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Kurzfassung

Der steigende Bedarf an Rechenleistung für Machine Learning (ML) Anwendungen stellt
die Forschung vor die Herausforderung, Technologien zu finden, die diesen Anforderungen
gerecht werden. In der derzeitigen Post-Moore Ära ist jedoch davon auszugehen, dass
traditionelle von Neumann Computerarchitekturen schon bald an ihre physikalischen
Grenzen stoßen und die gewohnten Leistungssteigerungen zukünftig ausbleiben. Da
viele Probleme mit Quantenalgorithmen wesentlich effizienter gelöst werden können,
haben sich Quantencomputer als vielversprechendes Paradigma für den zukünftigen
Bedarf an Rechenleistung erwiesen. Das große Interesse, die Leistungsfähigkeit von
Quantencomputern auch zur Beschleunigung von ML Anwendungen zu nutzen, hat
Quantum Machine Learning (QML) zum Durchbruch verholfen.

Variational Quantum Algorithms (VQAs) haben sich als der vielversprechendste An-
satz für QML erwiesen, da sie klassische Computer verwenden, um die Limitierungen
heutiger Quantencomputer zu minimieren. Der klassische Computer wird von VQAs
dazu genutzt, einen Parameterized Quantum Circuit (PQC) zu optimieren, der auf dem
Quantencomputer die Lösung berechnet. Die Leistung dieser VQAs ist jedoch sehr von
den gewählten Hyperparametern abhängig, welche bereits vor der Ausführung festgelegt
werden müssen und äußerst problemabhängig sind. Da es bereits eine große Auswahl
an Hyperparametern gibt, ist es sehr zeit- und ressourcenaufwendig diese manuell zu
testen. In klassischen ML Anwendungen werden daher automatisierte Lösungen einge-
setzt, deren Anwendbarkeit für QML jedoch noch kaum für untersucht wurde. In dieser
Arbeit untersuchen wir daher die Anwendbarkeit und Leistungsfähigkeit verschiedener
automatisierter Hyperparameter-Tuning-Algorithmen für QML Klassifikationsprobleme.

Unsere Ergebnisse zeigen, dass die richtige Wahl des Hyperparameter-Tuning-Algorithmus
einen signifikanten Einfluss auf die Leistung hat und es ermöglicht, nahezu optimale
Konfigurationen zu finden. Jedoch zeigen unsere Experimente auch, dass das Barren
Plateau Phänomen signifikante Auswirkungen auf die Laufzeit von QML Algorithmen
hat und daher stets zu berücksichtigen ist. Insgesamt zeigt diese Arbeit, wie komplex die
Suche nach optimalen Hyperparameter-Konfigurationen im Bereich von QML sein kann
und bietet eine Orientierung für zukünftige Projekte.
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Abstract

In recent years, the computational requirements of modern Machine Learning (ML)
applications have increased significantly. The upcoming post-Moore era therefore forces
scientists to search for alternative forms of computing that can meet computational
demands beyond the capabilities of classical von Neumann architectures. Quantum com-
puting emerged as a very promising paradigm for providing the necessary computational
resources, as several quantum algorithms have proven to be more efficient for certain
problems. The great interest in exploiting the capabilities of quantum hardware to speed
up machine learning applications contributed to the rise of Quantum Machine Learning
(QML).

The most promising approach for QML are Variational Quantum Algorithms (VQAs), that
combine classical hardware to overcome the limitations of current quantum hardware.
Variational Quantum Algorithms (VQAs) use an optimizer on classical hardware to
train a Parameterized Quantum Circuit (PQC), that is used to find the quantum state
containing the solution to the problem. However, the optimal choice of the optimizer,
the structure of the PQC and other hyperparameters is problem-specific and has a major
impact on the performance of VQAs. The large number of available options makes
manual testing extremely time-consuming and therefore requires automated solutions. In
classical ML, automated hyperparameter tuning is widely used, but there are only few
studies on its application to QML. In this thesis, we therefore investigate the applicability
and performance of different automated hyperparameter tuning algorithms for QML
classification tasks.

Our results show that choosing the right hyperparameter tuning algorithm is essential
and allows to reliably find near optimal configurations. Nevertheless, we also see that the
barren plateau phenomenon significantly impacts the runtime of these algorithms and
must be considered in future QML projects. Overall, our results highlight the complexity
of hyperparameter tuning for QML applications and provide valuable insights for future
projects.
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CHAPTER 1
Introduction

Machine Learning (ML) has advanced rapidly in the last years and the availability
of large datasets led to very powerful applications that are able to learn and detect
complex patterns, e.g., natural language processing or computer vision [BWP+17, SS18].
However, in the upcoming post-Moore era, classical von Neumann architectures will not
be able to scale with the increasing computing demands of machine learning applications
due to physical limitations [DMAB22, OM20]. Quantum computing has gained huge
popularity as a computational paradigm that is able to overcome the limitations of
classical architectures [OM20, GKS+22]. Several quantum algorithms have been proven
to solve certain problems more efficiently than classical algorithms and provide impressive
speedups, e.g., Shor's factoring algorithm [OM20, GKS+22, CDMB+22]. Quantum
algorithms are therefore being explored in a wide range of research areas including drug
design, finance, secure communications and others. [BWP+17, GKS+22].
Quantum Machine Learning (QML) has emerged as a very promising approach to
address the requirements of future ML workloads by exploiting the capabilities of quan-
tum hardware [GKS+22, SAGB22, BWP+17]. Moreover, QML is known to handle
counterintuitive statistical patterns very well and could improve their detection over
classical computers [BWP+17]. QML therefore gained popularity and evolved into a
very active and promising area of research that is believed to speed up ML tasks in the
future [GKS+22, SAGB22, BWP+17].
To overcome the limited capabilities of recent quantum hardware, Variational Quantum
Algorithms (VQAs) have emerged as the most promising approach for QML [CAB+21].
VQAs combine quantum and classical hardware to exploit the capabilities of quantum
computing while minimizing the error rate through the use of classical hardware [CAB+21].
In VQAs, the classical hardware is used to optimize variational parameters of so called
Parameterized Quantum Circuit (PQC) [CAB+21]. PQCs are a tunable way to explore
multiple quantum states until the final solution state of the problem is reached. The
optimizer iteratively tunes the parameters of a PQC after each execution of the quantum
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1. Introduction

circuit until a cost function is satisfied and an approximation of the optimal solution can be
returned [MDTD23, CAB+21]. Generally, VQAs can be seen as the quantum equivalent
of neural networks that only execute the relevant part of a problem on the quantum
hardware and make use of classical optimization techniques [MDTD23, CAB+21].

Since VQAs are considered as the most promising strategy to utilize the power of current
quantum hardware, they have already been proposed for many applications such as
quantum chemistry, quantum meteorology or ML [CAB+21]. It has been shown that the
performance of VQAs heavily depends on the selected hyperparameters, i.e., the used
PQC, optimizer or cost function [HDMB24]. However, the hyperparameters of VQAs are
highly problem dependent, making it hard to select them a priori [BMWV+23]. Moreover,
there are already a lot of different optimizers and PQCs architectures available, making
it extremely costly and time-consuming to exhaustively test them all. Nevertheless, the
correct hyperparameter selection is crucial for efficiently executingVQAs and a necessity
in any project.

In classical ML, hyperparameter tuning or Hyperparameter Optimization (HPO) is a
common technique and describes the process of finding the optimal hyperparameters
for a specific problem. Consequently, there already exist a lot of different algorithms
that automatically search for optimal hyperparameters of a model during its develop-
ment [YZ20]. These algorithms reduce the time to find well suited hyperparameters,
make the choice more reproducible, and often results in more efficient and accurate
model training [YZ20]. For classical ML, there are even approaches called Automated
machine learning (AutoML) that automate all steps of applying an ML to an actual
dataset. For QML on the other hand, there is currently only little knowledge on how to
find the optimal hyperparameters [MPD+23]. This emphasizes the need for research in
this direction, making hyperparameter tuning for QML an important open problem that
needs to be investigated.

1.1 Aim of the Thesis
The aim of the thesis is to investigate the applicability and performance of hyperparameter
tuning algorithms for QML classification tasks. The results of this work contribute to
the problem described in the previous section and allow determining whether automated
hyperparameter tuning of VQAs can be used to improve future QML workflows.

Manually selecting hyperparameters based on knowledge and experience is still a com-
mon approach [SKK+23]. However, manually or exhaustively searching for optimal
hyperparameters has major drawbacks as it naturally limits the search space, is not
reproducible and is very time-consuming due to the increased computational cost of QML
[SKK+23, MPD+23]. A comprehensive evaluation of available automated hyperparam-
eter tuning algorithms in terms of model accuracy and time consumption would help
researchers to select an appropriate approach to reduce the time and cost of training
QML models. To this extent, this thesis will answer the following research questions:
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1.2. Contribution

RQ 1 Which hyperparameters are most relevant for Quantum Machine Learn-
ing models?

Hyperparameters are the configuration parameters of a VQA such as the optimizer
or the used PQC. Certain components of VQAs are expected to have a greater
impact on model performance than others. Due to the computational expense of
hyperparameter tuning, only a suitable selection of hyperparameters will be used
for the experiment.

RQ 2 Which existing methods can be used for hyperparameter tuning of
Quantum Machine Learning models?

For classical ML tasks, numerous automated hyperparameter tuning techniques are
available in the literature [YZ20]. These existing methods need to be reviewed to
evaluate whether they are suitable for typical QML problems or not.

RQ 3 How does automatic hyperparameter tuning perform compared to
exhaustive search in terms of time and accuracy?

To establish a baseline for the performance benchmark, an exhaustive search over all
available hyperparameters in the domain space will be conducted. The performance
of automated hyperparameter tuning algorithms will then be compared to the
results of the exhaustive search. As performance metrics, we use the accuracy of
the best hyperparameter configuration and the running time of the hyperparameter
tuning algorithm.

1.2 Contribution
In the following, we summarize the key contributions of this work:

• By reviewing existing literature, we identified the most relevant hyperparameters
of VQAs for QML. We found multiple hyperparameters that are crucial for the
performance of VQAs and need to be carefully selected for the best performance.
Our findings therefore allow prioritizing these hyperparameters in future QML
projects and form the theoretical foundation of applying hyperparameter tuning
algorithms to VQAs.

• We systematically studied available hyperparameter tuning algorithms for their
applicability to QML problems and assessed their suitability. We identified several
promising tuning approaches, such as Random Search (RS) or variants of Bayesian
optimization algorithms. However, we also explain why some approaches are not
suited for typical VQAs projects. This thesis therefore provides valuable insights
into suitable hyperparameter tuning algorithms for QML problems, and can help
future researchers and experts in selecting appropriate tuning approaches.
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1. Introduction

• We adapted the most promising hyperparameter tuning algorithms to support QML
classification tasks and evaluate their performance regarding accuracy and time.
Our benchmark shows that some hyperparameter tuning approaches are able to
consistently outperform the others across multiple dataset in terms of accuracy.
The results of the runtime evaluation also indicate that certain approaches are
more effective than others. However, we also see that some evaluation runs are
heavily affected by the barren plateau phenomenon, which demonstrates that
hyperparameter tuning for QML is not a trivial problem.
In this thesis, we also provide a comprehensive analysis of multiple hyperparameter
tuning algorithms regarding their parallelization capabilities and their ability to
handle very large search spaces. Additionally, we evaluate the performance of the
individual hyperparameters and show that the optimal hyperparameters are highly
problem dependent and vary between different datasets.

1.3 Structure
The thesis is structured as follows. In Chapter 2 we elaborate the background of quantum
computing and introduce the basics of QML and hyperparameter tuning that are needed
throughout the thesis. We then review some of the most important related work before
we explain the fundamental building blocks of VQAs in Chapter 3. In this chapter,
we also highlight the challenges and limitations of VQAs before we finally describe the
most important hyperparameters and answer RQ1. In Chapter 4 we review a variety
of existing algorithms to evaluate their suitability for QML projects and answer RQ2.
Chapter 5 then introduces the methodology of our benchmarks, including the selected
tuning algorithms, datasets and the hyperparameter search space. The results of our
experiments are then evaluated and discussed extensively in Chapter 6. Finally, in
Chapter 7 we conclude the thesis and outline some possible future work.
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CHAPTER 2
Background

This chapter introduces the basics that are needed throughout the thesis by providing the
necessary background knowledge and presenting the most important related work at the
end. First, we discuss the general concept of quantum computing and explain the most
fundamental quantum mechanics principles. We then cover some limitations of current
quantum computers before introducing QML and its promising capabilities. Furthermore,
we introduce the basics of hyperparameter tuning and discuss its advantages that make
it an essential tool for all state-of-the-art ML models. Finally, we give an overview of the
most important related work in the field of QML and hyperparameter tuning for QML.

2.1 Quantum Computing
The first theoretical concepts of quantum computing were already introduced in 1982
by Richard Feynman as an idea to simulate quantum physics using a computing device
based on quantum mechanics [GKS+22]. Controlling the underlying quantum mechanical
processes to build a quantum computer poses many technical challenges and was therefore
not feasible for a long period [GKS+22]. However, in recent years, significant progress has
been made, and quantum computing has evolved to a very active area of research for both
academic and industrial scientists [OM20]. Nearly all major tech companies and many
new startups are competing to build the most powerful yet error-free quantum computer,
leading to tremendous advances in both hardware and software development [GKS+22,
OM20]. The great global interest in developing a universal quantum computer is driven
by the assumption that classical Von-Neumann computing architectures reach their
physical limits soon [CDMB+22, OM20]. Since electrical transistors experience problems
when they are further reduces in size, it is uncertain whether these classical architectures
can scale with future computing demands [OM20]. Consequently, research on alternative
computing architectures becomes increasingly important [CDMB+22, OM20].
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2. Background

Quantum computers are based on quantum bits (qubits), which utilize some fundamental
quantum mechanical principles for their calculations [OM20]. The fact that they are
not based on classical transistors makes quantum computing a promising architecture
for the post-Moore era that has the potential to surpass the capabilities of classical
computers [OM20, CDMB+22]. For certain problems, there are already quantum algo-
rithms that are much more efficient than their classical variant. One of the first and
probably the most prominent example is Shor’s prime factorization algorithm [Sho97].
It provides an almost exponential speedup for factoring large prime numbers and is
considered as a possible method for invalidating the Rivest–Shamir–Adleman (RSA)
crypto system [OM20]. Shor’s prime factorization algorithm attracted much attention
when it was proposed in 1994 as it has a huge impact on cybersecurity and further in-
creased the global interest in developing a universal quantum computer [GI19]. Another
prominent example of quantum speedup is Grover’s search algorithm that can be used
to find elements in an unsorted database using only O(

√
n) evaluations, while classical

search algorithms need O(n) evaluations [Gro96, BBBV97]. Since these fundamental
quantum algorithms have been proposed, a lot of research has happened and many
new quantum algorithms have been developed [Jor]. Another milestone was reached in
2019 when Google demonstrated quantum supremacy with one of its quantum comput-
ers [GKS+22, AAB+19]. Quantum supremacy describes the computational advantage
of quantum computers to solve a certain problem with super-polynomial speedup that
would otherwise be intractable for classical computers [Pre12]. However, the problem
used to demonstrate quantum supremacy was specifically chosen for this purpose, and it
remains to be shown that quantum computers can solve real-world problems better than
classical computers [GKS+22].

Although, the advances of today’s quantum computers are very promising, there are still
many open challenges and limitations that need to be solved before quantum computers
can be used for real-world problems [GKS+22]. Therefore, current quantum hardware is
referred to as Noisy Intermediate-Scale Quantum technology due to the noisy and error-
prone operation [Pre18, Bro19]. To better understand these limitations, we introduce the
fundamental quantum mechanical principles that are needed for the remaining chapters in
the following, with more detailed explanations being available in the respective references.

2.1.1 Superposition
The basic unit of information for quantum computers is a qubit. In contrast to classical
binary bits that either represent the value ’0’ or ’1’, a qubit can additionally be in
a superposition of both values simultaneously[CDMB+22]. The state of a qubit can
mathematically be represented as follows [WBLS22]:

a|0⟩ + b|1⟩ with a, b ∈ C and |a|2 + |b|2 = 1 (2.1)

The two orthogonal basis vectors |0⟩ and |1⟩ are called the computational basis and
represent a two-dimensional vector space [WBLS22]. The complex coefficients a and
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2.1. Quantum Computing

Figure 2.1: Different states of a qubit visualized in a Bloch sphere [HIP+21].

b are called amplitudes and can be interpreted as probabilities of the qubit being in
either of the states |0⟩ or |1⟩ after measuring it [GKS+22, CDMB+22, WBLS22]. This
means that with a probability of |a|2 the qubit is in the |0⟩ state and with a probability
of |b|2 in the |1⟩ state [WBLS22]. As already stated in the equation above, the sum
of these probabilities must be equal to 1 since there are only this two possible states
that can be measured [WBLS22]. However, if neither a nor b is zero i.e., a, b ̸= 0, the
qubit is in superposition and the state is a linear combination of |0⟩ and |1⟩ [WBLS22].
Consequently, the superposition of a qubit allows various different linear combinations and
opens up a very large computational space that can be used to solve complex problems
very efficiently [GKS+22].

In Figure 2.1 four possible states of a single qubit are visualized using the Bloch sphere
representation. The first two examples represent the measurable basis vectors |0⟩ and
|1⟩ with the arrows showing straight up or down respectively. However, each other
possible point in the Bloch sphere represents a superposition of the qubit [HIP+21]. As
an example, the third state in Figure 2.1 shows the qubit being in the superposition
|0⟩+|1⟩√

2 with the amplitudes being a = b = 1√
2 . The probability of measuring either of the

two states |0⟩ or |1⟩ is | 1√
2 |2 = 1

2 .

The Bloch sphere representation visualizes the large computational space that the
superposition of a single qubit provides [GKS+22]. In a quantum computer, multiple
qubits are combined to a quantum register whose state is a linear combination of the
individual qubits [DMAB22]. Consequently, a quantum register of n qubits can process
2n values simultaneously, which is called quantum parallelism [DMAB22]. By adding a
single qubit, the computational space of a quantum computer can be doubled, while for a
classical computer the number of bits needs to be doubled to achieve the same [GKS+22].
This exponential increase in computational space makes quantum computing a very
promising approach for large problems such as drug design, molecular dynamics or
ML [DMAB22, GKS+22]. However, more research is needed to find ways that allow the
efficient encoding and loading of such big problem instances into a quantum state to
fully exploit this advantage [GKS+22]. Moreover, the result of a quantum computation
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2. Background

is probabilistic and needs to be repeated multiple times to obtain the result, which
negatively impacts the overall performance [CDMB+22].

2.1.2 Entanglement
In addition to superposition, quantum computers use another quantum mechanical
principle called entanglement. It describes the phenomenon that quantum particles can
have a special connection that lets them interact with each other regardless of their
physical distance [OM20, KRK20]. This allows qubits in an entangled state to share their
properties instantaneously over large physical distances [KRK20]. When the state of an
entangled qubit is changed, e.g., by a measurement or manipulation, the properties of the
remaining qubits of this entangled state also change without any delay [GKS+22]. This
is sometimes referred to as quantum teleportation, meaning that an unknown quantum
state is transferred over large distances without any delay [HIP+21].

An illustrative example for the behavior of quantum entanglement is given by Hughes
et al. in [HIP+21]. They consider a fair coin toss with two coins that normally would
have the possible outcomes of HH, HT, TH or TT each occurring with a probability
of 25%. However, the probability of the possible outcomes can be changed by bringing
the coins into an entangled state. A well-known entangled state is the so-called Bell
state that provides a probability of 50% for two measurable states. Generally, there are
four different Bell states that are possible for two qubits. In the example of two coins,
all pairs of two different results could be used to generate a Bell state e.g, HH-HT or
HH-TH. Hughes et al. used the following Bell state as an illustrative example [HIP+21]:

|HH⟩ + |TT ⟩√
2

(2.2)

This Bell state guarantees that after the entangled coin flip the only possible states are
either HH or TT with a probability of 50% for each. Furthermore, entanglement allows
separating the coins over a large physical distance and measure only one of them. By the
characteristics of the above Bell state, the outcome of the other distant coin must be
identical to the measured one, i.e., if head is measured on one coin, the other must be
head too. This behavior happens instantaneously because the quantum particles share
non-classical information already during the process of entanglement and no information
is being transmitted during measurement [HIP+21]. Quantum entanglement is therefore
a key advantage over classical computers and one of the reasons why some computational
problems can be solved much faster [HIP+21].

2.1.3 Computation
To take advantage of the superposition and entanglement principles during a quantum
computation, many algorithms share a common structure [GKS+22]. First, a qubit is
initialized to be in superposition with equal probabilities for all possible results [GKS+22].
Then, quantum operations based on entanglement and superposition principles are used
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2.1. Quantum Computing

to generate a quantum state with high probabilities for the desired outcome [GKS+22].
Finally, the measurement causes the qubits to collapse into a measurable state with the
previously set probabilities [GKS+22].

In the following, some of the most important limitations of quantum computers are
introduced.

2.1.4 Limitations

Although quantum computers are very promising and efficient quantum algorithms have
been proposed, there are still major limitations that need to be considered in current
implementations. In the following, we introduce some of the main limitations that current
quantum computers are facing.

Noise

A major limitation of current quantum computing is the available hardware. Quantum
computers and especially the underlying qubits are expected to be reliable and error free
to execute quantum algorithms efficiently [BCLK+22]. However, the quantum mechani-
cal processes inside a qubit make them very fragile and vulnerable to effects from the
surrounding environment. Environmental factors like changes in temperature, electro-
magnetic fields or energy dissipation can alter the state of a qubit and lead to incorrect
signals known as noise [HIP+21]. Consequently, qubits need to be isolated from the
environment to avoid that quantum decoherence destroys the encoded information [OM20].
Depending on the technology used, some qubits only have a very short coherence time,
causing the encoded information to become invalid after a few nanoseconds [GKS+22].
Moreover, the engineering process is extremely challenging, since minimal defects in the
used materials or components can introduce errors [GKS+22]. Effectively isolating qubit
from the environment while interacting with them during the execution of quantum
algorithms is still an open challenge [BCLK+22, GKS+22].

A possible solution to the noise problem is Quantum Error Correction (QEC), which
reduces the effects of noise and allows fault-tolerant quantum computing [BCLK+22,
CBB+23]. Like error correction protocols on classical computers, the idea is to correct
errors immediately after they occur. A simple way of archiving this on classical hardware
is to use redundancy to recognize errors on the normally deterministic result e.g., the
repetition code [HIP+21, Got09]. On quantum hardware, the state of a qubit cannot be
duplicated according to the No-Cloning theorem, since quantum states collapse into a
basis state once they are measured [Got09, HIP+21]. An attempt to copy a superposition
state would effectively destroy it [HIP+21]. Therefore, more sophisticated QEC protocols
have been developed to correct the errors on quantum computers [BCLK+22]. With the
threshold theorem [ABO97] such QEC approaches have been theoretical proven to solve
the noise problem if the errors on a quantum system can be reduced below a certain
threshold [CBB+23].
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However, developing hardware with noise levels below these required thresholds is very
challenging [CBB+23]. Moreover, these protocols introduce a high qubit overhead,
requiring millions of qubits to effectively correct errors and enable fault-tolerant quantum
computing for industrial-sized applications [BCLK+22, CBB+23]. Given that current
quantum hardware provides on the order of 1000 physical qubits, this overhead makes it
impossible to employ such QEC protocols [BCLK+22, Cas23]. Additionally, these qubits
need to be tightly connected and integrated to provide the required performance [GKS+22].
Consequently, current hardware is sometimes referred to as Noisy Intermediate-Scale
Quantum (NISQ) hardware, given their limited qubit count and the imperfect results
due to noise [BCLK+22, Pre18].

While fault-tolerant quantum computing will only be available on more advanced hard-
ware in the future, Quantum Error Mitigation (QEM) aims to reduce the effects of
noise on current NISQ devices [CBB+23]. In contrast to QEC, the noise on the sys-
tems remains unchanged, but the errors are corrected using post-processing [CBB+23].
This implies that QEM can only correct errors for a limited circuit size dependent on
the hardware specifications until the noise induced errors are too high to recover the
information [CBB+23].

Repeated execution

As introduced in Section 2.1, the goal of quantum algorithms is to manipulate the state of
qubits in a way that the probability of the desired result is as high as possible [HIP+21].
One way of accomplishing this is by using quantum gates, which conceptually can be
compared to logical gates in classical computers [CDMB+22]. However, rather than being
physical components, quantum gates are unitary matrices i.e., they are invertible, and
their inverse is equal to their conjugate transpose [HIP+21]. For these gate-based models,
it is necessary to repeatedly execute the same quantum circuit to receive a reliable and
statistically significant final result [HIP+21]. This introduces an additional overhead and
can negatively impact the performance of a quantum experiment.

2.2 Quantum Machine Learning
ML advanced rapidly in the last years and is used for a variety of applications such as
image recognition or natural language processing [KRK20]. However, the ever-growing
amount of data that is used to further improve these ML models also requires more
computational power [KRK20]. As already discussed in Section 2.1, there is a need for
alternative architectures since classical computers are not expected to scale with these
computational needs in future [KRK20]. QML therefore emerged as a very promising
approach with the potential to accelerate at least some of these tasks and evolved into a
very active area of research for current NISQ devices [CVH+22, GKS+22, SAGB22].

Generally, QML is a broad term that describes the combination of classical ML theories
and quantum algorithms with the goal to accelerate ML tasks by exploiting quantum
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Algorithm Speedup
Least squares fitting [WBL12] O(log n)

Quantum Boltzmann Machine [AAR+18, KW17] O(log n)
Quantum Support Vector Machine [RML14] O(log n)

Bayesian Inference [WG15, LYC14] O(
√

n)
Online Perceptron [KWS16] O(

√
n)

Classical Boltzmann Machine [WKS14] O(
√

n)
Quantum Principal Component Analysis [LMR14] O(

√
n)

Quantum Reinforcement Learning[DTB16] O(
√

n)

Table 2.1: Known speedups of QML algorithms (O(log n) = exponential, O(
√

n) =
quadratic speedup over the respective classical approach) [KRK20].

mechanical principles [CVH+22]. It can be used to process classical binary data or
directly work on quantum data as it occurs in many physical processes [CVH+22]. QML
is therefore often categorized into four main types that distinguish whether the algorithm
is executed on a classical or quantum system and whether the data is classical or quantum
data [CVH+22]. The great potential of QML stems from various quantum algorithms
which are not available on classical platforms and can be used to accelerate typical ML
tasks such as clustering [OM20]. Examples are the asymptotically optimal Grover’s search
algorithm to find elements in unsorted databases or the HHL algorithm for solving linear
equation systems [Gro96, BBBV97, OM20, BWP+17]. However, similar to classicalML,
there is a wide variety of different quantum algorithms available and many new have
been developed to utilize the advantages of currently accessible NISQ devices [GKS+22].
For some QML algorithms, a speedup over their classical counterparts has already been
shown in literature. Table 2.1 shows some of these known speedups based on the work of
Khan and Robles-Kelly, while the original table can be found in their work [KRK20].

This enables QML to be used in various different applications such as quantum simula-
tions for chemistry [PMS+14] or quantum convolutional neural networks to find QEC
schemes [CCL19, CVH+22]. Some other promising applications include meteorology,
drug design or material science task as well as classical data analysis tasks [CVH+22].
For classical data analysis tasks, it is assumed that QML is able to detect statistical
patterns that are too complex for classical computers due to the quantum mechanical
principles they are based on [BWP+17, KRK20]. Furthermore, quantum superposition
allows evaluating multiple states simultaneously, which is beneficial for data intensive
tasks [KRK20]. However, instead of replacing classical computers, quantum computers
will most likely be used as a complementary technology [KRK20]. Similar to Graphics
Processing Units (GPUs) or Tensor Processing Units (TPUs), quantum computers could
be used as accelerators to run more complex ML models for suitable problems [KRK20].
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2.3 Hyperparameter Tuning
ML is already being used in many applications and provides great improvements for
computer vision, speech processing or natural language processing [HKV19, YS20].
However, ML models need to be individually configured for each of these applications to
provide the best performance [HKV19]. Generally, there are two types of parameters that
need to be distinguished for ML models. On the one hand, there are model parameters
that are intrinsic to the ML model and get updated throughout the learning process
after they are initialized at the beginning [YS20]. On the other hand, there are so-called
hyperparameters which need to be selected before the learning process, since they define
the architecture of the ML model [YS20]. Examples of model parameters are the internal
neuron weights of a network, while hyperparameters could be the learning rate or the
optimizer type [YS20].

The process of selecting the optimal hyperparameters is not trivial and requires experts
to test several configurations until an acceptable configuration is found [HKV19]. This
has inspired the research on automated hyperparameter tuning approaches to accelerate
the process of finding suitable hyperparameters for any application [HKV19]. It is
sometimes also referred to as HPO and will be used interchangeably in this thesis.
Nevertheless, hyperparameter tuning is considered a hard problem with many challenges
during its practical use [HKV19]. Depending on the size and complexity of a chosen model
and dataset, the evaluations can be extremely time and resource consuming [HKV19].
Moreover, knowing which hyperparameter to tune and what value ranges to use can be
difficult and is often not known in advance [HKV19]. In addition to this uncertainty, the
typically large number of hyperparameters with different types result in a very complex
search space that is hard to deal with [HKV19].

Automated hyperparameter tuning approaches have therefore been extensively studied in
academia for years and are now a well-known technique for classical ML tasks [HKV19,
YZ20]. Although they cannot solve all the aforementioned challenges, the usage of auto-
mated algorithms to search for optimal hyperparameters has multiple benefits [HKV19]:

• It minimizes the knowledge barrier for researchers to apply hyperparameter tuning,
since it does not require in-depth knowledge for all the needed hyperparame-
ters [HKV19].

• It generally lowers the human effort during the optimization process, especially
for multiple hyperparameters with complex and time-consuming model evalu-
ations [HKV19, YS20]. After an initial configuration, hyperparameter tuning
algorithms do not require any user interaction and simply terminate if their budget
is exhausted [YS20]. This reduces the time researchers need to actively spend on
hyperparameter tuning [YS20].

• Using automated hyperparameter tuning techniques improves the performance
of the respective ML model by adjusting the hyperparameters specifically for an
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individual problem [HKV19]. Its usage has improved the overall performance of
common ML models in various benchmarks [HKV19]. Moreover, it allows scaling
the hyperparameter tuning effort by reusing a tuning pipeline for a specific model
on different datasets to find the individual optimums for each dataset [YS20].

• The usage of automated hyperparameter tuning algorithms makes the performance
of ML models more reproducible and comparable [HKV19]. In contrast to manual
hyperparameter tuning, the used budget and resources can be better measured and
properly adjusted to allow a fair comparison [HKV19]. Furthermore, this allows
to identify the most effective ML model for a certain problem by using the same
tuning approach and budget for different ML models [YS20].

To take advantage of these benefits, many hyperparameter tuning algorithms exist today.
However, each of these approaches has different advantages and disadvantages, making it
crucial to select an appropriate approach based on the specific problem and configuration
space [YS20]. We therefore review various existing algorithms in Chapter 4 to evaluate
their suitability for QML projects.

2.4 Related Work
As quantum hardware becomes more accessible to researchers, the number of feasible
applications is increasing and QML is gaining popularity. In order to build fast and efficient
applications, hyperparameter tuning is an important aspect during their development.
Although hyperparameter tuning for QML is a relatively new topic, results of available
literature are promising and emphasize the importance of research in this direction. In
the following, we introduce the most relevant existing work for this thesis. We start by
discussing research that covers the fundamentals of QML, VQAs and hyperparameter
tuning as well as some promising applications before introducing work with a focus on
hyperparameter tuning for QML.

A comprehensive overview over the most fundamental algorithms used for QML is given
by Biamonte et al. [BWP+17]. They discuss why QML is a promising approach for
ML problems and highlight what is needed to outperform classical techniques in the
future. Furthermore, they discuss different algorithmic approaches to QML and provide
an overview of methods for which quantum speedups have already been found.

Cerezo et al. provide a more recent review over the current methods of QML and
focus more on the challenges and opportunities in their work [CVH+22]. They give an
extensive overview of promising applications, with a focus on quantum neural networks
and quantum deep learning. Moreover, they extensively discuss the challenges that
current QML methods face, including architecture design, noise and barren plateaus.

A promising application of QML is demonstrated by Cong, Choi and Lukin in [CCL19]
where they propose a new quantum convolutional neural network. They use the quantum
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convolutional neural network to efficiently find QEC codes. The resulting QEC scheme
is able to significantly outperform known quantum codes with comparable complexity.

Another promising application of QML is quantum-inspired hyperparameter optimization,
as presented by Sagingalieva et al. in [SKK+23]. They benchmark their approach with
a car image classification problem and were able to reduce the expected runtimes and
fitness compared to other existing approaches. Additionally, they present a hybrid
quantum neural network model that combines a classical ResNet model with a quantum
circuit. This hybrid model is able to outperform comparable classical ML models and
demonstrates a promising practical application for QML methods.

The hyperparameters of quantum neural networks, a special type of QML, are studied
by Moussa et al. in [MPD+23]. In their work, they analyze the performance impact of
different hyperparameters for classification problems. During the benchmark, they use
seven small open source datasets with less than 20 features to not exceed a 20 qubit
budget and allow for efficient benchmarking. Their results show that the performance
impact varies considerable between the different hyperparameters. The learning rate of
the optimizer could be identified as the most important hyperparameter, followed by the
depth and date encoding strategy, while the entanglement was least important. However,
this study focuses on specific quantum neural network models and is limited to a specific
optimizer. The experiments are based on the Cirq [Dev24] framework and a specific
statistical model.

Gomez et al. [BGOC+22] proposed a cloud-based framework to automatically search for
optimal circuit architectures and other hyperparameters. The proposed framework is
demonstrated with a quantum generative adversarial neural network for energy prices.
However, their framework is currently optimized to support generative adversarial neural
networks and supports the respective hyperparameters. Moreover, the framework cur-
rently uses a brute force approach for model selection, while more advanced approaches
such as Bayesian optimization are future work.

Taking advantage of QML is challenging on current quantum hardware. Bharti et al.
[BCLK+22] therefore provide a great overview of state-of-the-art approaches that can be
used on today’s quantum hardware for various different applications. Their extensive
review of current algorithms and paradigms shows that most of the current approaches
utilize hybrid architectures based on classical and quantum hardware, which are referred
to as VQAs. After introducing the fundamentals of VQAs, they discuss challenges, future
applications and provide some insights into benchmarking.

Similarly, the work of Cerezo et al. [CAB+21] reviews the most important aspects of
VQAs and outlines why they are considered as the most promising approach to take
advantage of current quantum hardware. They also introduce the basic concepts and
building blocks of VQAs and review the most promising applications such as quantum
simulations or QML. Furthermore, they extensively discuss the challenges that affect
the trainability, efficiency, and accuracy of VQAs, including some proposed solutions.
Finally, they describe how VQAs could improve the performance of ML applications and
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highlight recent advances in quantum neural networks.

Although VQAs are a very promising concept for QML, hyperparameter tuning is a
crucial aspect for archiving the best performance. A very comprehensive and detailed
overview of hyperparameter tuning approaches for classical ML is given by Hutter et al. in
[HKV19]. They cover the fundamental tuning techniques and review well-known systems
that can be used to improve the performance of ML models. Furthermore, the work
covers some well known competitions where teams challenge each other to find the most
performant ML model by applying different hyperparameter tuning approaches.

The work of Yang and Shami [YS20] also gives a great overview of existing hyperparameter
tuning algorithms for classical ML models. They cover a range of different optimization
algorithms and discuss frameworks and libraries to apply them. Additionally, they
provide valuable insights into which techniques are best suited for different search spaces
and hyperparameter types. These insights allow assessing the suitability of these opti-
mization algorithms for different problems and help researcher to choose an appropriate
approach. Furthermore, this work provides practical results from experiments conducted
on benchmarking datasets to compare the performance of various hyperparameter tuning
algorithms.

Bonet-Monroig et al. [BMWV+23] study the performance of VQAs by focusing on the
optimizer, which is one of the basic building blocks of VQAs. They chose four different
optimizers and compare their performance on some small chemistry and material science
problems. They additionally used hyperparameter tuning on two of these optimizers for
a large range of models and were able to significantly improve the performance for one of
them. Their results demonstrate the importance of hyperparameter tuning for VQAs
and show that the configurations of VQAs are highly problem dependent. However, their
work is limited to only one component of VQAs, while other possible hyperparameters
are left to their defaults.

The PQC which is another component of VQAs is studied by Du et al. in [DHY+22]. In
their work, they propose a quantum architecture search scheme to automatically find
a suitable circuit architecture for a given problem. The goal is to find a good balance
between expressively and noise sensitivity by selecting a not too large but still expressive
PQC. Their proposed scheme is benchmarked with data classification and quantum
chemistry tasks. The results show that for the considered problems, the automated
architecture search was able to outperform default PQCs while minimizing the effects of
noise and barren plateaus. However, the other components of VQAs are not considered
and presumably left to their defaults.

Another basic building block of VQAs is called feature map and studied by Hossain et al.
in [HAS+21]. The feature map is a way to encode the input data into quantum states
and necessary for all QML tasks. In the study, the authors use a Quantum Support
Vector Machines (QSVMs) for data classification tasks to assess the performance of
different feature maps based on the resulting accuracy and time consumption. In the
benchmark, they compare different feature map types with varying depths to find the best
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configuration for four different datasets. Their results show that the time consumption
increases linearly with higher depths, and that the best feature map selection varies
across different datasets. Although the used feature maps are also commonly used in
VQAs, the results may vary. Furthermore, the study is again limited to only a single
hyperparameter that is tuned.

Cranganore et al. studied the performance of VQAs by comparing different PQCs
and optimizers for molecular dynamics simulation. For the benchmark, they used
Qiskit [Qis23a] to test different PQCs with various width, repetition, and entanglement
configurations as well as different optimizers. Their results show that for the tested
applications, the ansatz has a higher impact on the overall performance than the optimizer.
Moreover, it can be seen that the overall performance could be significantly improved
by hyperparameter tuning for the individual applications. Although the study already
covers two relevant hyperparameters, there are other components such as the feature
map that are left to their defaults. Moreover, they use exhaustive search to determine
the best hyperparameter configuration instead of more sophisticated approaches.

Overall it can be seen that the field of QML and in particular hyperparameter tuning
for QML is advancing rapidly. Although a lot of work has already been done, it is
still uncertain which hyperparameter tuning approach works best for QML and in
particular VQAs since comprehensive evaluations are missing. Existing papers either
focus on individual hyperparameters or use very basic hyperparameter tuning algorithms.
Moreover, it is difficult to compare the results of different papers since no standardized
benchmark is established so far. We therefore try to fill this gap with our thesis by
providing a comprehensive hyperparameter tuning study for VQAs. The hyperparameters
considered in this thesis include the most important components of a VQA rather than
just a selection thereof. Additionally, we provide an in depth review of the most
common hyperparameter tuning algorithms and their suitability for QML and evaluate
the performance of the most promising approaches by applying them to well-known
classification problems.
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CHAPTER 3
Variational Quantum Algorithms

As already mentioned in Section 2.1.4, current NISQ hardware has various constraints
such as the limited number of available qubits or noise that leads to errors and limits the
circuit depth [CAB+21]. To overcome these limitations, quantum hardware is combined
with classical computers to operate as a hybrid quantum system [DMAB22, CDMB+22].
A problem then gets split into a quantum part that is processed on the Quantum
Processing Unit (QPU), while the remaining part of the problem is executed on a classical
computing architecture [BCLK+22]. This allows to utilize the advantages of quantum
computers for the complex portions of an algorithm while maintaining low error rates
and small circuits.

VQAs have emerged as the most promising approach to exploit the power of such hybrid
systems [CDMB+22, CAB+21, BMWV+23]. In the following, the basic concepts and
fundamental building blocks of VQAs are introduced and described. Furthermore, we
highlight the most important challenges and limitations that that need to be considered.
Finally, we answer our first research question by reviewing available literature to determine
the most important hyperparameters of VQAs.

3.1 Basic Concepts
VQAs are special algorithms that operate on classical and quantum computers simul-
taneously to overcome the constraints of current quantum hardware [CAB+21]. Until
fault-tolerant quantum computers are available, VQAs are considered as the most promis-
ing approach to utilize the power of quantum devices [CAB+21]. Their modular structure
can be adapted for a wide range of problems, and their expressive power even supports
universal quantum computing [CAB+21, Bia21]. Example applications are quantum
meteorology, simulations, mathematical applications such as factoring or principal com-
ponent analysis but also the search of ground states in quantum chemistry or molecular
dynamics [CAB+21]. Out of the various possible applications, QML is considered to
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be one of the most likely areas of research to achieve practical advantage [SAGB22].
Therefore, the focus of the rest of the thesis is on applications related to QML, especially
on QML classification problems.

The key concept of VQAs is an optimization-/learning-based approach similar to well-
known classical ML methods [CAB+21]. As illustrated in Figure 3.1, the PQC is
executed on the quantum computer and an optimizer on the classical computer is used
to optimize its parameters repeatedly, forming a hybrid loop [CAB+21]. This process
allows overcoming the limitations of current NISQ devices [CAB+21]. This structure can
be adapted for various applications, resulting in different types of VQAs. Variational
Quantum Eigensolver (VQE) for example, is considered as one of the first examples that
is specifically designed to solve quantum chemistry problems [BCLK+22]. Another early
variant is called Quantum Approximate Optimization Algorithm (QAOA), which is used
to solve combinatorial optimization problems [BCLK+22].

Figure 3.1 also contains the basic building blocks of VQAs which are described in more
detail in the following sections.

3.1.1 Problem Description

The first necessity to use VQAs for QML is a proper problem description and a dataset
to train the PQC [CAB+21]. Similar to classical ML, such datasets contain instances
of the problem that need to be solved e.g., images for classification, weather data for
prediction or quantum data for simulation. To assess the performance of the resulting
VQA, a subset of the given data is used for training the PQC and the remaining data is
used to measure the performance, just like for classical ML models.

The cost function encodes the problem into a measurable function [CAB+21]. Similar to
classical ML application, the cost function is used to track the performance of intermediate
states with the ultimate goal of finding the global minima [CAB+21]. A general cost
function proposed by Cerezo et al. in [CAB+21] is given in the following:

C(θ) = f({ρk}, {Ok}, U(θ)) (3.1)

In the above equation, θ are the variational optimizable discrete and continuous parame-
ters, f is some function, U(θ) stands for a parameterized unitary, {ρk} is a set of input
states and {Ok} is a set of observables.

Besides the formal specification, there are also some properties that a cost function
should satisfy. The required properties as proposed by Cerezo et al. are summarized
in Table 3.1 [CAB+21]. Additionally, the quantum circuits used to estimate C(θ)
need to remain shallow and small to comply with the restrictions of current NISQ
devices [CAB+21].
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Figure 3.1: Typical architecture of Variational Quantum Algorithms [CAB+21].

Property Description
Faithful Problem solution corresponds to minimum of C(θ)

Efficient estimation C(θ) is efficiently measurable on a quantum computer
(but not on a classical computer)

Meaningful operation Smaller values of C(θ) denote better solution
Trainable Parameters of θ are efficiently optimizable

Table 3.1: Required properties of a cost function [CAB+21].
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3.1.2 Feature Map

In classical ML applications, it is common practice to first embed the input data into
a higher dimensional feature space before it is further processed [SK19]. The idea is to
find a feature space that offers some beneficial properties to make the data analysis more
efficient. An example thereof are support vector machines that map the input data to a
feature space where the data becomes linearly separable [SK19].

Quantum systems operate in a very similar way. Quantum algorithms require the data to
be encoded into quantum states before they can process it [WBLS22, LC20, SK19]. This
is an important step since a great portion of possible quantum speedups relies on the
entanglement and superposition modification in the exponentially large quantum state
space [HCT+19]. The chosen encoding strategy has a significant impact on the runtime
of quantum algorithms and therefore needs to be well considered [WBLS22]. Generally,
there are various different encoding patterns that can be used to load the data into
qubits [WBLS22, LC20]. A well known encoding strategy is called basis encoding, which
uses the computational basis to encode the data [WBLS22]. The numerical value 2 for
example would be transformed into the binary format 10 and then be encoded into the
basis state |10⟩ [WBLS22]. Another prominent encoding scheme is amplitude encoding,
which uses the amplitudes of a quantum state to create a very compact encoding and
only needs log n qubits for an input vector of length n [WBLS22]. More details and
additional encoding schemes can be found in the work of LaRose and Coyle [LC20] as
well as in the work of Weigold et al. [WBLS22].

However, for QML applications the most prominent encoding strategy are quantum
feature maps, which we will therefore use in the rest of this thesis [SK19]. Feature maps
generally use a PQC to map classical data into quantum states [HAS+21, WBLS22].
The encoding process defines a quantum kernel and is comparable to feature encoding in
classical ML applications, except that the target feature space is the Hilbert space of the
quantum system [SK19]. This analogy described by Schuld and Killoran is a key concept
of VQAs for QML, as it allows to generically use currently available quantum hardware
to recognize patterns in data [SK19].

Formally, a feature map is a map ϕ : X → F that maps an input xm from a set of
input data X = {x1, ..., xn} to a feature vector in the Hilbert space ϕ(xm) ∈ F . To
modify the feature map to a quantum feature map, only the target vector |ϕ(xm)⟩ is
adapted to a quantum state that lies in the Hilbert space of the quantum system [SK19].
Since a quantum feature map x → |ϕ(x)⟩ is often realized through a PQC, it can
also be seen as a state preparation circuit Uϕ(x) that modifies a ground state of the
Hilbert space Uϕ(x)|0...0⟩ = |ϕ(x)⟩ [SK19, HAS+21]. Some example implementations and
their evaluations can be found in the work of Schuld and Killoran [SK19] and Havlicek
et al. [HCT+19].
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Figure 3.2: Illustration of an ansatz as the product of multiple PQCs [CAB+21].

3.1.3 Ansatz
Another important element of VQAs is the so-called ansatz, or sometimes also called PQC.
It defines what the variational parameters θ are and consequently determines how they
can be optimized during execution [CAB+21]. There are different structures available
that can be used for an ansatz. Problem-inspired ansatzes are specifically designed for a
given problem, while problem-agnostic ansatzes are generic and can be used even when a
detailed problem description is not available [CAB+21].

Formally, the structure of an ansatz for a cost function C(θ) can be described by a
unitary U(θ) that encodes the parameters θ and is applied to an input state [CAB+21].
The unitary U(θ) can then be seen as a product of multiple unitaries that are applied
sequentially to the input state, where each unitary itself consists of parameterized
and non-parameterized gates [CAB+21]. This concept is schematically illustrated in
Figure 3.2.

As already briefly mentioned above, there are various different ansatz types, each with
individual advantages and disadvantages. In the following, some well-known ansatz
categories are briefly described based on the work of Cerezo et al. in [CAB+21]:

Hardware-efficient ansatzes Hardware-efficient ansatzes are specifically tailored to
the underlying hardware with the goal of minimizing the required circuit depth of
U(θ) on a certain quantum architecture. This is accomplished by implementing
the unitaries with an optimized subset of quantum gates that are especially well
interconnected and efficiently available on the given quantum hardware. This allows
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to mitigate overheads in circuit construction as encoding symmetries and correlated
qubits can be considered, resulting in an efficient ansatz design. A drawback of
this ansatz type is that initialization needs to be done very carefully, since random
initialization can cause trainability issues.

Unitary coupled clustered ansatz The problem-inspired unitary coupled clustered
ansatz is mainly used in quantum chemistry to find the ground-state energy of
molecules and is available in several variations.

Quantum alternating operator ansatz This ansatz type, as the name suggests, is
mainly used in QAOAs. It employs an alternating structure that has been shown
to be computationally universal.

Hybrid ansatzes Since current NISQ devices have various constraints, hybrid ansatzes
integrate classical strategies into a quantum ansatz by offloading some work to a
classical computer. This can be done by using classically optimizable coefficients,
processing quantum circuits with existing tensor network techniques or dividing
the whole ansatz into multiple smaller parts and solving them individually.

For further ansatz variants and more detailed descriptions, the interested reader is referred
to the original work of Cerezo et al. [CAB+21].

The large number of different ansatzes makes it hard to fairly compare their perfor-
mance and evaluate whether they are able to create the desired target state after the
optimization [CAB+21]. Determining the expressibility of an ansatz is still an active
are of research, but there are two different properties that can be used to compare
ansatzes [CAB+21]. One is the expressibility which indicates whether an ansatz is able
to uniformly explore the complete space of quantum states [CAB+21]. The other is the
entangling capability that indicates the average entanglement of a state resulting from
randomly sampled parameters θ.

3.1.4 Optimizers
The optimizer is a very important part of VQAs, as it is used to optimize the cost
function and to update the variational parameters. The typical execution of a VQA as
illustrated in Figure 3.1 starts by executing the ansatz with an initial set of parameters
θ on the quantum computer [CDMB+22]. Then the quantum state is measured, and
the parameters θ are updated by the optimizer and used as the new input parameters
of the next execution step until a termination condition is met [CDMB+22]. The
formal optimization task of a quantum-classical loop can be described by the following
equation [CAB+21]:

θ∗ = arg min
θ

C(θ) (3.2)
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The goal of the optimization task is therefore to find the set of parameters θ∗ that
minimize the cost function C(θ) [CDMB+22].

The optimization problem of VQAs is generally believed to be NP-hard and the correct
choice of the optimizer is very important [BK21, CAB+21]. Although the optimizer is
executed on a classical computer, there are special quantum-aware optimizers that can
handle the noise and other issues that are present on current NISQ devices [CAB+21].
However, the optimal optimizer selection is still an active area of research since there are
many options available [CAB+21]. In the following, some of the most common optimizer
categories are introduced based on the work of Cerezo et al. [CAB+21]:

Gradient-based approaches This kind of optimizer iteratively proceeds in the direc-
tion indicated by the gradient and is the most common approach used for VQAs.
Since on quantum hardware the gradients can only be statistically estimated through
measurements, they are often referred to as Stochastic Gradient Descent (SGD)
approaches. However, this concept is not new, as it is also used in many classical ML
approaches. Therefore, available implementations are often just quantum adapted
versions of well-known classical ML approaches, e.g., Adam [KB17].

Meta-learning This approach is also based on gradients but utilizes a neural network
to determine the steps towards the goal [WSW+19]. This allows to also use the
optimization history and knowledge of similar cost functions to efficiently optimize
a given problem.

Simultaneous perturbation stochastic approximation An approach that rather
uses an approximation of the gradients is called Simultaneous Perturbation Stochas-
tic Approximation (SPSA) [Spa92]. Since these methods avoid complex gradient
calculations at each iteration, it has been shown to allow fast theoretical convergence
rates for some problem instances.

Sequential minimal optimization Another gradient- but also hyperparameter free
approach has been specifically developed for VQAs with cost functions that are
expressible as a sum of trigonometric functions [NFT20]. This allows to sequentially
update only a few local parameters.

3.2 Challenges
Although VQAs are a very promising approach to take advantage of current quantum
devices in the NISQ era, there are challenges and limitations that researchers should be
aware of. In the following, some of the most important limitations of VQAs are discussed.

The purpose of training the internal parameters of a QML model is usually to minimize
a loss function, with the ultimate goal to find the global minimum [CVH+22]. The loss
function maps the parameters of the model to real values of the problem, e.g., the error of
a task [CVH+22]. During training, the loss function landscape is traversed by iteratively
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updating the model parameters. However, research on quantum landscape theory has
shown that there are multiple challenges that can severely impact the performance of
QML models [CVH+22].
One of these challenges is the phenomenon of multiple local minima in the loss function,
which is also well known from classical ML tasks [CVH+22]. The existence of multiple
local minima in the loss function is schematically illustrated in Figure 3.3b. These local
minima can lead to suboptimal solutions, since optimization algorithms converge too
far from the global optimum [BK21]. The optimization problem of VQAs has therefore
been proved to be NP-hard [BK21, CVH+22]. To address this issue, various methods
have been proposed, including methods which are able to turn local minima into saddle
points [CVH+22].
Another related and very prominent limitation of VQAs are barren plateaus and narrow
gorges [CVH+22, AHCC22]. The Barren plateau phenomenon was first described by Mc-
Clean et al. in [MBS+18] and occurs during the search for the global minimum [CAB+21].
A typical loss function affected by the barren plateau phenomenon is illustrated in
Figure 3.3a [CVH+22]. As indicated by the dashed line, the loss landscape is becoming
exponentially flat on average with an increasing number of qubits used in a quantum
system [MBS+18, CVH+22]. As a result, the area around the global minimum becomes
narrower and decreases exponentially with the problem size, which is known as a narrow
gorge [CVH+22, AHCC22].
It has been proven by Arrasmith et al. [AHCC22] that these two phenomenons are
actually connected, and barren plateaus always occur along with narrow gorges. For
their proof, Arrasmith et al. define the narrow gorges phenomenon as a probabilistic
concentration of the cost function values around the mean [AHCC22]. Consequently, the
presence of a barren plateau is logically equivalent, with the cost values being on average
exponentially concentrated about the mean value [AHCC22]. If a loss functions has a
well-defined minimum, this also implies that it has a narrow gorge [AHCC22].
Overall, these phenomenons make it exponentially hard for the optimizer to traverse
the loss landscape, and thereby exponentially increase the required resources to find the
global minimum during the execution of a VQA [CVH+22]. The performance impact is
therefore significant, as it can severely decrease the performance of QML algorithms and
can even invalidate quantum speedups [CVH+22]. Although the results of Arrasmith
et al. [AHCC22] help to simplify the detection of barren plateaus, it is still hard to
overcome their negative effects. However, a lot of research has been done to develop
mitigation strategies. It has for example been shown that clever initialization strategies,
pretraining, and parameter correlation help to address the issue of barren plateaus and
result in more promising architecture designs than unbiased designs [CAB+21, CVH+22].
Another important observation regarding loss functions is that local observables that only
compare quantum states at a single-qubit level are superior to global observables that
measure multiple or all qubits when it comes to barren plateaus [CVH+22]. Moreover, it
has also been shown that QML architectures with a high degree of entanglement are more
prone to barren plateaus [CVH+22]. However, more detailed explanations and further
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(a) Barren plateau (b) Local minima

Figure 3.3: Technical challenges of QML adapted from [CVH+22].

mitigation strategies can be found in the work of Cerezo et al. in [CAB+21, CVH+22]
and in the work of McClean et al. in [MBS+18] as it goes beyond the scope of this thesis.

3.3 Hyperparameter Analysis
When working with VQAs, researchers are faced with the practical challenge of selecting
the right hyperparameters for the given task. This includes basically all building blocks
that were introduced in Section 3.1 and are depicted in Figure 3.1 such as optimizers,
ansatzes or feature maps. These components can be combined individually for a given
task and need to be manually selected before the parameters of a VQA can be trained.

Given the rapid pace of development and the plethora of different components available in
literature and quantum programming frameworks, the selection of the correct hyperparam-
eters can become quite cumbersome. Furthermore, it has been shown that the execution
time and accuracy of VQAs heavily depends on the selected hyperparameters [CDMB+22].
Therefore, it is a necessity for any project to carefully select them to develop an efficient
and accurate VQA for the task at hand. However, whether selected hyperparameters
perform well depends significantly on the specific problem, which makes it hard to give
a general recommendation or selecting them a priori [BMWV+23]. Consequently, it is
important to know which hyperparameters are impacting the performance of VQAs to
guide possible decisions in the selection process.

Hence, we want to answer RQ 1 by reviewing existing literature regarding the most
important hyperparameters. Although the available literature is still very limited, the
following contains an overview of components that have already been identified as being
relevant for the performance of VQAs. However, the following review is not exhaustive,
but rather a selection of the most important findings that are relevant for this thesis.

Ansatz and Optimizer Cranganore et al. used VQAs for molecular dynamics sim-
ulations and analyzed the impact of different hyperparameters in [CDMB+22].
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Specifically, they used the Mean Square Error (MSE) to compare the performance
of different ansatzes, optimizers and application specific cost functions. However,
during the experiments they especially focused on the ansatz and the optimizer,
which were implemented using the Qiskit framework [Con]. For the ansatz they used
the EfficientSU2, RealAmplitudes, PauliTwo and the ExcitationPreserving circuit
and tried each with a different number of qubits, repetitions and entanglement
strategies. Furthermore, the Constrained Optimization BY Linear Approximations
(COBYLA), SPSA and Gradient Descent optimizers were used to assess the impact
of the optimizer.

According to the authors, the experiments showed that the choice of the optimizer
only has a small effect on the performance, with the ansatz being more important.
Moreover, they showed that linear entanglement is the best overall choice, while
the number of repetitions showing no correlations with the MSE. Consequently,
the ansatz could be identified as the most important among the considered hyper-
parameters. Finally, the authors were able to improve the MSE by up to 31% by
applying insights about favorable hyperparameters to the target molecular dynamics
workflow. This once again shows the importance of hyperparameter optimization
in general and especially for VQAs.

Optimizer Bonet-Monroig et al. used VQAs for various different chemistry and material
science problems in [BMWV+23] and state that the performance of VQAs greatly
depends on the used optimizer. In their experiments they therefore focused on
studying the performance of SPSA, COBYLA, Sequential Least Squares Quadratic
Programming (SLSQP) and the Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) optimizers. They later in the experiment also hyperparameter tuned
the CMA-ES and SPSA optimizer to compare them with their default settings and
used the Cirq framework [Dev] to simulate quantum circuits.

The experiments showed mixed results for the different optimizers across the
chosen problems, once again highlighting that the performance is heavily problem
dependent. Furthermore, the hyperparameter tuning showed that CMA-ES is
competitive with SPSA when fully optimized. In conclusion, the experiments showed
that the performance of VQAs is highly problem dependent and hyperparameter
tuning is necessary to achieve the best performance.

Ansatz Du et al. studied the performance impact of the ansatz in VQAs using data
classification and quantum chemistry tasks [DHY+22]. The authors highlight that,
based on empirical and theoretical findings, the ansatz has a major impact on the
overall performance of VQAs. They therefore propose a way to automatically find
near-optimal ansatz structures called quantum architecture search and demonstrated
it on numerical simulators as well as quantum hardware through the IBM cloud.
However, finding the optimal ansatz is difficult since ansatzes with more quantum
gates provide stronger expressivity but may be less trainable due to accumulated
noise. For the implementation, Qiskit [Con] and PennyLane [BIS+22] were used.
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The results show that individually configured ansatzes can reduce the impact of
noise and barren plateaus and are able to outperform VQAs with pre-selected
ansatzes. This again emphasizes the importance of tailoring a VQA for a specific
problem and shows the need for optimal hyperparameters.

Feature map For feature maps, we were not able to find data about their performance
impact on VQAs in the currently available literature. However, Hossain et al.
studied the effect of different feature maps on QSVMs for QML in [HAS+21].
Given that they used feature maps that are also commonly used in VQAs, the
insights of their work are of great value for this thesis too. They analyzed the
Second-Order Expansion (SOE) feature map, Z feature map and the ZZ feature
map with repetition configurations using the Qiskit library [Con]. To assess the
performance, they used the accuracy and the execution time of the QSVMs for
different classification datasets.
The results show that higher repetition counts increase the time consumption
linearly, with the SOE feature map being the fastest and the ZZ feature map being
the slowest. Regarding the accuracy, there are mixed results dependent on the
individual dataset, with both the SOE feature map and the Z feature map being
among the best performing. However, the authors highlight that the performance
of any supervised QML model significantly depends on the correct selection of the
feature map and repetition count. Since feature maps are similarly used in VQAs
to encode the input data into quantum states, it is likely that the choice of the
feature map also affects the performance of VQAs.

This literature review shows that there is no clear evidence of one particular hyperpa-
rameter being exclusively important for the performance of VQAs yet. It rather suggests
that there are multiple hyperparameters that need to be considered and carefully selected
to achieve the best performance for a given task.

However, the optimizer, ansatz and feature map could be identified as being the most
relevant hyperparameters for the performance of VQAs. Based on the findings of
Cranganore et al. in [CDMB+22] we conclude that the choice of the ansatz might
be more important than the optimizer. Moreover, the findings also suggest that the
hyperparameter selection is highly problem dependent, as there are multiple experiments
that show individual results for different datasets. This underlines the importance of
well-considered hyperparameters and highlights the need for automated hyperparameter
tuning algorithms.
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CHAPTER 4
Hyperparameter Tuning for QML

The findings of Chapter 3 show that VQAs have various hyperparameters that are highly
problem dependent and significantly impact their performance. Similar to classical ML
projects, it is therefore a necessity to select appropriate hyperparameters in any new
QML project. From the classical ML literature, the process of finding the optimal
hyperparameters is called hyperparameter tuning and a common technique for building
efficient ML models [YS20]. However, given the wide variety of different hyperparameter
types that exist in today’s ML models, there are also various different hyperparameter
tuning approaches to choose from [YS20]. Unfortunately, there is only limited knowledge
about hyperparameter tuning approaches for QML and in particular VQAs.

We therefore investigate existing hyperparameter tuning approaches and analyze their
applicability for quantum use cases in the following. First, we highlight the importance of
hyperparameter tuning algorithms and discuss the limitations of manual hyperparameter
tuning. We then answer RQ 2 from a theoretical perspective by reviewing existing tuning
algorithms and evaluating their suitability for QML projects. Finally, we summarize the
findings to conclude this chapter.

4.1 Applicability Analysis

A popular hyperparameter tuning approach is called manual testing, where a domain
expert manually tries different configurations and evaluates their performance. However,
manual testing has many drawbacks as it usually requires good understanding of the
specific algorithm and can become very time-consuming with a larger number of hyper-
parameters, complex and long-lasting model evaluations or non-linear hyperparameter
interactions [YS20]. The main advantages of using automated hyperparameter tuning
techniques over manual testing were already introduced in Section 2.3.
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Hyperparameter Type Subparameters Type
Feature Map Categorical Repetitions,

Entanglement
Conditional - Discrete,

Categorical
Ansatz Categorical Repetitions,

Entanglement
Conditional - Discrete,

Categorical
Optimizer Categorical Max. Iterations,

Tolerance
Conditional - Discrete,

Continuous

Table 4.1: Common hyperparameter types of VQAs for QML.

To benefit from the advantages of automated hyperparameter tuning, various hyperpa-
rameter tuning algorithms for classical ML applications have been proposed over the
years, each with its own advantages and disadvantages [YS20]. The main criteria to
select appropriate tuning approaches are the types of hyperparameters that need to be
optimized [YS20]. In general, hyperparameters are divided into continuous, discrete,
categorical or conditional types [YS20]. Based on the findings in Chapter 3, we therefore
categorized the most important hyperparameters of VQAs in Table 4.1. Additionally, in
Table 4.1 we also included common subparameters of the respective hyperparameters and
their types as they need to be considered in large scale hyperparameter tuning as well.

Based on the above categorization, we can review existing hyperparameter tuning
algorithms and evaluate their suitability for QML use cases. This evaluation contributes
to RQ 2 and determines which tuning algorithms are evaluated during the experimental
benchmarks. In the following, we therefore summarize the most common hyperparameter
tuning approaches and asses their suitability for QML, based on the work of Yang and
Shami in [YS20]:

Grid Search A relatively easy to implement and therefore very popular hyperparameter
tuning method is called Grid Search (GS). As the name suggests, a finite subset
of possible hyperparameters is manually defined in a grid of configurations by
the user before the execution. GS then performs an exhaustive search over this
defined search space by executing the model with each individual hyperparameter
setting. Consequently, it cannot further explore promising regions of the search
space on its own but needs to be repeated with a redefined search space by the
user itself. Therefore, GS is unable to detect global optimums for discrete or
continuous hyperparameters in most cases, especially if they cover large range of
values and is rather recommended for categorical hyperparameters. Since GS is an
exhaustive approach, the computational complexity for k hyperparameters with n
distinct values grows exponentially at a rate of O(nk). This is also referred to as
the curse of dimensionality, as the resource consumption increases exponentially
with more hyperparameters being included in the search space. It is therefore
considered inefficient for large search spaces with a high number of multidimensional
hyperparameters. However, since GS can easily be implemented and is highly
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parallelizable, it is still a very popular choice for hyperparameter tuning and often
used as a baseline hyperparameter tuning approach.

Given the good support for categorical hyperparameters and the capability to
execute it in parallel makes GS also a valid choice for an exhaustive QML baseline.

Random Search Another very popular and yet simple hyperparameter tuning approach
is called RS. Initially developed to overcome the limitations of GS for large search
spaces, RS randomly selects samples from the search space until a user defined
budget is exhausted. This predetermined budget makes RS more efficient for large
search spaces since the independent evaluations are distributed randomly and less
time is wasted on poor-performing regions. Therefore, the computational complexity
is O(n) where n is the number of evaluations defined as the budget before the
execution is started. Moreover, RS is also highly parallelizable and even able to
detect a (near-)global optimum when the budget is chosen large enough. However,
since the evaluations are chosen randomly, there are still a lot of poorly performing
evaluations that could be avoided with more sophisticated hyperparameter selection
that.

Overall, RS is a valid choice to explore the search space of QML models as it
supports all hyperparameter types, is highly parallelizable and allows defining a
fixed resource budget.

Gradient descent For some ML algorithms, gradient descent is a well-known optimiza-
tion approach that locates the optimum by calculating the gradient of a variable
and moving towards it. This allows to find a local optimum, which in the case of
convex functions is also the global optimum. However, for non-convex functions this
is a major drawback as gradient descent may only be able to find a local instead of
a global optimum. Moreover, it does not support discrete, categorical or conditional
hyperparameters since only continuous hyperparameters have gradient directions.
This is a major drawback and makes gradient descent unsuitable for the mainly
categorical hyperparameter landscape of VQAs.

Bayesian Optimization A more sophisticated but also very popular approach for
hyperparameter tuning is called Bayesian Optimization (BO). The main advantage
of BO is that the performance of previous evaluations is used to select the next
hyperparameter setting from the search space. This is achieved by using a surrogate
model that considers already explored settings and provides a predictive distribution.
Then an acquisition function is used to decide between exploring new areas of
the search space (exploration) or exploiting promising regions (exploitation). The
balance between exploration and exploitation allows BO approaches to prioritize
good hyperparameter configurations without missing promising configurations in
the unexplored space. The surrogate model is updated once new evaluation results
are available and used to determine the next hyperparameter settings iteratively
until a user defined budget is exhausted.
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BO is more efficient than GS and RS since previous results are considered, and
evaluating the surrogate model is computationally less intensive than actual eval-
uations on the test data. Although it is hard to parallelize since the individual
evaluations depend on each other, BO is expected to find near-optimal results very
fast, making it a very promising approach for QML.
For the surrogate model, the Gaussian Process (GP), Random forest (RF) and
Tree-structured Parzen Estimator (TPE) are the most common models for BO
algorithms. However, each model has its own advantages and limitations:

BO-GP GP is a well-known surrogate model for BO algorithms. However, BO-GP
is mainly used for continuous hyperparameters, does not support conditional
hyperparameters and is hard to parallelize due to its cubic time complexity.
It is therefore not a good choice for the mainly categorical hyperparameter
space of QML workloads.

BO-RF This algorithm based on regression trees and sometimes also called Se-
quential Model-based Algorithm Configuration (SMAC). It supports all types
of hyperparameters and has an overall time complexity of O(n log n) which
is much lower than the previously introduced BO-GP variant. Although the
parallelization capabilities are not great, the theoretical specifications suggest
that this could be a valid approach for QML projects.

BO-TPE Another popular BO approach is BO-TPE which, as the name suggests,
is based on Parzen estimators organized in a tree structure. The main building
blocks are two density functions that contain good and bad evaluation results
respectively, which are then used by the acquisition to determine the next
evaluation configuration. BO-TPE has a time complexity of O(nlogn) and is
especially well suited for conditional hyperparameters by its tree structure,
although it supports all hyperparameter types. It is therefore an appropriate
hyperparameter tuning choice for typical QML applications with multiple
categorical hyperparameters.

In conclusion, BO-RF and BO-TPE can be considered as valid approaches for the
QML use case in this thesis.

Multi-fidelity Optimization Algorithms To overcome the issue of long execution
times and high resource consumption, multi-fidelity optimization algorithms have
been proposed. By combining low-fidelity evaluations that only use a subset of the
original dataset and high-fidelity evaluations on the whole dataset, they try to find
a balance between low resource consumption and effective hyperparameter tuning.
The goal is to eliminate poor performing configurations already during the cheap low-
fidelity evaluations. Popular approaches are successive halving and Hyperband that
both implement this multi-fidelity idea. However, successive halving is hard to use
since it is difficult to determine the correct budget for high-fidelity and low-fidelity
runs. Hyperband overcomes this problem by dynamically allocating the budgets
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and has good support for parallelization. However, it is considered inefficient for
conditional hyperparameters and has the limitation of requiring subsets of the
original problem to be representative. Another prominent hyperparameter tuning
algorithm is called Bayesian Optimization HyperBand (BOHB), which combines
BO with Hyperband. BOHB has therefore been shown to outperform many other
tuning approaches for certain problems, since it provides high efficiency by taking
advantage of two popular techniques. However, just as Hyperband, also BOHB
requires that subsets of the problem are representative for the whole dataset while
only using a small budget.
Overall, the use of multi-fidelity optimization algorithms requires low-fidelity evalu-
ations to be representative for the problem at hand and do not support conditional
hyperparameters very well. Since the hyperparameters of QML include conditional
types, it can be assumed that there are better hyperparameter tuning approaches
for this use case.

Metaheuristic algorithms Hyperparameter tuning methods of this kind are a pop-
ular choice for many optimization problems. Most of the available approaches
are population-based and use generation-like concepts to evaluate the individual
configurations. The individual algorithms mostly differ in how these generations
are initialized and updated. Two of the most well-known algorithms are Genetic
algorithm (GA) and Particle swarm optimization (PSO). GA is based on evolu-
tionary theory and considers hyperparameter configurations as individuals that
need to adapt in each generation circle to finally find the global optimum. It is a
good choice when there is not much prior knowledge about the initial search space.
However, GA introduces additional hyperparameters that need to be configured
such as the fitness function or mutation rate which require additional knowledge.
Furthermore, it has a runtime complexity of O(n2) and is hard to parallelize.
Similarly, PSO is also an evolutionary algorithm that is based on the individual
behavior of particle swarms. The key idea is to let individual particles work through
the configuration space in a semi-random manner, while sharing information about
the performance of configurations throughout the swam. This tight cooperation
allows finding the global optimum of the search space efficiently and results in a
computational complexity of O(n log n). Compared to GA, it therefore convergences
faster in most cases and additionally has great parallelization support since the
individual particles run independently. A major challenge when working with PSO
is to find a suitable population initialization, since it determines whether a global or
only a local optimum is found. However, selecting suitable population initialization
usually requires prior experience or sophisticated initialization techniques.
Overall, metaheuristic tuning approaches are considered more complex and chal-
lenging to use, especially if there is only limited initial knowledge about the search
space. Although both above approaches support all types of hyperparameters, their
limitations potentially make them not the best choice for a QML use case. GA
introduces additional hyperparameters such as the fitness function or population
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size that needs to be configured, which can be hard to determine for computationally
intensive quantum workloads. PSO requires a suitable population initialization,
which requires comprehensive knowledge about the hyperparameter space, which is
currently not the case for QML.

More details on the technical and statistical principles of the above hyperparameter
tuning algorithms can be found in the original work of Yang and Shami in [YS20] which
serves as the basis of the above summary.

Overall, there are multiple hyperparameter tuning approaches that can be considered
suitable for typical VQA problems. GS is a very prominent approach and the only
exhaustive hyperparameter tuning method of the above, and therefore often used as
a baseline approach. However, due to the curse of dimensionality it is not suited for
large search spaces as the resource consumption increases exponentially [YZ20]. RS is
also very popular because of its simplicity and through its budget limit the resource
consumption can be regulated. Especially the Bayesian optimization based approaches
SMAC and BO-TPE offer promising characteristics and seem to be a good choice for
QML project because of their good support for categorical hyperparameters [YS20]. On
the other hand, BO-GP, Hyperband and gradient descent cannot be recommended as
they are not suitable for conditional hyperparameters [YS20]. Metaheuristic algorithms
could theoretically be well suited as they are able to handle complex hyperparameter
spaces but require comprehensible knowledge about the search space and its properties
in advance, which might be a limitation in the case of QML.
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CHAPTER 5
Methodology

In Chapter 4 we reviewed the most prominent hyperparameter tuning approaches and
found multiple that could theoretically also be suited for QML problems. However, to
verify their practical suitability, we adapt the most promising approaches and apply
them to a typical QML use case. This allows us to investigate their performance and
finally answer our third research question, RQ 3 by comparing their performance. In this
chapter, we therefore introduce the methodology used for the experiments conducted in
this thesis.

First, we discuss the selected hyperparameter tuning methods and explain why we chose
them for the performance evaluation. Next, we introduce the datasets that we used
for the evaluation and briefly analyze the characteristics, such as the class distribution.
We then extensively discuss the implemented preprocessing steps, including the used
dimensionality reduction algorithms, and evaluate how well they are able to contain the
original variance. Finally, we specify the used hyperparameter configuration space and
discuss each individual hyperparameter and the corresponding sub parameters.

5.1 Hyperparameter Tuning Algorithms
To also evaluate the suitability of hyperparameter tuning algorithms from a practical
perspective, we benchmark the most promising approaches from our review in Chapter 4
to get insights into their usability and performance. In the following, we discuss the
selected approaches that are later used during our experiment:

Gridsearch As already discussed in Chapter 4, GS is a very prominent and widely used
approach. Because it is an exhaustive approach that evaluates the whole search
space, it can give valuable insights into the hyperparameter search space and is
often used as a baseline to compare other tuning approaches against [SKK+23].

35



5. Methodology

Similar to Yang and Shami in their performance comparison of hyperparameter
tuning algorithms for classical ML models [YS20], we include GS as an exhaustive
baseline model in our experiment. Moreover, GS is also recommended by Yang
and Shami in [YS20] for categorical hyperparameters, which the majority of the
hyperparameters of VQAs are.

Randomsearch RS is another very popular hyperparameter tuning approach that
supports all types of hyperparameters and is highly parallelizable. However, other
than GS, it allows specifying a budget of iterations independent of the search space
size before the evaluation is started. This allows to plan the resource consumption
in advance and makes it a promising approach for the computationally intensive
evaluations of QML problems. Moreover, is a relatively simple tuning approach and
is therefore also considered a baseline approach for budget based hyperparameter
tuning algorithms by Yang and Shami in [YS20]. Consequently, RS could be a
promising alternative for projects that would otherwise use manual hyperparameter
tuning or exhaustive search, as the technical barrier is relatively low. We therefore
select it as our second approach.

BO-TPE The third approach for our experiment is BO-TPE. We selected this approach
based on the expected hyperparameters for our VQA use-case, as listed in Table 4.1
and the findings of Chapter 4. Consequently, we identified BO-TPE to be the
most suitable hyperparameter tuning approach for three categorical hyperparam-
eters with two optional conditional hyperparameters each. Moreover, Yang and
Shami recommend this approach explicitly in their study [YS20] for search spaces
mostly consisting of categorical and some conditional hyperparameters. Addition-
ally, it supports all types of hyperparameters, including discrete and continuous
hyperparameters, which are needed for the individual conditional hyperparame-
ters. Although the individual evaluations are not independent, BO-TPE offers
support for parallelization. Overall, we consider it therefore as a very promising
hyperparameter tuning approach for our experiment.

5.2 Data
To study the performance of the selected hyperparameter tuning approaches, we fo-
cused on different classification problems. Classification problems have already been
extensively studied for classical ML and are used in various research areas. Also, they
are of great interest for the quantum community and are commonly used in quantum
literature [SKK+23]. Insights on hyperparameter tuning techniques for these problems
are therefore important and could be used in future research to speed up the tuning
process. Moreover, there are plenty of well known datasets available that can be used for
our experiment. Given the still limited number of qubits of current NISQ devices, we
focused on low dimensional datasets. In the following, we discuss the selected datasets in
more detail.
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Min Max Mean SD Class Correlation
Sepal length 4.3 7.9 5.84 0.83 0.7826
Sepal width 2.0 4.4 3.05 0.43 -0.4194
Petal length 1.0 6.9 3.76 1.76 0.9490 (high!)
Petal width 0.1 2.5 1.20 0.76 0.9565 (high!)

Table 5.1: Dataset statistics for the iris plants dataset [lDa].

5.2.1 Iris

The iris dataset [lDa] was first used in 1936 by R.A. Fisher [Fis36] and is one of the
best-known datasets for classification today [UK21]. It consists of 3 classes, evenly
represented by 50 instances per class, for a total of 150 instances. Each class represents
a type of iris plant and is described by four numeric features, which are the length
and width of the sepal and petal in centimeters. Some of the most important statistics
of the dataset are shown in Table 5.1 which is based on the dataset description from
Scikit-learn [lDa]. Overall, there are no missing values, and it is known that one class
is linearly separable from the other 2 [lDa] as it can be seen in Figure 5.1 from the
corresponding Qiskit example [Qis23b].

Because of the low dimensionality, it is a popular choice for QML as well and has for exam-
ple been used by Hossain et al. in their study about feature mapping techniques [HAS+21].
However, due to its relatively small size and few instances it may not be representative for
real world problems which are often much more complex and consist of more instances.

5.2.2 Real World Datasets

To also test the performance of our selected hyperparameter tuning methods with more
realistic data, we used the Scikit-learn real world dataset collection 1 to find realistic
datasets. We searched for datasets that have low dimensionality to ensure they can be
efficiently processed on restricted NISQ devices with only a few qubits. In the following,
we describe the selected datasets in more detail.

Forest Covertypes

The first dataset that matches our criteria is the Forest Covertype dataset [Bla98] that
consists of seven classes which are described through 54 integer based features. The overall
goal of the classification problem is to predict forest cover types based on cartographic
variables that were originally determined by the US Forest Service Region 2 Resource
Information System [Bla98]. The features of the dataset are described in more detail in
Table 5.2.

1https://scikit-learn.org/stable/datasets/real_world.html, last accessed April 03,
2024
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Figure 5.1: Correlation of features in the iris dataset [Qis23b].

The seven covertype class labels are Spruce/Fir, Lodgepole Pine, Ponderosa Pine, Cotton-
wood/Willow, Aspen, Douglas-fir and Krummholz [Bla98]. In contrast to the iris dataset,
the classes are not distributed equally within the dataset. The absolute distribution of
the 581.012 individual samples is illustrated in Figure 5.2a. In Figure 5.2b it can be seen
that with more than 48% the most common target instance is Lodgepole Pine closely
followed by Spruce/Fir with over 36% of the whole dataset. The other five instances
together represent only about 15% of the total dataset and are therefore expected to be
harder to predict.
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Feature Name Type Description
Elevation Integer Elevation in meters
Aspect Integer Aspect in degrees azimuth
Slope Integer Slope in degrees

Horz_Dist_To_Hydrology Integer Horz Dist to nearest surface water
features

Vert_Dist_To_Hydrology Integer Vert Dist to nearest surface water
features

Horz_Dist_To_Roadways Integer Horz Dist to nearest roadway
Hillshade_9am Integer Hillshade index at 9am, summer solstice
Hillshade_Noon Integer Hillshade index at noon, summer soltice
Hillshade_3pm Integer Hillshade index at 3pm, summer solstice

Horz_Dist_To_Fire_Points Integer Horz Dist to nearest wildfire ignition
points

Wilderness_Area (1-4) Integer Wilderness area designation
Soil_Type (1-40) Integer Soil Type designation

Horz = Horizontal, Vert = Vertical and Dist = Distance.
Table 5.2: Feature description of the Forest Covertypes dataset [Bla98].
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Figure 5.2: Class distribution of the Forest Covertype dataset.
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KDD Cup 1999

The second dataset is the KDD Cup 1999 [LHF+00] which contains data about network
connections from an intrusion detection system 2. The overall goal of the classification
problem is to detect attacks by distinguishing bad connections from the normal network
traffic [lDb]. It was specifically designed to improve research in intrusion detection
systems, and a version of it was used in the 1999 KDD intrusion detection contest [SFLP].
The data was created by simulating typical network traffic and manually injecting different
kind of attacks [lDb]. Each instance of the dataset is described by 41 features that are
explained in the task description 3 and listed in Table 5.3. Note that the nine features
that are computed using a two-second time window, which are described in the lower
third of Table 5.3, also exist for the destination host. However, we have omitted them
in the table for readability reasons, as the descriptions would have been redundant.
Consequently, there are nine similar features with a dst_host_ prefix in the dataset and
an additional dst_host_same_src_port_rate feature, summing up to 41 features in total.

Based on this features, the goal of the classification problem is to predict the correct class
of traffic. Overall, there are 23 classes available in the dataset that have been divided
into four main attack categories by Stolfo et al. in [SFLP] and the normal background
traffic:

• Normal: normal

• Denial-of-Service (DOS):

– back, land, neptune, pod, smurf, teardrop

• Unauthorized access from a remote machine (R2L):

– ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient, warezmaster

• Unauthorized access to local superuser (root) privileges (U2R):

– buffer_overflow, loadmodule, perl, rootkit

• Surveillance and probing (PROBING):

– ipsweep, nmap, portsweep, satan

Figure 5.3a shows the absolute count of the individual classes using a logarithmic scale
to fit all classes in the figure. Again, the distribution of the classes is not equal, as it can
be seen in Figure 5.3b. With over 56% the denial-of-service attack smurf is the most
frequent attack, closely followed by neptune with more than 21%. However, the normal

2https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, last accessed April 03,
2024

3https://kdd.ics.uci.edu/databases/kddcup99/task.html, last accessed April 03, 2024
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5.2. Data

Feature Name Type Description
duration continuous length (number of seconds) of the connection

protocol_type discrete type of the protocol, e.g. tcp, udp, etc.
service discrete network service on the destination

src_bytes continuous number of data bytes from source to destination
dst_bytes continuous number of data bytes from destination to source

flag discrete normal or error status of the connection
land discrete 1 if connection is from/to the same host/port

wrong_fragment continuous number of “wrong” fragments
urgent continuous number of urgent packets
Content features within a connection suggested by domain knowledge.
hot continuous number of “hot” indicators

num_failed_logins continuous number of failed login attempts
logged_in discrete 1 if successfully logged in

num_compromised continuous number of “compromised” conditions
root_shell discrete 1 if root shell is obtained

su_attempted discrete 1 if “su root” command attempted
num_root continuous number of “root” accesses

num_file_creations continuous number of file creation operations
num_shells continuous number of shell prompts

num_access_files continuous number of operations on access control files
num_outbound_cmds continuous number of outbound commands in an ftp session

is_hot_login discrete 1 if the login belongs to the “hot” list
is_guest_login discrete 1 if the login is a “guest”login

Traffic features computed using a two-second time window.
count continuous number of connections to the same host as the

current connection in the past two seconds
serror_rate continuous % of connections that have “SYN” errors
rerror_rate continuous % of connections that have “REJ” errors

same_srv_rate continuous % of connections to the same service
diff_srv_rate continuous % of connections to different services

srv_count continuous number of connections to the same service as
the current connection in the past two seconds

srv_serror_rate continuous % of connections that have “SYN” errors
srv_rerror_rate continuous % of connections that have “REJ” errors

srv_diff_host_rate continuous % of connections to different hosts
Some descriptions have been shortened.

Table 5.3: Feature description of the KDD Cup 1999 dataset [SFLP].
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Figure 5.3: Class distribution of the KDD Cup 1999 dataset.

traffic only makes up roughly 20% of the data, resulting in an unrealistic high proportion
of attacks in the dataset [lDb]. Moreover, for some attack classes like spy, perl or phf
there exist only 2, 3 and 4 instances in the whole dataset which makes them extremely
hard to predict within the 4.898.431 total instances.

5.3 Preprocessing

To evaluate the performance of the selected hyperparameter tuning methods with the dif-
ferent datasets, some preprocessing was necessary to ensure the data is consistent and can
be efficiently processed in our experiment. We used the Scikit-learn framework [PVG+11]
to load and preprocess the datasets. In particular, we used the load_iris, fetch_covtype
and fetch_kddcup99 utilities of Scikit-learn to load the respective datasets.

We then analyzed the individual datasets and checked that there are no missing values and
the data has the correct format. The features and labels of the Iris and Covertype dataset
were all numeric and did not require further preparation. However, the protocol_type,
service and flag features as well as the target labels of the KDDCup99 dataset are
contained as categorical features and need to be encoded as numeric values for our
pipeline. We therefore used the LabelEncoder for the target labels, the OneHotEncoder to
encode the non-numerical features and the StandardScaler to normalize numeric features.
All of the above functions can be found in the Scikit-learn preprocessing library 4.

4https://scikit-learn.org/stable/modules/classes.html#module-sklearn.
preprocessing, last accessed April 06, 2024
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5.3. Preprocessing

5.3.1 Dimensionality Reduction

Large real world datasets often contain many features that are irrelevant or redundant
to correctly predict the target label [YS20]. Dimensionality reduction algorithms are
therefore a well-known technique for classical ML applications to eliminate unimportant
features [YS20]. However, especially for QML, it is important to efficiently reduce the
number of features since current NISQ devices only offer a limited number of qubits [MP22].
It is therefore common to reduce the dimensionality of a given dataset before it is used
for QML classification tasks.

Two of the most well-known approaches are called Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) [YS20].

PCA PCA is a linear dimensionality reduction approach that uses the eigenvectors of
the covariance matrix to create new features of the original data [YS20]. The fewer
new features are a linear combination of multiple original features, with the first
components containing the most information [MP22]. To calculate the eigenvectors
of the covariance matrix, the most common method is Singular value decomposition
(SVD).

LDA LDA is also a linear dimensionality reduction approach that additionally uses the
target classes to maximize class separation [MP22]. The goal is to achieve a minimal
variance inside classes but maximize the variance between different classes [YS20].
The number of reduced features k is limited by the number of original features n
with k < n − 1 [MP22].

While both approaches are well suited for QML, the results of Mancilla and Pere show
that LDA performed better than PCA in their experiment [MP22]. They evaluated the
performance for two datasets by reducing their features to only two from originally 25
and 114 respectively. However, they state that further investigation is needed to fully
understand the prevalence of LDA and plan to study for more datasets.

Since for the datasets in our experiment it is uncertain which approach performs better,
we employ both approaches. To fairly compare them, we use the same number of qubits
for PCA and LDA. We used the PCA 5 and LDA 6 implementations of the Scikit-learn
framework [PVG+11] that offer the n_components parameter to define the number of
components to keep after reduction. In the following, we shortly discuss how we applied
them to the individual datasets.

5https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
PCA.html, last accessed April 06, 2024

6https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_
analysis.LinearDiscriminantAnalysis.html, last accessed April 06, 2024
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Figure 5.4: Explained variance ratio for the Iris dataset.

Iris

As already discussed above, the maximum number of reduced features for LDA is limited
by the number of target classes in the original dataset. Since the Iris dataset only has 3
target classes, we set the n_components parameter for both approaches to two. To get
insights of how well the reduced features can keep the variance of the original dataset,
Scikit-learn offers the explained_variance_ratio_ function. We illustrated the cumulative
explained variance for the Iris dataset in Figure 5.4. As it can be seen, for two components
PCA can keep more than 95% of the variance from the original dataset while LDA is
able to keep 100%. We therefore expect LDA to slightly perform better than PCA in our
experiment for this dataset.

Forest Covertypes

The Forest Covertype dataset has seven target classes and 54 features. With the class
limitation of LDA, we reduced them to six using PCA and LDA. We again evaluated the
cumulative explained variance and illustrated it in Figure 5.5. As it can be seen, for six
components PCA can only keep roughly 30% of the variance from the original dataset
while LDA is still able to keep 100%. For PCA to keep 99% of the original variance, it
would need 48 features.

KDD Cup 1999

The KDD Cup 1999 dataset has 23 target classes and therefore by far the most out of the
three datasets. However, the number of qubits is very limited on current NISQ devices
and the running time increases drastically with the number of used qubits for simulators.
To allow a fair comparison of our two real world datasets, we decided to allocate the
same amount of qubits for each of them. This ensures comparable runtimes and resource
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Figure 5.5: Explained variance ratio for the Forest Covertype dataset.

usage, as well as comparable accuracy results. We therefore reduce the 41 features of
this dataset to six, just as for the Forest Covertypes dataset. Moreover, we are able to
keep 99% of the original variance with these six features when using LDA as described in
the following.

The cumulative explained variance for PCA and LDA is illustrated in Figure 5.6. Because
we used the OneHotEncoder to encode non-numeric features, we have in total 118
individual features since there are three different protocol_type instances, 66 different
service types and eleven different flag instances. Figure 5.6a shows that the first six
components of PCA contain a little over 65% of the original variance, while Figure 5.6b
shows that LDA is able to keep over 99% of the original variance. For PCA to keep 99%
it would need 24 features which is only half of the required features compared to the
Forest Covertype dataset.

5.4 Hyperparameters

To evaluate the selected hyperparameter tuning methods, we need to define an appropriate
search space. We focused on finding a reasonably large search space that contains enough
variables to extensively evaluate the performance of the budget based tuning methods,
while not being too large for the exhaustive GS evaluation. Generally, we use the same
hyperparameter configuration space for all tuning methods to allow a fair comparison, as
suggested by Yang and Shami in [YS20]. The complete hyperparameter configuration
space is specified in Table 5.4 and contains 504 individual hyperparameter combinations.
In the following, we discuss each of the used hyperparameters in detail.
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Figure 5.6: Explained variance ratio for the KDD Cup 1999 dataset.

Hyperparameter Configuration Subparameter Values

Feature reduction PCA / /LDA

Feature Map
PauliFeatureMap

Repetitions [1,5]ZFeatureMap
ZZFeatureMap

Ansatz
PauliTwoDesign / /
RealAmplitudes Entanglement [full, linear, sca]EfficientSU2

Optimizer
COBYLA

Max. Iterations [100, 1000]SLSQP
NELDER_MEAD

Table 5.4: Hyperparameter configuration space used for experiment.

5.4.1 Feature Map

As already discussed in Chapter 3.1.2, quantum feature maps are used to encode the
classical data in quantum states. In the literature, there are already various feature
maps available, such as the Z feature map or the ZZ feature map [HAS+21]. For our
experiment, we chose the three well-known implementations named Pauli Feature Map, Z
Feature Map and the ZZ Feature Map that are available in the Qiskit circuit library 7 and
can be used out of the box. The Pauli feature map was originally proposed in [HCT+19]
and is used as the basis for the Z Feature Map which has no entangling gates since the

7 https://docs.quantum.ibm.com/api/qiskit/circuit_library, last accessed April 07,
2024
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5.4. Hyperparameters

Pauli strings are fixed as [‘Z’] 8. The ZZ Feature Map is also based on the Pauli feature
map, but in contrast to the Z Feature Map offers support for entanglement.

As studied by Hossain et al. in [HAS+21], a common parameter for feature maps is the
number of repetitions that allows to specify the circuit depth by repeating the respective
feature map circuit multiple times. However, the results show that the best circuit depth
configurations varies between different datasets is therefore heavily problem depended.
We therefore include the reps parameter in our hyperparameter search space to find the
best configuration for our datasets.

5.4.2 Ansatz

As discussed in Section 3.1.3, the ansatz defines the variational parameters of the VQA
and is therefore an essential building block. In our experiments we use three well-known
ansatz types that are available in the Qiskit circuit library and can be used out of the box:
PauliTwoDesign, RealAmplitudes and EfficientSU2. The authors of [CDMB+22] studied
the performance of all of these three ansatzes with different repetitions and entanglement
strategies. Their results show that the linear entanglement strategy performs better than
full and sca throughout their experiments, while the optimal number of repetitions varies
depending on the concrete use case [CDMB+22]. However, we decided to include the
entanglement strategy as another conditional categorical hyperparameter, since we already
included the discrete repetitions parameter for the feature maps. The RealAmplitudes
and EfficientSU2 ansatz both support this parameter, while the PauliTwoDesign does
not offer it. More details on the individual ansatz types can be found in [CDMB+22].

5.4.3 Optimizer

The last remaining hyperparameter of the VQA that we need to tune is the optimizer,
which we already discussed in Section 3.1.4. Qiskit 9 offers numerous optimizers to choose
from. For our experiment we choose the two common gradient free optimizes COBYLA
and Nelder-Mead as well as the gradient-based SLSQP optimizer. In the study [SMM23]
of Singh et al. where they evaluated a large range of different optimizers for a quantum
chemistry use-case, the COBYLA and SLSQP optimizers are consistently among the
top performing optimizers. Moreover, we run some preliminary benchmarks on our own,
where these two optimizers also showed promising results. We therefore include the
COBYLA and SLSQP optimizers in our hyperparameter selection. Additionally, we
included the Nelder-Mead optimizer, as it surprisingly also showed promising accuracy
results in our preliminary benchmarks. More details on the individual optimizers can be
found in the corresponding Qiskit documentation 9 or in the work of Singh et al. [SMM23].

8https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.
ZFeatureMap, last accessed April 07, 2024

9https://docs.quantum.ibm.com/api/qiskit/0.46/qiskit.algorithms.optimizers,
last accessed April 07, 2024
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5. Methodology

Singh et al. suggests setting the number of maximum iterations to a fixed value for all opti-
mizers to allow a fair comparison by allocating the same computational resources [SMM23].
In their experiment, they set this number to 100 for all optimizers. We adopted this
setting for our experiment but also test the optimizer with an additional value of 1000
which is the default value for the COBYLA optimizer in the Qiskit implementation. This
allows us to get insights on how this parameter influences the performance.
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CHAPTER 6
Results

In this chapter, we evaluate the results of our experiments and briefly discuss them. First,
we introduce the experimental setup and hardware used throughout our experiments. We
then extensively evaluate the accuracy and runtime of Grid Search (GS), Random Search
(RS) and Bayesian Optimization (BO)-Tree-structured Parzen Estimator (TPE) for each
of the datasets before we analyze different parallelization configurations. Next, we share
some insights on how the actual hyperparameters perform for each dataset and evaluate
the most promising choices. Finally, we analyze how budget based hyperparameter tuning
algorithms RS and BO-TPE can handle larger search spaces.

6.1 Experimental Setup
To implement our experiments, we use Qiskit [Qis23a], a Python based open-source
quantum framework that provides the required VQA components in its circuit library 1.
Furthermore, we use the Python based scikit-learn [PVG+11] library for loading and
preprocessing the data, as described in Chapter 5. To evaluate the performance of GS,
we use the GridSearchCV 2 implementation from the scikit-learn [PVG+11] library. For
RS and BO-TPE we use Hyperopt [BYC13], a well known open source Python library
that supports parallel evaluations using MongoDB [YS20]. The exact versions of the
software used in our experiments can be found in Table 6.1.

6.1.1 Hardware
Qiskit supports different computing backends and allows to easily specify whether the
quantum calculations should be run on a dedicated quantum computer or a simulator.

1 https://docs.quantum.ibm.com/api/qiskit/circuit_library, last accessed April 07,
2024

2 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html, last accessed April 19, 2024
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6. Results

Software Version
hyperopt 0.2.7
mongodb 3.6.8
pymongo 3.12.0
python 3.8.10
qiskit 0.45.1

qiskit-machine-learning 0.7.1
scikit-learn 1.3.2

Table 6.1: Software versions used in experiment.

Public access to dedicated quantum computers is still very costly, and long waiting queues
make larger experiments very inefficient. IBM for example offers access to quantum
systems with more than 100 qubits 3 in their quantum cloud for free but limits it to
10 minutes of runtime per month. However, since our experiments exceed this limit by
far, we decided to run Qiskit locally on a regular server to simulate a perfect quantum
computer for our evaluations. We used an Ubuntu 20.04.6 LTS server with two AMD
EPYC 7452 32-Core processors that have a base frequency of 2.35 GHz and 64 threads
each. With 1 TB of RAM and 128 threads in total, this system offers great parallelization
support with.

6.2 Performance Evaluation
In our experiment we evaluate the performance of GS, RS and BO-TPE for each dataset.
We use the same hyperparameter configuration space that is defined in Table 5.4 for
each hyperparameter tuning approach to allow a fair comparison. Each dataset is split
in a train and test subset 4 using stratified sampling to preserve the relative class
frequency of the target labels. The extensive runtime of the individual evaluations made
it necessary to limit the train split to 450 samples and the test split to 150 for the
real-world datasets. Larger splits resulted in significantly longer runtimes, which for the
scale of these experiments would have exceeded the time budget of this thesis. As the
classification performance metric, we use the mean accuracy of 3-fold cross validation.
Additionally, we track the total time that each hyperparameter tuning algorithm needs
to evaluate the hyperparameter search space and use it as an efficiency metric, similar to
Yang and Shami [YS20].

With GS, we exhaustively evaluate the whole configuration space and use these results
as our performance baseline. Because of the great parallelization support, we utilize all
128 threads at the same time for the GS approach. For the budget based approaches
RS and BO-TPE we set the maximum evaluations to 100 as recommended by Yang

3https://www.ibm.com/quantum/pricing, last accessed April 19, 2024
4https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

train_test_split.html, last accessed April 10, 2024
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6.2. Performance Evaluation

Dataset Tuning Algorithm Accuracy SD Time (hh:mm:ss)
GS 59.18% 3.33% 01:02:30
RS 57.82% 3.85% 00:27:04Iris

BO-TPE 61.22% 1.67% 00:28:09
GS 54.89% 6.58% 77:13:23
RS 55.78% 7.93% 59:51:48Forest Covertype

BO-TPE 56.00% 5.36% 37:06:35
GS 91.33% 2.83% 50:06:29
RS 84.22% 2.79% 58:20:19KDD Cup 1999

BO-TPE 87.33% 0.54% 57:24:05
SD = Standard Deviation

Table 6.2: Performance of different hyperparameter tuning algorithms for each dataset.

and Shami [YS20] to fairly compare their performance. Similar to GS, we use full
parallelization for RS and use 100 threads simultaneously. However, for BO-TPE this
is not the best configuration since all 100 configurations would be randomly selected at
the beginning of the search without considering previous results or taking advantage of
the surrogate model. We analyzed the parallelization configuration in Section 6.3 and
identified 20 threads to perform best in terms of accuracy. We therefore only use 20
threads for BO-TPE while leaving the evaluation budget unchanged at 100 runs. The
results of our experiment can be found in Table 6.2.

Overall, it can be seen that the measured accuracy and time varies between the individual
datasets. However, when looking at the individual datasets, all three hyperparameter
tuning approaches were able to achieve a similar accuracy with great differences in the
time needed to complete the run. As expected, the evaluation of the Iris dataset could
be completed the fastest, as it is a low-dimensional dataset with only a few instances
to classify. The results of the Iris and Forest Covertype dataset are in line with our
expectations and show that the execution time of GS is by far the longest. BO-TPE
shows very promising results for these two datasets and was able to achieve the highest
accuracy for both datasets while requiring only half the time compared to GS. Since
all hyperparameter tuning approaches use the exact same hyperparameter search space,
the differences in accuracy are most likely a result of the internal randomness of the
optimizer. For the KDD Cup 1999 dataset we observe different results with GS being
the fastest approach and the highest accuracy. To better understand these results, we
provide additional insights for each dataset in the following sections and analyze their
performance in more detail.

6.2.1 Iris
In this section, we further analyze the results for the Iris dataset. We first provide more
insights into the accuracy and analyze the median and accumulated maximum accuracy
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6. Results

as well as the best configurations before we also analyze the runtime.

Accuracy

Table 6.2 shows that the best accuracy of all three hyperparameter tuning methods
for the Iris dataset is almost equal. With GS we evaluated the whole hyperparameter
configuration space and found the best accuracy to be 59.18% while RS reports a slightly
worse accuracy of 57.82%. Interestingly, BO-TPE reports an even better accuracy than
GS of 61.22%, although all approaches use the exact same hyperparameter search space.
We find these accuracy results to be consistent with the results from the Qiskit tutorial 5

that also uses the Iris dataset and dimensionality reduction with two features.

To further analyze these differences, we have listed the corresponding hyperparameter
configurations of these accuracy values for each hyperparameter tuning approach in
Table 6.3. As it can be seen, there are two configurations for each approach that led to
the exact same accuracy value. For GS these two configurations only differ in the optimizer
while for BO-TPE only the entanglement strategy is different. RS apparently evaluated
the same configuration twice, as there are no differences. Moreover, Table 6.3 shows
that all tuning approaches report the same hyperparameter configuration as the best
performing one, with the only difference being the maximum iterations of the optimizer.
We therefore assume that the difference in accuracy between the tuning approaches is a
result of the random initialization used for the optimizer and the deviation that naturally
occurs from cross-validation. The initial value of the optimizer affects how the optimizer
converges and is set randomly at the beginning of a run. Consequently, even identical
hyperparameter configurations can lead to slightly different results as the number of
maximum iterations is fixed. Furthermore, we use the mean accuracy of 3-fold cross
validation as our performance metric. The corresponding standard deviation can be
found in Table 6.2 and may also be a reason for the slight differences in accuracy between
the tuning approaches.

To further analyze the performance of the different hyperparameter tuning approaches,
we visualize the accuracy results of the individual runs using a box plot in Figure 6.1a.
For GS there are 504 individual evaluations representing the complete hyperparameter
configuration space, while for RS and BO-TPE there are 100 evaluations due to our
budget restriction. It can clearly be seen that the median accuracy for BO-TPE is
significantly higher than for the other approaches. This shows that the guided search
of BO-TPE helped to find more promising hyperparameter configurations with higher
accuracy while spending less time evaluating poor configurations. The box plot of GS
and RS looks almost identical, with the median accuracy of RS being slightly better.
However, accuracy values greater than 0.5 are considered outliers for both approaches,
indicating that the majority of evaluations performed poorly.

5 https://qiskit-community.github.io/qiskit-machine-learning/tutorials/02a_
training_a_quantum_model_on_a_real_dataset.html, last accessed April 10, 2024
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6.2. Performance Evaluation

Algo. Dim.
Red.

Feature
Map

Reps Ansatz Ent. Optimizer Max.
Iter.

Time

GS PCA ZFeatureMap 1 EfficientSU2 full COBYLA 1000 468s
PCA ZFeatureMap 1 EfficientSU2 sca SLSQP 1000 262s

RS PCA ZFeatureMap 1 EfficientSU2 full COBYLA 1000 565s
PCA ZFeatureMap 1 EfficientSU2 full COBYLA 1000 655s

TPE PCA ZFeatureMap 1 EfficientSU2 full COBYLA 100 75s
PCA ZFeatureMap 1 EfficientSU2 linear COBYLA 100 71s

Algo. = Hyperparameter Tuning Algorithm, Dim. Red. = Dimensionality Reduction
Method, Ent. = Entanglement Strategy, Max. Iter. = Maximum Number of Iterations

Table 6.3: Best Hyperparameter Configurations for the Iris Dataset.
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Figure 6.1: Accuracy and Runtime of the Iris dataset.

To get insights into the search progress of the different approaches, we illustrated the
accumulated maximum accuracy over the iterations in Figure 6.2. Note that for GS only
the first 100 iterations are shown to match the defined evaluation budget of RS and
BO-TPE. The maximum accuracy of GS is found in a later iteration but showing all
504 iterations would reduce the readability of the illustration. It can be seen that RS
found the maximum relatively early and did not further improve its result after about 15
iterations. BO-TPE also found a relatively good result within the first 15 iterations, but
was able to slightly improve the accuracy after about 70 iterations. Overall, this shows
that randomly selecting hyperparameter configurations can lead to very promising results
with a very limited budget of only 20 runs. Especially since BO-TPE also randomly
selects the first candidates of the search before using the results for the next iteration.
Since we use 20 threads in parallel for BO-TPE, the first 20 iterations are essentially
randomly selected.
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Figure 6.2: Accumulated maximum accuracy for the Iris dataset.

Runtime

In Figure 6.1b we visualize the runtime of the individual evaluations using a box plot. It
can be seen that the median runtime for all hyperparameter tuning approaches is around
200 seconds, with RS being slightly higher than the others. Furthermore, the upper
quartile of the box plot for RS is larger, indicating a greater number of long evaluations.
However, is can also be seen that there are outliers across all hyperparameter tuning
approaches, with a significantly higher runtime compared to the median. We analyzed
these runs and could not find any correlations between particular hyperparameters since
all different feature maps, ansatzes, optimizers and dimensionality reduction algorithms
are among the 10 longest runs. We therefore believe that the significantly increased
runtimes are a result of the barren plateau phenomenon. Since only a small portion of the
evaluations are affected by the phenomenon, we assume that it could be related to the
random initialization of the optimizer. However, further analysis of different initialization
strategies or distributions would be beyond the scope of this thesis.

6.2.2 Forest Covertypes
In this section, we further analyze the results for the Forest Covertypes dataset. Similar
to the previous section, we start by analyzing the accuracy before evaluating the runtime.

Accuracy

In Table 6.2 it can be seen that the best accuracy of all three hyperparameter tuning
methods for the Forest Covertypes dataset is almost equal. Interestingly, GS achieved the
lowest accuracy of 54.89%, although it evaluated the whole hyperparameter configuration
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6.2. Performance Evaluation

Algo. Dim.
Red.

Feature
Map

Reps Ansatz Ent. Optimizer Max.
Iter.

Time

GS LDA ZFeatureMap 5 EfficientSU2 full SLSQP 100 29656s
LDA ZFeatureMap 1 EfficientSU2 full SLSQP 1000 28582s

RS LDA ZFeatureMap 1 EfficientSU2 linear SLSQP 1000 42136s
TPE LDA ZFeatureMap 1 RealAmplitudes full SLSQP 1000 10275s
Algo. = Hyperparameter Tuning Algorithm, Dim. Red. = Dimensionality Reduction

Method, Ent. = Entanglement Strategy, Max. Iter. = Maximum Number of Iterations
Table 6.4: Best Hyperparameter Configurations for the Forest Covertypes Dataset.

space. The best accuracy of RS is about 1% higher at 55.78% and BO-TPE achieved
an even better accuracy of 56.00%. We again listed the corresponding hyperparameter
configurations of these accuracy values for each tuning tuning approach in Table 6.4. As
it can be seen, there are two configurations for GS that achieved the same accuracy and
one configuration for RS and BO-TPE respectively. For GS these two configurations only
differ in the repetitions of the feature map and the maximum iterations of the optimizers.
Generally, it can be seen that all tuning approaches report a similar hyperparameter
configuration as the best performing one, with the only difference being the ansatz for
BO-TPE and the entanglement strategy for RS. We therefore assume that the different
accuracy values between the hyperparameter tuning approaches can again be explained
by the relatively high standard deviation from the used cross-validation and the random
initialization used for the optimizer.

We again visualize the accuracy results of the individual runs using a box plot in
Figure 6.3a to analyze the performance of the different hyperparameter tuning approaches.
Similar to the Iris dataset, it can be seen that the median accuracy for BO-TPE is
significantly higher than for the other approaches. This again shows that the guided
search of BO-TPE helped to find more promising hyperparameter configurations within
the same budget of 100 evaluations as RS. For GS, the median accuracy is significantly
lower than for BO-TPE but slightly higher than for RS. The box plot of GS and RS
look very similar, and evaluations with an accuracy over 0.4 are considered as outliers
for both approaches. However, we can see that there are more outliers for GS than for
RS due to the higher number of evaluations.

In Figure 6.4 we illustrate the accumulated maximum accuracy over the iterations for
the Forest Covertypes dataset to get insights into the search progress of the different
hyperparameter tuning approaches. We only show the first 100 iterations of GS although
the maximum accuracy is found after more than 400 iterations to improve the readability.
This also allows us to better analyze the progress of the budget based approaches, RS
and BO-TPE. For RS it can be seen that a relatively good configuration is already found
within the first 10 iterations with a slight improvement after about 80 iterations.

For BO-TPE keep in mind that the results of previous iterations are used to select the
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Figure 6.3: Accuracy and Runtime of the Forest Covertypes dataset.
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Figure 6.4: Accumulated maximum accuracy for the Forest Covertypes dataset.

next configurations. Given that we use 20 threads in parallel, we would therefore expect
to see improvements of the maximum accuracy roughly every 20 iterations. Figure 6.4
confirms this hypothesis and shows how the informed search of BO-TPE is able to
continuously improve the accuracy over the iterations. It can be seen that a relatively
good configuration is found at the beginning and the first improvements happened
between iteration 20 and 40. The search then continued until the best configuration is
found after 60 iterations.

Overall, it can be seen that, similar to the Iris dataset, BO-TPE was even able to find
the highest accuracy while being able to continuously improve the maximum accuracy.
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6.2. Performance Evaluation

Runtime

In Figure 6.3b we visualize the runtime of each hyperparameter tuning approach for the
Forest Covertypes dataset using a box plot. It can be seen that the median runtime
for all tuning approaches is almost similar, with RS being slightly higher. However, is
can also be seen that there are outliers across all tuning approaches, with a significantly
higher runtime compared to the median. Especially for RS these outliers show very
log runtimes that are five to ten times higher than the median runtime. Similar to the
outliers for the Iris dataset, we analyzed these runs to find some correlations among the
hyperparameters. Among the 10 longest runs, we found that all runs used the SLSQP
optimizer and the EfficientSU2 ansatz. However, as it can be seen in Chapter 6.4, both
the SLSQP optimizer and the EfficientSU2 ansatz show the longest overall runtime. We
could not find any other correlations and therefore believe that the significantly increased
runtimes could be again a result of the barren plateau phenomenon.

Given the significantly higher runtime of the outliers, we additionally analyze their
impact on the overall runtime. The different parallelization configurations make it hard
to deduce the total runtime from the individual runtimes because the evaluations are
randomly allocated to the available threads. To still analyze the impact of the outliers,
we kept track of the total runtime after each finished evaluation. For RS, it can be seen in
Figure 6.3b that there are five outliers with significantly higher runtimes. The evaluation
of the fastest 95 configurations without the outliers lasted 22 hours and 51 minutes. The
fastest 96 configurations already lasted over 39 hours, with the total runtime increasing
to nearly 60 hours until all 100 configurations are finishes. Consequently, the outliers
increased the total runtime of RS by over 160%, resulting in a total time consumption
that is more than two and a half times higher than without outliers. In the case of
BO-TPE there is a single outlier that increased the runtime from 25 hours and 30 minutes
to 37 hours for the complete evaluation. This is an increase in time of over 45% which is
significantly less than for RS but still a considerable increase.

6.2.3 KDD Cup 1999

In this section, we further analyze the results for the KDD Cup 1999 dataset. We again
start by analyzing the accuracy and finish with the runtime evaluation.

Accuracy

Table 6.2 shows that for the KDD Cup 1999 dataset, the accuracy across the different
hyperparameter tuning approaches varies more than for the other datasets. GS was able
to achieve the highest accuracy of 91.33% followed by BO-TPE with 87.33% and RS
with 84.22%. In Table 6.5 we again listed the hyperparameter configuration of the runs
with the best accuracy. This time there is only a single configuration for each tuning
approach which vary only in the selected number of repetitions for the feature map and the
entanglement strategy of the ansatz. Since the found configurations are almost identical,
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6. Results

Algo. Dim.
Red.

Feature
Map

Reps Ansatz Ent. Optimizer Max.
Iter.

Time

GS PCA ZFeatureMap 1 EfficientSU2 linear SLSQP 100 17778s
RS PCA ZFeatureMap 5 EfficientSU2 linear SLSQP 100 56876s
TPE PCA ZFeatureMap 1 EfficientSU2 full SLSQP 100 51352s
Algo. = Hyperparameter Tuning Algorithm, Dim. Red. = Dimensionality Reduction

Method, Ent. = Entanglement Strategy, Max. Iter. = Maximum Number of Iterations
Table 6.5: Best Hyperparameter Configurations for the KDD Cup 1999 Dataset.
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Figure 6.5: Accuracy and Runtime of the KDD Cup 1999 dataset.

we again assume that the difference in accuracy stems from the random initialization
used for the optimizer and the deviation that naturally occurs from cross-validation.

Figure 6.5a shows the box plot of the accuracy for the KDD Cup 1999 dataset. It can be
seen that the media accuracy is much higher than for the previous datasets and once
again BO-TPE was able to achieve the highest median accuracy out of all hyperparameter
tuning approaches. The overall boxes look very similar, with GS having the most outliers
due to the higher number of individual evaluations.

In Figure 6.6 we illustrated the accumulated maximum accuracy over the iterations for
the KDD Cup 1999 dataset. We again focus on the first 100 iterations for GS and show all
100 evaluations for the RS and BO-TPE approach. In contrast to the Forest Covertype
dataset where RS found a good configuration very early, we can see that for this dataset
RS continuously improved over the 100 iterations. BO-TPE found a better configuration
at the start, but we again see that improvements happened in the first 20 iterations,
between 40, 60 and finally after 80 iterations. This again aligns with the parallelization
configuration of 20 threads and shows that BO-TPE is able to continuously improve the
accuracy also for the KDD Cup 1999 dataset. However, also GS was able to continuously
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Figure 6.6: Accumulated maximum accuracy for the KDD Cup 1999 dataset.

improve over the first 100 iterations and found its maximum accuracy after about 200
iterations.

Overall, it can be seen that both of the budget based approaches were able to find very
good configurations that are almost identical with the best configuration found by GS
but without evaluating the complete search space.

Runtime

Figure 6.5b shows the runtime of each hyperparameter tuning approach for the KDD
Cup 1999 dataset using a box plot. The median runtime across all approaches is almost
equal, with the median of BO-TPE being slightly higher. However, similar to the Forest
Covertypes dataset, there are outliers with a significantly higher runtime compared to the
median. Especially for RS and BO-TPE there is one outlier that that has a much longer
runtime than all the others. We again analyzed these outliers for correlations among the
hyperparameters, and could only find the optimizer to be SLSQP for the top 10 longest
runs. However, as it can be seen in Chapter 6.4, the SLSQP optimizer generally takes the
longest among all optimizers in our selection. The other hyperparameters are different
and show a similar distribution as the remaining runs. As already explained for the Iris
and Forest Covertype dataset, we believe that the significantly increased runtimes are a
result of the barren plateau phenomenon.

Since there are again outliers with a significantly higher runtime for RS and BO-TPE,
we again analyze their impact on the overall runtime. In Figure 6.5b it can be seen that
there is a single outlier for RS and BO-TPE each. For RS, the evaluation of the fastest
99 configurations without the outlier lasted 20 hours but well over 58 hours until all
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6. Results

Dataset Tuning Algorithm Threads Accuracy Time (hh:mm:ss)

Iris BO-TPE 100 59.86% 00:21:11
20 61.22% 00:28:09

Forest Covertype BO-TPE 100 49.11% 47:56:01
20 56.00% 37:06:35

KDD Cup 1999 BO-TPE 100 80.44% 38:23:17
20 87.33% 57:24:05

Table 6.6: Performance of different parallelization Configurations for BO-TPE.

configurations finished. This is a very drastic increase of more than 190% resulting in
a nearly three times higher time consumption for just a single evaluation without an
increase in accuracy. A similar increase can be seen for BO-TPE where the single outlier
increased the runtime from more than 21 hours to over 57 hours. This is an increase in
time of over 170% without improving the accuracy.

6.3 Parallelization Analysis
For the performance evaluation in Section 6.2 we used 20 threads for BO-TPE while we
used 100 threads for RS. In the following, we want to justify this decision by providing
additional insights into the parallelization configuration. However, because of the ex-
tensive resource consumption and runtimes, we could not test multiple parallelization
configurations in a large scale for all our datasets. We therefore tested them in a smaller
scale and found 20 threads to provide a good overall performance.

To justify our selection, we show the performance improvement by comparing our
configuration of 20 threads with a full parallelization using 100 threads. In Table 6.6 the
accuracy and runtimes of these two configurations are listed for all the three datasets. It
can be seen that the accuracy for 20 threads is significantly better across all datasets. In
Figure 6.7a we additionally visualize the accuracy for both configurations using a box
plot. The illustration shows that also the median accuracy is significantly higher for 20
threads, with the median for the Forest Covertypes and KDD Cup 1999 dataset even
being beyond the box for the 100 thread configuration. However, this is not surprising, as
it only proofs that the informed search of BO-TPE needs multiple iterations to suggest
promising configurations based on the previous results.

In Table 6.6 we also list the overall runtime for each configuration. We can see that for
the Forest Covertype dataset the configuration using 20 threads is faster, but for the KDD
Cup 1999 dataset the 100 threads configurations is much faster. These runtimes appear
to be inconsistent, which could again be caused by outliers with significantly longer
runtimes that negatively affect the overall runtime. To further analyze this behavior, we
show the individual runtimes in the box plot of Figure 6.7b using a logarithmic scale
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Figure 6.7: Comparison of different parallelization Configurations for all three Datasets.

to also fit the much lower runtimes of the Iris dataset. It can be seen that the median
runtimes of the different configurations are very similar, and tend to be slightly lower
for the 20-thread configuration. The figure therefore confirms our hypothesis of outliers
being the reason for the inconsistent overall runtimes.

Overall, it can be seen that 20 threads provide a much higher accuracy without a
significant negative impact on the runtime.

6.4 Hyperparameter Evaluation
Finally, we would also like to gain some insight into the performance impact of the
different hyperparameters. In the following we therefore analyze which feature map,
ansatz, optimizer and dimensionality reduction method has impact on the accuracy
and runtime across the three datasets. We use the data from the GS runs to cover the
complete hyperparameter space.

6.4.1 Feature Map
We start by analyzing the different feature map types. To evaluate their impact on the
accuracy, we visualize the runs with the corresponding feature map types using a box plot
in Figure 6.8a. We combined the evaluation of all three datasets into a single illustration
and highlight the feature map types with different colors. We find that the Z feature map
performs best across all datasets, with the median accuracy being significantly higher for
the Iris and Forest Covertype dataset and almost equal for the KDD Cup 1999 dataset.
Although the median accuracy of the Z feature map is not significantly higher for the
KDD Cup 1999 dataset, it can be seen that there are more evaluations with high accuracy
compared to the other feature maps types. Furthermore, this is consistent with the
findings of Section 6.2 where the Z feature map is listed in all the top configurations with
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Figure 6.8: Performance of different Feature Map Types for all three Datasets.

the best accuracy. The Pauli and ZZ feature maps perform almost identically, and we
see no difference in accuracy for them, with the box plots also looking almost identical.

To analyze the runtime, we use again a box plot with a logarithmic scale to visualize
the runtime of evaluations using a particular feature map in Figure 6.8b. Overall, the
runtimes seem to be consistent across all feature map types and datasets. However, it
can be seen that the median runtime and the interquartile ranges of the Z feature map is
slightly lower for all datasets, indicating better general runtimes. We therefore find the Z
feature map to be the best choice, providing lower runtimes while achieving the highest
accuracy.

6.4.2 Ansatz

We continue by analyzing the performance of the different ansatzes in our hyperparameter
selection. In Figure 6.9a we represent the accuracy for the runs with the corresponding
ansatz. The box plot shows that there is no significant difference in accuracy for either of
the ansatzes with the median accuracy being almost equal for all types across the three
datasets. From the top configurations discussed in Section 6.2, we know that most of the
top configurations used the EfficientSU2 ansatz. In the box plot, this is confirmed by
the outliers of the EfficientSU2 ansatz that show a better accuracy for the Iris and the
KDD Cup 1999 dataset. For the Forest Covertype dataset, the RealAmplitudes ansatz
performs equally to the EfficientSU2 ansatz and can therefore also be found among the
top configurations in Table 6.4.

Figure 6.9b shows that there is no significant difference in the runtimes of the respective
ansatzes. However, it can be observed that the median runtime of the EfficientSU2 ansatz
is slightly higher for all datasets. The RealAmplitudes ansatz is the fastest for the Iris
and Forest Covertype dataset, while the PauliTwoDesign ansatz is the fastest for the
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Figure 6.9: Performance of different Ansatz Types for all three Datasets.

KDD Cup 1999 dataset.

Overall, the performance impact of the ansatz is rather small and there are no significant
difference between the ansatz types for our datasets. The EfficientSU2 ansatz provides
the highest accuracy but also the highest runtimes in our experiment.

6.4.3 Optimizer
For the optimizer, we illustrate the accuracy in Figure 6.10a. The median accuracy is
very similar for all optimizers, and we could not find any significant difference for the Iris
and Forest Covertype dataset. However, for the KDD Cup 1999 dataset it can be seen
that the lower quartile for the Nelder Mead optimizer is significantly larger, indicating a
higher number of low accuracy runs. Moreover, the median accuracy for Nelder Mead is
the lowest for the Forest Covertype and KDD Cup 1999 dataset. Regarding the accuracy,
the Nelder Mead optimizer therefore seems to be the worst choice for our use cases. When
we look at the top configurations listed in Section 6.2, we find the SLSQP optimizer to be
the best choice for the Forest Covertype and KDD Cup 1999 dataset and the COBYLA
optimizer for the Iris dataset.

The box plot of the runtime for each optimizer can be found in Figure 6.10b. For the
Forest Covertype and KDD Cup 1999 datasets, the SLSQP optimizer shows significantly
higher runtimes than the other optimizers. This can be seen by the higher median
runtime and the box of SLSQP surpassing the others. Interestingly, for the Iris dataset
the SLSQP optimizer shows good runtimes with the median being lower than for Nelder
Mead. However, we find the COBYLA optimizer to be consistently the fastest optimizer
across all datasets.

Considering the almost equal accuracy with the SLSQP optimizer and the best runtime
performance, the COBYLA optimizer seems to be the most promising optimizer to choose
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Figure 6.10: Performance of different Optimizers for all three Datasets.

for our use cases. However, if the runtime is not that important, the SLSQP optimizer is
also a valid choice.

6.4.4 Dimensionality Reduction

To analyze the impact of the dimensionality reduction method on the accuracy, we
again use a box plot to visualize the corresponding runs in Figure 6.11a. We find LDA
to provide significantly higher accuracy for the Forest Covertype dataset, while PCA
achieves significantly higher accuracy for the Iris and KDD Cup 1999 dataset. These
findings also correspond to the top configurations listed in Section 6.2, where LDA can
be found among all top configurations for the Forest Covertype dataset, while PCA is
used for the other two datasets. Interestingly, this is contrary to the results of Mancilla
and Pere in [MP22] where they found LDA to perform better across two datasets in the
finance domain. This shows how problem dependent the hyperparameters, including the
dimensionality reduction, are for QML.

In Figure 6.11b we show the impact of the dimensionality reduction method on the
runtime. For the Iris and Forest Covertype dataset, both methods perform nearly identical
but for the KDD Cup 1999 dataset LDA seems to achieve shorter runtimes. However,
since the accuracy of LDA was relatively poor for the KDD Cup 1999 dataset, it is still
not the best choice.

Overall, we find PCA to be the best option for the Iris and KDD Cup 1999 dataset and
LDA to work best for the Forest Covertype dataset.
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Figure 6.11: Performance of different Dimensionality Reduction Approaches.

Hyperparameter Configuration Subparameter Values

Feature reduction PCA / /LDA

Feature Map
PauliFeatureMap

Repetitions [1-5]ZFeatureMap
ZZFeatureMap

Ansatz
PauliTwoDesign / /
RealAmplitudes Entanglement [full, linear, sca,

EfficientSU2 reverse_linear, circular]

Optimizer
COBYLA

Max. Iterations [100-1000]SLSQP
NELDER_MEAD

Table 6.7: Extended Hyperparameter Configuration Space using discrete variables.
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6. Results

Dataset Tuning
Algorithm

Accuracy Accuracy
(large)

Time Time
(large)

Iris RS 57.82% 58.50% 00:27:04 38:28
BO-TPE 61.22% 59.86% 00:28:09 29:44

Forest Covertype RS 55.78% 60.44% 59:51:48 51:54:36
BO-TPE 56.00% 58.66% 37:06:35 24:00:17

KDD Cup 1999 RS 84.22% 89.11% 58:20:19 22:53:56
BO-TPE 87.33% 92.66% 57:24:05 44:20:03

Table 6.8: Accuracy and Runtime of the Normal and Extended Search Space.

6.5 Extended Search Space Evaluation
One of the main advantages of RS and BO-TPE is that they can be used for very large
search spaces because of their fixed budget of evaluations. We therefore extended the
search space to analyze how these hyperparameter tuning approaches perform for our
QML use case. In Table 6.7 we show the extended hyperparameter search space where we
modeled the repetitions of the feature map and the maximum iterations of the optimizer as
discrete variables. Additionally, we added the entanglement strategies reverse_linear and
circular for the ansatz. These relatively small adjustments increase the hyperparameter
search space from 504 to 891.000 possible configurations. Consequently, it is not possible
to exhaustively evaluate this search space with GS. However, with RS and BO-TPE we
are still able to evaluate this hyperparameter search space for all datasets.

6.5.1 Accuracy
Table 6.8 shows the accuracy and runtime of the normal and extended search space.
It can be seen that the maximum accuracy for the larger search space is higher across
all dataset and hyperparameter tuning combinations, except for BO-TPE with the Iris
dataset. For the Iris dataset, the maximum accuracy could be improved from 57.82% to
58.50% for RS but BO-TPE performed worse with the larger search space showing an
accuracy of 59.86% instead of 61.22%. However, for the Forest Covertype dataset both
tuning approaches achieved a higher maximum accuracy with RS showing an accuracy
of 60.4% which is the highest we achieved for this dataset across all our experiments.
Compared to the normal search space, this is an increase of more than 4%. Similarly,
for the KDD Cup 1999 dataset, both tuning approaches could increase the maximum
accuracy by using the larger search space. Here BO-TPE achieves the highers accuracy
of 92.66% which is more than 5% higher than the maximum accuracy of the normal
search space.

In Figure 6.12 we visually compare the accuracy results of the extended search space to
the normal search space and show the mean accuracy as well as the maximum accuracy.
We use a bar plot instead of a box plot to improve readability, since we compare multiple
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Figure 6.12: Accuracy for the extended Hyperparameter Search Space.

results inside a single figure. The bars show the mean accuracy and the black line
indicates the standard deviation. Additionally, we added the maximum accuracy for each
category, indicated by the labeled diamond on top of each bar.

Overall, we can see that the results for the mean accuracy are similar to those for the
maximum accuracy. The large search space consistently shows a higher mean accuracy
for RS across all datasets. For BO-TPE we again find the Iris dataset to be an exception
where the larger hyperparameter space could not improve the mean accuracy similar to
the maximum accuracy. However, for the Forest Covertype and KDD Cup 1999 dataset,
the larger search space provides a higher mean accuracy.

6.5.2 Runtime
In Table 6.8 we also compare the runtime of the normal and the extended search space.
The results are again a bit inconsistent, since the runtime of the extended search space
is higher for the Iris dataset but lower for the Forest Covertype and KDD Cup 1999
dataset. For the Iris dataset, the runtime of both hyperparameter tuning approaches is
higher compared to the normal search space, although the increase for BO-TPE with less
than two minutes is very small. The runtimes of the Forest Covertype dataset are both
lower for the extended search space, making BO-TPE for the larger search space the
fastest evaluation of this dataset with a runtime of 24 hours. Similarly, the runtimes for
the KDD Cup 1999 dataset are also lower than the normal search space for both tuning
approaches. However, for this dataset RS is actually the faster approach taking only 22
hours which is half the time that BO-TPE needs. When it comes to the runtime, we
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Figure 6.13: Runtimes for the extended Hyperparameter Search Space.

therefore find BO-TPE to be the better choice for the Iris and Forest Covertype dataset
but RS performs better for the KDD Cup 1999 dataset.

We believe that the differences in runtimes are again a result of outliers introduced by
the barren plateau phenomenon, as discussed in Section 6.2. In Figure 6.13 we therefore
illustrate the runtimes of the individual evaluations using a box plot to analyze and
compare the larger with the normal search space.

We find that similar to the overall runtime also the median runtime of the Iris dataset is
higher for the larger search space across both hyperparameter tuning approaches. For
the Forest Covertype and KDD Cup 1999 dataset on the other hand, we see that the
median runtimes are lower for both tuning approaches, which again corresponds to the
total runtimes. Moreover, it can be seen that the upper whiskers and outliers for the
Forest Covertype and KDD Cup 1999 dataset are consistently lower for the larger search
space. The lower total runtime can therefore be explained by the lower median runtime
and less significant outliers.

Overall, we find that using a larger hyperparameter space improves the accuracy results
of RS and BO-TPE without increasing the runtime. For our experiments, most of the
runtimes were even lower than for the regular search space. However, we find that the
barren plateau phenomenon impacts all our experiments and introduces outliers with a
significantly higher runtime.
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CHAPTER 7
Conclusion

In this thesis, we investigated the applicability and performance of hyperparameter tuning
algorithms for QML classification tasks. Based on a literature review, we first determined
the most important hyperparameters for VQAs to answer RQ 1. We could identify
the optimizer, ansatz and feature map as being the main hyperparameters impacting
the performance of VQAs. In our hyperparameter evaluation, we then analyzed the
performance impact of the individual hyperparameters in our experiments. Generally, it
can be seen that the best hyperparameter configurations are very problem dependent and
vary across the different datasets. The feature map is an exception where we found the Z
feature map to be the best choice for all datasets, providing a significant higher accuracy
and lower runtimes compared to the other feature maps. For the ansatz, we found the
EfficientSU2 to provide good accuracy, while the RealAmplitudes ansatz shows lower
runtimes with comparable accuracy. The same is true for the optimizer, where we found
the SLSQP optimizer to provide the highest accuracy with higher runtimes than the
COBYLA optimizer that offers similar accuracy. The dimensionality reduction method
on the other hand seems to be very dataset dependent since PCA provides significantly
better accuracy for the Iris and KDD Cup 1999 dataset while LDA is best suited for
the Forest Covertype dataset. The fact that these hyperparameters are highly problem
dependent highlights the great need for automatic hyperparameter tuning to fully take
advantage of the underlying VQA.
RQ 2 was answered by reviewing existing hyperparameter tuning approaches and assessing
their applicability for quantum use cases. We found SMAC and BO-TPE to be especially
well suited for the mostly categorical hyperparameter space of VQAs. RS is also a very
promising approach because of its simplicity and excellent parallelization capabilities.
We therefore focused on studying the performance of BO-TPE and RS for different QML
classification tasks and included GS as an exhaustive baseline.
To evaluate the performance of these automatic hyperparameter tuning algorithms and
answer RQ 3, we applied BO-TPE and RS to three different datasets and compared them
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with the exhaustive results of GS. We found that BO-TPE consistently outperformed
RS in terms of accuracy across all datasets. For the Iris and Forest Covertype dataset,
BO-TPE even showed higher accuracy results than the exhaustive GS approach. We
attribute this to the standard deviation from the cross validation, since the found
configurations are nearly identical. Additionally, the higher median accuracy of BO-TPE
for all datasets indicates that the guided search of BO-TPE helped to find more promising
hyperparameter configurations with higher accuracy while spending less time evaluating
poor configurations.

Surprisingly, the results for the runtime are very inconsistent, even though we would
have expected the budget based tuning approaches BO-TPE and RS to significantly
outperform the exhaustive GS approach across all datasets. However, due to outliers,
the budget based approaches were only faster for the Iris and Forest Covertype dataset
while taking more time than GS for the KDD Cup 1999 dataset. We could not find any
correlations between the configurations that led to these outliers, and therefore attribute
the significantly increased runtimes to the barren plateau phenomenon. Given that it
only affects a small portion of the evaluations, we assume that its occurrence is related to
the random initialization of the optimizer. However, we kept track of the total runtime
after each finished evaluation and find the budget based approaches to be significantly
faster than GS when the outliers are excluded. For the Forest Covertype dataset, the
runtime is increased by over 160% for RS and over 45% for BO-TPE. In the case of the
KDD Cup 1999 dataset, a single outlier increased the runtime of RS by over 190% and
for BO-TPE by over 170%. It therefore makes sense to implement some sort of early
stopping mechanism in any QML project that only has a certain time budget to cut out
these outliers that do not increase accuracy. However, to the best of our knowledge, none
of the tuning approaches in this thesis supports such an early stopping mechanism out of
the box.

All the three hyperparameter tuning approaches studied in this thesis support paralleliza-
tion. For GS and RS full parallelization can be used since the individual configurations
can be evaluated independently of each other. However, since BO-TPE uses the result of
previous evaluations to select subsequent hyperparameter configurations, we analyzed
different parallelization configurations. We found a parallelization ratio of 20% of the
evaluation budget to provide significantly better results than full parallelization. Conse-
quently, if the evaluation budget is set to 100 it makes sense to use up to 20 threads in
parallel for BO-TPE.

Finally, we also studied the performance of the budget based tuning approaches for larger
search spaces and found that both, RS and BO-TPE, handle larger search spaces very
well. Increasing the search space by modeling numerical hyperparameters as discrete
variables and adding additional categorical options improved the overall accuracy without
increasing the total runtime. For the experiments in this thesis, the observed total
runtime was even better for the larger than for the normal search space. This shows that
RS and BO-TPE are both capable of handling very large search spaces and indicates
that including all available hyperparameter options can increase accuracy.
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7.1. Future Work

7.1 Future Work
The findings of this thesis already give good insights into how automatic hyperparameter
tuning algorithms can be applied to QML problems. However, during our research, we
also identified opportunities to extend the results of our work. In the following, we give a
brief summary of possible future work:

Hyperparameter Tuning Algorithms We have seen that budget based approaches
are well suited and especially BO-TPE was able to consistently outperform the other
approaches in our experiments. It would therefore be interesting to benchmark
additional algorithms and compare their performance to BO-TPE. A very promising
algorithm for future experiments would be SMAC, which is also based on BO and
uses regression trees to predict promising configuration. Moreover, it would be
interesting to see if metaheuristic algorithms such as GA or PSO can also be used
for QML problems and what initialization strategies are well suited.

Barren Plateau Analysis During our experiments we also found that outliers, most
likely caused by the barren plateau phenomenon, have a significant impact on
runtime. It would therefore be interesting to further analyze this phenomenon and
evaluate different initialization strategies or distributions. By manually specifying
the initialization parameters, the evaluations that lead to extensive runtimes could
be analyzed and searched for correlations. This could provide insights which
initializations parameters are more likely to result in a barren plateaus.

Better Hardware In this thesis we simulated quantum computers since access to real
quantum computers is very expensive and free execution plans offer only very
limited computation time that is not sufficient for our experiments. However, we
had to drastically reduce the features of our datasets and limit the training data
because simulating a quantum computer is computationally very intensive. More
powerful and reliable quantum computers that are accessible for research would
eliminate these limitations and allow including more training data and features in
future experiments.

Hyperparameters In this thesis, we identified the most important hyperparameters of
VQAs and focused on tuning them. However, our findings also show that budgets
based hyperparameter tuning algorithms can handle larger search spaces well. In
future work, additional hyperparameters or further subparameters, such as the
entanglement strategy of supported feature maps or the repetition count of the
ansatz, could be included in the search space.

Datasets In our thesis, we used three different datasets to evaluate the performance
of the different hyperparameter tuning algorithms. However, we have seen that
the performance of these algorithms vary across different datasets and the optimal
hyperparameters are very problem dependent. Evaluating the performance on
additional datasets would therefore provide more insights and allow assessing the
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performance of hyperparameter tuning algorithms in a more general manner. Future
work could also include to adapt a more general benchmarking framework such
as MQT Bench [QBW23] to evaluate the performance. Having such a general
benchmarking framework for QML would increase the comparability of performance
results.
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