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A B S T R A C T   

Having a precise and stable clock that is still fault tolerant is a fundamental prerequisite in safety critical real- 
time systems. However, combining redundant independent clock sources to form a unified fault-tolerant clock 
supply is non-trivial, especially when redundant clock outputs are required – e.g., for supplying the replicated 
nodes within a TMR architecture through a clock network that does not suffer from a single point of failure. 
Having these outputs fail independent but still keeping them tightly synchronized is highly desirable, as it 
substantially eases the design of the overall architecture. 

In this paper we address exactly this challenge. Our approach extends an existing, ring-oscillator like 
distributed clock generation scheme by augmenting each of its constituent nodes with a stable clock reference. 
We introduce the appropriately modified algorithm and illustrate its operation by simulation experiments. These 
experiments further demonstrate that the four clock outputs of our circuit do not share a single point of failure, 
have small and bounded skew, remain stabilized to one crystal source during normal operation, do not propagate 
glitches from one failed clock to a correct one, and only exhibit slightly extended clock cycles during a short 
stabilization period after a component failure. In addition we give a rigorous formal proof for the correctness of 
the algorithm on an abstraction level that is close to the implementation.   

1. Introduction 

Computers are being entrusted with safety-critical functions in a 
rapidly increasing number of applications, with autonomous vehicles 
being just one recent example. Consequently fault tolerance is essential 
for these systems. While a lot of alternative fault-tolerance techniques 
are available, (coarse-grain) triple-modular redundant (TMR) architec-
tures have gained much popularity. This is partly due to the high error 
detection coverage they can attain through their “output centric” 
approach: No matter what the actual cause may be – the voter just takes 
the majority of matching outputs and masks the faulty one. Another 
beneficial feature of TMR is its simplicity: The redundant nodes can be 
off-the-shelf components (or IP modules) without any special features or 
extensions. 

One threat to TMR architectures is the so-called common-mode 
failure: If two of the three redundant nodes fail in the same way, the 
voter will decide for the erroneous result. That is why in conservative 
designs the redundant nodes are often independent PCBs. However, it is 
very appealing to use TMR on-chip as well, in the shape of replicated IP 
modules. This not only provides cost savings, but also performance 

benefits, as the replica have efficient communication with the voter. 
Ideally the whole architecture is operated in lock-step, which signifi-
cantly simplifies the voter. However, at this point the clock potentially 
becomes a single point of failure, unless it can be furnished with fault 
tolerance as well. 

Building such a fault-tolerant clock to supply the replica within a 
TMR system is challenging, as it involves a fundamental conflict be-
tween using independent clock sources on the one hand and attaining 
the desired synchrony between the replica on the other hand. The so-
lution we present in this paper addresses exactly this challenge. 

In Section 2 we will briefly review and discuss existing approaches, 
before elaborating the requirements we want a solution to meet in 
Section 3. Subsequently, we will briefly introduce the DARTS approach 
that our solution builds upon, along with the extensions we propose, in 
Section 4. Next, Section 5 will present a formal correctness proof for our 
algorithm. Finally, as a practical proof of concept, and to show the 
limitations, we will discuss some selected simulation results in Section 6, 
before we conclude the paper in Section 7. 
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2. Background and related work 

A very straightforward way of making a clock fault tolerant is to 
augment a primary clock with an error detector and switch over to a 
redundant source once the primary clock fails [1–9]. This method is, e. 
g., also used in Intel’s STRATIX10 FPGAs.1 The challenges with this 
approach are (a) to avoid glitching upon the switch-over and (b) to 
mitigate metastability at the domain crossing between supervised clock 
and reference time of the error detector. While (a) can be handled by 
special filter circuits [10,11], (b) requires care in the design and selec-
tion of the detection method [12]. 

While these approaches work fine for handling failure of the clock 
source, the fundamental issue with all of them is that they necessarily 
suffer from a single point of failure, like the error detector, the switch or 
the voter. And ultimately the single clock output is another weakness. 
Therefore schemes with multiple clock outputs become attractive. 
Simply using redundant clock sources in parallel solves the fault toler-
ance issue, but causes problems with the synchronization: If the inde-
pendent redundant clocks are, e.g., supplied to the replicated nodes in a 
TMR architecture, the activities of these nodes will become uncorrelated 
as a consequence of the clock mismatch and drift. So a synchronization 
of the clocks is definitely desirable. 

Obviously, stable independent clock sources like crystal oscillators 
cannot be directly synchronized, as they do not allow for a (sufficient) 
adjustment of their phase or frequency. There are clock synchronization 
algorithms where a certain number n of microticks of such local oscil-
lator is counted to generate macroticks, and the latter are then globally 
synchronized through a distributed algorithm that continuously adjusts 
the local values for n as appropriate [13]. While this approach works 
well for coarse-grain synchronization in distributed systems, it cannot 
provide the fine-grain synchronization required for lock-step operation 
of IP modules. 

For this fine level of granularity, diverse implementations of 
distributed ring oscillators have been proposed [14–16]. While all these 
approaches can produce an arbitrary number of mutually synchronized 
local clocks with a jitter of a few cycles at most, they have the common 
drawback that the clock frequency is determined by path delays alone 
and hence neither accurate nor stable. This is disadvantageous for ap-
plications requiring a notion of real time or when signal sampling is 
performed. 

In Section 4 of this paper we will build on the DARTS approach [16] 
that resembles a hardware implementation of a distributed clock syn-
chronization algorithm in asynchronous hardware and hence falls into 
the class of ring-oscillator based solutions. Following the principle 
already outlined in [17], we will augment it with stable crystal clock 
sources and make the whole system follow these references while still 
maintaining its fault tolerance properties. As an extension of [17], 
however, we will elaborate the algorithm formally and in great detail, 
and we will give a rigorous formal correctness proof for it. 

3. Requirements 

Our envisioned use case is a TMR system whose redundant nodes 
shall be supplied with a clock that does not constitute a single point of 
failure. Consequently, the very convenient and popular solution of 
having the nodes operate in lock-step supplied by a single clock source 
does not work. Simply using independent clock sources will make the 
nodes run at different speed and, even if the difference is small, this will 
cause a significant time offset after a long time of operation. So even if 
the voter could accommodate this offset, the nodes may see different 
inputs for the same operation, just because of the increasing time offset, 

and hence produce non-matching results even in the fault-free case. 
Compensating that would entail some sort of synchronization among the 
nodes, which is undesired, since ideally the nodes should be unaware of 
being part of a TMR architecture. Also, communication (e.g., with the 
voter) requires buffering, with the necessary buffer size growing over 
time, essentially towards infinity (unless synchronized). So we want the 
nodes’ clocks to remain synchronized. 

This leads to the following list of requirements: 

• (R1) Tolerance against failure of a clock source: any type of misbe-
havior of a single clock source must not impede the correct operation 
of more than one clock output.  

• (R2) No single point of failure: the failure of any single component in 
the clocking infrastructure (circuit or interconnect) must not impede 
the correct operation of more than one clock output.  

• (R3) Accuracy: The clock frequency on each node must always 
remain in the interval spanned by the slowest and the fastest source 
frequency. This allows to establish a much better accuracy and sta-
bility than with ring-oscillator based solutions.  

• (R4) Synchrony/precision: THE clocks provided to the individual 
nodes may have a phase offset (skew), but this offset must have an 
upper bound. With an offset bounded to k clock cycles, a commu-
nication buffer of size k is sufficient without further provisions for 
backpressure or synchronization. This stands in sharp contrast to the 
case of clocks that drift apart, causing essentially unbounded skew.  

• (R5) No glitching: for a hardware clock it is an important property to 
have a half period that is always above a defined minimum value 
Hmin. Shorter half periods (pulses) will be perceived by the driven 
circuit as glitches that violate timing assumptions (comparable to 
operating at an excessive clock frequency). 

4. Proposed solution for redundant clock outputs 

4.1. Starting point: the DARTS approach 

The DARTS architecture (Distributed Algorithm for Robust Tick 
Synchronization) implements the formally proven fault-tolerant tick 
synchronization algorithm (TSA) from Srkianth and Toueg [18] in 
asynchronous hardware. More specifically, instances of this algorithm 
are implemented in n nodes that will further be called “TS nodes”. Ac-
cording to the TSA these nodes communicate to agree on jointly pro-
gressing their local time (represented as a tick counter). With n ≥ 3f + 1 
this arrangement can tolerate f arbitrarily failing TS nodes; in distrib-
uted computing this fault model is precisely called “Byzantine failure”. 
The TS nodes need to be fully connected, i.e., there must be an individual 
communication link from one TS node to each other. Based on its local 
status, which is constituted by its own tick count and the (local) 
knowledge about all other TS nodes’ tick counts, each TS node proposes, 
under certain conditions, for all other TS nodes and itself to increment 
the tick count. The condition (increment rule) is, roughly speaking, that 
sufficiently many TS nodes agree on that. In this context “sufficiently 
many” means that all but the assumed maximum number of faulty TS 
nodes agree, which is n − f, or, for the case of n = 3f + 1 that we further 
assume, this equals 2f + 1. In addition, a TS node may increment its local 
tick counter if it sees that at least one non-faulty other TS node, that is f 
+ 1 overall, already arrived at this value (relay rule). For details on the 
algorithm see the original paper [18]. As a result of executing this al-
gorithm, all TS nodes will continuously increment their local tick count 
(time) in synchrony with all other, non-faulty ones. This synchrony is 
expressed by a limit on the maximum skew between the TS nodes, which 
is determined by the communication delays. 

For the hardware implementation of this algorithm several things 
had to be adapted. In particular the unbounded count that represents the 
absolute local time had to be removed, and up/down counters were used 
to represent the local time relative to the respective other TS nodes. For 
implementing these up/down counters in an asynchronous and 

1 Intel STRATIX 10 Clocking and PLL User Guide https://www.intel.com/c 
ontent/www/us/en/programmable/documentation/mcn1440569668630.ht 
ml. 
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metastability-safe way, Muller pipelines [19] were carefully inter-
connected. Each of the TS nodes comprises n = 3f + 1 such pipelines, 
each representing the relative position of the local count to that on one 
of the other TS nodes.2 Observing the fill level of all of these pipelines 
allows for executing the above two rules to generate an output transi-
tion. Instead of sending a count value, like in the original algorithm, the 
hardware implementation just produces a next clock edge. More spe-
cifically, to produce a next rising (falling) edge, a TSA must either have 
received falling (rising) edges from at least 2f + 1 TS nodes at its inputs, 
or already rising (falling) edges from at least f + 1 TS nodes.3 Overall this 
yields a local clock that stays in synchrony with all others. For details on 
the hardware implementation and the resulting properties we refer to 
[16]. 

Note that in DARTS there is no time reference involved – the oscil-
lation underlying the generated clock results plainly from the commu-
nication among the TS nodes. Consequently the frequency is determined 
by propagation delays through gates and interconnect alone, and varies 

with supply voltage and temperature, as well as being process variation 
dependent. So in essence, while fulfilling requirements (R1), (R2), (R4) 
and (R5), DARTS does not fulfill (R3). 

4.2. Proposed extension with stable sources 

Our idea is to extend the existing DARTS scheme by stable sources, 
like crystal oscillators, to improve its accuracy and hence meet (R3). 
Since our envisioned use case is to supply the clock for a TMR system, we 
make the following assumptions and restrictions beyond those made for 
DARTS:  

• (A1) We reduce the fault model to the case of f = 1, which yields 4 TS 
nodes in the DARTS architecture. This is just to simplify the expla-
nation and the simulation. Our algorithm and the respective proofs 
are still general, for any choice of f.  

• (A2) Unlike DARTS, we assume that the TS nodes are not distributed 
but close together in a compact clock generator circuit block.  

• (A3) As a consequence of (A2) the communication paths between the 
TS nodes are fast, also the TS nodes remain relatively lean and can 
operate fast. 

2 Each TS node also has a loop back to itself, i.e. uses its own output as an 
input.  

3 More precisely, considering that there are buffers involved and the skew 
may become larger than one period, these edges must belong to the appropriate 
wave. 

Fig. 1. Proposed TS node implementation.  
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• (A4) As a further consequence of (A2) we also assume symmetric 
layout with the delay mismatch among the TS nodes and paths being 
relatively small.  

• (A5) We assume the reference sources to produce a relatively stable 
clock. Abrupt changes in their frequency are considered a failure 
(and can be tolerated as such).  

• (A6) A faulty component can have arbitrary behavior in the digital 
domain, but non-digital behavior like intermediate “analog” voltage 
levels that are neither associated to a clean logic HI nor a logic LO are 
not considered. This assumption had already been made for DARTS, 
like for most fault-tolerant systems. 

The basic idea is to augment each TS node with an own stable local 
reference oscillator (LRO), typically that will be a crystal oscillator. All 
these oscillators have the same nominal frequency. Next, we extend the 
increment rule in such a way that it only fires when the LRO also in-
dicates that a new transition is due. To make this work, we leverage (A3) 
to argue that the original TSA executes fast enough to already “arm” the 
increment rule, and the LRO determines the point in time when it fires. 

This, however, is the ideal case that does not yet consider the synchro-
nization with the other TS nodes. More details will become clear later 
on. 

4.3. Formalization of the modified algorithm 

More precisely, we implement Algorithm 1 as shown below. 
Like in DARTS we assume that each TS node i has each of its inputs 

connected to one of the other TS nodes’ output (plus its own output). A 
counter ci, j located at each such input maintains TS node i’s view of how 
many ticks TS node j already generated. Since these ci, j are up/down 
counters, counting up when a remote tick is received (i.e. from the other 
TS node) and counting down each time i locally issues a tick, this view is 
relative, i.e. it gives visibility how many ticks j is ahead of i or lagging. 
Here we also model an overrun and underrun of these counters, as this 
cut-off behavior corresponds to the implementation by an elastic pipe-
line that just ignores transitions exceeding its depth. 

This counter management is formalized in lines 1...32 of Algorithm 
4.3. More specifically, lines 1...5 express how, by the operator counter-
⊕[δa,δb](i, j), a counter ci, j maintained on TS node i is incremented upon 
reception of a remote tick from TS node j. Before the actual increment 
operation the cut-off is implemented (in this case to a maximum of 3). 
Note that the assignment of the incremented value is associated with an 
“after” attribute, which accounts for the non-zero delay of the physical 
implementation of the counters (and especially the possibly non- 
matching delays across the individual elastic pipelines that constitute 
them).  

Similarly, lines 7…13 express how the counter⊖[δa,δb](i, j) operator 
decrements a counter through a local tick, this time using a cut-off value 
of − 2. The important difference to the above operator can be found in 
lines 9 and 11: here the flag next_pol is toggled to acknowledge the 
reception of the local tick and by this prevent the algorithm from re- 
evaluating the same rules that just caused the firing of the tick over 
and over and in that way create multiple ticks (This will be detailed 

W. Dür et al.                                                                                                                                                                                                                                     



Microelectronics Reliability 120 (2021) 114088

5

below). In hardware this is implemented by separating the evaluation of 
the firing conditions for rising and falling edges. It is important that the 
flag is not toggled before the counter has been decremented, therefore 
we apply the same “after” attribute, with the same choice of the delay 
within the given interval, to both assignments in line 9 at the same time. 

Finally, lines 15…32 describe the maintenance of a counter for the 
local reference oscillator (LRO) associated with each TS node. The op-
erators counterLRO⊕

[δa,δb](i) and counterLRO⊖
[δa,δb](i) are equivalent to 

their counterparts for the local tick counters explained above, albeit 
with different cut-off values of +2 and − 2, respectively. 

The LRO counter cLROi is incremented by each transition of the 
reference oscillator through the operator LRO_tick(i). Note that this is 
accompanied by delaying the completion of the operation for one half 
period Πi of the LRO clock through the wait statement. 

With these operators being defined, the actual algorithm can start 
with an initialization (lines 34...40): All counters (ci, j, cLROi) are 
initialized to zero, all clock outputs (cur_poli) to logic low, and the 
handshake flags (next_poli) to logic high. 

Next, the counter states are evaluated: In line 43 the statement cLROi 

> 0 checks whether the LRO counter received more transitions from the 
LRO than have been sent locally – in which case the LRO pipeline would 
indicate, by activating readyLROi, the readiness for firing a new local tick. 
This, however only happens in case the handshake allows for that: The 
condition cur_poli ∕= next_polLROi ensures that the current value of the LRO 
counter is qualified for generating the next clock transition, namely the 
one leading to the logic level indicated by next_polLROi – and has not 
already been used for generating the previous transition that led to the 
level indicated by cur_poli. As already mentioned above, this ensures that 
a rule can only fire once. 

In an analogous way the counters ci, j are checked for containing at 
least 0 (rdyrelayremi, j) or more than 0 (rdyprogressremi, j) remote transitions 
(more than local ones) in lines 44 and 45, again considering the 
respective handshake flags. 

Based on the condition flags thus generated the actual rules can be 
evaluated. In line 46 the progress rule is executed, just like in DARTS: If 
on one TS node i at least 2f + 1 inputs j see their rdyprogressremi, j acti-
vated, the progress rule makes that TS node fire. However, the specific 
feature of our algorithm is that this does not happen without readyLROi 

also being active. This very extension allows the local LRO to suspend 
the firing until its own transition occurs, thus achieving the desired 
synchronization. 

In line 47 the relay rule is formulated: It fires when more than f + 1 
inputs see their rdyrelayrem activated – this time, however, without 
considering the LRO. This is because it does not make sense to slow 
down TS nodes that are “pulled behind” anyway, by synchronizing them 
with their LRO. 

Finally, in line 49 the two rules are combined (ORed) and the 
appropriate actions performed: The local tick is generated by toggling 
the output polarity of that TS node i in line 50; in consequence all local 
counters of i are decremented (line 52), as well as the associated LRO 
counter (line 53); and the transition is forwarded to all other TS nodes 
where it increments the remote counters (line 55) associated to it. 

Notice the delay parameters that are passed to the operators upon 
call: For the local counters the delay δ is in the interval [δimin,δimax] and 
includes a delay element that is deliberately introduced to guarantee a 
lower limit for the pulse width of the generated clock even under worst 
circumstances (see later); and for the remote counters this is a delay Δ 
from the interval [Δimin,Δimax] that is solely constituted by transmission 
delays on the interconnect lines. 

Further note that we assume all the rules in lines 43…47 to be 
executed concurrently on a TS node. The if clause in lines 47…54 is 
assumed to be executed concurrently with those as well, while the 
statements within the clause are sequentially executed. The handshake 
established by cur_pol and next_pol ensures an appropriate interleaving of 
the concurrent executions. 

In the same way the LRO clock expressed by the statement LRO_tick 

(i) in line 58 is executed concurrently to the others. Here an independent 
operation is desired (free running clock) rather than an interleaving, and 
the wait statement in the LRO_tick operator restricts the execution of the 
statement to a single invocation just at each clock edge. 

On top of the concurrency on a single TS node, as described above, all 
TS nodes execute that whole algorithm concurrently. 

4.4. Steady-state operation of the extended algorithm 

In the practical application we have 4 crystal oscillators with clock 
frequencies f1, f2, f3, f4 which are all nominally the same, but of course 
there is a certain mismatch through tolerances. Without loss of gener-
ality, let us assume f1 > f2 > f3 > f4. Let us furthermore assume the 
system is initialized to a state where all TS nodes are already armed, 
waiting for their LRO to fire. In the first round this may work well, but 
then over time the fastest LRO, the one running at f1, will try to fire its TS 
node (TS1) even before the TSA has found a majority of other TS nodes 
which agree on the next clock edge to be fired (let us assume it is a rising 
edge). In our case of f = 1 this means that TS1 will have to wait for TS2 
and TS3 before it gets released to fire. Even though TS2 receives this 
rising transition, it still cannot fire: For executing the relay rule that one 
transition is too little (it needs at least 2); for the increment rule to work, 
it still needs to receive a transition from its LRO. When the transition 
from LRO2 finally arrives, TS2 will fire. Now TR3 and TR4, who had 
already received the rising transition from TS1 also receive the one from 
TS2, which is sufficient to fire without waiting for the LRO. Once the 
rising transitions thus generated by TS3 and TS4 are received by TS1, the 
latter can execute its increment rule to arm its TSA for the next falling 
transition. Since LRO1 had already delivered the required transition (and 
made cLRO1 > 0), this firing will happen immediately and the next cycle 
starts. 

This cyclic process has several consequences:  

• The speed of TS2 will dictate the overall system speed. The clock 
outputs all follow f2. For an illustration see Fig. 2 in Section 6.  

• As a consequence the fastest LRO, the one at TS1, runs ahead and gets 
out of sync. We therefore need to buffer at least one of its transitions 
to make TS1 fire once its TSA allows for it. There is no need to make 
the buffer deeper; it does not matter when it overruns. In fact we will 
see later that a deeper buffer is even counter-productive in the 
transient phase after the failure of a source.  

• Naturally the slower LROs, those of TS3, TS4, also get out of sync. 
Here the relay rule takes care to enforce a clock transition even 
before a matching transition of the LRO has been seen. This happens, 
when at least two (f + 1) of the faster TS nodes have fired a matching 
transition already. Here it is important to cancel each arriving 
matching transition from the local clock source, as it is too late and 
hence would unduly cause a firing in a next round. This is accom-
plished though buffering at least one input transition, such that an 
incoming transition from the LRO is removed from the pipeline (as a 
function of the difference counter), as soon as it arrives. Again an 
overflow does not matter here. 

Should one of the clock sources or the TS nodes fail, this can be 
tolerated: In case of a symmetric failure the failed TS node will be dis-
regarded by all others, and these will synchronize to the then second 
fastest clock source, as before. In case of a failing clock source, the 
associated TS node will even remain synchronized (thanks to the relay 
rule), and all replica in the TMR are still operative. In case of an 
asymmetric fault (the individual TS nodes’ perceptions on whether a 
failure occurred differ, like in case of a broken communication link 
between two TS nodes, e.g.), the fully connected communication ar-
chitecture, in combination with the algorithm design will still ensure 
synchrony among the clock outputs. This is actually the reason why we 
have 3f + 1 TS nodes (as for Byzantine-tolerant consensus) rather than 
just 2f + 1 (as for conventional majority voting). For details see [18]. 
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Basically, the task of synchronizing clocks does not preclude the 
occurrence of glitches: An output clock that lagged behind might 
instantly reduce its phase lag through drastically shortening a half 
period (or more) without moving out of the skew tolerance. This 
violation of (R5) might indeed happen in the dynamic phase after some 
types of clock failure. This case will be illustrated in Section 6.3. 

In the original DARTS this was not an issue since the operation of the 
TSA was assumed to be slow in general. However, with our assumptions 
(A2) and (A3) special provisions are needed. In particular, we need to 
artificially delay the delivery of the clock transitions to the inputs of the 
TS nodes (by δH) to prevent premature firing and thus enforce that every 
half period is larger than Hmin. Note that the choice of δH implies a 
compromise: Choosing δH too low will not yield the effect of getting 
above Hmin, while too large a δH will invalidate (A3) and hence the 
described operation principle of the extended algorithm. 

Fig. 1 shows the proposed circuit implementation. The basic blocks 
and their construction are illustrated, with a special emphasis on the 
proposed changes to the DARTS implementation. The upper part of the 
figure shows one up/down counter with the ticks received at the left, 
while the produced tick is entering from the right. Each TS node com-
prises 5 of these counters (symbolically shown as “shadows” in the 
background), one for each produced TS clock and one for the LRO. The 
large white block below the pipeline is the compare unit that evaluates 
the pipeline fill level (“greater” and “greater equal” for odd (rising) and 
even (falling) transitions). 

The box at the bottom of the figure shows how the comparison results 
are processed by the TSA’s rules: The rectangles with the conditions are 
actually threshold gates that implement these rules, two for the incre-
ment rule (for odd and even), and another two for the relay rule. 
Building such threshold gates in a conventional way by a sum-of- 
products implementation scales badly; a more efficient solution is by 
means of sorting networks. The threshold gates are supplied at their 
inputs with the respective comparison signals from all 5 counters. In 
comparison with the original DARTS implementation the AND gates 
have been added to make the increment rule firing conditional to the 
LRO’s pipe fill level. The gates in the right part merge these rules 
appropriately, such that at the right side the generated tick leaves the 
block. 

For a more in-depth discussion and reasoning about the imple-
mentation details of the original DARTS components, please refer to 
[16]. A formal proof of the DARTS algorithm as well as a derivation of 
the synchronization bounds can be found in [20,21]. 

5. Formal correctness proof 

As the correctness proofs from DARTS do not account for the pro-
posed extension by crystal clock sources, new proofs need to be elabo-
rated to guarantee the correctness of our approach. This will be the focus 
in the following. 

5.1. Model and preliminaries 

We denote the set of natural numbers by ℕ = {0,1,…} and write ℕ+

= {1,2,…}. Let [n] = {1,2,…,n} for n ∈ ℕ. 
As laid out before we consider a system of n ∈ ℕ+ nodes P = [n] up to 

f ∈ ℕ of which can be Byzantine. While correct nodes must adhere to the 
algorithm, i.e., execute the foreach-loop as stated, a faulty node i can 
manipulate its variables, i.e., ci, ⋅, cur_poli, next_poli, ⋅, and cLROi, 
arbitrarily. 

We say a node i ∈ [n] sends tick k ∈ ℕ+ at time t ≥ 0 if the code within 
the if-statement in line 47 for node i is executed for the kth time and this 
happens at time t. Node i sends oscillator tick k ∈ ℕ+ at time t ≥ 0 if line 29 
with parameter i is executed for the kth time and this happens at time t. A 
node i receives remote tick k ∈ ℕ+ from node j ∈ [n] at time t ≥ 0 if ci, j ← ci, j 
+ 1 (line 3) is executed for the kth time and this happens at time t. 
Likewise, it receives local tick k ∈ ℕ+ for node j at time t ≥ 0 if ci, j ← ci, j − 1 

(line 9) is executed for the kth time and this happens at time t. Node i 
receives oscillator tick k ∈ ℕ+ at time t ≥ 0 if cLROi ← cLROi − 1 (line 22) is 
executed for the kth time and this happens at time t. We say that all nodes 
receive local, remote, and oscillator tick 0 at time 0. 

5.2. Correctness analysis 

Recall that [Δmin,Δmax] is called the range of remote delay between 
nodes and [δmin,δmax] is called the range of local delays within a node. 
The following observation shows that the names are justified within our 
model: 

Observation 1. Let k ∈ ℕ+ and nodes i, j ∈ [n]. Assume that correct 
node i sends tick k at time t and correct node j receives remote tick k from 
node i at time t′. Then, t′ − t ∈ [Δmin,Δmax]. 

It follows from the definition of sending and receiving a tick and the 
semantics of the after-statement. Analogous statements hold for local 
ticks and oscillator ticks.  

a) Design constraints. To show correctness of the algorithm we need to 
assume that certain design constraints hold. In particular we will 
assume: 

δmax < 2δmin (1)  

δmax ≤ Δmin (2)  

n ≥ 3f + 1 (3) 

For the moment we also assume that local and remote counter 
thresholds are infinite. We will later show that one can drop the 
assumption and assume finite (small) counter thresholds. Note that we 
do not assume infinite oscillator counter thresholds; oscillator ticks may 
thus be lost.  

b) Correctness: We start the analysis by an observation on the generation 
of new ticks. 

Observation 2. A correct node i ∈ [n] sends tick k ∈ ℕ+ at time t ≥
0 only because either progress_rulei becomes true at time t or because 
relay_rulei becomes true at time t. 

Let U ⊆ [n]. Motivated by Observation 2 we say the tick sent by node i 
at time t was based on tick-pairs (ru,ℓu) from node u, for u ∈ U, if.  

1) node i has received exactly ru remote ticks from node u and exactly ℓu 
local ticks for node u, for all nodes u ∈ U, and  

2) the counters of node i corresponding to nodes u ∈ U are such that 
progress_rulei or relay_rulei became true at time t. 

Note that the tick-pairs and nodes that a tick is based on are not 
necessarily unique. 

Next, observe that for the polarities of ticks, even 0 and odd 1, the 
following properties hold: 

Lemma 1. If a correct node i ∈ [n] sends tick k ∈ ℕ+ at time t ≥ 0, then:  

1) The polarity of the tick, i.e., k mod 2, is equal to the value of cur_poli 
just before time t.  

2) The polarity of the tick is opposite to the value of next_poli, u for all 
nodes u the tick is based on. 

If a correct node i ∈ [n] receives tick k ∈ ℕ from node j ∈ [n] at time t ≥ 0, 
then:  

3) The polarity of the tick is opposite to the value of next_poli, j at time t. 

Proof. The first statement follows from the fact that cur_poli is 
initialized to 0 and toggled whenever node i sends a tick. 

Likewise the third statement follows form the fact that next_poli, j is 
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initialized to 1 and toggled whenever node i receives a tick from node j. 
The second statement follows from the first statement, Observation 

2, and the definition of progress_rulei and relay_rulei, as well as the defi-
nition of a tick being based on tick-pairs and nodes. 

We are now in the position to show: 
Lemma 2. If correct node i ∈ [n] sends tick k + 1 ∈ ℕ+ at time t ≥ 0, then 

there exists a set of nodes U ⊆ [n], such that the tick is based on tick-pairs (ru, 
k) from node u, for u ∈ U. Further, the smallest time between successive ticks 
that a certain correct node sends is δmin. 

Proof. First observe that a tick k + 1 ≥ 1 can only be based on local 
ticks k, k − 2, k + 2, k − 4, k + 4, etc., because the polarity of such local 
ticks must be different to the polarity of tick k + 1 because of Lemma 1. 
Further, tick k + 1 cannot be based on local ticks greater than k + 1 since 
these ticks need to be sent before they are locally received. It follows that 
tick k + 1 must be based on local ticks within the set {k,k − 2,k − 4, 
…,0}. 

The proof is by induction on k + 1 ∈ ℕ+. 
Basis (k + 1 = 1): By the above arguments, the tick k + 1 = 1 sent by 

a correct node i must be based on local ticks k = 0; which proves the 
induction basis. Further, by the above observations, tick 2 can only be 
based on local tick 1. Thus, the minimum time between sending tick 1 
and tick 2 is at least δmin, the minimal delay between sending a local tick 
and receiving it. 

Step (k + 1 → k + 2): Assume that all ticks k + 1 ≥ 1 sent by correct 
nodes were based on local tick k ≥ 0. Consider a correct node i ∈ [n] and 
let tℓ be the time it sent tick ℓ ∈ ℕ+. Recall, that tick k + 1 must be based 
on local ticks k, k − 2, or k − 4, etc. The time tick k − 2 and all smaller 
ticks were sent by node i is at most tk − 2δmin. However, thus, all these 
ticks must have been received locally at the node by time 

tk − 2δmin + δmax < tk,

the latter of which holds by Constraint (1). It follows that tick k + 1 sent 
by node i can only be based on local tick k. Thus, the minimum time 
between sending tick k + 1 and tick k is at least δmin; the induction step 
follows. 

Lemma 3. The first correct node i ∈ [n] that sends tick k + 1 ∈ ℕ+ does 
so because its progress_rulei becomes true. 

Proof. Assume by means of contradiction that this is not the case. By 
Observation 2, it must have sent tick k + 1 because relay_rulei became 
true. From Lemma 2 we have that it must be based on local ticks k. But 
then from relay_rulei, for at least (f + 1) − f = 1 remote node j ∈ [n] we 
have that ci, j > 0. For the node j, it is ci, j = ri, j − k > 0, by the assumption 
that counter thresholds are infinite and thus pipes do not loose ticks. It 
follows that correct node j sent tick ri, j > k before; a contradiction to the 
fact that node i was the first correct one to send tick k. 

Lemma 4. Let tk and tk+1 be the earliest times a correct node sends tick k 
and k + 1, respectively. Then tk+1 − tk ≥ Δmin. 

Proof. By Lemma 3, the first correct node that sends tick k + 1 ≥ 1 at 
time tk+1 ≥ 0 must do so because its progress_rulei becomes true. From 
Lemma 2 we have that it must be based on local ticks k. But then from 
progress_rulei, for at least (2f + 1) − f = f + 1 correct remote nodes j ∈ [n] 
we have that ci, j > 0. For these nodes j, it is ci, j = ri, j − k ≥ 0, by the 
assumption that counter thresholds are infinite and thus pipes do not 
loose ticks. Thus, at least f + 1 correct nodes must have sent tick k at 
latest by time tk+1 − Δmin. It follows that tk ≤ tk+1 − Δmin. 

We are now in the position to show that nodes cannot send ticks too 
far from each other. 

Lemma 5. If the first correct node sends tick k + 1 ≥ 2 at time tk+1 ≥

0 then all correct nodes send tick k by time 

tk+1 +Δmax − Δmin + δmax.

Proof. Set T = δmax in the following. We start with an observation: 
Assume that the first correct node, say node i, sends tick k + 1 ≥ 2 at time 
tk+1. By the same arguments as in the proof of Lemma 4, at least f + 1 
correct nodes, say nodes U ⊆ [n], must have sent tick k ≥ 1 at latest by 

time tk+1 − Δmin. Thus all correct nodes will receive tick k from correct 
nodes in U by time 

trem,k = tk+1 − Δmin +Δmax.

We will now show that lemma’s statement by induction on k + 1 ≥ 2. 
Basis (k + 1 = 2): From the above observations and the fact that 

remote ticks are not lost by overflow, ci, u ≥ k = 1 at time trem, k ≤ trem, k +

T for all nodes u ∈ U. Since, further initially curr_poli = 0 = ¬ next_poli, u 
for all u ∈U at time trem, k + T, unless node i has already sent tick 1 by this 
time, predicate relay_rulei holds for node i before time 

tk+1 +Δmax − Δmin + T,

and it sends tick k by that time if it has not already done so. The lemma 
follows. 

Step (k + 1 → k + 2): As the induction hypothesis assume that the 
statement holds for k + 1 ≥ 2. Now assume that the first correct node, 
say node j, sends tick k + 2 ≥ 3 at time tk+2. By the above arguments we 
have that by time 

trem,k+1 = tk+2 − Δmin +Δmax  

all correct nodes will receive tick k + 1 from a set U′ ⊆ [n] of at least f + 1 
correct nodes. 

Further, by the induction hypothesis, node j has sent tick k by time 

tk+1 +Δmax − Δmin + T.

Thus it will receive local tick k for all nodes by time 

tloc,k = tk+1 +Δmax − Δmin +T + δmax.

Since neither remote nor local received ticks are lost due to the 
assumption of infinite counter thresholds, we have that at time 

max
(
trem,k+1, tloc,k

)
=

Δmax − Δmin + max(tk+2, tk+1 + T + δmax) ≤
Lemma 4

Δmax − Δmin + max(tk+2, tk+2 − Δmin + T + δmax)≤
(2)

tk+2 + Δmax − Δmin + max(0, T) ≤
tk+2 + Δmax − Δmin + T,

for all nodes in u ∈ U′, it is cj, u ≥ k + 1 and cj, u = k, unless node j has 
already sent tick k + 1 by that time. It will thus send tick k + 1 by that 
time, unless it already did so. The induction step and thus the lemma 
follows. 

The bound in Lemma 5 can be directly applied to infer how far apart 
correct nodes may produce ticks: it shows that fast nodes sending a tick 
k + 1 pull slow nodes behind them, making them send tick k. However, it 
does not yet allow us to infer a skew bound, i.e., a maximum duration 
between two ticks of the same number k sent by two correct nodes. 

Another problem not yet attacked is that it remains to show that 
correct nodes do not eventually deadlock, i.e., stop producing ticks. 

The following lemma is key to answer the above two question: 
Lemma 6. If all correct nodes send tick k ∈ ℕ+ by time t, then all correct 

nodes send tick k + 1 by time t + max (Δmax,4Πmax). 
Proof. Assume that all correct nodes send tick k ∈ ℕ+ by time t. Then 

all correct nodes will receive remote tick k from all correct nodes, that is, 
because of (3), at least n − f ≥ 2f + 1 many, by time t + Δmax. They will 
also receive local tick k for these nodes by time t + δmax. Further, at time t 
it must have been the case that for a correct node i it is cLROi ≥ − 1 by the 
fact that the counter is bounded from below.4 Thus after at most another 
3Πmax time,5 it is cLROi ≥ 1, if node i has not already sent tick k + 1. At 
most another Πmax later, the value of next_polLROi will be set to k + 1 mod 
2, i.e., as required by progress_rulei for node i to send tick k + 1. 

Combining the above, we obtain that progress_rulei holds by time 

t + max(Δmax, δmax, 4Πmax).=
(2)

t + max(Δmax, 4Πmax),
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if node i has not already sent tick k + 1 before; making it send tick k + 1 
by that time. The lemma follows. 

Combining Lemma 4 and Lemma 5 we finally obtain our main result 
showing synchrony of generated ticks and the possibility to use (small) 
bounded counters ci, j. We may thus drop our initial assumption that ci, j 
are unbounded. 

Theorem 1. For all correct nodes i, j ∈ [n]:  

1) The counter ci, j remains within a bounded range at all times and thus does 
not underrun or overrun.  

2) Nodes i and j send tick k within a bounded time range.  
3) Node i never deadlocks. 

Proof. To show the first two bounds we use Lemma 5 to infer that two 
correct nodes i, j ∈ [n] where i is among the first to send tick k + 1 and j 
among the last to send tick k, send their respective ticks k + 1 and k 
within time Δmax − Δmin + δmax. 

From Lemma 6 we have that node j will send tick k + 1 another time 
max(Δmax,4Πmax) later. Thus the maximum difference in time between 
any two correct nodes sending tick k + 1, i.e., the maximum skew, is 

Δmax − Δmin + δmax +max(Δmax, 4Πmax).

The fact that counters ci, j remain bounded for correct nodes i, j ∈ [n] 
follows by the fact that any two correct nodes send tick k + 1 within 
bounded time of each other, and the fact that the first correct node can 
produce new ticks with a period of at least Δmin during this time by 
Lemma 4. 

The last statement follows from the observation that all correct nodes 
will eventually send tick 1 and repeated application of Lemma 6. 

6. Experimental evaluation 

To illustrate our approach we show selected results from the 
numerous simulation runs we have performed for its validation. These 
simulations were all performed on a digital abstraction level by using 
QuestaSim for simulating our VHDL (pre-layout6) implementation that 
allows to freely adjust the delays for the delay line and the interconnect 
between TS nodes with one picosecond granularity. We use LROs with 
significantly different frequency in these simulations to allow for a 
better distinction among them. In practice one would of course choose 
well matched reference clocks to obtain the best possible accuracy. 

6.1. Steady state operation 

Fig. 2 illustrates the steady state behavior of the algorithm as already 
outlined in the previous section. It can be verified that LRO2 dictates the 
timing, and all clock outputs follow its frequency, while the other LROs 
get out of sync. 

Let us investigate the flow of events in more detail: As soon as LRO2 
fires, TS2 can fire as well, after having processed the LRO transition, 
which takes ΔA, 2. The transition thus produced by TS2 goes to all TS 
nodes (with transmission delay ΔT, 2i) where it is processed. Specifically 
it will cause the firing of TS3 and TS4 through the relay rule. So these 
clocks will be delayed against TS2 by ΔT, 23 + ΔA, 3 and ΔT, 24 + ΔA, 4, 
respectively. Their firing, in turn, will make TS1 execute its increment 
rule, as soon as the earlier one of these two transitions is received. So 
after the firing of TS2 we have two concurrent paths, the faster of which 
will cause the firing of TS1: The path over TS3 comprises ΔT, 23 + ΔA, 3 +

ΔT, 31, and the other one ΔT, 24 + ΔA, 4 + ΔT, 41. The firing of TS1 actually 
starts the next round; it is a transition of inverted polarity. This puts TS1 
nearly one half period Π ahead of TS2; precisely 

Fig. 2. Simulation trace for the fault-free steady state operation.  

Fig. 3. Simulation trace showing the failure of one clock source.  
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Π2 −
(
min

(
ΔT,23 +ΔA,3 +ΔT,31,ΔT,24 +ΔA,4 +ΔT,41

)
+ δA,1

)
, (4)  

which is essentially one half period minus two interconnect delays and 
two processing delays (2(ΔT + ΔA)). The arrival of TS3 and TS4’s tran-
sition had also armed TS2 to fire its increment rule, but this TS node still 
needs to wait for its LRO transition to arrive. When this occurs, TS2 fires 
and the cycle starts over. 

6.2. Failure of the fastest TS node 

The situation shown in Fig. 3 represents a very unfavorable case: 
When TS1 loses its LRO due to a failure (we assume a crash failure, i.e., it 
stops oscillating), LRO2 replaces it as the fastest TS node, and LRO3 
becomes the dominating source. This means that from this moment on 
TS3 is no longer “pulled” by the relay rule, but needs to wait for its 
increment rule to fire. This, in turn, requires it to wait for transitions 
from its LRO. While these transitions do arrive, the first one of these gets 
canceled through our difference counter (recall that the input pipe 
carries already two entries). As a result, the output clock will not pro-
ceed until two more transitions from the LRO have arrived. This will 
cause the clock to stall for a while. We believe that this is an inevitable 
price to be paid for synchronization – after all we need to accomplish the 
switch-over from LRO2 which was dominating so far, to LRO3 as the 
dominant one, which is, however, out of sync at the moment of 
switching. At this point it also becomes clear why the buffer should not 
be deeper than two transitions. The maximum pulse width Hmax can be 
determined as follows: 

Hmax = ΔT,31 + 3Π3 +ΔA3 +ΔT,23 +Π2 − min
(
ΔT,23 +ΔA3 +ΔT,31,ΔT,24

+ΔA4 +ΔT,41
)

6.3. Glitch failure 

Another unfavorable scenario is depicted in Fig. 4. Here we assume 
that TS2 produces a glitch due to a failure and then stops operating. The 
second, early, transition of this glitch, together with the early transition 
of TS1 (which is part of the regular behavior, as illustrated above) will 
unduly fire the relay rules of TS3 and TS4, thus propagating the glitch. In 
this case, the pulse width of TS3 and TS4 would become 2(ΔT + ΔA). 
Under assumption (A2) these delays are very low, and so the pulse width 
would be too low. Here the addition of the delay δH in the local path, as 
shown in Fig. 1, becomes important to prolong the output glitch to an 
uncritical length: The delayed arrival of the transition makes the local 
pipeline remove the (already issued) pulse later and hence start the 
“greater” and “greater equal” comparisons related to the next transition 
later. 

6.4. Changing frequency 

Although the primary application of our approach will most likely be 
tolerating the crash failure of a crystal, it is interesting to see what 
happens in case of significant frequency changes in the LRO. This is 
illustrated in Fig. 5: On the left side of the trace the so far second fastest 
crystal, LRO2, speeds up and its associated node TS2 becomes the fastest 
node. As a consequence, TS1 gets the role of the second fastest node and 
hence its timing dominates the output, starting from t = 1645ns (see 
marker). As can be seen, there is only little effect on the generated 
clocks, apart from LRO2 managing to speed up its associated clock 
output a bit – but no pulse gets shorter than δH. It can also be seen that it 
takes a couple of clock periods for TS1 to take over the lead from T2; this 
is because of the transitions buffered in the elastic pipelines. 

In the same figure, further to the right, we have the case that LRO2 
suddenly slows down, now becoming the slowest clock. The end result is 
as expected: TS3 takes over the role of the second fastest, leading node, 
as can be seen from the marker at 2255ns onward. The process of getting 
there, however is interesting: Due to the buffering of transitions, LRO2’s 
change in speed is not immediately reflected in the clock outputs. In a 
first phase TS2 moves from the fastest to the second fastest position (the 
LRO transitions stored in its LRO pipeline are used up), and conse-
quently takes the lead for some time, precisely from t = 1975ns to t =
2255ns (see markers). Later on (when the LRO pipeline starts containing 
negative entries), TS2 loses the lead to TS3 and goes to the set of slowest 
nodes, together with TS4. So again we observe a transient phase during 
which the clock is not perfectly stable, before the output frequency 
stabilizes again. 

The duration of these transient phases depends on (a) buffer depth 
and (b) frequency mismatch. Considering (a) we have used minimum 
buffer depth. With respect to (b) we can envision two extremes: In case 
the frequency change seen at one node (here it was TS2) is large, the 
buffers will be adapted fast and the transient phase be short – but exhibit 
a potentially significant change in the output frequency. In case of a 
relatively minor frequency change we will observe a long transient 
phase that, however, causes little change in the output frequency. 

From the observations made so far we can conclude that jitter in the 
LRO will be directly reflected as jitter in the output clock, as long as the 
dominating source stays the same. For very well matched LRO fre-
quencies, jitter might cause the dominant LRO to change frequently. 
However, in that case, the respective LRO counters won’t overrun or 
underrun (due to the good frequency matching), so the hand-over from 
one leader to another will not cause significant transient phases at the 
output. In any case, LRO jitter will, in general, not be mitigated by our 
approach, but jitter will not invalidate our approach either. 

Fig. 4. Simulation trace showing a glitch of one clock source in the extended DARTS implementation.  
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6.5. Discussion 

Our experiments have in general confirmed our hope that, based on 
the DARTS approach, synchronized clocks can be provided to a set of 
nodes (like the redundant nodes in a TMR architecture), without 
accepting the clock as a single point of failure. Most of the time, namely 
during fault-free and stable operation of LROs and TS nodes, the pro-
duced clocks follow the second fastest LRO consistently on all clock 
outputs, with a bounded mutual phase shift (depending on routing 
symmetry, typically below one clock cycle). Disruptive events, however, 
may lead to a hand-over from one LRO to another one, which entails a 
minor frequency change (as much as the tolerance between the clock 
sources amounts to), as well as possibly a short idle period. Normally, 
this will not cause any problem to the operation of the connected nodes 
(with clock gating, e.g., they will see a much larger idle period; also 
clock failure detection and switch-over to a redundant clock entails a 
longer idle time due to the necessary synchronizers), unless the clock is 
used for some kind of real-time sampling. Most importantly, the clock 
outputs stay mutually synchronized even throughout these phases. 

In exceptional cases a clock pulse could even become shorter than 
that of the fastest LRO. This can be mitigated by matching the delay 
element δH in the local feedback path appropriately. Without this pro-
vision, in case of a substantial mismatch, the node, which was designed 
to operate with the LRO clock, might be upset by the short pulse. 

It should be noted here, that the simulations alone cannot prove the 
validity of our approach. That is why we have provided a formal proof in 
Section 5 that clearly states the conditions under which the approach 
will work and gives the formal underpinning and guarantees. In this 
sense the simulations just serve as an illustration and sanity check for 
important scenarios. 

7. Conclusion 

We have motivated the need for a clock generation approach that 
supplies multiple hardware modules in a chip (like the replica of a TMR 
architecture, e.g.) with clocks that are synchronized and still fail inde-
pendently. This becomes challenging as soon as these clocks shall 
furthermore exhibit the good accuracy and stability of a crystal 
oscillator. 

The approach we presented builds on the tick synchronization al-
gorithm by Srikanth and Toueg [18], as refined in the distributed clock 
generation scheme DARTS whose tolerance against Byzantine failures 
has been formally proven in previous works. We extend this approach by 
augmenting it with stable reference clocks to improve its accuracy and 
stability. We have formally specified the new algorithm and illustrated 
its operation principle by detailed explanations and simulation exam-
ples. Furthermore, we have given a formal correctness proof for the new 
algorithm. 

We have formulated a list of requirements that we deem desirable for 

the intended use of the approach. Among these are tolerance of single 
faults in the crystal oscillators as well as the circuit implementing the 
algorithm, absence of any single point of failure, a lower limit for the 
pulse width (no glitching), as well as an accuracy comparable to that of 
the crystal oscillators. 

It turns out that our solution meets all these requirements, with the 
exception of continuous stability of the output clocks: During stabiliza-
tion phases after some specific types of failure, there may be shorter or 
longer clock periods. We have illustrated that through characteristic 
simulation results. The limits for both cases have been well specified in 
our proof, and all demands of the supplied circuit and the executed 
application will typically be completely fulfilled. It seems that these 
residual temporary limitations are the price to be paid for synchronizing 
independent clock sources, as perfectly following a single stable clock 
source and at the same time, once that source fails, seamlessly switching 
over to a fully independent redundant one without any phase jumps – as 
continuous stability would imply –, is not feasible in principle. 
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