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Kurzfassung

Hygrothermisch Bauteilsimulation sind Werkzeuge, die es erlauben, Vorhersagen über das Ver-
halten und die Dauerhaftigkeit von Konstruktionen zu treffen. Derartige Simulationen bauen
auf Eingangparameter, welchen jedoch eine Unsicherheit zugrunde liegt. Diese Unsicherheit
in den Eingangsparametern zieht eine Unsicherheit in den Prognosen nach sich. Daher kann
eine deterministische Herangehensweise möglicherweise unzureichend sein, um zuverlässige Vor-
hersagen zu treffen. Als Alternative bietet es sich an, eine stochastische Herangehensweise zu
verfolgen. Eine derartige Herangehensweise erlaubt die Bewertung einer Konstruktion basierend
auf einer Versagenwahrscheinlichkeit, anstelle der binären Aussage Versagen oder kein Versagen.
Zusätzlich ermöglicht sie den Zugang zu weiteren stochastischen Analysemethoden, wie zum
Beispiel Sensitivitätsanalysen. Dabei handelt es sich um Methoden, die im Allgemeinen eine Ab-
schätzung des Zusammenhangs zwischen Eingangparametern und resultierenden Zustandsgrößen
liefern. Derartige Zusammenhänge können Informationen über eine Reihe von Modelleigenschaf-
ten, wie Modellverhalten, Relevanz der Eingangsparameter, Modellstabilität oder mögliches
Optimierungspotenzial, liefern. Mit dem Potenzial der stochastischen Analysemethoden kommt
jedoch auch ein Bedarf für mehr Eingangsparameter, mehr Rechenaufwand und die Entwicklung
von Methoden zur Einschätzung der Zuverlässigkeit der Aussagen. Diese Arbeit beschäftigt
sich mit der Anwendbarkeit von Sensitivitätsanalyse im Zusammenhang mit hygrothermischer
Bauteilsimulation. Zwei verschiede Sensitivitätsanalysemethoden werden implementiert und ihre
Anwendbarkeit in drei Beispielen untersucht. Eine integrierte Methode zur Abschätzung der
Zuverlässigkeit der Aussagen wird vorgeschlagen. Die Ergebnisse zeigen, dass die untersuchten
Sensitivitätsanalysemethoden in der Lage sind, das Modellverhalten und Schlüsselparameter zu
identifizieren. Deutliche Unterschiede im Konvergenzverhalten der beiden Methoden werden
festgestellt. Konfidenzintervalle zeigen sich als hilfreiches Kriterium für die Konvergenz von Sensi-
tivitäten. Ihr alleiniger Einsatz zur Sicherstellung der Zuverlässigkeit der Sensitivitäten ist jedoch
nicht ausreichend, da sie im Falle einer Methode nicht dazu in der Lage sind, das Versagen der
Methode aufzuzeigen. Abschließend wird gezeigt, dass die Anwendung von Sensitivitätsanalyse
Unterstützung in der Modelloptimierung liefern kann.
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Abstract

Hygrothermal simulations are tools to predict the reliability and behaviour of a building com-
ponent. These simulations are based on input parameters, which are subject to significant
uncertainty. The uncertainty in the input parameters results in a significant uncertainty in the
model output. A deterministic approach may therefore not give a reliable prediction. As an
alternative, a probabilistic approach can be followed. Such an approach allows for an evaluation
of the component based on a probability of failure instead of a binary failed or not failed. Addi-
tionally, this allows applying stochastic analysis methods, such as Sensitivity Analysis (SA). In
the most general sense, SA is a tool to estimate input output relations of models. These relations
can provide information on a range of properties, for example model behaviour, relevance of
input parameters, model stability, or optimization potential. However, the potential of stochastic
analysis introduces the need for additional input parameters, a higher computational effort
and the development of methods to estimate its reliability. This work revolves around the
applicability of SA in hygrothermal simulations on component level. Two different methods of
SA are explored, and their application to hygrothermal analysis is tested on three cases. An in
the process integrated method to estimate the reliability of resulting sensitivities is proposed.
The results show that the investigated SA methods are capable of identifying general model
behaviour and identify key parameters. Significant differences in the convergence behaviour
of the methods have been observed. Confidence intervals provide a useful indication for the
convergence. However, confidence intervals alone are not sufficient in indicating the reliability of
the estimated sensitivity, as they fail to identify failure for one of the methods for low sample
sizes. Finally, it is demonstrated that SA can provide reliable guidance in model optimisation.
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Chapter 1

Introduction

Hygrothermal simulations on component level aim to predict the temperature and moisture
state in building components, as a result of exposure to indoor and outdoor climate and their
material properties. The reliability of this prediction is both dependent on the quality of the
hygrothermal model itself and the quality of the simulation parameters (Pang et al., 2020).
In the case of hygrothermal simulations, many of these parameters are subject to significant
uncertainties (Zhao et al., 2015). For some parameters these uncertainties are quantified through
measurements, for example the uncertainty in the heat conductivity of a material. In other
cases the information on the parameter itself is sparse, and an assumption has to be made
by the analyst. Examples are the wide range for absorptivity of the exterior surface, the
sorption isotherms of materials, or the airtightness of the envelope. (Bednar, 2000; Nusser, 2012;
Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege,
2016). A deterministic simulation based on uncertain parameters may not give reliable predictions
on the components’ behaviour. This led to the development of various probabilistic approaches
to hygrothermal simulations Zhao et al. (2021).

Following a probabilistic approach provides significant advantages. Upfront it provides access
to the probability of failure as a criterion for the reliability of a construction (Hopfe and Hensen,
2011). Various failure models can be used to formulate failure criteria, in this work moisture
accumulation and mould growth are used (Ojanen et al., 2011). This is by no means sufficient
for the full assessment of a component. Additional criteria and possible models can be found
in Austrian standards (“ÖNORMB 8110-2 - Wärmeschutz im Hochbau - Teil 2,” 2020). The
probabilistic evaluation of these failure criteria then allows the quantification of the risk associated
with the component. In addition to risk assessment, this approach also allows the application
of stochastic analysis methods, which can be used to gain additional information on the model
behaviour. Of particular interest for this work are methods combined under the term SA. In
most general sense, these give an estimation for the relation between the model input and output.

The application of SA on hygrothermal simulations has been investigated numerous times.
In the context of building simulations, a comparison of different SA was done in the IEA
Annex 55, where different SA methods have been applied to the cold attics model. Twelve
different methods were investigated in their ability to analyse a model with 14 uncertain input
parameters. (Hagentoft et al., 2015; Hagentoft, 2011). Pang et al. (2020) reviewed the application
of SA in building performance modelling in 96 case-studies, resulting in a condensed list of
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recommendations on how to perform SA. On the building component level it was shown that SA
can be used to identify relevant model parameters (Panico et al., 2023). Zhao et al. (2011) showed
its capabilities to derive additional information on model behaviour on basis of an Wall Assembly.
The former uses the Morris screening method, the latter uses Pearson Correlation Coefficients,
to gain information on complex input output relations. The combination of those approaches,
referred to as a hybrid SA approach, can potentially allow for a reduction of computational effort
of probabilistic simulations, while maintaining reliable information on the input output relation
of critical parameters (Pang et al., 2020).

In this work we want to investigate the applicability of SA as a general tool in hygrothermal
analysis on component level. Concerning the difficulties revolving around SA that surface
repeatedly in literature, we want to address the following points:

Computational Effort As the probabilistic approach is inherently tied to increased computational
effort, it is crucial to reduce the sample size as much as possible. Different methods are followed
to achieve this. In the context of SA one possibility is the use of screening methods, applied
to a smaller sample, to identify impactful parameters and neglect insignificant ones. Another
approach is to replace the model itself by a metamodel to reduce the number of simulations to
run. An investigation of this can be found in (Hagentoft et al., 2015). This approach has gained
popularity in combination with variance based SA (Pang et al., 2020). The needed sample size
can as well be reduced through the use of efficient sampling methods, in building simulation
Latin Hypercube Sampling (LHC) sampling is commonly used. Overall, a combination of these
approaches is advisable.

Uncertainty of Input In Addition to the computational effort, a probabilistic method raises the
question of the probability distribution of the uncertain variables. The uncertainty of the model
input directly affects the uncertainty of the model output. As stated in Zhao et al. (2015), due
to the lack of knowledge on the variables itself, often the judgment of the analyst is needed to
decide on the scale of the uncertainty. Pang et al. (2020) states this lack of knowledge on the
uncertainty levels of the variables reduces the reliability of the SA.

Indication of Reliability Another question arising when applying SA, is the reliability of the
resulting sensitivities. For one, the sensitivities are only estimations and therefore subject to
uncertainties themselves. The sample size and quality needed, for the sensitivities to stabilize, is
both dependent on the SA method and the analysed case. Even though minimum sample sizes
are proposed for some SA method, these are not necessarily sufficient in all cases (Pang et al.,
2020; Saltelli et al., 1999). Additionally, as different SA methods are not equivalent, they do not
necessarily stabilize to identical sensitivities. In the context of building science this has been
shown in numerous cases (Hagentoft et al., 2015; Pang et al., 2020).

In this work we want to investigate the applicability of SA. This is done on basis of the
following research questions.
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• Is SA as a tool in hygrothermal analysis able to identify the relation between local effects
in the state variables and the parameters leading to these effects?

• Is SA as a tool in hygrothermal analysis robust enough to provide reliable results for low
sample sizes?

• Are confidence intervals, estimated through bootstrapping, able to estimate the reliability
of the sensitivities resulting from a SA?

• Are results of a SA able to directly guide analyst in how to improve failing building
components?

Before these questions can be investigated the fundamentals of hygrothermal models, the field
of SA and fitting models for this task are explored in Chapter 2. Then a simulation framework,
which extends the used simulation software to allow for a probabilistic approach and SA, is
developed in Chapter 2. With the software architecture established, the research questions are
then investigated on basis of a case study consisting of three examples.



Chapter 2

Methodology

This section deals with the mathematical and physical foundation of the methods employed
in this work. At first the mathematical properties of the underlying simulations are explored
(Sec. 2.1) and with the resulting possibilities and restrictions in mind, the field of Sensitivity
Analysis is then outlined (Sec. 2.2), and fitting methods are chosen. These methods and the ideas
behind them are then further elaborated. The chapter is concluded with a Section dedicated to
the role of confidence intervals and an approach to estimate them (Sec. 2.3).

2.1 Hygrothermal Simulations

In the field of building science, Hygrothermal Simulations are used to describe heat, air, and
moisture transport. In this work the simulation domain is restricted to the building component
level. The used approach to describe these phenomena is through a combination of various
partially coupled sub-problems. The mathematical properties of this system of differential
equations, are relevant to apply fitting analysis methods. Therefore, this section deals with the
mathematical models used in hygrothermal simulations, with the aim to provide a basis, for
making assumptions about the model behaviour.

The discussed physical phenomena can be described by models of varying complexity (Bednar,
2000; Hagentoft, 2001; Hens, 2017). The list of models mentioned in this work is restricted to
models implemented in the used simulation software. It has to be noted, that the discussed
models are by no means exhaustive.

The formulas and methods on the physical phenomena in this section are heavily based on
(Bednar, 2000), where the basis for HAM4D_VIE, from this point on referred to as Ham4D, was
developed. Ham4D is hygrothermal simulation software, which uses the Finite Volume Method
to solve the in Sec. 2.1.1 described partial differential equations. From then on Ham4D was
continuously extended or adapted for various use cases (Hinterseer, 2024; Sarkany, 2019; Sarkany
and Bednar, 2021; Wegerer and Bednar, 2017). Not all of its capabilities are documented or
published, therefore other publications, with similar approaches on the topic, are referenced,
when describing the fundamental processes.
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2.1.1 System of Differential Equations

A common approach (Bednar, 2000; Hagentoft, 2001; Hens, 2017) when describing the hygrother-
mal problem in a building component, is to use a system of coupled differential equations. The
foundations of which are based on conservational laws for certain physical quantities. The
conservation of the enthalpy density ℎ (J/m3) links the density of the heat flow rate q (W/m2)
and the of the heat source sq (W/m3) to the time evolution of the enthalpy.

∂ ℎ(w)
∂ t

= −𝛻 · q(𝑇 , w) + sq (2.1)

Moisture conservation links the density of the moisture flow rate g(kg/(m2 s)) and the moisture
source s𝑔 (kg/(m3s)) to the time evolution of the moisture density w (kg/m3)

∂ w(𝑇 )
∂ t

= −𝛻 · g(w , 𝑇 ) + s𝑔 . (2.2)

The conservation of air mass density m𝑎 = 𝜌𝑎 𝑉𝑎 (kg/m3) links the density of air flow rate
r (kg/(m2 s)) to the evolution of air mass. For the typical use cases the air transfer is much
more reactive than the heat and moisture transfer. For these use cases air can be considered
incompressible (Hens, 2017) and therefore the change of the air mass can be approximated to be
zero.

∂(𝜌𝑎 𝑉𝑎)
∂ t

= −𝛻 · r(𝑇 ) + sr ≈ 0 . (2.3)

The coupling of these differential equations is rooted in the heat and mass flow rates and is
either introduced by the driving forces or the material parameters.

2.1.2 Heat Transfer

The heat flow rate in a porous medium can be decompositioned into the densities of conductive
qk (W/m2) and convective q𝑐 (W/m2) heat flow rate inside the medium

q = qk + q𝑐 , (2.4)

and to densities of radiative qr (W/m2) and convective q𝑐 (W/m2) heat flow rate for surfaces
boundering fluid or gaseous domains as

q = qr + q𝑐 . (2.5)

The density of the conductive heat flow rate can be described by Fourier’s Law

qk = −𝜆(𝑇 , w) · 𝛻𝑇 , (2.6)

with the gradient of the temperature as the driving force and the thermal conductivity
𝜆 (W/mK). The convective heat transfer accounts for all the heat transferred by transporting a



14 2 Methodology

liquid or gas through the medium. In general this includes both water and air. In the case of
this work, both the heat transported by vapour, and the heat transported through liquid water
is neglected. The density of the convective heat flow rate can then be written, independently of
the moisture concentration, with the specific heat capacity of dry air 𝑐p,𝑎 (J/kgK), as:

q𝑐 = r 𝑐p,𝑎 𝑇 (2.7)

It is common practice to split the radiative heat transport into low and high frequency heat
transport. High frequency radiation representing gains through solar radiation and low frequency
radiation representing gains and losses due to atmospheric radiation. For the usual temperatures
of building components (≈ 280 K), the emission of high frequency radiation is neglectable. The
density of the heat flow rate due to solar gains can be written as

qsol = 𝛼 · Isol , (2.8)

with the absorptivity 𝛼 (−) for high frequencies and the solar radiation 𝐼sol (W/m2). The
density of the heat flow rate due to low frequency radiation can be described as

qsk y = 𝜀* 𝜎 (𝑇 4
s − 𝑇 4

r ) n (2.9)

with the effective emissivity 𝜀* (−) for low frequencies, the Stefan-Boltzmann constant 𝜎 =
5.67 · 10−8 (W/m2K4) and n the normal vector of the surface. Due to |𝑇s − 𝑇r| ≪ 𝑇s, 𝑇r

linearization around 𝑇 = 280 K is justified (Bednar and Riccabona, 2013). With the further
assumption of similar emissivities 𝜀s ≈ 𝜀r −→ 𝜀* ≈ 𝜀s, qsk y simplifies to

qsk y ≈ 𝜀s · 5 · (𝑇s − 𝑇r) n . (2.10)

2.1.3 Moisture Transfer

Similar to the heat transfer phenomena, it is possible to define the density of moisture flow rate
as a superposition of the densities of vapourous gv (kg/m2s) and liquid gl (kg/m2s) moisture flow
rates.

g = gv + gl (2.11)

Two phenomena of vaporous moisture transport are considered. Diffusive transport, driven by
the gradient of the partial vapour pressure pv 𝑎p (Pa), described by Fick’s Law

gv,diff = −𝛿v · 𝛻pv 𝑎p , (2.12)

with the water vapour permeability 𝛿v (kg/m2sPa). And convective transport through air
mass transport
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gv,conv = 0.622 ra
p𝑎 − pv 𝑎p

≈ 6.21 · 10−6 pv 𝑎p ra . (2.13)

This approximation is applicable for temperatures below 50 ∘C and pressure differences small
compared to the atmospheric pressure (Hens, 2017). Liquid water transport as a result of
interaction forces between the liquid and solid phases, can be homogenized to a suction pressure
psu𝑐 (Pa). The transport is then driven by the gradient of the suction pressure and can be defined
as

gl = K(w , 𝑇 ) · 𝛻psu𝑐 , (2.14)

with the liquid conductivity K (s). As elaborated in (Bednar, 2000) the suction pressure can
then be related to the vapour pressure using the Kelvin equation.

2.1.4 Air Transfer

The air-flow in a porous medium can be described by the partial differential equation Eq. 2.3. As
moisture and heat transfer are significantly slower processes than air transport, the description of
air as an incompressible fluid is seen as sufficient. This allows the use of the steady state solution
for the pressure field (Hens, 2017) and the density of the air flow rate can be expressed as

r𝑎 = −C · 𝛻(𝑃𝑎,o − 𝜌𝑎(𝑇 ) g · z) . (2.15)

The air pressure 𝑃𝑎,o (Pa) accounts for forced convection and atmospheric pressure, and the
temperature dependent pressure (𝜌𝑎(𝑇 ) g · z) accounts for natural convection. An equation to
calculate the permeance C (kg/(s Pa m)) can be derived from Darcy’s law (Hagentoft, 2001) as

C = 𝜌𝑎

𝜇
k , (2.16)

with the permeability of the medium k (m2) and the dynamic viscosity of air 𝜇 (N s/m2). For
air flowing around the material in gaps, joints and cavities another model is needed. In this
case a common approach is to model the flow as a hydraulic circuit (Hens, 2017). In Ham4D a
simplified version of this is implemented, describing the air flow, considering all gaps and cavities
of the building component, as

r𝑎 = 𝐶 Δ𝑃 𝑏 . (2.17)

Values for the air flow coefficient 𝐶 (m3/(s Pa𝑏)) can for example be found in (Nusser, 2012).

2.2 Sensitivity Analysis

After having explored the physical foundations of the model, this section turns towards methods,
which allow us to gain insight on the behaviour of the model, without explicit formulation of the
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model itself. SA is a tool which can help to achieve this. (Saltelli et al., 2000, p. 4) proposes the
following definition of SA :

“Sensitivity Analysis studies the relationship between information flowing in and out
of the model”

This additional information about the relation between the input and output of a model helps
to answer the questions: Which input parameters have the most relevant contribution to the
output and how can the input space be adapted to achieve a desirable output.

SA, in the context of this work, calls for an abstraction of the formulations explored in Sec. 2.1,
which themselves are abstractions of the real world. The system of differential equations, the
transport equations and the transport parameter models create a boundary value problem, which
as a whole can be represented by an abstract model. The inputs of this model are the starting
conditions, the boundary values and the material properties. The output of the model is the
time evolution of field variables. Fig. 2.1 shows an illustration of such a model.

Model

Boundary Conditions

Material Parameters

Start Conditions

time evolution
of field values

Input
Output

Fig. 2.1: Abstraction of the model

Even though no explicit formulation of the model itself is needed, there are characteristics
which restrict what SA methods are applicable. As elaborated in (Camplolongo et al., 2000) the
difficulty of the used analysis method increases with the model pathology. Prominent criteria are

• non-linearity,
• non-monotonicity,
• non-additivity.

Even if it is not always possible to define how the model behaves in respect to these criteria a
priori, a better understanding of the model allows ruling out inapplicable SA methods. Therefore,
before going forward in discussing different methods of SA, the formulations explored in Sec. 2.1
are examined in respect to the above-mentioned criteria.

2.2.1 Model Behaviour

Hygrothermal simulation do not always compute the whole range of transport phenomena listed
in Sec. 2.1. For example, if there is no driving rain reaching the surface of a facade, it can be
advisable to neglect the liquid water transport. In this section the behaviour of the very basis
of the simulation in respect to linearity, monotonicity and additivity is analysed. As a starting
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point heat transport through conduction is chosen. Specialization of Eq. 2.1 for s𝑔 = 0, q = q𝑐,
w = 0, 𝜆(𝑇 ) = 𝑐onst., and Eq. 2.6 gives

𝜌 𝑐p
∂ 𝑇
∂ t

= 𝛻 · (𝜆 · 𝛻𝑇 ) (2.18)

In Baehr (2008) various problem setups are discussed, for which analytical solutions for
thermal conduction have been found. One of these setups is cooling and heating of simple
bodies. We investigate one dimensional heat transport in a plate with a constant initial
temperature 𝑇 (x, t = 0) = 𝑇0. The boundary conditions are constant in time 𝑇 (x = 0, t) = 0 and
𝑇 (x = l , t) = 0. The solution of the differential equation Eq. 2.18 for this setup can be found in
(Baehr, 2008) as

𝑇 (x, t) = 𝑇0

[︃ ∞∑︁
i=1

𝑐i cos(𝜇i
x

l
) 𝑒

−𝜇2
i

𝜆
𝜌 𝑐 t

l2

]︃
(2.19)

In reference to the abstraction depicted in Fig. 2.1, we identify the heat conductivity 𝜆 as
a model input and therefore investigate the behaviour of 𝑇 (x, t) at any x > 0 and t > 0 in
𝜆. To test for monotony in 𝜆, zeros of the first derivative of T in respect to 𝜆 are of interest.
Assuming the sum

[︂∑︀∞
i=1 𝑐i cos(𝜇i

x
l ) 𝑒

−𝜇2
i

𝜆
𝜌 𝑐 t

l2

]︂
converges uniformly, allows for application of

the differential operator to the summands, which yields

∂ 𝑇 (𝜆)
∂ 𝜆

= −𝑇0

[︃ ∞∑︁
i=1

𝑐i cos(𝜇i
x

l
) 𝑒

−𝜇2
i

𝜆
𝜌 𝑐 t

l2 𝜇2
i

t

𝜌 𝑐 l2

]︃
(2.20)

For t > 0, positive material parameters 𝜌, 𝑐, l > 0, non-zero start temperatures 𝑇0 ̸= 0, and
consideration of 𝜇2

i > 0 only the term

∞∑︁
i=1

𝑐i cos(𝜇i
x

l
) 𝑒

−𝜇2
i

𝜆
𝜌 𝑐 t

l2 (2.21)

could allow for zeros. We further investigate the parts of the summands. As shown in (Baehr,
2008), the Fourier coefficients 𝑐i and the eigenvalues 𝜇i show the following behaviour:

(i − 1)𝜋 < 𝜇i <
(2i − 1)𝜋

2 𝑐i = 2 sin(𝜇i)
𝜇i + sin(𝜇i) cos(𝜇i)

. (2.22)

For any i ∈ ℕ, 𝜇i is thus limited to being element of the first 0 < 𝜇i < 𝜋 /2 and third quadrant
𝜋 < 𝜇i < 3 𝜋 /2. The denominator in 𝑐i can be thus be characterised as

𝜇i + sin(𝜇i) cos(𝜇i) > 0 ∀i ∈ ℕ (2.23)

which implies

cos(𝜇i
x

l
) > 0 ∧ 𝑐i > 0 ∀i ∈ ℕo𝑑𝑑 ,

cos(𝜇i
x

l
) < 0 ∧ 𝑐i < 0 ∀i ∈ ℕ𝑒v 𝑒n

(2.24)
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and therefore

𝑐i cos(𝜇i
x

l
) > 0 ∀i ∈ ℕ . (2.25)

Furthermore

𝑒
−𝜇2

i
𝜆

𝜌 𝑐 t
l2 > 0 , (2.26)

from which it follows that all summands in Eq. 2.20 are positive. Therefore, ∂ 𝑇 (𝜆)
∂ 𝜆 has no zeros

for 𝜆 > 0. This implies that the sign of ∂ 𝑇 (𝜆)
∂ 𝜆 does not change for 𝜆 > 0, thus 𝑇 (𝜆) is monotone

in 𝜆 > 0.

But we do not want to restrict ourselves to constant boundary conditions. Therefore, we raise
the complexity to allow for instationary (periodic) boundary conditions. Such a problem setup
could for example be used to estimate the penetration depth of daily temperature changes in a
building component. It is modelled, similarly as before, as a one dimensional problem, but now
with only one periodic boundary condition 𝑇 (x = 0, t) at the surface. The analytical solution for
the temperature field at any depth x > 0 and any time t > 0, for a heat transfer coefficient on
the surface 𝛼 → ∞ and the boundary condition

𝑇 (x = 0, t) = 𝑇0(t) = 𝑇m + Δ𝑇 cos(𝜔 t) = 𝑇m + Δ𝑇 cos(2𝜋
t

t0
) , (2.27)

can be written according to (Baehr, 2008) as

𝑇 (x, t) = 𝑇m + Δ𝑇 𝑒
− 𝜋 x√

𝜌 𝑐√
𝜋 𝜆 t0 cos

(︂
2𝜋

(︂
t

t0
− x

√
𝜌 𝑐√

𝜋 𝜆 t0

)︂)︂
. (2.28)

Following a similar approach to the first example, the derivative of the temperature in respect
to 𝜆 is of interest. To increase readability we introduce 𝑎(𝜆)

𝑎(𝜆) =
√

𝜋 𝑐 𝜌 Δ𝑇 t0 x 𝑒
− 𝜋 x√

𝜌 𝑐√
𝜋 𝜆 t0

(t0 𝜆)3/2 , (2.29)

which for 𝑐, 𝜌, t0, x, 𝜆 > 0 has no zeros. The derivative of the temperature in respect to 𝜆 can
then be written as

∂ 𝑇 (𝜆)
∂ 𝜆

= 𝑎(𝜆)
[︂
cos

(︂
2𝜋

(︂
t

t0
− x

√
𝜌 𝑐

2
√

𝜋 𝜆 𝑇0

)︂)︂
− 2 sin

(︂
2𝜋

(︂
t

t0
− x

√
𝜌 𝑐

2
√

𝜋 𝜆 𝑇0

)︂)︂]︂
. (2.30)

As the sinus and cosinus term share the same argument, the term will equal zero for

t

t0
− x

√
𝜌 𝑐

2
√

𝜋 𝜆 𝑇0
= 𝜋 n + tan−1(1/2) ∀n ∈ ℕ . (2.31)
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For 0 < 𝜆 < ∞ this allows for zeros in ∂ 𝑇 (𝜆)
∂ 𝜆 , 𝑇 (𝜆) is therefore non-monotone. Assuming 𝑇 (𝜆)

is continuous in 𝜆 > 0, then the non-monotony implies that 𝑇 (𝜆) is non-linear, and non-additiv
as well.

As one dimensional instationary heat conduction provides the basis for the investigated
hygrothermal problems, it is to be expected, that more complex problems are non-linear, non-
additiv, and non-monotone as well. With this established, a sufficient SA method needs to be
found.

2.2.2 Types of Sensitivity Analysis Methods

As there are many different approaches to SA, a short overview on the main groups and some of
their most prominent methods is given. (Camplolongo et al., 2000) lists the following categories:

• factor screening
• local Sensitivity Analysis
• global Sensitivity Analysis

Camplolongo et al. (2000) proposes factor screening for models with high numbers of uncertain
parameters, which can be reduced before applying more computationally expensive methods.
One way to achieve this, is through one-at-a-time experiments. In these experiments for each
parameter two extreme values and a default value are identified. The numerical experiments are
then carried out with one parameter in extreme position and all the other in default position.
Subsequently, the sensitivity is represented by the difference in the output of the extreme and
the output of the default configuration. One-at-a-time methods only allow for identification
of main effects. To get information on interacting effects, more advanced screening methods
(e.g. fractorial factorial design) are needed. Examples can be found in (Hagentoft et al., 2015) in
building science specific context and (Camplolongo et al., 2000) for factor screening methods in
a more general context.

Local SA describes the effects of the inputs on a local point through analytical methods. A
prominent example is Differential Analysis. Camplolongo et al. (2000) describes the method in
four steps. First the defaults and ranges for each input parameter are selected. Followed by the
approximation of the output through a Taylor series. Variance propagation methods are then
used to estimate the variance of the output and finally the impact of the individual parameters
are estimated using the Taylor series approximations. It is often used in combination with a
spatially homogeneous constant-parameter system. To allow for non-constant-parameter system,
more advanced Differential Analysis methods (e.g. generalized sensitivity density) can be used.

Global SA describes the impact through a relation between input certainty and output certainty.
Prominent fields in Global SA are Monte-Carlo-Based methods and Measures of Importance.
Monte-Carlo-Based methods are done through evaluation of multiple experiments with randomly
selected inputs. Examples for correlation measures and two-sample tests can be found in
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(Hagentoft et al., 2015). The latter being further explored in Sec. 2.2.4. Measures of Importance
are based on describing Sensitivity through

𝑉 𝑎r𝑋i [𝐸(𝑌 |𝑋j = xj)]
𝑉 𝑎r(𝑌 ) , (2.32)

in which 𝑉 𝑎r𝑋i describes the variance over all possible values for 𝑋j and 𝑉 𝑎r(𝑌 ) the total
variance of the output. Two different methods to achieve this are through Sobol’ Sensitivity
Indices (Sobol, 2001) and Fast Fourier Sampling Test (FAST) developed in (Cukier et al., 1973).
The latter being further explored in Sec. 2.2.3.

Considering the listed SA methods, with the insights about the model behaviour from Sec. 2.2.1
in mind, it is now possible to make a more profound decision on which SA method to use.

Screening methods allow for reduction of parameters, at the restriction of only providing
quantitative results. In this work we assume, that relevant parameters have been identified a
priori and a quantitative estimation of the direct and interactive effect of them is of interest.
Therefore, screening methods are not sufficient for this use case.

As the FAST method allows for estimation of sensitivity in multiple orders and is applicable
to non-monotone models with inhomogen parameter functions, it is chosen as the main method.
As the segmentation based method is applicable to this model behaviour as well, and because it
is computationally cheaper, it is selected as a comparison model.

2.2.3 Fourier Amplitude Sensitivity Test (FAST)

The FAST method has been developed in (Cukier et al., 1978; Cukier et al., 1973). The method
used in this work will be an advanced version of FAST, named extended Fast Fourier Sampling
Test (eFAST) developed in (Saltelli et al., 2010; Saltelli et al., 1999). The authors establish a
model 𝑓 in the form of

y = 𝑓(x) , (2.33)

with the k-dimensional input vector x and the output y. The domain of the input is assumed
to be a unit hypercube

𝐾n(x|0 < x < 1, x1, x2, . . . , xn) , (2.34)

and assuming x is a random vector with the density function 𝑃 (x) = 𝑃 (x1, x2, . . . xn), then
the average of the outputs r’th moment ⟨y(r)⟩ can be written as

⟨y(r)⟩ =
∫︁

𝐾n
𝑓(x)𝑃 (x)𝑑x . (2.35)

⟨y(r)⟩ is of interest, as it provides information on the model’s variance. According to (Cukier
et al., 1978) a decomposition of the model’s variance induced by the input parameters can
be achieved through a multidimensional Fourier transformation. To avoid the computational
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complexity of this multidimensional transformation, another approach is chosen. A search curve
is introduced, which systematically explores the unit hypercube. The input parameters can be
written as a function of a variable s and a set of frequencies 𝜔i as

xi = 𝐺i(sin(𝜔i s)) . (2.36)

This introduces an oscillation in the input parameter xi. Applying the model 𝑓 this leads to
an oscillation in the output y. This periodicity in the output now allows to perform a Fourier
Analysis. The model can be written as a Fourier series

𝑓(s) =
∞∑︁

−∞
𝐴j cos(j s) + 𝐵j sin(j s) . (2.37)

Furthermore, Cukier et al. (1973) shows that the Fourier coefficients can be connected to the
variance induced by the parameters. Or in other words, if xi shows a high impact on the output,
the fourier transformed output will show a high amplitude at the frequencies p wi. Assuming the
search curve is space-filling, it is possible to evaluate the average of the outputs r’th moment in
the s space as a one-dimensional integral along the search curve, as

y(r) = lim
t→∞

1
2𝑇

∫︁ 𝑇

−𝑇
𝑓(x(s))𝑑s (2.38)

In (Cukier et al., 1978) it is shown that for an incommensurate search curve the average in the
s-space is equivalent to the average in the 𝐾-space.

⟨y(r)⟩ ≡ y(r) (2.39)

Saltelli et al. (1999) states that due to the finite precision of computers, no set {𝜔i} can be
truly incommensurate. Therefore, the search curve will repeat itself at some point. Or, there is a
positive rational number T so that 𝑓(s) = 𝑓(s + 𝑇 ). For frequencies 𝜔i ∈ ℕ+ Cukier et al. (1973)
shows that 𝑇 = 2𝜋. The formula for the Variance 𝐷 as a function of the mean of the squared
output, and the square of the mean output

𝐷 = (y2) − y2 (2.40)

can be further specialised for Eq. 2.38 and Eq. 2.37, resulting in

𝐷 = 1
2𝜋

∫︁ 𝜋

−𝜋
𝑓(x(s))2𝑑s −

[︂ 1
2𝜋

∫︁ 𝜋

−𝜋
𝑓(x(s))𝑑s

]︂2

= 1
2𝜋

∫︁ 𝜋

−𝜋

⎡⎣ ∞∑︁
j=−∞

𝐴j cos(j s) + 𝐵j sin(j s)

⎤⎦2

𝑑s −
⎡⎣ 1

2𝜋

∫︁ 𝜋

−𝜋

∞∑︁
j=−∞

𝐴j cos(j s) + 𝐵j sin(j s)𝑑s

⎤⎦2

.

(2.41)
Using Parseval’s therorem, and considering the symmetrie due to 𝑓(s) being a real valued

function (𝐴j = 𝐴−j and 𝐵j = 𝐵−j), Eq. 2.41 yields
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𝐷 =
∑︁

j∈ℤ0

𝐶2
j = 2

∞∑︁
j=1

𝐴2
j + 𝐵2

j = 2
∞∑︁

j=1
Λj , (2.42)

with Λj = 𝐴2
j + 𝐵2

j . Cukier et al. (1973) then state, that the variance of the output 𝐷i induced
by the input xi, can be estimated by evaluating the spectrum of the frequency 𝜔i and its higher
harmonics p wi with p = 1, 2, ..., ∞, as

𝐷i = 2
∞∑︁

p=1
𝐴2

p𝜔i
. (2.43)

This partial variance 𝐷i can now be used to estimate an index for the sensitivity as proposed in
Eq. 2.32

𝑆𝜔i = 𝐷i

𝐷
. (2.44)

2.2.3.1 Search Curve Sampling

When using the FAST method, the sampling process is an essential part of the SA method.
Different sampling methods are characterized through the chosen search curve Eq. 2.36. The
aim is to create uniformly distributed samples in the unit hypercube 𝐾. In (Saltelli et al., 1999)
different transformations are compared. This Section shall only give a short list of proposed
transformations, and a visual representation of the resulting sampling distributions. (Cukier et
al., 1973) proposed

xi = xi 𝑒vi sin(𝜔i s) (2.45)

with the nominal value xi and vi a factor describing the endpoints of the estimated range. In
(Koda et al., 1979) the authors proposed

xi = xi (1 + vi sin(𝜔i s)) , (2.46)

and in (Saltelli et al., 1999) both

xi = 1
2 + 1

𝜋
arcsin(sin(𝜔i s)) , (2.47)

and an adaption by applying an additional phase shift

xi = 1
2 + 1

𝜋
arcsin(sin(𝜔i s) + 𝜙i) , (2.48)

are proposed. Fig. 2.2 shows an illustration of how the samples are distributed in a two
dimensional K-space 𝐾(x1, x2) for each search curve. The evaluation is done for 250 samples and
the frequencies 𝜔 = {11, 21}. For Eq. 2.45 xi = 𝑒−5 and vi = 5 are used. For Eq. 2.46 xi = 1/2
and vi = 1 are used. As well as a phase shift 𝜙 = {3.74, 3.98}.
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Fig. 2.2: Distribution of samples in the K-space using search curves according to equation 2.45
(1), equation 2.46 (2), equation 2.47 (3), and equation 2.48 (4)

The phase shift applied in Eq. 2.48 results in a loss of symmetry in 𝑓(x) and therefore xi(s)
has to be sampled for s ∈ (−𝜋 , 𝜋) instead. The authors introduce resampling for using a unique
phase shift for each variable 𝜙i and in the following compute the estimate for the Sensitivity
Index for each variable from each curve. In Fig. 2.3 such a set is created, for three variables
x = {x1, x2, x3}, 𝑁 = 500, and 𝑀 = 4. The interference factor 𝑀 defines how many higher
Harmonics are considered in Eq. 2.43, the infinite sum is truncated at p = 𝑀 . The Sensitivity
Index for each variable is then computed from its respective curve. In other words, the output yi

∀i = 1, 2, . . . , 500 is used to compute 𝐷̂1, yi ∀i = 501, 502, . . . , 1000 is used to compute 𝐷̂2, and
yi ∀i = 1001, 1002, . . . , 1500 is used to compute 𝐷̂3.
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Fig. 2.3: Distribution of samples for three variables xi computed using equation 2.48. Due to
the loss of symmetry using the eFAST method the computation of the partial variances
for each variable needs its own sample space.
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2.2.3.2 Total Indices

The idea of Total Indices was proposed in (Saltelli et al., 1999) as an extension of the FAST
method. The so far neglected frequencies, that do not belong to the set pi 𝜔i, ∀i = 1, 2, . . . , n,
∀ pi = 1, 2, . . . , ∞, do not account for the Variance of the output. To access this residual Variance
a set in the form p 𝜔−i, with −i representing “all but i” is defined. The estimation of the variance
𝐷−i is then computed as

𝐷̂−i = 2
∞∑︁

p=1
(𝐴2

p,𝜔−i
+ 𝐵2

p,𝜔−i
) . (2.49)

𝐷̂−i/𝐷 then represents all effects of any order, which are not consequences of xi. Therefore,
1 − 𝐷̂−i/𝐷 represent all effects which are consequences of xi. This is referred to as the total
Sensitivity Indices 𝑆i,𝑇 (Chan et al., 2000).

2.2.4 Two Sample Test

Two Sample Test, or Segmentation based methods (Hagentoft et al., 2015), revolve around the
idea of applying tests of goodness of fit to two sets of random samples. Initially these tests
intended to test if the distribution of a random sample fits a known, specified distribution. In the
context of SA the tests are used differently. The general idea is to take a subset of the models
output, and test it against the rest of the output. In this case the models output is divided into
a bottom and a top set, with the median as the divider. The Segmentation is shown in Fig. 2.4
using 𝐹 (y), the cumulative distribution function of the model output y.

y𝑏ot ytop

ỹ
0

0.2

0.4

0.6

0.8

1

𝐹
(y

)

Fig. 2.4: Segmentation of the model output into two parts, top and bottom, using the median
of the model output as a divider.

The two set tests are now utilized to compare the distribution of the variable xi in both the
ytop and y𝑏ot set. In other words, we are interested in 𝐹 (xi | y(xi) ∈ y𝑏ot) and 𝐹 (xi | y(xi) ∈ ytop).
To these distributions the Kolmogerov-Smirnov test is applied

𝑆i = sup [|𝐹 (xi | y(xi) ∈ ytop) − 𝐹 (xi | y(xi) ∈ y𝑏ot)|] . (2.50)
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More information on the test can be found in (Conover, 1980). The test statistic 𝑆i, which in
the intended way would be used to reject or confirm the hypotheses, is now used as a Sensitivity
Index. The drawn conclusion is, that if 𝐹 (xi | y(xi) ∈ y𝑏ot) and 𝐹 (xi | y(xi) ∈ ytop) share a similar
distribution, xi has little impact on y. Analoguesly, if the distributions differ, xi has a greater
impact on y. An illustration of these two cases is shown in Fig. 2.5.
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Fig. 2.5: High (1) and low (2) sensitivity 𝑆i of the model output y in respect to the variable i as
an interpretation of the similiarity between 𝐹 (xi | y(xi) ∈ y𝑏ot) and 𝐹 (xi | y(xi) ∈ ytop)
quantified through the Kolmogorov-Smirnov test.

2.2.4.1 Sampling

Unlike in the FAST method, segmentation based methods are not restricted to certain kind of
sampling. To ensure a full coverage of the sampling space different methods have been developed.
In this work the segmentation based analysis, is sampled using the LHC method, developed in
(McKay et al., 1979). Instead of sampling purely random in the sample space, the sample space
is divided into n segments of equal probability, where n is also the number of samples. From
each of these segments then random tuples are picked without replacement. Which segments are
paired between the variables is random, but each variable’s segment is represented exactly once.
A comparison between LHC sampling and random sampling is shown in Fig. 2.6.
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Fig. 2.6: Comparision of random samples in two variables of a sample size N=10 using LHC (1)
and random sampling (2), with horizontal and vertical lines indicating the coverage of
the sample space.

2.3 Confidence

All the so far mentioned results of the simulation are estimates. This applies to the mean and
standard deviation of the physical quantities, but also to the Sensitivity Indices for the random
variables. An approach to quantify the accuracy of these estimates is through confidence intervals.
As an example, an experiment using the model y = 𝑓(x1, x2, ..., xk), with the random variables xi

is done for n samples in xi. After an estimation for the mean of the model output y(y1, y2, ..., yn)
is computed, we are now interested in how good the estimate for the mean fits the mean of the
population of y. One approach to this is Bootstrapping, a computational method to estimate
the standard error of a estimated paramter 𝜃̂ = t(y) based on the sample y, first discussed in
(Efron, 1992). This is achieved by resampling the sample, in this case with replacement. The
sample, resulting from the estimated paramter for each resampled sample, then allows to estimate
the standard error of the estimated parameter. In (Archer et al., 1997) this is discussed in the
context of Sensitivity Indices computed using the fast method. In (Efron and Tibshirani, 1994)
the general approach is explained. We assume the experiment has yielded n outputs y1, y2, ..., yn

on which a statistic is to be computed on. The method itself takes place in three steps, described
in (Efron and Tibshirani, 1994) as:

1. Take an independent bootstrap sample y*
i of n samples from y1, y2, ..., yn with replacing.

2. Compute the estimate for the bootstrap mean y*
k from the set y*

1, y*
2, ..., y*

n.
3. Repeat step one and two, until a sufficient size for distribution y is created, and compute

the standard error 𝑆 𝐸(y).

Even tough the population of y does not follow a normal distribution, y will follow a distribution
similar to the normal distribution. This assumption allows computing the confidence intervals
using the standard error 𝑆 𝐸(y) and the percentile intervals of the normal distribution. For a
confidence of 90% it yields
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y ± 1.645 𝑆 𝐸(y) . (2.51)

As y does not necessarily follow a normal distribution, this is just an approximation of the
confidence interval. Non-parametric methods, which follow a more advanced scheme, can be
found in (Efron and Tibshirani, 1994).

Efron and Tibshirani (1994) suggest 200 resamples can be sufficient for the bootstrapped
standard error, Archer et al. (1997) suggest that 1000 or 2000 numbers of resampling can be
sufficient for the estimation of the confidence intervals of Sensitivity Indices. Concluding a short
example is made to illustrate the method. Let y follow an exponential distribution with an
expected value of 𝜇 = 1 and a variance 𝑉 𝑎r(y) = 1

𝑓𝑌 (y) = 𝑒−y (2.52)

Now an in the probability space equally distributed (to ensure this LHC sampling is used)
sample y = y1, y2, ..., yn, with n = 200 is sampled and an arithmetic mean y is calculated as the
estimator for 𝜇. An illustration of the probability density function and the distribution of the
sample is shown in Fig. 2.7.
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Fig. 2.7: Probability density function 𝑓(y) and a histogram of the discrete propability distribu-
tion of the sample y.

From this sample a bootstrap sample in the form y* = y*
1, y*

2, ..., y*
n is sampled with replacement,

k = 200 times. From each of the bootstrap samples the arithmetic mean is computed yielding
y* = y*

1, y*
2, ..., y*

k. The 90% confidence interval can then be computed as

[y + 1.645 𝑆 𝐸(y), y − 1.645 𝑆 𝐸(y)] (2.53)

A histogram of the arithmetic means of the bootstrap samples y*, including the estimate for
the expected value y, and the estimated confidence interval 𝐶i is shown in Fig. 2.8.
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Fig. 2.8: Histogram of the aritmetic means of the 200 boostrap samples y* including the estimate

for the expected value y and the estimated confidence interval 𝐶i.



Chapter 3

Software Architecture

This Chapter revolves around the implementation of the methods discussed in Chapter 2. At
first, a simulation framework, which extends the Ham4D hygrothermal simulation software to
allow for probabilistic simulations is presented. It is discussed what changes are introduced
to the input and output and which programming languages are chosen. With the framework
established, the introduced pre- and post-processing units, and their respective in- and outputs
are described. Concluding the chapter the implementations of the in Sec. 2.2 presented methods
are discussed.
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3.1 Simulation Framework

To apply SA in combination with the hygrothermal simulation software Ham4D, a new simulation
Framework is developed. At the current state, Ham4D only allows for deterministic simulations.
To create a toolkit, which follows a probabilistic approach, Ham4D is wrapped by pre- and
post-processing units. Such a Framework is illustrated in Fig. 3.1.

Pre-Processing

Deterministic Parame-
ters
Uncertain Parameters

Input

input 1

input 2

input 3

...

Post-Processing

Ham4d

Ham4d

Ham4d
...

output 1

output 2

output 3

...

Output

Simulation Framework

Distributions of
state variables

Probability of failure
Sensitivity Indices

Fig. 3.1: Structure of simulation framework allowing for probabilistic simulations using Ham4d.

In this case, pre-processing deals with the preparation of the input files. The input to the
framework are deterministic parameters, uncertainty parameters and sample parameters. The
uncertainty parameters include information on the distribution parameters, usually the expected
value and the standard deviation. From the sample parameters, the pre-processing unit then
generates a sample set in the 𝐾 space using the sample methods discussed in Sec. 2.2.3.1 and
Sec. 2.2.4.1. The generated sample is applied to the cumulative distributions of the uncertain
input parameters. Finally, the input files are populated with both the deterministic and uncertain
input parameters. The pre-processing unit is written in python, as it

• works on tasks of low computational effort,
• requires access to sampling and stochastic libraries,
• should allow for adaptions by a wide range of users.

The structure of the pre-processing unit and how input data is processed, resulting in the
Ham4D input files is shown in Fig. 3.2.
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Generation of Samples

Application to
Cumulative Dist. Population of Inputfiles

input file 1

input file 2

input file 3

input file 4

...

input file n

Input

Deterministic Param.
𝐸[xi], 𝑉 𝐴𝑅[xi], 𝐷 𝐼 𝑆 𝑇 [xi]
Uncertainty ParametersSampling Parameters

Method, Size n

Fig. 3.2: Structure of the pre-processing, structure of the input data, and processing of the
input data in sub-tasks.

With the n input files generated, Ham4D can be instructed as before to compute the n output
files. Each output file contains the propagated state variables for each time step and information
on the problem needed to reconstruct the mesh. Even though the latter being repeated in each
output file, its size is insignificant to the size of the stored state variables.

The post-processing unit then reads the output files time step by time step. As the state
variables are stored in order of cells, they are transposed to increase performance in stochastic
analysis. Additionally, homogenized field variables are computed. In contradiction to the name,
field variables only contain one value for the whole domain. The transposed state variables and
the field variables are the data structures, which the stochastic analysis are then performed
on. In the Estimate Population step the mean and the standard deviation are estimated. In
Risk Analysis the sample is tested against the defined failure criteria resulting in probabilities
of failure. In the Sensitivity Analysis step the sample is analysed using the methods discussed
in Sec. 2.2.3.2 and Sec. 2.2.4 to estimate the input output relation. This results, depending
on the chosen method, in one or two Sensitivity Indices per uncertain input parameter. As all
the above-mentioned results are estimations and therefore subject to uncertainty themselves, a
Reliability Analysis is performed. In this step, a confidence interval for each of the results is
estimated through the bootstrapping method discussed in Sec. 2.3. Finalizing the post-processing,
the output is parsed using the VTK-library (Schroeder et al., 2006) to allow for visualization of
the simulation results, resulting in a .vtu file for each time step. The post-processing unit is
written in C++ as

• especialliy the FAST method has a high computational effort,
• it simplifies future implementation in Ham4D, which is written in C++.
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The structure of the post-processing unit and how output files are processed is shown in
Fig. 3.2.

Read Timestep

output file 1

output file 2

...

output file j

...

output file n

Input

Reliability Param.

Method, Samples
Sensitvity Parameters

Risk Parameters
Failure Criteria

state
(∙k ,j)

Transform Data

state𝑇

(∙j,k)

field
(⟨∙⟩j)

Estimate Population

Risk Analysis

Sensitivity Analysis

Analyse Data

output.vtk

Reliability Analysis
Confidence, N. resample

N. Vars, N. Samples
Sample Parameters

Post-Processing

Fig. 3.3: Structure of the post-processing, structure of the input data, and processing of the
input data in sub-tasks.

The output of the proposed framework now holds all the information gained through the
probabilistic approach. Where the deterministic output held only the state variables for each
time step, the probabilistic output now holds the mean value, the standard deviation, one or two
Sensitivity Indices for each uncertain input parameter, probabilities of failure for each failure
criterion and for each of these respective confidence intervals. An example of this data structure,
for a single cell and a single state variable ∙, is illustrated in Fig. 3.4.

𝜇(∙) 𝑃 [∙ > ∙𝑐r it]𝜎(∙)

𝑆1(∙)

𝑆1,𝑇 (∙)

𝑆2(∙)

𝑆2,𝑇 (∙)

𝑆i(∙)

𝑆i,𝑇 (∙)

𝐶 𝐼(𝜇(∙)) 𝐶 𝐼(𝑃 [∙ > ∙𝑐r it])𝐶 𝐼(𝜎(∙))

𝐶 𝐼(𝑆1(∙))

𝐶 𝐼(𝑆1,𝑇 (∙))

𝐶 𝐼(𝑆2(∙))

𝐶 𝐼(𝑆2,𝑇 (∙))

𝐶 𝐼(𝑆i(∙))

𝐶 𝐼(𝑆i,𝑇 (∙))

Fig. 3.4: Structure of the results of the framework held in a cell for a single state variable ∙.
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3.2 Implementation of Sensitivity Analysis Methods

Concluding this chapter we want to shortly discuss the implementations of the Sensitivity Analysis
Methods used in this work. The post-processing library is written in C++, therefore available C
or C++ libraries providing the needed methods are used.

3.2.1 Fourier Amplitude Sensitivity Test

At the date of this work no C or C++ library containing the FAST or eFAST algorithms were
found. Therefore, the algorithms were implemented, heavily guided by the implementation pro-
vided in SALib, an open-source Python library (Herman and Usher, 2017). The implementation
in this library is based on the R package fast99 written by Gilles Pujol 2006 (Iooss et al., 2006).

The implementation in this work differs from the one in (Herman and Usher, 2017) in the
form, that the confidence intervals are estimated through bootstrapping the whole data instead
of half the data. This is done to ensure comperability between the SA methods.

For the Fourier transformation itself the C library FFTW3 developed in (Frigo and Johnson,
2005) is used.

3.2.2 Segmentation Based Method

For the segmentation based method no applicable library was found. Therefore, a new algorithm
for the method was developed. To document how the sensitivity is computed, it is shortly
presented here.

As a simplification, the problem is reduced to an output vector y containing i = 1, ..., n values,
with yi(xi) the model output of the sample xi. In this simplified case y is only subject to one
random variable, xi is therefore a scalar value. In addition to the output vector, the sample
vector x is stored.

At the starting point both the vector y and the vector x are not sorted and follow the index
i = 1, ..., n. In the first step the y vector is sorted by x and re-indexed using the index j = 1, ..., n.
Rising index j therefore resembles a rising variable x. Then the y vector is sorted, allowing to
split the output by the median as shown in Fig. 2.4. The resulting vector is indexed using the
index k = 1, ..., n. Now a new vector 𝐹 of size n holding zeros is constructed. This vector will
resemble the cumulative distribution 𝐹 (xi | y(xi) ∈ y𝑏ot) − 𝐹 (xi | y(xi) ∈ ytop).

In the next step 𝐹 is filled by looping over the bottom set of the sorted output vector y𝑏ot

(index k) and incrementing the element 𝐹 𝑏ot
j and all elements above by one. The subtraction

𝐹 𝑏ot − 𝐹 top is then achieved through looping over the sorted output vector ytop (index k) and
decrementing the element 𝐹 𝑏ot

j and all elements above by one. Now the maximum of the absolute
difference between the two distribution is computed as m𝑎x(|𝐹 |) and finally, the sensitivity is
normed as 𝑆 = m𝑎x(|𝐹 |) 2/n. A pseudo code of this is shown in Lst. 3.1.

When applying this method on the initial complexity, it is advisable to implement the first
sort to happen before looping over the cells.
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Listing 3.1 Segmentation Based Method

segmentation_based_method(y,x){
y.sort_by(x);

vector<tuple<double,int> y_indexed = {0,y.size};

for j in 0 ... y.size()-1
y.first = y[j];
y.second = j;

vector F = {y.size(),0}

for m in 0 ... y_dash.size/2
j = y_dash.second[m];
for l in j ... y_dash.second/2

F[l] += 1;

for m in (y_dash.size+1)/2 ... y_dash.size-1
j = y_dash.second[m];
for l in j ... y_dash.second/2;

F[l] -= 1;

S = max(abs(F))/n;

return S;
}



Chapter 4

CaseStudy

Having explored possible methods to further analyse hygrothermal aspects of building components
in Chapter 2, and its implementation in Chapter 3, testing the methods through application to
specific cases is of interest.

This section deals with the application and interpretation of these methods on cases, with
rising complexity.

The first example (Sec. 4.1) a two-dimensional, initial value, thermal conduction problem
is analysed. The aim of this example, is to analyse three properties of SA on the basis of a
comprehensible and predictable problem. At first, we want to test the capabilities of SA in relating
local effect in the state variables to uncertain material properties. Secondly, the differences in
Sensitivity Indices and partial variances are investigated. Finally, the time dependent behaviour
of the Sensitivity Indices and the partial variances is investigated.

In the second example (Sec. 4.2) the context of building science is added. With this, the
complexity is increased to a coupled heat and moisture problem. In this example the convergence
behaviour of the SA method is investigated. This is achieved through inspection of the respective
confidence intervals for different sample sizes and through comparison of the Sensitivity Indices
for different sample sizes. The aim is to investigate if the confidence intervals are able to indicate
how far the Sensitivity Indices have converged. Additionally, it is tested if the models converge to
the same Sensitivity Indices. Lastly, it is tested if the segmentation based method is applicable
to samples, generated using the search curve method.

In the third example (Sec. 4.3), the problem is expanded to include convective heat and
moisture transport. In this example we want to investigate the capabilities of SA, as a tool
used in decision-making. Therefore, a failing construction is analysed, with the aim to identify
relevant parameters and guide the analyst in the decision-making, as how to reduce the failure
probability. This is tested on a low sample size, to ensure a reasonable computational effort.

All simulations are run on single units, and should take no more than 8 hours to finish. This
should allow analysts to simulate the problems overnight.
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4.1 Behaviour of Sensitivity Indices using the example of Conductive
Heat Transport

In the first case a two-dimensional initial value problem is analyzed. The domain consists of
three materials, two of which, in the further named material A and material B, are subject to
an uncertainty in the form of a normal distributed thermal conductivity. The third material,
material C, shows a deterministic thermal conductivity significantly lower than those of material
A and material B. The domain is constantly heated on one side, modelled as a Dirichlet
boundary condition. The geometric setup of the construction and relevant material parameters
are illustrated in Fig. 4.1. All additional parameters used in the simulation can be found in
Sec. A.1.1.
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𝑇𝐶(t = 0) = 0 ∘𝐶

𝑇𝐵 𝐶 = 20 ∘ 𝐶

Fig. 4.1: Set up of the two-dimensional initial value problem consisting of three materials A, B
and C, with material A and B showing uncertain heat conductivity. The domain has
three adiabatic boundaries and a constant temperature boundary on one side.

The domain is uniformly meshed through squares with side lengths 𝑎 = 0.05 m. The mesh is
shown in Fig. 4.2.

Fig. 4.2: Finite volume mesh of the initial value problem

The case is analysed using the eFAST method described in Sec. 2.2.3. A sample of size 𝑁 = 130
(𝜆𝐴, 𝜆𝐵) is generated using the interference factor 𝑀 = 4. The frequencies 𝜔 = {16, 1} are chosen
by applying the eFAST algorithm discussed in (Saltelli et al., 1999). The estimation for the
expected value and standard deviation of 𝑇 at the time steps t = 1, 10, 20, 30 h are shown in
Fig. 4.3. The respective widths of the confidence intervals can be found in Fig. A.1.
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Fig. 4.3: Estimated mean 𝜇(𝑇 ) and standard deviation 𝜎(𝑇 ) of the temperature field, at the
timesteps t = 1, 10, 20, 30 h, showing assymetric fields and localized variation in the
temperaturefield due to the uncertainty in the material parameters (𝜆𝐴, 𝜆𝐵).

Experience suggests, that the asymmetric temperature field is a result of the differing thermal
conductivity in the materials A and C, rather than the differing thermal conductivity in materials
B and C. SA now provides a possibility to quantify this relation. Inspection of the Sensitivity
Indices allows assigning local variation in the fields to the uncertain variables 𝜆𝐴, 𝜆𝐵. Fig. 4.4
shows that the impact of 𝜆𝐵 is concentrated on the left side of the domain, expanding to the
right with as the simulation progresses. The respective widths of the confidence intervals can be
found in Fig. A.2.

The Sensitivity Indices in Fig. 4.4 are of higher order, they therefore not only include the
direct effects but also the interactive effects. Specialisation of Eq. 2.49 for the two uncertain
variables A and B, and division by the variance 𝐷 results in

𝑆𝐴,𝑇 = 1 − 𝑆−𝐴 = 1 − 𝑆𝐵 (4.1)

and

𝑆𝐵 ,𝑇 = 1 − 𝑆−𝐵 = 1 − 𝑆𝐴 . (4.2)
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Through evaluation of the sum

𝑆𝐴,𝑇 + 𝑆𝐵 ,𝑇 = 1 + 1 −
𝐴,𝐵∑︁

i

𝑆i = 1 + 𝑆𝐴𝐵 (4.3)

it becomes apparent that 𝑆𝐴,𝑇 + 𝑆𝐵 ,𝑇 ̸= 1. Therefore, If the sum of the total Sensitivity
Indices exceeds 1, this indicates interactive effects between the uncertain variables. In the case
of Fig. 4.4 no interactive effects, exceeding the confidence intervals, can be identified.

Fig. 4.4: Total Sensitivity Indices 𝑆i,𝑇 for a sample size N=130, at the timesteps t =
1, 10, 20, 30 h, indicating the sensitivity of the temperature field in respect to the
heat conductivities 𝜆𝐴 and 𝜆𝐵.

Upon inspection, the Sensitivity Indices do not provide information on the variation itself.
Thus, it can be of interest to compute the partial variances 𝐷̂i as

𝐷̂i = 𝑆i,𝑇 𝐷 = 𝑆i,𝑇 𝜎(𝑇 )2 , (4.4)

to ensure inspected sensitivities are results of substantial variance. The resulting partial
variance fields are shown in Fig. 4.5. This can be of relevance when inspecting the sensitivity
of a field, as high sensitivities can create the impression of a great impact of a variable, even
though the partial variances are actually small.
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Fig. 4.5: Partial variance of the temperature field 𝐷̂𝐴(𝑇 ) and 𝐷̂𝐵(𝑇 ) as a result of the varying
heat conductivities 𝜆𝐴 and 𝜆𝐵, computed using the extended FAST method.

For some criterion in evaluation it can be of interest to analyse a homogenized field variable.
Applying volumetric homogenization of the field variables as

⟨∙⟩ = 1
𝑉

∫︁
𝑉

∙ 𝑑x (4.5)

and further applying SA allows for an analysis of effect of the random variables on the
homogenized variable. Returning to the differing behaviour of sensitivity and partial variances,
the time dependent behaviour of the partial variances of the homogenized temperature and
the Sensitivity Indices in regard to the homogenized temperature show significantly different
behaviour, Fig. 4.6. While the partial variances converge to zero once the whole domain reaches
the temperature of the boundary condition, the Sensitivity Indices stabilize. This indicates, that
the variance of homogenized temperature converges with a similar rate as the partial variances.
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Fig. 4.6: The time dependent behaviour of the partial variances 𝐷̂i(⟨𝑇 ⟩) (a) and the Sensitivity
Indices 𝑆i,𝑇 (⟨𝑇 ⟩) (b) of the homogenized temperature in respect to the varying heat
conductivities 𝜆𝐴 and 𝜆𝐵.

4.2 Convergence of Sensitivity Indices at the example of diffusive
moisture transport in flat roofs

With the general behaviour of Sensitivity Indices established, the complexity of the problem is
increased to closer resemble a realistic building component. In this example a simplified flat
roof exposed to realistic climate conditions is analysed. The domain consists of two oak boards
with blow-in cellulose insulation in between. The component is subject to uncertainties in the
form of the s𝑑-value of the vapour barrier and the s𝑑-value of the roof sealing. The setup of
the problem is illustrated in Fig. 4.7. The exterior climate is created using open climate data
provided by (Zentralanstalt für Meteorologie und Geodynamik, 2023). The interior climate is
derived from the exterior climate according to (“ÖNORM B 8110-2:2020-01,” 2020). The used
boundary conditions, as well as the used material data can be found in Sec. A.1.2.
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Fig. 4.7: Set up of the one-dimensional flat roof problem consisting of two uncertain input
parameters, the s𝑑-value of the interior vapour barrier s𝑑,i and the s𝑑-value of the
exterior roof sealing s𝑑,𝑒. The domain has two adiabatic boundaries and boundary
conditions resembling realistic indoor and outdoor climate.
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The example is modelled as a one dimensional problem, using the mesh depicted in Fig. 4.8.
The domain is uniformly meshed through cells with height ℎ = 0.03 m. The problem is simulated
for a duration of 5 years.

Fig. 4.8: Finite-Volume mesh of the flat roof problem with uniform cell heights ℎ = 0.03 m.

In this example we want to explore the convergence behaviour of the FAST and the segmentation
based method. Therefore, the simulation is run once with 𝑁 = {130, 160, 520} for each method,
using LHC sampling for the samples used in the segmentation based SA method. For the eFAST
method the interference factor 𝑀 = 4, and the frequencies 𝜔 = {(1, 8), (1, 16), (1, 32)} are chosen.
Before exploring the Sensitivity Indices we want to discuss the global behaviour of the problem.
The propagation of the homogenized moisture content ⟨w⟩ suggests that the construction is
expected to dry out the initial moisture content in the first simulation year, with an indication
of rising trend in the last simulation years. As depicted in Fig. 4.9, the data shows significant
variation in the moisture content in the later years.

Fig. 4.9: Homogenized moisture content in the flat roof construction evaluated for a sample size
𝑁 = 520. Both sampling methods (FAST and LHC) provide equivilant results.

Inspection of the homogenized partial variances shows, that even though the confidence in
the standard deviation and mean estimators is high, the confidence is significantly lower for
the variances and the sensitivities. The Sensitivity indices in Fig. 4.10 shows both periodic and
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non periodic time dependent behaviour. In the first year, when the initial moisture is drying,
the sensitivities invert and in the later years the impact of the s𝑑-value of the roof sealing rises.
An interpretation of this is that the moisture inside the upper oak boarding manly dries to the
exterior, as this process is dominated by the s𝑑-value of the roof sealing, its impact rises with
moisture accumulating in the oak boarding. This is further supported by the periodic behaviour,
as in the yearly drying periods, the sensitivity of the homogenized moisture content in respect to
the s𝑑-value of the roof sealing is higher. Analogous, in the wetting periods the moisture load
due to the indoor climate is higher, resulting in higher sensitivities of the homogenized moisture
content in respect to the s𝑑-value of the vapour barrier.

Fig. 4.10: The time dependent behaviour of the partial variances 𝐷̂i(⟨w⟩) (left) and the Sensi-
tivity Indices 𝑆i,𝑇 (⟨w⟩) (right) of the homogenized moisture in a flat roof, in respect
to the varying s𝑑-values of the interior vapour barrier s𝑑,i and the exterior roof sealing
s𝑑,𝑒. Computed using the extended FAST method with sample size 𝑁 = 520.

Comparison of the Sensitivity Indices computed for different sample sizes and methods at
a winter day in the last simulation year (t = 39840 ℎ), shows that both methods predict a
similar model behaviour, with the segmentation based method estimating lower sensitivities. The
s𝑑-value of the vapour barrier dominates in the interior oriented strand board and the blow-in
cellulose insulation. In the upper oriented strand board both the s𝑑-value of the roof sealing and
the s𝑑-value of the vapour barrier show significant impact.
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Fig. 4.11: Comparision of Sensitivity Indices 𝑆 using the FAST method (left) and the segmen-
tation based method (right), for the sample sizes 𝑁 = 130, 260, 520, on a winter day
in the last simulation year (t = 39840 ℎ).

Turning to the convergence behaviour of the sensitivity indices, measured by the widths of
the confidence intervals, it becomes apparent that the methods show significant differences.
Sensitivity Indices computed using the FAST method show confidence intervals independent of
the sensitivity itself. This leads to homogenous confidences in the whole domain, as depicted
in Fig. 4.12, and the levels of confidence shown in Fig. 4.13. Whereas the Sensitivity Indices
computed using the segmentation based method show confidence intervals dependent of the
sensitivity itself. Therefore, in Fig. 4.12 the different sensitivities in the oak boarding become
visible in the confidence field and Fig. 4.13 shows parabolic behaviour with low confidences for
medium sensitivities and high confidences for very low and very high sensitivities.

The level like behaviour of the confidences for the FAST sensitivities, suggest, that computation
of the confidence in fever cells could be sufficient. This is of interest, as the computation of the
confidences is, in comparison to the sensitivities, of great computational effort. Both methods
show sufficient levels of confidence, in all sample sizes, to derive qualitative statements.
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Fig. 4.12: Width of the 95% confidence interval of the Sensitivity Indices computed using
the extended FAST method (left) and the segmentation based method (right), for
the sample sizes 𝑁 = 130, 260, 520, on a winter day in the last simulation year
(t = 39840 ℎ).

Fig. 4.13: Width of the 95% confidence interval of the Sensitivity Indices over the Sensitivity
Indices computed using the extended FAST method (blue) and the segmentation
based method (red), for the sample sizes 𝑁 = 130, 260, 520, in any cells at any time t.
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Investigation of the convergence behaviour of the SA methods through comparision of the
Sensitivity Indices for higher and lower sample sizes, suggest similar results, Fig. 4.14. The
eFAST method shows better performance for lower sample sizes, with more consistent spreading.
The segmentation based method shows clustering of the sensitivities, higher spreading, and
generally less data points around 𝑆 = 0.5.

Fig. 4.14: Convergance behaviour of the used SA methods through compasrision of Sesitivity
Indices for lower (N=130) and higher (N=520) sample sizes, with separation of the
uncertain variables.

Comparison of the methods by the Sensitivity Indices in any point at any time, shows that the
segmentation based method overestimates mid to low sensitives and underestimates mid to high
sensitivities. Visual evaluation suggests no correlation of this behaviour with the sample size.

Fig. 4.15: Comparison of the Sensitivity Indices computed using the extended FAST method
and the segmentation based method, for the sample sizes 𝑁 = 130, 260, 520, in any
cells at any time t.

Up to this point all samples used for the segmentation based method have been generated using
the LHC method. As discussed in Sec. 2.2.3.1, the search curve sampling should generate uniformly
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distributed samples in the K-space. This should allow the application of the segmentation based
methods, with expectation of comparable results to using the LHC sampling method. The results
in Fig. 4.16 are consistent with this assumption, showing the majority of data points inside the
95% confidence intervals computed using the initial LHC sample.

Fig. 4.16: Comparison of the Sensitivity Indices computed using the segmentation based method,
on both LHC and search curve sampling, in any cells at any time t.

With this established, the in Sec. 4.3 computed Sensitivity Indices using the segmentation
based method, are based on search curve sampled data.

4.3 Application of Sensitivity Analysis in the hygrothermal analysis
process

To test the capabilities for the utilization of SA in hygrothermal analysis the complexity of the
construction is risen, by consideration of convective heat and moisture transport. Fig. 4.17 shows
the model of a flat roof construction, consisting of oak boarding with a spruce beam and blow-in
cellulose insulation in between. On the outside roof sealing and on the inside a vapour-variable
vapour barrier are applied. The construction is subject to realistic climate conditions. The used
boundary conditions, as well as the used material data can be found in Sec. A.1.3.
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Fig. 4.17: Set up of the two-dimensional flat roof problem consisting of three uncertain input
parameters, the s𝑑-value of the interior vapour barrier s𝑑, the absorptivity of the
exterior roof sealing 𝛼, and the air flow coefficient of the gap induce air path 𝐶. The
domain has two adiabatic boundaries and boundary conditions resembling realistic
indoor 𝐵 𝐶i and outdoor 𝐵 𝐶𝑒 climate.

The hygrothermal performance of a building component can be evaluated based on different
criteria. (“ÖNORM B 8110-2:2020-01,” 2020) lists what criteria have to be fulfilled for buildings
in Austria. In this work we want test SA on the basis of two of these criteria. Firstly, the
homogenized total moisture content is inspected, to ensure there is no moisture accumulation in
the construction. Secondly, the risk of mould growth is investigated, based on the maximum
Mould Index in any cell (Ojanen et al., 2011). The failure criterion is defined as 𝑀 𝐼 ≥ 2, for
surfaces in the construction.

Three parameters are identified, as showing both relevant impact and significant uncertainty.
The vapour-variable vapour barrier is used to reduce the moisture load, while allowing the
construction to dry out to the inside. The uncertainty of the s𝑑-value is measured by the
manufacturer and can be found in product data sheets. In this case the vapour-variability is
modelled piecewise linear and the uncertainty is applied for low humidities as shown in Fig. 4.18.

Fig. 4.18: Model function of the vapour variable s𝑑-value of the vapour barrier over the relative
humidity and its uncertainty in lower relative humidities.

To ensure the fault tolerance of the construction an air path through gaps and joints is modelled,
with an air flow coefficient of 𝜇(𝐶) = 2.4 · 10−6 ± 3.0 · 10−7 (kg/(s Pab)). The mean is chosen in
accordance with an air tightness class 3 defined in (“ÖNORM B 8110-2:2020-01,” 2020). As a
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third uncertainty, the absorptivity of the roof sealing is chosen. Without detailed information
provided by manufacturer, the absorptivity has to be assumed, based on the colour of the roof
sealing. This holds potential for significant uncertainty due to the subjective colour perception,
surface condition and change of absorptivity due to weather exposure. In this case, the sealing is
assumed to be grey which according to (Wissenschaftlich-Technische Arbeitsgemeinschaft für
Bauwerkserhaltung und Denkmalpflege, 2016) can be assigned to a range of 0.5 ≤ 𝛼 ≤ 0.7 and is
therefore chosen as 𝛼 = 0.6 ± 0.08.

The domain is discretized in two dimensions using the mesh shown in Fig. 4.19. As a sample
size 𝑁 = 195 is chosen, the SA is performed using both the eFAST method and the segmentation
based method, with an interference factor 𝑀 = 4, and the frequencies 𝜔 = {8, 1, 1}. For the
analysis a duration of ten years is simulated.

Fig. 4.19: Finite-Volume mesh of the two-dimensional flat roof problem and the position of the
uncertain characteristics vapour barrier (red) the roof sealing (blue) and the air path
(yellow).

To evaluate the resilience of the construction, two criteria are investigated. Firstly, the
homogenized moisture content in the construction (Fig. 4.20) shows accumulation of moisture,
after the dry out of the initial moisture. The total moisture content shows significant variation,
indicating the relevance of the chosen uncertainties.
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Fig. 4.20: Estimated mean 𝜇(⟨w⟩) and standard deviation 𝜎(⟨w⟩) of the homogenized moisture
content in the flat roof construction with their respective 95% confidence intervals,
evaluated for a sample size 𝑁 = 195, showing significant variation in the homogenized
moisture content and indicating moisture accumulation in the construction.

As a second criterion the risk of mould growth is investigated. This is achieved using the
Mould Index according to (Ojanen et al., 2011) with a failure criterion of 𝑀 ≥ 2 for surfaces
inside constructions. As depicted in Fig. 4.21, the construction indicates high probability of
failure due to mould growth.

Fig. 4.21: Estimated probability and 95% confidence intervals of failure due to mould growth
in the flat roof construction, evaluated for a sample size 𝑁 = 195.

To gain information on how to adapt the construction, the respective Sensitivity indices
𝑆𝐹 𝐴𝑆 𝑇 (w) and 𝑆𝐹 𝐴𝑆 𝑇 (𝑀) are inspected. The graphs for the Sensitivity Indices, shown in
Fig. 4.22 and Fig. 4.23, indicate that the absorptivity is the dominating factor for both criteria.
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The air flow coefficient shows a significant impact on mould growth and the moisture accumulation.
Both criteria show no significant sensitivity in respect to the s𝑑-Value of the vapour barrier for
lower relative humidities.

Fig. 4.22: Time dependent behaviour of the Sensitivity Indices 𝑆i,𝑇 (⟨w⟩) of the homogenized
moisture in a flat roof, in respect to the varying s𝑑-values of the interior vapour
barrier s𝑑, the absorptivity of the exterior roof sealing 𝛼, and the air flow coefficient
of the gap induce air path 𝐶. Computed using the extended FAST method with
sample size 𝑁 = 195.

Fig. 4.23: Time dependent behaviour of the Sensitivity Indices 𝑆i,𝑇 (m𝑎x(𝑀)) of the maximum
mould index in the flat roof, in respect to the varying s𝑑-value of the interior vapour
barrier s𝑑, the absorptivity of the exterior roof sealing 𝛼, and the air flow coefficient
of the gap induce air path 𝐶. Computed using the FAST method with sample size
𝑁 = 195.
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The sensitivity indices computed using the segmentation based method 𝑆𝑆 𝑒𝑔(w) and 𝑆𝑆 𝑒𝑔(𝑀),
estimate similar impact of the absorptivity, but shows significantly lower impact of the air flow
coefficient. Plotting the two methods against each other, Fig. 4.24 (left), indicates that they
no longer produce consistent results. Increase of sample size used in the segmentation based
method (middle) results in better agreement between the methods, suggesting the segmentation
based method did not stabilize for the lower sample size. Comparison of the segmentation based
method for different sample sizes, with the 95% confidence interval of the lower sample size
(right), shows the confidence interval fails to predict the method failure. Further assumptions
are drawn from the sensitivities estimated by the FAST method.

Fig. 4.24: Comparison of the Sensitivity Indices for the homogenized moisture content, computed
using the extended FAST method and the segmentation based method, for the sample
sizes 𝑁 = 195, at any time t.

With this additional information on the model behaviour the construction is adapted. The
absorptivity is adapted to a higher mean value and a reduced standard deviation 𝛼* = 0.8 ± 0.03.
An approach to ensure this, could be in situ measurements of the absorptivity and enforcement
of periodic cleaning of the sealing. The air flow coefficient is adapted to air tightness class 2,
which is resembled by 𝐶* = 9.6 · 10−7 ± 3.0 · 10−7 (kg/(s Pab)). This could be enforced trough
quality monitoring in prefabrication and in situ review of leakages.

The effect of the adaptions can be seen in Fig. 4.25 and Fig. 4.26. The adapted construction
no longer shows indication of moisture accumulation and a significantly reduced risk of failure
due to mould growth, suggesting that the through SA as relevant identified input parameter
were critical for the performance of the construction.
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Fig. 4.25: Comparision of the estimated homogenized moisture content before (red) and after
(blue) adaptation of the uncertainty of the input variables, for a sample size 𝑁 = 195.

Fig. 4.26: Comparision of the probability of failure due to mould growth before (red) and after
(blue) adaptation of the uncertainty of the input variable, for a sample size 𝑁 = 195.
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4.4 Discussion

In the heat conduction example, investigated in Sec. 4.1, it is shown that SA provides visually
plausible estimations for Sensitivity Indices, which can be used to quantify input output relations.
Both methods are able to quantify the relation of local effects in the state variables to the
uncertainty of the input parameters. It is notable, that the Sensitivity Indices only represent
the ratio of variances and not the variance itself, therefore it is important to inspect the output
variance, when drawing conclusions. A result of this behaviour is seen upon investigation of the
sensitivity for cases in which the variance of the model output converges to zero. In these case
the Sensitivity Indices do not converge to zero, but rather stabilize.

Investigation of reliability of the Sensitivity Indices in Sec. 4.2 brought up significantly different
convergence behaviour of the two applied methods. While the FAST method shows confidences
independent of the sensitivity, the segmentation based method performs best for high and low
sensitivities. The confidence intervals for both methods indicated reliable results, even for lower
sample sizes. This is further supported when comparing the results of both methods. Yet, the
model output was subject to relatively low variance, which could be the reason for the reliability.
Furthermore, the comparison shows patterns of differences in the estimations of the two methods,
which seem independent on the sample size. Lastly, it was shown that the segmentation based
methods can potentially be applied to samples generated using the search curve method.

Investigation of SA as a tool in the hygrothermal analysis process in Sec. 4.3, showed that SA
can be off value for understanding model behaviour and can give qualitative and quantitative
guidance in model adaption. Application to low number of variables is of reasonable computational
effort. It becomes apparent that the segmentation based method is less robust than the eFAST
method, and that the confidence intervals, computed through bootstrapping, are in this case not
able to predict the failure of the segmentation based method.



Chapter 5

Conclusion and Outlook

In this work the applicability of SA as a tool in hygrothermal analysis is investigated. To allow
this, a probabilistic approach to hygrothermal simulation is performed. After categorization of
the models used in hygrothermal simulation, two applicable SA methods are chosen. A simulation
framework extending the deterministic model is developed and tested on basis of a case study
consisting of three examples with rising complexity. The following conclusions can be drawn
from the case study.

SA as a tool in hygrothermal analysis is able to identify the relation of local effects in the
state variables to the uncertainty of the input parameters. Furthermore, it is shown, that
the Sensitivity Indices hold no information on the scale of the variance and differ in the time
dependent behaviour compared to the variance.

The two investigated methods provide qualitative similar results, but they do not necessarily
converge to the same Sensitivity Indices. The segmentation based methods shows a lower
convergence rate and less robustness for low sample sizes. In the analysed cases, the eFAST
method proved to be robust for reasonable sample sizes.

The confidence intervals, computed through bootstrapping, are able to indicate the reliability
of the results, once a sensitivity has stabilized, but fail to indicate failure of the segmentation
based method for low sample sizes in one case. Further investigation as to why this is the case is
needed. Assertion of the reliability of the results remains difficult, therefore it is advisable to
use at least two different methods of SA, even when confidence intervals are computed through
Bootstrapping.

Lastly, SA proves to be a useful tool to assist in decision-making. It is able to identify why a
building component is failing and give quantitative estimation for relevance of parameters. With
this information a direct guidance in the adaption of the component, leading to lower probability
of failure, is given.

This work provides a starting point for further investigation of SA in hygrothermal simulation
on component level. Untouched in this work is the hybrid approach, in which SA is applied in
two steps. In the first step a great number of variables is reduced to relevant ones, which are
then analysed using more computationally expensive methods. This could prove to be a widely
applicable method, with reasonable computational effort and reliable results. Such an approach
could be combined with methods like meta-modelling or Gaussian emulators, to further reduce
the computational effort.
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With probability of failure, in the form of state variables exceeding critical values, being a
prominent criterion in hygrothermal analysis, reliability algorithms like FORM and SORM could
be of interest. These methods deal with identification of factors driving the failure probability
and give approximations for the failure probability. These methods could be possible alternatives
to the Monte-Carlo approach.
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Appendix A

Appendix

A.1 Case Study Input Parameters

A.1.1 Behaviour of Sensitivity Indices using the example of Conductive Heat
Transport

This Section includes all parameters used for the computations done in section 4.1.

A.1.1.1 Material Parameters

Tab. A.1: Chosen material parameters of the material A

Kennwert Symbol Wert

Thermal Conductivity 𝜆 0.2 ± 0.03 W/(m K)
Density 𝜌 100 kg/m3

Specific Heat Conductivity 𝑐 1300 J/(kg K)

Tab. A.2: Chosen material parameters of the material B

Kennwert Symbol Wert

Thermal Conductivity 𝜆 0.2 ± 0.03 W/(m K)
Density 𝜌 100 kg/m3

Specific Heat Conductivity 𝑐 1300 J/(kg K)

Tab. A.3: Chosen material parameters of the material B

Kennwert Symbol Wert

Thermal Conductivity 𝜆 0.1 W/(m K)
Density 𝜌 100 kg/m3

Specific Heat Conductivity 𝑐 1300 J/(kg K)
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A.1.1.2 Confidence Intervals

Confidence intervals computed using 𝑁𝑅 = 400 resamples for the mean and standard deviation
and 𝑁𝑅 = 1000 resamples for the Sensitivity Indices.

Fig. A.1: Width of the 95% confidence intervall mean 𝜇(𝑇 ) and standard deviation 𝜎(𝑇 ) of
the Temperature field, at the timesteps t = 1, 10, 20, 30 h, showing field dependent
sensitivities.
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Fig. A.2: Width of the 95% confidence intervall of the Sensitivity Indices computed using the
extended FAST method (left) and the segmentation based method (right), of the
Temperature field, at the timesteps t = 1, 10, 20, 30 h.

A.1.2 Convergence of Sensitivity Indices using the example of diffusive moisture
transport in flat roofs

This Section includes all parameters used for the computations done in Sec. 4.2.

A.1.2.1 Material Parameters

Tab. A.4: Chosen material parameters of the blow-in cellulose insulation

Kennwert Symbol Wert

Thermal Conductivity dry 𝜆(𝜙 = 0) 0.037 W/(m K)
Thermal Conductivity moist 𝜆(𝜙 = 1) 0.032 W/(m K)
Density 𝜌 55.2 kg/m3

Specific Heat Conductivity 𝑐 2110 J/(kg K)
water vapour resistance factor 𝜇 3
free water saturation w𝑓 494 kg/m3

capillary pressure at w /w𝑓 = 0.5 s0 1.895𝑒4 Pa
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Kennwert Symbol Wert

fitting parameter p 0.6

Tab. A.5: Chosen material parameters of the oak boarding

Kennwert Symbol Wert

Thermal Conductivity dry 𝜆(𝜙 = 0) 0.114 W/(m K)
Thermal Conductivity moist 𝜆(𝜙 = 1) 0.5695 W/(m K)
Density 𝜌 600 kg/m3

Specific Heat Conductivity 𝑐 1700 J/(kg K)
water vapour resistance factor 𝜇(𝜙 = 0) 150

𝜇(𝜙 = 0.5) 150
𝜇(𝜙 = 0.8) 200
𝜇(𝜙 = 1) 200

free water saturation w𝑓 814 kg/m3

capillary pressure at w /w𝑓 = 0.5 s0 3𝑒5 Pa
fitting parameter p 0.48

Tab. A.6: Chosen material parameters of the roof sealing

Kennwert Symbol Wert

SD Value 𝑆 𝐷𝑒 30 ± 5 m

Tab. A.7: Chosen material parameters of the vapour barrier

Kennwert Symbol Wert

SD Value 𝑆 𝐷i 30 ± 5 m

A.1.2.2 Exterior Climate

The exterior climate is based on publicly available weather measurements data from the (Zen-
tralanstalt für Meteorologie und Geodynamik, 2023). For the simulation the following measure-
ment point is used:

Syn. Nr. Name Bundesland Länge Breite Stationshöhe Beginndatum

11361 Bad Ischl OÖ 13.647223 47.706112 507 m. ü. A. 20070701
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Fig. A.3: Weather data used in the simulation

Fig. A.4: Quality of weather data used in the simulation

A.1.2.3 Interior Climate

The interior climate is derived from the exterior climate according to (“ÖNORMB 8110-2 -
Wärmeschutz im Hochbau - Teil 2,” 2020) as

𝑇 *
i =

⎧⎪⎪⎨⎪⎪⎩
for 𝑇𝑒,m < 10 ∘C 22 ∘C
for 10 ∘C ≤ 𝑇𝑒,m ≤ 20 ∘C 0.5 · 𝑇𝑒,m + 17 ∘C
for 𝑇𝑒,m > 20 ∘C 27 ∘C
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for the interior Temperature and for the moisture excess Δ𝜈* (kg/m3) as

Δ𝜈* =

⎧⎪⎪⎨⎪⎪⎩
für 𝑇𝑒,m < 0 ∘C 4 ∘C
für 0 ∘C ≤ 𝑇𝑒,m ≤ 20 ∘C −0.1625 · 𝑇𝑒,m + 4 ∘C
für 𝑇𝑒,m > 20 ∘C 0.75 ∘C

The air pressure difference Δ𝑃s (Pa) is derived from the temperature difference and the height of
connected air on the inside z (m) as

Δ𝑃s = z

2 · 3456 · ( 1
𝑇𝑒

− 1
𝑇 *

i

) .

A.1.2.4 Surface Resistances

Tab. A.9: Interior surface resistances for the flat roof example

Kennwert Symbol Wert

thermal resistance 𝑅si 0.25 m2 K/W
moisture transfer coefficient 𝛽i 25 · 10−9 kg/(m2 s Pa)

Tab. A.10: Exterior surface resistances for the flat roof example

Kennwert Symbol Wert

thermal resistance 𝑅s𝑒 0.04 m2 K/W
moisture transfer coefficient 𝛽𝑒 75 · 10−9 kg/(m2 s Pa)
absorptivity 𝛼 0.12
emissivity 𝜖 0.45

A.1.3 Application of Sensitivity Analysis in the hygrothermal analysis process

This Section includes all parameters used for the computations done in Sec. 4.3.

A.1.3.1 Material Parameters

Tab. A.11: Chosen material parameters of the blow-in cellulose insulation

Kennwert Symbol Wert

Thermal Conductivity dry 𝜆(𝜙 = 0) 0.037 W/(m K)
Thermal Conductivity moist 𝜆(𝜙 = 1) 0.032 W/(m K)
Density 𝜌 55.2 kg/m3

Specific Heat Conductivity 𝑐 2110 J/(kg K)
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Kennwert Symbol Wert

water vapour resistance factor 𝜇 3
free water saturation w𝑓 494 kg/m3

capillary pressure at w /w𝑓 = 0.5 s0 1.895𝑒4 Pa
fitting parameter p 0.655

Tab. A.12: Chosen material parameters of the oak boarding

Kennwert Symbol Wert

Thermal Conductivity dry 𝜆(𝜙 = 0) 0.14 W/(m K)
Thermal Conductivity moist 𝜆(𝜙 = 1) 0.12 W/(m K)
Density 𝜌 675 kg/m3

Specific Heat Conductivity 𝑐 1600 J/(kg K)
water vapour resistance factor 𝜇(𝜑 = 0) 200

𝜇(𝜑 = 0.5) 200
𝜇(𝜑 = 0.8) 50
𝜇(𝜑 = 1) 50

free water saturation w𝑓 500 kg/m3

capillary pressure at w /w𝑓 = 0.5 s0 2.98𝑒6 Pa
fitting parameter p 0.556

Tab. A.13: Chosen material parameters of the spruce beam

Kennwert Symbol Wert

Thermal Conductivity dry 𝜆(𝜙 = 0) 0.09 W/(m K)
Thermal Conductivity moist 𝜆(𝜙 = 1) 0.426 W/(m K)
Density 𝜌 455 kg/m3

Specific Heat Conductivity 𝑐 1500 J/(kg K)
water vapour resistance factor 𝜇(𝜑 = 0) 130
free water saturation w𝑓 600 kg/m3

capillary pressure at w /w𝑓 = 0.5 s0 1.78𝑒6 Pa
fitting parameter p 0.653

Tab. A.14: Chosen material parameters of the roof sealing

Kennwert Symbol Wert

SD Value 𝑆 𝐷𝑒 100 m
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Tab. A.15: Chosen material parameters of the vapour barrier

Kennwert Symbol Wert

SD Value 𝑆 𝐷i(𝜙 = 0) 25 ± 5 m
𝑆 𝐷i(𝜙 = 0.5) 25 ± 5 m
𝑆 𝐷i(𝜙 = 0.8) 0.3 m
𝑆 𝐷i(𝜙 = 1) 0.3 m

A.1.3.2 Exterior Climate

The exterior climate is based on publicly available weather measurements data from the (Zen-
tralanstalt für Meteorologie und Geodynamik, 2023). For the simulation the following measure-
ment point is used:

Syn. Nr. Name Bundesland Länge Breite Stationshöhe Beginndatum

11361 Bad Ischl OÖ 13.647223 47.706112 507 m. ü. A. 20070701

Fig. A.5: Weather data used in the simulation



66 A Appendix

Fig. A.6: Quality of weather data used in the simulation

A.1.3.3 Interior Climate

The interior climate is derived from the exterior climate according to (“ÖNORMB 8110-2 -
Wärmeschutz im Hochbau - Teil 2,” 2020) as

𝑇 *
i =

⎧⎪⎪⎨⎪⎪⎩
for 𝑇𝑒,m < 10 ∘C 22 ∘C
for 10 ∘C ≤ 𝑇𝑒,m ≤ 20 ∘C 0.5 · 𝑇𝑒,m + 17 ∘C
for 𝑇𝑒,m > 20 ∘C 27 ∘C

for the interior Temperature and for the moisture excess Δ𝜈* (kg/m3) as

Δ𝜈* =

⎧⎪⎪⎨⎪⎪⎩
für 𝑇𝑒,m < 0 ∘C 4 ∘C
für 0 ∘C ≤ 𝑇𝑒,m ≤ 20 ∘C −0.1625 · 𝑇𝑒,m + 4 ∘C
für 𝑇𝑒,m > 20 ∘C 0.75 ∘C

The air pressure difference Δ𝑃s (Pa) is derived from the temperature difference and the height of
connected air on the inside z (m) as

Δ𝑃s = z

2 · 3456 · ( 1
𝑇𝑒

− 1
𝑇 *

i

) .

A.1.4 Surface Resistances
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Tab. A.17: Interior surface resistances for the two-dimensional flat roof example

Kennwert Symbol Wert

thermal resistance 𝑅si 0.25 m2 K/W
moisture transfer coefficient 𝛽i 25 · 10−9 kg/(m2 s Pa)

Tab. A.18: Exterior surface resistances for the two-dimensional flat roof example

Kennwert Symbol Wert

thermal resistance 𝑅s𝑒 0.04 m2 K/W
moisture transfer coefficient 𝛽𝑒 75 · 10−9 kg/(m2 s Pa)
initial absorptivity 𝛼 0.6 ± 0.08
adapted absorptivity 𝛼* 0.8 ± 0.03
emissivity 𝜖 0.45
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