
Microelectronics Reliability 120 (2021) 114088

Available online 26 March 2021
0026-2714/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Generation of a fault-tolerant clock through redundant crystal oscillators

Wolfgang Dür a, Matthias Függer b, Andreas Steininger a,*

a TU Wien, Institute of Computer Engineering, A-1040 Vienna, Austria
b CNRS & LSV, ENS Paris-Saclay, Université Paris-Saclay & Inria, France

A R T I C L E I N F O

Keywords:
Fault tolerance
Single point of failure
Fault tolerant clocking
Formal proof

A B S T R A C T

Having a precise and stable clock that is still fault tolerant is a fundamental prerequisite in safety critical real-
time systems. However, combining redundant independent clock sources to form a unified fault-tolerant clock
supply is non-trivial, especially when redundant clock outputs are required – e.g., for supplying the replicated
nodes within a TMR architecture through a clock network that does not suffer from a single point of failure.
Having these outputs fail independent but still keeping them tightly synchronized is highly desirable, as it
substantially eases the design of the overall architecture.

In this paper we address exactly this challenge. Our approach extends an existing, ring-oscillator like
distributed clock generation scheme by augmenting each of its constituent nodes with a stable clock reference.
We introduce the appropriately modified algorithm and illustrate its operation by simulation experiments. These
experiments further demonstrate that the four clock outputs of our circuit do not share a single point of failure,
have small and bounded skew, remain stabilized to one crystal source during normal operation, do not propagate
glitches from one failed clock to a correct one, and only exhibit slightly extended clock cycles during a short
stabilization period after a component failure. In addition we give a rigorous formal proof for the correctness of
the algorithm on an abstraction level that is close to the implementation.

1. Introduction

Computers are being entrusted with safety-critical functions in a
rapidly increasing number of applications, with autonomous vehicles
being just one recent example. Consequently fault tolerance is essential
for these systems. While a lot of alternative fault-tolerance techniques
are available, (coarse-grain) triple-modular redundant (TMR) architec-
tures have gained much popularity. This is partly due to the high error
detection coverage they can attain through their “output centric”
approach: No matter what the actual cause may be – the voter just takes
the majority of matching outputs and masks the faulty one. Another
beneficial feature of TMR is its simplicity: The redundant nodes can be
off-the-shelf components (or IP modules) without any special features or
extensions.

One threat to TMR architectures is the so-called common-mode
failure: If two of the three redundant nodes fail in the same way, the
voter will decide for the erroneous result. That is why in conservative
designs the redundant nodes are often independent PCBs. However, it is
very appealing to use TMR on-chip as well, in the shape of replicated IP
modules. This not only provides cost savings, but also performance

benefits, as the replica have efficient communication with the voter.
Ideally the whole architecture is operated in lock-step, which signifi-
cantly simplifies the voter. However, at this point the clock potentially
becomes a single point of failure, unless it can be furnished with fault
tolerance as well.

Building such a fault-tolerant clock to supply the replica within a
TMR system is challenging, as it involves a fundamental conflict be-
tween using independent clock sources on the one hand and attaining
the desired synchrony between the replica on the other hand. The so-
lution we present in this paper addresses exactly this challenge.

In Section 2 we will briefly review and discuss existing approaches,
before elaborating the requirements we want a solution to meet in
Section 3. Subsequently, we will briefly introduce the DARTS approach
that our solution builds upon, along with the extensions we propose, in
Section 4. Next, Section 5 will present a formal correctness proof for our
algorithm. Finally, as a practical proof of concept, and to show the
limitations, we will discuss some selected simulation results in Section 6,
before we conclude the paper in Section 7.

* Corresponding author.
E-mail addresses: wduer@ecs.tuwien.ac.at (W. Dür), mfuegger@lsv.fr (M. Függer), steininger@ecs.tuwien.ac.at (A. Steininger).

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

https://doi.org/10.1016/j.microrel.2021.114088
Received 21 October 2020; Received in revised form 4 February 2021; Accepted 6 March 2021

mailto:wduer@ecs.tuwien.ac.at
mailto:mfuegger@lsv.fr
mailto:steininger@ecs.tuwien.ac.at
www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2021.114088
https://doi.org/10.1016/j.microrel.2021.114088
https://doi.org/10.1016/j.microrel.2021.114088
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2021.114088&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Microelectronics Reliability 120 (2021) 114088

2

2. Background and related work

A very straightforward way of making a clock fault tolerant is to
augment a primary clock with an error detector and switch over to a
redundant source once the primary clock fails [1–9]. This method is, e.
g., also used in Intel’s STRATIX10 FPGAs.1 The challenges with this
approach are (a) to avoid glitching upon the switch-over and (b) to
mitigate metastability at the domain crossing between supervised clock
and reference time of the error detector. While (a) can be handled by
special filter circuits [10,11], (b) requires care in the design and selec-
tion of the detection method [12].

While these approaches work fine for handling failure of the clock
source, the fundamental issue with all of them is that they necessarily
suffer from a single point of failure, like the error detector, the switch or
the voter. And ultimately the single clock output is another weakness.
Therefore schemes with multiple clock outputs become attractive.
Simply using redundant clock sources in parallel solves the fault toler-
ance issue, but causes problems with the synchronization: If the inde-
pendent redundant clocks are, e.g., supplied to the replicated nodes in a
TMR architecture, the activities of these nodes will become uncorrelated
as a consequence of the clock mismatch and drift. So a synchronization
of the clocks is definitely desirable.

Obviously, stable independent clock sources like crystal oscillators
cannot be directly synchronized, as they do not allow for a (sufficient)
adjustment of their phase or frequency. There are clock synchronization
algorithms where a certain number n of microticks of such local oscil-
lator is counted to generate macroticks, and the latter are then globally
synchronized through a distributed algorithm that continuously adjusts
the local values for n as appropriate [13]. While this approach works
well for coarse-grain synchronization in distributed systems, it cannot
provide the fine-grain synchronization required for lock-step operation
of IP modules.

For this fine level of granularity, diverse implementations of
distributed ring oscillators have been proposed [14–16]. While all these
approaches can produce an arbitrary number of mutually synchronized
local clocks with a jitter of a few cycles at most, they have the common
drawback that the clock frequency is determined by path delays alone
and hence neither accurate nor stable. This is disadvantageous for ap-
plications requiring a notion of real time or when signal sampling is
performed.

In Section 4 of this paper we will build on the DARTS approach [16]
that resembles a hardware implementation of a distributed clock syn-
chronization algorithm in asynchronous hardware and hence falls into
the class of ring-oscillator based solutions. Following the principle
already outlined in [17], we will augment it with stable crystal clock
sources and make the whole system follow these references while still
maintaining its fault tolerance properties. As an extension of [17],
however, we will elaborate the algorithm formally and in great detail,
and we will give a rigorous formal correctness proof for it.

3. Requirements

Our envisioned use case is a TMR system whose redundant nodes
shall be supplied with a clock that does not constitute a single point of
failure. Consequently, the very convenient and popular solution of
having the nodes operate in lock-step supplied by a single clock source
does not work. Simply using independent clock sources will make the
nodes run at different speed and, even if the difference is small, this will
cause a significant time offset after a long time of operation. So even if
the voter could accommodate this offset, the nodes may see different
inputs for the same operation, just because of the increasing time offset,

and hence produce non-matching results even in the fault-free case.
Compensating that would entail some sort of synchronization among the
nodes, which is undesired, since ideally the nodes should be unaware of
being part of a TMR architecture. Also, communication (e.g., with the
voter) requires buffering, with the necessary buffer size growing over
time, essentially towards infinity (unless synchronized). So we want the
nodes’ clocks to remain synchronized.

This leads to the following list of requirements:

• (R1) Tolerance against failure of a clock source: any type of misbe-
havior of a single clock source must not impede the correct operation
of more than one clock output.

• (R2) No single point of failure: the failure of any single component in
the clocking infrastructure (circuit or interconnect) must not impede
the correct operation of more than one clock output.

• (R3) Accuracy: The clock frequency on each node must always
remain in the interval spanned by the slowest and the fastest source
frequency. This allows to establish a much better accuracy and sta-
bility than with ring-oscillator based solutions.

• (R4) Synchrony/precision: THE clocks provided to the individual
nodes may have a phase offset (skew), but this offset must have an
upper bound. With an offset bounded to k clock cycles, a commu-
nication buffer of size k is sufficient without further provisions for
backpressure or synchronization. This stands in sharp contrast to the
case of clocks that drift apart, causing essentially unbounded skew.

• (R5) No glitching: for a hardware clock it is an important property to
have a half period that is always above a defined minimum value
Hmin. Shorter half periods (pulses) will be perceived by the driven
circuit as glitches that violate timing assumptions (comparable to
operating at an excessive clock frequency).

4. Proposed solution for redundant clock outputs

4.1. Starting point: the DARTS approach

The DARTS architecture (Distributed Algorithm for Robust Tick
Synchronization) implements the formally proven fault-tolerant tick
synchronization algorithm (TSA) from Srkianth and Toueg [18] in
asynchronous hardware. More specifically, instances of this algorithm
are implemented in n nodes that will further be called “TS nodes”. Ac-
cording to the TSA these nodes communicate to agree on jointly pro-
gressing their local time (represented as a tick counter). With n ≥ 3f + 1
this arrangement can tolerate f arbitrarily failing TS nodes; in distrib-
uted computing this fault model is precisely called “Byzantine failure”.
The TS nodes need to be fully connected, i.e., there must be an individual
communication link from one TS node to each other. Based on its local
status, which is constituted by its own tick count and the (local)
knowledge about all other TS nodes’ tick counts, each TS node proposes,
under certain conditions, for all other TS nodes and itself to increment
the tick count. The condition (increment rule) is, roughly speaking, that
sufficiently many TS nodes agree on that. In this context “sufficiently
many” means that all but the assumed maximum number of faulty TS
nodes agree, which is n − f, or, for the case of n = 3f + 1 that we further
assume, this equals 2f + 1. In addition, a TS node may increment its local
tick counter if it sees that at least one non-faulty other TS node, that is f
+ 1 overall, already arrived at this value (relay rule). For details on the
algorithm see the original paper [18]. As a result of executing this al-
gorithm, all TS nodes will continuously increment their local tick count
(time) in synchrony with all other, non-faulty ones. This synchrony is
expressed by a limit on the maximum skew between the TS nodes, which
is determined by the communication delays.

For the hardware implementation of this algorithm several things
had to be adapted. In particular the unbounded count that represents the
absolute local time had to be removed, and up/down counters were used
to represent the local time relative to the respective other TS nodes. For
implementing these up/down counters in an asynchronous and

1 Intel STRATIX 10 Clocking and PLL User Guide https://www.intel.com/c
ontent/www/us/en/programmable/documentation/mcn1440569668630.ht
ml.

W. Dür et al.

https://www.intel.com/content/www/us/en/programmable/documentation/mcn1440569668630.html
https://www.intel.com/content/www/us/en/programmable/documentation/mcn1440569668630.html
https://www.intel.com/content/www/us/en/programmable/documentation/mcn1440569668630.html

Microelectronics Reliability 120 (2021) 114088

3

metastability-safe way, Muller pipelines [19] were carefully inter-
connected. Each of the TS nodes comprises n = 3f + 1 such pipelines,
each representing the relative position of the local count to that on one
of the other TS nodes.2 Observing the fill level of all of these pipelines
allows for executing the above two rules to generate an output transi-
tion. Instead of sending a count value, like in the original algorithm, the
hardware implementation just produces a next clock edge. More spe-
cifically, to produce a next rising (falling) edge, a TSA must either have
received falling (rising) edges from at least 2f + 1 TS nodes at its inputs,
or already rising (falling) edges from at least f + 1 TS nodes.3 Overall this
yields a local clock that stays in synchrony with all others. For details on
the hardware implementation and the resulting properties we refer to
[16].

Note that in DARTS there is no time reference involved – the oscil-
lation underlying the generated clock results plainly from the commu-
nication among the TS nodes. Consequently the frequency is determined
by propagation delays through gates and interconnect alone, and varies

with supply voltage and temperature, as well as being process variation
dependent. So in essence, while fulfilling requirements (R1), (R2), (R4)
and (R5), DARTS does not fulfill (R3).

4.2. Proposed extension with stable sources

Our idea is to extend the existing DARTS scheme by stable sources,
like crystal oscillators, to improve its accuracy and hence meet (R3).
Since our envisioned use case is to supply the clock for a TMR system, we
make the following assumptions and restrictions beyond those made for
DARTS:

• (A1) We reduce the fault model to the case of f = 1, which yields 4 TS
nodes in the DARTS architecture. This is just to simplify the expla-
nation and the simulation. Our algorithm and the respective proofs
are still general, for any choice of f.

• (A2) Unlike DARTS, we assume that the TS nodes are not distributed
but close together in a compact clock generator circuit block.

• (A3) As a consequence of (A2) the communication paths between the
TS nodes are fast, also the TS nodes remain relatively lean and can
operate fast.

2 Each TS node also has a loop back to itself, i.e. uses its own output as an
input.

3 More precisely, considering that there are buffers involved and the skew
may become larger than one period, these edges must belong to the appropriate
wave.

Fig. 1. Proposed TS node implementation.

W. Dür et al.

Microelectronics Reliability 120 (2021) 114088

4

• (A4) As a further consequence of (A2) we also assume symmetric
layout with the delay mismatch among the TS nodes and paths being
relatively small.

• (A5) We assume the reference sources to produce a relatively stable
clock. Abrupt changes in their frequency are considered a failure
(and can be tolerated as such).

• (A6) A faulty component can have arbitrary behavior in the digital
domain, but non-digital behavior like intermediate “analog” voltage
levels that are neither associated to a clean logic HI nor a logic LO are
not considered. This assumption had already been made for DARTS,
like for most fault-tolerant systems.

The basic idea is to augment each TS node with an own stable local
reference oscillator (LRO), typically that will be a crystal oscillator. All
these oscillators have the same nominal frequency. Next, we extend the
increment rule in such a way that it only fires when the LRO also in-
dicates that a new transition is due. To make this work, we leverage (A3)
to argue that the original TSA executes fast enough to already “arm” the
increment rule, and the LRO determines the point in time when it fires.

This, however, is the ideal case that does not yet consider the synchro-
nization with the other TS nodes. More details will become clear later
on.

4.3. Formalization of the modified algorithm

More precisely, we implement Algorithm 1 as shown below.
Like in DARTS we assume that each TS node i has each of its inputs

connected to one of the other TS nodes’ output (plus its own output). A
counter ci, j located at each such input maintains TS node i’s view of how
many ticks TS node j already generated. Since these ci, j are up/down
counters, counting up when a remote tick is received (i.e. from the other
TS node) and counting down each time i locally issues a tick, this view is
relative, i.e. it gives visibility how many ticks j is ahead of i or lagging.
Here we also model an overrun and underrun of these counters, as this
cut-off behavior corresponds to the implementation by an elastic pipe-
line that just ignores transitions exceeding its depth.

This counter management is formalized in lines 1...32 of Algorithm
4.3. More specifically, lines 1...5 express how, by the operator counter-
⊕[δa,δb](i, j), a counter ci, j maintained on TS node i is incremented upon
reception of a remote tick from TS node j. Before the actual increment
operation the cut-off is implemented (in this case to a maximum of 3).
Note that the assignment of the incremented value is associated with an
“after” attribute, which accounts for the non-zero delay of the physical
implementation of the counters (and especially the possibly non-
matching delays across the individual elastic pipelines that constitute
them).

Similarly, lines 7…13 express how the counter⊖[δa,δb](i, j) operator
decrements a counter through a local tick, this time using a cut-off value
of − 2. The important difference to the above operator can be found in
lines 9 and 11: here the flag next_pol is toggled to acknowledge the
reception of the local tick and by this prevent the algorithm from re-
evaluating the same rules that just caused the firing of the tick over
and over and in that way create multiple ticks (This will be detailed

W. Dür et al.

Microelectronics Reliability 120 (2021) 114088

5

below). In hardware this is implemented by separating the evaluation of
the firing conditions for rising and falling edges. It is important that the
flag is not toggled before the counter has been decremented, therefore
we apply the same “after” attribute, with the same choice of the delay
within the given interval, to both assignments in line 9 at the same time.

Finally, lines 15…32 describe the maintenance of a counter for the
local reference oscillator (LRO) associated with each TS node. The op-
erators counterLRO⊕

[δa,δb](i) and counterLRO⊖
[δa,δb](i) are equivalent to

their counterparts for the local tick counters explained above, albeit
with different cut-off values of +2 and − 2, respectively.

The LRO counter cLROi is incremented by each transition of the
reference oscillator through the operator LRO_tick(i). Note that this is
accompanied by delaying the completion of the operation for one half
period Πi of the LRO clock through the wait statement.

With these operators being defined, the actual algorithm can start
with an initialization (lines 34...40): All counters (ci, j, cLROi) are
initialized to zero, all clock outputs (cur_poli) to logic low, and the
handshake flags (next_poli) to logic high.

Next, the counter states are evaluated: In line 43 the statement cLROi

> 0 checks whether the LRO counter received more transitions from the
LRO than have been sent locally – in which case the LRO pipeline would
indicate, by activating readyLROi, the readiness for firing a new local tick.
This, however only happens in case the handshake allows for that: The
condition cur_poli ∕= next_polLROi ensures that the current value of the LRO
counter is qualified for generating the next clock transition, namely the
one leading to the logic level indicated by next_polLROi – and has not
already been used for generating the previous transition that led to the
level indicated by cur_poli. As already mentioned above, this ensures that
a rule can only fire once.

In an analogous way the counters ci, j are checked for containing at
least 0 (rdyrelayremi, j) or more than 0 (rdyprogressremi, j) remote transitions
(more than local ones) in lines 44 and 45, again considering the
respective handshake flags.

Based on the condition flags thus generated the actual rules can be
evaluated. In line 46 the progress rule is executed, just like in DARTS: If
on one TS node i at least 2f + 1 inputs j see their rdyprogressremi, j acti-
vated, the progress rule makes that TS node fire. However, the specific
feature of our algorithm is that this does not happen without readyLROi

also being active. This very extension allows the local LRO to suspend
the firing until its own transition occurs, thus achieving the desired
synchronization.

In line 47 the relay rule is formulated: It fires when more than f + 1
inputs see their rdyrelayrem activated – this time, however, without
considering the LRO. This is because it does not make sense to slow
down TS nodes that are “pulled behind” anyway, by synchronizing them
with their LRO.

Finally, in line 49 the two rules are combined (ORed) and the
appropriate actions performed: The local tick is generated by toggling
the output polarity of that TS node i in line 50; in consequence all local
counters of i are decremented (line 52), as well as the associated LRO
counter (line 53); and the transition is forwarded to all other TS nodes
where it increments the remote counters (line 55) associated to it.

Notice the delay parameters that are passed to the operators upon
call: For the local counters the delay δ is in the interval [δimin,δimax] and
includes a delay element that is deliberately introduced to guarantee a
lower limit for the pulse width of the generated clock even under worst
circumstances (see later); and for the remote counters this is a delay Δ
from the interval [Δimin,Δimax] that is solely constituted by transmission
delays on the interconnect lines.

Further note that we assume all the rules in lines 43…47 to be
executed concurrently on a TS node. The if clause in lines 47…54 is
assumed to be executed concurrently with those as well, while the
statements within the clause are sequentially executed. The handshake
established by cur_pol and next_pol ensures an appropriate interleaving of
the concurrent executions.

In the same way the LRO clock expressed by the statement LRO_tick

(i) in line 58 is executed concurrently to the others. Here an independent
operation is desired (free running clock) rather than an interleaving, and
the wait statement in the LRO_tick operator restricts the execution of the
statement to a single invocation just at each clock edge.

On top of the concurrency on a single TS node, as described above, all
TS nodes execute that whole algorithm concurrently.

4.4. Steady-state operation of the extended algorithm

In the practical application we have 4 crystal oscillators with clock
frequencies f1, f2, f3, f4 which are all nominally the same, but of course
there is a certain mismatch through tolerances. Without loss of gener-
ality, let us assume f1 > f2 > f3 > f4. Let us furthermore assume the
system is initialized to a state where all TS nodes are already armed,
waiting for their LRO to fire. In the first round this may work well, but
then over time the fastest LRO, the one running at f1, will try to fire its TS
node (TS1) even before the TSA has found a majority of other TS nodes
which agree on the next clock edge to be fired (let us assume it is a rising
edge). In our case of f = 1 this means that TS1 will have to wait for TS2
and TS3 before it gets released to fire. Even though TS2 receives this
rising transition, it still cannot fire: For executing the relay rule that one
transition is too little (it needs at least 2); for the increment rule to work,
it still needs to receive a transition from its LRO. When the transition
from LRO2 finally arrives, TS2 will fire. Now TR3 and TR4, who had
already received the rising transition from TS1 also receive the one from
TS2, which is sufficient to fire without waiting for the LRO. Once the
rising transitions thus generated by TS3 and TS4 are received by TS1, the
latter can execute its increment rule to arm its TSA for the next falling
transition. Since LRO1 had already delivered the required transition (and
made cLRO1 > 0), this firing will happen immediately and the next cycle
starts.

This cyclic process has several consequences:

• The speed of TS2 will dictate the overall system speed. The clock
outputs all follow f2. For an illustration see Fig. 2 in Section 6.

• As a consequence the fastest LRO, the one at TS1, runs ahead and gets
out of sync. We therefore need to buffer at least one of its transitions
to make TS1 fire once its TSA allows for it. There is no need to make
the buffer deeper; it does not matter when it overruns. In fact we will
see later that a deeper buffer is even counter-productive in the
transient phase after the failure of a source.

• Naturally the slower LROs, those of TS3, TS4, also get out of sync.
Here the relay rule takes care to enforce a clock transition even
before a matching transition of the LRO has been seen. This happens,
when at least two (f + 1) of the faster TS nodes have fired a matching
transition already. Here it is important to cancel each arriving
matching transition from the local clock source, as it is too late and
hence would unduly cause a firing in a next round. This is accom-
plished though buffering at least one input transition, such that an
incoming transition from the LRO is removed from the pipeline (as a
function of the difference counter), as soon as it arrives. Again an
overflow does not matter here.

Should one of the clock sources or the TS nodes fail, this can be
tolerated: In case of a symmetric failure the failed TS node will be dis-
regarded by all others, and these will synchronize to the then second
fastest clock source, as before. In case of a failing clock source, the
associated TS node will even remain synchronized (thanks to the relay
rule), and all replica in the TMR are still operative. In case of an
asymmetric fault (the individual TS nodes’ perceptions on whether a
failure occurred differ, like in case of a broken communication link
between two TS nodes, e.g.), the fully connected communication ar-
chitecture, in combination with the algorithm design will still ensure
synchrony among the clock outputs. This is actually the reason why we
have 3f + 1 TS nodes (as for Byzantine-tolerant consensus) rather than
just 2f + 1 (as for conventional majority voting). For details see [18].

W. Dür et al.

Microelectronics Reliability 120 (2021) 114088

6

Basically, the task of synchronizing clocks does not preclude the
occurrence of glitches: An output clock that lagged behind might
instantly reduce its phase lag through drastically shortening a half
period (or more) without moving out of the skew tolerance. This
violation of (R5) might indeed happen in the dynamic phase after some
types of clock failure. This case will be illustrated in Section 6.3.

In the original DARTS this was not an issue since the operation of the
TSA was assumed to be slow in general. However, with our assumptions
(A2) and (A3) special provisions are needed. In particular, we need to
artificially delay the delivery of the clock transitions to the inputs of the
TS nodes (by δH) to prevent premature firing and thus enforce that every
half period is larger than Hmin. Note that the choice of δH implies a
compromise: Choosing δH too low will not yield the effect of getting
above Hmin, while too large a δH will invalidate (A3) and hence the
described operation principle of the extended algorithm.

Fig. 1 shows the proposed circuit implementation. The basic blocks
and their construction are illustrated, with a special emphasis on the
proposed changes to the DARTS implementation. The upper part of the
figure shows one up/down counter with the ticks received at the left,
while the produced tick is entering from the right. Each TS node com-
prises 5 of these counters (symbolically shown as “shadows” in the
background), one for each produced TS clock and one for the LRO. The
large white block below the pipeline is the compare unit that evaluates
the pipeline fill level (“greater” and “greater equal” for odd (rising) and
even (falling) transitions).

The box at the bottom of the figure shows how the comparison results
are processed by the TSA’s rules: The rectangles with the conditions are
actually threshold gates that implement these rules, two for the incre-
ment rule (for odd and even), and another two for the relay rule.
Building such threshold gates in a conventional way by a sum-of-
products implementation scales badly; a more efficient solution is by
means of sorting networks. The threshold gates are supplied at their
inputs with the respective comparison signals from all 5 counters. In
comparison with the original DARTS implementation the AND gates
have been added to make the increment rule firing conditional to the
LRO’s pipe fill level. The gates in the right part merge these rules
appropriately, such that at the right side the generated tick leaves the
block.

For a more in-depth discussion and reasoning about the imple-
mentation details of the original DARTS components, please refer to
[16]. A formal proof of the DARTS algorithm as well as a derivation of
the synchronization bounds can be found in [20,21].

5. Formal correctness proof

As the correctness proofs from DARTS do not account for the pro-
posed extension by crystal clock sources, new proofs need to be elabo-
rated to guarantee the correctness of our approach. This will be the focus
in the following.

5.1. Model and preliminaries

We denote the set of natural numbers by ℕ = {0,1,…} and write ℕ+

= {1,2,…}. Let [n] = {1,2,…,n} for n ∈ ℕ.
As laid out before we consider a system of n ∈ ℕ+ nodes P = [n] up to

f ∈ ℕ of which can be Byzantine. While correct nodes must adhere to the
algorithm, i.e., execute the foreach-loop as stated, a faulty node i can
manipulate its variables, i.e., ci, ⋅, cur_poli, next_poli, ⋅, and cLROi,
arbitrarily.

We say a node i ∈ [n] sends tick k ∈ ℕ+ at time t ≥ 0 if the code within
the if-statement in line 47 for node i is executed for the kth time and this
happens at time t. Node i sends oscillator tick k ∈ ℕ+ at time t ≥ 0 if line 29
with parameter i is executed for the kth time and this happens at time t. A
node i receives remote tick k ∈ ℕ+ from node j ∈ [n] at time t ≥ 0 if ci, j ← ci, j
+ 1 (line 3) is executed for the kth time and this happens at time t.
Likewise, it receives local tick k ∈ ℕ+ for node j at time t ≥ 0 if ci, j ← ci, j − 1

(line 9) is executed for the kth time and this happens at time t. Node i
receives oscillator tick k ∈ ℕ+ at time t ≥ 0 if cLROi ← cLROi − 1 (line 22) is
executed for the kth time and this happens at time t. We say that all nodes
receive local, remote, and oscillator tick 0 at time 0.

5.2. Correctness analysis

Recall that [Δmin,Δmax] is called the range of remote delay between
nodes and [δmin,δmax] is called the range of local delays within a node.
The following observation shows that the names are justified within our
model:

Observation 1. Let k ∈ ℕ+ and nodes i, j ∈ [n]. Assume that correct
node i sends tick k at time t and correct node j receives remote tick k from
node i at time t′. Then, t′ − t ∈ [Δmin,Δmax].

It follows from the definition of sending and receiving a tick and the
semantics of the after-statement. Analogous statements hold for local
ticks and oscillator ticks.

a) Design constraints. To show correctness of the algorithm we need to
assume that certain design constraints hold. In particular we will
assume:

δmax < 2δmin (1)

δmax ≤ Δmin (2)

n ≥ 3f + 1 (3)

For the moment we also assume that local and remote counter
thresholds are infinite. We will later show that one can drop the
assumption and assume finite (small) counter thresholds. Note that we
do not assume infinite oscillator counter thresholds; oscillator ticks may
thus be lost.

b) Correctness: We start the analysis by an observation on the generation
of new ticks.

Observation 2. A correct node i ∈ [n] sends tick k ∈ ℕ+ at time t ≥
0 only because either progress_rulei becomes true at time t or because
relay_rulei becomes true at time t.

Let U ⊆ [n]. Motivated by Observation 2 we say the tick sent by node i
at time t was based on tick-pairs (ru,ℓu) from node u, for u ∈ U, if.

1) node i has received exactly ru remote ticks from node u and exactly ℓu
local ticks for node u, for all nodes u ∈ U, and

2) the counters of node i corresponding to nodes u ∈ U are such that
progress_rulei or relay_rulei became true at time t.

Note that the tick-pairs and nodes that a tick is based on are not
necessarily unique.

Next, observe that for the polarities of ticks, even 0 and odd 1, the
following properties hold:

Lemma 1. If a correct node i ∈ [n] sends tick k ∈ ℕ+ at time t ≥ 0, then:

1) The polarity of the tick, i.e., k mod 2, is equal to the value of cur_poli
just before time t.

2) The polarity of the tick is opposite to the value of next_poli, u for all
nodes u the tick is based on.

If a correct node i ∈ [n] receives tick k ∈ ℕ from node j ∈ [n] at time t ≥ 0,
then:

3) The polarity of the tick is opposite to the value of next_poli, j at time t.

Proof. The first statement follows from the fact that cur_poli is
initialized to 0 and toggled whenever node i sends a tick.

Likewise the third statement follows form the fact that next_poli, j is

W. Dür et al.

Microelectronics Reliability 120 (2021) 114088

7

initialized to 1 and toggled whenever node i receives a tick from node j.
The second statement follows from the first statement, Observation

2, and the definition of progress_rulei and relay_rulei, as well as the defi-
nition of a tick being based on tick-pairs and nodes.

We are now in the position to show:
Lemma 2. If correct node i ∈ [n] sends tick k + 1 ∈ ℕ+ at time t ≥ 0, then

there exists a set of nodes U ⊆ [n], such that the tick is based on tick-pairs (ru,
k) from node u, for u ∈ U. Further, the smallest time between successive ticks
that a certain correct node sends is δmin.

Proof. First observe that a tick k + 1 ≥ 1 can only be based on local
ticks k, k − 2, k + 2, k − 4, k + 4, etc., because the polarity of such local
ticks must be different to the polarity of tick k + 1 because of Lemma 1.
Further, tick k + 1 cannot be based on local ticks greater than k + 1 since
these ticks need to be sent before they are locally received. It follows that
tick k + 1 must be based on local ticks within the set {k,k − 2,k − 4,
…,0}.

The proof is by induction on k + 1 ∈ ℕ+.
Basis (k + 1 = 1): By the above arguments, the tick k + 1 = 1 sent by

a correct node i must be based on local ticks k = 0; which proves the
induction basis. Further, by the above observations, tick 2 can only be
based on local tick 1. Thus, the minimum time between sending tick 1
and tick 2 is at least δmin, the minimal delay between sending a local tick
and receiving it.

Step (k + 1 → k + 2): Assume that all ticks k + 1 ≥ 1 sent by correct
nodes were based on local tick k ≥ 0. Consider a correct node i ∈ [n] and
let tℓ be the time it sent tick ℓ ∈ ℕ+. Recall, that tick k + 1 must be based
on local ticks k, k − 2, or k − 4, etc. The time tick k − 2 and all smaller
ticks were sent by node i is at most tk − 2δmin. However, thus, all these
ticks must have been received locally at the node by time

tk − 2δmin + δmax < tk,

the latter of which holds by Constraint (1). It follows that tick k + 1 sent
by node i can only be based on local tick k. Thus, the minimum time
between sending tick k + 1 and tick k is at least δmin; the induction step
follows.

Lemma 3. The first correct node i ∈ [n] that sends tick k + 1 ∈ ℕ+ does
so because its progress_rulei becomes true.

Proof. Assume by means of contradiction that this is not the case. By
Observation 2, it must have sent tick k + 1 because relay_rulei became
true. From Lemma 2 we have that it must be based on local ticks k. But
then from relay_rulei, for at least (f + 1) − f = 1 remote node j ∈ [n] we
have that ci, j > 0. For the node j, it is ci, j = ri, j − k > 0, by the assumption
that counter thresholds are infinite and thus pipes do not loose ticks. It
follows that correct node j sent tick ri, j > k before; a contradiction to the
fact that node i was the first correct one to send tick k.

Lemma 4. Let tk and tk+1 be the earliest times a correct node sends tick k
and k + 1, respectively. Then tk+1 − tk ≥ Δmin.

Proof. By Lemma 3, the first correct node that sends tick k + 1 ≥ 1 at
time tk+1 ≥ 0 must do so because its progress_rulei becomes true. From
Lemma 2 we have that it must be based on local ticks k. But then from
progress_rulei, for at least (2f + 1) − f = f + 1 correct remote nodes j ∈ [n]
we have that ci, j > 0. For these nodes j, it is ci, j = ri, j − k ≥ 0, by the
assumption that counter thresholds are infinite and thus pipes do not
loose ticks. Thus, at least f + 1 correct nodes must have sent tick k at
latest by time tk+1 − Δmin. It follows that tk ≤ tk+1 − Δmin.

We are now in the position to show that nodes cannot send ticks too
far from each other.

Lemma 5. If the first correct node sends tick k + 1 ≥ 2 at time tk+1 ≥

0 then all correct nodes send tick k by time

tk+1 +Δmax − Δmin + δmax.

Proof. Set T = δmax in the following. We start with an observation:
Assume that the first correct node, say node i, sends tick k + 1 ≥ 2 at time
tk+1. By the same arguments as in the proof of Lemma 4, at least f + 1
correct nodes, say nodes U ⊆ [n], must have sent tick k ≥ 1 at latest by

time tk+1 − Δmin. Thus all correct nodes will receive tick k from correct
nodes in U by time

trem,k = tk+1 − Δmin +Δmax.

We will now show that lemma’s statement by induction on k + 1 ≥ 2.
Basis (k + 1 = 2): From the above observations and the fact that

remote ticks are not lost by overflow, ci, u ≥ k = 1 at time trem, k ≤ trem, k +

T for all nodes u ∈ U. Since, further initially curr_poli = 0 = ¬ next_poli, u
for all u ∈U at time trem, k + T, unless node i has already sent tick 1 by this
time, predicate relay_rulei holds for node i before time

tk+1 +Δmax − Δmin + T,

and it sends tick k by that time if it has not already done so. The lemma
follows.

Step (k + 1 → k + 2): As the induction hypothesis assume that the
statement holds for k + 1 ≥ 2. Now assume that the first correct node,
say node j, sends tick k + 2 ≥ 3 at time tk+2. By the above arguments we
have that by time

trem,k+1 = tk+2 − Δmin +Δmax

all correct nodes will receive tick k + 1 from a set U′ ⊆ [n] of at least f + 1
correct nodes.

Further, by the induction hypothesis, node j has sent tick k by time

tk+1 +Δmax − Δmin + T.

Thus it will receive local tick k for all nodes by time

tloc,k = tk+1 +Δmax − Δmin +T + δmax.

Since neither remote nor local received ticks are lost due to the
assumption of infinite counter thresholds, we have that at time

max
(
trem,k+1, tloc,k

)
=

Δmax − Δmin + max(tk+2, tk+1 + T + δmax) ≤
Lemma 4

Δmax − Δmin + max(tk+2, tk+2 − Δmin + T + δmax)≤
(2)

tk+2 + Δmax − Δmin + max(0, T) ≤
tk+2 + Δmax − Δmin + T,

for all nodes in u ∈ U′, it is cj, u ≥ k + 1 and cj, u = k, unless node j has
already sent tick k + 1 by that time. It will thus send tick k + 1 by that
time, unless it already did so. The induction step and thus the lemma
follows.

The bound in Lemma 5 can be directly applied to infer how far apart
correct nodes may produce ticks: it shows that fast nodes sending a tick
k + 1 pull slow nodes behind them, making them send tick k. However, it
does not yet allow us to infer a skew bound, i.e., a maximum duration
between two ticks of the same number k sent by two correct nodes.

Another problem not yet attacked is that it remains to show that
correct nodes do not eventually deadlock, i.e., stop producing ticks.

The following lemma is key to answer the above two question:
Lemma 6. If all correct nodes send tick k ∈ ℕ+ by time t, then all correct

nodes send tick k + 1 by time t + max (Δmax,4Πmax).
Proof. Assume that all correct nodes send tick k ∈ ℕ+ by time t. Then

all correct nodes will receive remote tick k from all correct nodes, that is,
because of (3), at least n − f ≥ 2f + 1 many, by time t + Δmax. They will
also receive local tick k for these nodes by time t + δmax. Further, at time t
it must have been the case that for a correct node i it is cLROi ≥ − 1 by the
fact that the counter is bounded from below.4 Thus after at most another
3Πmax time,5 it is cLROi ≥ 1, if node i has not already sent tick k + 1. At
most another Πmax later, the value of next_polLROi will be set to k + 1 mod
2, i.e., as required by progress_rulei for node i to send tick k + 1.

Combining the above, we obtain that progress_rulei holds by time

t + max(Δmax, δmax, 4Πmax).=
(2)

t + max(Δmax, 4Πmax),

W. Dür et al.

Microelectronics Reliability 120 (2021) 114088

8

if node i has not already sent tick k + 1 before; making it send tick k + 1
by that time. The lemma follows.

Combining Lemma 4 and Lemma 5 we finally obtain our main result
showing synchrony of generated ticks and the possibility to use (small)
bounded counters ci, j. We may thus drop our initial assumption that ci, j
are unbounded.

Theorem 1. For all correct nodes i, j ∈ [n]:

1) The counter ci, j remains within a bounded range at all times and thus does
not underrun or overrun.

2) Nodes i and j send tick k within a bounded time range.
3) Node i never deadlocks.

Proof. To show the first two bounds we use Lemma 5 to infer that two
correct nodes i, j ∈ [n] where i is among the first to send tick k + 1 and j
among the last to send tick k, send their respective ticks k + 1 and k
within time Δmax − Δmin + δmax.

From Lemma 6 we have that node j will send tick k + 1 another time
max(Δmax,4Πmax) later. Thus the maximum difference in time between
any two correct nodes sending tick k + 1, i.e., the maximum skew, is

Δmax − Δmin + δmax +max(Δmax, 4Πmax).

The fact that counters ci, j remain bounded for correct nodes i, j ∈ [n]
follows by the fact that any two correct nodes send tick k + 1 within
bounded time of each other, and the fact that the first correct node can
produce new ticks with a period of at least Δmin during this time by
Lemma 4.

The last statement follows from the observation that all correct nodes
will eventually send tick 1 and repeated application of Lemma 6.

6. Experimental evaluation

To illustrate our approach we show selected results from the
numerous simulation runs we have performed for its validation. These
simulations were all performed on a digital abstraction level by using
QuestaSim for simulating our VHDL (pre-layout6) implementation that
allows to freely adjust the delays for the delay line and the interconnect
between TS nodes with one picosecond granularity. We use LROs with
significantly different frequency in these simulations to allow for a
better distinction among them. In practice one would of course choose
well matched reference clocks to obtain the best possible accuracy.

6.1. Steady state operation

Fig. 2 illustrates the steady state behavior of the algorithm as already
outlined in the previous section. It can be verified that LRO2 dictates the
timing, and all clock outputs follow its frequency, while the other LROs
get out of sync.

Let us investigate the flow of events in more detail: As soon as LRO2
fires, TS2 can fire as well, after having processed the LRO transition,
which takes ΔA, 2. The transition thus produced by TS2 goes to all TS
nodes (with transmission delay ΔT, 2i) where it is processed. Specifically
it will cause the firing of TS3 and TS4 through the relay rule. So these
clocks will be delayed against TS2 by ΔT, 23 + ΔA, 3 and ΔT, 24 + ΔA, 4,
respectively. Their firing, in turn, will make TS1 execute its increment
rule, as soon as the earlier one of these two transitions is received. So
after the firing of TS2 we have two concurrent paths, the faster of which
will cause the firing of TS1: The path over TS3 comprises ΔT, 23 + ΔA, 3 +

ΔT, 31, and the other one ΔT, 24 + ΔA, 4 + ΔT, 41. The firing of TS1 actually
starts the next round; it is a transition of inverted polarity. This puts TS1
nearly one half period Π ahead of TS2; precisely

Fig. 2. Simulation trace for the fault-free steady state operation.

Fig. 3. Simulation trace showing the failure of one clock source.

W. Dür et al.

Microelectronics Reliability 120 (2021) 114088

9

Π2 −
(
min

(
ΔT,23 +ΔA,3 +ΔT,31,ΔT,24 +ΔA,4 +ΔT,41

)
+ δA,1

)
, (4)

which is essentially one half period minus two interconnect delays and
two processing delays (2(ΔT + ΔA)). The arrival of TS3 and TS4’s tran-
sition had also armed TS2 to fire its increment rule, but this TS node still
needs to wait for its LRO transition to arrive. When this occurs, TS2 fires
and the cycle starts over.

6.2. Failure of the fastest TS node

The situation shown in Fig. 3 represents a very unfavorable case:
When TS1 loses its LRO due to a failure (we assume a crash failure, i.e., it
stops oscillating), LRO2 replaces it as the fastest TS node, and LRO3
becomes the dominating source. This means that from this moment on
TS3 is no longer “pulled” by the relay rule, but needs to wait for its
increment rule to fire. This, in turn, requires it to wait for transitions
from its LRO. While these transitions do arrive, the first one of these gets
canceled through our difference counter (recall that the input pipe
carries already two entries). As a result, the output clock will not pro-
ceed until two more transitions from the LRO have arrived. This will
cause the clock to stall for a while. We believe that this is an inevitable
price to be paid for synchronization – after all we need to accomplish the
switch-over from LRO2 which was dominating so far, to LRO3 as the
dominant one, which is, however, out of sync at the moment of
switching. At this point it also becomes clear why the buffer should not
be deeper than two transitions. The maximum pulse width Hmax can be
determined as follows:

Hmax = ΔT,31 + 3Π3 +ΔA3 +ΔT,23 +Π2 − min
(
ΔT,23 +ΔA3 +ΔT,31,ΔT,24

+ΔA4 +ΔT,41
)

6.3. Glitch failure

Another unfavorable scenario is depicted in Fig. 4. Here we assume
that TS2 produces a glitch due to a failure and then stops operating. The
second, early, transition of this glitch, together with the early transition
of TS1 (which is part of the regular behavior, as illustrated above) will
unduly fire the relay rules of TS3 and TS4, thus propagating the glitch. In
this case, the pulse width of TS3 and TS4 would become 2(ΔT + ΔA).
Under assumption (A2) these delays are very low, and so the pulse width
would be too low. Here the addition of the delay δH in the local path, as
shown in Fig. 1, becomes important to prolong the output glitch to an
uncritical length: The delayed arrival of the transition makes the local
pipeline remove the (already issued) pulse later and hence start the
“greater” and “greater equal” comparisons related to the next transition
later.

6.4. Changing frequency

Although the primary application of our approach will most likely be
tolerating the crash failure of a crystal, it is interesting to see what
happens in case of significant frequency changes in the LRO. This is
illustrated in Fig. 5: On the left side of the trace the so far second fastest
crystal, LRO2, speeds up and its associated node TS2 becomes the fastest
node. As a consequence, TS1 gets the role of the second fastest node and
hence its timing dominates the output, starting from t = 1645ns (see
marker). As can be seen, there is only little effect on the generated
clocks, apart from LRO2 managing to speed up its associated clock
output a bit – but no pulse gets shorter than δH. It can also be seen that it
takes a couple of clock periods for TS1 to take over the lead from T2; this
is because of the transitions buffered in the elastic pipelines.

In the same figure, further to the right, we have the case that LRO2
suddenly slows down, now becoming the slowest clock. The end result is
as expected: TS3 takes over the role of the second fastest, leading node,
as can be seen from the marker at 2255ns onward. The process of getting
there, however is interesting: Due to the buffering of transitions, LRO2’s
change in speed is not immediately reflected in the clock outputs. In a
first phase TS2 moves from the fastest to the second fastest position (the
LRO transitions stored in its LRO pipeline are used up), and conse-
quently takes the lead for some time, precisely from t = 1975ns to t =
2255ns (see markers). Later on (when the LRO pipeline starts containing
negative entries), TS2 loses the lead to TS3 and goes to the set of slowest
nodes, together with TS4. So again we observe a transient phase during
which the clock is not perfectly stable, before the output frequency
stabilizes again.

The duration of these transient phases depends on (a) buffer depth
and (b) frequency mismatch. Considering (a) we have used minimum
buffer depth. With respect to (b) we can envision two extremes: In case
the frequency change seen at one node (here it was TS2) is large, the
buffers will be adapted fast and the transient phase be short – but exhibit
a potentially significant change in the output frequency. In case of a
relatively minor frequency change we will observe a long transient
phase that, however, causes little change in the output frequency.

From the observations made so far we can conclude that jitter in the
LRO will be directly reflected as jitter in the output clock, as long as the
dominating source stays the same. For very well matched LRO fre-
quencies, jitter might cause the dominant LRO to change frequently.
However, in that case, the respective LRO counters won’t overrun or
underrun (due to the good frequency matching), so the hand-over from
one leader to another will not cause significant transient phases at the
output. In any case, LRO jitter will, in general, not be mitigated by our
approach, but jitter will not invalidate our approach either.

Fig. 4. Simulation trace showing a glitch of one clock source in the extended DARTS implementation.

W. Dür et al.

Microelectronics Reliability 120 (2021) 114088

10

6.5. Discussion

Our experiments have in general confirmed our hope that, based on
the DARTS approach, synchronized clocks can be provided to a set of
nodes (like the redundant nodes in a TMR architecture), without
accepting the clock as a single point of failure. Most of the time, namely
during fault-free and stable operation of LROs and TS nodes, the pro-
duced clocks follow the second fastest LRO consistently on all clock
outputs, with a bounded mutual phase shift (depending on routing
symmetry, typically below one clock cycle). Disruptive events, however,
may lead to a hand-over from one LRO to another one, which entails a
minor frequency change (as much as the tolerance between the clock
sources amounts to), as well as possibly a short idle period. Normally,
this will not cause any problem to the operation of the connected nodes
(with clock gating, e.g., they will see a much larger idle period; also
clock failure detection and switch-over to a redundant clock entails a
longer idle time due to the necessary synchronizers), unless the clock is
used for some kind of real-time sampling. Most importantly, the clock
outputs stay mutually synchronized even throughout these phases.

In exceptional cases a clock pulse could even become shorter than
that of the fastest LRO. This can be mitigated by matching the delay
element δH in the local feedback path appropriately. Without this pro-
vision, in case of a substantial mismatch, the node, which was designed
to operate with the LRO clock, might be upset by the short pulse.

It should be noted here, that the simulations alone cannot prove the
validity of our approach. That is why we have provided a formal proof in
Section 5 that clearly states the conditions under which the approach
will work and gives the formal underpinning and guarantees. In this
sense the simulations just serve as an illustration and sanity check for
important scenarios.

7. Conclusion

We have motivated the need for a clock generation approach that
supplies multiple hardware modules in a chip (like the replica of a TMR
architecture, e.g.) with clocks that are synchronized and still fail inde-
pendently. This becomes challenging as soon as these clocks shall
furthermore exhibit the good accuracy and stability of a crystal
oscillator.

The approach we presented builds on the tick synchronization al-
gorithm by Srikanth and Toueg [18], as refined in the distributed clock
generation scheme DARTS whose tolerance against Byzantine failures
has been formally proven in previous works. We extend this approach by
augmenting it with stable reference clocks to improve its accuracy and
stability. We have formally specified the new algorithm and illustrated
its operation principle by detailed explanations and simulation exam-
ples. Furthermore, we have given a formal correctness proof for the new
algorithm.

We have formulated a list of requirements that we deem desirable for

the intended use of the approach. Among these are tolerance of single
faults in the crystal oscillators as well as the circuit implementing the
algorithm, absence of any single point of failure, a lower limit for the
pulse width (no glitching), as well as an accuracy comparable to that of
the crystal oscillators.

It turns out that our solution meets all these requirements, with the
exception of continuous stability of the output clocks: During stabiliza-
tion phases after some specific types of failure, there may be shorter or
longer clock periods. We have illustrated that through characteristic
simulation results. The limits for both cases have been well specified in
our proof, and all demands of the supplied circuit and the executed
application will typically be completely fulfilled. It seems that these
residual temporary limitations are the price to be paid for synchronizing
independent clock sources, as perfectly following a single stable clock
source and at the same time, once that source fails, seamlessly switching
over to a fully independent redundant one without any phase jumps – as
continuous stability would imply –, is not feasible in principle.

CRediT authorship contribution statement

Andreas Steininger: Conceptualization; Funding acquisition; Inves-
tigation; Methodology; Project administration; Resources; Writing -
original draft; Writing - review & editing.

Wolfgang Duer Data curation; Investigation; Validation; Visualiza-
tion; Writing - original draft; Writing - review & editing.

Matthias Fuegger: Conceptualization; Formal analysis; Investigation;
Methodology; Writing - original draft; Writing - review & editing.

Contributions

This paper is a substantial extension of our paper “Merging Redun-
dant Crystal Oscillators into a Fault-Tolerant Clock” from DDECS 2020
where it received the best paper award in the category “Digital Design”.
The extension is a formal description of the algorithm, a formal proof of
its proper function, the necessary boundary conditions (delays, etc) and
its essential properties. In addition we have extended the experimental
results presented, as well as revised the overall presentation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work has been partly supported by the Intel Collaborative
Research Institute “Collaborative Autonomous and Resilient Systems”,
by DigiCosme (working group HicDiesMeus), and by the INS2I

Fig. 5. Simulation trace showing the influence of a frequency change at one clock source.

W. Dür et al.

Microelectronics Reliability 120 (2021) 114088

11

Émergence grant BACON. The authors furthermore acknowledge TU
Wien Bibliothek for financial support through its Open Access Funding
Programme.

References

[1] J.R. Holden, Clock failure monitor circuit employing counter pair to indicate clock
failure within two pulses, US Patent 4,374,361. [Online]. Available: http://www.
google.com/patents/US4374361, 1980.

[2] J. H. Hong, D. J. Shin, Y. K. Jeong, and H. J. Park, “Clock fault monitoring circuit,”
1992, US Patent 5,479,420. [Online]. Available: http://www.google.com/patents/
US5479420.

[3] R. C. Bagley, “Method for detecting clock failure and switching to backup clock,”
1996, US Patent 5,828,243. [Online]. Available: http://www.google.com/patents/
US5828243.

[4] W. T. Ang, H. F. Rao, C. Yu, J. Liu, I.-C. Wey, A.-Y. Wu, H. Zhao, and J. Chen, “A
clock-fault tolerant architecture and circuit for reliable nanoelectronics system,” in
2007 International Conference on Design Technology of Integrated Systems in
Nanoscale Era, Sep. 2007, pp. 186–191.

[5] H. Hui, Y. Changhong, C. Keming, and S. Lingling, “A novel clock-fault detection
and self-recovery circuit based on time-to-voltage converter,” in 2008 International
Conference on Communications, Circuits and Systems, May 2008, pp. 1204–1207.

[6] C. Yu, “A clock fault detection circuit for reliable high speed system by time-to-
voltage conversion,” in 2009 Second International Symposium on Electronic
Commerce and Security, vol. 2, May 2009, pp. 283–286.

[7] ——, “A novel clock-fault detection and self-recovery circuit for reliable
nanoelectronics system,” in 2009 International Workshop on Intelligent Systems
and Applications, May 2009, pp. 1–4.

[8] A. Gamet, Y. Bacher, S. Meillère, P. Le Fevre, and N. Froidevaux, “A simple clock-
fault detection analog circuit for high-speed crystal oscillators,” in 2015 38th
International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), May 2015, pp. 1588–1591.

[9] J. An, J. Cho, and D. Park, “On-chip glitch-free backup clock changer with noise
canceller and edge detector for safety MCU clock system,” in 2015 IEEE 4th Global
Conference on Consumer Electronics (GCCE), Oct 2015, pp. 487–488.

[10] J. An, J. Youn, J. Cho, D. Park, Automatic on-chip glitch-free backup clock
changing method for MCU clock failure protection in unsafe I/O pin noisy
environment, Journal of The Institute of Electronics and Information Engineers 52
(12) (2015) 2161–2170.

[11] R. Najvirt, A. Steininger, A versatile and reliable glitch filter for clocks, in: 25th
International Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS), Sept 2015, 2015, pp. 140–147.

[12] A. Steininger and M. Schwendinger, “A systematic approach to clock failure
detection,” in 2019 Austrochip Workshop on Microelectronics (Austrochip), Oct
2019, pp. 35–42.

[13] J. L. Welch and N. Lynch, “A new fault-tolerant algorithm for clock
synchronization,” Information and Computation, vol. 77, no. 1, pp. 1–36, 1988.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/0890540
188900430.

[14] M. S. Maza and M. L. Aranda, “Interconnected rings and oscillators as gigahertz
clock distribution nets,” in GLSVLSI ’03: Proceedings of the 13th ACM Great Lakes
symposium on VLSI. ACM Press, 2003, pp. 41–44.

[15] S. Fairbanks, “Method and apparatus for a distributed clock generator,” 2004, US
patent no. US2004108876. [Online]. Available: http://v3.espacenet.com/textdoc?
DB=EPODOC\&IDX=US2004108876.

[16] G. Fuchs and A. Steininger, “VLSI implementation of a distributed algorithm for
fault-tolerant clock generation,” Journal of Electrical and Computer Engineering,
vol. 2011, 2011. [Online]. Available: https://www.hindawi.com/journals/jec
e/2011/936712/.

[17] W. Duer and A. Steininger, “Merging redundant crystal oscillators into a fault-
tolerant clock,” in 2020 23rd International Symposium on Design and Diagnostics
of Electronic Circuits Systems (DDECS), 2020, pp. 1–6.

[18] T.K. Srikanth, S. Toueg, Optimal clock synchronization, J. ACM 34 (3) (Apr. 1987)
626–645.

[19] I. Sutherland, Micropipelines, Commun. ACM 32 (6) (June 1989) 720–738.
[20] M. Függer, U. Schmid, G. Fuchs, and G. Kempf, “Fault-tolerant distributed clock

generation in VLSI Systems-on-Chip,” in Sixth European Dependable Computing
Conference (EDCC), 2006, pp. 87–96. [Online]. Available: https://ieeexplore.ieee.
org/document/4020838.

[21] M. Függer, U. Schmid, Reconciling fault-tolerant distributed computing and
systems-on-chip, Distrib. Comput. 24 (6) (2012) 323–355.

W. Dür et al.

http://www.google.com/patents/US4374361
http://www.google.com/patents/US4374361
http://www.google.com/patents/US5479420
http://www.google.com/patents/US5479420
http://www.google.com/patents/US5828243
http://www.google.com/patents/US5828243
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf0010
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf0010
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf0010
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf0010
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf2005
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf2005
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf2005
http://www.sciencedirect.com/science/article/pii/0890540188900430
http://www.sciencedirect.com/science/article/pii/0890540188900430
https://www.hindawi.com/journals/jece/2011/936712/
https://www.hindawi.com/journals/jece/2011/936712/
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf0015
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf0015
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf0020
https://ieeexplore.ieee.org/document/4020838
https://ieeexplore.ieee.org/document/4020838
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf0025
http://refhub.elsevier.com/S0026-2714(21)00054-8/rf0025

	Generation of a fault-tolerant clock through redundant crystal oscillators
	1 Introduction
	2 Background and related work
	3 Requirements
	4 Proposed solution for redundant clock outputs
	4.1 Starting point: the DARTS approach
	4.2 Proposed extension with stable sources
	4.3 Formalization of the modified algorithm
	4.4 Steady-state operation of the extended algorithm

	5 Formal correctness proof
	5.1 Model and preliminaries
	5.2 Correctness analysis

	6 Experimental evaluation
	6.1 Steady state operation
	6.2 Failure of the fastest TS node
	6.3 Glitch failure
	6.4 Changing frequency
	6.5 Discussion

	7 Conclusion
	CRediT authorship contribution statement
	Contributions
	Declaration of competing interest
	Acknowledgments
	References

