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Kurzfassung

Etwa zu der Zeit, als die Dichotomie-Vermutung für Bedingungserfüllungsprobleme (engl.
Constraint Satisfaction Problems; CSPs) von Bulatov und Zhuk im Jahr 2017 unabhängig
bewiesen wurde, zog eine Verallgemeinerung von CSPs, die als Promise CSPs (PCSPs) be-
kannt ist, wachsende Aufmerksamkeit auf sich und entwickelte sich seither zu einem bedeu-
tenden Forschungsthema. Für gegebene endliche Strukturen A,B der gleichen relationalen
Signatur, so dass A homomorph auf B abbildet, kurz A → B, beschreibt PCSP(A,B) die
Frage, ob eine gegebene endliche Eingabestruktur homomorph nach A abbildet oder nicht
einmal homomorph nach B abbildet. Ein vielfältig einsetzbarer Ansatz zur Untersuchung
der Komplexität von PCSPs ist die Sandwiching-Methode. Wenn es eine Struktur C gibt,
so dass A → C → B, dann reduziert sich PCSP(A,B) auf CSP(C). In diesem Fall wird C

eine Sandwich-Struktur für (A,B) genannt.

Barto zeigte, dass ein bestimmtes PCSP von endlichen Strukturen ein unendliches Sand-
wich mit in polynomieller Zeit lösbarem CSP zulässt, aber mit dieser Methode nicht auf
das in Polynomialzeit lösbare CSP einer endlichen Struktur reduziert werden kann, es sei
denn P = NP. Kazda, Mayr und Zhuk bewiesen, dass selbst wenn es ein endliches Sand-
wich mit in polynomieller Zeit lösbarem CSP gibt, die kleinste solche Struktur beliebig groß
werden kann. Mottet zeigte, dass ein PCSP, welches in Logik erster Ordnung entscheidbar
ist, immer auf das in Polynomialzeit lösbare CSP einer Sandwich-Struktur reduziert wer-
den kann. In seinem Beweis konstruierte er zunächst ein ω-kategorisches Sandwich mit in
polynomieller Zeit lösbarem CSP und zeigte durch ein Argument aus der Ramsey-Theorie,
dass ein endlicher Faktor dieser Struktur ebenfalls ein Sandwich mit in polynomieller Zeit
lösbarem CSP ist.

In dieser Arbeit wird die Frage untersucht, ob es ein PCSP von endlichen Strukturen
gibt, das ein ω-kategorisches Sandwich mit in polynomieller Zeit lösbarem CSP zulässt,
jedoch kein endliches Sandwich mit in Polynomialzeit lösbarem CSP hat, um das Gebiet
der PCSPs mit Ergebnissen über ω-kategorische CSPs zu verbinden. Während diese Frage
offen bleibt, werden wir ein Beispiel für ein Paar (C,B) aus einer ω-kategorischen Struktur C
mit in polynomieller Zeit lösbarem CSP und einer endlichen Struktur B mit C → B geben,
sodass das CSP jedes endlichen B′ mit C → B′ → B NP-vollständig ist. Außerdem werden
wir eine Methode beschreiben, um weitere Paare mit dieser Eigenschaft aus bestimmten
homogenen Ramsey-Strukturen zu konstruieren. Die Konstruktion einer endlichen Struktur
AmitA → C, so dass jede endliche Struktur C′ mitA → C′ → B NP-vollständig ist, würde
eine positive Antwort auf die obige Frage geben, angenommen P ̸= NP.



Abstract

Around the time when the Dichotomy Conjecture for Constraint Satisfaction Problems
(CSPs) was independently proved by Bulatov and Zhuk in 2017, a generalisation of CSPs
known as Promise Constraint Satisfaction Problems (PCSPs) attracted growing attention
and has since developed into a significant topic of research. For given finite structures A,B
of the same relational signature such that A maps homomorphically to B, denoted A → B,
PCSP(A,B) asks whether a given finite input structure maps homomorphically to A or
does not even map homomorphically to B. It is promised that all input structures satisfy
one of these two cases. A powerful approach to investigating the computational complexity
of PCSPs is the sandwiching method. If there is some structure C such that A → C → B,
then PCSP(A,B) reduces to CSP(C). In this case, C is called a sandwich structure for
(A,B).

Barto showed that a specific finite-domain PCSP admits an infinite polynomial-time
tractable sandwich, but does not reduce to a tractable finite-domain CSP via this method,
unless P = NP. Kazda, Mayr, and Zhuk proved that even when there exists a finite tractable
sandwich, the smallest such structure may become arbitrarily large. Mottet showed that if
a PCSP is first-order definable, it can always be reduced to the CSP of a finite tractable
sandwich. In his proof, he first constructed a tractable ω-categorical sandwich and used
a Ramsey-type argument to prove that a finite factor of this structure is also a tractable
sandwich.

In this thesis, we will investigate the question whether there is a finite-domain PCSP that
admits a tractable ω-categorical sandwich, but no finite tractable one, aiming to connect the
PCSP framework to results about ω-categorical CSPs. While this question remains open,
we will provide an example of a pair (C,B) with a tractable ω-categorical structure C and
a finite structure B with C → B such that the CSP of every finite B′ with C → B′ → B

is NP-complete. Moreover, we will describe a method to construct more pairs with this
property from specific homogeneous Ramsey structures. Finding some finite structure A

with A → C such that every finite structure C′ with A → C′ → B is NP-complete would
yield a positive answer to the above question, assuming P ̸= NP.
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1 Introduction

For many years, computer scientists and mathematicians alike investigated computational
problems in order to find the fastest (or at least sufficiently fast) algorithms for each prob-
lem. In many cases, algorithms are considered to be sufficiently fast if they can be executed
in polynomial time with respect to the input size. This leads directly to one of the most
famous problems in mathematics, the P vs NP problem. It is one of the millennium prob-
lems, seven well-known complex mathematical problems. The Clay Mathematics Institute
selected those problems in the year 2000, promising to award the first correct solution to
each problem with 1 million US dollars. The P vs NP problem poses the question whether
every problem in NP admits a polynomial-time algorithm that solves the problem. NP is
the class of decision problems for which, given a solution for an input, an algorithm can
verify its correctness in polynomial time with respect to the size of the input. The P vs
NP problem question could be solved by finding a polynomial-time algorithm to an NP-
complete problem. An NP-complete problem is a problem that is in NP and every other
problem in NP can be reduced to it in polynomial time. Those are the “hardest” problems
in NP.
A well-known problem in NP is the k-colouring problem. Let k ∈ N be fixed. Given a graph
G = (G,E), i.e. a set G and a binary, non-reflexive, symmetric relation E on G, we ask the
question whether it is possible to colour the vertices with k colours in a way such that no
two adjacent vertices are given the same colour. In terms of computational complexity, for
k ≥ 3, the k-colouring problem is a standard example of an NP-complete problem, whereas
the question whether a graph is 2-colourable is the same as asking if the graph is bipartite.
This can be solved in linear time.

Many computational problems can be formulated as Constraint Satisfaction Problems (CSPs).
Let us introduce this notion by reformulating the k-colouring problem. Consider the com-
plete graph Kk with k vertices. A graph homomorphism h : G → H is a function that preserves
edges, i.e. E(x, y) ⇒ E(h(x), h(y)) for all x, y ∈ G. Given a graph G, finding a homomor-
phism h : G → Kk is equivalent to finding a k-colouring of G. Thus, the k-colouring problem
can be formulated as follows.

k-colouring problem

INSTANCE: A finite graph G

QUESTION: Is there a graph homomorphism h : G → Kk?

This can be generalised by not only considering Kk, but any graph H. The question whether
a given finite graph G can be mapped homomorphically to H is called the H-colouring

problem.
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1 Introduction

H-colouring problem

INSTANCE: A finite graph G

QUESTION: Is there a graph homomorphism h : G → H?

The notion of a CSP further generalises this concept. Formally, consider a relational τ -
structure A. Given any finite τ -structure X (even though the domain of A could be infinite,
we will always restrict the input to finite structures), we can ask whether there exists a
homomorphism from X to A. This problem is then called CSP(A). For relational structures
X,A, the existence of a homomorphism h : X → A is denoted by X → A.

Constraint Satisfaction Problem of A

INSTANCE: A finite structure X in the same signature as A

QUESTION: Is there a homomorphism h : X → A?

Given a relational τ -structure A, we can analyse the computational complexity of CSP(A).
Note that for fixed finite A, it can be checked in polynomial time whether a function from
a finite structure X to A is a homomorphism. Thus, finite-domain CSPs are in NP. We
can ask if there is an algorithm that can decide for any τ -structure X in polynomial time
whether X → A, i.e. if CSP(A) is in P. This has been studied extensively. One of the most
influential articles in this area, a paper by Feder and Vardi, was published in 1993 [FV93;
FV98]. For the first time, the dichotomy conjecture was formulated.

Conjecture 1.1 (Dichotomy Conjecture). Let A be a finite relational structure with finite signature.

Then either CSP(A) is solvable in polynomial time, or it is NP-complete.

In the late 1990s, it was discovered that methods from universal algebra offer valuable
insights into the complexity classification of finite-domain CSPs [Jea98; JCG97]. These
methods played a pivotal role in investigating the dichotomy conjecture, which Bulatov
[Bul17] and Zhuk [Zhu17; Zhu20] independently proved it in 2017. A major milestone on
the way to achieving this was the understanding of what properties make the CSP of a fixed
relational structure A efficiently solvable or not. It was discovered that hardness comes
from the lack of symmetry. However, the objects usually capturing symmetry, automor-
phisms and endomorphisms, do not provide enough information in this context. It turns
out that operations called polymorphisms that can be thought of as multivariate endomor-
phisms determine the complexity of CSP(A) for finite A. For A = (A; (Ri)i∈I) the set Pol(A)

consisting of all multivariate operations on A that leave all relations Ri for i ∈ I invariant
is called the polymorphism clone of A. Elements of Pol(A) are called polymorphisms of A.
Roughly, a rich polymorphism clone yields tractability (solvability in polynomial time),
lack of symmetry, conversely, yields hardness. This is the core recognition of the algebraic
approach to CSPs and makes it possible to answer questions about relational structures by
investigating algebraic structures associated to them.
It is even sufficient to only investigate height-1 identities satisfied by these algebraic struc-
tures. Identities are equations for operations that hold for all choices of values for the
variables. Height-1 means that each side of the equations has exactly one occurrence of an
operation symbol, in particular no nested operations are allowed. Satisfaction of certain
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1 Introduction

height-1 identities by polymorphisms characterises tractability, whereas the absence of poly-
morphisms satisfying those identities yields NP-completeness. A k-ary (k ≥ 2) operation w

is called a weak near-unanimity (WNU) operation if it satisfies the identities

w(x, . . . , x, y) = w(x, . . . , y, x) = · · · = w(y, x, . . . , x).

Zhuk proved the following refinement of Conjecture 1.1.

Theorem 1.2 ([Zhu17; Zhu20]). Let A be a finite-domain relational structure. Then CSP(A) is

tractable if A has a WNU polymorphism. Otherwise, CSP(A) is NP-complete.

It was shown that having a WNU polymorphism is equivalent to having other types of
polymorphisms, such as a Taylor polymorphism [MM08], a Siggers polymorphism ([Sig10]),
and a cyclic polymorphism [BK12], a type of polymorphisms that will play a central role
in this thesis.
Driven by the recent success in the CSP setting, it was suggested in [AGH17; BG16] to
investigate a more general setting in which problems such as approximate graph colouring
and similar ones can be studied. It is a form of approximation of CSPs. Remember that
CSP(Kk) is the k-colouring problem. Instead of asking if a graph is k-colourable or not
we might want to find an m-colouring for a given k-colourable graph and some m > k.
This problem turns out to be very stubborn. It is believed to be NP-hard for all constants
3 ≤ k ≤ m. But despite more than 45 years of studying this question, there was only
limited progress. Even for k = 3, the best known NP-hardness result was obtained for
m = 5 [Bar+21], while the best (in terms of m) polynomial-time algorithm for colouring a
3-colourable graph with n vertices uses about n0.199 colours [KT17]. The gap between the
best known negative and positive results shows just how far we are from understanding the
full nature of this problem. The success in the CSP setting was the motivating factor in
reformulating this question in the Promise Constraint Satisfaction Problem (PCSP) setting.
Let G be a finite graph. Then the problem above is equivalent to finding a homomorphism
h′ : G → Km under the condition that G → Kk. This leads naturally to the following more
general formulation: Let A,B be two structures of the same signature τ such that A → B.
Then, given a τ -structure X with X → A, find a homomorphism h : X → B. Note that
a homomorphism to A (and hence to B) is promised to exist, but not given as an input.
This is called the search version of the Promise CSP associated with the template (A,B).
The condition that A → B is important for the question to make sense. The standard
decision version of PCSP(A,B) is the task of distinguishing τ -structures X with X → A

from those satisfying X ↛ B. The fact that A → B guarantees that the two cases are
mutually exclusive. However, there could be some structures that do not belong to either
case. We can either restrict the input to structures that belong to one of the two cases or
allow the algorithm to do anything on all other inputs.

Promise Constraint Satisfaction Problem of (A,B)

INSTANCE: A structure X in the same signature as A and B

QUESTION: Does X satisfy X → A or not even X → B?

We see immediately that the PCSP framework generalises the CSP framework, since for
A = B, we obtain CSP(A). Further, the decision version can always be reduced to the
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1 Introduction

search version by just running the algorithm for the search version, verifying the output
and returning “No” if the algorithm fails or gives a wrong output. However, it is still an
open question whether the two versions are equivalent for all templates in the sense that
there is a polynomial-time reduction in both directions.
Polymorphisms of a finite structure fully determine the complexity of its CSP, hence, it is
natural to try and find a similar statement in the PCSP setting. For two structures A,B

with the same signature, we call homomorphisms from a power of A to B polymorphisms

from A to B and denote the set of those functions by Pol(A,B). There are some methods
known to use polymorphisms for investigating the complexity of PCSPs [KO22]:

• If the set of polymorphisms of a PCSP is rich enough, we can use them as a rounding
procedure in polynomial-time algorithms allowing to solve a relaxed version of the
PCSP and round the relaxed solution by applying appropriate polymorphisms.

• We can use polymorphisms to characterise the existence of specific types of reductions
between PCSPs: One PCSP reduces to another by a specific type of reduction if and
only if the polymorphisms of the corresponding PCSPs admit certain relations to one
another.

• If the polymorphisms for a PCSP are sufficiently limited, we can use this fact directly
to prove hardness for the PCSP.

The formulations here are very vague because those approaches will not be of essence in this
thesis. We recommend [KO22] for a more thorough discussion and a general introduction
to PCSPs.
There are several approaches to solve PCSPs in polynomial time (and characterise the
templates solvable by those algorithms) such as local consistency algorithms or relaxing
the PCSP to a Linear Programming instance. Another quite natural approach to solving
a PCSP is to use the results of the CSP framework. Let (A,B) be a PCSP template and
C be a relational structure such that A → C → B. Then we say that C is sandwiched by A

and B. Note that in this case we can reduce PCSP(A,B) to CSP(C): Restricting the input
to structures either admitting a homomorphism to A or not even to B, an input structure
X is a yes-instance for PCSP(A,B) if and only if it is a yes-instance of CSP(C). While
this approach is straight forward and might seem very simple, it is so far the most general
approach of solving PCSPs via polynomial-time algorithms in the sense that currently,
every known tractable PCSP can be reduced to a tractable CSP of a sandwich structure
[Mot24; Den+21]. The following meta question arises naturally:

Given finite A,B, does there exist some C sandwiched

by A,B such that CSP(C) is tractable?

If we find such a structure for some A,B, then clearly PCSP(A,B) is tractable, whereas a
negative answer does not necessarily mean that PCSP(A,B) is NP-hard. Anyways, it is not
even known yet if the meta question is decidable.
For a PCSP template (A,B) with tractable sandwich C, an interesting property of this
PCSP is the minimal size of such a tractable sandwich. It was shown that for every
n > 1 and prime p there is an example of a PCSP template (A,B) with |A| = |B| = n
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1 Introduction

admitting a tractable finite sandwich of size p but no smaller one [KMZ22]. So the size
of minimal finite sandwiches can grow arbitrarily large even for PCSPs with structures of
the same size. Since the complexity of finite-domain CSPs is well-understood, the best
case would be to have a finite tractable sandwich. However, it was shown that even if
there is a tractable sandwich, it is not guaranteed that there is a finite one as well. Let
A := ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}) and B := ({0, 1}; {0, 1}3\{(0, 0, 0), (1, 1, 1)}). Then A

simulates the problem positive 1-in-3-SAT (denoted 1-in-3) and B simulates positive Not-All-

Equal-3-SAT (denoted NAE-3), which are further explained in Chapter 3. For the template
C := (Z;x + y + z = 1), i.e. the structure with domain Z and a single ternary relation
R = {(x, y, z) : x+ y + z = 1}, we have that

1-in-3
f−→ (Z;x+ y + z = 1)

g−→ NAE-3,

for the inclusion map f and g(x) = 0 ⇔ x ≤ 0. Since C is known to be tractable [GLS88],
it is a tractable sandwich. However, as we will see in Chapter 3, there can be no finite
tractable one, unless P = NP.

Theorem 3.1 ([Bar19]). Let C be a finite sandwich for PCSP(1-in-3,NAE-3). Then CSP(C) is

NP-complete.

Infinite-domain CSPs have been investigated for the past 20 years, using the algebraic
approach as well as model theory and Ramsey theory. Many methods and results from
finite-domain CSPs were used to obtain results in the infinite-domain cases. However,
examples like this suggest that obtaining complexity results for PCSPs requires transfer
in the other direction, too. Moreover, the PCSP framework disclosed many interesting
aspects not present in the study of CSPs, such as including many interesting and well-
known computational problems not expressible as CSPs, revealing connections to many
unexpected areas of mathematics such as algebraic topology [Kro+23], matrix analysis
[CŽ23], and Boolean function analysis [BGS23], and also the discovery of new algorithms
useful for the CSP setting (e.g. [BG21]).
In contrast to Theorem 3.1, there was also a positive result characterising a class of PCSPs
that will always allow a finite tractable sandwich structure (Theorem 4.1.2). Atserias
showed that first-order definability of CSP(A) for a τ -structure A is equivalent to A having
finite duality [Ats08] (see Chapter 4). An even stronger result (Theorem 4.2.1) was obtained
by Rossman [Ros08], which also directly implies (i) ⇔ (ii) in the following theorem.

Theorem 4.1.2 ([Mot24]). Let (A,B) be a finite PCSP template with finite signature τ . The

following are equivalent:

(i) PCSP(A,B) is first-order definable.

(ii) (A,B) has finite duality.

(iii) There exists a finite structure C with finite duality and such that A → C → B.

Although Theorem 4.1.2 is a statement purely about finite structures, the proof of (ii) ⇒
(iii) that Mottet provided is an example of applying results from infinite-domain CSPs to
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1 Introduction

a finite-domain problem. First, an infinite structure C with the properties of Item (iii) is
constructed. Using a Ramsey-type argument, it is shown that this structure has a finite
factor that also satisfies the required properties.
This approach relies on ω-categoricity of the infinite structure to guarantee finiteness of
the factor structure. Considering this result, one might wonder if ω-categoricity itself is
enough to “finitize” structures in the sense of the following question asked by Zhuk at the
CSP World Congress 2023 in Weissensee, Austria:

Question 1.3. Let (C,B) be a pair of τ -structures, where C is ω-categorical with tractable CSP,

B is finite and C → B. Does there exist a finite tractable B′ such that C → B′ → B?

A positive answer for all such pairs (C,B) would have immediate negative consequences
for the usefulness of ω-categorical structures as sandwich structures for PCSPs: For A →
C → B with tractable ω-categorical C, we would always get a tractable B′ such that A →
C → B′ → B, hence, a finite tractable sandwich B′ for (A,B). A pair of structures (A,B) with
the same signature that admits such a finite tractable sandwich is called finitely tractable.
Discussing Question 1.3, Mottet, Pinsker, and Rydval discovered that there is a pair (C,B)

as in the referenced question that is not finitely tractable, unless P = NP, leaving the
possibility for tractable ω-categorical structures to reveal results about PCSPs that could
not be obtained by the same method (sandwiching a structure) using finite structures. In
Chapter 5 we provide a description of the construction of this pair (C,B) and a formal proof
that it has the required properties.
Temporal CSPs, i.e. CSPs with a constraint language that is first-order definable in (Q;<),
were studied extensively [BK10]. The structure (Q;<) is ω-categorical, its CSP is tractable,
and CSP(Q;<) does not reduce to a CSP of a finite structure by the general reduction
method of canonical functions. Hence, temporal problems seem like a good choice to use for
constructing an example of a pair (C,B) as above. Adding the relation I4(x, y, u, v) ⇔ (x =

y) ⇒ (u = v) to (Q;<) (doing so is not necessary for the construction, but convenient), we
obtain (Q;<, I4), a relational structure in the Ord-Horn fragment [NB95], hence, again a
tractable structure. Next we construct a structure C with domain Q3 whose polymorphism
clone consists exactly of the operations obtained by letting polymorphisms of (Q;<, I4) act
on triples. This structure is again ω-categorical. The complexity of CSPs of ω-categorical
structures only depends on the topological polymorphism clone [BP15], i.e. the set of
polymorphisms equipped with the topology of pointwise convergence. Since the topological
polymorphism clone of C is isomorphic to the topological polymorphism clone of (Q;<, I4),
CSP(C) is also tractable. The “right side” B of the example is obtained by factoring C with
respect to orbits of its automorphism group. By ω-categoricity of C, B is finite. It is known
that there can be no pseudo-cyclic polymorphism of C. Further, we will show that any
polymorphism of B can be lifted to a canonical polymorphism of C, i.e. a polymorphism
that behaves nicely with respect to orbits of C under Aut(C). Lifting a cyclic polymorphism
would yield a pseudo-cyclic polymorphism on C, hence, B has no cyclic polymorphism and
CSP(B) is NP-complete. Using a Ramsey-type argument, we can show that every B′ with
C → B′ → B must be homomorphically equivalent to B. Together, we will obtain the
following result:

Theorem 5.1. There exists a pair (C,B) of τ -structures with tractable ω-categorical C and finite

B such that C → B and (C,B) is not finitely tractable, unless P = NP.
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1 Introduction

The reason we use the third power of Q for the domain of C is that (Q;<) is finitely
bounded with bounds of maximal size 3. This property, homogeneity and the Ramsey
property are the core concepts needed for the construction in Chapter 5. This motivates a
more general result which we will give in Chapter 6.

Theorem 6.1. Let D′ be a finitely bounded homogeneous Ramsey structure and D be a first-order

reduct of D′ that is a model-complete core.

Let m ∈ N be greater than all sizes of bounds of D′ and arities of relations of D′ and D.

Then there exists an ω-categorical structure C with domain C = Dm and a finite structure B such

that CSP(B) is NP-complete and

• Pol(C) = Pol(D) ↷ Dm.

• C → B.

• Every finite B′ such that C → B′ → B is homomorphically equivalent to B. In particular, if

P ̸= NP, then (C,B) is not finitely tractable.

Note that CSP(B) for B as above will always be NP-complete, because otherwise we
could set B′ := B to obtain a finite tractable structure with C → B′ → B. This result
yields a method to construct the “right side” of a potential PCSP with a tractable ω-
categorical sandwich from a tractable finitely bounded homogeneous Ramsey structure.
An example of a PCSP with tractable ω-categorical sandwich that does not allow a finite
tractable sandwich would connect the PCSP framework to a range of results that were
already obtained for CSPs of ω-categorical structures (see e.g. [Bod21; Pin22]), proving
yet again that results about infinite-domain CSPs can be used to acquire complexity results
for finitary problems. Thus, this thesis can be viewed as a step on the way to answer the
following open question:

Question 1.4. Is there a PCSP template (A,B) with a tractable ω-categorical sandwich C such

that there is no finite tractable sandwich structure?

A positive answer has been announced by Mottet.
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2 Preliminaries

2.1 Notation

The set of natural numbers is N = {0, 1, 2, . . . }. For a natural number n we denote the set
{1, . . . , n} by [n]. For a real number r ∈ R, we define

⌊r⌋ := max{z ∈ Z : z ≤ r},
⌈r⌉ := min{z ∈ Z : z ≥ r}.

For a set A, some n ∈ N and some element a ∈ An, for i ≤ n we denote by ai the i-th entry
of a, i.e. a = (a1, . . . , an) ∈ An.

2.2 Relational structures and CSPs

A relational signature τ is a set R = {Ri : i ∈ I} of relation symbols (with possibly infinite I)
each with an associated arity ki ∈ N. A relational structure A over the signature τ consists
of a set A (the domain) and relations RA

i ⊆ Aki for each i ∈ I. If the domain A is a finite
set, we call the structure A finite.
A homomorphism from a τ -structure A with domain A to a τ -structure B with domain B

is a function h : A → B that preserves all relations. That means that for all i ∈ I, if
(a1, . . . , aki

) ∈ RA
i , then (h(a1), . . . , h(aki

)) ∈ RB
i . If there is a homomorphism from a struc-

ture A to a structure B, we say that A maps homomorphically to B and write A → B. If
A → B and B → A, then we say that A and B are homomorphically equivalent.
An injective map ϕ : A → B between τ -structures A,B is called an embedding, if for all i ∈ I,
it holds that (a1, . . . , aki) ∈ RA

i ⇔ (ϕ(a1), . . . , ϕ(aki)) ∈ RB
i for all a1, . . . , aki ∈ A. A bijective

embedding is called an isomorphism. An isomorphism from a structure to itself is called
automorphism.

In this thesis a constraint satisfaction problem (CSP) is a computational problem described
by a single relational structure with finite relational signature.

Definition 2.2.1 (CSP(A)). Let A be a (possibly infinite) structure with a finite relational sig-

nature τ , also called template. Then CSP(A) is the computational problem of deciding whether a

given finite τ -structure maps homomorphically to A.

Constraint Satisfaction Problem of A

INSTANCE: A finite structure X in the same signature as A

QUESTION: Is there a homomorphism h : X → A?

8



2 Preliminaries

We can also consider CSP(A) as the class of yes-instances of CSP(A). We call a homo-
morphism h : X → A a solution of X for CSP(A).
Note that for homomorphically equivalent structures A and B, a structure X is a yes-
instance of CSP(A) if and only if it is a yes-instance of CSP(B).

Lemma 2.2.2. Let A,B be homomorphically equivalent. Then

CSP(A) = CSP(B).

2.3 Actions and orbits

Definition 2.3.1. Let g : Xm → X be a function. For each n ∈ N, g also naturally defines a

function gn : (Xn)m → Xn by

gn(

��
x1
1

...

x1
n

�� , . . . ,

��
xm
1

...

xm
n

��) :=

��
g(x1

1, . . . , x
m
1 )

...

g(x1
n, . . . , x

m
n )

��
for all x1 = (x1

1, . . . , x
1
n), . . . , x

m = (xm
1 , . . . , xm

n ) ∈ Xn. We will denote such gn by g ↷ Xn and say

that gn is the action of g on Xn. For a set G of operations g : Xmg → X,mg ∈ N, we will use the

notation

G ↷ Xn := {g ↷ Xn : g ∈ G}

and we call G ↷ Xn the action of G on Xn.

Definition 2.3.2. Let G be a permutation group acting on a set X. For x ∈ Xn and gn := g ↷ Xn

for all g ∈ G we call the set

O(x) = {gn(x) : g ∈ G}

the orbit of x under G. We call an orbit of an n-tuple an n-orbit. We say that G is oligomorphic if

there are only finitely many n-orbits under G for every n ∈ N.
For a relational structure A, we denote the orbit of x with respect to Aut(A) by OA(x).

2.4 Polymorphisms and function clones

Polymorphisms are a powerful tool for analysing the complexity of CSPs. Polymorphisms
can be thought of as higher-dimensional endomorphisms.

Definition 2.4.1. Let A be a relational structure. Then we denote by An the structure with

domain An and relations defined as follows. For each k-ary relation RA, the relation RAn

is the set

of all tuples (x1, . . . , xk) ∈ (An)k with (x1
i , . . . , x

k
i ) ∈ RA for all i ≤ n, where xi denotes the i-th

entry of x.

Definition 2.4.2 (Pol(A)). Let A be a relational structure and n ≥ 1. Then a polymorphism of

A of arity n is a homomorphism from An → A. We denote the set of n-ary polymorphisms of A

by Pol(A)(n) and the set of all polymorphisms of A by Pol(A).

9



2 Preliminaries

In other words, an operation f : An → A is a polymorphism of a τ -structure A if for every
R ∈ τ , f applied component-wise to any n-tuple of elements in RA ⊆ Ak gives an element of
RA, or equivalently, if (aij) is a k×n matrix whose columns are tuples in RA, then f applied
to the rows yields a k-tuple that is also in RA. In this case, we say that f is compatible with
the relation R.

For n ≥ 1 and a set A, denote by O
(n)
A the set of n-ary operations on A. Denote further

the set of all operations on A of finite arity by OA :=
�

n≥1 O
(n)
A .

Definition 2.4.3 (Function clone). A function clone (over A) is a subset C ⊆ OA satisfying

• C contains all projections, i.e. for all 1 ≤ k ≤ n it contains πn
k ∈ O

(n)
A defined by

πn
k (a1, . . . , an) = ak, and

• C is closed under composition, that is, for allm,n ∈ N, f ∈ C ∩O
(n)
A and g1, . . . , gn ∈ C ∩O

(m)
A

it contains the function f(g1, . . . , gn) ∈ O
(m)
A defined by

(a1, . . . , am) �→ f(g1(a1, . . . , am), . . . , gn(a1, . . . , am)).

Consider the set Pol(A) of polymorphisms of a relational structure A. It is easy to see
that all the projections are polymorphisms and that the set of polymorphisms is closed
under composition. Thus, from now on we will also call Pol(A) the polymorphism clone

of A. Of special interest to us are structures with polymorphism clones that contain a
rather large permutation group, an oligomorphic one. A function clone over some set A is
called oligomorphic if it contains an oligomorphic permutation group. A classical theorem
in model theory, the theorem of Engeler, Svenonius, and Ryll-Nardzewski states that the
automorphism group Aut(A) of a countable structure A is oligomorphic if and only if A
is ω-categorical ([Hod93]), where a relational τ -structure A is called ω-categorical, if any
countable τ -structure B that satisfies exactly those first-order sentences over τ that are
true in A is isomorphic to A. Since the automorphism group of a relational structure A

is contained in the polymorphism clone of A, it follows that a countable structure A is
ω-categorical if and only if its polymorphism clone is oligomorphic. It was shown that for
a finite or countable ω-categorical structure A the computational complexity of CSP(A)

only depends on the polymorphism clone Pol(A) [BN06] and later that it only depends on
the polymorphism clone viewed as a topological clone [BP15], i.e., viewed as an abstract
algebraic structure additionally equipped with the topology of pointwise convergence (see
Definition 2.9.2).
Cyclic polymorphisms in particular will play a central role in this thesis. A cyclic operation
is a k-ary (k ≥ 2) operation satisfying the identity f(x1, x2, . . . , xk) = f(x2, . . . , xn, x1).

Theorem 2.4.4 ([BK12]). Let A be a finite relational structure. If A has no cyclic polymorphism,

then CSP(A) is NP-complete.

In fact, assuming P ̸= NP, tractability of finite structures can even be characterised by
the existence of cyclic polymorphisms, i.e. CSP(A) is in P if and only if A has a cyclic
polymorphism.

10
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2.5 Primitive positive interpretations

Definition 2.5.1. A first-order τ -formula ϕ(x1, . . . , xk) is called primitive positive if

ϕ = ∃xk+1, . . . , xn(ψ1 ∧ · · · ∧ ψm)

for atomic τ -formulas ψ1, . . . , ψm, i.e. ψi are of the form R(y1, . . . , yk) with R ∈ τ and yi ∈
{x1, . . . , xn}, of the form y = y′ for y, y′ ∈ {x1, . . . , xn}, or ⊤ (true) or ⊥ (false).

Definition 2.5.2. A σ-structure B has a (first-order) interpretation I in a τ -structure A if and

only if there exists a natural number d ≥ 1, the dimension of I, and

• a τ -formula BI(x1, . . . , xd) (called domain formula),

• for each unnested atomic σ-formula ϕ(y1, . . . , yk) a τ -formula ϕI(x1, . . . , xk) with disjoint

d-tuples xi of distinct variables (called the defining formulas),

• a surjective map h : BI(A
d) → B (called coordinate map),

such that for every unnested atomic σ-formula ϕ and all tuples ai ∈ BI(A
d)

B |= ϕ(h(a1), . . . , h(ak)) ⇔ A |= ϕI(a1, . . . , ak) .

If the formulas BI and ϕI are primitive positive, we say that the interpretation I is primitive

positive.

In the CSP setting, primitive positive interpretations are used to reduce one problem in
polynomial time to another.

Theorem 2.5.3 ([BJK05]). Let A and B be structures with finite relational signatures. If B has

a primitive-positive interpretation in A, then there is a polynomial-time reduction from CSP(B) to

CSP(A).

2.6 Promise CSPs and function minions

Promise CSPs are a natural way to generalise CSPs.

Definition 2.6.1 (PCSP(A,B)). Let A,B be finite relational structures with the same signature

τ . Then PCSP(A,B) is the computational problem of deciding whether a given finite τ -structure

X maps homomorphically to A or does not map homomorphically to B. If neither is the case, the

algorithm can do anything.

Promise Constraint Satisfaction Problem of (A,B)

INSTANCE: A structure X in the same signature as A and B

QUESTION: Does X satisfy X → A or not even X → B?

Function minions play a similar role for PCSPs as function clones do for CSPs. First,
let us give a more general definition of polymorphisms.

11
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Definition 2.6.2 (Pol(A,B)). Let A,B be two structures with the same signature. An n-ary poly-

morphism from A to B is a homomorphism from An to B. We denote the set of all polymorphisms

from A to B by Pol(A,B).

Note that this definition generalises Definition 2.4.2 in the sense that Pol(A,A) = Pol(A).
In this case, Pol(A) is a function clone. If A and B are different, the composition of
polymorphisms as in Definition 2.4 is not well-defined. However, Pol(A,B) is always closed
under taking minors.

Definition 2.6.3 (Minor). An n-ary function f : An → B is called a minor of an m-ary function

g : Am → B given by a map π : [m] → [n] if

f(a1, . . . , an) = g(aπ(1), . . . , aπ(m))

for all a1, . . . , an ∈ A.

In other words, f is a minor of g if it is obtained from g by identifying variables, permuting
variables, and introducing dummy variables.

Definition 2.6.4 (Function minion). Let O(A,B) = {f : An → B | n ≥ 1}. A (function) minion

M on a pair of sets (A,B) is a non-empty subset of O(A,B) that is closed under taking minors.

For fixed n ≥ 1, let M (n) denote the set of n-ary functions from M .

For any two relational structures A,B, it is easy to see that Pol(A,B) is a minion. Thus,
we also call Pol(A,B) the polymorphism minion of (the template) (A,B). Similar to the
description of complexity via polymorphisms in the CSP setting it was shown that, up to
log-space reductions, the complexity of PCSP(A,B) for finite τ -structures A,B only depends
on the properties of polymorphisms from A to B, hence, on the polymorphism minion of
(A,B).

2.7 Extreme amenability

Definition 2.7.1 (Topological group). A topological group is an (abstract) group G together with

a topology on the domain G such that the function (g, h) �→ gh−1 from G2 to G is continuous. In

other words, we require the binary group operation and the inverse function to be continuous.

Definition 2.7.2 (Compact space). A topological space X is called compact if every open cover

has a finite subcover. That is, for every family (Ui)i∈I of open sets with
�

i∈I Ui = X, there exist

n ∈ N and i1, . . . , in ∈ I such that
�n

k=1 Uik = X.

Definition 2.7.3 (Continuous group action). Let G be a group with neutral element e and X be

a set. A function α : G × X → X that satisfies α(e, x) = x and α(g, α(h, x)) = α(gh, x) for all

g, h ∈ G and x ∈ X is called a group action of G on X.

If G is a topological group and X is a topological space, then we call a group action α of G on X

continuous if it is continuous with respect to the product topology on G×X.

12
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Definition 2.7.4 (Hausdorff space). A topological space (X, T ) is said to satisfy the separation

axiom (T2), if

∀x, y ∈ X,x ̸= y ∃Ox, Oy ∈ T : (x ∈ Ox ∧ y ∈ Oy) ∧ (Ox ∩Oy = ∅).

If (X, T ) satisfies (T2), then we call it a Hausdorff space.

Definition 2.7.5 (Extreme amenability). A topological group G is called extremely amenable if

every continuous action α of G on a compact Hausdorff space X has a fixed point, i.e. there is

x ∈ X such that α(g)(x) = x for every g ∈ G.

2.8 The Ramsey property

In Chapter 5, we want to show that Aut(Q;<) is extremely amenable. This was first proved
by Pestov [Pes98]. Afterwards, Kechris, Pestov and Todorčević reproved it in a more
general framework, in which the former result can be viewed as a special instance [KPT05].
A crucial factor is to establish a relationship between the concept of extreme amenability and
the Ramsey property. Let us define the latter in the following.
Let τ be a relational language and A,B be τ -structures. We write

�
B
A

�
for the set of

embeddings of A into B. Given structures S,M,L and c ∈ N, we write

L → (M)Sc ,

if for every colouring χ :
�
L
S

� → [c] of the embeddings of S into L with c colours, there is
an embedding f ∈ �

L
M

�
such that all embeddings g ∈ �

L
S

�
with g(S) ⊆ f(M) are assigned the

same colour. For a τ -structure A, the age of A (denoted by Age(A)) is the class of all finite
τ -structures that can be embedded into A.

Definition 2.8.1 (Homogeneous structure). Let τ be a relational signature. A τ -structure A is

called homogeneous if every isomorphism between finite substructures of A can be extended to an

automorphism of A.

Definition 2.8.2 (Ramsey property). A class of finite relational structures that is closed under

isomorphisms and induced substructures is called Ramsey, or is said to have the Ramsey property,

if for every S,M ∈ C and for every c ∈ N there exists L ∈ C such that L → (M)Sc .

A homogeneous structure C is called Ramsey if C → (B)Ac holds for all A,B ∈ Age(C) and c ≥ 2.

For a countable homogeneous structure A, the Ramsey property can be characterised
by the topological automorphism group of A: The age of A is Ramsey if and only if
the automorphism group of A is extremely amenable. This is called the Kechris-Pestov-
Todorčević correspondence and a consequence of the following theorem, which was proved
in [KPT04].

Theorem 2.8.3 ([KPT05]). Let A be a countable homogeneous relational structure. Then the

following are equivalent.

(i) A is Ramsey

13
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(ii) The age of A has the Ramsey property.

(iii) Aut(A) is extremely amenable.

It is known that for any homogeneous Ramsey structure, there is a linear order that is
preserved by all automorphisms.

Proposition 2.8.4 ([KPT05]). Let A be a homogeneous Ramsey structure with domain A. Then

there exists a linear order on A that is preserved by all automorphisms.

We can also add this order as a binary relation to the signature of the corresponding
structure without losing the Ramsey property. Moreover, this is possible for any relation
that is preserved by all automorphisms. It is a well-known fact that the automorphisms
of a relational structure A preserve all relations that are first-order definable in A. A τA-
structure A is a reduct of a τB-structure B if τA ⊆ τB, they have the same domain A = B,
and for all R ∈ τA we have RA = RB. In this case, A is also called the τA-reduct of B.
Vice versa, B is called an expansion of A. We also say that B is a τB-expansion of A. If
all relations of B have a first-order definition in A without parameters, then B is called a
first-order expansion of A. A structure C is called a first-order reduct of A if it is a reduct of
thee xpansion A+ of A by all relations that are first-order definable in A.

Proposition 2.8.5. Let A be a homogeneous Ramsey structure and B an expansion of A with

Aut(B) = Aut(A). Then B is also a homogeneous Ramsey structure.

Proof. Denote the signature of A by τ and let the signature of B be τ ′ ⊇ τ . To show that B is

still homogeneous, take any isomorphism between finite substructures of B. This is clearly also an

isomorphism between the τ -reducts of those structures and therefore extends to a τ -automorphism,

which preserves all relations in τ ′, hence, it is an automorphism of B.

Since Aut(A) = Aut(B), Theorem 2.8.3 implies that B is Ramsey.

2.9 Canonisation

Throughout this thesis, we will try to use the finite number of orbits of ω-categorical
structures to our advantage. For an ω-categorical structure A, since there are only finitely
many n-orbits, factoring An by the equivalence relation ∼Aut(A) induced by Aut(A), i.e.
a ∼ b if there exists α ∈ Aut(A) with α(a) = b, will yield a finite structure. However, in
many cases we want to preserve the property of functions being polymorphisms, or more
precisely, we want polymorphisms of A to induce polymorphisms of the factor structure.
This is only possible if the function behaves in a nice way regarding the equivalence classes
induced by Aut(A). The functions that behave nicely in that sense are called canonical
functions.

Definition 2.9.1 (Canonical functions). Let G ↷ X and H ↷ Y be permutation groups. A

function f : X → Y is called canonical with respect to G and H if for every tuple t ∈ Xn for some

n ∈ N and every α ∈ G there exists β ∈ H such that fα(t) = βf(t).

For any two relational structures A,B, a function f : A → B is called canonical with respect to A

and B if it is canonical with respect to Aut(A) and Aut(B).
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For f : An → B, we call f canonical with respect to A and B if it is canonical with respect

to Aut(A)n ↷ An and Aut(B), where Aut(A)n ↷ An consists of the functions (a1, . . . , an) �→
(α1(a1), . . . , αn(an)) for a1, . . . , an ∈ A and α1, . . . , αn ∈ Aut(A).

The property of being a homomorphism is a local property and can be checked on finite
sets. This is the reason why the closure of a set of homomorphisms with respect to the
topology of pointwise convergence also consists only of homomorphisms.

Definition 2.9.2 (Topology of pointwise convergence). For sets X,Y , the topology of pointwise

convergence on Y X is defined as the product topology where Y is taken to be discrete. For S ⊆ Y X ,

we write S for the closure of S in this space.

For S ⊆ Y X and f ∈ Y X , we have f ∈ S if and only if for every finite subset F ⊆ X, there is some

gF ∈ S with f |F = gF |F .

Theorem 2.9.3 ([BPT13; BP21]). Let G ↷ X, H ↷ Y be permutation groups, where X is

countable, G is extremely amenable, and H is oligomorphic. Let f : X → Y and Y X be equipped

with the topology of pointwise convergence. Then

HfG := {βfα | α ∈ G, β ∈ H}

contains a canonical function with respect to G and H.

Let A,B be relational structures and G := Aut(A),H := Aut(B). Then given that Aut(A)

is extremely amenable, A is countable, and Aut(B) is oligomorphic, the existence of a
homomorphism f : A → B implies the existence of a canonical homomorphism f ′ : A → B.
The previous theorem guarantees that under certain conditions we can use unary functions,
in particular homomorphisms, between different structures to generate a canonical one.
Sometimes it is useful to do the same for functions of higher arity, e.g. polymorphisms.
The next statement is a corollary of the previous one, that allows multivariate functions.

Theorem 2.9.4 ([BPT13],[BP21]). Let A be a homogeneous structure in a finite relational signature

with the Ramsey property, let B be a countable ω-categorical structure, and let f : An → B be an

arbitrary function. Then there exists g : An → B that is canonical from A to B in the closure of�
(a1, . . . , an) �→ β(f(α1(a1), . . . , αn(an)) | β ∈ Aut(B), α1, . . . , αn ∈ Aut(A)

�
,

with respect to the topology of pointwise convergence. This means that for every m ∈ N and finite

subset S of Am, there exist α1, . . . , αn ∈ Aut(A), β ∈ Aut(B) such that

g(a1, . . . , an) = β(f(α1(a1), . . . , αn(an))

for all a1, . . . , an ∈ S. If A = B, we say that f locally interpolates g modulo Aut(A).

2.10 Finitely bounded structures

Let τ be a finite relational signature and C be a class of τ -structures. Then a finite τ -
structure F is called a bound of C if it does not embed into a structure from C and it is
minimal with this property (with respect to embeddability).
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Definition 2.10.1. A class of τ -structures is called finitely bounded if it has finitely many bounds

up to isomorphism.

A structure A is called finitely bounded if the age of A is finitely bounded.

Remark 2.10.2. Note that for a finitely bounded τ -structure A, a finite τ -structure B embeds into

A if and only if none of the finite bounds of A embeds into B. To see this, let F be the set of

bounds and note that if F ∈ F embeds into B, an embedding of B into A would yield an embedding

of F into A. On the other hand, if no F ∈ F embeds into B and B does not embed into A, then B

or a substructure of B would be a bound that is not in F , a contradiction.
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3 Sandwiches for PCSPs

In this chapter, we will investigate sandwiches for PCSPs, in particular, sandwich structures
that are minimal in size. In the following section, we state some results about minimal
finite sandwiches. In the remaining sections, we explore an example of a PCSP that reduces
to an infinite tractable sandwich but not to a finite one, unless P = NP, constructed by
Barto [Bar19]. This shows that solving infinite-domain CSPs is necessary in order to prove
tractability of PCSPs via reduction to a sandwich structure.

3.1 Minimal finite sandwiches

Recent results show that if there is a finite tractable sandwich, the size of the smallest finite
tractable sandwiches can grow even for fixed size of A and B. In [Den+21], the authors
presented an example of a finitely tractable PCSP(A,B) with |A| = |B| = 2 with a tractable
sandwich C for (A,B) of size |C| = 3 such that there is no tractable sandwich of size ≤ 2.
The result by [KMZ22], showing that for every prime p and every integer n > 1 there are
A,B of size n such that PCSP(A,B) admits a tractable sandwich C of size p but no smaller
one, extended this result. Those structures can be chosen to have a single relation of arity
np. So for fixed size |A| = |B| = n, by choosing an appropriate relation, the size of the
smallest tractable sandwich can be arbitrarily large.
Even if we restrict the signature to a single ternary relation, it was shown that a similar
behaviour can be obtained: For every prime p ≥ 7, there are A,B of size p− 1 with a single
ternary relation such that PCSP(A,B) admits a tractable sandwich C of size p, but there is
no tractable sandwich structure of smaller size [KMZ22].

3.2 Infinite sandwiches are necessary

Since the complexity of finite domain CSPs is well-understood, the natural first approach
when trying to solve the PCSP for a given template (A,B) with the sandwiching method is
to try to find a finite tractable sandwich. However, in this section we will show that this
is not always possible. More precisely, we will show that there are finite A,B such that
PCSP(A,B) reduces via A → C → B to CSP(C) for tractable C with infinite domain, but
there is no finite tractable sandwich for (A,B), unless P = NP.

The construction and proof follow [Bar19]. The construction uses the templates for
the problems positive 1-in-3-SAT (denoted 1-in-3) and positive Not-All-Equal-3-SAT (denoted
NAE-3). The first problem can be formulated as follows. Given a list of triples of variables,
decide whether there is a mapping from the set of variables to {0, 1} such that exactly one
variable in each triple is mapped to 1. For NAE-3, the instances are triples of variables
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as well, but we only need a mapping to {0, 1} that does not map all variables in one triple
to the same value. Reformulating the respective problems to CSPs, we get the following
templates:

1-in-3 : ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)})
NAE-3 : ({0, 1}; {0, 1}3\{(0, 0, 0), (1, 1, 1)}).

We will also denote the templates by 1-in-3 and NAE-3 and write PCSP(1-in-3,NAE-3)

for the corresponding PCSP. It is well-known that 1-in-3 and NAE-3 are NP-complete
problems [Sch78]. However, PCSP(1-in-3,NAE-3) is tractable. To see this, we will reduce
the problem to CSP(Z;x + y + z = 1), i.e. the template with domain Z and one ternary
relation R = {(x, y, z) : x + y + z = 1}, by showing that (Z;x + y + z = 1) is sandwiched by
the templates of 1-in-3 and NAE-3. Now CSP(Z;x+ y + z = 1) is the problem of solving a
set of linear equations (even of the particular type x + y + z = 1) over Z. This problem is
known to be solvable in polynomial time [GLS88]. Let us define the homomorphisms

1-in-3
f−→ (Z;x+ y + z = 1)

g−→ NAE-3. (3.1)

For f , we take the inclusion map, which is a homomorphism, since for any tuple (x, y, z)

with exactly one entry equal to 1 and the others 0, we have x + y + z = 1. The map g is
defined by g(x) = 0 ⇔ x ≤ 0. Since x + y + z = 1 implies that neither all of the entries
of the triple (x, y, z) are greater than 0, nor all of them are smaller than or equal to 0,
tuples in RZ are mapped to tuples in RNAE-3. Thus, (Z;x + y + z = 1) is a sandwich for
PCSP(1-in-3,NAE-3) and by tractability of (Z;x + y + z = 1), also PCSP(1-in-3,NAE-3) is
tractable. Hence, we found an infinite tractable sandwich, it remains to show that there
can be no finite tractable one. This will make clear that infinite sandwiches are indeed
necessary for proving tractability of PCSPs by the sandwiching method. We will show the
following Theorem:

Theorem 3.1 ([Bar19]). Let C be a finite sandwich for PCSP(1-in-3,NAE-3). Then CSP(C) is

NP-complete.

Let C = (C,R) be a finite relational structure with R ⊆ C3 such that f : 1-in-3 → C and
g : C → NAE-3 are homomorphisms. Since the composition g◦f is a homomorphism, applied
to (1, 0, 0) ∈ R1-in-3 component-wise it yields a Not-All-Equal tuple. Hence, f(0) ̸= f(1). Re-
naming the elements of C, we can assume that {0, 1} ⊆ C and that f is the inclusion map.
In particular, we have {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊆ RC.

If CSP(C) is tractable, then by Theorem 2.4.4, C has a cyclic polymorphism of any prime
arity p > |C|. Let us fix a cyclic polymorphism

s ∈ Pol(C)(p) for some prime p > 60|C| (3.2)

and define a function t on C of arity p2 by

t(x11, x12, . . . , x1p,x21, x22, . . . , x2p, . . . , xp1, . . . , xpp)

:= s(s(x11, x21 . . . , xp1),
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3 Sandwiches for PCSPs

s(x12, x22 . . . , xp2),

...

s(x1p, x2p . . . , xpp))

A more convenient way to denote t is to display the arguments in a p × p matrix whose
entry in the i-th row and j-th column is xij, so we obtain the value

t

����
x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xp1 xp2 · · · xpp

���� (3.3)

by applying s first to the columns and then to the results. In the proof the arguments xij

will mostly be 0’s and 1’s. Before starting the proof of Theorem 3.1, we introduce some
concepts for zero-one matrices, i.e. matrices with only 0’s or 1’s as entries.

Definition 3.2. Let p be the prime from (3.2) and X,Y be p × p zero-one matrices. The area of

X is the fraction of ones and is denoted by

λ(X) =

�

i,j

xij

�
/p2

We say that the matrices X,Y are g-equivalent, denoted by X ∼ Y , if g(t(X)) = g(t(Y )), where g

is the homomorphism defined in 3.1.

The matrix X is called tame if the following hold:

(i) λ(X) < 1
3 ⇒ X ∼ 0p×p, and

(ii) λ(X) > 1
3 ⇒ X ∼ 1p×p,

where 0p×p and 1p×p denote the p× p matrices with all entries equal to 0 or 1, respectively.

Note that since p is a prime number greater than 3, the case λ(X) = 1/3 is not possible.
Further, since the equivalence relation ∼ is a partition into two blocks, X ≁ Y ≁ Z implies
X ∼ Z.

Definition 3.3. A triple X,Y, Z of p×p zero-one matrices is called a cover if, for every 1 ≤ i, j ≤ p,

exactly one of xij , yij , zij is equal to one.

Lemma 3.4. If X,Y, Z is a cover, then X,Y, Z are not all g-equivalent.

Proof. By definition of a cover, all tuples (xij , yij , zij) are in {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊆ RC.

Since s preserves RC, so does t. Hence, the triple (t(X), t(Y ), t(Z)) is in RC as well and since g is a

homomorphism from C to the template of NAE-3, we know that g(t(X)), g(t(Y )), g(t(Z)) can not

be all equal, which means that X,Y, Z are not all g-equivalent.

Let us give an outline of the following proof. First, we will show that certain matrices,
called “almost rectangles”, are tame. Then we construct two tame matrices X1, X2 such
that λ(X1) < 1/3 and λ(X2) > 1/3, but t(X1) = t(X2). This will lead to a contradiction, since
0p×p ≁ 1p×p, as we shall see.
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3 Sandwiches for PCSPs

3.2.1 Line segments are tame

In this subsection it is mostly convenient to regard the arguments of t as tuples x =

(x11, x12, . . . , xpp) rather than matrices. However, we will still use the definitions of area,
g-equivalence, tameness, and cover by identifying tuples with matrices as in (3.3). We will
show that line segments are tame. Line segments are a special case of almost rectangles
which we will define in the next section.
By Fermat’s Little Theorem, since p > 3 is a prime number, there is some q ∈ N such that

p2 = 3q + 1. (3.4)

In the following, let ⟨i⟩ denote the tuple

⟨i⟩ = (1, 1, . . . , 1� �� �
i-times

, 0, 0, . . . , 0).

These tuples are called line segments. In this subsection we will prove that line segments
are tame. Before we prove that, let us remark that the cyclicity of s is inherited to t.

Lemma 3.5. The operation t is cyclic.

Proof. This can be easily seen by using cyclicity of s two times, once the cyclicity of the “outer”

and then of the “inner” s in the definition of t.

Lemma 3.6. Each line segment ⟨i⟩ for i ∈ {0, . . . , p2}, is tame and ⟨0⟩ ≁ ⟨p2⟩.

Proof. First, let us prove by induction that for each i ∈ {0, . . . , q}, we have

⟨q − i⟩ ∼ ⟨q − i+ 1⟩ ∼ · · · ∼ ⟨q⟩ ≁ ⟨q + 1⟩ ∼ · · · ∼ ⟨q + i⟩ ∼ ⟨q + i+ 1⟩.

For the base step i = 0, let

X = (1, . . . , 1� �� �
q-times

, 0, . . . , 0, 0, . . . , 0)

Y = (0, . . . , 0 1, . . . , 1� �� �
q-times

, 0, . . . , 0)

Z = (0, . . . , 0, 0, . . . , 0 1, . . . , 1� �� �
(q + 1)-times

)

Then X,Y, Z is a cover, hence, by Lemma 3.4, they are not all g-equivalent. Since t is cyclic, we

have t(⟨q⟩) = t(X) = t(Y ) and t(⟨q + 1⟩) = t(Z). Thus, ⟨q⟩, ⟨q⟩, ⟨q + 1⟩ are not all g-equivalent, so

⟨q⟩ ≁ ⟨q + 1⟩.
Now assume the claim holds for i− 1. We want to prove it for i. Consider the tuples ⟨q − i⟩, ⟨q +
1⟩, ⟨q+ i⟩. Since (q− i)+ (q+1)+ (q+ i) = 3q+1 = p2, we can shift the tuples to form a cover and

apply the same argument as above to see that ⟨q− i⟩, ⟨q+1⟩, ⟨q+ i⟩ are not all g-equivalent. By the

induction hypothesis, ⟨q+1⟩ ∼ ⟨q+i⟩, hence, ⟨q−i⟩ ≁ ⟨q+1⟩. Since ⟨q+1⟩ ≁ ⟨q−i+1⟩ (again by the

induction hypothesis), we get ⟨q−i⟩ ∼ ⟨q−i+1⟩. Finally, it remains to show that ⟨q+i⟩ ∼ ⟨q+i+1⟩,
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3 Sandwiches for PCSPs

which can be achieved in a similar fashion by using the triples ⟨q − i⟩, ⟨q⟩, ⟨q + i+ 1⟩.
We have shown

⟨0⟩ ∼ ⟨1⟩ ∼ · · · ∼ ⟨q⟩ ≁ ⟨q + 1⟩ ∼ · · · ∼ ⟨2q⟩ ∼ ⟨2q + 1⟩.

Using the same arguments again for ⟨0⟩, ⟨i⟩, ⟨p2− i⟩ with 0 ≤ i ≤ q, we obtain ⟨0⟩ ≁ ⟨p2− i⟩. Hence,

we get

⟨0⟩ ∼ ⟨1⟩ ∼ · · · ∼ ⟨q⟩ ≁ ⟨q + 1⟩ ∼ · · · ∼ ⟨p2⟩.

Since λ(⟨i⟩) < 1/3 ⇔ i ≤ q, all line segments are tame. In particular, we showed that ⟨0⟩ ≁ ⟨p2⟩.

3.2.2 Almost rectangles are tame

Definition 3.7. Let 1 ≤ k1, . . . , kp ≤ p. By

[k1, . . . , kp]

we denote the matrix whose i-th column begins with ki ones followed by p − ki zeros, for each

1 ≤ i ≤ p.

An almost rectangle is a matrix of the form [k, k, . . . , k, l, l, . . . , l] (with arbitrary number of k’s,

including 0 and p) where 0 ≤ k − l ≤ 5|C|. We call the number k − l the size of the step.

The remainder of this subsection is devoted to the proof of the following Proposition:

Proposition 3.8. Each almost rectangle is tame.

First let us state a fact about almost rectangles of small step size.

Lemma 3.9. Each almost rectangle of step size ≤ 1 is tame.

Proof. Note that an almost rectangle of step size 0 or 1 is just a line segment ⟨i⟩, thus, this lemma

follows from Lemma 3.6.

To obtain a contradiction, assume that there is a counterexample to Proposition 3.8. In
the following, let

X = [k, k, . . . , k� �� �
m-times

, l, l, . . . , l] (3.5)

be a minimal counterexample, where minimal means that

(i) X has minimal step size, and

(ii) among the counterexamples with minimal step size, |λ(X)− 1/3| is maximal.

We will separate the proof into two cases, λ(X) ≥ 5/12 and λ(X) < 5/12. In [Bar19] it is
remarked that with a sufficiently large p, any number strictly between 1/3 and 1/2 would
work with the same case distinction and proof idea. The basic idea for both cases is very
similar to the approach in the proof of Lemma 3.6.

21



3 Sandwiches for PCSPs

Lemma 3.10. The area λ(X) for X defined in 3.5 can not be ≥ 5/12.

Proof. Assume that λ(X) ≥ 5/12. Let

k1 =
�p− l

2

�
, k2 =

	p− l

2



, l1 =

�p− k

2

�
, l2 =

	p− k

2



.

Then

l1 + l2 + k = p = k1 + k2 + l, (3.6)

1 ≥ k1 − k2 ≥ 0, and 1 ≥ l1 − l2 ≥ 0. (3.7)

Since k ≥ l, we have k1 ≥ l1 and k2 ≥ l2. Further, by Lemma 3.9, k − l ≥ 2, hence, both k1 − l1

and k2 − l2 are strictly smaller than k − l. Consider the matrices

Yi = [li, li, . . . , li� �� �
m-times

, ki, ki, . . . , ki], i = 1, 2.

By shifting the entries in each row of Yi to the left m times, we get an almost rectangle of smaller

step size than k − l, which is tame by minimality of X. This changes neither the value of t (by

cyclicity of s) nor the area of the matrices. Thus Yi is g-equivalent to a tame matrix of the same

area, hence, tame for i = 1, 2.

Let Y ′
1 (Y ′

2 , resp.) be the matrices obtained from Y1 (Y2, resp.) by shifting the first m columns k

times (k+ l1 times, resp.) down and the remaining columns l times (l+k1 times, resp.) down. Then

X,Y ′
1 , Y

′
2 is a cover (by (3.6)), hence, by Lemma 3.4, X,Y ′

1 , Y
′
2 are not all g-equivalent. Shifting

columns does not change the value of t (by cyclicity of s), thus, alsoX,Y1, Y2 are not all g-equivalent.

Since X,Y ′
1 , Y

′
2 is a cover, we see that

1 = λ(X) + λ(Y ′
1) + λ(Y ′

2) = λ(X) + λ(Y1) + λ(Y2).

By (3.7), we get λ(Y2) ≤ λ(Y1) and since k1−k2 ≤ 1, l1− l2 ≤ 1, we have λ(Y1)−λ(Y2) ≤ p/p2 = 1/p.

This yields

λ(Y1) = 1− λ(X)− λ(Y2) ≤ 1− 5

12
− λ(Y1) +

1

p
.

Since p > 12 by our choice in 3.2, we get

λ(Y2) ≤ λ(Y1) <
1

3
.

Tameness of Y1 and Y2 yields Y1 ∼ Y2 ∼ 0p×p. By Lemma 3.6, 0p×p ≁ 1p×p, thus, since X,Y1, Y2

are not all g-equivalent, we get X ∼ 1p×p, which together with λ(X) ≥ 5/12 > 1/3 yields tameness

of X, a contradiction.

It remains to show that λ(X) < 5/12 also leads to a contradiction, proving that a coun-
terexample X can not exist.

Lemma 3.11. The area λ(X) for X defined in 3.5 can not be smaller than 5/12.
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Proof. By definition of an almost rectangle, the step size of X is at most 5|C|, where C is the

domain of the sandwich for (A,B). Together with p > 60|C|, we have

5

12
> λ(X) ≥ p(k − 5|C|)

p2

which implies

k ≤ 5p

12
+ 5|C| < 5p

12
+

p

12
=

p

2
.

This shows that

2l ≤ k + l ≤ 2k < p.

We divide the proof into two cases again. First let us assume that m < p/2 (remember that m is

the number of rows of X with k entries equal to 1). Define

Y = [l, . . . , l� �� �
m-times

, k, . . . , k� �� �
m-times

, l, . . . , l],

Z = [p− k − l, . . . , p− k − l� �� �
2m-times

, p− 2l, . . . , p− 2l].

Similar to the proof of Lemma 3.10, these matrices form a cover with X by shifting columns down

(and thereby not changing the value of t). Thus, X,Y, Z are not all g-equivalent and λ(X)+λ(Y )+

λ(Z) = 1. Furthermore, Y is obtained by shifting all rows of X to the right m times, which neither

changes the area nor the value of t, hence, λ(X) = λ(Y ) and t(X) = t(Y ). Thus, we have X ∼ Y

and therefore X ≁ Z.

Since p− 2l ≥ p− k − l and (p− 2l)− (p− k − l) = k − l, by shifting the columns of Z to the left

2m times, we get an almost rectangle Z ′ with the same step size as X. However, λ(Z ′) = λ(Z) and

λ(X) ̸= 1/3 (since p is prime), thus, we obtain

|λ(Z)− 1/3|
|λ(X)− 1/3| =

|(1− 2λ(X))− 1/3|
|λ(X)− 1/3| =

|2(λ(X)− 1/3)|
|λ(X)− 1/3| = 2,

hence, |λ(Z)− 1/3| > |λ(X)− 1/3|. By minimality of X, we see that Z ′ is tame. Thus, Z is tame as

well. The calculation also shows, that λ(Z)− 1/3 and λ(X)− 1/3 have opposite signs. Now tameness

of Z and X ≁ Z yield tameness of X, a contradiction.

It remains to show that m ≥ p/2 leads to a contradiction as well. In this case, define

Y = [l, . . . , l, k, . . . , k� �� �
m-times

],

Z = [p− k − l, . . . , p− k − l� �� �
(p−m)-times

, p− 2k, . . . , p− 2k, p− k − l, . . . , p− k − l� �� �
(p−m)-times

].

Again, we get a cover by shifting columns of Y and Z down. The proof in this case is very similar

to the one above. This concludes the proof of the lemma.

Proof of Proposition 3.8. Assume that the proposition is false. Then take a minimal counterexam-

ple X as above. By Lemma 3.10 and Lemma 3.11, the area λ(X) of X can be neither ≥ 5/12 nor

smaller than 5/12, a contradiction.
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3.2.3 The contradiction

Remember that all the proofs in the previous two subsections were based on the assumption
that the finite sandwich structure C for the template (A,B), where A is the template for
1-in-3 and B the template for NAE-3, is tractable. Using a cyclic polymorphism s of C of
arity p > 60|C|, which exists due to Theorem 2.4.4, we constructed the function t, which
we used to define g-equivalence, where g is the homomorphism g : C → B, and tameness.
We saw that 0p×p = ⟨0⟩ ≁ ⟨p2⟩ = 1p×p and almost rectangles are tame. Our aim now is to
lead the assumption to a contradiction by constructing two tame matrices X1, X2 such that
λ(X1) < 1/3 and λ(X2) > 1/3, but t(X1) = t(X2).

Proof of Theorem 3.1. Let C be a tractable finite sandwich and define p, g-equivalence and tameness

as in the previous sections. Then 0p×p ≁ 1p×p. Let

m =
p− 1

2
.

By the choice of p, we have p/3−2|C| > 0. Thus, there are 2|C| > |C| integers between p/3−2|C| /∈ Z
and p/3 − 1. Since s maps to C, by the pigeonhole principle, we find l1, l2 such that

p

3
− 2|C| < l1 < l2 <

p

3

and

s(1, . . . , 1� �� �
l1-times

, 0, . . . , 0) = s(1, . . . , 1� �� �
l2-times

, 0, . . . , 0).

Now define

Xi = [k, . . . , k� �� �
m-times

, li, . . . , li], i = 1, 2,

where k will be chosen such that λ(X1) < 1/3 < λ(X2) as follows. Note that for k ≤ p/3, the area of

both matrices is smaller than 1/3. For k ≥ p/3 + 3|C|, by

λ(Xi) =
mk + (p−m)li

p2
≥

p−1
2 (p/3 + 3|C|) + p+1

2 (p/3 − 2|C|)
p2

=
p2

3 + |C| (p−5)
2

p2
>

1

3
,

we have that the area of both matrices is greater than 1/3. Choose k maximal such that λ(X1) < 1/3.

Since increasing k by one increases the amount of 1’s in the matrix by less than increasing l1 and

since we have l1 < l2, we have that λ(X2) > 1/3.

Further, by

l1 < l2 <
p

3
< k <

p

3
+ 3|C| ≤ l1 + 5|C| < l2 + 5|C|,

we see that 0 ≤ k − li ≤ 5|C| for i = 1, 2, and thus, both matrices are almost rectangles. By

Proposition 3.8, they are tame, hence, X1 ∼ 0p×p and X2 ∼ 1p×p.

It remains to show that t(X1) = t(X2). To see this, note that the inner s in the definition of t is

applied to all columns of the matrices. The first m columns are the same in X1 and X2, hence,
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so are their images under s. The remaining columns also have the same image under s by our

choice of l1, l2. Hence, the outer s is applied to the same values for both matrices, which yields

t(X1) = t(X2), and thus 0p×p ∼ X1 ∼ X2 ∼ 1p×p, a contradiction to Lemma 3.6. Since any CSP

of a finite relational structure is either in P or NP-complete, CSP(C) is NP-complete for any finite

sandwich of (A,B).

This shows that if we want to reduce some PCSP(A,B) to the tractable CSP of a sandwich
structure C, there are cases in which this sandwich has to be infinite. In particular, the
PCSP framework is a proper generalisation of CSPs. On the other hand, in the next section
we will see a characterisation of a class of PCSPs that always reduce to a finite tractable
sandwich.
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In this section we will describe a class of PCSPs that guarantees the existence of a finite
tractable sandwich structure. We will also examine logical aspects of PCSPs. Some PCSPs
can be “solved” by logical sentences. Given a PCSP-template (A,B) (with signature τ)
and a logic L (e.g. first-order logic), we can ask whether there exists a sentence Φ (in
the language of τ) in L whose class of finite models separates the yes-instances from the
no-instances of PCSP(A,B). More precisely, PCSP(A,B) is said to be solvable or definable

by a sentence Φ if the following hold for every finite structure X:

(i) If X → A, then X ⊨ Φ.

(ii) If X ↛ B, then X ⊭ Φ.

If L is first-order logic, we say that PCSP(A,B) is first-order definable by Φ.

4.1 Separability problem

Denote by Mod(Φ) the class of finite models that satisfy Φ. Let Y be the class of yes-
instances and N the class of no-instances of PCSP(A,B), then we have Y ⊆ Mod(Φ) and
N ∩ Mod(Φ) = ∅. In this sense, the yes- and no-instances are separated. Consider the
following question in this setting:

Separability problem for L
For which promise constraint satisfaction problems PCSP(A,B) does

there exist a sentence Φ ∈ L such that PCSP(A,B) is solvable by Φ?

This problem is solved for several logics in the context of CSPs (i.e. when A = B), including
first-order logic [Ats08]. In [Mot24], A. Mottet gave an answer to this question in the PCSP
setting (see Theorem 4.1.2) in the case that L is first-order logic. Let us first define a concept
that, in the CSP and PCSP context, is strongly connected to first-order definability.

Definition 4.1.1 (Duality). Let F be a family of finite structures. We say that a structure X is

F-free, if there is no F ∈ F such that F → X. A PCSP-template (A,B) is said to have duality F
if the following hold for every finite X:

(i) If X → A, then X is F-free.

(ii) If X ↛ B, then X is not F-free.

If F is a finite set, we say that (A,B) has finite duality.

If any of the definitions above applies to (A,A), we say that the structure A has the corresponding

property (for example “A has finite duality”).
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Now we are ready to state the answer to the Separability problem for first-order logic.

Theorem 4.1.2 ([Mot24]). Let (A,B) be a finite PCSP template with finite signature τ . The

following are equivalent:

(i) PCSP(A,B) is first-order definable.

(ii) (A,B) has finite duality.

(iii) There exists a finite structure C with finite duality and such that A → C → B.

Note that if some PCSP is first-order definable, then we get a polynomial-time algorithm
by checking the truth of the corresponding sentence Φ in a given input structure X. It is
known that this can be done in O(|X||Φ|).
This gives a sufficient condition for reducibility of a PCSP to a finite tractable sandwich. In
the remainder of this chapter, we will show Theorem 4.1.2 by following the proof presented
in [Mot24].

4.2 Finite duality and first-order definability

The equivalence of finite duality of a finite structure and its CSP being first-order definable
was first proven by A. Atserias in [Ats08]. We will use the following stronger statement by
B. Rossman in the proof of Theorem 4.1.2. We say that a sentence Φ is existential positive

if it does not contain universal quantifiers and negation symbols.

Theorem 4.2.1 (Theorem 4.11 in [Ros08]). Let P ⊆ Q be classes of structures, and Φ be a first-

order sentence such that:

(i) for all finite X,Y such that X ∈ P and X → Y, we have Y |= Φ,

(ii) for all finite X,Y such that X |= Φ and X → Y, we have Y ∈ Q.

Then there exists an existential positive sentence Ψ such that P ⊆ Mod(Ψ) ⊆ Q.

Let us show that this indeed implies Atserias’s result.

Theorem 4.2.2. Let A be a finite relational structure. Then A has finite duality if and only if

CSP(A) is first-order definable.

Proof. Assume first that A has finite duality F . Identify every F = (F, (Ri)
m
i=1) ∈ F with a primi-

tive positive sentence ϕF as follows: Enumerate F = {f1, . . . , fn} and let ϕF = ∃x1, . . . , xn

�
i≤m ϕi

where each ϕi is a conjunction that encodes all tuples in Ri, i.e. for

Ri = {(f1,1, . . . , f1,ki
), . . . , (fmi,1, . . . , fmi,ki

)},

we have ϕi =
�

j≤mi
Ri(xj,1, . . . , xj,ki

). In this case, we call F the canonical database of ϕF . Then

for any structure X and F ∈ F , we have F → X if and only if ϕF is satisfiable in X, i.e. that there

are x1, . . . , xn ∈ X which satisfy the corresponding conjunction
�

i≤m ϕi. Thus, CSP(A) is solvable
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by Φ =
�

F∈F ¬ϕF .

For the other implication assume that CSP(A) is solvable by a first-order sentence Φ. Let

P = Q = {X : X ↛ A} = {X : X |= ¬Φ}
Then for any finite X,Y such that X ∈ P and X → Y, we have Y ↛ A (otherwise X → A), thus

Y |= ¬Φ. On the other hand, if X |= ¬Φ and X → Y, again, Y ↛ A, hence, Y ∈ Q. Applying

Theorem 4.2.1 yields an existential positive sentence Ψ such that P = Mod(Ψ) = {X : X ↛ A}.
Without loss of generality we can assume that Ψ is of the form

�
i≤k ∃x1, . . . , xmψi where each ψi

is a conjunction of positive literals that does not contain any equalities (eliminate any equalities by

merging the corresponding variables). Reversing the construction from above, each ψi encodes a

finite structure Fi and we have that

X → A ⇔ X /∈ P ⇔ X |= ¬Ψ ⇔ ∀i ≤ k : Fi ↛ X

Hence, A has finite duality F = {Fi : i ≤ k}.

In the proof of the implication (ii) ⇒ (iii) of Theorem 4.1.2, we will, in particular, make
use of the finite number of orbits of an ω-categorical structure. The following result, initially
by Cherlin, Shelah, and Shi [CSS99], and improved by Hubička and Nešetřil [HN19], yields
existence of an ω-categorical structure with duality F for any finite set F of finite connected
structures. We call a structure connected if it is not isomorphic to the disjoint union of two
non-empty structures.

Theorem 4.2.3. Let F be a finite set of finite connected structures in a finite relational signature.

There exists an ω-categorical structure C such that C has duality F . Moreover, C can be chosen

to have an expansion C+ by finitely many relations such that C+ is homogeneous with the Ramsey

property.

4.3 1-tolerant polymorphisms

For a structure C+ given by Theorem 4.2.3 and any given f : Cn → C, we can apply Theorem
2.9.4. In particular, if f is a polymorphism, it locally interpolates a polymorphism that
is canonical with respect to Aut(C+). Let us now introduce a property of polymorphisms
that is preserved under this local interpolation.

Definition 4.3.1 (1-tolerant polymorphism). A polymorphism of a structure A is called 1-tolerant

if it satisfies that for any m-tuples a1, . . . , an ∈ Am such that all but at most one of them are in

some relation RA ⊆ Am, we have that f(a1, . . . , an) ∈ RA.

Lemma 4.3.2 ([Mot24]). Let A be a relational structure. Let f be a 1-tolerant polymorphism of A

and let G be a subset of Aut(A). Let g be an operation that is locally interpolated by f modulo G.

Then g is a 1-tolerant polymorphism of A.

Proof. Let g be locally interpolated by f moduloG and R ⊆ Am be a relation ofA. Let a1, . . . , an ∈
Am be such that all but at most one of them are in R. Then there exist α, α1, . . . , αn ∈ G such

that

g(a1, . . . , an) = α(f(α1(a1), . . . , αn(an))).
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Now for all but at most one i ≤ n, we have that αi(ai) ∈ R, since all αi are automorphisms. By

1-tolerance of f , we get that f(α1(a1), . . . , αn(an)) ∈ R. Finally, α is an automorphism, hence,

α(f(α1(a1), . . . , αn(an))) = g(a1, . . . , an) ∈ R.

Before getting to the proof of Theorem 4.1.2, let us state a result that connects finite
duality of finite-domain or ω-categorical structures to 1-tolerant polymorphisms.

Theorem 4.3.3 ([LLT07]). Let A be a finite or ω-categorical structure. The following are equiva-

lent:

(i) A has finite duality.

(ii) A has a 1-tolerant polymorphism.

4.4 A compactness argument

In the proof of Theorem 4.1.2, we will use a so-called “compactness argument”. This
notion can be found in various papers. Many times the argument uses König’s tree lemma.
This lemma states that a rooted tree T with an infinite number of nodes, each with a finite
number of children, has a branch of infinite length. The proof of Lemma 4.4.1 is an example
of such a compactness argument.

Lemma 4.4.1 ([BD13]). Let τ be any relational signature. Then a countable τ -structure C admits

a homomorphism (an embedding) to a countable ω-categorical τ -structure B with oligomorphic auto-

morphism group if and only if every finite substructure of C admits a homomorphism (an embedding)

to B.

Proof. We proof the statement for homomorphisms. The arguments in the other case are analogous.

The forward implication is trivial. Let us therefore assume that every finite substructure of C admits

a homomorphism to B. We will use König’s tree lemma to show the existence of a homomorphism

from C to B. Let c1, c2, . . . be an enumeration of C. Construct a rooted tree with all nodes being

on some level n ≥ 0. On level n the nodes represent equivalence classes of homomorphisms from

the substructure Cn of C induced by Cn := {c1, . . . , cn} to B. Two such homomorphisms are

equivalent, if they map the (ordered) tuple (c1, . . . , cn) to the same n-orbit of B or, equivalently,

if for such homomorphisms f and g, there is some α ∈ Aut(B) with α ◦ f = g. Two equivalence

classes of homomorphisms on level n and n + 1 are adjacent if there are representatives fn and

fn+1, respectively, such that fn is the restriction of fn+1 to Cn. As there are only finitely many

n-orbits in B for each n ∈ N, each node has finitely many children. For each n ∈ N, we can

map Cn homomorphically to B, so there are nodes on each level. Thus, we can apply König’s

lemma and get an infinite branch. We can use this branch to define a homomorphism h : C → B

inductively as follows. Denote the equivalence classes of the nodes of this branch by (Hn)n∈N
where Hn is represented by the node on the n-th level. We want to define a sequence (hn)n∈N of

homomorphisms hn : Cn → B such that hn ∈ Hn and hn+1|Cn
= hn for all n ∈ N. Let h0 be the

empty function. Then h0 clearly meets the requirements. Now assume that h0, . . . , hn are already

defined. Since the nodes representing Hn and Hn+1 are adjacent, there is some hn+1 ∈ Hn+1 such

that hn+1 extends hn, hence, this function satisfies the requirements. Thus, inductively defining hn
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for n ∈ N in this way, we get a chain of homomorphisms. Hence, by setting h(cn) := hn(cn) for all

n ∈ N, we get a well-defined function h : C → B. Clearly, this is a homomorphism from C → B.

4.5 A characterisation of first-order solvable finite-domain PCSPs

The proof of Theorem 4.1.2 uses the construction of a finite structure from an infinite one
by factoring by an automorphism group. Let us explain this construction in a more general
setting.

Definition 4.5.1. Let C be a relational structure and G ↷ C a permutation group. Then G

induces an equivalence relation ∼G by

c1 ∼G c2 ⇔ ∃g ∈ G : g(c1) = c2.

By C/G we denote the structure whose domain consists of the equivalence classes of ∼G, and such

that for every relatio n RC ⊆ Ck in the signature of C, we have (O1, . . . ,Ok) ∈ RC/G if, and only

if, there exist c1 ∈ O1, . . . , ck ∈ Ok with (c1, . . . , ck) ∈ RC.

Let us now prove the central statement of this section:

Proof of Theorem 4.1.2.

(i) ⇒ (ii) : This will follow from Theorem 4.2.1 in a similar fashion as in the proof of Theorem

4.2.2. Let P be the class of finite structures X such that X ↛ B, and Q be the class of finite

structures X such that X ↛ A. Let Φ be a first-order sentence solving PCSP(A,B). Then we have

P ⊆ Mod(¬Φ) ⊆ Q. Moreover, if X ∈ P and X → Y, then Y ↛ B, since X ↛ B and hence,

Y |= ¬Φ. Similarly, if X |= ¬Φ and X → Y, then Y ↛ A, since X ↛ A, hence, Y ∈ Q. So we

can apply Theorem 4.2.1 to obtain an existential positive sentence Ψ such that P ⊆ Mod(Ψ) ⊆ Q.

Now Ψ is equivalent to a disjunction
�

i≤m Ψi of primitive positive sentences Ψi not containing

equalities (otherwise we can merge the corresponding variables). Define FΨi for i ≤ m as follows:

For Ψi = ∃x1, . . . , xn(ψ1∧· · ·∧ψm) with positive atomic formulas ψj for j ≤ m, let F = {f1, . . . , fn}
with distinct elements fi ̸= fj for 1 ≤ i ̸= j ≤ n. For each ψj = R(xj1 , . . . , xjk) with R ∈ τ of arity

k ∈ N, add (fj1 , . . . , fjk) to RFΨi . Note that for any τ -structure X and any i ≤ m, we have X ⊨ Ψi

if and only if FΨi
→ X. Let F := {FΨi

: i ≤ m}. Let us now show that (A,B) has duality F . For

any finite X, if there exists F ∈ F such that F → X, then X |= Ψ, hence, X ∈ Q and X ↛ A. On

the other hand, if X ↛ B then X ∈ P, thus, X |= Ψ and therefore, there is some F ∈ F such that

F → X. This means that F forms a duality for (A,B).

(ii) ⇒ (iii) : Let F be a duality for PCSP(A,B). Let us show that without loss of generality we can

assume that F consists of connected structures. Assume there is some F ∈ F that is isomorphic

to the disjoint union of two non-empty structures F1,F2. Since A is F-free, we have F ↛ A,

hence, either F1 ↛ A or F2 ↛ A. Assume without loss of generality that F1 ↛ A and define

F ′ := (F ∪ {F1})\{F}. We want to show that F ′ is a duality for (A,B). Therefore, suppose

X → A. Then X is F-free and since F1 ↛ A, also F1-free, hence, F ′-free. On the other hand, if X

is F ′-free, then X is, in particular, F-free, so X → B.
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Now by Theorem 4.2.3, there exists an ω-categorical structure C that has duality F . Since A is F-

free, we haveA → C. Every finite substructure of C is F-free and therefore admits a homomorphism

to B. By the compactness argument presented in Lemma 4.4.1, we get C → B. Together, we have

A → C → B.

Since C is ω-categorical and has finite duality, Theorem 4.3.3 yields a 1-tolerant polymorphism

f : Cn → C. Further, Theorem 4.2.3 yields that there is a homogeneous Ramsey expansion C+ of C

by finitely many relations. Since C+ is homogeneous and has finite signature, it is ω-categorical. By

Theorem 2.9.4, f locally interpolates an operation g : Cn → C modulo Aut(C+) which is canonical

with respect to Aut(C+). By Lemma 4.3.2, g is a 1-tolerant polymorphism of C.

Consider C′ := C/Aut(C+). Then C′ is finite. Define g′ : (C ′)n → C ′ as follows: Let g′(O1, . . . ,On)

be the ∼Aut(C+)-class of g(c1, . . . , cn) for any c1 ∈ O1, . . . , cn ∈ On. This definition does not depend

on the chosen elements, since g is canonical with respect to C+. It can be easily seen that g′ is a

1-tolerant polymorphism of C′.
Finally, let h : C → B be a homomorphism. Since Aut(C+) is extremely amenable by Theorem

2.8.3 and Aut(B) is oligomorphic as an automorphism group of a finite structure, we can apply

Theorem 2.9.3 to Aut(C+) and Aut(B) to obtain a homomorphism h′ that is canonical from C+ to

B. Again, it can be easily verified that h′ induces a homomorphism h′′ : C′ → B. Hence, we have

A → C → C′ → B, in particular, A → C′ → B. Since C′ has a 1-tolerant polymorphism g′, by
Theorem 4.3.3, C′ has finite duality.

(iii) ⇒ (i) : By Theorem 4.2.2, CSP(C) is definable by a first-order sentence Φ. This sentence also

proves that PCSP(A,B) is first-order definable.

We saw a characterisation of first-order solvability of PCSP(A,B) by (A,B) having finite
duality. Now let us show that there are proper examples of PCSP templates with finite
duality (i.e. templates (A,B) with finite duality such that neither A nor B has finite
duality).

Proposition 4.5.2 ([Mot24]). There is a PCSP template (A,B) with finite duality such that neither

A nor B has finite duality.

Proof. Consider the following four structures in relational signature with two binary symbols R and

B (denoted by red (dashed) and blue (solid) arrows):

A C B F2

Then clearlyA → C → B. Moreover, C has the duality that consists of the following four structures:

an R-path of length 2, a B-path of length 2, a graph consisting of 3 nodes x1, x2, x3 with x1Bx2
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and x3Rx2 (this prevents a vertex with incoming B- and R-edges) and a graph consisting of 3 nodes

y1, y2, y3 with y2By1 and y2Ry3 (this prevents a vertex with outgoing B- and R-edges).

Let us show that neither A nor B have finite duality. Let us start with A. Let S1 + S2 (S1 − S2,

resp.) for a structure S1 with a designated endpoint and a directed path S2 define a concatenation

such that the designated endpoint of S1 and the starting point (endpoint, resp.) of S2 are merged

and the other nodes are added without further merging any nodes. For example, A = P + P for

P being a path consisting of an R-edge followed by a B-edge. Let further R be a path consisting

of a single R-edge, and B′ be a path consisting of a single B-edge. Now define for every n ≥ 1 the

structure

Fn := B′ + P− P+ · · ·+ P− P� �� �
n-times P−P

+P+R,

by inductively defining the endpoints of the partial sums as the last added vertex, such that this

definition coincides for n = 2 with the structure shown above. We have that Fn ↛ A for all n ≥ 1.

However, every Fn can be mapped to A homomorphically if we remove one edge. Assume there is

some finite duality F for A. Let m := max{|F| : F ∈ F}. Since |Fm| = 4m+5 > m, if F → Fm for

some F ∈ F , then there is at least one edge we can remove and obtain a structure F′
m such that

F → F′
m. Thus, also F → A, a contradiction. But since Fm ↛ A, there must be some F ∈ F with

F → Fm, contradicting the assumption that A has finite duality.

The proof for B works similarly by colouring all edges in each Fn with the same colour.
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5 A pair (C,B) with ω-categorical C and
finite B that is not finitely tractable

The first approach when trying to prove tractability for a PCSP via the sandwiching method
is to look for a finite tractable sandwich. However, in Chapter 3, we have seen that in some
cases there is no finite tractable sandwich structure, but there is an infinite one. Even
though oligomorphic clones enjoy many properties of function clones on finite sets, ω-
categorical structures encode a much larger class of CSPs than finite structures. So there
is hope that even if there is no finite tractable sandwich for a given PCSP template, in
some cases we might still be able to find an ω-categorical one. In this chapter we show that
under the assumption that P ≠ NP, there is an example of a pair (C,B) as in Question 1.3
that yields a negative answer, i.e. that the pair (C,B) is not finitely tractable.

Theorem 5.1. There exists a pair (C,B) of τ -structures with tractable ω-categorical C and finite

B such that C → B and (C,B) is not finitely tractable, unless P = NP.

Note that if we are in the situation of Theorem 5.1 and we would find a finite structure A

with NP-complete CSP such that A → C and such that there is no finite tractable A′ with
A → A′ → B, then we would have a PCSP template (A,B) with a tractable ω-categorical
sandwich C such that (A,B) is not finitely tractable, answering Question 1.4.

5.1 Some properties of (Q;<) and (Q;<, I4)

We will base the construction of a pair (C,B) as in Theorem 5.1 on a well-known example
of an ω-categorical structure, namely (Q;<). We will show ω-categoricity by proving that
(Q;<) is homogeneous. Then, it will follow from homogeneity in a finite relational language.

Proposition 5.1.1. (Q, <) is homogeneous.

Proof. Let A,B ⊆ Q be finite subsets of Q and let β : A → B be an isomorphism. Enumerate

Q\A := (ci)i∈N and Q\B := (dj)j∈N. Define α0 := β. We will use a well-known back-and-

forth argument to inductively define partial isomorphisms αk : Ak → Bk between finite subsets

Ak, Bk ⊆ Q with
�

k∈N Ak =
�

k∈N Bk = Q such that for l < k we have Al ⊆ Ak and αk|Al
= αl.

Suppose α0, . . . , αm for m ∈ N are already defined. Define i0 := min{i ∈ N : ci /∈ Am}. Take

a partition of Am into sets A< of elements smaller than ci0 and A> of elements greater than ci0 .

By density of Q and since αm is a partial isomorphism, there exists some d ∈ Q\Bm such that

x < d < y for all x ∈ αm(A<), y ∈ αm(A>). Let j0 be the index of d in the enumeration of Q\B.

Then, αm ∪ {(ci0 , dj0)} is a partial isomorphism extending αm. Similarly, for j1 := min{j ∈ N :

dj /∈ (Bm ∪ {dj0})}, we find ci1 ∈ Q\(Am ∪ {ci0}) such that αm+1 := αm ∪ {(ci0 , dj0), (ci1 , dj1)} is

a partial isomorphism. Now define α =
�

k∈N αk. By construction, α is automorphism extending

β.
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Proposition 5.1.2. A countable homogeneous relational structure A with finite signature is ω-

categorical.

Proof. We want to show that A has only finitely many n-orbits for each n ≥ 1. Let n ∈ N
and (a1, . . . , an), (b1, . . . , bn) ∈ An. If the mapping ai �→ bi is a partial isomorphism between the

substructures induced by {a1, . . . , an} and {b1, . . . , bn}, then it can be extended to an automorphism

by homogeneity. This shows that the orbit of some tuple (a1, . . . , an) only depends on the relations

(including equality) between its entries. Since the signature is finite, there are only finitely many

possibilities. Hence, there can only be finitely many n-orbits.

Corollary 5.1.3. (Q;<) is ω-categorical.

Proof. This follows from Proposition 5.1.1 and Proposition 5.1.3.

The Ramsey property is a powerful tool for generating canonical functions. We want to
show that (Q;<) is Ramsey by using the finite version of Ramsey’s Theorem.

Theorem 5.1.4 (Finite version of Ramsey’s theorem, [Ram30]). Let s,m, c ∈ N and let
�
[l]
s

�
denote

the set of all s-subsets of [l]. Then there exists a positive integer l such that for every χ :
�
[l]
s

� → [c]

there exists a monochromatic M ∈ �
[l]
m

�
, i.e. χ is constant on all s-subsets of M .

Proposition 5.1.5. The class of finite linear orders is a Ramsey class. Therefore, (Q;<) is Ramsey

and Aut(Q;<) is extremely amenable.

Proof. Note that for any two finite linear orders L1, L2 with n1 and n2 elements, respectively, L1

can be embedded into L2 if and only if n1 ≤ n2 by mapping it to any substructure of L2 that has

n1 elements. The corresponding embedding must map the smallest element to the smallest and so

on, hence, there is a one to one correspondence between subsets of L2 size n1 and embeddings of

L1 into L2. Thus, it is a direct consequence of Theorem 5.1.4 that the class of finite linear orders is

a Ramsey class. Since Age(Q;<) is precisely the class of finite linear orders, (Q;<) is Ramsey, and

since it is countable and homogeneous, by Theorem 2.8.3, Aut(Q;<) is extremely amenable.

For convenience, we will add another relation to the signature of (Q;<) and use the
obtained structure to construct a pair (C,B) as in Theorem 5.1.

Definition 5.1.6. The relation I4 is defined by

I4(x, y, u, v) ⇔ (x = y) ⇒ (u = v).

Lemma 5.1.7 ([BCP10]). Let f be a function from An to A that depends on all arguments. Then

the following are equivalent:

(i) f is injective.

(ii) f preserves the relation I4 defined by x = y ⇒ u = v.

34



5 A pair (C,B) with ω-categorical C and finite B that is not finitely tractable

Proof. For the implication from (i) to (ii), suppose that f is injective and let a, b, c, d ∈ An such

that ai = bi ⇒ ci ⇒ di for all i ≤ n. Let t = (t1, t2, t3, t4) := (f(a), f(b), f(c), f(d)). If a = b, then

c = d and thus, t1 = t2 and t3 = t4. By injectivity of f , if a ̸= b, we have f(a) ̸= f(b). In both

cases t1 = t2 ⇒ t3 = t4 is satisfied.

For the backwards implication, suppose that there are distinct a, b ∈ An with f(a) = f(b). Let

J be the set of all j ∈ {1, . . . , n} such that aj ̸= bj . Since a ̸= b, J is non-empty. Let j ∈ J be

arbitrary. Since f depends on all arguments, we can find c, d ∈ An with f(c) ̸= f(d), such that

ci = di for all i ≤ n with i ̸= j, and cj ̸= dj . We claim that (a, b, c, d) shows that f does not

preserve I4. Note that if ai = bi then ci = di by construction. Thus, I4(ai, bi, ci, di) for all i ≤ n,

but f(a) = f(b) ∧ f(c) ̸= f(d).

Since I4 is preserved by any injective function, adding it to the signature of a relational
structure will not change the automorphism group. Hence, we obtain the following corol-
lary.

Corollary 5.1.8. (Q;<, I4) is a homogeneous Ramsey structure.

Proof. Since I4 is preserved by all injective functions, we have Aut(Q;<) = Aut(Q;<, I4). Since

(Q;<) is a homogeneous Ramsey structure, Proposition 2.8.5 yields that (Q;<, I4) is, too.

5.2 Definition and some properties of C

Definition 5.2.1. In the following, let C be the structure with domain C := Q3 and the following

relations (for x ∈ C we denote by xi the i-th entry of x):

• For any pair (i, j) with 1 ≤ i ̸= j ≤ 3 define the unary relation

<i,j (x) ⇔ xi < xj .

• For any pair (i, j) with 1 ≤ i, j ≤ 3 define the binary relation

<′
i,j (x, y) ⇔ xi < yj .

• For any k ≤ 3 and k-tuples (i1, . . . , ik), (j1, . . . , jk), each consisting of pairwise different entries

≤ 3, define the binary compatibility relation

S(i1,...,ik),(j1,...,jk)(x, y) ⇔ ∀l ≤ k : xil = yjl

for x, y ∈ C. For k = 1, we will also write Si,j instead of S(i),(j).

• For any two pairs (i1, i2), (j1, j2) with 1 ≤ i1 ̸= i2 ≤ 3, 1 ≤ j1 ̸= j2 ≤ 3 define the binary

relation

I(i1,i2),(j1,j2)(x, y) ⇔ (xi1 = xi2) ⇒ (yj1 = yj2)

for x, y ∈ C.
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Lemma 5.2.2. Let C be the structure from Definition 5.2.1. Then

Pol(C) = Pol(Q;<, I4) ↷ Q3.

Proof. “⊆”: Let f : (Q3)n → Q3 ∈ Pol(C). Define f ′ : Qn → Q as follows: For (q1, . . . , qn) ∈ Qn,

let xi := (qi, qi, qi) ∈ Q3 for i ≤ n and define f ′(q1, . . . , qn) to be the first entry of f(x1, . . . , xn). To

obtain f = f ′ ↷ Q3 we will show that if a tuple (q1, . . . , qn) ∈ Qn appears as a row in any n-tuple

(x1, . . . , xn) ∈ Q3 with xj = (xj
1, x

j
2, x

j
3), i.e. there is i ≤ 3 such that xj

i = qj for all j ≤ n, then the

i-th entry of f(x1, . . . , xn) is f ′(q1, . . . , qn).
For any (x1, . . . , xn), (y1, . . . , yn) ∈ (Q3)n with (x1

i , . . . , x
n
i ) = (y1j , . . . , y

n
j ) for some 1 ≤ i, j ≤ 3, we

have Si,j(x
l, yl) for all l ≤ n. Since f is a polymorphism, we get Si,j(f(x

1, . . . , xn), f(y1, . . . , yn)),

which means f(x1, . . . , xn)i = f(y1, . . . , yn)j .

Thus, we get f = f ′ ↷ Q3. The definitions of <i,j and I(i1,i2),(j1,j2) guarantee f ′ ∈ Pol(Q;<, I4).

“⊇”: For every f ∈ Pol(Q, <, I4), we have that f ↷ Q3 ∈ Pol(C). This is readily checked.

Later in this chapter we want to obtain a factor structure consisting of all 1-orbits of C.
Let us show that this set is finite.

Lemma 5.2.3. Let C be the structure from Definition 5.2.1. Then C is homogeneous. In particular,

C is ω-categorical.

Proof. Let C1,C2 be finite substructures of C and α0 : C1 → C2 a partial isomorphism. Define

Di for i ≤ 2 as the set of entries appearing in some c ∈ Ci and D1 and D2 as the substructures

of (Q;<, I4) induced by D1 and D2. Then if some element d ∈ D1 appears as an entry of two

elements of C1, i.e. d = ci = c′j for some c = (c1, c2, c3), c
′ = (c′1, c

′
2, c

′
3) ∈ C1 and 1 ≤ i, j ≤ 3, the

relation Si,j guarantees that α0(c)i = α0(c
′)j , hence, α0 induces a function β0 : D1 → D2. By the

relations <′
i,j , and since α0 is a partial isomorphism, we have that β0 and its inverse preserve <.

Hence, β0 and its inverse are injective and thus preserve I4. So β0 is a partial isomorphism. By

homogeneity of (Q;<, I4), we can extend β0 to an automorphism β of (Q;<, I4). Now α := β ↷ Q3

is an automorphism of C extending α0. This yields homogeneity of C. As a homogeneous structure

in a finite relational language, C is ω-categorical.

The relation I4 is an Ord-Horn relation (see [NB95] for an introduction of Ord-Horn),
hence, (Q;<, I4) belongs to the well-known class of structures with Ord-Horn constraint
languages. Thus, it is tractable [NB95]. Since Pol(C) = Pol(Q;<, I4) ↷ Q3, by the function
ϕ : f �→ f ↷ Q3, we find a bijection from Pol(Q;<, I4) to Pol(C). Equip Pol(Q;<, I4) and
Pol(C) with the topology of pointwise convergence. Fixing the behaviour of functions in
Pol(Q;<, I4) on a finite subset fixes the behaviour of functions in Pol(C) on the finitely many
induced triples and vice versa. Since the behaviour of functions on finite subsets determines
the topology of pointwise convergence, ϕ and its inverse are continuous as functions between
the topological clones. Hence, the polymorphism clones are topologically isomorphic. Since
the complexity of an ω-categorical structure depends only on its topological polymorphism
clone and (Q;<, I4) is tractable, C is tractable as well [BP15]. Note that tractability also
follows from C having a primitive positive interpretation in (Q;<, I4). This yields the
following corollary.

Corollary 5.2.4. Let C be the structure from Definition 5.2.1. Then C is tractable.
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5 A pair (C,B) with ω-categorical C and finite B that is not finitely tractable

Definition 5.2.5. Let A be a set and G ↷ A a permutation group. Then f : An → A with n ≥ 2

is called pseudo-cyclic with respect to G if there exist g1, g2 ∈ G such that

g1 ◦ f(a1, . . . , an) = g2 ◦ f(a2, . . . , an, a1),

for all a1, . . . , an ∈ A.

Let A be a relational structure, then we call f : An → A with n ≥ 2 pseudo-cyclic if it is pseudo-

cyclic with respect to Aut(A).

We will later use a Ramsey argument to show that any polymorphism of the factor
structure C/Aut(C) (see Definition 5.3.1) can be lifted to a canonical polymorphism on C.
Moreover, we will show that cyclic polymorphisms are liftable to pseudo-cyclic polymor-
phisms. To prove NP-completeness of CSP(C/Aut(C)), we will use the fact that there can
be no pseudo-cyclic polymorphism on C.

Lemma 5.2.6. Let C be the structure from Definition 5.2.1. Then Pol(C) does not contain a

pseudo-cyclic polymorphism.

Proof. First, note that all polymorphisms of C that depend on all arguments are injective. To see

this, suppose that we have f : Cn → C ∈ Pol(C) that depends on all arguments. By Lemma 5.2.2

we have f ′ ∈ Pol(Q;<, I4) such that f = f ′ ↷ Q3. Since f ′ preserves I4 and also depends on all

arguments, it is injective by Lemma 5.1.7, and thus, f is injective, too.

Suppose we have a pseudo-cyclic polymorphism f : Cm → C that does not depend on all arguments.

Assume without loss of generality it depends only on x1, . . . , xn with n < m. Then by defining

f ′(x1, . . . , xn) := f(x1, . . . , xn, xn, . . . , xn), we get a pseudo-cyclic polymorphism that does depend

on all arguments. Hence, without loss of generality let us assume that we have a pseudo-cyclic

polymorphism f : Cn → C that depends on all arguments. Then f = f ′ ↷ Q3 for some pseudo-

cyclic f ′ ∈ Pol(Q;<, I4). Consider

d1 := f ′(1, 0, . . . , 0), d2 := f ′(0, 1, 0, . . . , 0), . . . , dn := f ′(0, . . . , 0, 1)

Suppose that there are α1, α2 ∈ Aut(Q;<, I4) such that α1(di) = α2(di+1) for all i ≤ n − 1 and

α1(dn) = α2(d1). Since f ′ is injective, we have d1 < d2 or d2 < d1. Assume without loss of

generality d1 < d2 (the other case is analogous). Since α1, α2 preserve <, we have αj(di1) < αj(di2)

if and only if di1 < di2 for j ≤ 2 and i1, i2 ≤ n. Thus,

d1 < d2 ⇔ α1(d1) < α1(d2)

⇔ α2(d2) < α2(d3)

⇔ d2 < d3

. . .

⇔ dn−1 < dn

⇔ α1(dn−1) < α1(dn)

⇔ α2(dn) < α2(d1)

⇔ dn < d1.

This yields d1 < d2 < · · · < dn < d1, a contradiction.
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5 A pair (C,B) with ω-categorical C and finite B that is not finitely tractable

Finally, we show that C is Ramsey. This will prove useful when lifting polymorphisms
from the finite factor structure to polymorphisms on C.

Proposition 5.2.7. C is a homogeneous Ramsey structure.

Proof. By Lemma 5.2.3, C is homogeneous. Since C is countable and homogeneous, by Theorem

2.8.3, being Ramsey is equivalent to Aut(C) being extremely amenable. With respect to the topology

of pointwise convergence, Aut(Q;<, I4) is topologically isomorphic to Aut(C) by f �→ f ↷ Q3. Since

Aut(Q;<, I4) is extremely amenable, so is Aut(C), hence, C is Ramsey.

5.3 Definition and some properties of B

Since C is ω-categorical, in particular it only has finitely many 1-orbits. Factoring C by its
automorphism group is thus a natural choice to obtain a finite homomorphic image of C.
This approach will prove sufficient to obtain a finite structure B with the same signature
as C such that (C,B) satisfies the properties in Theorem 5.1.

Definition 5.3.1. In the following, let B := C/Aut(C), i.e. B is the set of 1-orbits of C under

Aut(C) = Aut(Q;<, I4) ↷ Q3 (since C is ω-categorical, this set is finite) and the relations are

defined as follows: For any relation RC on C with arity k, we have

RB(O1, . . . ,Ok) ⇔ ∃c1 ∈ O1, . . . , ck ∈ Ok : RC(c1, . . . , ck)

for all O1, . . . ,Ok ∈ B.

Note that C → B, since relations of B are precisely the images of those of C under
the factor map. Let us now show that we can lift polymorphisms from B to canonical
polymorphisms in C.

Proposition 5.3.2. Let C and B be the structures from Definition 5.2.1 and 5.3.1, respectively. Let

f ∈ Pol(B)(n). Then there exists f ′′ ∈ Pol(Q;<, I4)
(n) that is canonical with respect to Aut(Q;<

, I4), and such that f ′′ ↷ B = f .

Proof. For any x, y, z ∈ Qn with Oi := OC
�
(xi, yi, zi)

�
for 1 ≤ i ≤ n, define

f̂(x, y, z) := f(O1, . . . ,On).

We can interpret f̂(x, y, z) as an element in B as well as a C-orbit (a set). We want to define a

function f ′′ : Qn → Q inductively such that for all x, y ∈ Qn we have that the order relation between

f ′′(x) and f ′′(y) is the same as the order relation between q1 and q2 for any (q1, q2, q3) ∈ f̂(x, y, z)

with any z ∈ Qn. This is necessary for f ′′ to act on orbits in the same way as f does. Let us first

observe that the required order relation between f ′′(x) and f ′′(y) does not depend on z. We even

obtain the stronger statement that whenever x and y appear in the input of f̂ , the order relation

between the corresponding entries of a tuple in the image under f̂ (interpreted as a C-orbit) will

always be the same, e.g. if we have (q1, q2, q3) ∈ f̂(x, y, z1) with q1 < q2, then (p1, p2, p3) ∈ f̂(z2, y, x)

satisfies p3 < p2 for any z1, z2 ∈ Qn.

Let x1, x2, x3, y1, y2, y3 ∈ Qn and xi1 = yj1 , xi2 = yj2 with 1 ≤ i1 ̸= i2 ≤ 3, 1 ≤ j1 ̸= j2 ≤ 3. For
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5 A pair (C,B) with ω-categorical C and finite B that is not finitely tractable

Oi := OC
�
(x1

i , x
2
i , x

3
i )
�
, O′

i := OC
�
(y1i , y

2
i , y

3
i )
�
, i ≤ n, we have SB

(i1,i2),(j1,j2)

�Oi,O′
i

�
for all i ≤ n.

Thus, since f is a polymorphism, we get

SB
(i1,i2),(j1,j2)

�
f̂(x1, x2, x3), f̂(y1, y2, y3)

�
,

hence, there are tuples (p1, p2, p3) ∈ f̂(x1, x2, x3), (q1, q2, q3) ∈ f̂(y1, y2, y3) with pi1 = qj1 and

pi2 = qj2 . In particular, the order relation between the i1-th and the i2-th entry of a tuple in

f̂(x1, x2, x3) coincide with the order relation between the j1-th and the j2-th entry of a tuple in

f̂(y1, y2, y3).

This shows that if we want to define f ′′ as mentioned above, then f̂ determines a unique order

relation between f ′′(x) and f ′′(y) that has to be satisfied. In particular, for x = y this relation is

equality.

Let (xk)k∈N be an enumeration of elements in Qn and let Gk := {x0, . . . , xk} for k ∈ N. Choose

any q0 ∈ Q and let g0 : G0 → Q be the function mapping x0 to q0. Assume gk : Gk → Q is already

defined such that for all x, y ∈ Gk the order relation between gk(x) and gk(y) coincides with the

relation between q1 and q2 for any (q1, q2, q3) ∈ f̂(x, y, z) and any z ∈ Qn. Note that this is true for

g0.

For xk+1 ∈ Qn, we want to find qk+1 ∈ Q such that for all i ≤ k and any z ∈ Qn

qk+1 < gk(x
i) ⇔ ∃(q1, q2, q3) ∈ f̂(xk+1, xi, z) : q1 < q2,

qk+1 = gk(x
i) ⇔ ∃(q1, q2, q3) ∈ f̂(xk+1, xi, z) : q1 = q2, and

qk+1 > gk(x
i) ⇔ ∃(q1, q2, q3) ∈ f̂(xk+1, xi, z) : q1 > q2.

(5.1)

This is possible, if we can extend the linear on {gk(x1), . . . , gk(x
k)} as a substructure of (Q;<, I4)

to the set {gk(x1), . . . , gk(x
k), qk+1}, where qk+1 is a variable distinct from all gk(x

i)’s. Assume

that the binary relation extending < defined as in (5.1) is not a linear order. Since all axioms of a

linear order use at most three variables, we could obtain a violation on a triple. Assume that the

definition yields for example qk+1 < gk+1(x
i), qk+1 = gk+1(x

j) and gk+1(x
i) < gk+1(x

j). Then by

the arguments in the beginning of the proof, this would yield a triple (q1, q2, q3) ∈ f̂(xk+1, xi, xj)

with q1 < q2, q1 = q3 and q2 < q3, which is not possible. All other cases can be excluded analogously.

Thus, we find qk+1 ∈ Q satisfying (5.1). Now define gk+1 := gk ∪ {(xk+1, qk+1)}. By construction,

gk+1 satisfies the induction hypothesis and extends gk. Finally, set f ′′ :=
�

k∈N gk. Then for all

x, y ∈ Qn, we have that the order relation between f ′′(x) and f ′′(y) is the same as the order relation

between q1 and q2 for any (q1, q2, q3) ∈ f̂(x, y, z) with any z ∈ Qn. In particular, since the orbit of

an element in C is fully determined by the order relations between its entries, for f ′ := f ′′ ↷ Q3

and for all x1, . . . , xn ∈ Q3 with Oi := OC(xi) ∈ B we get

f(O1, . . . ,On) = O ⇒ f ′(x1, . . . , xn) ∈ O.

Thus, f ′′ ↷ B = f . This together with the definitions of <B
i,j and IB(i1,i2),(j1,j2) yields that f

′ and f ′′

are polymorphisms. For demonstration, we show that <i,j is preserved by f ′. Let x1, . . . , xn ∈ Q3

with <i,j (xk) for all k ≤ n and Ok := OC(xk) ∈ B. Then we get <B
i,j (Ok) for all k ≤ n and since

f is a polymorphism, also <B
i,j

�
f(O1, . . . ,On)

�
. Thus, by f ′(x1, . . . , xn) ∈ f(O1, . . . ,On), we get

<i,j (f
′(x1, . . . , xn)).

Finally, for any m-tuples q1, . . . , qn ∈ Qm and α1, . . . , αn ∈ Aut(Q;<, I4), the order relations
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5 A pair (C,B) with ω-categorical C and finite B that is not finitely tractable

between entries of f ′′(q1, . . . , qn) and f ′′(α1(q1), . . . , αn(qn)) coincide on all sub-triples, hence, the

two tuples are ordered identically. Thus,

O(Q;<,I4)
�
f ′′(q1, . . . , qn)

�
= O(Q;<,I4)

�
f ′′(α1(q1), . . . , αn(qn))

�
,

which means that there exists β ∈ Aut(Q;<, I4) such that

f ′′(a1, . . . , an) = β(f ′′(α1(a1), . . . , αn(an))).

Hence, f ′′ is canonical with respect to Aut(Q;<, I4).

Now let us show that lifting a cyclic polymorphism on B yields a pseudo-cyclic polymor-
phism on C.

Lemma 5.3.3. Let B be the structure from Definition 5.3.1. Let f ∈ Pol(B)(n) be a cyclic poly-

morphism. Then any f ′ ∈ Pol(Q;<, I4)
(n) that is canonical with respect to Aut(Q;<, I4) and such

that f ′ ↷ B = f is pseudo-cyclic.

Proof. Claim 1: Let f ′
1, f

′
2 ∈ Pol(Q;<, I4)

(n) be canonical with respect to Aut(Q;<, I4) and such

that f ′
1 ↷ B = f ′

2 ↷ B. Then there are e1, e2 ∈ Aut(Q;<, I4) such that e1 ◦ f ′
1 = e2 ◦ f ′

2.

Proof of Claim 1: Consider any m-tuples s1, . . . , sn ∈ Qm for m ≥ 3. Then since f ′
1 ↷ B = f ′

2 ↷ B,

the order relations between the entries of f ′
1(s

1, . . . , sn) coincide with those of f ′
2(s

1, . . . , sn) on all

sub-triples, hence, the tuples are ordered identically. This yieldsO(f ′
1(s

1, . . . , sn)) = O(f ′
2(s

1, . . . , sn)).

Hence, for any finite subset S and tuples u1, . . . , un ∈ Q|S|n such that ∀s ∈ Sn∃i : s = (u1
i , . . . , u

n
i ),

we get α1, α2 ∈ Aut(Q;<, I4) with

α1(f
′
1(u

1, . . . , un)) = α2(f
′
2(u

1, . . . , un)),

which is equivalent to

α1(f
′
1(s1, . . . , sn)) = α2(f

′
2(s1, . . . , sn)) for all s1, . . . , sn ∈ S.

We can now use a standard compactness argument presented e.g. in [BPP21]. Take an increasing

sequence of finite sets (Sk)k∈N such that
�

k∈N Sk = Q and assign αk
1 , α

k
2 as above for each Sk.

Consider the set

{(γ ◦ αk
1 , γ ◦ αk

2) : k ∈ N and γ ∈ Aut(Q;<, I4)},

which is a subset of Aut(Q;<, I4)
2
. It follows from the arguments in [BP15] that for an ω-categorical

structure A and all k ≥ 1, the space Aut(A)
k
factored by the equivalence relation where (δ1, . . . , δk)

and (δ′1, . . . , δ
′
k) are identified if and only if there exists γ ∈ Aut(A) such that (δ1, . . . , δk) =

(γ ◦ δ′1, . . . , γ ◦ δ′k) is compact. Hence, there is an accumulation point (e1, e2) of the above set in

Aut(Q;<, I4)
2
. Thus, we have e1, e2 ∈ Aut(Q;<, I4) with

e1 ◦ f ′
1 = e2 ◦ f ′

2,

which proves Claim 1.

Now let f ∈ Pol(B)(n) be a cyclic polymorphism and f ′ ∈ Pol(Q;<, I4)
(n) be canonical with respect

to Aut(Q;<, I4) such that f ′ ↷ B = f . Let f ′
1 := f ′ and f ′

2 be defined by f ′
2(x1, . . . , xn) =

f ′(x2, . . . , xn, x1) for x1 . . . , xn ∈ Q. Then f ′
1 and f ′

2 satisfy the hypothesis of Claim 1, hence there

are e1, e2 ∈ Aut(Q;<, I4) such that e1 ◦ f ′
1 = e2 ◦ f ′

2, which shows that f ′ is pseudo-cyclic.
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5 A pair (C,B) with ω-categorical C and finite B that is not finitely tractable

Corollary 5.3.4. Let B be the structure from Definition 5.3.1. Then CSP(B) is NP-complete.

Proof. Assume that there is a cyclic polymorphism f ∈ Pol(B). Then by Proposition 5.3.2,

there exists f ′′ ∈ Pol(Q;<, I4)
(n) that is canonical with respect to Aut(Q;<, I4), and such that

f ′′ ↷ B = f . By Lemma 5.3.3, f ′′ is pseudo-cyclic, hence, f ′ ↷ Q3 ∈ Pol(C) is pseudo-cyclic,

too, a contradiction to Lemma 5.2.6. Thus, by Theorem 2.4.4, CSP(B) is NP-complete.

5.4 (C,B) is not finitely tractable

We are now ready to prove the main theorem of this chapter.

Proof of Theorem 5.1.

Let C and B be defined as in Definition 5.2.1 and Definition 5.3.1, respectively. Then B is finite

and by Lemma 5.2.3, C is ω-categorical. By construction, C → B. It remains to prove that (C,B)

is not finitely tractable, unless P = NP.

Let B′ be a finite tractable structure such that C → B′ → B and let h : C → B′ be a homomorphism.

Define H := {idB′}. Since any automorphism group on a finite set is oligomorphic, so is H.

Since C is Ramsey, Aut(C) is extremely amenable. Applying Theorem 2.9.3 to Aut(C) and H,

we get h′ ∈ {hα|α ∈ Aut(Q;<, I4)} that is canonical with respect to Aut(C) and H. The closure

with respect to the topology of pointwise convergence of a set of homomorphisms consists only

of homomorphisms, hence, h′ is a homomorphism from C to B′. The orbits of B′ under H are

singletons, so all elements in a C-orbit must be mapped to the same element. Let O ∈ B. Then

all c ∈ O are mapped to the same element bO ∈ B′ by h′. Consider the function f : B → B′ that
maps each O ∈ B to bO ∈ B′. Let RB be any relation on B of arity k. Then by definition,

RB(O1, . . . ,Ok) ⇔ ∃c1 ∈ O1, . . . , ck ∈ Ok : RC(c1, . . . , ck).

Since h′(ci) = bOi
for all i ≤ k, we also have RB′

(bO1
, . . . , bOk

), hence, f is a homomorphism. Thus,

B and B′ are homomorphically equivalent. By Lemma 2.2.2, CSP(B′) is NP-complete, hence, if P

≠ NP, CSP(B′) /∈ P.

In fact, due to Proposition 5.2.7, using the same arguments as in the previous proof, the
following stronger version of Theorem 5.1 is obtained.

Corollary 5.4.1. There exists a pair (C,B) of structures in a finite relational language with a

tractable homogeneous Ramsey structure C and finite B such that C → B and (C,B) is not finitely

tractable, unless P = NP.
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In the previous chapter we have seen an example of a pair (C,B) with tractable ω-categorical
structure C and finite B such that C → B and (C,B) is not finitely tractable. In this
chapter we will use a similar approach to obtain a generalised method to construct such
examples. We used (Q;<, I4) in the previous chapter to construct C, in particular, we used
homogeneity, ω-categoricity and the Ramsey property of (Q;<, I4). Even though it was
convenient to add I4, this relation was not essential for the construction, which can be seen
by the construction in this chapter. We only need to use properties that (Q;<) has.
One essential property of (Q;<) that was somewhat hiddenly used is that it is finitely
bounded. This follows from the fact that checking whether a binary relation <X on a set X
is a linear order can be done by checking only triples in X. That is because the conditions
of a linear order are for the relation to be irreflexive, antisymmetric, total, and transitive,
hence, they all use at most three variables. If <X satisfies all those conditions and X is
countable, then we can embed X := (X;<X) into (Q;<). Thus, some finite (or countably
infinite) X = (X;<X) can be embedded into (Q;<) if and only if it does not contain any
subset S of size 3 or smaller such that the relation <X is no linear order on the substructure
of X induced by S. This means that we only need to forbid substructures with maximal
size 3, hence, finitely many. That is the reason why we used the third power of Q as the
domain for the structure C. In this chapter we will again define appropriate relations on a
power of the domain of a finitely bounded homogeneous Ramsey structure D′, where the
dimension depends on the bounds of D′.
Whereas in the previous chapter we concluded that there is no pseudo-cyclic polymorphism
on (Q;<) by showing that it would create a cycle in the order relation, in this chapter we
will use model-completeness to obtain a contradiction to a pseudo-cyclic polymorphism of
a certain structure. An ω-categorical structure D is called a model-complete core if for any
unary polymorphism f of D and every finite subset S ⊆ D there is some α ∈ Aut(D) such
that f |S = α|S.

Theorem 6.1. Let D′ be a finitely bounded homogeneous Ramsey structure and D be a first-order

reduct of D′ that is a model-complete core.

Let m ∈ N be greater than all sizes of bounds of D′ and arities of relations of D′ and D.

Then there exists an ω-categorical structure C with domain C = Dm and a finite structure B such

that CSP(B) is NP-complete and

• Pol(C) = Pol(D) ↷ Dm.

• C → B.

• Every finite B′ such that C → B′ → B is homomorphically equivalent to B. In particular, if

P ̸= NP, then (C,B) is not finitely tractable.
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6.1 Definition and some properties of C

Definition 6.1.1. Let D,D′ and m ∈ N be as in Theorem 6.1 and denote the signatures of D and

D′ by τ and τ ′, respectively. Let C (C′, respectively) be the structure with domain C = Dm and

the signature consisting of the following relations (we denote by xi the i-th entry of x for x ∈ C):

• For any relation symbol R ∈ τ (τ ′, respectively) of arity k ≤ m and k-tuple (i1, . . . , ik) ∈ [m]k

with pairwise different entries, define the unary relation

R(i1,...,ik)(x) ⇔ R(xi1 , . . . , xik).

• For any k ≤ m and k-tuples (i1, . . . , ik), (j1, . . . , jk), each consisting of pairwise different

entries il, jl ≤ m for l ≤ k, define for x, y ∈ C with x = (x1, . . . , xm), y = (y1, . . . , ym) the

binary compatibility relation

S(i1,...,ik),(j1,...,jk)(x, y) ⇔ ∀l ≤ k : xil = yjl .

For k = 1, we will also write Si,j instead of S(i),(j).

Further, we define some relations on C′ to obtain a homogeneous structure.

• For any relation symbol R ∈ τ ′ of arity k ≤ m and k-tuple (i1, . . . , ik) ∈ [m]k, define the

k-ary relation

R′
(i1,...,ik)

(x1, . . . , xk) ⇔ R(x1
i1 , . . . , x

k
ik
).

Lemma 6.1.2. Let D be as in Theorem 6.1 and C,C′ be the structures from Definition 6.1.1. Then

Pol(C) = Pol(D) ↷ Dm and

Pol(C′) = Pol(D′) ↷ Dm

Proof. “⊆”: Let f : Cn → C ∈ Pol(C). Define f ′ : Dn → D as follows: For (d1, . . . , dn) ∈ Dn, let

xi := (di, . . . , di) ∈ Dm for i ≤ n and define f ′(d1, . . . , dn) to be the first entry of f(x1, . . . , xn).

Then, similarly to the proof of Lemma 5.2.2, by the definition of Si,j for i, j ≤ m, we have

f(x1, . . . , xn) =

����
f ′(x1

1, . . . , x
n
1 )

f ′(x1
2, . . . , x

n
2 )

...

f ′(x1
m, . . . , xn

m)

���� ,

i.e. f = f ′ ↷ Dm. By the definitions of R(i1,...,ik) for R ∈ τ , we get that f ′ ∈ Pol(D).

“⊇”: For every f ′ ∈ Pol(D), we have that f ′ ↷ Dm ∈ Pol(C). This is readily checked.

The proof for C′ is analogous.

Lemma 6.1.3. Let C,C′ be the structures from Definition 6.1.1. Then C and C′ are ω-categorical,

C is a model-complete core, and C′ is homogeneous.
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Proof. Since Aut(C′) = Aut(D′) ↷ Dm, D′ is ω-categorical, and every n-orbit of C′ for n ∈ N
corresponds to an mn-orbit of D′, there are finitely many n-orbits of C′ for all n ∈ N. Hence, C′ is
ω-categorical. Since D is a first-order reduct of D′, we have

Aut(C) = Aut(D) ↷ Dm ⊇ Aut(D′) ↷ Dm = Aut(C′).

Thus, Aut(C′)-orbits are subsets of Aut(C)-orbits, which yields that C also has finitely many n-

orbits for each n ∈ N. Thus, C is ω-categorical, too.

Let f be a unary polymorphism of C and S ⊆ C be a finite subset. Let T ⊆ D be the set consisting

of all entries of tuples in S ⊆ Dm and let f ′ ∈ Pol(D) such that f = f ′ ↷ Dm. Since T is finite

and D is a model-complete core, there is some α′ ∈ Aut(D) such that f ′|T = α′|T . Hence, for

α := α′ ↷ Dm, we have α ∈ Aut(C) and f |S = α|S . thus, C is a model-complete core.

Homogeneity of C′ can be shown in a similar fashion as in Lemma 5.2.3 using the relations R′ for
R ∈ τ ′. Finally, since C′ is a countable homogeneous structure and due to the fact that Aut(D′)
and Aut(C′) are topologically isomorphic by f �→ f ↷ Dm, the Ramsey property of C′ follows from
D′ being Ramsey by Theorem 2.8.3.

In Chapter 5 we proved that there is no pseudo-cyclic polymorphism on the infinite
structure by using the linear order and the relation I4. We can not do this here. However,
we can show that for a pseudo-cyclic polymorphism f of C that is canonical with respect
to Aut(C′) and whose action on C/Aut(C′) is cyclic there is an infinite set on which f is
constant. This will yield a contradiction to model-completeness of C. We can find such an
infinite set using the infinite version of the Ramsey theorem. The proof of Lemma 6.1.5
was outlined in [Pin22].

Theorem 6.1.4 (Ramsey). Let A be a countably infinite set and let n, k ∈ N. Let
�
A
n

�
denote the set

of all n-subsets of A. Then for every colouring χ :
�
A
n

� → [k] there exists an infinite monochromatic

set S ⊆ A, i.e. χ is constant on all n-subsets of S.

Lemma 6.1.5. Let C be the structure from Definition 6.1.1. Then Pol(C) does not contain a

pseudo-cyclic polymorphism f that is canonical with respect to Aut(C′) and such that f ↷ C/Aut(C′)

is cyclic.

Proof. Let f ∈ Pol(C)(n) be as above. Since C′ is a homogeneous Ramsey structure, by Proposition

2.8.4, there is a linear order < on C that is preserved by all automorphisms of C′. Let O1, . . . ,Ok

be the n-orbits of C with respect to Aut(C′) and assign to each finite subset {c1, . . . , cn} ⊆ C of

size n the number i ≤ k such that (c1, . . . , cn) ∈ Oi where the elements cj are sorted in ascending

order. Since each n-subset of C is assigned a unique number i ≤ k, by Ramsey’s theorem, we get

an infinite monochromatic subset S, that means that two k-tuples on S with k ≤ n belong to the

same orbit if and only if the order < agrees on them. Take any s1, . . . , sn ∈ S. We want to show

that f(s1, . . . , sn) = f(s2, . . . , sn, s1). Assume for a contradiction f(s1, . . . , sn) < f(s2, . . . , sn, s1)

(the other case is analogous). Then by cyclicity of f ↷ C/Aut(C′), the pairs

(f(s1, . . . , sn), f(s2, . . . , sn, s1)) and (f(s2, . . . , sn, s1), f(s3, . . . , s1, s2))
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must be in the same orbit, in particular, f(s2, . . . , sn, s1) < f(s3, . . . , s1, s2). Applying this argument

inductively yields

f(s1, . . . , sn) < f(s2, . . . , sn, s1) < · · · < f(sn, . . . , sn−1) < f(s1, . . . , sn),

a contradiction.

In particular, f(s1, . . . , sn) = f(s2, . . . , sn, s1) holds for s1 < s2 < · · · < sn ∈ S. By canonicity of

f with respect to Aut(C′) we get that f(s1, . . . , sn) = f(t1, . . . , tn) for all s1, . . . , sn, t1, . . . , tn ∈ S

with si < ti for i ≤ n− 1 and tn < sn. But for any s1, . . . , sn, s
′
1, . . . , s

′
n ∈ S we find t1, . . . , tn ∈ S

with ti > max(si, s
′
i) for i ≤ n− 1 and tn < min(sn, s

′
n). This yields

f(s1, . . . , sn) = f(t1, . . . , tn) = f(s′1, . . . , s
′
n)

Thus, f is constant on S. But since C is a model-complete core, f̃(x) := f(x, . . . , x) must act like

an automorphism on every finite subset of C, a contradiction.

6.2 Definition and some properties of B

In order to prove Theorem 6.1, we need to construct a finite structure B such that C → B

and (C,B) is not finitely tractable. Again, we will use a similar construction as in Chapter 5.
The domain of B again is the set of 1-orbits of C, yet this time not under Aut(C), but under
Aut(C′).

Definition 6.2.1. In the following, let B := C/Aut(C′), i.e. B is the set of 1-orbits of C under

Aut(C′) = Aut(D′) ↷ Dm (since C′ is ω-categorical, this set is finite) and the relations are defined

as follows. For any relation RC on C with arity k, we have

RB(O1, . . . ,Ok) ⇔ ∃c1 ∈ O1, . . . , ck ∈ Ok : RC(c1, . . . , ck)

for all O1, . . . ,Ok ∈ B.

By construction, we have C → B. Let us now show that we can lift polymorphisms of B
to polymorphisms of C. That is where finite boundedness of D′ comes into play.

Proposition 6.2.2. Let B be the structure from Definition 6.2.1. Let f ∈ Pol(B)(n). Then there

is f ′′ ∈ Pol(D)(n) that is canonical with respect to Aut(D′) and such that f ′′ ↷ B = f .

Proof. The idea of the proof is to define a structure D′
n with domain Dn such that a homomorphism

from this structure to D′ can be used to define a polymorphism on D that satisfies the required

conditions.

For x1, . . . , xm ∈ Dn and Oi := OC′
(x1

i , . . . , x
m
i ) for i ≤ n, define

f̂(x1, . . . , xm) := f(O1, . . . ,On).

Let D′
n be the structure with domain Dn and the following relations:

• For every relation R of D′ of arity k and x1, . . . , xk ∈ Dn, let RD′
n(x1, . . . , xk) if and only

if there exist xk+1, . . . , xm ∈ Dn and (a1, . . . , am) ∈ f̂(x1, . . . , xm) with R(a1, . . . , ak). Note

that by definition k < m.
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Observe that the definition of the relation does not depend on the tuples xk+1, . . . , xm ∈ Dn. To

see this, let R be a relation of D′ of arity k ∈ N and x1, . . . , xm, yk+1, . . . , ym ∈ Dn. Then for all

i ≤ n, we have

S(1,...,k),(1,...,k)

�
(x1

i , . . . , x
k
i , x

k+1
i , . . . , xm

i ) , (x1
i , . . . , x

k
i , y

k+1
i , . . . , ymi )

�
Thus, for Oi := OC′

(x1
i , . . . , x

m
i ) and O′

i := OC′
(x1

i , . . . , x
k
i , y

k+1
i , . . . , ymi ), we get

SB
(1,...,k),(1,...,k)(Oi,O′

i),

and since f is a polymorphism, for O := f(O1, . . . ,On) = f̂(x1, . . . , xm), O′ := f(O′
1, . . . ,O′

n) =

f̂(x1, . . . , xk, yk+1, . . . , ym), this yields

SB
(1,...,k),(1,...,k)(O,O′).

This, however, means that there are tuples (a1, . . . , am) ∈ O, (b1, . . . , bm) ∈ O′ with ai = bi for i ≤ k.

Hence, for any tuples (a′1, . . . , a
′
m) ∈ O, (b′1, . . . , b

′
m) ∈ O′, we have R(a′1, . . . , a

′
k) ⇔ R(b′1, . . . , b

′
k).

Next, define the binary relation ∼ on Dn.

• For x1, x2 ∈ Dn, let x1 ∼ x2 if and only if there exist x3, . . . , xm ∈ Dn and (a1, . . . , am) ∈
f̂(x1, . . . , xm) with a1 = a2.

It can be shown using the relation SB
(1,2),(2,1) that ∼ is an equivalence relation. It can be shown in

a similar fashion as above that for x1 ∼ x2, the relations S(1,2),(i1,i2) and SB
(1,2),(i1,i2)

guarantee that

if a tuple (d1, . . . , dm) ∈ (Dn)m satisfies x1 = di1 , x2 = di2 , then any (a1, . . . , am) ∈ f̂(d1, . . . , dm)

satisfies ai1 = ai2 .

We will show that if x1 ∼ x2, they admit the same relations to other elements in D′
n, i.e. for any

relation RD′
n of arity k ∈ N, y2, . . . , yk ∈ Dn and 1 ≤ i ≤ k, we have

RD′
n(y2, . . . , yi, x1, yi+1, . . . , yk) ⇔ RD′

n(y2, . . . , yi, x2, yi+1, . . . , yk).

Assume without loss of generality RD′
n(y2, . . . , yi, x1, yi+1, . . . , yk) (the reverse implication is anal-

ogous). Then we have

(a1, . . . , am) ∈ f̂(y2, . . . , yi, x1, yi+1, . . . , yk, x2, y0, . . . , y0)

with R(a1, . . . , ak). By swapping x1 and x2 and applying the compatibility relation

S(1,...,k+1),(1,...,i−1,k+1,i+1,...,k,i)

(and the corresponding relation on B), which states that the first k+1 entries of two tuples are the

same except for swapping the i-th and (k + 1)-th entry, we get

(b1, . . . , bm) ∈ f̂(y2, . . . , yi, x2, yi+1, . . . , yk, x1, y0, . . . , y0)

with R(b1, . . . , bi−1, bk+1, bi+1, . . . , bk). Since bk+1 = bi, we get R(b1, . . . , bk), hence,

RD′
n(y2, . . . , yi, x2, yi+1, . . . , yk).
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We want to find a homomorphism h : D′
n → D′. By the reasoning above, it is sufficient to find a

homomorphism from D′
n/∼ to D′. Our aim is to find an embedding ϕ : D′

n/∼ → D′. By Lemma

4.4.1, it is sufficient to show that every finite substructure ofD′
n/∼ can be embedded intoD′. Assume

there is some finite substructure S that does not embed into D′. Then there is some bound F of D′

that can be embedded into S. Without loss of generality let F ⊆ S and let F = {[d1]∼, . . . , [dk]∼}.
Recall that k < m, since m > |F | for every bound F of D′. Take some [dk+1]∼, . . . , [dm]∼ ∈ D′

n/∼
and let (e1, . . . , em) ∈ O := f̂(d1, . . . , dm). Then by the definition of the relations on D′

n, it holds

that the mapping defined by [di]∼ �→ ei for 1 ≤ i ≤ k is an embedding. This, however, yields an

embedding of the bound F into D′, a contradiction. Thus, we can embed every finite substructure

of D′
n/∼ into D′ and hence by Lemma 4.4.1, there is an embedding ϕ : D′

n/∼ → D′. By setting

f ′′(x) := ϕ([x]∼), we get a homomorphism f ′′ : D′
n → D′.

Let us interpret this homomorphism as an operation f ′′ : Dn → D by identifying elements in D′
n

with n-tuples of elements in D.

We want to show that this operation is canonical with respect to Aut(D′). Take any x1, . . . , xn ∈ Dl

for some l ∈ N and α1, . . . , αn ∈ Aut(D′). Then by construction, the relations between the entries of

f ′′(x1, . . . , xn) as elements of D′ and those between the entries of f ′′(α1(x
1), . . . , αn(x

n)) coincide.

Hence, by homogeneity of D′, there is some β ∈ Aut(D′) such that

f ′′(x1, . . . , xn) = β(f ′′(α1(x
1), . . . , αn(x

n))).

Let f ′ := f ′′ ↷ Dm. For any x1, . . . , xn ∈ Dm with Oi := OC′
(xi), the unary relations of

f ′(x1, . . . , xn) as an element of C′ can be obtained from the relations between the entries of

f ′(x1, . . . , xn) as elements in D′ as in Definition 6.1.1. By construction, these coincide with the

relations between the entries of any z ∈ O := f(O1, . . . ,On) as elements in D′. Thus, as an element

of C′, f ′(x1, . . . , xn) admits the same unary relations as any z ∈ O and by homogeneity of C′, we
have f ′(x1, . . . , xn) ∈ O. Thus, f ′′ ↷ B = f .

Finally, we show that f ′′ is a polymorphism of D. To see this, let x1, . . . , xn ∈ R ⊆ Dk for some

relation R of D with ar(R) = k. We want to show that for zi := (x1
i , . . . , x

n
i ) for i ≤ k, we

have R(f ′′(z1), . . . , f ′′(zk)). For k ≤ m, define yi := (xi
1, . . . , x

i
k, x0, . . . , x0) ∈ Dm for i ≤ n and

some x0 ∈ D. Then we have R(1,...,k)(y
i) for all i, hence, for Oi := OC′

(yi) we get RB
(1,...,k)(Oi)

for all i ≤ n. Since f is a polymorphism, for O := f(O1, . . . ,On), this yields RB
(1,...,k)(O). Now

let zk+1 := · · · := zm := (x0, . . . , x0) ∈ Dn. By construction, (f ′′(z1), . . . , f ′′(zm)) ∈ O. Since

R is first-order definable in τ ′ and therefore preserved by Aut(D′), we have R(a1, . . . , ak) for all

(a1, . . . , am) ∈ O, hence, R(f ′′(z1), . . . , f ′′(zk)).

Lemma 6.2.3. Let B be the structure from Definition 6.2.1 and C,C′ be the structures from Defini-

tion 6.1.1. Let f ∈ Pol(B)(n) be a cyclic polymorphism. Then any f ′ ∈ Pol(D)(n) that is canonical

with respect to Aut(D′) and such that f ′ ↷ B = f is pseudo-cyclic.

Proof. Claim 1: Let f ′
1, f

′
2 ∈ Pol(D)(n) be canonical with respect to Aut(D′) such that f ′

1 ↷ B =

f ′
2 ↷ B. Then there are e1, e2 ∈ Aut(D) such that e1 ◦ f ′

1 = e2 ◦ f ′
2.

Proof of Claim 1: Consider any k-tuples s1, . . . , sn ∈ Qk for k ≥ m. Then since f ′
1 ↷ B = f ′

2 ↷
B, the τ ′-relations between the entries of f ′

1(s
1, . . . , sn) as elements of D′ coincide with those of

f ′
2(s

1, . . . , sn) on all m-tuples, hence, by homogeneity, OD′
(f ′

1(s
1, . . . , sn)) = OD′

(f ′
2(s

1, . . . , sn)).
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By similar arguments as in Lemma 5.3.3, for any finite subset S, we get α1, α2 ∈ Aut(D′) ⊆ Aut(D)

with

α1(f
′
1(s1, . . . , sn)) = α2(f

′
2(s1, . . . , sn)) for all s1, . . . , sn ∈ S.

By a compactness argument presented in [BPP21] (which is also described in the proof of Lemma

5.3.3), there are e1, e2 ∈ Aut(D) with

e1 ◦ f ′
1 = e2 ◦ f ′

2,

which proves Claim 1.

Now let f ∈ Pol(B)(n) be a cyclic polymorphism and f ′ ∈ Pol(D)(n) be canonical with respect

to Aut(D′), and such that f ′ ↷ B = f . Let f ′
1 := f ′ and f ′

2 be defined by f ′
2(x1, . . . , xn) =

f ′(x2, . . . , xn, x1) for x1 . . . , xn ∈ D. Then f ′
1 and f ′

2 satisfy the properties of Claim 1, hence there

are e1, e2 ∈ Aut(D) such that e1 ◦ f ′
1 = e2 ◦ f ′

2, which shows that f ′ is pseudo-cyclic.

Corollary 6.2.4. Let B be the structure from Definition 6.2.1. Then CSP(B) is NP-complete.

Proof. If there is a cyclic polymorphism f ∈ Pol(B), then by Proposition 6.2.2, there is f ′′ ∈
Pol(D) that is canonical with respect to Aut(D′) and such that f ′′ ↷ B = f . By Lemma 6.2.3,

this polymorphism is pseudo-cyclic, hence, also f ′ := f ′′ ↷ Dm ∈ Pol(C) is pseudo-cyclic and

by canonicity of f ′′ with respect to Aut(D′), f ′ is canonical with respect to Aut(C′). Finally,

f ′ ↷ B = f . By Lemma 6.1.5, such f ′ can not exist. Hence, there is no cyclic polymorphism of B

and by Theorem 2.4.4, CSP(B) is NP-complete.

6.3 (C,B) is not finitely tractable

Proposition 6.3.1. Assume P ̸= NP. Let B be the structure from Definition 6.2.1 and C from

6.1.1. Then (C,B) is not finitely tractable.

Proof. Let B′ be a finite tractable structure such that C → B′ → B and let h : C → B′ be a ho-

momorphism. We will use a similar approach as in the proof of Theorem 5.1. Define H := {idB′},
which is oligomorphic since B′ is finite. Since C′ is Ramsey, Aut(C′) is extremely amenable. Apply-

ing Theorem 2.9.3 to Aut(C′) and H yields h′ ∈ {hα|α ∈ Aut(C′)} that is canonical with respect

to Aut(C′) and H. Since Aut(C′) ⊆ Aut(C), this is a homomorphism from C to B′. The orbits of

B′ under {idB′} are singletons, so all elements in a C′-orbit must be mapped to the same element.

Let O ∈ B. Then all c ∈ O are mapped to the same element bO ∈ B′ by h′. As in the proof of

Theorem 5.1, the function f : B → B′ that maps each O ∈ B to bO is a homomorphism. Since B

and B′ are homomorphically equivalent, CSP(B′) is NP-complete, a contradiction to P ̸= NP.

Now let us proof the main theorem of this chapter.

Proof of Theorem 6.1. Let C and B be defined as in Definition 6.1.1 and Definition 6.2.1, respec-

tively. Then B is finite and by Lemma 6.1.3, C is ω-categorical. Further, by Lemma 6.1.2, we have

Pol(C) = Pol(D) ↷ Dm. By construction, C → B, and by Proposition 6.3.1, the pair (C,B) is not

finitely tractable, unless P = NP.
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