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Kurzfassung

Eine wichtige Art der Frakturbehandlung ist die interne Fixierung komplizierter
Knochenfrakturen durch Platten und Schrauben oder durch Knochenschrauben.
Eine besonders häufige Fraktur ist die distale Radiusfraktur. Bei instabilen Frak-
turen hat sich die interne Stabilisierung mit einer volaren Verriegelungsplatte zu
einer Standardmethode entwickelt. Eine unzureichende Verankerung der Schraube
im Knochen kann jedoch zu einer Lockerung führen. Simulationen von Schrauben-
Knochen-Konstrukten ermöglichen es, Forschungsfragen mit relativ geringen Kosten
und ohne die Notwendigkeit wertvoller Gewebeproben, wie sie in Experimenten
notwendig sind, zu untersuchen. Besonders Simulationen mit Finite-Elemente (FE)-
Modellen haben dabei an Popularität gewonnen. Zwei häufig verwendete Arten
von FE-Modellen sind Mikro-Finite-Elemente-Modelle (µFE) und homogenisierte
Finite-Elemente-Modelle (hFE). µFE-Modelle sind genau und relativ einfach zu
erstellen, erfordern jedoch mehr Rechenleistung. hFE-Modelle hingegen bieten
einen recheneffizienten Modellierungsansatz. Die Mikroarchitektur des trabekulären
Knochens wird jedoch nicht berücksichtigt (mm Elementgröße) und Materialeigen-
schaften werden basierend auf homogenisierten Materialeigenschaften abgeschätzt.
Diese Studie untersucht die Beziehung der periimplantären volumengemittelten Ver-
zerrungsenergiedichte (SED) zwischen hFE und µFE von Einzelschrauben-Knochen
Konstrukten. Der Vergleich sollte mit verschiedenen hFE-Modellierungsstrategien
unter verschiedenen Lastfällen erfolgen. Neun µCT-Scans von distalen Radiusab-
schnitten dienten als Grundlage dieser Studie. Aus den Radiusabschnitten wurde
eine zylindrische Knochenprobe virtuell entnommen und eine Schraube virtuell
implantiert. Für jede Knochenprobe wurden zwei unterschiedliche Belastungsfäl-
le (axialer Auszug und Scherung) analysiert. Nach dem Lösen der FE-Modelle
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wurden benutzerdefinierte Skripte verwendet, um die Ausgabe auszuwerten. Die
Ausgabe umfasste: 1) Steifigkeit, 2) Verzerrungsenergiedichten, gemittelt in einem
zylindrischen Volumen um die Schraube. Die Ausgabe wurde für jede der neun
Knochenproben, beide Lastfälle und beide Modelltypen (hFE, µFE) ausgewertet.
In einem klinischen Szenario (inklusive eines Kortex) eines einzelnen Schrauben-
Knochen-Konstrukts am distalen Radius wurde eine signifikante Korrelation zwi-
schen den durchschnittlichen Verzerrungsenergiedichten (SED) des periimplantären
Volumens und zwischen der Federsteifigkeit von hFE und µFE-Modelle in zwei
Lastfällen gefunden. hFE-Modelle überschätzten die Steifigkeit und unterschätzten
die volumengemittelten Verzerrungsenergiedichten. Der Unterschied zwischen hFE
und µFE zeigte eine Abhängigkeit von knochenmorphometrischen Parametern
und war besonders hoch bei Proben mit geringem Knochenvolumenanteil. Eine
Teilstudie zur Modellierungsstrategie des trabekulären Knochenmaterials in den
hFE-Modellen zeigte, dass die lokale Orthotropie des trabekulären Knochens die
Genauigkeit und Präzision der Vorhersage der SED-Verteilung nur geringfügig
verbesserte. Insgesamt zeigte diese Studie, dass hFE-Modelle volumengemittelte
periimplantäre SEDs von Schraubknochenkonstrukten in guter Übereinstimmung
mit µFE-Ergebnissen vorhersagen können, aber diese Übereinstimmung kann sich
bei Knochenproben mit geringer Knochenvolumenqualität drastisch verschlechtern.



Abstract

An important mode of fracture treatment is the internal fixation of complicated
bone fractures with plates and screws or with bone screws. A particularly common
fracture is the distal radius fracture. For unstable fractures, internal stabilization
with a volar locking plate has become a standard method. However, insufficient
anchoring of the screw in the bone can lead to loosening. Simulations of screw-bone
constructs allow research questions to be addressed at relatively low cost and
without the need for valuable tissue samples such as are necessary in experiments.
In particular, simulations with finite element (FE) models have gained popularity.
Two commonly used types of FE models are micro finite element models (µFE) and
homogenized finite element models (hFE). µFE models are accurate and relatively
easy to create, but require more computational power. hFE models, on the other
hand, offer a computationally efficient modeling approach. However, trabecular
bone microarchitecture is not considered (mm element size) and material properties
are estimated based on homogenized material properties. This study investigates
the relation of peri-implant volume-average strain energy density (SED) between
hFE and µFE of single-screw bone constructs. The comparison should be made
with different hFE modelling strategies under different load cases. Nine µCT scans
of distal sections of the radius served as the basis of this study. A cylindrical
bone sample was taken virtually from the radius sections and a screw was virtually
implanted. Two different load cases (axial pull-out and shear) were analyzed for
each bone sample. After solving the FE models, custom scripts were used to
evaluate the output. The output included: 1) stiffness, 2) strain energy densities
averaged in a cylindrical volume around the screw. The output was evaluated for
each of the nine bone samples, both load cases and both model types (hFE, µFE).
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In a clinical scenario (i.e., including both trabecular bone and cortex) of a single
screw-bone construct at the distal radius, a significant correlation was found
between the mean strain energy densities (SED) of the peri-implant volume and
between that of the spring stiffness of hFE and µFE models in two load cases. hFE
models overestimated stiffness and underestimated volume-average strain energy
densities. The difference between hFE and µFE showed a dependence on bone
morphometric parameters and was particularly high in samples with low bone
volume fraction. A sub-study on the modeling strategy of the trabecular bone
material in the hFE models showed that the local orthotropy of the trabecular bone
improved the accuracy and precision of the prediction of the SED distribution only
slightly. Overall, this study showed that hFE models can predict volume-averaged
peri-implant SEDs of screw bone constructs in good agreement with µFE results,
but this agreement can degrade dramatically in bone samples with low bone volume
quality.
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CHAPTER 1
Introduction

1.1 Motivation
Many fractures require surgical treatment with osteosynthetic devices [1]. Osteosyn-
thesis is the fixation of a bone fracture with an implantable device. An important
mode of fracture treatment is the internal fixation of complicated bone fractures by
plate and screw or by bone screws alone [2, 3]. A particularly frequent fracture is
the distal radius fracture, which is a fracture in close proximity to the joint [4]. In
case of unstable fractures, internal fixation with a volar locking plate has become a
standard method. In volar locking plates, the screws have self-cutting screw heads
which engage with the implant plate and form an angular-stable construct to keep
the fracture fragments in place [5].
However, insufficient support of the screw in the bone might lead to loosening. As
a result, the reduction could be lost (malunion) or the fracture might not heal at all
(nonunion) [6]. In severe cases, revision surgery might be necessary [7]. A study by
Kralinger et al. [8] showed that 35% of 150 patients after fixed-angle plate fixation
had mechanical failure, loss of reduction and secondary screw loosening.

To investigate the risks and effects of mechanical failure, typically experimental
in vitro testing of the implant-bone constructs using cadaveric bones is performed
[5, 9, 10]. However this approach is time consuming and requires human specimens
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1. Introduction

[11] or synthetic bone which cannot fully capture the material properties of real
bone [12]. Computer simulations of screw-bone constructs allow investigating
research questions with relatively low cost and without the need of valuable tissue
samples as necessary in experiments. Especially simulations with finite element
(FE) models have gained popularity in this process [13]. Two frequently used
types of FE models are micro finite element (µFE) models and homogenized finite
element (hFE) models.

µFE models are accurate and relatively easy to create, but they demand more
computational resources [14]. This is especially seen in non-linear analyses. hFE
models on the other hand provide a computationally efficient modeling approach
[15], even in case of nonlinearity [14]. However, the microarchitecture of trabecular
bone is not directly considered in hFE models (mm element size) [16]. Instead,
the material properties are derived based on homogenized material properties,
which rely on the local bone morphometry (e.g. bone density). Furthermore, the
overall modelling process, including material mapping and meshing, can be more
challenging compared to µFE models.

In the following chapters, the background and state of the art of screw-bone
construct biomechanics and FE modelling are explained (section 1.2 to 1.5), fol-
lowed by the specific goals of this thesis (section 1.6).

1.2 Mechanics of Bone and Bone-Screw Interface

1.2.1 Bone

Bone material consists of carbonated hydroxyapatite (HA), collagen protein (mostly
collagen type I), many other non-collagenous proteins and water [17]. Bone has a
hierarchical structure that differs across the length scales [18]. These hierarchical
structures are shown in Figure 1.1 from left to right: the macrostructure, which
consists of cortical and cancellous bone (porous bone composed of trabeculated
bone tissue); the microstructure, consisting of osteons and single trabeculae; the
sub-microstructure consisting of lamellae; the nanostructure consisting of fibrillar
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1.2. Mechanics of Bone and Bone-Screw Interface

collagen and lastly the sub-nanostructure that houses molecular structure of con-
stituent elements (e.g. mineral and collagen) [19]. This hierarchical structure gives
bone anisotropic and heterogenous properties.

Figure 1.1: Hierarchical structure of bone from macrostructure to sub-nanostructure.
Reproduced with permission from Rho et al. [19]

At the macrostructure bone is divided into cortical and trabecular bone. The
differentiation is mostly given by the degree of porosity or density. Trabecular
bone has a porosity of 40% to 95% and cortical bone has a porosity of 5% to
15% [20]. Long bones typically have a dense cortical shell that encapsulates a
porous trabecular bone. Trabecular bone is made of trabecular struts (also called
trabeculae) and marrow-filled cavities [21]. The trabeculae are interconnected and
enclose the cavities [22]. In general, the mechanical properties of bones vary at the
macrostructural level depending on the bone type and within regions of the same
bone [19].

Strength and tensile/compressive moduli of cortical bone are smaller along ra-
dial/circumferential directions and greater along the longitudinal direction [20]. If
the bone is loaded in tension along the longitudinal direction, it exhibits a linear
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1. Introduction

stress-strain relation in the elastic region (see Figure 1.2 a). After the elastic region,
a yield point is reached followed by strain hardening that ends at a fracture strain
of less than 3%. In compressive loading, when the yield point is reached, a rapid
hardening occurs, followed by softening and fracture at roughly 1.5% strain. The
ultimate strength of bone (maximum load it can carry before breaking) depends
on the mode of loading. The material bone is stronger in compression than tension
and weaker in shear [20].

Figure 1.2: Stress strain curves for monotonic tests in tension and compression of
cortical bone (a) tested along the longitudinal direction and trabecular bone (b)
tested along the principal direction (based on [20]).

For trabecular bone the mechanical properties are mostly determined by the poros-
ity [20]. Secondary parameters include the arrangement of the trabecular network
and the tissue properties of individual trabeculae. Similar to cortical bone, tra-
becular bone strength is greater in compression than tension and lowest in shear.
In compressive loading trabecular bone yields at strains of 0.7%, however, it can
sustain strains up to 2.2% while still maintaining a large portion of the load-bearing
capacity (see Figure 1.2 b) [20].
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1.3. Finite Element Method

1.2.2 Screw-bone Interface

Bone screws are widely used devices for fixation or stabilisation [23]. Bone screws
work through the conversion of torque into internal tension in the screw and the
elastic reactions in the bone surrounding the screw [24]. This creates compression
between the screw and the fracture fragments, which hold the screw together. The
determining factors of the screw mechanics are the outer and base diameter and
the thread pitch and angle. A prerequisite for the success of the entire fixation
construct is safe anchoring [25]. As the screw is pulled out of trabecular bone, it
cuts or shears bone as the screw-threads move outward and trap the bone in the
threads [26]. The stability of bone-screw constructs mainly depends on the interface
between bone and screw thread [1, 3]. Damage occurs during screw insertion and
the interface is not fixed immediately after screw implantation. With locking screws
in combination with a plate acting as a load-bearing device, the screw head locks
to the plate, enabled by a locking mechanism through a self-tapping thread that
cuts into the plate, forming a rigid plate-screw construct (e.g. volar locking plates)
[27].

1.3 Finite Element Method

1.3.1 Basic Concepts for Biomechanical Applications

Since the 1970’s the finite element method (FEM) has been used in biomechanical
problems and has been proved as a powerful tool [28]. The breakthrough of FEM
becoming the basis of in silico trials can be attributed to the rise of computational
power. Complex biomechanical problems that are difficult to solve in vivo or in
vitro may be investigated by FEM in ways that otherwise would not be possible.
These biomechanical problems can be solved by FEM, which is a numerical tech-
nique that approximates the solutions to partial differential equations [29]. FE
analyses in biomechanics consist of three important parts: the mesh representing
the geometry of the tissue, material properties of the elements and the boundary
conditions applied to the mesh [14]. Computational models used for FEM are
usually created by using data from magnetic resonance imaging (MRI) and X-ray
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1. Introduction

(micro-) computed tomography (µCT,CT) scanners [28]. The images acquired by
diagnostic imaging tools are further processed to obtain 3D surface models in a
relevant digital format, which are then processed to obtain a finite element mesh.
Two frequently used types of FE models are micro finite element (µFE) models
and homogenized finite element (hFE) models.

µFE models are generated from high-resolution µCT images (resolution of around
30µm). The images are then converted into hexahedron elements which capture
the microarchitectural variation in trabecular bone [7]. µFE models are accu-
rate and relatively easy to create, but extremely computationally intensive and
time-consuming. Substantial computational resources are needed to simulate an
entire bone/implant system, particularly if non-linearities (e.g. material, geometry)
should be included [30, 31].

In a typical hFE model, the microarchitecture of trabecular bone is not con-
sidered in the mesh (mm element size), but material properties of each element
are derived based on homogenized material properties which rely on local bone
morphometry (e.g. local bone density). However, hFE models still provide a com-
putationally efficient modeling approach to simulate whole bones with implants [15].
They are easily extendable to non-linear behaviour [14] and can be run on standard
PCS, compared to µFE models [30]. Furthermore, the overall modelling process,
including material mapping and meshing, can be more challenging compared to
µFE models. [14].

1.3.2 Homogenization of Bone Tissue

Many materials bear heterogenous structures and their physical properties depend
on their underlying microstructure, which may differ in various instances, such
as volume fraction [32]. The fundamental goal of the homogenization method
is the estimation of effective macroscopic properties of a heterogenous material
with it’s underlying microstructure, and to map this information on an equivalent
substituted homogeneous material. There are two general methods in modelling
heterogenous materials [33]: The unit cell method, based on detailed modeling
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1.3. Finite Element Method

of the microstructure, leading to a macroscopic constitutive model and the direct
micro-macro method as a generalization to the first method. These methods are
based on the concept of a representative volume element (RVE) [33, 34]. A RVE
represents a point of a continuum field that approximates the true micro-structured
material. The RVE is defined in two situations: a unit cell in a periodic structure
and a volume containing a very large portion of microscale elements (Figure 1.3). In
the case of a RVE, the boundary conditions are defined such that the Hill-Mandel
condition holds, preserving the equivalence of elastic energy between the scales,
meaning the average of microscopic strain energy density (SED) is the same as the
macroscopic SED. The Hill-Mandel condition further states, as long as the surface
values of traction and displacement are macroscopically uniform the apparent
moduli are independent of the surface values of displacement and traction [32, 33].
In that sense "effective" properties rather than "apparent" properties are obtained.
However, in the case of trabecular bone the same theory can’t be applied which
means the boundary conditions (BCs) will always influence the predicted elastic
properties. Therefore, instead of a RVE for trabecular bone the term volume
element (VE) was introduced. Transitioning between the micro- and macroscale is
realized through averaging the internal fields within the RVE.
A study by Pahr et al. [33] compared uniform displacement BCs (KUBCs), uniform
traction BCs (SUBCs), periodicity compatible mixed uniform BCs (PMUBCs) and
periodic BCs (PBCs) human trabecular bone. Among others, it was stated that
in the case of porous micro structures, displacement based BCs are required to
obtain average strains directly from the resulting strains. It could be seen that
PMUBCs and PBCs gave the same effective elastic material behaviour and KUBCs
hugely overestimated elastic material parameters, especially for bone with lower
density. To be a statistical representative of the composite the RVE must be large
enough to include all heterogeneities of the microstructure but at the same time
the RVE needs to be adequately small to be considered a volume element in terms
of continuum mechanics [32].
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1. Introduction

Figure 1.3: Situations for a RVE: unit cell in a periodic structure and a volume
containing a very large portion of microscale elements (based on [33, 34])

1.3.3 Material Mapping

As explained in Section 1.3.2 computational homogenization is a method to model
hierarchical materials. The parameters of the microstructure are used to compute
equivalent strength and stiffness at the macrostructure. This section explains
how the inhomogeneous material parameters at the macroscale can be mapped to
individual elements of the FE mesh of a hFE model.
For modeling bone there are two factors to consider: trabecular bone has different
properties than the cortical layer and the material property distribution is not
homogeneous [35]. After the FE mesh has been generated, material properties
have to be assigned to each element [36]. Bone density is shown to be related
to mechanical properties of bone tissues. Therefore, the mechanical properties
(e.g. density, fabric) should be derived directly from CT data. Meshes can be
categorized into voxel-meshed (hexahedral mesh) and smooth-meshed (tetrahedral
mesh) geometries [30]. Material mapping of voxel-based meshes is simple and can be
highly automated by mapping gray values from the CT images to elasticity constants.
Alternatively for smooth-meshed geometries material mapping algorithms that
map local bone density into an elastic modulus can be used. Examples for such
mapping algorithms include the algorithm of Pahr et al. [14], which uses a regular
background to evaluate bone morphometry in several volume elements and then
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linearly interpolates the material properties for all elements. Material models for
these smooth models with material mapping include power laws, that map the
local bone density into an elastic modulus for isotropic density based materials but
also Zysset Curnier [37] orthotropic fabric-elasticity relationship.
The influence of material mapping was shown in different studies: A study by
Synek et al.[38] showed that the implementation of local bone density improved
the stiffness prediction compared to homogeneous bone models of fractured distal
radii with volar locking plate treatment. In another study by Pahr et al. [33]
vertebral bodies with a density and fabric based cancellous bone material and
KUBCs provided statistically equivalent structural predictions as µFE models.

1.3.4 Modelling the Screw-Bone Interface

Stability of bone-screw constructs mainly depend on the interface of bone and screw
threads [1, 3]. There are several ways to model screw-bone interfaces in FE that
have been explored in studies (e.g. sliding with friction) [1]. However, the most
common approach is to assume a fully bonded interface ("osseointegrated") [39, 40].
This approximation simplifies the analysis by making it linear [1]. However, it must
be mentioned that in reality, damage will occur during screw insertion and the
interface will not be tied directly after screw implantation. Ovesy et al. [31] and
Macleod et al. [1] reported that the local stresses and strains within the bone near
the screw had a significant dependence on the interface modelling. Thus, studies
assuming fully bonded interfaces may be valid to predict "secondary stability", but
not primary stability (directly after screw insertion) [7, 41].

1.4 State of the Art
In this thesis, hFE and µFE models of screw-bone constructs should be investigated.
Numerous previous studies have used either µFE or hFE to simulate bone-screw
constructs [42, 43, 44], but direct comparisons are scarce.
Wirth et al. [39] compared heterogeneous and homogeneous µFE models using
trabecular bone samples of varying density and virtually implanted screws of
different lengths. The bone-screw interface was assumed as fully bonded. They
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1. Introduction

demonstrated that the peri-implant strains cannot be determined accurately using
the homogeneous model. However, in that study, homogeneous material properties
were assigned to the entire bone as a simplification and the cortex was not modeled.
The introduction of heterogeneity of bone has been shown to significantly affect
the stiffness prediction of hFE models of fractured distal radii with volar locking
plate treatment [38].

Chevalier et al. [40] compared µFE and hFE models using trabecular bone samples
of the proximal humerii and virtually implanted a corkscrew anchor. The bone-
implant interface was assumed as fully bonded. This study included heterogeneity
of bone through material mapping without trabecular orientation, but excluded
the cortex. They showed that despite differences in the stress distributions, the
structural stiffness of the hFE models created from the same images with isotropic
behaviour have shown excellent correlation with a µFE approach. These corre-
lations suggest that simplified hFE models can be used to perform structural
investigations.
Varga et al. [11] showed that average elastic strain around the screw, predicted
using hFE models, correlates well with construct failure of locked plated proximal
humerus fractures. The assumption was that the failure is dominated by trabecular
bone with a constant yield strain and failure was defined by the number of load
cycles until a critical plastic deformation was reached. Linear hFE models were
used to evaluate peri-implant bone strains. Despite the simplification of the screw
shafts to be modeled as idealized cylinders without threads, the results show that
the peri-implant strain field by hFE modelling is an efficient predictor of construct
failure. It’s worth mentioning that this research included the cortex representing a
clinical scenario (i.e., including both trabecular bone and cortex) as compared to
research of Wirth et al. [39] and Chevalier et al. [40] and the screw shafts were
tied to trabecular bone. However, this comparison was done with an experimental
model and not directly with a µFE model as opposed to Wirth et al. [39] and
Chevalier et al. [40].
In contrast to screw-bone constructs, more studies have compared µFE and hFE
models of intact bone and generally found a good agreement between the two
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1.5. Gap

methods [45, 46, 47]. For instance, Hosseini et al. [45] showed that the hFE
approach is a promising time-efficient diagnostic tool for identifying patient-specific
bone stiffness and failure load.

1.5 Gap
Previous studies have shown that the distribution of µFE and hFE peri-implant
loading does not coincide locally [39]. However, an experimental study by Varga
et al. [11] showed that peri-implant load averages are good predictors of implant
failure. The question arises, why peri-implant load averages are good predictors of
failure despite possible inaccuracies. There are several explanations.
The previous studies so far did not consider the cortex in the model, which deviates
from the typical clinical scenario where screws are anchored unicortically and in the
trabecular bone. Furthermore, different material modeling strategies were found
in the studies. Wirth et al. [39] used homogeneous material properties and only
one load case, while Chevalier et al. [11] used inhomogeneous material without
anisotropic material behaviour.

1.6 Thesis Goals
In conclusion, research comparing hFE and µFE models of screw-bone constructs
is limited and so far led to conflicting results. There is evidence that local peri-
implant stress or strain peaks cannot be captured using hFE models. However,
previous research suggests structural parameters (e.g. stiffness) or volume-averaged
peri-implant loading (e.g. strains) are clinically valuable parameters that might be
predicted with sufficient accuracy using hFE.
This study investigates the relation of hFE and µFE peri-implant strain energy
densities (SED) volume averages of single screw bone constructs. The comparison
should be done in nine specimens with different hFE modelling strategies under
different load cases including both trabecular bone and cortex.
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1. Introduction

The specific research questions of this study thus are as following:

1. Do the hFE and µFE peri-implant strain energy densities (SED) volume
averages correlate in bone samples including both trabecular and cortical
bone?

2. Does the local correlation of peri-implant SED of hFE models improve by
using orthotropic and inhomogeneous trabecular bone material properties
instead of isotropic homogeneous or isotropic inhomogeneous properties?
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CHAPTER 2
Material and Methods

2.1 Methodological Outline

The methodological approach was separated in three steps: (1) image preprocessing,
(2) finite element analysis and (3) data processing and evaluation (2.1).

Graphical summary of the methodology (Figure 2.1) in brief , nine µCT scans of the
distal radius sections were obtained from a previous study [48]. The images were
already resampled to 32.8 µm resolution from the previous study and segmented
into bone and background voxels. A cylindrical bone sample was extracted from
the radius sections and a screw was virtually implanted. The screw geometry was
obtained from a µCT scan of a screw of a volar locking plate system, resampled to
32.8µm resolution.
The images were preprocessed in the script manager Medtool (v4.5, Dr. Pahr Inge-
nieurs e.U., Pfaffstätten, Austria). Medtool is a work-flow management system that
provides a 3D image processing platform and is able to generate simulation models
from 3D medical images. The main image processing steps included transformation
for uniform sample alignment, masking to extract a cylindrical region and boolean
operations to insert the screw. After the image preprocessing, bone morphometrics
were evaluated (e.g. bone density, cortical thickness) and used to calculate material
properties for bone in the homogenized FE analysis (FEA).
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2. Material and Methods

hFE models were created in the script manager Medtool and solved with Abaqus
(Dassault Systèmes Simulia Corporation, Rhode Island, USA[49]) and µFE models
were created in Medtool and solved with ParOSol (ParOSol, Cyril Flaig[50]). Two
different load cases (axial pullout and shear) were analyzed for each bone sample.

After solving the FE models, custom scripts written in the Python program-
ming language (Python Software Foundation[51]), were used to evaluate the output.
The output included: 1) structural stiffness in two directions, 2) strain energy
densities, averaged in a cylindrical volume of interest (VOI) around the screw. The
output was evaluated for each of the nine bone samples, both load cases and both
model types (hFE, µFE). Each of the three main steps (image preprocessing, finite
element analysis, data processing and evaluation) will be explained in the following
sections in more detail.

14



2.1. Methodological Outline

Figure 2.1: Outline of the methods used in this study. First, µCT images were
processed to obtain bone samples with virtually inserted screw (1), then, µFE and
hFE models were generated and analyzed (2), and finally, predicted stiffness and
volume average SEDs were compared between µFE and hFE models (3).
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2. Material and Methods

2.2 Image Preprocessing
This section describes how screw and bone images from Stipsitz et al. [48] were
processed and combined in order to create cylindrical bone samples with virtually
implanted screws. Based on these images, hFE and µFE models should be created
as described in section 2.3. In addition, the evaluation of bone morphometry is
described. This section is divided into

1. Radius scans

2. Virtual sample preparation

3. Evaluation of bone morphometrics

2.2.1 Radius Scans

Sample ID Year of birth Gender Side
179 1943 male left
182 1933 female right
186 1945 male right
189 1933 male left
193 1943 male left
195 1943 female left
196 1934 female right
200 1926 male right
203 1934 male left

Table 2.1: Specimen overview

Nine µCT scans of the distal radius sections of the left and right radii were obtained
from a previous study [48] (see Table 2.1 and Figure 2.2 a). The images were
already resampled to 32.8 µm resolution from the previous study and segmented
into bone and background voxels (see Figure 2.2 b). In addition, cortical and
trabecular bone masks were available for each sample (see Figure 2.2 c).
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2.2. Image Preprocessing

Figure 2.2: a) µCT scan of a distal radius sample; b) Transversal cross section of
the distal radius and c) its corresponding trabecular bone mask

2.2.2 Virtual Sample Preparation

For virtual sample preparation, the geometry of a screw was needed. For this
purpose, a µCT scan of a Medartis locking screw (A-5750, Medartis Inc., Basel,
Switzerland), resampled to 32.8µm resolution, was used. The screw had to be
segmented and correctly aligned for further processing. Next, bone samples had to
be aligned and a cylindrical VOI had to be cropped out. Finally, the screw and
bone samples had to be combined. First, a histogram (see Figure 2.3) of the gray
scale of the image was created to find a threshold for segmenting the screw and to
remove the bone material which was also visible in the scan.
The chosen threshold from the histogram for segmenting the screw was 80. Note
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2. Material and Methods

Figure 2.3: Distribution of the voxel gray values in the µCT image of the screw.

that the gray values of the screw showed two distinct peaks in the histogram
because the middle part of the screw, which was inserted into cortical bone in
the µCT scan (Figure 2.4a), had lower grey values than the rest of the screw.
Gray values below 80 were assigned a gray value of zero and gray values above
80 were assigned a gray value of one. Additionally, a morphological closing and
island removal algorithm was applied to remove unwanted noise from the image
while preserving the shape and size of the screw and deleting unconnected areas of
floating voxels.
Next, the axis of the screw had to be determined, to align the screw image. The
screw image was loaded in 3D Slicer[52](https://www.slicer.org/) and the centroidal
screw tip position and the centroid of the screw head were manually selected. This
process was repeated multiple times and averaged to account for reproducibility and
scatter effects. These two points were used for calculating the rotation matrix and
represented the coordinates of the screw tip centroid and the screw head centroid.
The calculation of the rotation matrix is shown in Algorithm 2.1.
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2.2. Image Preprocessing

Figure 2.4: a) Screw before and b) after segmentation and rotation

Algorithm 2.1: Calculation of rotation matrix
Input: Screw tip and screw head centroid points
Output: Rotation matrix

1 Acquire screw axis vector: screw tip and screw head centroid points
2 Define and normalize the screw axis as a 3D vector
3 Normalize screw axis vector as basis vector ex

4 Choose any normalized vector normal to ex as ey of the new basis
5 Cross product to get :

ez = ex × ey (2.1)

6 Rotation matrix
R = ex ey ez

T
(2.2)

Figure 2.5: The final orientation of the a) screw and the b) cylinder
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2. Material and Methods

The rotation matrix obtained from Equation 2.2 was used for the rotation trans-
formation filter in Medtool to obtain the correctly rotated screw (see Figure 2.4
b). The rotated screw image was cropped so that only the screw remained in the
image. This was necessary in order to symmetrically expand the image to a specific
size of 30.93mm times 17.74mm. The screw was shortened to a length of 15mm
and rotated in a way that the longitudinal axis of the screw was aligned with the
x-axis of the specimen (see Figure 2.5 a).
For the hFE models, an unthreaded cylinder was used instead of a screw. The
cylinder was created as an image using Medtool and aligned consistently with the
screw. The cylinder was also cropped and aligned the same way as the screw.
The diameter of the cylinder was the volume-equivalent diameter of the screw
(2mm) and both, cylinder and the screw, were each 15mm in length (see Figure 2.5).

Next, the images of the distal radii had to be rotated, to ensure consistent specimen
alignment. All radius scans were rotated such that the screw could be virtually
inserted from the volar side.
With the use of 3D Slicer, fiducial points were set along the surface line of the
volar side of the radii in a centered transverse cross section (see Figure 2.6). The
entire image was then rotated until the fiducial points were aligned vertically. The
acquired rotation angles were then used to rotate each sample individually using
the rotation transformation filter in Medtool.
The radius images had three gray values (zero = air, one = bone marrow and two
= bone). To account for interpolation effects during rotation, the samples were
segmented into two parts shown in Figure 2.7, where one was devoted to bone
marrow and the other to bone only. After the segmentation of both parts, the
images were rotated, interpolated and finally put together again into one image.
This was done through the summation of the gray values of both segmented parts.
The same rotation method was applied to the trabecular and cortical bone masks.
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2.2. Image Preprocessing

Figure 2.6: Example of the fiducial points along the surface line of the volar side of
the radius in a centroidal transverse cut section.

Figure 2.7: Segmentation of the bone image in two parts, which are then rotated
and interpolated individually and recombined again.

The screw insertion depth was 10mm, this length was chosen in accordance with a
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2. Material and Methods

previous study on volar locking plates [53]. Each bone image was then cropped to
match the dimension of the screw image. The bone images were aligned so that
the screw will be inserted 10mm into the bone (see Figure 2.8).

Finally, before virtually inserting the screw, a cylindrical mask was applied, to
cut out the cylindrical volume of interest (VOI). The cylinder mask is a binary
mask that is applied to a target image. The resulting image retains only those
voxels of the original image where the cylinder mask had a gray value of one. The
cylinder was created using Medtool and rotated to match the screw orientation.
The diameter of the cylinder was set to the height of the radius section, i.e., 18mm.
The cylinder mask was applied to both the segmented radius image and the masks
of the radius image (Figure 2.8).
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2.2. Image Preprocessing

Figure 2.8: a) The final segmented image with the screw; b) The masked image
with the cylinder; c) Cross-section of the segmented image with the screw

A boolean operation was applied to combine the screw image and the bone images.
In that operation each voxel of the screw image that had a gray value of three
replaced the gray value of the target image. That way, cylindrical bone samples
with virtually inserted screws were created (see Figure 2.8). The same boolean
operation was used for the the trabecular and cortical bone masks, but instead of
using the screw image as input for the replacement, the cylinder image was used.
The combined image is shown in Figure 2.8 b.
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2. Material and Methods

2.2.3 Morphometry

Quantitative morphometry is the usual method for describing bone architecture by
calculating morphometric indices [54].
This information is valuable not only for homogenization, but also for the variability
between specimens. It was shown that bone volume fraction (BV/TV) along with
degree of anisotropy (orientation of structural elements) are significant indices of
the mechanical properties of bone [54].
In order to assess the cortical and trabecular bone morphology, they had to be
separated for each sample individually. The trabecular and cortical bone masks
were used to extract the trabecular and cortical part individually. Multiplication
with the radius image was applied to these extracted images and as a result the
microstructure of the cortical as well as the trabecular part was obtained (see
Figure 2.9).

Figure 2.9: Preparation of bone images before assessment of bone morphometry

The chosen morphometric indices for the assessment of bone microstructure in
Medtool were chosen in accordance with Bouxsein et al. [54]:

1. Trabecular bone volume/total volume (BV/TV)
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2.2. Image Preprocessing

ID Tb. BV/TV (%) Tb.Th (mm) Tb.Sp (mm) Tb.N ( 1
mm

) Ct.Th (mm)
179 0.26 0.22 0.59 1.07 1.24
182 0.14 0.19 0.88 0.50 0.94
186 0.25 0.24 0.69 0.92 1.08
189 0.23 0.24 0.71 0.85 1.06
193 0.21 0.22 0.76 0.73 1.02
195 0.19 0.19 0.64 0.81 1.20
196 0.10 0.18 0.98 0.87 0.86
200 0.14 0.23 0.97 0.52 0.83
203 0.24 0.32 0.96 0.87 0.78

Table 2.2: Morphometric indices for all samples: Trabecular relative bone density
(BV/TV), mean trabecular thickness (Tb.Th), mean trabecular separation (Tb.Sp),
mean trabecular number (Tb.N) and mean cortical thickness (Ct.Th)

2. Mean trabecular thickness

3. Mean trabecular separation

4. Mean trabecular number

5. Mean cortical thickness

Cortical thickness was obtained from images, containing only the volar cortical
shell. The other morphometric indices were obtained from the trabecular images
without a cortical shell. The resulting morphometric indices are shown in Table
2.2.
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2. Material and Methods

2.3 Finite Element Analysis
The aim of the FE analysis was the creation of µFE and hFE models of the screw-
bone construct of each radius section and evaluating the stiffness and peri-implant
SED in two different load cases.
Therefore, specimen-specific FE meshes based on CT data were necessary to gener-
ate the FE models.

2.3.1 µFE Modelling

Details are given in the following sections. In brief, µFE models were modeled
with a screw and bone tissue, bone marrow and screw were modelled as isotropic
and homogeneous materials. Material properties are listed in Table 2.3 and the
model is shown in Figure 2.10. The bone-screw interface was assumed as fully
osseointegrated, i.e., the nodes of the bone and the screw were assumed as fully tied.

The process of generating and solving the µFE models was the following:

1. Mesh generation

2. Creation of boundary conditions

3. Assigning material properties

4. FE model solving

Mesh Generation

The µFE models were created with Medtool and solved with ParOSol (2011, Cyril
Flaig[50]). ParOSol is a fully-parallel µFE analysis code for solving large linear
elasticity problems with high efficiency [55]. The voxel based mesh is generated
directly in ParOSol from a 3D CT image and is based on a voxel geometry of the
same size. The mesh size of the µFE models were 104 Mio.±17 Mio. elements with
312 Mio. degrees of freedom (DoF).
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2.3. Finite Element Analysis

Creation of Boundary Conditions

The boundary conditions were defined as follows. The lateral surface nodes were
constrained in all spatial directions (see Figure 2.10). All nodes that laid in a
certain interval and bordered the gray values zero and three were the nodes for the
lateral boundary conditions.

Assigning Material Properties

Bone, bone marrow and the inserted screw were assumed as linear elastic, isotropic.
The screw was modelled as titanium alloy with E=115 GPa [38]. Bone marrow
was included to capture the strains of the entire volume and for the accurate
computation of volume averages. The material constants are listed in Table 2.3
[38][56].

Region E(MPa) ν(−)

Bone marrow 1 0.3
Bone tissue 12000 0.3

Screw 115000 0.3

Table 2.3: Elastic material constants of bone, bone marrow and screw for the µFE
model taken from [38][56]

FE Model Solving

Loads of the µFE model were applied as a force of 100 N on the surface nodes
of the screw head in two load directions: one model with a pullout load in the
x-direction and one model with a shear load in the negative z-direction (see Figure
2.10). Displacements, stresses, strains and strain energy densities of each element
were selected as output parameters. Stresses and strains were evaluated at the
centroid of each element. The models were solved with ParOSol.

2.3.2 hFE Modelling

Details are given in the following sections. In brief, bone material properties
were extracted from the morphometric study and mapped onto the hFE mesh
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2. Material and Methods

Figure 2.10: Lateral surface boundary conditions and applied load of the µFE
model

elements. The final model was generated by imposing material properties, boundary
conditions and load cases. The screw was simplified as an unthreaded cylinder.
Material and boundary conditions for the hFE model are shown in Figure 2.14,
Table 2.4 and Table 2.5. Cortical bone was modelled as isotropic and homogeneous
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2.3. Finite Element Analysis

material and trabecular bone was modelled as orthotropic and inhomogeneous
material. A reference node was positioned in the center of the cylinder head and
coupled with six degrees of freedom (DoF) to the most distal nodes of the cylinder
(see Figure 2.14). All six DoF were unconstrained and a force of 100 N was applied
on the reference node along two load directions.

The process of generating and solving the hFE models was the following:

1. Mesh generation

2. Mesh convergence study

3. Creation of boundary conditions

4. Assigning material properties

5. FE model solving

Mesh Generation

The mesh of the hFE models was created using the bone mask images with the
virtually inserted cylinder (see Section 2.2.2 and Figure 2.8 b). The mesh was
created with the built-in 3D-CGAL Mesher[57] in Medtool. This mesher generates
3D tetrahedron meshes of grayscale domains.
Two important parameters were defined for the mesh process: The cell size defines
the size of a mesh tetrahedron and provides an upper limit for the circumradii of
the tetrahedron. The facet distance is used for the approximation error of boundary
and subdivision surfaces and influences the density of the mesh on curved surfaces.
The resulting mesh was of the .inp data type, which is used by Abaqus as the
input file format. The meshes of four-node linear tetrahedra (C3D4) were then
converted to meshes of ten-node quadratic tetrahedra (C3D10) using Medtool.
C3D10 elements were chosen for their superior mechanical and numerical behaviour
in simulations, as previously reported by Maas et al. [58].
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2. Material and Methods

Figure 2.11: Mesh convergence study: Volume average SED in N/mm2 within the
model meshed in different sizes.

Mesh Convergence Study

The accuracy of a FE model depends on the mesh size. It is required to ensure a
numerically correct solution independent of the mesh size. The mesh is considered
sufficiently fine if the result of the target variable does not change outside predefined
critical bounds if the mesh size is decreased [59]. Figure 2.11 shows the mesh
convergence study with the the volume averaged SED as the chosen target variable.
It was found that the change in average SED was less than 5 % relative to the finest
mesh (0.3mm average element size) for any of the meshes tested (up to 1.5mm
average element size).
However, a reduction in cell size and facet distance was necessary to eliminate
geometric artefacts at the interface of the cylinder and the cortex of the samples
(see Figure 2.12). Based on this finding and the results of the mesh convergence
study a cell size of 0.4mm and a facet distance of 0.08mm were chosen as the mesh
parameters.
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2.3. Finite Element Analysis

Figure 2.12: Tetrahedron spikes from the cylinder mesh on the interface between
cortical and trabecular bone. Cortical bone is shown for reference here.

The mesh was further optimized using the 3D-CGAL Mesher optimization options,
including a Lloyd-smoother, a sliver perturber and a sliver exuder [57].
The mesh size of the hFE models were 266095 ± 45491 elements with 0.8 Mio. DoF.

Creation of Boundary Conditions

The previously converted quadratic mesh was used as input for the Medtool BC
Generator, which automatically creates nodesets of each boundary plane. The
nodes of a mesh are assigned to different nodesets. Another node set was created
to include all nodes on the lateral surface of the cylinder. A custom algorithm
(2.2) was implemented to identify these nodes and add the nodeset to the hFE
model. The nodes are shown in Figure 2.13. The boundary conditions were defined
as follows: The lateral surface nodes were constrained in all spatial directions as
shown in Figure 2.14. The surface nodes of the screw head were connected to a
reference node.

Assigning Material Properties

The cortical bone was modelled as an isotropic homogeneous material with E=12
GPa and ν=0.3 [56]. E was chosen for consistency with the µFE material (E=12
GPa for bone tissue). The screw was modelled as titanium alloy with E=115 GPa
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2. Material and Methods

Algorithm 2.2: hFE Boundary Conditions
(Alexander Synek)

Input: All coordinates of the nodes of the model, physical inner and outer
radius for cylinder

Output: Boundary nodes on cylinder surface appended to the Abaqus
input file

1 Read input file and import all nodes and their coordinates
2 Capture the axis of the cylinder, including the start and end points
3 Calculate vectors from the origin to each node
4 Calculate vector projection and vector rejection
5 Filter nodes between inner and outer radius
6 Append nodes as a nodeset to the Abaqus input boundary condition file

Figure 2.13: Captured lateral surface nodes for the boundary conditions on an
exemplary hFE model based on the Algorithm 2.2

[38]. For the trabecular bone material, three different modelling strategies were
implemented:

1. Isotropic homogeneous trabecular bone

2. Isotropic inhomogeneous trabecular bone

3. Orthotropic inhomogeneous trabecular bone
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2.3. Finite Element Analysis

Figure 2.14: Lateral boundary conditions and reference node connected to the
surface of the cylinder.

The elastic modulus associated with the trabecular region for the isotropic homoge-
neous case is based on the power law model in Equation 2.3 with given trabecular
bone BV/TV (ρ) from the morphometric analysis (Section 2.2.3), Poisson ratio
ν and the constants E0 and k. The constants needed to define elastic behaviour
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2. Material and Methods

of the cortical and trabecular bone and the screw are listed in Table 2.4 and are
taken from [60].

E = E0ρ
k (2.3)

Region E0(MPa) ν0(-) k(-) Symmetry Homogeneity

Spongiosa 8813 0.24 1.63 Isotropic Homogeneous
Cortex 12000 0.30 - Isotropic Homogeneous
Screw 115000 0.30 - Isotropic Homogeneous

Table 2.4: Elastic material constants of bone and screw (isotropic homogeneous,
taken from [56, 38])

For the isotropic inhomogeneous and the orthotropic inhomogeneous properties
of the trabecular bone, an automated material mapping algorithm by Pahr and
Zysset[14] using Medtool was applied. The script performs multiple morphological
analyzes on the CT images based on spherical region of interest (ROI) with a
diameter of 7.5mm on a rectangular grid with 3.5mm spacing. The provided CT
images for this algorithm were the previously created bone images without the
cortical shell (see section 2.2.3 and Figure 2.9). The ROIs are automatically cropped
and the fabric tensor and bone density for the bone structure are derived. These
values are then interpolated for each element of the FE mesh based on the 3.5mm
rectangular grid.
The input and output of the material mapping is shown in Figure 2.15 for an
exemplary specimen.

Material cards that can be assigned are either

1. isotropic: a power law model based on BV/TV only

2. orthotropic: a density based fabric elasticity relationship based on BV/TV
and fabric

For the orthotropic trabecular bone, a Zysset-Curnier type material model [61] was
used:
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2.3. Finite Element Analysis

Figure 2.15: Exemplary results of the material mapping process: Right top: bone
density mapped onto trabecular bone; right bottom: distribution of the maximum
modulus of elasticity. The lines indicate the direction of the maximum elastic
modulus (i.e., largest stiffness).

Ei = E0ρ
k(m2

i )l Ei

νij

= E0

ν0
ρk(mimj)l Gij = G0ρ

k(mimj)l (2.4)

where Ei, Gij and ν are elastic moduli, shear moduli and Poisson ratio that depend
on the variable density ρ (=BV/TV) and fabric eigenvalues mi, as well as the
material constants E0, k, l and G0. For the isotropic models, the power law in
Equation 2.3 was used.
The material constants of isotropic and orthotropic trabecular bone were taken
from [56] and are listed in Table 2.5.

Note that orthotropic trabecular bone material was chosen as default. The main
results of this study are therefore obtained using this type of material. A comparison
of different trabecular material modelling strategies is presented at the end of the
results section (Section 3.5). The finished hFE model is shown in Figure 2.16.
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Region E0 (MPa) ν0(-) k(-) G0 (MPa) l(-) Symm. Homogeneity

Spongiosa 10320.40 0.22 1.62 3470.70 1.10 Ortho. Inhom.
Spongiosa 8813.00 0.24 1.63 - - Iso. Inhom.

Cortex 12000.00 0.3 - - - Iso. Hom.
Screw 115000.00 0.3 - - - Iso. Hom.

Table 2.5: Elastic material constants of bone and screw (isotropic and orthotropic
inhomogeneous), taken from [56]

Figure 2.16: Finished hFE model
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FE Model Solving

A force of 100 N was applied on the reference node in two loading directions: one
model with a pullout load in the x-direction and one model with a shear load in
the negative z-direction (see Figure 2.14).
Displacements at the reference node, strain energy densities and coordinates of the
centroid of each element were chosen as output variables. The models were solved
using Abaqus 2021.

2.4 Data Processing and Evaluation

Figure 2.17: Two levels of comparison: Structural stiffness of the whole model and
volume average SED with three different sizes (Radius R1, R2 and R3)
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The resulting data was evaluated and compared at two assessment levels. At
the structural level, the spring stiffnesses of the model were evaluated based on
Equation 2.5 (see Figure 2.17 a). The spring stiffness K was defined as the ratio of
the total nodal force F and the nodal displacement u (see Equation 2.5). The spring
stiffness of the hFE models were calculated based on forces and displacements of
the reference node in their respective load directions. The spring stiffness of the
µFE models were calculated from forces and averaged displacements of the surface
nodes of the screw head.

K = F

u
(in N/mm) (2.5)

µFE and hFE spring stiffness were compared against each other for all specimens
by the use of linear regression [62]. It describes a relation between two or more
variables by fitting a linear equation to the data by using the least squares approach.
Additionally the coefficient of determination (commonly known as r2) was calculated
to quantify the strength of the association. The r2-value is represented by a value
between 0.0 and 1.0, where a value of 1.0 shows a perfect fit (i.e., no residuals).
However, note that even though the goodness of fit may be 1.0, a 1:1 relation of
the two methods is not guaranteed. This is only the case if the regression line
has a slope of one and an intercept of zero. For that reason, the results were also
compared graphically by plotting the perfect relation (x=y) and comparing the
data points and the fitted regression line to this 1:1 fit.
Additionally, Bland-Altman plots are plotted to show systematic measurement
errors [63]. It plots the difference and mean between the two measurement methods.
The plot shows three lines indicating the mean of the difference and the mean of
the difference ±1.96 · σ (σ=standard deviation of the difference).

The second level of assessment was the cylindrical volume of interest. A radius of
3mm was chosen for the VOI and divided into three radii R1, R2 and R3, each
1mm thick (as seen in Figure 2.17 b). The length of the VOI has been increased
by 2mm past the tip of the screw. The same consideration was used in a previous
study on volar plate fixations of distal radius fractures [64]. The variable of interest
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for this level was the strain energy density (SED), which is given by

SED = 1
2ϵij σij (2.6)

where ϵij are the components of the strain tensor ϵ and σij are the components of
the stress tensor σ [65]. The SED was chosen to investigate if the volume average
elastic energy density in the peri-implant bone of the µFE model (microscropic
scale) is consistent with that of the hFE model (macroscopic scale). It was chosen
especially, because in the case of a RVE the boundary conditions are defined such
that the Hill-Mandel condition is kept, preserving the energy consistent equivalence
between the two scales, meaning the average of microscopic strain energy density
(SED) is the same as the macroscopic SED [33]. Volume averaged strain energy
densities (SED) were computed and compared between hFE and µFE models for
each sample for the three VOI sizes. To calculate the volume averaged SED, the
volume had to be calculated for each tetrahedron (Vtet,i) and multiplied by the
SED at the element centroid (SEDtet,i). The sum of these results was divided by
the total volume (Vtotal) (see Equation 2.7, where i denotes the element inside the
ROI, N the number of elements in the ROI and SED the volume averaged strain
energy density). The classification of the elements in the different ROIs was based
on the centroid of the element located in the ROI.

SED =
N
i=1 SEDtet,i · Vtet,i

Vtotal
(2.7)

In addition to the two main results (structural stiffness and volume averaged SED),
SEDs were also compared at the meso scale for one sample to test the influence
of the material mapping strategy. Zones on the meso scale of at least 1mm3 in
size were compared. Volume averaged strain energy densities of these zones were
compared and evaluated between hFE and µFE models for one sample. The
subdivision of these zones is as follows: 1mm high slices divided into three VOI
sizes, each quartered. A transverse view is shown in Figure 2.18. Cortical and
trabecular bone were separated for all comparisons except the structural level. The
cortical shell was only separated into three VOI and quartered but not sectioned
in 1mm high slices. The cylindrical VOI of a sample is shown in Figure 2.19.
The influence of morphometry on the volume averaged SED is shown in section
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3.4. and the influence of the material mapping is shown in section 3.5. For these
comparisons the whole VOI size was considered (VOI size R3). A custom written
script in Python was used to evaluate the two levels.

Figure 2.18: Transverse view of the subdivision in several zones at the meso scale
(~1mm3) used to compare SEDs predicted by hFE and µFE locally.

Figure 2.19: Cylindrical VOI of the hFE model approach
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2.5 Hardware and Computational Time
Both hFE and µFE models were solved on a system with an AMD EPYC 7542
32-Core CPU and 64 GB of RAM.
The hFE models were solved with Abaqus 2021 on 16 CPUs. The mesh size of the
hFE models were 266095 ± 45491 elements with 0.8 Mio. DoF.
The µFE models were solved with ParOSol [50] on 32 CPUs. The mesh size of the
µFE models were 104 Mio.±17 Mio. elements with 312 Mio. DoF.
Table 2.6 shows the average model solving time for both models in both load cases.

Model and load case Min (s) Max (s) Mean (s)
hFE axial pullout 652 1508 864

hFE shear 660 1320 867
µFE axial pullout 1551 42386 13872

µFE shear 1029 42371 8250

Table 2.6: Results of the computation time of the FE analysis (Wall clock time)
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CHAPTER 3
Results

The results are structured in accordance to the graphical abstract (Figure 2.1).
First, the comparison between µFE and hFE models based on deformation and the
spring stiffness is presented. Then a qualitative comparison of the peri-implant SED
is shown and the peri-implant volume average SED are compared quantitatively
between the FE model types. Finally, the influence of material mapping for
trabecular bone and the influence of the morphometric parameters on predicted
volume average SEDs is presented.

3.1 Deformation

The displacement fields were qualitatively similar for both load cases between hFE
and µFE models (Figure 3.1). In both models, the deformations in the shear load
case were larger than in the axial pull out load case.

43



3. Results

Figure 3.1: Displacement field magnitudes plotted for the hFE and µFE model for
both load cases. Top row: shear load case; bottom row: axial pullout load case

3.2 Stiffness

The results of the linear regression analysis comparing µFE and hFE spring stiffness
for the axial and shear load cases is shown in Figure 3.2 and Figure 3.3, respectively.
The hFE models consistently overestimated the stiffness predicted by the µFE
models (30% on average for axial pullout; 18.7 % on average for shear).
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Model and load case Min (N/mm) Max (N/mm) Mean (N/mm) SD (N/mm)
hFE axial pullout 3668.38 12293.65 8459.03 3077.91

hFE shear 671.73 915.22 795.77 88.07
µFE axial pullout 2035.37 10061.96 6314.23 2926.01

µFE shear 509.74 782.35 659.77 100.79

Table 3.1: Descriptive statistics of the computed uniaxial stiffness for both model
approaches and their respective load cases: minimum, maximum, mean and stan-
dard deviations

Figure 3.2: Linear regression of the spring stiffness in the axial pullout load case.
The statistics of the linear regression is presented in the legend: Intercept, slope
and the coefficient of determination (r2). A 1:1 line is drawn in red to show an ideal
relation. The color scale indicates the trabecular bone volume fraction (BV/TV)
of each specimen.
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Figure 3.3: Linear regression of the spring stiffness in the shear load case. The
statistics of the linear regression is presented in the legend: Intercept, slope and
the coefficient of determination (r2). A 1:1 line is drawn in red to show an ideal
relation. The color scale indicates the trabecular bone volume fraction (BV/TV)
of each specimen.

The calculated stiffness of all hFE models in both load cases were higher than
the stiffness calculated from the µFE models. The axial stiffness correlated well
between the two methods (r2 = 0.98, p < 0.0001, see Figure 3.2), and the slope of
the regression line was close to one, indicating almost 1:1 agreement. However, the
intercept showed a mean offset of 1895.17N/mm, indicating that the hFE model
approach overestimated the stiffness of the µFE model.
The shear stiffness correlated well between the two methods (r2 = 0.97, p < 0.0001
see Figure 3.3), despite the lack of a 1:1 agreement with a regression line of 0.86.
All hFE models in the shear load case overestimated the stiffness of the µFE model
by a mean offset of 228.37N/mm.
Axial pullout stiffness was roughly ten times larger than shear load stiffness (Table
3.1). Bland-Altman plots for both load cases are shown in Figure 3.4. In the case
of axial pullout the difference between µFE and hFE increased very slightly with
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increasing stiffness values (Figure 3.4). Specimen 195 showed a higher difference
compared to specimens in the same range of mean stiffness.
On the contrary, stiffness differences appeared larger for lower stiffnesses in the
shear load case. Specimens 196 and 200 showed a high difference in stiffness.
In both load cases, higher bone density lead to larger stiffness and the difference
between µFE and hFE predicted stiffness appeared to be unrelated to the bone
density (Figure 3.2, 3.3).

Figure 3.4: Bland Altman plot of the spring stiffness in the axial pullout and shear
load case
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3.3 Peri-implant SEDs

This section shows a qualitative comparison of the peri-implant SEDs and a
comparison of the volume averaged peri implant SEDs.

Figure 3.5: The SED distribution of both FE models in cross section for different
trabecular BV/TV
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Figure 3.6: The SED distribution of both FE models in cross section for different
cortical thicknesses

Figure 3.5 and Figure 3.6 show a qualitative comparison of the local SED distribu-
tion for increasing trabecular BV/TV and increasing cortical thickness, respectively.
The similarities of the two modeling approaches in predicting general trends of SED
distributions within the bone sample was presented. However, SED distributions
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appeared to deviate between µFE and hFE model particularly in the trabecular
bone regions. Local peaks in the trabecular region were essentially averaged-out in
the hFE models.
The volume averaged SED correlated well between the two models in the axial
pullout load case (r2 = 0.96, p < 0.0001 see Figure 3.7), despite the lack of a 1:1
agreement. Lower average SEDs were observed for larger VOI sizes. This could be
explained by the high SEDs in close proximity to the screw, which are averaged-out
as the VOI size increases. However, all three VOI sizes showed a similar correlation
pattern. The SED in the µFE model was higher than in the hFE model for all VOI
sizes. Lower bone density generally led to higher volume averaged SEDs (Figure
3.7, 3.8).

Figure 3.7: Linear regression of the volume averaged SED of the axial pullout load
case. The statistics of the linear regression for all three radii are presented in the
legend: Intercept, slope and the coefficient of determination (r2). A 1:1 line is
drawn in red to show an ideal relation. The three radii of the cylindrical volume of
interest (VOI) R1, R2 and R3 are indicated in the colors green, blue and purple
and in markers dot, plus and star. The color scale indicates the trabecular bone
volume fraction (BV/TV) of each specimen.
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Figure 3.8: Linear regression of the volume averaged SED of the shear load case.
The statistics of the linear regression for all three radii are presented in the legend:
Intercept, slope and the coefficient of determination (r2). A 1:1 line is drawn in
red to show an ideal relation. The three radii of the cylindrical volume of interest
(VOI) R1, R2 and R3 are indicated in the colors green, blue and purple and in
markers dot, plus and star. The color scale indicates the trabecular bone volume
fraction (BV/TV) of each specimen.

The volume averaged SED in the shear load case correlated well between the two
methods (r2 = 0.84, p < 0.0004, see Figure 3.8), but the slope of the regression
line was close to 0.2, indicating a weak agreement. Furthermore, all hFE models
underestimated the volume averaged SED of the µFE model in all three VOI sizes.
Two specimens showed considerably higher volume average SED in the µFE model
than the others.
Figure 3.9 shows Bland-Altman plots for both load cases. At low mean SED the
difference was close to zero meaning good accordance for both load cases. In the
shear load case the difference for the specimens 196 and 200 were very high, which
is in accordance to the two specimens in the linear regression of the shear load case.
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Figure 3.9: Bland Altman plot of the volume averaged SED in the axial pullout
and shear load case
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Figure 3.10: Linear regression of the volume averaged SED of the axial pullout load
case with samples with a trabecular BV/TV greater than 20%. The statistics of
the linear regression for all three radii are presented in the legend: Intercept, slope
and the coefficient of determination (r2). A 1:1 line is drawn in red to show an
ideal relation. The three radii of the cylindrical volume of interest (VOI) R1, R2
and R3 are indicated in the colors green, blue and purple and in markers dot, plus
and star. The color scale indicates the trabecular bone volume fraction (BV/TV)
of each specimen.

Since a trend was observed that lower BV/TV resulted in larger errors, the regression
analyses were repeated including only samples with trabecular BV/TV above 20%.
If only specimens with a trabecular BV/TV greater than 20% were considered, the
correlation of volume averaged SED in the axial pullout load case increased slightly
from r2 = 0.96 to r2 = 0.97 and a 1:1 agreement was reached 3.10.
In the shear load case, the correlation of the volume averaged SED also increased
from r2 = 0.84 to r2 = 0.85 with samples of trabecular BV/TV greater than 20%.
Furthermore, the slope of the regression line increased from 0.20 to 0.74, indicating
stronger agreement compared to the case where samples with lower trabecular
BV/TV were included.
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Figure 3.11: Linear regression of the volume averaged SED of the shear load case
with samples with a trabecular BV/TV greater than 20%. The statistics of the
linear regression for all three radii are presented in the legend: Intercept, slope and
the coefficient of determination (r2). A 1:1 line is drawn in red to show an ideal
relation. The three radii of the cylindrical volume of interest (VOI) R1, R2 and
R3 are indicated in the colors green, blue and purple and in markers dot, plus and
star. The color scale indicates the trabecular bone volume fraction (BV/TV) of
each specimen.
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3.4 Influence of Morphometry
This section will show the influence of morphometric indices on the volume averaged
SED for the specimens.
The difference in volume averaged SED between µFE and hFE were compared
against five different morphometric indices of trabecular and cortical bone: trabec-
ular BV/TV, cortical thickness and mean trabecular thickness are shown in Figure
3.12; mean trabecular separation and mean trabecular number are shown in Figure
3.13.
In both load cases, samples with bone density below 20% trabecular BV/TV showed
higher differences in the volume averaged SEDs between hFE and µFE. The error
between µFE and hFE appeared to be less affected by cortical thickness.
For the axial load case, samples with lower trabecular thickness showed larger
differences. In the shear load case, samples with smaller mean trabecular separation
and samples with higher mean trabecular number showed smaller differences (see
Figure 3.13).
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Figure 3.12: Comparison of the difference in volume averaged SED between µFE
and hFE against the respective morphometric indices: trabecular BV/TV, cortical
thickness and mean trabecular thickness. The left side is the axial load case and
the right side is the shear load case. Specimens are annotated with the specimen
ID. The statistics of the linear regression is presented in the legend: Intercept,
slope and the coefficient of determination (r2).
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Figure 3.13: Comparison of the difference in volume averaged SED between µFE
and hFE against the respective morphometric indices: mean trabecular separation
and mean trabecular number. The left side is the axial load case and the right side
is the shear load case. Specimens are annotated with the specimen ID.
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3.5 Influence of Material Mapping
A study on the properties of trabecular bone material was performed on one
exemplary specimen to compare three different modeling strategies (isotropic
homogeneous, isotropic inhomogeneous and orthotropic inhomogeneous) based
on stiffness and local SEDs (see section h-FE Modelling of the Methods). The
trabecular BV/TV of the specimen was 0.26%.

Table 3.2 shows that in the axial pullout load case the difference in stiffness from
isotropic homogeneous to orthotropic inhomogeneous was reduced by 6.55%. In the
shear load case an improvement of 3.56% was achieved using inhomogeneous rather
than homogeneous trabecular bone density, however, the difference from isotropic
inhomogeneous to orthotropic inhomogeneous was considerably lower (0.24 %).
A linear regression analysis of the local SEDs, comparing each of the three hFE
modeling strategies in both load cases to the µFE models is represented in Figure
3.14 for one exemplary specimen. The results showed that the 1:1 relation was
better approximated when both the inhomogeneity of trabecular bone density and
orthotropy were included. This was true for both load cases. The goodness of fit
(r2) was not improved considerably using inhomogeneous or even inhomogeneous
orthotropic trabecular bone material.

Modeling strategy Load case Difference to the µFE stiffness (%)
Orthotropic inhomogeneous axial pullout 20.39

Isotropic inhomogeneous axial pullout 24.03
Isotropic homogeneous axial pullout 26.94

Orthotropic inhomogeneous shear 2.86
Isotropic inhomogeneous shear 6.18
Isotropic homogeneous shear 6.42

Table 3.2: Difference of the stiffness between hFE models to µFE models in both
load cases and with different material mapping approaches.
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Figure 3.14: Linear regression of the local SEDs of the hFE modeling strategies
for one exemplary specimen. The statistics of the linear regression are presented
in the legend: Intercept, slope and the coefficient of determination (r2). A 1:1
line is drawn in red to show an ideal relation. Isotropic homogeneous, isotropic
inhomogeneous and orthotropic inhomogeneous are presented in blue, black and
turquoise, respectively. Top row: shear load case; bottom row: axial pullout load
case. 59





CHAPTER 4
Discussion

The aim of this study was to investigate the relation of hFE and µFE peri-implant
volume averaged SED in bone samples including both trabecular and cortical bone
in two different load cases in a single-screw bone construct. Based on nine radius
sections with virtually implanted screws, it could be shown that volume averaged
SEDs correlated well between hFE and µFE models in both load cases (r2=0.96,
r2=0.84). However, a 1:1 agreement between the predictions could not be achieved.
Particularly radius sections with low bone volume fraction, low trabecular thickness
or large trabecular separation showed large deviations between hFE and µFE
models. An in-depth discussion of these results and the limitations of this study
are presented in Sections 4.1 and 4.2.

4.1 Comparison of µFE and hFE Models
The observed displacement fields between FE and hFE were qualitatively similar
for both load cases (see Figure 3.1).
The mean stiffness of the hFE model in axial pullout was 8459.03±3077.91 N/mm
and in shear 795.77±88.07 N/mm. The mean stiffness of the µFE model in axial
pullout was 6314.23±2926.01 N/mm and in shear 659.77±100.79 N/mm. The
values for axial pullout stiffness found in this study are in good agreement with
the results of other studies by Chevalier et al. [40], Varga et al. [66] and Wirth
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et al.[67], who reported pullout stiffnesses in the range of 1700 9700 N/mm. The
spring stiffness correlated well between hFE and µFE models in both load cases
(r2=0.98, r2=0.97). However, the hFE models overestimated the stiffness in both
load cases.
Possible reasons for the overestimation could be the isotropic homogeneous modeled
material properties for the cortex. Another possible reason could be the material
mapping law chosen since the calibration of material mapping laws could overcome
stiffness errors [30, 68].
A qualitative comparison of the SED distribution showed that local peaks in the
trabecular region were essentially averaged-out in the hFE models. However, the
overall predicted hFE SED distributions within bone were visually consistent with
the µFE results.
The volume averaged SED correlated well between the two models in the axial
pullout load case (r2=0.96, see Figure 3.7), despite the lack of a 1:1 agreement.
The higher magnitudes of the volume averaged SED were apparently related to
bone density (see Figure 3.2). All three VOI sizes showed a similar correlation
pattern, indicating that a larger VOI did not improve the correlation, just changed
the magnitude, since higher SEDs were usually in close proximity to the screw.
The volume averaged SED in the µFE model was higher than in the hFE model,
which was in agreement with the higher stiffness of the hFE models.
The volume averaged SED also correlated well between the two models in the shear
load case (r2=0.84, see Figure 3.8), but the slope of the regression line was close to
0.2, indicating low accuracy. All three VOI sizes showed a similar correlation as
before in the axial pullout load case. Similar to the axial pullout load case, the
volume averaged SED in the µFE model was higher than in the hFE model. Two
specimens showed a considerably larger volume averaged SED in the µFE model
compared to other specimens. The color in Figure 3.8 indicated that these two
specimens had lower bone density, however, another lower bone density specimen,
closer to a 1:1 agreement, did not appear to be affected by bone density alone.
This led to further investigation of other morphometric indices.
The difference in volume averaged SED between µFE and hFE was compared to
five different morphometric indices of trabecular and cortical bone: trabecular
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BV/TV, cortical thickness, mean trabecular thickness; mean trabecular separation
and mean trabecular number. This should be used to find out whether there was
a dependency of the morphometric parameter and whether a threshold could be
defined at which the differences did increase or decrease.
As presented in Figure 3.7 and 3.8, trabecular BV/TV was a relevant parameter
for the accuracy of the volume averaged SED predicted by the hFE models. It was
seen that specimens with bone density less than 20% had a larger difference in
volume averaged SED (see Figure 3.12). This was demonstrated in Figure 3.10 and
Figure 3.11 by comparing only specimens with a BV/TV greater than 20%. In the
shear load case, the 1:1 agreement improved notably and in the axial pullout load
case, a 1:1 agreement was achieved. The error between µFE and hFE appeared
to be less affected by cortical thickness. For the axial load case, specimens with a
smaller trabecular thickness showed larger differences. In the shear load case on the
other hand, the influence of the mean trabecular separation was more pronounced
(see Figure 3.13). The regression analysis of the mean trabecular number and the
volume averaged SED showed that the trabecular number was not a clear indication
of the difference in the case of axial loading. For the shear load case, on the other
hand, a higher mean trabecular number indicated a smaller difference.
The fact that morphometry influences the predictions of stiffness and SED is in
agreement with numerous studies [40, 69, 70, 71]. As a result, peri implant SEDs
predicted with hFE appear accurate in high quality bone, but caution is warranted
in regions of poor bone quality (e.g. low bone density, high trabecular separation,
low trabecular thickness).
In order to assess the influence of the trabecular bone material modeling strategy
in the hFE models on the predicted stiffness and SED distribution, three model-
ing strategies were compared for one specimen: isotropic homogeneous, isotropic
inhomogeneous and orthotropic inhomogeneous. The results showed that the dif-
ference to the µFE models in axial pullout stiffness from isotropic homogeneous
to orthotropic inhomogeneous was reduced by 6.55% and 3.56%, respectively (see
Table 3.2). The results of the linear regression of the local SEDs showed that the
1:1 relation was better approximated when both the inhomogeneity of trabecular
bone density and orthotropy were included. This applied to both load cases. The
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goodness of fit (r2) was not improved considerably using inhomogeneous or even
inhomogeneous orthotropic trabecular bone material. This finding is in agreement
with Synek et al. [38], who reported that inclusion of local bone orthotropy did
not improve the axial stiffness predictions of FE models of entire radii with volar
locking plates.
Taken together, this study supports the approach of Varga et al. [11] to use hFE
predicted peri-implant loading as a predictor of bone-implant failure. However,
there appeared to be limitations in terms of bone density and other morpho-
logical parameters. Below a certain bone volume fraction, trabecular thickness,
or trabecular number and above a certain trabecular separation, problems with
homogenization could occur.

4.2 Limitations

This study had some limitations that should be addressed. The screws in the
hFE models were modeled as cylinders without threads. The screw-bone contact
interface was modelled as perfectly bonded, which is similar to the "osseointegrated"
case. While this still allows a direct comparison of hFE and µFE without damage
or contact as confounding factors, it must be mentioned that in reality, damage
will occur, and the interface will not be tied directly after screw implantation
[7, 41]. Ovesy et al. [31] and Macleod et al. [1] reported that the local stresses
and strains within the bone near the screw had a significant dependence on the
interface modelling. Thus, the comparison of µFE and hFE in this study are valid
for secondary stability (osseointegrated), but not primary stability (directly after
screw insertion).
Another limitation was that isotropic homogeneous bone material properties were
used for the cortical shell. The inclusion of porosity in the cortex of the hFE model
might further improve the results [19, 72]. Further parametric studies should be
performed to find limitations in the accuracy of hFE models with the inclusion of
porosity in the cortex.
Finally, only nine specimens and one screw model were used. The screw insertion
depth and position were the same for each sample and the same two load cases
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were applied. Further studies with additional specimens, additional anatomical
locations and screw-in depth positions should be considered.

4.3 Conclusions
In a clinical scenario (i.e., including both trabecular bone and cortex) of a single
screw-bone construct located at the distal radius, a significant correlation was found
between the peri-implant volume average strain energy densities (SED) and the
spring stiffness of hFE and µFE models in two load cases. hFE models generally
overestimated the stiffness and underestimated the volume average SEDs. Cortical
bone material properties or the material law calibration could have caused this
discrepancy. The difference between hFE and µFE also showed a dependence on
bone morphometric parameters and was particularly high for samples with low
bone volume fraction. A sub-study on the trabecular bone material modelling
strategy in the hFE models showed that local bone orthotropy only marginally
improved the accuracy and precision of the prediction of the SED distribution.
Overall, this study showed that hFE models are able to predict volume averaged
peri implant SEDs of screw bone constructs in good agreement with µFE results,
but this agreement may deteriorate drastically for bone samples with low bone
volume quality.
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