a local or external execution.
This means that we would train our model for a specific stress level and image size with
a preferred result for local or external execution. This would lead to a general bad result
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for the other execution. For that reason, we train the models with approximately the
same amount of data from both decisions.

4.5.2 Test data for Decision Tree and ML-Based Offloading
In Section 4.5 we describe an approach to evaluate performance gains. This approach
involves calculating the median, as visualized in Equation 4.1. We will employ this
method to compute the median value for different experiments, taking into account
hardware load and image size. Specifically, we use the results from the stress-level
measurements. There we execute 12 experiments, both local and external. These 12
differ in four different stress levels and three different image sizes. We then use these 12
local execution experiments to calculate 12 distinct median values. These median values
serve as references for the external execution results. During external execution, the
RTT is compared with the corresponding median value for the same hardware load and
image size. Requests with RTT faster than the median are labeled as true, while those
slower are labeled as false. This labeling scheme enables us to train our models using
a supervised learning approach, where each label indicates whether a specific request
should be offloaded to the server or executed locally on the machine.
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CHAPTER 5
Evaluation

In this section, we address the different offloading approaches mentioned in Section 4.1.
After discussing the different approaches in more depth, the section ends with the
key performance indicators. These indicators explain how the different approaches are
compared with each other.

5.1 Naive Offloading
In this approach we cover all tests that provide us with general information about our
systems and devices and are processed solely on the local or external machine.

5.1.1 Preliminary System
In this setup, we execute three different sets of experiments. The position of the devices
during these experiments is visualized in Figure 4.1. There we can see that the AP
and the server are next to each other. Due to the small distance between the AP and
the server, the transmission should be quite fast, the connection should be strong, and
therefore the latency should be low. The client can have several locations. The location
depends on the experiment. With the experiments called Model overhead, Local execution,
and External execution, we want to gain some general information about our client and
the execution of ML requests on different devices. The experiments are explained in the
following.

Model overhead

In our first experiment, we aim to assess the impact of running different models on the
client. To this end, we monitor the hardware resources using redis and telemd. To obtain
the overhead that the model produces, we first run the test without starting any model
at all. After that, we repeat the experiment twice, starting the two different models
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separately. Then, we compare the results. The overhead of the model is the additional
use of resources compared to the resources the client needs without the model. With
this experiment, we evaluated how the model affects the client and whether the client is
capable of executing a model, in general.

Local execution

In our next experiment, our objective was to assess the impact of processing requests
with our different models on the client. As before, we used redis and telemd to monitor
hardware resources. The requests were distinguished by image size, with the sizes of small,
medium, and large images listed in Table 4.7 and the used models listed in Table 4.3. In
this experiment, we analyze the additional resources the client needs to execute requests
and the duration of the execution of a request. We can evaluate the overhead of the
resources by running the requests of one of the models on the client directly and compare
the results with the results we got in the last experiment where we ran the model solely.
To evaluate the duration of the experiment, we measure the round-trip time (RTT),
which can be calculated by the absolute difference of the two timestamps t0 and t1.
In Figure 4.2, we can see that t0 is taken at the time when the offload handler sends
the request to a ML model and t1 when the offload handler receives the result from
the executed ML model. The overhead of the resources shows us how the execution of
requests affects the hardware resources. The RTT is stored and will be used in the next
experiment as a reference value.

External execution

In the last experiment in this setup, our objective was to assess the impact of the
connection between the client and the AP on the performance gain by executing the
request on a stronger device. In this experiment, the offload handler on the client sends
the request to the server over the connected AP. The server uses the same model compared
to the bigger model of the two available to the client. To evaluate the impact of the
connection, we changed the position of the client, resulting in a change in bandwidth
and network latency. In Figure 4.1 the different locations of the client are labeled with
numbers 1 to 4. The first three numbers are fixed locations, and the last four-labeled
number represents a route. There, the client moves during the experiment. The start
and end are next to the server and the AP. The farthest point is near number three,
where the signal power is bad. In total, there are eight stations. Therefore, it is possible
to go there and back visiting all stations, except the last one, two times for one minute
each. A total of 12 measurements are taken, with the experiment being carried out on
each position using three different images. The resulting HW data collected by the client
with redis and telemd should be similar compared to the model overhead experiment,
since the model does not have to execute any requests and therefore similar programs
are running on the system. The resulting RTTs collected in the 12 measurements can be
compared with the RTTs collected in our local execution experiment, described in the
previous section.
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5.1.2 Evaluation System
For the remaining experiments, we switch to the evaluation system. The first two
experiments present changes in the signal power depending on the AP and location used.
The third one presents a boundary test and the last one shows how the load affects the
performance of the local machine.

Variance with different AP and Locations

1. Change in signal power in a fixed position and while moving

In a small first experiment in this new environment, we evaluated the range of the
different APs and how they vary. We collect data with a command line tool called nmcli
1. With that tool, we collect the signal power quality of the surrounding APs. We repeat
this experiment several times.

One experiment is on a fixed location, the other one we walk on Journey 1. The route is
visualized in Figure 4.3 with the green arrows that represent the way there and back,
starting at the location of the green circle. In that time, moving the green arrows, we
collected 20 data samples with a 5 second break between the samples. The data samples
contain information on the WLAN connection at that particular moment. With that
experiment, we want to analyze how the signal power can vary in a fixed location and in
a dynamic scenario.

2. Changes depending on the used access point

In another experiment, we evaluated the experiments from a stationary location. The
location of the device is visualized in Figure 4.3 with the laptop icon. At this location,
the client has access to the APs starlink and iss. With this experiment, we analyze the
differences in the APs. We can see that the starlink is next to our client. Therefore,
the connectivity to starlink will probably be better compared to the connectivity to iss.
However, starlink is not directly connected to the server, it forwards the request further
to iss. Therefore, sending the request to starlink not only sends the request in a wrong
direction first, but also increases the hop count by one.

Boundary Test

In this experiment, we evaluate the quality of the connection when we move the client
to the edge of the signal power range. Moving the client to the edge drops the signal
power and increases the ping. We are interested to see how the RTT changes with these
conditions.

Stress test

In all previous experiments, we offloaded all experiments to analyze how the RTT changes
depending on the circumstances. However, not only the environment can change, but

1https://developer-old.gnome.org/NetworkManager/stable/nmcli.html
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also the circumstances of the client itself. Therefore, in this experiment, we put an extra
load on the client. As mentioned above, we use a tool called edge-chaos, which simplifies
the use of stress-ng for us. With edge-chaos, we can tell stress-ng to add / remove an
extra load on our HW resources during the experiment. We use three options in stress-ng,
these options are described in Table 4.6. In our experiments, we used four different stress
levels. Starting with level zero, where no extra load is introduced and used as a baseline,
and increasing the load on each level.

For this experiment, we use Journey 2 visualized in Figure 4.3. We let time lapse away
in the first room before we go through the door and move up and down in the hall. The
reason for this is that we want to collect data in different signal power ranges. After
leaving the first room, the signal power drops because we increase the distance to the
AP starlink. Therefore, we stay a bit in the room to get data with a good signal power
as well.

We execute this experiment on the client and repeat it on the server. We use these
data later for our baseline because the data contain all the information we need. This
information is a variance in the environment and the current state of the client.

5.2 Simple Decision Offloading
The experiments for this offloading approach are executed in the evaluation system and
should show whether offloading or not with a single parameter is possible and sufficient.
The experiments are carried out in the same way as the stress test experiment. Therefore,
we again use Journey 2.

We evaluate and compare three different parameters with each other. The first parameter
is a flag that we toggle after each execution. Therefore, the Wi-Fi App Client alternately
responses with true and false. As a result, we alternate between local and external
execution. We executed this experiment two times; first, the client stays at the stationary
location, and second, it moves according to journey 2. With this measurement, we
analyze whether the system is capable of changing between different devices or whether
the execution of the request on changing devices increases the RTT in some way.

Second, we use the resource controller, visualized in Figure 4.4, to obtain recent measure-
ments of our signal power. We then use the signal power as a constrained on different
boundaries to decide whether to offload or execute the request locally.

Last but not least, we repeat this experiment with the ping instead of the signal power.
Again, we use different boundaries for our offloading decision.

With the last two, we analyze whether it is sufficient to use one of these parameters alone
for our offloading decision.

The data we have collected in all experiments so far give us the opportunity to evaluate
how the feature changes depending on the circumstance. We use the data we collect in
these experiments for filtering and prioritizing.
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5.3 Decision Tree Offloading
At this approach, we have complete control over the decision. We can decide how
important the different features are and at which point the request should be offloaded.
For that, we analyze the data on our own and create a Decision Tree (DT). In this
approach, we can find obvious correlations between the features and the RTT. However,
some features could also be relevant but less important compared to other features. These
features are hard to find by simply analyzing the data without any tool. Therefore, this
approach is a very broad approach but, for that reason, a fast one.

5.4 ML-Based Offloading
For the remaining approaches, we entrust the decision-making process to a machine
learning (ML) model. Numerous ML models exist to address this problem, each offering
varying levels of evaluation time, efficiency, and resource utilization.

Although it is possible to tailor the ML model to specific needs, this process can be time
consuming and may not always yield satisfactory results. To streamline this process, we
use a tool known as TPOT, as detailed in Section 2.6.2. TPOT relieves us of the burden
of manually selecting features and ML models, instead allowing the tool to autonomously
determine the most suitable features and ML model based on our input dataset.

TPOT offers several default configurations, differing in generation, population, search
grid, and goal. We intend to generate ML models using all default configurations and
subsequently compare their performance with each other.

However, before we can use a Decision Tree and ML-Based offloading approach, two
important steps are necessary. First, in both cases, it is necessary to make a decision on
the features available during the experiment. For that both offloading approaches need
to know whether a feature is good or bad, otherwise the resulting decision is not related
to the experiment. Therefore, we have to define how we want to compare and evaluate
different experiments. Second, our current data are raw data. Using these raw data can
affect the performance of both approaches. To avoid that the data lead to poor results,
they have to be filtered and preprocessed. The next two sections describe these steps.

5.5 Key Performance Indicators
For evaluating the different offloading approaches with each other, we will run the same
experiment over and over. We will stick to the variety we started to use in the stress-level
experiment where the client moves according to Journey 2 visualized in Figure 4.3. These
measurements include both local and external executions, thereby offering data reflecting
various hardware loads, environmental circumstances, and image sizes.

Additionally, our ML models are trained with these data and are therefore designed for
this experiment. Otherwise, it would be harder to argue why a ML model performs
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good or bad in these tests. With the results of the experiments we want to compare the
approaches on the following criteria:

• Introduced overhead by using the approaches

• Accuracy

• Improvement compared to baseline

Offload evaluation overhead

Since our goal is to reduce the total time the client has to wait for the response of
the request, it is important to evaluate the time the different approaches are taking to
evaluate whether the request should be offloaded or not. Therefore, waiting too long for
the response of the evaluation process leads to a bad result, in general.

Accuracy

The estimated accuracy is a value automatically generated by training a ML model.
Therefore, this value is only available for the ML model offloading approach, but not for
the other approaches.

5.5.1 Points
It is an experiment-oriented value calculated after we run the experiments. We can
compare whether the result is better or not by using Equation 4.1, which was originally
used to define the labels in our supervised learning approach.

pl,s
i =

�
1, rl,s

i ≤ tl,s
ref

0, rl,s
i > tl,s

ref

�
(5.1)

P l,s = ∀l∀s(
n�

i=0
pl,s

i ) (5.2)

With that we then calculate the sum over all requests which are at least as good as the
reference value, presented in Equations 5.1 and 5.2. To evaluate which decision performs
better, we can compare the different scores P l,s, also called points . With that, we can
count how many requests are at least as good as the reference value, but it gives us no
information about the total time save we get by using this approach.

Improvement compared to baseline

In the last evaluation, we are interested in the absolute improvement. Since our experi-
ments differ in the number of samples for each request, we will use the mean value for the
various experiments. To calculate the mean, we use an equation similar to Equation 4.1.
The main difference is that we use the mean instead of the median, which means that
outliers will have a greater impact compared to using the median value.
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CHAPTER 6
Results

In this chapter, we present the results of our experiments. As described in Section 4 our
experiments are separated in different offloading approaches. These approaches are naive,
simple, decision tree-based, an ML-based offloading approach. In the naive offloading
approach, experiments are executed in both systems, called preliminary and evaluation
systems. The preliminary system is used to collect fundamental data from the devices
with the tools we are using. After collecting and evaluating the data, the remaining
experiments are executed on the evaluation system. These include the experiments in
the naive offloading approach, but also the remaining offloading approaches.

In this system, we evaluate different features and how they change when the state of the
client or the environment changes. We then use these data to prioritize and filter the
collected features. We want to find the features that correlate best with the round-trip
time (RTT) to be able to decide when to offload or not. For this reason, we compare the
different offloading approaches with the baseline and each other.

For a better presentation of the tables, we will use icons that are listed in Table 6.1

Small Image
Medium Image
Large Image

⇑ Uploaded to Server
⇑ Amount of Images uploaded to the Server

Points
x̄ Mean value
x̃ Median value
σ Standard deviation

Table 6.1: List of Symbols used in Tables
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6.1 Naive Offloading
In this section we run different experiments on two systems. In the first system, the
tests are used to collect rudimentary information about the tools and the devices. In
the seconds system, we change to a more sophisticated system. This system represents
a more realistic approach including different services working together. Additionally,
this system allows one to switch between the processor of the images during a single
experiment.

6.1.1 Preliminary System
In this section, we present the results of the experiments carried out in the preliminary
system, visualized in Figure 4.1. This system consists of three devices: the client, the
server, and an AP. The client is able to send the requests to the server via the AP, or
process them directly. Information about the different devices is presented in Table 4.2.
The approach we use in this system is rudimentary and is visualized in Figure 4.2. Here,
we send the images to an offload handler. This offload handler sent the request to the
client or the server, depending on a predefined flag. After execution, the results are sent
back and collected for evaluation. In addition to this approach, we avoid the execution
of any other program which is not part of the experiments. With these decisions, we try
to reduce the amount of noise and improve the quality of our data.

In our experiments, we use two different models, the details are summarized in Table 4.3.
They distinguish in the depth and therefore in the accuracy and processing time of
an image. These models will process different images, which are categorized by size,
summarized in Table 4.7. Each experiment takes 15 minutes. In this time, we collect
hardware resources with telemd. With this duration, we minimize the impact of significant
background tasks as we had no control over them, and they might otherwise affect our
results. Any significant background tasks that might occur during the experiments
and consume more resources than the idle mode could be identified as an outlier. In
experiments in which requests are sent, we choose a time interval of three seconds. The
reason for this decision is the sequential execution of requests in our model, and we
decided not to include a queue in these experiments.

In our first series of experiments, we solely use the client’s machine and focus on some
baseline tests. In these tests, we execute the model, process requests on the client, and
evaluate its impact. After that, we continue with sending the requests to the server.
Finally, we evaluate the differences in RTT between local and external executions.
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Model overhead

Before processing requests, we are interested in the idle state. For that we measure
different HW data with telemd. As we can see in Table 6.2 we measured the HW data
three times. The first time we even run it without any model at all. In the remaining two,
we run it once with the small model and once with the big model. For the 16 features,
we present the medians and standard deviations.

These features are hardware resources, including information about the running container.
In our case, we are running three different containers, model, telemd, and redis. The
information of the two docker container telemd and redis are unimportant since the tasks
of these containers are the same, independent of the current running model. However,
information about the container where the model is running inside could be interesting
when requests are processed in the model.

In our result presented in Table 6.2 we can see the following facts. To begin with, when
no model is running, the CPU is almost constant with a standard deviation (std.) of
7.50e − 01, with models, the cpu is a bit higher with a mean utilization of 2.50e + 00
instead of 2.00 + 00 and a higher σ with above 3.00e + 00. This also has an impact
on psi_cpu/full. PSI stands for Pressure Stall Information information and identifies
and quantifies the disruptions caused by resource crunches and the time impact it has
on complex workloads 1. We can see that the order of magnitude for the mean value
is around e + 03 but for the std. It is about e + 02 for no model, but e + 03 and even
e + 04 for small and big models, respectively. Therefore, using the model increases the
probability of experiencing disruptions due to excessive over-commitment, which is a side
effect on high psi values. For the docker container information, we can see that running
the model also introduces a constant increase of cpu and memory independent of the
model size.

As we can see, in the idle mode, the container more or less needs the same CPU and
memory independently of the running model. We also measured but did not mention
different read and write features, since most of the results are zero.

1https://www.kernel.org/doc/html/latest/accounting/psi.html#psi
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Instruction No Model Small Model Big Model
x̄ σ x̄ σ x̄ σ

cpu 2.00e + 00 7.50e − 01 2.54e + 00 3.22e + 00 2.53e + 00 3.47e + 00
freq 5.98e + 06 1.96e + 06 5.84e + 06 2.31e + 06 6.22e + 06 2.19e + 06
load1 1.50e − 01 8.12e − 01 1.10e − 01 6.56e − 02 1.65e − 01 8.53e − 01
load5 4.50e − 01 3.12e − 01 1.80e − 01 8.40e − 02 4.75e − 01 3.15e − 01
psi_io/full 0.00e + 00 6.87e + 03 1.05e + 03 9.03e + 03 1.09e + 02 7.80e + 03
psi_io/some 0.00e + 00 7.51e + 03 2.44e + 03 9.86e + 03 1.01e + 03 8.66e + 03
psi_cpu/full 3.54e + 03 7.20e + 02 6.06e + 03 1.19e + 03 4.02e + 03 7.15e + 04
psi_cpu/some 7.32e + 03 2.12e + 03 1.12e + 04 5.85e + 03 9.38e + 03 6.21e + 03
procs 5.00e + 00 2.27e + 00 6.00e + 00 1.80e + 00 6.00e + 00 1.87e + 00
ram 2.38e + 06 6.39e + 03 2.43e + 06 1.41e + 04 2.43e + 06 5.65e + 03
docker_cgrp_cpu/model nan nan 1.18e + 05 1.08e + 07 1.19e + 05 1.25e + 07
docker_cgrp_cpu/telemd 2.08e + 10 1.19e + 10 2.85e + 10 1.75e + 10 2.20e + 10 1.26e + 10
docker_cgrp_cpu/redis 2.49e + 09 1.41e + 09 3.03e + 09 1.74e + 09 2.96e + 09 1.68e + 09
docker_cgrp_memory/model nan nan 3.53e + 07 1.81e + 05 3.53e + 07 1.70e + 05
docker_cgrp_memory/telemd 8.93e + 06 4.15e + 05 9.54e + 06 4.52e + 05 8.75e + 06 3.64e + 05
docker_cgrp_memory/redis 2.27e + 06 3.09e + 04 2.27e + 06 1.61e + 04 2.26e + 06 4.03e + 04

Table 6.2: Collected information from telemd with mean x̄ and std. value σ

Local execution

In this experiment, we start using the models by running requests with different images
on the client machine. As a result, we measure the effect on the HW and the round-trip
times (RTTs) of each request. We collect these RTTs and compare them later with
the execution on the server. Figure 6.1 visualizes the RTTs of the different models and
images.

We can see that the RTTs of the experiments, independently of the image size, executed
on the smaller model are significantly lower compared to the bigger model. This gap is
due to the different depths of the models, as described in Table 4.3. Since the depth of
the smaller model is half as deep as that of the larger model, the evaluation time on the
model will also be half as long. We can also see that there is also a difference in the RTT
depending on the image size that is processed. These differences are due to two facts.
First, the image is sent to the model, since the size of the image is different, it takes
more or less time to send it, depending on the image size. Second, and more importantly,
the model is designed for a specific resolution. Therefore, rescaling also takes time, which
is longer when the input image is larger.

In the two Figures 6.2 and 6.3 we see the visualization of the HW resources. All plots
are grouped by the model we use for the execution of the requests and then by the image
size that is sent in the experiment. As we can see, the figures contain a zero image.

The data for image zero are the data we collect with an idle application with our
models loaded, executed in our previous experiment. We use these data to highlight the
differences between the processing requests on the models and the models in their idle
state. Since we are interested in those HW resources that change with the use of the
model and different image sizes, we separated the HW resources into two sets.
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Figure 6.1: RTT from experiment on the client with different images and models

In the first set of HW resources visualized in Figures 6.2, we see that the execution of
the request does not directly affect the HW data, because there is no relation between
our baseline data, in red, and the other data. Instead, the baseline is sometimes even
higher compared to the values collected with the models.

In the second set of plots, we can see that the evaluation of images on the models affect
the HW resources. As we can see, the baseline in all the plots is smaller compared to
the other measurements. For the plot presenting memory usage, the difference in usage
compared to the baseline is enormous. Furthermore, we can see that the memory plots
visualized in Figures 6.3a and 6.3c are very similar. This indicates that most of the
memory is used for the model, which is trivial since we execute only the programs that
we need to measure the HW resources to avoid any noise.
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(a) Measurement of load1, which contains the
average load of the last second
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(b) Measurement of load5, which contains the
average load from the last five second
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(f) Measurement of the input/output pressure

Figure 6.2: Measured HW resources using small or big model during the local experiments,
with no correlation to the RTT of the experiments
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(c) Measurement of the RAM in the model con-
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(d) Measurement of the CPU in the model con-
tainer

Figure 6.3: Measured HW resources using small or big model, during the local experiments,
with correlation to the RTT of the experiments

External execution

In this set of experiments we use the client only for sending the images and receiving the
results. Therefore, the usage of HW on the client should be similar to the experiment in
Section 6.1.1. Since the only difference is the additional connection to the server, which
should be negligible. For the evaluation of the images we use our server which runs
only the big model described in Table 4.3. The setup of our experiment is visualized in
Figure 4.1.

Figure 6.4 visualizes the results. As we can see in Figure 6.4a, the CPU utilization is
around 5% most of the time. However, there are some outliers, where the CPU utilization
goes up to 50%. These outliers most likely are from background tasks, which are running
automatically in parallel. In Figure 6.4b we can see the used RAM during the experiment.
There we can see, that the RAM usage is between 1.6 GB and 2 GB, which is a usual
range when only some tasks are running on the system.

In addition to the RAM and CPU usage, we also measure the signal power and the RTT.
Figure 6.5 shows the signal power at different positions. These positions are visualized
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Figure 6.4: CPU and RAM usage during the external experiments for experiments with
different images and distances to the server
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(a) Signal power for the short distance
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(b) Signal power for the medium distance
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(c) Signal power for the large distance
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(d) Signal power for the dynamic distance

Figure 6.5: Signal powers that distinguish in the distance between the client and the
server. In (a) to (c) the distance is static and in (d) dynamic.
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Figure 6.6: RTT for different image sizes and distances to the server

in Figure 4.1. In Figure 6.5a, 6.5b, and 6.5c, we can see the signal power at the three
static locations numbered one, two, and three, respectively. In Figure 6.5d we can see
the signal power for number four, which is the experiment where the client is moving
during the experiment. These figures show how the signal power changes depending on
the client’s location. In summary, the range of signal power we observed was from -40
dBm to -80 dBm. dBm stands for decibel milliwatt and is a logarithmic scale of values
and is calculated by 10 · log10 · ( P

1mW ). P describes the power of the remaining signal
power. Increasing the distance or introducing obstacles between the sender and receiver
decreases the power of the remaining signal power. Therefore, a value of -40 dBm is much
better than -80 dBm. We observed a signal power of around -40 dBm to -50 dBm for
short distances, around -65 dBm to -80 dBm for medium distances, and around -75 dBm
to -80 dBm for large distances. Interestingly, in the fourth measurement, where the client
moves during the measurement, the signal power does not fall below -65 dBm, although
the distance is at least as far away as in the measurement with the large distance, as
we can see in Figure 4.1. Therefore, we can conclude that the signal power decreases
as the distance increases, but it is not possible to define how good or bad the signal
power is depending solely on the distance. In our example, it could be the case that
there are fewer obstacles in the measurement labeled with number four compared to the
measurement labeled with number three.

In Figure 6.6, we can see the RTTs of our measurements. In Figure 6.6a shows the
unfiltered result, where we can see that the RTT is not as predictable as in the previous
experiment. Although we only use two devices connected via an AP, problems arising
through a wireless connection. Even in the measurements with a short distance, there
are requests that take more than 15 seconds. As we increase the distance, the time of
the outliers also increases, as seen in the long-distance measurements, where requests
take up to 35 seconds. However, these are only a few cases, so we will ignore them
and concentrate on the remaining results. Figure 6.6b shows a filtered result, where we
can observe two characteristics: increased RTT and increased spreading as the distance
between the client and the AP increases.
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Comparison of the RTTs between local and external execution

In the Figures 6.1 and 6.6b the RTTs for the local and external execution are visualized,
respectively. We can see that the local execution with the small model is between 0.6
and 1 seconds and 1.6 to 2 seconds for the big model. For the external execution, we
see that the small and medium images take between 1.25 and 1.5 seconds and around
1.75 seconds or more for the big image. Therefore, the external execution is up to 0.4
seconds faster if we compare it with the big model from the local execution. However, it
is at least 0.6 seconds slower than the execution of the small model. As a result, we can
see that we could only use the server for the execution if we need the evaluation of the
big model with its deeper processing and we give the process enough time for it. In the
other case, local execution is the better option.

6.1.2 Evaluation System
In our second series of experiments, we change to a new system visualized in Figure 4.3.
As we can see, this system not only includes a client and a server, like our previous
system, it also includes three APs. Information about the new components is presented
in Table 4.4. In addition to the new HW components, the request handling is also
changed. In Figure 4.4 we can see the new sophisticated approach, which is explained in
Section 4.2.2.

In this section, we perform the following experiments.

• Variance with different AP and Locations

– Changes in the signal power on a fixed position and while moving
– Changes depending on the used access point
– Conclusion

• Boundary Test (experiment at the end of the signal power range to increase latency)

• Stress Test (introducing of additional load on HW with edge-chaos)

– On the client (used for training ML later)
– On the server (reference value, also used for training ML later)
– Conclusion

Variance with different AP and Locations

1. Changes in the signal power on a fixed position and while moving

In our first experiment in this series, we start by evaluating how stable the signal power
is in general. For that we measure the signal power of different APs. First, at a fixed
location and then while the client is moving around. For that we use a command-line
tool called nmcli which measures the signal strength in the surrounding, from a good
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6.1. Naive Offloading

connection of 100 down to 0 for a bad connection. The setup of the experiment is
visualized in Figure 4.3. The three APs starlink, iss, and stargate are visualized as router
icons. In the first part, the client will stay at the place marked with an X (Stationary),
and in the second part it will move according to the green arrows (Journey 1), starting
at the green circle. In Figure 6.7a, we can observe the strength of the connection to
each AP at that specific location. The connection to AP starlink is strong, while the
connection to AP iss is slightly worse, and the connection to AP stargate is terrible.

In Figure 6.7b we can see the result while the client is moving according to Journey 1. We
can see that the range of the signal power varies greatly. The AP starlink has the largest
range, which could be due to placement in a separate room and the effect of a closed
door, which was the case in some experiments, leading to such a variation in signal power.
Especially the lower boundary with zero value almost through the whole experiment is
recognizable. This is because it was not visible to our client device. A reason for a zero
value can be that the device is not in range or, in general, offline. However, the other two
APs, stargate and iss, also show a variance. One reason for this is the exact positions
where the signal powers were collected. These points can vary a bit, leading to different
results. However, there is also a difference at the beginning and end, which were the
same in all experiments. Therefore, there is a variance depending on the time at which
the signal power is measured. This means that a position that provides a good WiFi
connection at a certain time may not necessarily deliver it at another point in time. As a
result, it is important that we are aware of the current WiFi connection and that we do
not rely on old data.
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Figure 6.7: WiFi connections of the APs starlink, stargate and iss

2. Changes depending on the used access point

In this experiment, we start to run requests to the server. Since we are interested which
affect the different signal powers have on the RTT we execute the requests on the fixed
position from our previous experiment. As mentioned above, we have the APs starlink,
iss, and stargate with good, medium and bad connection presented in Figure 6.7a.
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Although there is no problem connecting to the APs starlink and iss we have an issue
connecting to stargate. The reason for this was the too weak connection to this AP,
which means that not all APs that can be found with nmcli have a stable connection to
connect to. Due to this, we only execute the experiment on the APs starlink and iss.

The results of our experiment are presented in Figures 6.9 and 6.8. In these figures, we use
REQUEST_ID(cnt), which describes the current request counter. Therefore, we sent 500
requests to the APs starlink and iss. As we can see in the results presented in Figure 6.9
we are interested in four different values. These values are signal power, ping, latency,
and RTT. This time only the signal power with the connected AP is measured. For that,
telemd is used, which provides this information as well, but measures the connection
differently. Here, the signal power is measured in decibel-milliwatt (dBm) with -40 dBm
as a strong connection and -80 dBm as a bad connection. To obtain general information
about the workload on the network, we send a ping to google (https://www.google.at).
Latency and RTT are the results of the request to the server, where latency describes
the time required to send the request and receive the result. The RTT also contains the
time it takes to process the request.

In our experiments, the connection to the AP starlink is between -48 and -58 dBm, which
is strong. The connection to AP iss is weaker, ranging between -62 and -78 dBm. Since
our client is much closer to the AP starlink, as we can see in Figure 4.3 it is clear that
this connection is stronger. The ping in both experiments is generally between 20 and
30, however, there are two spikes in the experiment where we are connected to the AP
starlink. In this experiment, the ping increases to 80 and 120 at a certain point in time,
as we can see in Figure 6.8. The first spike, which is 120, is also visible in the latency.
We can see that the latency increases to half a second instead of the usual 0.1 and 0.2
seconds. However, the spike with 80 does not result in additional latency. What we also
see is that the spikes in the latency, with 0.5 and 0.6 seconds, result in an increased RTT.
Therefore, we see that a strong signal power is useful for having low ping and low latency,
which leads to low RTT. In Figure 6.9a we see the results of the experiment in which we
are connected to AP iss. In this experiment, the signal power is weaker compared to the
AP starlink. However, the ping is constant between 20 and 30 and the latency is around
0.05 and 0.4 seconds. This is higher compared to the experiment with AP starlink, but
also not very high. However, the RTT for large images ranges from 1.4 to 3 seconds,
which is a factor of 2. Another interesting observation is that the distance between the
APs starlink and iss is at best as the distance between the client and the AP iss as we
can see in Figure 4.3. However, as we can see from the results, it is faster to send the
request first to AP starlink, which forwards the request to AP iss. The reason for this is
probably that the AP starlink has a better hardware and larger antennas, resulting in a
better connection to the AP iss, compared to the connection from the client to the AP
iss.
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Figure 6.8: Collected data with Starlink AP
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(a) Collected data with ISS AP

Figure 6.9: Signal power, ping, latency and RTT experiment with stationary location

3. Conclusion

With these two experiments, we evaluated which access point (AP) we use for our
remaining research. From the first set of experiments, visualized in Figure 6.7, we could
already see that the AP stargate has by far the worst connection. When we tried to
connect to stargate in our second set of experiments, we realized that the connection
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6.1. Naive Offloading

is not good enough. Between APs iss and starlink we analyze the results visualized in
Figures 6.8 and 6.9a. We came to the conclusion that it is faster to send requests to AP
starlink. For that reason, the remaining experiments are performed with AP starlink.

Boundary Test

In the previous experiment, we could see that the signal power sometimes drops below
-70 dBm. However, the ping remained more or less the same, around 20 to 30, as we
can see in Figure 6.9a. For that reason, we analyze the behavior of the RTT when the
ping increases radically by moving the client to the edge of the signal power range of the
connected AP.

The results of the experiment, depicted in Figure 6.10, reveal a significant decrease in
signal power, reaching -90 dBm. This reduction in signal strength correlates with a
drastic increase in ping latency. Specifically, the ping spikes to 2500, as illustrated in
the top-right plot. Furthermore, there is a recognizable correlation between ping and
latency, notably visible when the REQUEST_ID approaches 200, with ping exceeding
2000. Consequently, this elevated ping duration leads to a latency exceeding 14 seconds,
resulting in an RTT reaching 15 seconds. Thus, this experiment underscores the impact
of ping on latency.
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Figure 6.10: Measurement of the ping at the edge of AP connection

Stress Test

1. Execution on the Client

In this experiment, we change the focus from the APs to the client. We are interested
in how fast the client can process requests, depending on the current load on the HW.
For that we increase the load of the HW by simulating additional programs running on
the client. For that we are using a tool called stress-ng. We differentiate between four
different stress levels, numbered 0 to 3, which represents the multiplication factor of a
predefined additional load listed in Table 6.3.

With these parameters, CPU utilization, RAM usage, and write operations are increased,
which simulates another program in our experiment. During the experiment, the client
moves according to Journey 2, described in Section 4.2.2 and visualized in Figure 4.3.
Moving, although all experiments are executed locally, is not necessary, but it provides
more variety in the result, which we need later for training our ML model. The results
are visualized in Figure 6.11.
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Figure 6.11: Collected CPU and RAM usage and resulting RTT
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Stress-Level Malloc Malloc-Bytes IO
No 0 0 0
Low 1 70000 1
Medium 2 140000 2
High 3 210000 3

Table 6.3: Parameter values of stress-ng for different stress levels

In Figure 6.11a, we see how stress-ng increases the cpu utilization depending on the
current level. We also see that utilization is already very high with the medium stress
level. Increasing the level again to high leads to CPU utilization of 100%. In Figure 6.11b,
we see that the RAM usage also increases per level. We also see that RAM usage starts
very high with around 7.5 GB, but drops to around 5.5 GB in the experiment with no
stress level. The reason is that we start a lot of programs before starting the experiments
because we need them to measure, store, and execute the experiments. These programs
are the reason for the high RAM usage at the beginning. We also see that the start
of each experiment and the use of large images increase RAM usage. A higher stress
level not only increases the overall CPU and RAM usage, as we see in Figure 6.11a and
6.11b, but also increases the CPU and RAM usage of the model docker container, where
requests are executed, which we can see in Figures 6.11c and 6.11d. Finally, we can also
see that the different stress levels have an impact on the RTT of the request, visualized
in Figure 6.11e.

In Table 6.4 we summarize the median and std. RTTs of the experiments. We decided to
use the median instead of the mean value to prevent the effect of outliers. As already
mentioned, we can see that the RTT is increased with a higher load on the client. The
factor is around two from no to high load for small and medium sized images and around
three for large sized images. We can also see that the std. is almost always negligible
except for the large image with a high load on the client. The reason for this is that with
the highest stress level all resources are in use and the increased effort for processing
large sized images leads to this high std. value.

In summary, we can say that a general increase in HW resources utilization also increases
the time usage the ML model needs to process the requests. This experiment delivers
perfect data for our baseline, where we are interested in how fast the client can process a
request depending on the current state.
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Stress-Level
x̃ σ x̃ σ x̃ σ

No 0.6988 0.1917 0.7524 0.1769 0.9955 0.1721
Low 0.7698 0.0478 0.8430 0.0491 1.3454 0.1161
Medium 0.9808 0.0862 1.1153 0.1077 1.8314 0.1587
High 1.2327 0.1150 1.4351 0.1576 2.8132 1.0140

Table 6.4: Baseline of RTTs from local execution with different stress-levels. x̃ for median
value and σ for std. value of RTTs measured in seconds. , , and for small to
large images

2. Execution on the Server

We repeat the same experiment, but this time we send everything to the server. We are
connected to starlink and follow journey 2. The results we get from this experiment are
compared to the previous ones when all requests are executed on the client. Given that
the results on the client side vary depending on the stress levels, we will compare each
stress level against one another. From the comparison, we can then see when it is better
to execute the request on the client or the server in general.

The results are presented in Figure 6.12 and will be used as a reference value for future
experiments. In the first two plots 6.12a and 6.12b, we can see the resulting ping and
signal power, respectively. These values depend on the location of the client, but not on
the current load. Therefore, the results of ping and signal power are very similar through
all stress levels. Since we offload all requests, the RTTs are also very similar, independent
of the current load on the client, which we can see in Figures 6.12c and 6.12e for no and
medium extra loads, respectively. However, since the RTTs are compared with different
reference values, we can see that the points increase with a higher load, as visualized in
Figures 6.12d and 6.12f. The reason is that the server has more time to process a request
when the load is higher, since the client would also need more time to process it.

The RTTs and points of the experiment are summarized in Table 6.5. As already
mentioned, the RTT is independent of the stress level, which is why the values for the
mean and std. for the same images are similar. We can see that the images take around
0.3, 0.4, and 1.05 seconds for the image sizes small, medium, and large, respectively.
We can also observe that the std. for small and medium sized images is negligible but
relevant for large sized image with a std. above the mean value. This means that the
variation is very broad for this image size.
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Figure 6.12: Baseline, results collected by offloading to server with no and medium extra
load
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Stress-Level
x̄ σ x̄ σ x̄ σ

No 0.3098 0.0499 500 0.3934 0.0832 494 1.0561 1.2344 24
Low 0.3180 0.0606 499 0.3833 0.0615 499 1.0632 1.3007 408
Medium 0.3013 0.0449 500 0.4253 0.0679 500 1.0633 1.4582 420
High 0.3050 0.2536 496 0.3907 0.1740 497 1.0545 1.2701 449

Table 6.5: Offloading requests and comparison of RTTs with local execution. x̄ for mean
value, σ for std. value from RTT and measured in seconds. points compared to local
execution for different stress-levels. , , and for small to large images

Conclusion From the results in this section we can summarize the following. First, we
can see in the Tables 6.4 and 6.5 that the RTT for small- and medium-sized images is
much better when they are executed on the server. This even did not change when the
signal power dropped to around -80dBm. We can also see that the difference between the
client and the server is closer compared for the large-sized image. Although it is clearly
faster on the client when no extra load is introduced, the execution on the client benefits
from the low std. values for the first three stress levels. In addition, it is advisable to
process large images with the highest stress level on the server.

In the following sections, we will analyze the behavior when image processing is distributed
between the client and server in a single experiment.

6.2 Simple Decision Offloading
In this approach, we go a step further and want to change between the devices that
execute the requests. We are interested in whether a single decision is sufficient to
improve the RTT of the requests. For that, we change Wi-Fi App Client, which is part of
the offload handler visualized in Figure 4.4. Depending on the decision of the Wi-Fi App
Client, the request is executed locally or remotely. We evaluate the decisions toggling,
signal power, and ping by moving the client according to Journey 2 while connected to
AP starlink visualized in Figure 4.3.

To evaluate the performance boost, we compare these decisions by the median RTT
of the results from Section 6.1.2, where we offload everything to the server. First, we
evaluate how many of our 500 requests perform at least as well as the reference value
and give points for these requests. At the end of the 500 requests, we can see how well
the decisions perform by the score of the points of the different decisions.

6.2.1 Toggling
First, we introduce a toggle bit, which we change after each execution. The results are
presented in Table 6.6. We can see that the RTTs for small and medium images increase
but stay the same for large images, compared to the results of the offloading approach in
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Table 6.5, therefore this decision does not provide a performance boost. We expect this
result since half of the requests are executed locally, which takes more time for small- and
medium-size images and similarly for large-size images, as we can see in the Tables 6.4
and 6.5. Therefore, our system is capable of switching between models, allowing us to
evaluate more advanced approaches.

x̄ ⇑ (⇑) x̄ ⇑ (⇑) x̄ ⇑ (⇑)
Static 0.6493 250 365(249) 0.7026 250 365(250) 1.0303 250 69(20)
Dynamic 0.6429 250 376(249) 0.7107 250 314(248) 1.0641 250 15(10)

Table 6.6: Results of changing between and client and server after each request. , ,
and for small to large images, x̄ for the mean value given in seconds, ⇑ for the
number of requests we upload, points compared to the reference value, and (⇑) points
collected by offloading to server.

6.2.2 Signal power

In this experiment, we offload requests based on the current signal power. We run the
tests with four different boundaries: -40 dBm to -70 dBm in steps of -10 dBm. We choose
this range because our signal power is most of the time in this area, as we can see in
Figure 6.12b. The boundary defines until which signal power requests are offloaded to
the server, e.g., -40 dBm means that the current request is offloaded until -40 dBm, but
executed locally by -41 dBm. The results are presented in Table 6.7. There we can see
the number of images sent to the server in the column ⇑ for the three different image
sizes: small , medium , and large . We can see that more requests are executed
on the server as the range increases. Only around 1

5 requests are offloaded compared to
around 4

5 requests with a boundary of -40 dBm and -70 dBm, respectively. Therefore,
the score for small and medium images increases and decreases for large images with
increasing signal power range.

Signal Power
x̄ ⇑ (⇑) x̄ ⇑ (⇑) x̄ ⇑ (⇑)

-40 dBm 0.6905 101 316(101) 0.7445 104 328(104) 1.0097 125 169(7)
-50 dBm 0.6878 110 320(109) 0.7546 116 233(116) 1.0213 125 121(9)
-60 dBm 0.6705 232 367(229) 0.7322 207 329(206) 1.0315 200 88(9)
-70 dBm 0.3396 395 437(391) 0.4128 392 435(392) 1.0465 405 59(20)

Table 6.7: Comparison of RTTs with the reference values for different signal powers as
offload decision. , , and for small to large images, x̄ for the mean value given in
seconds, ⇑ for the amount of requests we upload, points compared to the reference
value and (⇑) points collected by offloading to server. The signal power is measured in
decibel-milliwat (dBm)
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6.2.3 Ping
In this experiment, we offload requests based on current ping. Since we expect pings
around 30 and above, we used 30 and 50 as boundaries. A boundary of 30 means that
requests are offloaded if the ping is 30 or below, therefore requests are executed locally
with a ping of 31. The results are presented in Table 6.8. We can see that with a ping of
30, most of the requests are executed remotely. The number increases when setting the
ping limit to 50. Due to this fact, the RTT is very similar to our reference values.

Ping
x̄ ⇑ (⇑) x̄ ⇑ (⇑) x̄ ⇑ (⇑)

30 0.3305 433 460(425) 0.4002 463 468(460) 1.0632 390 39(7)
50 0.3094 488 491(488) 0.4065 475 472(465) 1.0709 467 20(16)

Table 6.8: Comparison of RTTs with the reference values for different pings as offload
decision. , , and for small to large images, x̄ for the mean value given in seconds,

⇑ for the amount of requests we upload, points compared to the reference value,
and (⇑) points collected by offloading to server.

Conclusion

In all experiments in Section 6.2, we can see that it is advisable to offload small and
medium-sized images to the server and execute large-sized images locally when there is
no load on the client. Since all decisions we make in this section are independent of the
current hardware utilization on the client and of the size of the image, we cannot expect
a good score from these decisions. In summary, we can say that the image size is crucial
to the decision. After that, it is also relevant whether the client has no load or additional
load. However, how much extra load does not play an important role, since we already
get more than 1400 out of 1500 points with a low extra load, as we can see in Table 6.5.

6.3 Decision Tree Offloading
In the previous section we can see that it is possible to offload depending on the current
state of the environment. In this section, we go a step further and create our own DT,
which is visualized in Figure 6.13, for the offloading decision.

It contains four conditions which include the information of some hardware resources
and the current state of the environment. The reference values in this DT are the
values collected from the training set. Since the training set is normalized, all values are
between zero and one. Except for the signal power, a lower value is better compared to a
higher value. The first condition ensures that the current state of the environment is not
catastrophic. We can see that we decide to execute the request locally if ping > 0.7 or
signal_power < 0.25. Therefore, we decide to execute the request locally independently
on our current state of the hardware, because we assume that the network is too unstable,
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and therefore it is better to rely on our own device. In the next condition, we evaluate
the image size. Since we know that offloading requests are generally faster for small- and
medium-sized images, we offload in these cases. In the third condition, we check again
the current state of the network. The idea is that large images should be offloaded if the
network allows it. In the last condition, we evaluate the current state of the hardware by
using cpu, ram, and proc. Is the hardware almost on the max capacity, we also offload.
For the remaining requests, we have a questionable network and hardware that is not
overloaded yet. Here, we decided to execute the request locally.

We run experiments with the DT following Journey 2 visualized in Figure 4.3 on the
right side. The results are presented and compared with different TPOT-configurations
in the next section.

Figure 6.13: Simple DT for offloading decision

6.4 ML-Based Offloading
In this section, we train and compare different ML models, generated by TPOT, and
compare them with each other and with an additional solution. TPOT provides six
different default configurations, as mentioned in Section 5.4. From the six available
configurations, which are called: Default TPOT, TPOT light, TPOT MDR, TPOT
sparse, TPOT NN, and TPOT cuML we will use all models except TPOT cuML which
is exclusively for GPU, which is not supported on our client. Therefore, it was not
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possible to generate a model with this configuration. The remaining five configurations
are compared in Tables 6.9, 6.10, 6.11 with an additional DT model. The DT model
contains some decisions about the environment and some HW resources and is visualized
in Figure 6.13.

In Table 6.9, we compare the size of the model and the accuracy of the model according
to the training set. These values are already available without addition experiments. We
can see that the sizes of the models range from 8KB up to almost 5MB, with MDR as
the lowest and NN as the model with the largest model size. Additionally, we see the
avg. success rate of the models, which is approximately the same for all models and is
between 95% and 97%. Since the DT was generated without any training, we cannot
provide any CV. For the size, we estimate it near TPOT-MDR since it only takes some
conditions that are included in our program.

In Table 6.10 we compare the data collected in our experiment. We evaluate differences
in the decision duration, local execution and points for twelve different experiments
for each TPOT configuration and our DT. These are for the four stress levels and three
images for each stress level. The duration of the decision describes the time that the ML
model takes to make a decision on which device the request should be executed. The time
for the TPOT configurations variate from 8 to 56 msec for the lowest stress level, up to 47
to 315 for the highest stress level. Compared to that the DT almost need no time at all
for all stress levels. For the decision, the size of the image had no impact and is therefore
combined to a single value. For the remaining two categories local execution and points

we can see the icons , , and . These icons represent small, medium, and large
images, respectively. The local execution shows how many from the 100 requests are
executed locally. We can see that TPOT configurations almost never execute it locally
for the small and medium size images. For large images, the offloading decision strongly
depends on the current stress level. We can see that for lower stress levels, requests are
more likely to be executed locally and offloaded for higher stress levels. We can also
see that the TPOT configurations light and mdr offload everything except for a small
amount of requests through all stress levels and image sizes. The remaining three TPOT
configurations decided to execute the request locally with a high probability for the lowest
stress level and a lower probability for the higher stress levels. Additionally, we can see
for the execution decision, that the sparse TPOT configuration executes the majority of
request for the large images independently of the current stress level. For our DT we
can see that it executes it locally approximately the same time over all stress levels and
image sizes, which means that the conditions we provided are not sufficient to evaluate
the current state of the device and environment. In the remaining columns, we compare
the points. The points describe whether the request was faster than the average time
it takes to execute it locally. We use this value for training our model, discussed in
Section 4.5.2, with a supervised learning approach described in Section 2.4.5. We can see
that for the TPOT configurations at small and medium size images the points are almost
100 everywhere, which is the maximum amount of points. Since the decision of all models
is similar for the small and medium size image, the resulting points are similar. We can
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see that point lost are there where the model decided to execute it locally. For large
images, the points hardly depend on the stress level. For the lowest stress level from 2 to
17 points and for the highest stress level from 58 to 97 points. Since our DT executes it
similar for all experiments we see point losses for small and medium images. For the large
images the result is comparable with the other models except at the high stress-level
where it has less points compared the majority of the other TPOT-configurations.

TPOT
Default Light MDR NN Sparse

Size (MB) 2.885 0.443 0.008 4.668 2.177
Average CV on training set (%) 96.49 96.22 95.34 96.62 96.45

Table 6.9: TPOT models characteristics

In Table 6.11 we compare the RTT with our reference value. For each experiment, we
can see the mean x̄ and std. σ value. First, we will take a closer look at the TPOT
configuration. We can see that the RTTs for the small experiments are around 0.3 and
0.4 seconds. For the medium image, it is a bit higher, around 0.4 to 0.5 seconds. We
can see that for these experiments, the stress level plays a minor role since all values
are approximately the same. This fact change for large images. First, there is a larger
variance, in general, with 1 to up to 3 seconds. Furthermore, we can see that the results
depend on the TPOT configuration and the stress level. The two configurations TPOT-
Default and TPOT-Light almost offload all requests, which we can see in Table 6.10,
however, their outcomes vary due to the current connection to the AP, despite the
identical experimental setup in both cases. Since TPOT-Sparse offloads the majority of
requests, we can see that the RTTs go up to around 3 seconds for the highest stress level.
The remaining two configurations TPOT-Default and TPOT-NN are both providing
great results and are always below 2 seconds. Compared to that, the RTT for our DT
are worse. Since it offloaded less for the small and medium large images, the RTT is
longer compared to the TPOT-configurations with more than 0.6s for the images small
and medium and a stress level of medium and higher. Also, for the big image the RTT is
worse compared to the TPOT-configuration, with an exception with no extra load.
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Stress-Level Decision Duration LOCAL EXEC.
(msec)

Default

No 56.4 0 5 64 100 92 17
Low 186.7 0 0 11 100 100 71

Medium 276.4 0 0 16 100 100 73
High 314.9 0 0 13 100 100 90

Light

No 19.2 0 0 2 100 99 2
Low 90.5 0 0 1 100 99 70

Medium 123.3 0 1 1 100 99 82
High 162.9 0 0 1 100 100 97

MDR

No 8.1 1 0 1 99 100 3
Low 9.6 0 1 0 100 97 68

Medium 27.8 0 0 2 100 100 83
High 47.3 0 0 1 100 100 86

NN

No 29.2 0 0 80 97 99 7
Low 35.0 0 0 28 99 98 71

Medium 51.5 0 0 20 100 100 73
High 66.4 0 0 7 100 100 90

Sparse

No 44.8 0 0 99 100 96 10
Low 70.0 0 0 92 99 100 23

Medium 96.0 0 0 66 100 99 53
High 117.8 0 0 70 100 100 58

DT

No 0.004 30 28 33 92 81 10
Low 0.006 35 28 31 71 76 70

Medium 0.008 36 30 30 70 73 69
High 0.022 26 29 23 79 76 77

Table 6.10: Decision duration describes the time the model needed to decide whether to
execute it local or external. Local execution is the amount a ML decided to execute it
locally. The points describe how often it was faster than the reference values. , ,

for small to large images.
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TPOT-Config. Stress-Level
x̄ σ x̄ σ x̄ σ

Default

No 0.318 0.054 0.478 0.182 1.294 1.045
Low 0.329 0.070 0.431 0.083 1.259 0.314

Medium 0.35 0.072 0.454 0.133 1.49 0.797
High 0.355 0.133 0.435 0.103 1.46 0.847

Light

No 0.326 0.055 0.412 0.083 1.945 1.527
Low 0.322 0.058 0.425 0.087 1.361 0.58

Medium 0.329 0.071 0.428 0.15 1.49 0.805
High 0.323 0.051 0.435 0.109 1.347 0.468

MDR

No 0.333 0.110 0.408 0.058 1.651 1.136
Low 0.326 0.060 0.446 0.169 2.367 2.36

Medium 0.324 0.067 0.409 0.08 1.751 1.505
High 0.32 0.083 0.411 0.092 1.656 1.299

NN

No 0.344 0.111 0.418 0.094 1.096 0.128
Low 0.330 0.075 0.428 0.135 1.231 0.258

Medium 0.325 0.062 0.414 0.083 1.63 1.089
High 0.327 0.082 0.434 0.095 1.647 1.428

Sparse

No 0.327 0.059 0.447 0.232 1.119 0.176
Low 0.321 0.069 0.417 0.066 1.491 0.353

Medium 0.363 0.074 0.446 0.119 1.999 1.138
High 0.319 0.053 0.412 0.064 3.198 1.895

DT

No 0.429 0.190 0.541 0.268 1.11 0.150
Low 0.546 0.368 0.634 0.472 1.579 1.192

Medium 0.674 0.570 0.735 0.561 2.556 2.327
High 0.755 0.894 1.137 1.484 2.973 3.334

Table 6.11: RTT of the different TPOT configurations. x̄ for mean and σ for std. value
given in seconds. , , for small to large images.

Conclusion

In this section, we conducted a series of experiments with DT and ML models. We can
see that the DT is worse compared to the ML models, probably because the DT is rather
simple. However, the goal was to build the DT without any tools, since they were used
anyway for the ML models. Of the five ML models, only two are capable of properly
evaluating the current state. The reason is the goal of the different TPOT configurations.
The light configuration with a very small model size is done by a restricted search, which
in our case leads to a poor result. The sparse configuration is good for data sets with
a majority of zeros, but this is not the case in our experiments, which leads to a bad
result. However, MDR configuration should aim to maximize the accuracy of the model
prediction, still leads to poor results in our experiments. One reason could be that it
searches over Multifactor Dimensional Reductions and is specialized for genome-wide
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association studies, which is not the case here. This leads us to the two configurations.
Both configurations search over a broad range of different ML settings with the goal of
minimize the error of model prediction. The two configurations default and NN are the
only two that were able to offload almost all requests for small- and medium-sized images
and to increase the offloading decision for large-sized images steadily to almost up to
100% from no to high stress-level.
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CHAPTER 7
Discussion

This chapter provides a summary of all relevant information needed to answer the research
questions, split into three sections. These sections concentrate on hardware, network, the
client, and offloading related topics, respectively.

7.1 Hardware
7.1.1 Selection of correlating HW metrics
In Section 6.1.1, experiments were carried out in an isolated setting to collect information
about the utilized hardware. Initially, in Section 6.1.1, system information was collected
using an open source tool called telemd 1 and presented in Table 6.2. The metrics
provided by telemd includes system load and the application load, the system load being
further classified into current load and accumulated load.

Current load metrics include CPU usage, frequency, number of processes, and RAM
consumption. The introduction of ML models led to an increase in current load metrics,
although the difference between the two models remained similar. Accumulated load
metrics such as load1, load5, and psi exhibited variations in the three executions.

In addition, application load metrics depicted the CPU and memory usage of the three
applications utilized in the experiment. In Section 6.1.1, image processing with the ML
models was performed locally, with variations in the experiments arising from the model
used and the size of individual images. The experimental setup is illustrated in Figure 4.1,
with Figure 6.1 presenting the RTT and Figures 6.3 and 6.2 visualizing the hardware
resource loads.

The latter figures are grouped based on their correlation with the use of the model,
indicating an increase in load when using a model, as shown in Figure 6.3. However,

1https://github.com/edgerun/telemd
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metrics with no discernible correlation with model usage were excluded in subsequent
analyzes.

Subsequently, requests were sent from the client device to the server, with the setup
shown in Figure 4.1. Twelve experiments were conducted, differing in distance to the
access point (AP) and image size. In Figure 6.4, CPU and RAM loads are illustrated.
Since requests were forwarded to the server, the load on the client machine remained
consistent across experiments, with observed variations likely attributed to background
tasks, highlighting a critical distinction between real-world experiments and mathematical
simulations.

7.2 Network

7.2.1 Analyzing the Signal Power
Moreover, in comparison to previous experiments, we also assessed the signal strength to
the access point. The results are illustrated in Figure 6.5. Specifically, in Figure 6.5b,
there is a noticeable fluctuation of up to 10dBm in the small images. Furthermore, as
shown in Figure 6.5a, there exists a variance of up to 12dBm between different experiments
carried out at the same distance. This significant range in signal power motivated us to
conduct further research.

To ensure the acquisition of reliable test data, we moved to a more realistic setup. This
updated test bed, shown in Figure 4.3, contains a single client, three APs, and a server.

The subsequent experiment aimed at determining signal power is described in Section 6.1.2
and is represented graphically in Figure 6.7. In this case, we used a command line tool
named nmcli, which allowed a comprehensive measurement of all APs within the vicinity.
The experiment was carried out repeatedly, revealing recognizable variations in signal
power quality in different trials. Consequently, we made the decision to consistently
monitor the current signal power and not rely on some abstraction or completely ignore
it.

7.2.2 Choosing the right AP
As previously mentioned, our updated setup comprises three APs, two of them acting as
repeaters that forward data to the third AP. Given that the client can only connect to
one AP at a time, we conducted performance tests to determine the AP that offers the
optimal results. Although we were able to measure the signal strength of the three APs,
as shown in Figure 6.7, connecting to the weakest AP, called stargate, proved unfeasible.
Consequently, we restricted our comparison to APs starlink and iss. The outcome of this
comparison is illustrated in Figure 6.9. In particular, AP starlink demonstrated superior
performance in terms of RTT. This finding underscores that proximity or the fewest hops
do not invariably translate to improved performance. Based on this analysis, we selected
AP starlink for our subsequent experiments.
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7.2.3 Network limitations

In a limited-scale experiment, we examined the constraints of our network by intentionally
offloading requests with a notably poor connection to the AP. The results of this
experiment are shown in Figure 6.10. In particular, we observed that a signal power of
approximately -90dBm corresponded to ping values exceeding 2500 and RTT exceeding
10 seconds. Given these findings, we decided to include the ping metric into our offloading
decision-making process. This decision was made because ping values do not consistently
correlate with signal power and can provide additional insight into network quality.
This experiment underscores the inadequacy of solely relying on connections to stronger
devices, emphasizing the importance of considering multiple factors in the offloading
strategy.

7.3 Client state

7.3.1 Impact of additional load on the performance

In another experiment, we investigated the limitations of the client device using a tool
called stress-ng. This tool facilitated the introduction of an additional static load on
the hardware. Tables 4.6 and 6.3 outline the parameters utilized and their respective
values. The results of this experiment are presented in Figure 6.11. In particular, the
introduction of additional load resulted in the CPU reaching a utilization of 100% and
almost a full utilization of the available RAM, particularly at the highest stress level.
Consequently, there was a noticeable degradation in RTTs, as depicted in Figure 6.11e.
These findings underscore the importance of assessing the current state of the client
device when making offloading decisions. It highlights the need to consider factors beyond
network conditions alone for effective optimization strategies.

7.4 Offloading

7.4.1 Evaluating different offloading approaches

To demonstrate that offloading decisions cannot be solely based on network-related
information, we performed several experiments detailed in Section 6.2. These experi-
ments compared various approaches with complete offloading. Initially, we ran a toggle
experiment to assess the system’s capability to switch between the executive devices
after each request. Subsequent experiments focused on the measurement of signal power
and ping. The results of these experiments are presented in Tables 6.6, 6.7, and 6.8,
respectively. The results indicate that relying solely on a single piece of information,
such as signal power or ping, is not sufficient to accurately represent the current state.
Consequently, such approaches lead to poor results compared to complete offloading.
These findings emphasize the need to consider multiple factors beyond network-related
metrics for effective offloading decisions.
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7.4.2 Resource-Aware approaches to evaluate the current state
Throughout the experiments conducted in this thesis, the findings consistently emphasize
the importance of considering both the current load of the client device and the quality
of the network connection in the decision-making process of offloading. To facilitate
the implementation of more sophisticated approaches, the collected data was compared,
filtered, and preprocessed to improve their usefulness for training ML models. Section 4.5
provides a comprehensive description of the process used to obtain meaningful data for
the training process. Furthermore, the resulting data were normalized to fall within the
range of 0 and 1. Initially, we developed our own Decision Tree (DT), as illustrated in
Figure 6.13. Despite its simplicity, the DT was unable to adequately evaluate the current
state. However, it presented a lightweight approach that, in comparison to alternative
methods, offered rapid processing capabilities.

At the end of our study, we made the decision to leverage ML models to automate the
evaluation of the current state. To achieve this, we used a tool called TPOT, as outlined
in Section 5.4. This tool offers default configurations that we thoroughly compared in
Section 6.4, and the results are detailed in Tables 6.9, 6.10, and 6.11. For training these
ML models, discussed in Section 4.5.2, we used a supervised learning approach mentioned
in Section 2.4.5. In Table 6.9, it’s evident that TPOT-Light and TPOT-MDR are the only
TPOT configurations with a size below 1MB. Despite their compact sizes and relatively
good RTTs, these models are not recommended because they offload almost all requests
to the server, rendering them ineffective in adjusting to the current situation. Similarly,
TPOT-Sparse, although smaller in size, also exhibits poor performance by sending too
many requests to the client, thereby failing to adapt to the current conditions.

Conversely, TPOT-Default and TPOT-NN, while larger in size, emerge as robust models
in Table 6.10. They demonstrate excellent adaptation to the current image size and
workload on the client. The similarity in the results between these two models is
attributed to the fact that TPOT-NN is an extension of TPOT-Default, as elaborated in
Section 5.4. Compared to others, our DT is poor in competitiveness. Its advantage lies
in its small size and the quick decision-making process, which outperforms the TPOT
configurations in terms of speed. However, as shown in Table 6.10, the decisions made
by the DT are generic and do not accurately represent the current state of the client and
the environment.

Although it may be possible to develop a superior DT that provides better results than
the current one, this attempt would be time consuming and limited in applicability to
the specific client and environment. Therefore, it is advisable to rely on ML models to
automate this process, thereby ensuring adaptability to varying conditions without the
need for manual intervention.

When comparing the RTT across various scenarios, it is crucial to consider the baseline
RTT values for both local and external executions. These baseline RTT values are
detailed in Tables 6.4 and 6.5. Upon analysis, it becomes evident that external
execution demonstrates significantly faster RTT for small and medium-sized images,
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being approximately 2 to 4 times faster and 1 to 3 times faster for larger images.
Consequently, choosing local execution as the default choice may not be advisable in
most cases. However, it should be noted that the standard deviation column indicates
a greater RTT variability in external executions. This variance is often attributed to
requests executed externally, particularly requests with a poor connection to the AP.
Therefore, while local execution might not yield substantial time savings, it can offer
consistency, as evidenced by the lower standard deviation observed in local executions.
This consistency sets a limit, ensuring that the RTT does not deviate significantly from
the expected value. Consequently, the reasonable use of local execution at favorable
moments can enhance the overall stability of the system.

When we compare the RTTs shown in Tables 6.5 and 6.11, we can see that the RTTs
for low- and medium-sized images are naturally about 10% slower than when we run
requests solely externally. This is mainly because making decisions gets more complicated,
especially when we add extra ML models into the equation. So, it generally takes a bit
longer to process requests that involve these ML models, which is something to keep in
mind when comparing RTTs. Also, if we check the time it takes for large images, it is
generally higher overall. But, as I mentioned earlier, that is in part because doing things
locally usually takes 1 to 3 times longer. But what is interesting is that when we compare
the variation in processing time for the TPOT-Default model, it is consistently better
for large images compared to our baseline, where we offload everything to the server.
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CHAPTER 8
Conclusion

The surge in AI requests has created a bottleneck in the cloud infrastructure. To alleviate
this burden, alternative solutions are essential to redistribute the load from the cloud to
other devices. Edge intelligence (EI) emerges as a promising alternative, but it encounters
challenges due to the heterogeneity of devices. Ensuring time efficiency is crucial, yet it
is difficult to guarantee solely relying on edge devices. Failing to meet deadlines can have
severe consequences, with scenarios such as car accidents illustrating the potential gravity
of such situations. Therefore, it is imperative to explore robust strategies to mitigate
these risks and ensure the smooth operation of AI-driven systems.
EI can be categorized into six levels, as shown in Figure 2.1. Depending on the level,
the training and inference of machine learning (ML) models occur in the cloud, on
edge devices, or on the device itself. In our thesis, we align with level five, all in-edge,
indicating that all processes, from training to executing ML models, take place between
the local and edge devices. This implies that in this thesis, no cloud services are utilized.
In our thesis, we conducted numerous experiments to gather real-world data, which is
subsequently utilized to determine the optimal offloading of tasks to edge devices. We
provide a tangible real-world example juxtaposed with existing mathematical approaches.
The data presented in our thesis underscore the fundamental importance of experiments
with real-world data, highlighting their unique insights that are not captured by purely
mathematical approaches. Furthermore, these data serve as a compelling example of the
challenges inherent in the search for a perfect solution, particularly due to the inherent
variability and spread of real-world data. Following the execution of numerous requests
and the acquisition of meaningful data through filtering, extensive experiments are
conducted to discern various offload decisions. These experiments reveal that solutions
relying solely on single metrics yield poor results. This motivation led us to train the ML
models using the data collected throughout this thesis. We used an AutoML tool called
TPOT, which evaluates various candidates and identifies the best solution based on the
conditions provided. The tool offers different default configurations, and we meticulously
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investigated each configuration, comparing them with each other and with our own
decision tree (DT). Remarkably, some of the configurations were able to accurately
represent the current state, resulting in exceptional performance that far surpassed our
previous results.

8.1 Research Questions
This Section contains the answers to the main research questions that are mentioned at
the beginning and should summarize the main findings of this work.

RQ1: Which metrics can be used for offloading in a black box system?

The primary goal of this work was to develop a load balancing system that does not
require additional information from the system, thus offering a universal solution to
this problem applicable across various environments. However, this approach involves
a limitation in terms of available information, as many systems could already provide
endpoints for collecting essential data, such as the current server load, such as the solution
of Álvaro Brandón et al. [BPMS18].

To address this, we collected all necessary information directly from the device itself.
These data were obtained using a tool called telemd, which can be seamlessly integrated
with redis to facilitate convenient use of these data. The information provided by
telemd can be categorized into device-wide HW load, application HW load, and network-
related information. Throughout our experiments, we meticulously examined all relevant
information available using this tool. However, we found that only certain pieces of
data were correlated with the processing of our requests. Specifically, CPU and RAM
usage from both the system and the application, as well as network-related information
such as the current signal connection to the connected Access Point (AP) and the Ping,
was found to be relevant. In contrast, other data appeared to be arbitrary and did not
demonstrate a demonstrable increase with additional activity during our experiments.

RQ2: What offloading strategies can be used?

The resolution of this question depends on the characteristics and capabilities of the
system. Initially, in our preliminary setup, the system’s capabilities were notably limited,
resulting in the adoption of a broad offloading strategy, as depicted in Figure 4.2.
Subsequently, a more sophisticated and realistic setup was used in subsequent experiments,
as illustrated in Figure 4.4. In this situation, we were able to use the insights from
our previous experiments and discussions related to the previous research questions.
Another important factor is the AP used by the client and its connection, as detailed
in Section 5.1.2 and analyzed in Section 6.1.2. In Figure 6.7 we can see the continued
changes in signal power, which is the reason why we decide for each request whether
to offload or not. In Sections 5.2, 5.3, 6.2, and 6.3, various offloading strategies were
described and analyzed. These approaches encompass a single decision-making process
based on a singular parameter, as well as the implementation of a more intricate DT that
incorporates multiple junctions derived from various HW metrics. The findings indicate
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that offloading can be facilitated through these approaches. However, compared to a
simplistic offloading-only approach, they yield imperfect outcomes due to their inability
to precisely assess the current context, resulting in local execution where offloading would
have been more efficient.

RQ3: How do ML models handle real-world settings?

Since the single-parameter offloading and DT offloading approach were not suitable for our
scenario, resulting in an increase in round-trip time (RTT), we explored various machine
learning (ML) techniques to automate the decision-making process. To accomplish this,
we used a tool called TPOT, as detailed in Section 2.6.2.

From the default configurations provided by TPOT, all but one were applicable to our
setup. The exception required specialized hardware not available on our client device.
Subsequently, the remaining configurations were compared in Section 6.4. Although
all configurations exhibited an average cross-validation accuracy greater than 95%, as
shown in Table 6.9, some struggled to accurately assess the current state. Specifically,
the configurations TPOT-Light and TPOT-MDR predominantly offloaded tasks to the
server, rendering the use of an ML model unnecessary. In contrast, TPOT-Sparse tended
to execute tasks locally, especially for large images, resulting in pure outcomes. Among
the various configurations, only TPOT-default and TPOT-NN displayed a noteworthy
capacity to adapt effectively to the environment. They achieved favorable outcomes
by modifying their behavior according to the prevailing conditions. Furthermore, in
addition to their adaptability, these TPOT configurations contribute to enhancing the
overall stability of the system. As extensively discussed in Section 7.4.1, while these
configurations may not necessarily decrease the overall RTT, they notably diminish
fluctuations in RTT, thereby promoting a more consistent and stable system overall.

To conclude, in this thesis we were able to build an ML model which is aware of the
current state by using a resource-aware offloading approach containing information about
the current state of the client and the network conditions. Different ML models were
created with TPOT and trained with an supervised learning approach. Two of the trained
models are capable of improving the offloading decision and therefore improving the
stability of the RTT by minimizing the standard deviation.

8.2 Future Work
While our study serves as a foundational exploration, it is inherently limited. However,
our findings suggest several areas for further research, as outlined below. As discussed
in Section 4.2.2, our setup incorporates multiple APs, which may cover specific areas.
Depending on the environment, there may be opportunities to optimize performance by
dynamically switching between APs. During these transitions, requests could initially be
executed locally and later transferred to the next AP, potentially leading to performance
enhancements. Another constraint in our study is that our server was dedicated solely to
this experiment, consistently outperforming local execution. Future research could assess
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8. Conclusion

the impact of additional load on a server, as servers typically serve multiple applications
concurrently. Furthermore, the introduction of alternative devices into the mix, such as
the distribution of requests between multiple servers, could open up new research avenues.
Additionally, it would be intriguing to explore the training of ML models tailored to
specific client and server hardware and apply them to devices with similar characteristics.
Are performance metrics sufficient to evaluate offloading decisions, or are additional
insights required? Lastly, our study focuses on black-box testing, in which no information
is available from the server. Exploring alternative testing approaches, such as white-box
testing, where the server provides clients with insight into its current state, could offer
valuable insights and opportunities for further analysis.

88



Overview of Generative AI Tools
Used

ChatGPT: Used to find spelling and grammar errors.

Writefull: Used to find spelling and grammar errors.
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