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Kurzfassung

Im letzten Jahrzehnt wurden Convolutional Neural Networks (CNNs) bekannt durch
ihre herausragenden Ergebnisse in verschiedenen Teilgebieten von Computer Vision.
Mithilfe der Short Time Fourier Transformation (STFT) als Verarbeitungsmethode für
Audio-Signale finden CNNs auch in Music Information Retrieval (MIR) unterschiedliche
Anwendungen, insbesondere im Bereich Autotagging von Musik wo sie regelmäßig neue
Top-Ergebnisse erreichen.

Ziel dieser Arbeit ist es herauszufinden, wie die am weitest verbreiteten Eingabe-
Repräsentationen von Audio-Signalen die Klassifikationsperformance von CNNs für
das automatische Taggen von Musik beeinflussen, zu diesen gehören: die unverarbeitete
Signalform, STFT, Mel Spectrogram, Mel Frequency Cepstral Coefficient (MFCC) und
Constant-Q Transformation (CQT). Dafür wird die Performance anhand fünf verschie-
dener CNN Architekturen an zwei verschiedenen Datensätzen verglichen, letztere sind
MagnaTagATune (MTAT) und MTG-Jamendo (MTGJ). Die Two-way ANOVA Analyse
der Ergebnisse zeigt, dass sowohl die Wahl des CNN Modells als auch die Wahl der
Eingaberepräsentation einen signifikanten Einfluss auf die Klassifikationsergebnisse haben.
Die STFT erzielt im Durchschnitt die besten Ergebnisse auf beiden Datensätzen. Dies ist
auch bei der Auswertung pro Tag-Kategorie - Genre, Instrument und Stimmung der Fall.
Weiters konnten hier auch keine allgemein gültigen Unterschiede der Klassifikationsper-
formances der einzelnen Eingaberepräsenetationen zwischen den Kategorien ausgemacht
werden. MFCCs liefern durchwegs zufriedenstellende Ergebnisse, obwohl diese um vier
bis zwanzig mal kleiner als die anderen Eingabeformate sind und daher auch eine, um bis
zu vier mal kürzere Trainingszeit aufweisen. CQT hat die zweitschlechteste Performance
auf dem MTAT Dataset und die zweitbeste auf MTGJ. Um genauere Aussagen über
dessen Anwendbarkeit zu treffen sind daher noch weitere Untersuchungen notwendig.

Darüber hinaus wird in dieser Arbeit untersucht, inwiefern Dilated Convolutions die
Klassifikationsperformance von Musik Autotagging Modellen verbessern können. Spe-
ziell deren ressourcenschonende Merkmalserkennung ist interessant für die Genre- und
Stimmungsklassifikation von Musik. Dazu wird das bestehende CNN Musicnn (vgl.
[Pons and Serra, 2019]) mit Stacked Parallel Dilated Convolutions erweitert. Die Ergeb-
nisse für den MTAT Datensatz zeigen eine signifikante Verbesserung des ROC-AUC
Wertes von ursprünglich 90.99% auf 91.49% und von 36.74% auf 37.78% für den PR-AUC
Wert, bei gleichzeitiger Reduktion der Trainings-Epochenzeit um 59%.
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Abstract

CNNs have become famous for their outstanding results in various computer vision tasks
in the last decade. Based on the STFT as preprocessing method for audio signals, CNNs
are used in Music Information Retrieval (MIR) as well. Especially for autotagging of
music, they have become state-of-the-art.

This thesis investigates how the following most commonly used input representations
of audio signals affect the classification performance of CNNs on music autotagging:
raw waveform, STFT, Mel spectrogram, Mel frequency cepstral coefficients (MFCCs),
and constant-Q transformation (CQT). For this purpose, their performance is compared
using five different CNN architectures on two datasets, MagnaTagATune (MTAT) and
MTG-Jamendo (MTGJ). A Two-way ANOVA analysis shows that both model and
input representation significantly impact the classification results. On average, the
STFT has the best overall performance on both datasets. It also outperforms all other
input representations for all specific tag categories genre, instrument, and mood. No
special trends can be observed for the classification performances of the different input
representations on the respective tag categories. MFCCs provide good results while having
a four to twenty times smaller size than the other input representations and consequently
an up to four times shorter epoch-time during training. The CQT transformation shows
the worst results on MTAT but performs second-best on MTGJ. Therefore, more research
on this preprocessing method is needed for the results to be more conclusive.

Apart from that, this study investigates the applicability of dilated convolutions for music
autotagging models. Their ability to capture large receptive fields while keeping the
resource consumption low can be interesting for the genre- and mood classification. To
prove this conjecture, the existing CNN model Musicnn (cf. [Pons and Serra, 2019]) is
extended with stacked parallel dilated convolutions and then compared to the original
model on the MTAT dataset. The results show a significant enhancement of the average
ROC-AUC score from 90.99% to 91.49% and from 36.74% to 37.78% for the PR-AUC
score, while reducing the average training epoch-time by 59%.
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CHAPTER 1
Introduction

This chapter introduces the topic and presents the problems addressed throughout this
work. The first Section 1.1 starts with the motivation for music autotagging and why
we deal with audio input representations. In the next Section 1.2, the concrete problem
statement is formulated, including three main questions answered throughout this work.
Section 1.3 presents the outline for this thesis.

1.1 Motivation
Deep Learning has become the state-of-the-art in many tasks of MIR [Purwins et al., 2019].
One of them is autotagging of music which is a multi-label classification task to auto-
matically predict tags for audio samples like ”rock”, ”piano” or ”fast”. Typical use-cases
are database management tasks, music recommendation engines, and other music tools.
Over the last few years, CNNs have provided the best results at this task, using different
audio-signal representations like raw waveform or different types of audio spectrograms
as input [Won et al., 2020, Yu et al., 2021]. Most of the current research in this area
focuses on finding the best performing models and hyperparameter-tuning. The prepro-
cessing phase is then often decided heuristically and not subject to further optimization
[Choi et al., 2018]. However, the choice of the input representation can be crucial for the
performance of the deep-learning models, as shown in other tasks like Natural Language
Processing, and should therefore be well reasoned [Camacho-Collados and Pilehvar, 2018].
Tags for songs can be grouped into several categories, and for this work, the following
three categories are considered: Genre, Instrument, and Mood. Each category has
different dependencies on audio features like rhythm, frequency, or amplitude, so the
categorization might perform differently for each audio-signal representation.

There are several ways to vary CNN models, like in- or decreasing the layer depth,
using different filter-kernel shapes, or applying self-attention [Won et al., 2020]. Another
way is to use dilated convolutions to extract broader audio features while keeping the
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1. Introduction

resource consumption within a certain limit. In the context of image classification, a
dilated convolution can be described as ”skipping” one pixel between each other in
the filter kernel. So the filter range increases while the resolution decreases. This
might be beneficial for music autotagging, especially for classifying genre- and mood
tags since they usually depend on longer audio sequences. Dilated convolutions have
shown promising results in image segmentation- and classification over the last few years
[Yu et al., 2017, Tsang, 2018].

1.2 Problem Statement
The main goal of this thesis is to find out how different preprocessing methods of audio
signals affect the classification performance of CNNs on music autotagging. Moreover, it
will be evaluated if specific input representations are better suited for certain tag categories
or if this effect is negligible. For this, the following three will be considered: Genre,
Instrument, and Mood. For the preprocessing of the audio signals raw waveform, STFT,
Mel spectrogram, MFCCs, and CQT [Huzaifah, 2017, Won et al., 2020, Yu et al., 2021].
Apart from that, I investigate how dilated convolutions can enhance the classification
performance or reduce the training time of existing models for this task. Therefore, the
following three research questions are formulated, which will be answered in this thesis:

• Which audio input representations generally provide better results for CNNs than
others, and to what extent?

• How much difference in classification performance is between different audio input
representations for certain tag categories?

• To what extent are dilated convolutions beneficial for music autotagging in terms
of classification performance and training time?

I will answer this question by conducting several experiments throughout this work,
including enhancing the existing Musicnn (cf. [Pons and Serra, 2019]) with dilated con-
volutions and a comprehensive comparison of the input representations on various CNNs.
The CNNs are selected in a way to cover a broad range of different model-architectures
and include VGG-16 [ul Hassan, 2018], ResNet [He et al., 2016], Senet [Hu et al., 2018],
and Musicnn [Pons and Serra, 2019].

To sum up, the main contributions of this thesis for future work on music autotagging
are:

• Create a basis for the decision of the best input representation for a specific research
task in music autotagging that focuses on CNNs.

• Evaluate the effect of the input representations on single tag categories to support
fine-tuning of autotagging models on the one hand and research focusing on single
categories on the other hand.
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1.3. Outline

• Explore the potential of dilated convolutions for music autotagging.

1.3 Outline
In Chapter 2, recent work on music autotagging is presented to assess the current
state-of-the-art and research trends on this topic. In Chapter 3, some fundamental
knowledge about audio signals is presented, and the relevant preprocessing methods
are described in detail. In Chapter 4, the two datasets MTGJ and MTAT, which
are used in the experiments, are presented, and afterward, the other most relevant
datasets for music autotagging are summarized. In Chapter 5, the CNN architectures
used for the experiments are described in detail, including the dilated CNN developed
during the experiments. In Chapter 6, the methodological approach and the structure
of the experiments are presented. Afterward, the exact conduction, including setup,
preprocessing, hyperparameter tuning, training, and testing of each configuration, is
described. The results for each experiment are presented and discussed in Chapter 7. In
the last Chapter 8, the whole thesis is summarized, and the research questions will be
answered to conclude the work. Afterward, the limitations of this work are shown, and
an outlook for future research on this topic is given.
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CHAPTER 2
State of the Art

Automated music tagging is useful for music recommendation engines, database manage-
ment tasks, and various music tools. In the last decade, deep learning has become the
state-of-the-art for this task, and especially CNNs have reached outstanding results. This
chapter surveys some recent advancements on this and closely related topics, focusing on
different aspects like CNN architectures, the effects of preprocessing methods, or data
augmentation approaches. Each chapter of this thesis includes a more specific literary
review of the respective subject. Therefore, the focus of this chapter lies in broader
studies and surveys to give a short insight into music autotagging.

2.1 Pre-DL autotagging methods
Over the last ten years, different types of Deep Learning (DL) have become state-of-the-
art in music autotagging. Before that, plenty of different ways and algorithms existed to
annotate songs automatically. This section gives a short introduction to methods used
before the advent of DL.

In [Mandel et al., 2011], a discriminative Restricted Boltzmann machine (RBM) is pre-
sented to autotag music. The RBM is a Machine Learning (ML) method where a neural
network consisting of visible and hidden units can learn a specific probability distribution
from the input data. ”Restricted” refers to the bipartite dependency between the hidden
and the visible units, meaning the independence of hidden variables when conditioned
on the visible ones and vice versa. The discriminative RBM is trained to predict the
respective tag class labels from the audio inputs. For this, timbral features are extracted
from the songs MFCCs, and rhythmic features are extracted from the modulation spectra
in four large frequency bands. The model reached new state-of-the-art performances
during the experiments, outperforming existing methods like the support vector machine
and logistic regression. [Barrington et al., 2008] presents a supervised multi-label model
to autotag music. The songs are approximated as K-component Gaussian mixture model
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2. State of the Art

(GMM) distributions over the feature space of the audio data. Then these songs are
annotated with semantic multinomials, which are normalized vectors of likelihoods for
their respective audio features under those GMMs. These semantic multinomials are
used to calculate a probability score for each tag GMM equal to the relevance of this tag
for the song. The system showed the top overall performance in the MIREX 2008 ”Audio
Tag Classification” task. In [Ellis et al., 2013], the authors propose a Bag of Systems
(BoS) representation for audio signals. Generative models capture timbral and temporal
characteristics of music to form a dictionary of musical codewords. Each song consists
of multiple such codewords that can be used for text document retrieval algorithms
to perform the autotagging. The following section discusses current state-of-the-art
DL-models.

2.2 Current state-of-the-art models
In [Won et al., 2020], the authors evaluate the current state-of-the-art CNN models for
music auto-tagging. MTAT, Million Song Dataset (MSD), and MTGJ serve as datasets
for training and evaluation. Several different CNN architectures are described in the paper
and evaluated either by using raw waveform or Mel spectrogram as input representations.
Among others, the study considered the following models: A Fully Convolutional Network
that only consists of convolutional layers and no Fully connected (FC) layers, Musicnn
where the architecture relies on music domain knowledge to efficiently extract temporal
and timbral features (cf. Section 5.4), a Sample-Level CNN which takes raw waveforms as
input and uses squeeze- and excitation blocks for enhanced prediction (cf. Section 5.3), a
Convolutional Recurrent Neural Network which is a combination of CNNs and Recurrent
Neural Networks (RNNs) or a self-attention based approach using an adaption of the
Transformer Encoder of natural language processing which. The length of the input
samples, so whether to use song-level- or chunk-level training, is another important aspect
for the setup of each model. The results show that models trained with shorter audio
excerpts outperformed the other models. The studys authors suspect that this might be
due to the increased training set size when splitting each sample into smaller pieces. By
applying different audio deformations like pitch shifting or time stretching to the input
samples, the robustness of the models was tested in another experiment to determine the
generalization abilities of each model. This resulted in a different ranking of the models
regarding their performance for each deformation, but no model outperformed the others
in terms of robustness.
In [Pons et al., 2018], the authors tested the effect of the amount of training data used
for different CNN architectures in music auto-tagging. They trained models with different
input sizes, from 100,000 to 1.2 million audio samples of the private 1.2M-Songs dataset.
The first CNN model uses raw waveforms, whereas the second one uses Mel spectrograms
as input. They designed the latter to heavily rely on musical domain knowledge, whereas
the former has minimal assumptions over the task. Both architectures relied on previous
research and were slightly adapted. The results show that the classification accuracy
could be improved significantly until a training-set size of one million data samples.
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2.3. Preprocessing methods

For smaller dataset sizes, both models performed equally well, but given enough data,
the assumption-free model processing raw waveforms outperformed the other one. The
two models were tested on MTAT and MSD too. The Mel spectrogram-based model
outperformed the raw waveform-based model in both datasets on all tested configurations,
which encouraged the conclusion that domain knowledge can be beneficial for designing
models, especially for smaller datasets.

2.3 Preprocessing methods
In [Choi et al., 2018], the authors compare the effects of several audio preprocessing
methods for music autotagging. For this, a CNN model was used and trained on MSD.
STFT and Mel spectrogram served as input representations. The same CNN architecture
was used for all experiments to guarantee the comparability of the results. The evaluation
of the results, aggregated over all tags, shows only minor differences in the classification
performances, depending on the training data usage. However, none of the two input
representations outperformed the other one. In another experiment, the effect of using
log-compressed magnitudes was tested, motivated by the human perception of loudness,
referring to decibel scaling. As a result, the log-compressed versions outperformed the
linear ones in all tested configurations significantly.

A more comprehensive comparison of time-frequency-based representations of sound was
conducted in [Huzaifah, 2017] in the context of environmental sound classification. The
datasets used for this consist of sound recordings, each belonging to exactly one class,
which belongs to a major group like animals, humans or natural soundscapes. This is a big
difference from music auto-tagging, which is a multi-labeling problem where each music
sample gets labeled with a set of different tags instead of only one. Different configurations
for STFT, Mel spectrogram, CQT, Continuous Wavelet Transform, and MFCCs were
evaluated in the experiments, using different CNN configurations for training. For the
configuration of the input representations, the main focus was to compare wideband
and narrowband transformations, which refer to the length of the sliding windows of the
STFT. The evaluation shows that in nearly all configurations, the shallower CNN models
outperformed the deeper ones. The authors of the study explained this with significant
over-fitting of the deeper model. The results also show that Mel spectrograms performed
consistently well across all variations, while STFT and CQT did well on only a few models.
In general, all input representations produced better results than MFCCs. Evaluating
the different lengths of the sliding windows led to different results for both configurations
in nearly all cases, but none outperformed the other one in general. However, there was
a slight tendency that wideband configurations produced better results than narrowband
configurations.

The effects of the reduction of frequency and time resolution of Mel spectrograms for CNN
architectures in the context of music auto-tagging were investigated in [Ferraro et al., 2021].
The authors used the MTAT dataset for performance comparisons, and then the selected
configurations were compared on the larger MSD. Two different state-of-the-art CNN
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2. State of the Art

architectures served as a reference for the comparison of the different frequency and
time resolutions of the Mel spectrograms. The results suggest that despite reducing the
frequency bands from 128 to 48, the performance loss was negligibly slight. This fact
could be important for future decisions on the trade-off between the accuracy of the
models, data storage size, and training time.

In Chapter 3, the relevant preprocessing methods for audio signals are described in detail.

2.4 Dilated CNNs
CNNs play an essential role in image classification and segmentation due to their ability
to extract spatial features. However, one of the main problems of basic CNNs is their
high resource consumption. To overcome this problem, dilated convolutions can be used
to extract broader features while using lighter filter kernels.

[Lei et al., 2019] proposes a CNN model based on stacked dilated convolutions with
different dilation rates for image classification. Compared to the original CNN, this
model could significantly improve the classification accuracy by 2.86% on average and
decrease the training time by 12.99%.

In [Muhammad et al., 2021], the authors propose an attention-based Long short-term
memory (LSTM) network to recognize human actions in videos based on dilated con-
volutions. The latter use more inclusive receptive fields than standard convolutions to
recognize bigger image segments better. On average, the proposed model could improve
the benchmark scores between 1-2%.

In [Zhang et al., 2017], the authors use dilated convolutions for environmental sound
classification. This task requires filters with big receptive fields, and existing studies have
predominantly used very deep CNNs to tackle this problem. The dilated convolutions
can solve this with acceptable resource consumption. The results on different datasets
show a performance improvement of up to 10% on different datasets compared to existing
deep CNNs but also with a higher computation complexity and bigger storage.

2.5 Summary
This section has shown that DL and especially CNNs have become the central research
subjects in music autotagging over the last few years. As shown in [Won et al., 2020],
there are many variants of CNNs, each of which provides differently good classification
results. Apart from that, the studies have shown that there are other important factors
influencing the classification performance like the sample length, number of training
samples, or the preprocessing method for the audio signals. Since the focus of this thesis
is the comparison of the different audio input representations, the influence of the other
factors should be kept as small as possible. Therefore, five different models are used for
the experiments, each with different input sample lengths from 3 to 30 seconds. The
preprocessing methods are tested on each of those models. To guarantee the general
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2.5. Summary

validity of the results, the experiments are run on two datasets of different sizes. As
shown in Section 2.3, every input representation has its advantages and disadvantages,
and it is hard to decide which one to choose for a specific model. However, the five
preprocessing methods investigated in this thesis are used throughout most research
on music autotagging. The insights in [Ferraro et al., 2021] have shown that for Mel
spectrograms, the number of frequency bands for the preprocessing is negligible. The other
studies also mainly used the same default values for the respective preprocessing methods
as the preprocessing library Librosa [McFee et al., 2015] does, so in the experiments of
this thesis, those default values are used as well. Different approaches to using dilated
convolutions in visual computing and MIR have been presented in Section 2.4. The main
ideas behind the application of the dilated convolutions in those models, like the stacked
parallel dilated convolutions, will also be considered for the experiments of this thesis.

The following chapter presents the foundations of the different audio signal preprocessing
methods.
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CHAPTER 3
Audio Signal Preprocessing

Methods

The focus in MIR research often lies in optimizing DL models and hyperparameter-tuning.
The choice of the audio preprocessing method is often not evidence-based and just decided
ad-hoc. Libraries like Librosa [McFee et al., 2015] further facilitate the preprocessing
stage, providing one-liner methods for processing Fourier Transformations and other
relevant methods and come with helpful default parameter settings. In the research
process, typically less time is spent on it and more focus is given to the development of
the model itself.

This section introduces the most commonly used audio preprocessing methods in MIR in
more detail. In order to get a better understanding of the respective methods, the concrete
processing stages are described first. Furthermore, the most important parameters
are discussed regarding their impact on the resulting signal and their adjustment for
the experiments. The first of the following five preprocessing methods is just the
one-dimensional raw waveform of the audio signal. The others are two-dimensional
time-frequency spectrograms.

3.1 Raw waveform
In its most basic form, the sound is a one-dimensional signal, representing a vibration
that propagates as a wave in a medium like air or liquids. It can be described as a
function of the amplitude over time (cf. Figure 3.1), usually with values between -1 and
1 referring to the signals voltage for digitized audio signals [Rocchesso, 2003]. Important
parameters that can be affected during preprocessing of those signals are the sampling
rate, which is described in the following subsection and the bit rate. Another common
option is to use equalizers to manipulate the audio files frequency spectra, but this is
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3. Audio Signal Preprocessing Methods

not a subject of this study and is therefore not discussed further. The last subsection
presents a few recent studies in MIR that use this input representation for DL models.

Figure 3.1: Audio waveform of 0.25s sound-clip

3.1.1 Sampling Rate

In order to digitize an analog audio signal, it has to be sampled and quantized. The
frequency in which one takes those samples is called sampling rate and can be determined
by the Nyquist-Shannon-Theorem. This theorem states that it is necessary to take
2 ú fmax equidistant samples to describe an arbitrary signal with a maximum frequency
of fmax. It can be generalized by:

fA Ø 2 ú fmax, (3.1)

where fA is the sampling rate. The human ear perceives audio signals from 20Hz up to
20kHz. The typical sampling rates for audio-CDs are 44.1kHz or 48kHz. It is important
to note that a little additional buffer here is added to the 40kHz so anti-aliasing filters can
still be applied to the signal to prevent aliasing effects [Görne, 2008]. The sampling rate
directly affects the total size of an audio file, so in surroundings where the file size cannot
be arbitrarily large, lower sampling rates might be necessary. However, every reduction
directly leads to information loss, which can significantly affect the audio quality, as we
have seen before.
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3.1.2 Raw waveform in MIR

Sample-level DL networks have been used throughout all subtopics of MIR, reaching
good results. In music autotagging, there are several approaches for one-dimensional
CNNs. For example, in [Yu et al., 2021], they surpass all existing state-of-the-art models.
This model consists of strided convolutional layers for extracting local features and
reducing temporal dimension and residual blocks to recognize more complex features.
A broader investigation was conducted in [Lee et al., 2017a], where two sample level
CNNs are evaluated for the three most common sub-domains in sound-classification:
music auto tagging (MTAT), speech command recognition (Speech Commands Dataset)
and acoustic scene tagging (DCASE 2017 Task 4). The first model is a very basic
CNN with convolutional- and pooling blocks, and the second one consists of additional
residual- and squeeze- and excitation blocks. The latter one reached results close to
the state-of-the-art for all three models at the time the study was published. RNNs
are an alternative to CNNs for audio classification with raw waveforms due to their
ability to model long-term dependencies. In [Avramidis et al., 2021], a CNN model
was combined with an RNN model and outperformed other pure CNNs and RNNs on
the task of polyphonic instrument classification. The paper states that RNNs better
model longer-term temporal structures, whereas CNNs are better for temporally local
correlations, and the enhancement results from the combination. It seems that since
the emergence of DL and its overwhelming ability to extract features, raw waveforms
have become an attractive alternative to time-frequency spectrograms and are gaining
much more attention in research than ten years ago. However, the preprocessing methods
based on the STFT are still the most commonly used ones and will be described in more
detail in the following sections, starting with the basic STFT.

3.2 Short Time Fourier Transformation

The raw audio waveform is very hard to interpret in its unprocessed form. Upon visual
inspection, humans can only detect dynamics and maybe separate the chorus from the
verse, but it is nearly impossible to recognize melodies or frequencies without further
analysis. The STFT transforms the audio signal into a two-dimensional amplitude versus
time-frequency spectrogram, which is easier to interpret visually. Figure 3.2 shows an
STFT diagram of a 29 second long audio-file where one can see the current frequencies
for each point in time. In the following subsection, the processing steps for the STFT are
described in more detail. Afterward, the most important parameters will be described in
more detail: the number of samples per Fast Fourier Transformation (FFT) (n_fft), the
hop-length and the window-length. For all parameters the default values of Librosa are
used 1.

1http://librosa.org/doc/main/generated/librosa.stft.html, accessed 15-January-2022
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Figure 3.2: STFT of a 29s audio-file

3.2.1 Calculation of the STFT

The basis for the STFT is the Discrete Fourier Transformation (DFT) which forms the
inner product of the analyzed function x(n) with the harmonic oscillation exp j2fi, as
given in the following equation:

X[k] =
N≠1ÿ
n=0

x[n]W nk
N ,

with WN = e≠i2fi/N ,

(3.2)

where X[k] refers to the amplitude of the k-th frequency-bin, x[n] is the function at
time n, and i is the imaginary unit defined by i2 = ≠1. The DFT results in an array of
amplitudes for each frequency of the whole sequence. The STFT uses a window-function
g[k], sliding over the signal-sequence in regular steps and applying the DFT on those
sub-sequences. Equation 3.3 describes the computation for XST F T [m, n] with m and n
referring to the time- and frequency shifts in discrete steps.

XST F T [m, n] =
L≠1ÿ
k=0

x[k]g[k ≠ m]e≠i2fink/L (3.3)
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L refers to the L-point window function g, x[k] to the signals amplitude at time k and
g[k ≠m] to the value of the window function at the current position in the sliding window.
Usually, g uses a Hamming window defined by [Podder et al., 2014]:

W [n] = 0.54 ≠ 0.46 ú cos( 2fin

N ≠ 1), n = 0, ..., N ≠ 1 (3.4)

Figure 3.3 illustrates the calculation of the STFT by calculating the Fourier Transforma-
tion of the sliding windows g(t) of the signal x(t), producing the output in the lower part
of the picture, which visualizes the amplitude of each frequency per time of the signal
[Kehtarnavaz, 2008]. Important to note here is that the imaginary part of the output of
the DFT, which refers to the phase, is discarded because only the amplitude contains
the important perceptual information needed [Logan, 2000].

Figure 3.3: Calculation of the STFT [Kehtarnavaz, 2008]

3.2.2 Parameters

n_fft

This parameter defines the number of samples per FFT. Moreover, it also determines the
number of frequency rows in the resulting matrix (1+n_fft/2). By default, Librosa uses
2,048 samples for this parameter, corresponding to a duration of 93ms per FFT for a
sampling rate of 22,050Hz and 128ms for 16,000Hz. According to the documentation this
value is well adapted for music signals.
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win_length

Each audio frame of the STFT has a window of the size win_length, and to match
the n_fft parameter, the window is by default zero-padded. A smaller window-size
can improve the temporal resolution and therefore close tones in time can be better
discriminated. However, this decreases also the frequency resolution, which is the ability
to discriminate closely spaced tones in frequency. This effect is inevitable and is called
the time-frequency localization trade-off, and the challenge for tuning this parameter is
to find a good trade-off for all frequencies on average. The default value in Librosa is
win_length = n_fft = 2048.

hop_length

The hop length defines the distance between the start of two adjacent FFT windows.
It determines the number of columns which increases when choosing a smaller value or
decreases for higher values. So smaller values provide a better temporal resolution but
also require more space. The default value in Librosa is window-length / 4, so 512.

3.2.3 STFT in MIR

Compared to the other spectrogram input representations discussed in this thesis, pure
STFT leads to a minor loss of information. Therefore, it also has the most extensive
resource load, leading to a high memory consumption and training time. This might
be the reason that STFT is usually not the method of choice. However, there are
still a few studies using the STFT as preprocessing method like in [Choi et al., 2018],
where it was compared to Mel spectrograms in the context of their performance on
music autotagging. They evaluated the performance of both input representations for
different usage-proportions of training data of the MSD. The study concludes that the
classification performance is dependent on the preprocessing method, but it does not state
which one performs better. However, when using the whole dataset the Mel spectrogram
outperformed the STFT by a 0.2% higher ROC-AUC score. A similar investigation was
conducted in [Huzaifah, 2017], where different time-frequency representations for CNNs
are compared to classify environmental sound. Additionally to the MFCCs baseline, four
frequency-time representations, each with a wideband and a narrowband configuration
are used: STFT, Mel spectrogram, CQT, and Continuous Wavelet Transform (CWT). A
bigger sliding-window size of 2,048 for the STFT is used for the wideband configuration,
and for narrowband, it is 512. Mel spectrograms lead to the highest accuracies for
almost all configurations, followed by CQT and then STFT. For most configurations,
MFCCs performed worse than CQT, and both have significantly worse results than all
other preprocessing methods. The evaluation further shows that wideband outperformed
narrowband on all models and input representations. The following section describes the
Mel spectrogram in more detail, which is an adaption of the STFT.
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3.3 Mel spectrogram
To overcome the issue of the relatively big size of the basic STFT spectrogram, the Mel
Scale can be used to reduce the frequency domain. This scale was designed to fit the
human hearing capabilities since humans can detect differences of low frequencies, for
example between 200Hz and 300Hz, much better than high frequencies like 8000Hz and
8100Hz. In contrast to the basic STFT, this signal representation was specially designed
for audio signals [Moore, 2013]. The Mel spectrogram is an STFT spectrogram where
the frequency channels are mapped to the corresponding Mel bins [Dörfler et al., 2017].
Figure 3.4 displays a Mel spectrogram of the same song as the STFT spectrogram in
Figure 3.2. The following subsections describe the calculation and the most important
parameters, and afterward, several studies using Mel spectrograms in different areas of
MIR.

Figure 3.4: Mel spectrogram of 29s audio-file

3.3.1 Calculation of the Mel spectrogram

The first step for calculating the Mel spectrogram is to apply the STFT on the audio signal,
which is explained in more detail in Section 3.2.1. Afterward, the frequency spectrum
is binned into n_mels frequency-bins of equal size concerning the human perception of
the sound. The amplitude for these bins is then derived by taking weighted averages
over those frequency channels [Dörfler et al., 2017]. For this, the Mel scale is used, which
defines the Mel unit so that values twice as large are perceived twice as high. For example,
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a pitch of 500 Mels is subjectively twice as high as 250 Mels [Stevens et al., 1937]. The
pitch function displaying the relation of frequency to Mels is displayed in Figure 3.5. It
is based on the following equation, where Z refers to the Mel sound unit and f to the
frequency [Pfister and Kaufmann, 2008]:

Z = 2595 ú log10(1 + f/700) (3.5)

Figure 3.5: Mel scale

3.3.2 Parameters

The parameters of the Mel spectrogram are the same as for the STFT, described in
Section 3.2.2. One essential additional parameter is the number of Mels, often set to 96
or 128 in MIR research for Mel spectrograms [Pons and Serra, 2019, Choi et al., 2018].
In [Ferraro et al., 2021], an investigation of the effects of using different Mel numbers
and sampling rates on a VGG- (cf. Section 5.2) and a Musicnn-model (cf. Section 5.4)
shows that for 12kHz audio using 96 Mels performs slightly better. For 16kHz, 128 Mels
perform better for VGG and are equally good as 96 Mels on Musicnn. Therefore, no Mel
number configuration significantly outperforms the other. It seems that the majority
of other studies in MIR are using 96 Mels, so for this study, this configuration is used
too. The following subsection presents some recent research using or focusing on Mel
spectrograms.
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3.3.3 Mel spectrogram in MIR
Although the Mel spectrogram is a lossy representation for audio data, it seems to be
the most commonly used one throughout MIR. This might be due to its comparably
good performance and still relatively compact size. In [Choi et al., 2016], different input
representations, namely STFT, Mel spectrogram, and MFCCs, are compared on CNN
models with different numbers of hidden layers on the MTAT dataset. Mel spectrograms
outperformed the other preprocessing methods by far with a ROC-AUC score of 0.894
compared to 0.846 and 0.862 for STFT and MFCCs, respectively. A way to interpret
the results of music autotagging is proposed in [Won et al., 2019] using self-attention.
They use a frontend-backend architecture, comparing raw waveform and Mel spectrogram
based model for the frontend and a CNN- and an Attention-model as backend. The best
combination was the one with Mel spectrogram as frontend and a CNN as backend. The
attention backend performed slightly worse but has the advantage of opening up the
probability of creating attention heat maps. These provide information to highlight the
most relevant sub-parts of the input spectrogram to predict a given tag. This information
can be especially interesting for further research on specific topics in music autotagging,
primarily when focusing on certain tags or tag categories. As seen before, it often
outperforms all other preprocessing methods, although it is a lossy and relatively compact
audio input representation. An even more compact representation is MFCCs which are
described in the next section.

3.4 Mel Frequency Cepstral Coefficients
As seen in the previous section, Mel spectrograms usually consist of 96 to 128 Mels to
map the frequencies for each point of time. The MFCCs are an even more compact input
representation that reduces the frequency dimension down to 20 values. Around the year
2000, MFCCs have been the most dominant feature in speech recognition and have shown
promising results in music analysis [Logan, 2000]. This input representation builds upon
the Mel spectrogram and describes the overall shape of the power spectrum per frame in
a compact form [Logan, 2000]. However, the resulting output vector for each point of
time does not directly refer to sub-segments of the Mel scale. It is rather a feature vector
[Pfister and Kaufmann, 2008]. This will be further described in the following subsection,
followed by the description of the most important parameters and previous applications
of MFCCs in MIR. Figure 3.6 shows the MFCCs of the same song as for the previous
spectrograms.

3.4.1 Calculation of the MFCCs
The calculation for the MFCCs starts with the same steps as the Mel spectrogram, cf.
Section 3.3.1. The last step is then to build the cepstral vectors is to apply the Discrete
Cosine Transform (DCT) to the Mel spectral vectors to decorrelate their components and
further reduce the number of parameters without losing too much relevant information.
By default Librosa uses the DCT-2 transformation, cf. [Logan, 2000].
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Figure 3.6: MFCCs of 29s audio-file

3.4.2 Parameters
The set of parameters is the same as for the Mel spectrogram (cf. Section 3.3.2) and the
most important additional parameter is the total number of MFCCs. The default value
in Librosa is 20, which is also used for this thesis 2.

3.4.3 MFCCs in MIR
Genre- instrument- and mood classification are common use cases for MFCCs, and there
are many approaches, mainly using CNNs, e.g. [Dutta and Chanda, 2021, Wu et al., 2017,
Vishnupriya and Meenakshi, 2018]. Another important topic in MIR research is music
recommendation systems. In [Han et al., 2018], a recommendation algorithm relying
on the eigenvalue similarity of the MFCCs is presented to deal with missing user data.
The preprocessing method is used to apply vector quantization and perform K-means
clustering to determine similarity scores used for the recommendation. The system
was evaluated on a dataset with 1,044 songs and six different emotion categories to
recommend songs from the same category as a given song. In total, the experiments
reached an accuracy of 87% for this task. A rather exotic topic where MFCCs can be
helpful is dance generation for songs. In [Tendulkar et al., 2020], a system was developed
which creates a dance choreography for music with a greedy search algorithm based on
an alignment score that measures the linear association between the input representation

2https://librosa.org/doc/main/generated/librosa.feature.mfcc.html, accessed 15-January-2022
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and a predefined dance matrix, consisting of different dance moves. These movements
and actions are executable in parallel or sequential. A human evaluation showed that
the generated dances are 61% to 99% more creative than different baselines, acting more
or less randomly and synced to the beat.

3.5 Constant-Q Transformation

As for the previous input spectrograms, the CQT transforms an input audio signal into a
time-frequency representation. This transformation should tackle the problem that the
DFT used by the previously described preprocessing methods yields frequency components
separated by a constant frequency difference. Therefore, they are not mapping the tone
scale of Western music. Figure 3.7 displays a CQT spectrogram of the same song as for
the previous spectrograms. The CQT is calculated similar to the FFT but provides a
constant ratio of the center frequency to resolution. The following section describes this
calculation in more detail followed by the most important parameters where the default
values of Librosa are used for the experiments 3. The last subsection presents recent
research using CQT in music autotagging and auto-transcription [Brown, 1991].

Figure 3.7: CQT of 29s audio-file

3http://librosa.org/doc/main/generated/librosa.cqt.html, accessed 15-January-2022
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3.5.1 Calculation of CQT
The calculation of the CQT is very similar to the DFT, but to provide the constant ratio
of the center frequency to resolution there are a few crucial differences. The frequency of
the k-th spectral component is defined by:

fk = (21/24)kfmin, (3.6)

where the exponent 1/24 determines the resolution, so now it refers to quarter-tone
spacing, and it would be 1/12 for half-tone spacing. fmin is the minimum frequency
that can be chosen and determines where the frequency information in the spectrogram
begins. The resolution, also called bandwidth ”f equals the sampling rate divided by
the window size for the FFT. These parameters have to be adapted for CQT so that
the ratio of frequency to bandwidth, denoted as Q, to be constant. This relation can be
described by the following equation (for quarter-tone resolution):

Q = f/”f = f/(1 ≠ (21/24))f = 34 (3.7)

Using this constant Q the variable window-function N[k] is defined as followed:

N [k] = S/”fk = (S/fk)Q (3.8)

The final equation for each frequency component X[k] can be now defined by using these
new definitions on the FFT. As for the other spectrograms, the default window function
W[n] is the Hamming window (cf. Equation 3.4). Since the number of terms varies with k,
the sum is normalized by dividing it by N[k], which leads to the following final equation:

X[k] = 1
N [k]

N [k]≠1ÿ
n=0

W [k, n]x[n]exp(≠j2fiQn

N [k] ) (3.9)

The following subsection lists the most important parameters for the calculation by
their name in Librosa and their value for the experiments conducted in this study
[Brown, 1991].

3.5.2 Parameters
hop_length

As for the STFT, the hop-length defines the distance between the start of two adjacent
FFT windows. This determines the number of columns that increases when choosing a
smaller value or decreases for higher values. So higher values provide a better temporal
resolution but also require more space. Librosa uses a value of 512 by default.
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fmin

Defines the minimum frequency where the CQT starts. This value can be chosen
depending on the individual use case. The default value of 32.70Hz already provides a
good starting point for music-classification tasks because this is approximately where the
human perception of sound starts [Görne, 2008].

bins_per_octave

The number of bins per octave. It determines the frequency resolution of the CQT, e.g.,
12 is used for half-tone resolution, 24 for quarter-tone, etc. For the experiments, 12 is
used, to match the size of the Mel spectrogram and increase comparability.

n_bins

The number of total frequency bins. Together with the bins_per_octave and the fmin
parameters, determines the total frequency-bandwidth covered by the CQT. In order
to get the same size as for the Mel spectrogram, 96 bins are used, so with 12 bins per
octave, there are 8 octaves from 32Hz to 8,000Hz in the resulting spectrogram.

3.5.3 CQT in MIR
The CQT transformation is commonly used for automatic music-transcription systems
as presented in [Meng and Chen, 2020], which uses both MFCCs and CQT as input. It
uses a CNN for classification and trains the network with a monophonic dataset of 2,000
audio samples of different instruments. MFCCs are used for timbre classification to
recognize the instrument, and CQT is used for pitch classification. Since only monophonic
training- and test data were used, the system reached very good prediction-accuracies
for instrument- and pitch classification of 0.9394 and 0.9472, respectively. Comparing
different time-frequency representations for environmental sound classification using CNNs
in [Huzaifah, 2017] CQTs reached results close to Mel spectrograms and outperformed
STFT and MFCCs. (For more information, see Section 4.1.2)
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CHAPTER 4
Datasets

For the purpose of this study, two pre-tagged music datasets are used, MagnaTagATune
(”MTAT”) [Law et al., 2009] and MTG-Jamendo (”MTGJ”) [Bogdanov et al., 2019c].
One main selection criteria for the datasets is that they contain tags belonging to all of
the three different categories ”genre”, ”instrument” and ”mood” which seem to be the
most important ones for music auto-tagging. One could also name ”artist” as another
important category, but since the occurrence of the corresponding tags would, in most
cases, be very low, it is not used [Bertin-Mahieux et al., 2010, Marques et al., 2011].
Since both datasets are commonly used in music autotagging research, there are many
reference values, i.e., for the classification performance for various deep-learning models,
as shown in the following subsections. The experiments are evaluated on MTAT to
answer the research questions, validate those results. To ensure a better generality they
are additionally run on MTGJ afterward. The two datasets are discussed in more detail
in the following sections. Finally, other popular datasets for music autotagging are briefly
presented.

4.1 MagnaTagATune

The datasets were created in the course of a game called TagATune, which launched in
May 2008 [Law et al., 2007]. It collects music tags from players, packaged as a two-player
online game. The game´s objective is to annotate a piece of music with a set of tags and
then, after seeing the tags of the other player, to decide if he or she had the same song
to annotate or not, which can change randomly for each round. When no other player is
available, the player is paired with a computer bot that uses recent user annotations or
generates them by an algorithm. Ultimately tags are accepted for a particular track if
more than two players independently agree on them [Law et al., 2009].
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4.1.1 Description
MTAT consists of 5,223 songs, divided into 25,863 song-chunks with a length of 29 seconds
and a sampling rate of 16kHz in the mp3-format. The audio signals are monophonic and
have a bit rate of 32kB/s [Güçlü et al., 2016]. Compared to standard CD-quality with a
sampling rate of 44.1kHz at 16 bit, which results in a bit-rate of 1411.2kB/s for a stereo
signal, this is relatively low quality. It is observable auditorily that the sound quality of
the audio files is relatively poor, which is also stated in [Gus Berry, 2021] that below a
bit-rate of 90kB/s, one can hear a significant deterioration in the audio signal quality.
The worse quality will probably affect the classification performance but significantly
reduce the file size, which can benefit memory consumption and classification speed. This
may be an advantage for researchers who want to compare their results with others but
can be problematic for production applications [Sinclair, 2000].

Each song-chunk provides binary annotations of 188 tags, belonging to genres like
”classical”, ”techno” or ”rock”, to instruments like ”guitar”, ”strings” or piano ”, to
moods like ”slow”, ”loud” or ”soft” and some to none of them like ”solo” or ”english”.
Many of those tags are just synonyms for each other so in a first preprocessing-step tags
such as ”choir” and ”choral” or ”horn” and ”horns” are merged, resulting in a logical
or-connection of the merged labels.

Figure 4.1: Frequency of tags in the MTAT dataset

The number of occurrences of each tag in all song-chunks after tag-merging is depicted
in Figure 4.1. We can observe that this number is unequally distributed, and tags
like ”guitar” occur nearly 100-times more often than, for example, ”clarinet”. This
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may lead to poor prediction performances for less frequent tags because it is hard for
a DL model to generalize classifications learned from 50 training samples compared
to 5,000. To overcome this problem, only the top 50 tags are used for training and
classification which is a common approach in numerous other studies [Kim et al., 2018,
Choi et al., 2016, Lee and Nam, 2017]. This results in 17 genre-, 22 instrument-, 9 mood-
and two uncategorized tags. For evaluating each category, the number of average song-
chunks per tag for that category can also be an important indicator to understand and
interpret the results better. As shown in Figure 4.2, genre and mood tags have a similar
average number of song-chunks, whereas instruments have about a third more. This
could slightly influence the classification performance in favor of instrument tags since
more training samples are available. However, the training-set size is only one of many
factors. For example, it also heavily depends on the input representation of the songs
or the semantics of the categories and the tags itself. This will be further discussed in
Chapter 7.

Figure 4.2: Average number of song-chunks per tag for each category - MTAT

The datasets are structured into 16 different folders of approximately the same size. All
song chunks for each song are located in the same folders. A common approach for
data-splitting is to use the first twelve folders as train-, one as validation- and three as
test-set [Won et al., 2020]. To use the same strategy for both datasets, a 60:20:20 data
split is used, which leads to a slightly smaller train- and test-set than in some reference
studies using MTAT and which seems to be a popular approach in DL. This data split
is also used for the predefined splits of MTGJ and is, therefore, a good reference value
[Bogdanov et al., 2019c]. Important to note is that the dataset must not be randomly
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shuffled before splitting because otherwise, the results get distorted when chunks of the
same songs are present in different data splits.

4.1.2 Previous findings

Since the dataset has existed for over a decade now and there are only a few comparable
alternatives for music autotagging, it has become one of the primary reference datasets in
this research area. Apart from music autotagging, there is some research regarding music
similarity for recommendation systems [Wolff and Weyde, 2012, Wolff et al., 2015]. In
[Nam et al., 2015], a two-stage learning model is presented, using unsupervised-learning
procedures for preprocessing followed by a Dense Neural Network (DNN) on the extracted
bag-of-features. This resulted in ROC-AUC scores ranging from 0.845 to 0.888 for
the different experiments. An alternative approach to CNNs with the commonly used
preprocessing methods in MIR was used in [Song et al., 2018], where scattering transform
as preprocessing method served as input for an RNN, resulting in an ROC-AUC score
of 0.909. A more extensive evaluation of CNN-based music auto-tagging models was
conducted in [Won et al., 2020]. The ROC-AUC and PR-AUC scores range from 0.8703,
resp. 0.3625 for a Convolutional Recurrent Neural Network (CRNN) up to 0.9129,
resp. 0.4614 for a short-chunk CNN with residual connections. In total, twelve models
were evaluated and compared, and the results are summarized in Table 4.1. Compared
to other recent studies, the PR-AUC scores are significantly better. For example, in
[Pons et al., 2018], a ROC-AUC of 89.05 and a PR-AUC of 34.92 were reported for a
waveform model and 90.40 and 38.11 for a spectrogram model, respectively. A reason
for the significantly better PR-AUC results in [Won et al., 2020] could be a different
preprocessing and subset creation of the data, but the exact steps are not stated there.

Methods MTAT MSD MTG-Jamendo
ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

FCN 0.9005 0.4295 0.8744 0.2970 0.8255 0.2801
FCN (with 128 Mel bins) 0.8994 0.4236 0.8742 0.2963 0.8245 0.2792
Musicnn 0.9106 0.4493 0.8803 0.2983 0.8226 0.2713
Musicnn (with 128 Mel bins) 0.9092 0.4546 0.8788 0.3036 0.8275 0.2810
Sample-Level 0.9058 0.4422 0.8789 0.2959 0.8208 0.2742
Sample-Level + SE 0.9103 0.4520 0.8838 0.3109 0.8233 0.2784
CRNN 0.8722 0.3625 0.8499 0.2469 0.7978 0.2358
CRNN (with 128 Mel bins) 0.8703 0.3601 0.8460 0.2330 0.7984 0.2378
Self-attention 0.9077 0.4445 0.8810 0.3103 0.8261 0.2883
Harmonic CNN 0.9127 0.4611 0.8898 0.3298 0.8322 0.2956
Short-chunk CNN 0.9126 0.4590 0.8883 0.3251 0.8324 0.2976
Short-chunk CNN + Res 0.9129 0.4614 0.8898 0.3280 0.8316 0.2951

Table 4.1: Performance evaluation results of CNN-models in [Won et al., 2020]
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4.2 MTG-Jamendo
MTGJ includes only royalty-free music for commercial use, which is not the case for
MTAT or the MSD (cf. Section 4.3). A subset of the annotations is gathered from an
open API, but it is not stated exactly how the rest was labeled [Bogdanov et al., 2019c].

4.2.1 Description

The dataset contains 55,709 full-length songs of 3,565 different artists. Every song
is at least 30s in length and 224s on average, resulting in 3,777 hours of audio. The
sampling rate is 44.1kHz, encoded in stereo-mp3, and the songs have a total bit rate
of 320kB/s. Since this is a very high audio quality, the dataset has a size of 509GB
which is a considerable high value, especially for dealing with multiple DL models
and preprocessing methods [Bogdanov et al., 2019c]. To reduce the size significantly,
the audio is downsampled to 16kHz like MTAT, resulting in a bit rate of 127kB/s.
Furthermore, for this study, only the first 29s of each audio segment is used, which
strongly reduces training- and test-data size. Since the experiments include 25 different
combinations of CNN models and preprocessing methods, this is a necessary preprocessing
step to evaluate them in a reasonable amount of time. The downside of those reductions
in quality and quantity of the dataset is that classification performances worsen and
the comparability to previous studies is only possible to a limited extent. However, the
purpose of this work is not to reach new state-of-the-art results but rather to compare
the different preprocessing methods to each other.

In total, there are 195 different tag annotations for each song, each belonging to one of
the three categories ”genre”, ”instrument”, or ”mood”. The set of tags is already cleaned
up and does not contain tags with the same meaning since the dataset´s creators already
performed an extensive re-mapping of them [Bogdanov et al., 2019c].

Figure 4.3 depicts the number of songs for each tag. The distribution is very similar to
MTAT, and it is unequally distributed. Therefore, as suggested in [Bogdanov et al., 2019c],
only the top 50 most frequent tags are used for the experiments. There are 31 genre-,
14 instrument- and 5 mood-tags. Taking a more detailed look into the numbers, it is
essential to note that genre- and instrument tags appear much more often than mood tags.
Figure 4.4 compares the average song number per tag for each category and underlines
this observation. As stated before, this could affect the classification performance to the
disadvantage of mood tags, but it is only one of several factors. In Chapter 7, this will
be further discussed.

The Github-Repository of MTGJ [Bogdanov et al., 2019c] contains all the music data
and provides a collection of useful scripts for preprocessing, including five predefined
random dataset splits. They ensure that no track appears in more than one subset,
tracks of the same artists are only present in one subset, the same tags are present in all
subsets, and that there are at least 40 and 20 tracks from 10 and 5 artists for each tag
in all subsets, respectively. The split ratios are approximately 60:20:20, and to ensure
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Figure 4.3: Frequency of tags in the MTGJ dataset

Figure 4.4: Average number of song-chunks per tag for each category - MTGJ
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better comparability to recent research, the first of the given sub-splits is used for the
experiments [Bogdanov et al., 2019c].

4.2.2 Previous findings

There are several papers [Dipani et al., 2020, Gerczuk et al., 2020] regarding Emotion
and Theme Recognition in Music because the authors of MTGJ have been organizing
research challenges for this topic since 2019 [Bogdanov et al., 2019b]. The creators of
the dataset provide some baseline results for different subsets of the database for which
they used a simple 5-layer CNN with 3x3-filters proposed in [Choi et al., 2016]. The
evaluation for all 195 tags with all tracks leads to ROC-AUC score of 0.7197 and a
PR-AUC score of 0.736. The latter one is rather low because the great majority of tags
are very sparse and therefore hard to predict. The evaluation of the top-50 tags shows an
ROC-AUC score of 0.7549 and a PR-AUC score of 0.1924. Important to note here that
only one centered 29.1s audio segment per song was used here as well, which leads to good
comparability to the results of this study. However, for this baseline, full audio quality
was used compared to the down-sampling to 16kHz for the experiments of this study
[Bogdanov et al., 2019c]. The results in [Won et al., 2020] discussed in Section 4.1.2 and
depicted in Table 4.1 show significantly higher ROC-AUC and PR-AUC values for MTGJ.
This might be because the full songs are used there, but it is not precisely stated if this
is the case. Results for ROC-AUC and PR-AUC range from 0.7978 and 0.2358 up to
0.8324 and 0.2976, resp.

4.3 Other datasets
There are numerous different music datasets annotated with either genre-, mood-, or
instrument tags. However, only a few contain annotations for all three categories covered
in this section. A small but accurately annotated dataset is Cal500. It contains 500
songs annotated with 135 musically-relevant tags, spanning from instruments, genres,
and emotions to song concepts, describing, for example, the acoustic qualities of the
recording and usage terms, i.e., in which personal surroundings this song could be
appropriate. The tags are annotated manually and checked by three people, and there
is a version with 10,000 songs as well, but it contains only the annotations and no
song data [Turnbull et al., 2007]. A very popular dataset in MIR is the MSD which
was created to help researchers transfer MIR technologies into the commercial world
by providing a vast dataset. As the name says, it contains metadata for one million
popular music tracks from 44,745 unique artists. There are many variations and subsets
available online, like the Last.fm dataset that consists of 943,347 songs from MSD
and is labeled with 522,366 unique tags [Bertin-Mahieux et al., 2011]. A common use
case in music auto-tagging is using MSD as a second reference dataset for testing
the evaluation results on large quantities of songs. A typical combination is to use
MTAT, which is much more lightweight and easier to work with together with MSD
to validate the results [Lee et al., 2017b, Song et al., 2020, Pons et al., 2018]. Other
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popular datasets that do not necessarily provide all of the three tag-categories are FMA,
consisting of 106,574 tracks annotated with 161 genres [Defferrard et al., 2017], Music4All,
consisting of 109,269 songs, annotated with genre- and mood tags [Santana et al., 2020]
and AcousticBrainz, which only contains metadata for genre annotations for about two
million songs [Bogdanov et al., 2019a].
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CHAPTER 5
CNN models

The previous section discussed the most important datasets for music autotagging. Most
of the research done on these datasets is based on CNNs. CNNs are one of the most
popular deep neural networks and have become state-of-the-art in many classification
tasks dealing with grid-like topologies, especially in the area of image recognition and
computer vision [Albawi et al., 2017]. As stated in the previous sections, they provide
good results in several MIR-areas, and especially in music autotagging, they are the
most dominant artificial neural network used. In this chapter, the CNN and its main
components are described in more detail, and the five CNN architectures used for the
experiments are presented.

5.1 The CNN structure
The main component of the network is called convolution, which is a linear mathematical
operation between matrices. The other basic layers are the pooling layer, the FC layer,
also called dense layer, and the activation function. The network learns the parameters of
the convolutional filters and the FC layer. At the same time, the pooling reduces the input
size for deeper layers, and the activation function provides the necessary non-linearity
[Albawi et al., 2017]. A typical CNN architecture is displayed in Figure 5.1. In the
following subsections, those components are described in more detail regarding their
functionality, role, and parameters.

5.1.1 Convolution
The primary purpose of the convolutional layer is to extract spatial information, usually
out of a multidimensional array, and generate feature maps that are modified versions
of the original image. For this purpose, one uses convolutional filters applied with the
convolutional operation on the input image, which generate one feature map per filter

33



5. CNN models

Figure 5.1: Typical CNN architecture [Aphex34, 2015]

[Kim, 2017] (cf. Figure 5.1). For a two-dimensional image I as input, this operation can
be expressed through the following equation:

S(i, j) = (I ú K)(i, j) =
ÿ
m

ÿ
n

I(m, n)K(i ≠ m, j ≠ n), (5.1)

where S(i, j) is the resulting feature-map with height and width i and j respectively
and K is the filter-kernel of height m and width n [Goodfellow et al., 2016, p. 322-324].
Figure 5.2 provides a visualization of a sample image I of size 7x7 with a 3x3 filter-kernel
K. K is applied without padding (cf. Section 5.1.1) and a stride of 1 (cf. Section 5.1.1).

Figure 5.2: Convolution example [Mohamed, 2017]

During training, the filter kernels serve as trainable parameters, so there are p = f ú m ú n
parameters in total for a convolutional layer, where f is the number of filter kernels and
m and n are the height and width of the kernels. A common practice is to double the
number of filter kernels after each layer and use pooling to reduce the size of feature maps
to prevent running out of memory which is described in the following section [Kim, 2017].
Beneath the number of filters and the kernel size, the padding and stride are essential
parameters, which are described in the following subsections.
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Padding

Working with convolutions, one important aspect is how to deal with the borders of
the input. This is determined by the padding parameter. There are two basic padding-
strategies, ”valid” and ”same” padding. ”Valid” padding is the simplest form, where no
constants are added to the input and the filter kernel is applied until the edge-values of
the input, leading to a smaller output depending on the input size used in Figure 5.2.
”Same” or also called ”Zero” padding is used, when the output layer shall have the same
size as the input layer. for this, exactly as many zeros are inserted around the input, so
that the size remains the same after the convolution operation [Sewak et al., 2018].

Stride

The stride defines the displacement of the filter kernel after each step and has a default
value of 1 for each dimension. A bigger value means bigger space and less overlap between
the convolutional filter steps. Furthermore, the bigger value leads to smaller output
values and usually more information loss. The stride can be defined for each spatial
dimension separately [Google, 2022].

5.1.2 Pooling

Pooling layers are used to reduce the size of the input array by combining neighboring
pixels to single representative values. As for the convolution, filter kernels of an adjustable
size are used. The two most important variants are mean- and max pooling, which use
average or maximum values, respectively, visualized in Figure 5.3. By default, the stride
for the filter kernels is set the same size as the kernel size itself so that there is no overlap.
The padding works identically as for the convolution, described in Section 5.1.1.

Figure 5.3: Example mean- and max pooling [Jiang et al., 2020]
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5.1.3 Activation function
To learn complex mappings from the data, neural networks use activation functions.
The type of activation function that is used determines the prediction accuracy of the
neural network. When using linear functions or no functions at all, the networks would
work just like linear regression models. However, for the most real world problems, the
errors possess non-linear characteristics and therefore non-linear activation functions
are preferred over linear ones [Sharma et al., 2017]. To apply the back-propagation
algorithm, those functions need to be differentiable. This algorithm is used for computing
the gradient of the cost function during training of the network. This gradients can then
be used for applying optimization algorithms such as the stochastic gradient descent
to perform learning, cf. [Goodfellow et al., 2016, p. 197-198]. The most important
activation functions include the Hyperbolic Tangent-, the Sigmoid- and different types of
the ReLU function. ReLU is the most commonly used function because of its simplicity
and efficiency. It is defined by:

I
f(x) = x x Ø 0
f(x) = 0 x < 0

(5.2)

and it is used for all non-output function throughout the experiments of this thesis.
For CNNs, the activation function is applied directly after each convolutional layer
[Sharma et al., 2017].

5.1.4 Fully connected layer
After the last convolution- and pooling block, the feature maps are flattened to one
dimension and then fully connected to every neuron of the next layer. For the most basic
CNN architecture, this part of the model can be called the classifier network compared
to the previous feature extraction network. So it uses the extracted features from the
convolutions and generates the final output. The classifier network can be arbitrary
deep but usually contain no more than four layers, depending on the CNN architecture
[Kim, 2017].

5.2 VGG-16
To assess the performances of the different models and input representations on the respec-
tive tag categories, it is important to have a baseline as a reference for each configuration .
For this purpose, the VGG-16 model defined in [Simonyan and Zisserman, 2015] is used.
Around 2015 this model had achieved state-of-the-art results in image-classification tasks,
and compared to the other models, it is a straight-forward deep CNN with 16 layers.

The standard VGG-16 architecture is designed for fixed-size 224x224 input images. Since
this model serves only as a baseline, there are no significant structural changes, only
minor adaptions. As depicted in Figure 5.4, the model consists of five convolutional
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Figure 5.4: VGG16-architecture [ul Hassan, 2018]

blocks, each with several convolutional layers, followed by one FC block. Each convolution
uses a 3x3 filter kernel, and in each block, the same number of filters is used for every
layer, which is 64, 128, 256, and 512 for the last two, respectively. Important to note for
this and all following networks: when speaking of 3x3 or 2x2 filter kernels, this always
refers to the two-dimensional inputs and implies a 3x1 and 2x1 filter for one-dimensional
inputs, respectively, if not stated further. At the end of each convolution block, a 2x2
max-pooling filter is applied to reduce the input size and enable more filters in the next
block. In the last block, the flattened output of the previous convolutional block passes
two FC layers with 4,096 channels each and the output layer with 50 for predicting the
tags [Simonyan and Zisserman, 2015]. ReLU is used as an activation function for all
layers, and dropout- and batch-normalization layers are added after each block to enable
the necessary regularization for the different input representations.

5.3 Squeeze and Excitation Network

This model is based on the sample-level CNN architecture proposed in [Kim et al., 2018],
which outperformed all existing state-of-the-art models for the MTAT dataset in 2018. It
uses one-dimensional raw audio-data as input and consists of 9 basic blocks followed by
two fully connected layers as shown in Figure 5.5. As shown in Figure 5.5, a basic block
consists of a convolutional layer with filter size 3x3, followed by batch-normalization
and a max-pooling layer with filter size 2x2 for 2D and 3 for 1D-input. The outputs
of the last three blocks are each max-pooled globally and concatenated to serve as
input for the FC layers. The Sigmoid function is used as an output function to provide
results between 0 and 1. To increase the representational power of each block, Squeeze
and Excitation (SE) blocks are used as an extension of each basic block, as shown in
Figure 5.5c. These blocks shall improve the learning of convolutional features by explicitly
modeling channel inter-dependencies to increase the sensitivity to informative features.
The squeeze operation takes the output of a basic block U œ RT ◊C as input and applies
global average pooling on it to compress the global spatial information of each channel
into a single channel descriptor. Global average pooling is preferred to global max pooling
because experiments in [Hu et al., 2018] showed that the performance of SE blocks is
robust to the choice of the specific aggregation operator and that it slightly outperformed
global max pooling. Formally, this can be described by the equation
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Figure 5.5: Squeeze and Excitation Network (SENet)-architecture
overview [Kim et al., 2018]

zc = 1
T

Nÿ
i=1

uc(i), (5.3)

with uc denoting the different filter channels. The result zc œ R1◊C then serves as input
for the excitation operation, where channel-wise dependencies should be captured to use
the information aggregated before. This step consists of two fully-connected layers with a
ReLU activation function and an amplification-factor – to allow variation in the capacity
of SE-blocks and then the Sigmoid-function to form the output Sc œ R1◊C . Finally,
the former output of the basic-block U get scaled with the output of the SE-block by
simple channel-wise multiplication of Sc and U [Kim et al., 2018]. Due to the relatively
deep layer architecture, the model does not work for all used input representations
without minor adaptions because the pooling operation reduces the dimensionality in
each layer. To overcome this problem, more compressed preprocessing methods like
MFCCs horizontal filter kernels, with a size of, for instance, 1x2 are used for several
layers.
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Figure 5.6: The Musicnn-architecture [Pons and Serra, 2019]

5.4 Musicnn

Musicnn is a pretrained CNN for music autotagging and is reproduced and slightly
adapted for this thesis. As depicted in Figure 5.6, the architecture is divided into
three parts: a musically motivated CNN frontend, a midend consisting of three densely
connected convolutional layers, and a backend using temporal pooling. The model
originally uses Mel spectrograms with a length of three seconds and 96 Mel-bins as input
[Pons and Serra, 2019].

Frontend Experiments in [Pons et al., 2016, Pons et al., 2018] suggest that the use of
musical domain knowledge in the architectural design of the network can increase the
classification performance, especially for smaller datasets. Therefore, the frontend uses
convolutional filters with different horizontal and vertical kernels to learn the timbral
and temporal patterns present in the spectrograms. For Mel spectrogram inputs, for
example, kick-drum-patterns are captured by 7x38 filter kernels. 7x67 filters serve for
instruments with a broader frequency spectrum like string ensembles. To capture different
time-scale representations, the model uses horizontal filters with different sizes, i.e., 128x1,
64x1 and 32x1 [Pons et al., 2018]. The sizes of the timbral filter kernels are adapted for
all other two-dimensional input representations and scaled accordingly to capture the
same proportions of the total frequency spectrum. For the one-dimensional input, the
frontend-architecture as proposed in [Pons et al., 2018] is used, consisting of seven 3x1
convolutions, combined with max-pooling layers.

Midend Three densely connected convolutional layers extract higher-level represen-
tations from the low-level features of the frontend. As proposed in [Huang et al., 2017],
densely connected means that each layer is connected with every other layer in the
network via concatenation of each input with the previous outputs. However, the
Musicnn-implementation is slightly adapted and uses residual connections between the
layers, so summation is used instead of concatenation. Only the output layer concatenates
all previous layers of the midend.

Backend The backend uses temporal pooling for the final output. It combines average-
and max-pooling over the temporal dimension of the output of the midend concatenates
their output-matrices and then uses two dense-layers with finally a Sigmoid output-
function for the final prediction [Pons et al., 2018].
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5.5 ResNet
With increasing depth, the classification performance of CNN models has improved
significantly over the last few years in image classification and other visual recognition
tasks. The downside of this is the increased complexity and difficulty in training. The
usage of residual connections allows going deeper and reducing complexity at the same
time [He et al., 2016].

Figure 5.7: Residual connection: building block [He et al., 2016]

A residual building block, as depicted in Figure 5.7, can formally be defined as:

y = F(x, Wi) + x. (5.4)

The function F(x, Wi) represents the residual mapping, and x and y denote the input
and output matrices of the building block. When using two layers per residual block, as
in Figure 5.7, F = W2‡(W1x) where ‡ denotes the activation function, i.e., ReLU and
the bias. After the element-wise summation of F + x, the second activation function is
applied. The number of layers used for residual blocks can vary [He et al., 2016].

For this study, a ResNet-101 model is used, consisting of 101 layers. For this, the
implementation of [He et al., 2016] was adapted for Tensorflow. The basic building block
here is a Bottleneck-layer which consists of a 1x1, 3x3, and another 1x1 convolution and
a residual connection from the input to the output of the last layer. The 1x1 layers
reduce the input dimensions about four times for the 3x3-layer and increase it again
afterward, which is an efficient way of creating deeper networks without running out of
memory. After the first convolutional layer with a 7x7 filter kernel to downsize the input,
the model consists of 3 bottleneck-blocks with 64 filter channels, 4 with 128, 23 with 256,
and 3 with 512, followed by the Sigmoid output layer.

5.6 Dilated CNN
This section presents the developed dilated CNN during the experiments in Section 6.3.4.
Therefore, this is one of the main contributions of this thesis. Dilated convolutions are
widely used for image segmentation and getting more attention for image classification.
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They enable to use wider filter kernels without increasing resource consumption. Using
images as input, a dilation factor l=2 can be described as ”skipping” one pixel between
each other in the filter-kernel (l=1 means no dilation). Figure 5.8 visualizes the projection
of the dilated convolution to the output. With increasing l, the number of pixels between
each other rises by the same number, so l=4 will skip 3 pixels and result in a total kernel
width of 9, using a 3x3 filter-kernel [Lei et al., 2019].

Figure 5.8: Dilated Convolution with l=2 [Tsang, 2018]

Dilated CNNs can be interesting for music autotagging because genre- and especially
mood-tags intuitively depend stronger on longer audio segments than on short ones.
Therefore, using bigger filter kernels might help extract features that are relevant for the
classification. However, the bigger the filters are, the higher the resource consumption of
the network. Since the audio input representations usually have quite a big size this is an
essential factor for designing a CNN. Dilated convolutions can help capture such features
and still keep resource consumption at an acceptable level. For example, a filter kernel
of size 21x21 can be replaced by a dilated kernel of size 5x5 and a dilation factor of 5.
This decreases the filter size by over 94% and still captures long-term features. However,
while the training speed increases and memory consumption decreases, the classification
performance might also decrease due to sparser filters. To tackle this issue, stacked
dilations can be used to increase the resolution of the dilated filter kernels and still keep
the resource consumption as low as possible. In [Lei et al., 2019], an architecture using
six stacked convolutional layers is used for image classification. They apply pooling after
each layer and use different dilation rates between 1 and 5. With this, the accuracy
increases, and the training time decreases simultaneously compared to the traditional
CNN. An important factor for the performance of stacked dilations is the choice of the
dilation factors to avoid gridding effects which can cause important loss of information
for the classification. To facilitate finding the best dilation rates in [Schuster et al., 2019],
parallel stacked dilations are used for dense matching of pixel positions in images to find
pixel-wise correspondences across different images. For this purpose, one stacked dilated
convolution block consists of four parallel convolutions with different dilation rates from
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1 to 4, each with the same input. Their output is concatenated and serves as input for
the next block. The architecture built from these building blocks outperformed recent
heuristic image descriptors in terms of accuracy and robustness [Schuster et al., 2019].

To evaluate the effects of dilated CNNs, the Musicnn model described in Section 5.4 is
used as a basis and is adapted accordingly. It is chosen because it is expected to bring
the best results of all investigated models and also because of its specific architecture.
Only the frontend of Musicnn is adapted for the dilated CNN, while the rest of the model
architecture stays the same. The frontend is used for the extraction of temporal and
timbral features. It contains big filter kernels (e.g., 128x1 or 7x38), leading to rather big
memory consumption and a longer training time. The dilations can be used to capture
those long temporal and timbral features while reducing the resource consumption and
training time. Figure 5.9 displays the basic architectural layout of the new frontend for the
dilated CNN. The first three convolutions Conv1-3 are used to extract temporal features,
Conv4-7 for the timbral features. Then, the all outputs are concatenated and serve as
input for the midend. All convolutions at the first level have 26 filter kernels and 51 on
the second one. The same dilation rates are used for the respective stacked layers. As
described for the stacked dilated convolution block in [Schuster et al., 2019], the outputs
are concatenated after the first parallel convolutions before the second convolution block
is applied.
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Figure 5.9: Dilated CNN architecture for 2D-input

For the one-dimensional input, the Musicnn frontend was adapted differently. It consists
of seven sequential stacked dilated convolutions to reduce the input size sufficiently. Each
of those blocks consists of four parallel convolutions stacked on two levels displayed in
Figure 5.10.

This dilated CNN and the other described models will be used throughout all experiments
described in the following chapter.
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Figure 5.10: Dilated CNN block for 1D-input
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CHAPTER 6
Experiments

This chapter describes the concrete methodology and procedure to answer the research
questions presented in Section 1.2. Afterward, the experiments are defined in detail using
the models presented in the previous Chapter 5.

6.1 Methodology
To answer the first two research questions (cf. Section 1.2) a comparative analysis is
conducted. Five different CNNs are trained on the five audio input representations, and
their results are evaluated over all tags and for each tag-category separately. For the last
question regarding the usefulness of dilated CNNs for music autotagging, an existing
model (Musicnn, cf. Section 5.4) is adapted accordingly to exploit the advantages of the
dilated convolutions. The experiments are conducted on two datasets to provide a better
generality of the results, described in Chapter 4.

The choice of the five input representations described in Chapter 3 is based on recent
research on different topics of MIR. The main selection criteria are that the respective
preprocessing method plays a remarkable role in recent studies and that the different
methods chosen vary in their generation and size. For the CNNs, it is essential that
they use different approaches and different input lengths (for further explanations, see
Chapter 5).

The MTAT dataset, described in Section 4.1 in more detail is mainly used during
the training pipeline development, tuning of the hyperparameters of each input-model
combination and for the experiments with the dilated CNN. Audio snippets of either
three seconds or the full 29.1 seconds are used for both datasets, depending on the
model. After the training pipelines basic setup, the hyperparameters for each input-
model combination are tuned on the MTAT dataset. The tuning is critical since the
different input representations require a different configuration and size of the model.
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Regularization with dropout- and batch-normalization layers is used to adapt the models
for the respective preprocessing methods and prevent them from over- and underfitting.
The tuned parameter values are then used as a starting point for the second dataset
MTGJ and are only adapted in case of poor classification results. For the evaluation,
ROC-AUC and PR-AUC are used to compare the classification performances, which seem
to be the most commonly used metrics in research on music autotagging [Pons et al., 2018,
Won et al., 2020]. They are described in more detail in Section 6.2.3. Afterward, all
models are trained with those hyperparameters values on all input representations. Each
configuration is trained and tested seven times on MTAT and five times on MTGJ
using different initialization seeds. During the evaluation, the results of the respective
input representations are compared to each other for all tags and for each tag category
separately to answer the first two research questions. Two-way ANOVA analysis compares
the impact of the preprocessing methods and the models on the results. Furthermore, the
Tukey-HSD range test compares the performances of the different preprocessing methods.
For the evaluation of the dilated CNN, t-tests are used to compare the performance to
the original Musicnn model to investigate the third research question.

6.2 Experiments setup

The experiments are conducted on two computers, a private one with an Nvidia Geforce
RTX 2060 SUPER and the second one from the TU Wien DL cluster with an Nvidia
Geforce RTX 2080 Ti.

The DL pipeline for conducting the experiments is written in Python with Tensorflow.
The most important preprocessing library used for the input representations is Librosa
[McFee et al., 2015] which provides the functionality needed for generating the prepro-
cessing methods. Weights & Biases [Weights-and Biases, 2021] is used to track and
manage all experiments, by logging all configurations and results. Moreover, it provides a
tool called Sweeps which is used for hyperparameter tuning. In the following subsections,
the implementation details for the respective experimentation steps are described: the
preprocessing, hyperparameter tuning, training and testing of the model.

6.2.1 Preprocessing

Before the training of the models starts, the input representations for all audio files are
generated. The exact calculation steps for the investigated preprocessing methods are
described in detail in Chapter 3. For this, the library Librosa is used, which offers a way
to generate and manipulate all common audio input representations [McFee et al., 2015].
The preprocessing is done in advance to prevent a possible bottleneck during the data
loading. All input representations are calculated and then saved to files containing arrays
that can be efficiently loaded during training.
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6.2.2 Parameter tuning

Since one central part of the experiments is to compare the performances of different
input representations on the same models, the problem of the different sizes of the inputs
arises. For example, the STFT representation is approximately 50 times larger than
the MFCCs. Without further adaptions, this would lead to either overfitting the one or
underfitting the other model trained with those preprocessing methods. One way would
be to adapt the models for each input representation and increase or decrease the size
of their parameters. However, to guarantee better comparability, additional dropout-
and batch-normalization layers are used for regularization. For this, the configurations
with smaller input representations are usually regularized stronger than the bigger ones.
Before the training of each model-input combination, the regularization rates and the
learning rate are determined. For the dropout rate, values between 0 and 0.5 are possible,
and for the batch normalization it was only possible to choose if to apply it for all or no
layers. Another regularization method used is L2-regularization but it showed minimal
effect for the experiments, so it is not discussed further here. For this hyperparameter
tuning, the tool ”Sweeps” is used, part of the experiment tracker tool ”Weights & Biases”
used throughout this thesis. Since there are 25 different input-model combinations to
tune, a temporal limit of about one day is set for each combination not to exceed the
time frame of this study. For this purpose, a random parameter search is used. Figure 6.1
visualizes such an example ”Sweep” for the hyperparameter tuning of SENet with Mel
spectrograms.
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Figure 6.1: Example Sweep - SENet with Mel spectrograms
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6.2.3 Training & Testing
In this section, important aspects for the training and testing are described: the optimizer,
batch-loading, early-stopping and evaluation metrics. The optimizer and batch-loading
are considered separately for each dataset.

Optimizer

One of the main difficulties of this study is the high amount of different combinations of
models, input representations, and datasets to train and test.

The Adam optimizer is very efficient and converges fast to a good solution. However,
the Stochastic Gradient Descent (SGD) generalizes better after more training epochs. In
[Won et al., 2019] they propose a hybrid approach to get good results with Adam quickly
and then apply SGD for fine-tuning and a good generalization. This technique is used
for the MTAT dataset where the first eight epochs Adam is used, and then it switches to
SGD with one fifth of the original learning rate. Since the MTGJ dataset has double the
size and a much longer training time, it only uses Adam optimizer until convergence. The
worse generalization is taken into account because this dataset only serves to validate the
findings of the MTAT dataset, and there is no need to compare the results with recent
studies. Since this strategy is used for all configurations of MTGJ, they should be good
enough to compare them with each other. For both Adam and SGD, a learning rate
scheduler reduces the learning rate step-wise after all 2 to 4 epochs by 50% to 75%. The
exact step-sizes and values have been found heuristically by experimenting with a few
configurations.

Batch-loading

All configurations use the maximum batch-size possible on the respective GPU to reduce
the execution time as much as possible. Since the highest value is 64 for MFCCs on
different models, there is little to no effect on the classification performance when reducing
the batches tested heuristically. Therefore, the advantage of the execution time weights
out possible improvements of classification performance with the additional tuning of
this parameter.

The separate chunks are taken randomly from the full audio sequences for the models
that use chunk-level inputs with audio snippets of three seconds. For the MTAT dataset,
ten chunks per audio file are used for each epoch, and they are chosen randomly but
uniformly across the whole file length. There are ten times more training samples in
this case, which significantly increases the training time (although bigger batch sizes can
be used due to the smaller input sizes). The problem with this is that it is harder to
detect plateaus and stop the training early because the model is validated only after
every epoch. For MTAT, this is still acceptable, but due to the bigger size of MTGJ,
it is necessary to detect this stagnation as soon as possible to limit the training time.
Therefore, for this dataset, only one random chunk per audio file is used for each epoch,
resulting in approximately three to four times higher amount of total epochs but enabling
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recognizing plateaus earlier. For testing chunk-level models, a majority voting of all ten
randomly but approximately uniformly taken chunks is used to determine the respective
tags on both datasets.

Early-stopping

To limit the training time as much as possible, early stopping is used. It is implemented
so that training stops if the sum of ROC-AUC and PR-AUC have not reached a new
peak for 3 or 6 epochs (for MTAT and MTGJ, respectively).

Evaluation metrics

In order to provide good comparability to other studies, ROC-AUC and PR-AUC are used
as evaluation metrics [Pons et al., 2018, Won et al., 2020]. The optimizers are configured
to maximize the sum of these two values. The metrics are calculated over all tags and
for each category separately to evaluate the models accordingly.

AUC stands for Area Under the Curve, so the ROC-AUC is the area under the ROC
curve, a commonly used technique to visualize the performance of classifiers. This graph
is generated by plotting the true positive rate on the y-axis against the false positive rate
using different thresholds for the classification results. Both rates range between 0 and 1,
so the ROC-AUC is 1 at maximum as well. A value of around 0.5 is achieved by random
classification, and values below should usually not occur (otherwise, the results could
just be inverted to reach values higher than 0.5). The true positive rate is defined by:

TPR = TP

TP + FN
(6.1)

and the false positive rate by:

FPR = FP

FP + TN
, (6.2)

where TP stands for the number of True Positive predictions, FN for false negative, FP
for false positive and TN for true negative [Fawcett, 2004].

The PR-curve plots the Precision on the y-axis against the Recall on the x-axis and is
thresholded like the ROC curve. The precision is defined by:

P = TP

TP + FP
(6.3)

and the Recall by:

R = TP

TP + FN
(6.4)
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The precision can be interpreted as how many tags that are assigned are appropriate for
their songs and the Recall as how many tags are assigned correctly of the total number
of tags that should be assigned [Powers, 2011]. Important to note is that unlike for the
ROC-AUC, the PR-AUC value might be smaller than 0.5. It makes sense to use both
metrics for evaluation because the PR-AUC score can be more informative on highly
skewed datasets, i.e., when there are many songs with only very few tags (which is the
case for both datasets) or with nearly all tags assigned [Davis and Goadrich, 2006].

6.3 Experiments description

This section introduces the experiments that are conducted to answer the respective
research questions. For the first part, it is described how the models training, testing, and
evaluation are prepared and conducted while each experiment refers to one dataset. The
experiments in the second part are about developing a dilated CNN from the Musicnn
model described in Section 5.4.

6.3.1 Part 1: Comparison of input representations

6.3.2 Experiment 1.1: Comparison on MTAT

This experiment aims to train and test all models described in Chapter 5 with all input
representations described in Chapter 3 on the MTAT dataset to answer the first two
research questions. The first step is to tune the hyperparameters for all configurations
as described in Section 6.2.2. Afterward, those configurations are used to train and
test those models as described in Section 6.2.3. For each configuration, seven runs with
different initialization seeds are conducted. Two-way ANOVA analysis is used to assess
the impact of the models and preprocessing methods on the results. The Tukey-HSD
range then compares the preprocessing methods.

6.3.3 Experiment 1.2: Comparison on MTGJ

The results of experiment 1.1 are validated on a second dataset with the same models
and configurations. For this, MTGJ is used, and apart from that, the experiment is
equal to the previous one except for the tuning phase. The hyperparameters found
in the previous experiment are used as a starting point to save time, as discussed in
Section 6.2.2. Another important difference to experiment 1.1 that affects the evaluation
of the results is that they will probably be worse than in recent studies because of
the limited hyperparameter tuning, the lower audio quality, and the training-set size
reduction as described in Section 4.2. For each configuration, five runs with different
initialization seeds are conducted, and as for the previous experiment, Two-way ANOVA
analysis and Tukey-HSD range test are used for evaluation.
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6.3.4 Part 2: Dilated CNN
Experiment 2.1: Dilated CNN with ResNet

Experiments 2.1 and 2.2 aim to use dilated convolutions to extend an existing model
designed for music autotagging so that either the classification performance increases,
the training time decreases (while the classification performance stays the same), or
both. For this, Musicnn, described in Section 5.4, is used because it provides the best
results of all investigated models and reached state-of-the-art performances in 2019
[Pons and Serra, 2019]. It consists of two parts, a frontend to extract temporal and
timbral features and a backend for the classification. 1

In this first experiment, a dilated ResNet developed in [Yu et al., 2017] is used as backend
instead of the original Musicnn backend. The idea is that it may better classify the
extracted features from the frontend than the original backend, cf. [Yu et al., 2017]. As
for the original ResNet, described in Section 5.5, there are different variations, and here
the variant drn_d_105, available at [Yu, 2020], is used. In the frontend, all convolutions
are extended with dilation to lighten up the filter kernels while providing as much
information as possible to reduce training time. The model is developed using the MTAT
dataset. For simplification, the dilated R, esNet is only trained and tested with MFCCs,
Mel spectrogram, and raw waveform. As for all models in the following experiments,
the model is extended with dropout and batch-normalization layers. Those parameters
are tuned according to the description in Section 6.2.2 for each input representation.
Afterward, the model is trained, tested, and evaluated if it can improve training time
and classification performance of the original model.

Experiment 2.2: Dilated CNN with parallel stacked dilations

As for the first experiment, the goal is to develop a dilated CNN by adapting Musicnn,
described in Section 5.4. Now the frontend is replaced with stacked parallel dilated
convolutions which reached good results on image matching in [Schuster et al., 2019].
MFCCs are used during experimentation to accelerate the training time due to their
small size. The final architecture is described in Section 5.6. Again, the hyperparameters
are tuned, and the model is trained and tested on both datasets. To compare the created
dilated CNN with the original model, five and seven runs with different initialization seeds
are conducted on MTAT and MTGJ, resp. T-tests are used to assess the performance
difference for each preprocessing method for the evaluation.

1This is a simplification of the actual network architecture which contains a midend too, which is
included in the backend here.
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CHAPTER 7
Results and Discussion

After conducting the experiments, the results are presented and discussed in this chapter.
The relevant evaluation metrics are described in Section 6.2.3: the ROC-AUC, the
PR-AUC, and the training time per epoch. The first part in Section 7.2 presents the
comparison of the input representations, and the second part in Section 7.1 deals with
creating the dilated CNN.

7.1 Part 1: Comparison of input representations
7.1.1 Experiment 1.1: Comparison on MTAT
In the first experiment, the classification performances of all input representations on all
models are compared on MTAT in the first subsection to make statements about their
suitability for music autotagging on CNN models in general and for the individual tag
categories. Afterward, the results are evaluated for each tag category separately.

Comparison over all tags

Figure 7.1 displays the ROC-AUC scores for all seven runs of each input representation on
each model, visualized in different colors. Additionally, it shows the average classification
performance per preprocessing method with the brown squares. The distribution of the
PR-AUC scores looks very similar, as shown in Figure 7.2. From looking at the diagrams,
one can see that the dilated CNN dominates the other models for the audio spectrograms,
closely followed by Musicnn. The results for all other models suggest that it depends
on the model and input representation combination. It is also hard to tell which input
representation performs the best overall.

Two-way ANOVA is used to make further statements about the results on the factors
model and input representation and which input representations outperform others. The
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Figure 7.1: ROC-AUC scores for all preprocessing methods and all models on MTAT

statistical software R and the Scipy library in Python are used to calculate the analysis
and check its assumptions. For this, only the ROC-AUC scores are used. The aictab()
function in R is used to find the best ANOVA model. Two models are tested, one
considering the interaction between the two independent variables model and input and
one without that interaction. The output of the aictab() function suggests that the
interaction model is preferable since it shows a lower ”Akaike information criterion” score
which is a quality test for models [Bevans, 2020]. Next, the assumptions for the ANOVA
analysis are checked using this model. The independence of the observations assumption
is met due to the experimentation design. Each run-configuration for the different model
and input representation combinations is independent of the others. The Levene test
for equality of variances is applied to the data to check for the homoscedasticity of the
values. The p-value is < 1e ≠ 05, so there is a strong significance that this assumption is
not met. Therefore, a data transformation is applied to the values, and the following
transformation results in a p-value of 0.1536 for the Levene test: exp(x)10

log10(x) The disadvantage
of this transformation is that it is not possible anymore to make clear statements about
the exact differences between the results. The results of the various significance tests are
the same with and without the transformation. This might be because the sample data
is balanced in terms of the number of samples per group. Therefore, the heterogeneity of
variances may not be that important for the validity of the results.
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Figure 7.2: PR-AUC scores for all preprocessing methods and all models on MTAT

Figure 7.3: Distribution of residuals for Two-way ANOVA on MTAT
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Figure 7.3 shows that the residuals are approximately normally distributed, so the last
assumption is fulfilled too [Kozak and Piepho, 2018].

Source Sum Sq DF MS F p-unc np2
preprocessing_method 2.83E+10 4 7.08E+09 57.64 2.19E-29 0.61
model 3.16E+11 4 7.89E+10 642.13 3.08E-93 0.94
preprocessing_method * model 1.51E+11 16 9.45E+09 76.86 9.08E-64 0.89
Residual 1.84E+10 150 1.23E+08

Table 7.1: Two-way ANOVA results on MTAT with transformation

Table 7.1 displays the results for the Two-way ANOVA analysis. The p-values for the
preprocessing methods and the models both show a strong statistical significance for
those variables and the interaction between them. Therefore, it can be stated that the
model or the input representation influences the classification results and, more crucial,
the combination of them. Due to the data transformation, the sum of squares (Sum Sq)
and the mean squares (MS) are nearly impossible to interpret and very high. The most
interesting values, apart from the p-value, are the partial eta-square effect sizes (np2) for
each source. The np2-values indicate a strong effect of each source on the classification
results. However, the model has the most substantial effect, followed by the interaction
of the model and preprocessing method.

input diff (transf.) p-value (transf.) input diff (untransf.) p-value (untransf.)
MEL-CQT 13926.88 4.92E-06 0.0068 5.11E-07
MFCC-CQT 222.24 1.0000 -0.0013 0.8135
RAW-CQT -17197.21 1.18E-08 -0.0044 0.0024
STFT-CQT 19305.97 1.69E-10 0.0074 4.22E-08
MFCC-MEL -13704.64 7.21E-06 -0.0080 2.05E-09
RAW-MEL -31124.09 0 -0.0112 2.85E-14
STFT-MEL 5379.09 0.2569 0.0006 0.9869
RAW-MFCC -17419.45 7.63E-09 -0.0031 0.0651
STFT-MFCC 19083.73 2.68E-10 0.0086 1.35E-10
STFT-RAW 36503.18 0 0.0118 3.12E-14

Table 7.2: Tukey-HSD ROC-AUC results for preprocessing methods on MTAT

Tukey-HSD range test is a statistical procedure to compare the means of each group with
each other. It has the same assumptions on the data as the Two-way ANOVA analysis.
Table 7.2 shows the results without the data transformation to get information about the
absolute difference between the groups and also with the data transformation to validate
or reject those results. The worst overall preprocessing method is the raw waveform which
performs worse than the other methods. It is 0.44% worse than the CQT transformation
with a p-value of 0.0024 and significantly worse for the transformed input with a p-value
of 1.18e-08. Compared to the MFCCs, the raw waveform performs 0.0031% worse, but
with a p-value of 0.0651, so this difference is insignificant for the untransformed input.
However, with the transformed input, there is a strong significance with a p-value of
7.63e-09 that the MFCCs outperform the raw waveform to an equal extent as the CQT
transformation does. Comparing the MFCCs with the CQT transformation, neither of
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both outperforms the other for the transformed input and the untransformed with very
high p-values of 1.00 and 0.8135. As displayed before in Figure 7.1, the former performs
better on all models except for the VGG-16 model than the latter, where it shows a
very poor performance compared to all other input representations. Mel spectrograms in
average perform 0.8% better than MFCCs with a p-value of 2.05e-09 and 0.68% better
than the CQT transformation with a p-value of 5.11e-07. These strong significance
levels are also validated with the transformed inputs. There is no significant difference
between the Mel spectrogram and the STFT with high p-values of 0.9869 and 0.2569 for
untransformed and transformed inputs, respectively. Table 7.3 shows similar results for
the PR-AUC scores, so that it will be not further discussed here.

input diff (transf.) P-value (transf.) input diff (untransf.) P-value (untransf.)
MEL-CQT 4.8898 0.0023 0.0104 1.22E-05
MFCC-CQT -3.4019 0.0743 -0.0009 0.9917
RAW-CQT -14.6395 3.55E-15 -0.0135 1.04E-08
STFT-CQT 4.6687 0.0042 0.0072 0.0057
MFCC-MEL -8.2917 2.39E-08 -0.0114 1.58E-06
RAW-MEL -19.5293 0 -0.0239 0
STFT-MEL -0.2211 0.9998 -0.0032 0.5217
RAW-MFCC -11.2376 1.22E-13 -0.0125 1.01E-07
STFT-MFCC 8.0706 5.66E-08 0.0081 0.0012
STFT-RAW 19.3082 0 0.0207 3.03E-14

Table 7.3: Tukey-HSD PR-AUC results for preprocessing methods on MTAT

input diff (transf.) P-value (transf.) input diff (untransf.) P-value (untransf.)
musicnn-dil_cnn -4834.96 0.3634 -0.0005 0.9938
resnet-dil_cnn -84812.56 0 -0.0269 0
senet-dil_cnn -78691.83 0 -0.0243 0
vgg16-dil_cnn -100118.83 0 -0.0370 0
resnet-musicnn -79977.60 0 -0.0264 0
senet-musicnn -73856.87 0 -0.0238 0
vgg16-musicnn -95283.87 0 -0.0365 0
senet-resnet 6120.73 0.1475 0.0026 1.93E-01
vgg16-resnet -15306.27 4.24E-07 -0.0101 1.32E-13
vgg16-senet -21427.00 1.95E-12 -0.0127 1.54E-14

Table 7.4: Tukey-HSD ROC-AUC results for models on MTAT

Table 7.4 shows the results for the Tukey-HSD range test on the different models. VGG-
16 performs significantly worse than all other models. On average, it performs 1.01%
worse than ResNet and 1.27% worse than SENet with p-values of < 1e ≠ 06 for both
transformed and untransformed scores. There is no significant difference between the
latter two because the p-value is 14.75% for the transformed input. Musicnn and the
dilated CNN significantly outperform all other models with > 2.4% difference. As already
seen in the previous Section 7.2.1, there is no significant difference between those two
models with p-values of 99.38% and 36.34% for untransformed and transformed scores,
respectively.
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Comparison for individual tag categories

To assess the performance of the input representations for the different tag categories, the
Two-way ANOVA analysis is run separately on the respective ROC-AUC scores as well as
the Tukey-HSD range test. For each category, the assumptions for the variance analysis
have to be checked first, and then the results are presented. The model - preprocessing
method interaction model is used for the ANOVA test, as described in the previous
section.

Genre Figure 7.4 shows the distribution of the residuals for the ANOVA model,
which is normally distributed, so this assumption is met. Since there Levene Test for
homoscedasticity shows a significant heterogeneity of variances, the data is transformed
using the following transformation: 1

log10(x) . Analyzing the model diagnostic plots in
Figure 7.5 shows that the model fits the assumption of homoscedasticity. The red lines
representing the means of the residuals have to be approximately horizontally, and the
normal Q-Q plot represents the regression to a perfect homoscedastic model. Therefore,
a close slope of 1 is ideal, which is the case here [Bevans, 2020].

Figure 7.4: Distribution of residuals for Two-way ANOVA on MTAT using genre tags

Table 7.5 shows the results for the transformed ANOVA analysis. It shows very similar
p-values and np2-values for all sources as in the comparison overall tags in the previous
subsection. Therefore, all sources significantly impact the classification performance of
genre tags. Figure 7.6 displays the respective ROC-AUC scores. The Tukey-HSD results
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Figure 7.5: Residual-plots for ROC-AUC on MTAT using genre tags

Source Sum Sq DF MS F p-unc np2
preprocessing_method 513.3274 4 128.3319 78.9064 6.59E-36 0.6779
model 4010.0751 4 1002.5188 616.4105 5.55E-92 0.9427
preprocessing_method * model 1626.0242 16 101.6265 62.4863 6.63E-58 0.8695
Residual 243.9573 150 1.6264

Table 7.5: Two-way ANOVA results on MTAT with transformation for genre tags

analysis for the preprocessing methods is presented in Table 7.6. The STFT performs
equally well for genre tags as the Mel spectrogram and the CQT transformation. What
strikes out is that especially the latter one performs better than overall tags, where it
shows significantly worse results than the other two input representations. Again, the raw
waveform performs worse than all other preprocessing methods, followed by the MFCCs.

Instrument Figure 7.7 shows the distribution of the residuals for the ANOVA model,
which is approximately normally distributed, so this assumption is met. Since there
Levene Test for homoscedasticity shows a significant heterogeneity of variances, the data
is transformed using the following transformation: exp(x)5

log10(x) . This transformation results
in a p-value of 0.0936 for the Levene Tests. Therefore the assumption of homoscedasticity
is fulfilled as well for the transformed model.

Table 7.7 shows the results for the transformed ANOVA analysis on the instrument
tags. It shows similar p-values and np2-values for all sources as in the comparison
overall tags in the previous subsection and as for the genre tags. Therefore, all sources

59



7. Results and Discussion

input diff (transf.) P-value
MEL-CQT 0.1630 0.3910
MFCC-CQT -0.6889 4.99E-11
RAW-CQT -1.1318 0.0000
STFT-CQT 0.1263 0.6440
MFCC-MEL -0.8520 3.18E-14
RAW-MEL -1.2948 0.0000
STFT-MEL -0.0368 0.9945
RAW-MFCC -0.4428 3.33E-05
STFT-MFCC 0.8152 4.64E-14
STFT-RAW 1.2581 0.0000

Table 7.6: Tukey-HSD ROC-AUC results for preprocessing methods on MTAT using
genre tags

Source Sum Sq DF MS F p-unc np2
preprocessing_method 1805704.8659 4 451426.2165 56.2512 6.56E-29 0.6000
model 18345906.2275 4 4586476.5569 571.5100 1.15E-89 0.9384
preprocessing_method * model 11312538.5879 16 707033.6617 88.1018 1.02E-67 0.9038
Residual 1203778.4975 150 8025.1900

Table 7.7: Two-way ANOVA results on MTAT with transformation for instrument tags

significantly impact the classification performance of instrument tags. Figure 7.8 displays
the respective ROC-AUC scores. Table 7.8 presents the results for the Tukey HSD test on
the preprocessing methods. As for the genre- and overall tags, the raw waveform performs
worse than all other inputs. In contrast to the genre tags, the CQT transformation
performs equally well as the MFCCs. Both input representations perform significantly
worse than the STFT and the Mel spectrogram, which perform equally well. Therefore,
the classification of the instrument tags for each preprocessing method is very similar to
the classification overall tags.

input diff (transf.) P-value
MEL-CQT 49.4190 2.06E-11
MFCC-CQT 6.6873 0.8376
RAW-CQT -31.5998 2.39E-05
STFT-CQT 47.0505 1.57E-10
MFCC-MEL -42.7318 5.72E-09
RAW-MEL -81.0189 0.0000
STFT-MEL -2.3685 0.9961
RAW-MFCC -38.2871 1.91E-07
STFT-MFCC 40.3633 3.80E-08
STFT-RAW 78.6503 0.0000

Table 7.8: Tukey-HSD ROC-AUC results for preprocessing methods on MTAT using
instrument tags

Mood Figure 7.9 shows the distribution of the residuals for the ANOVA model, which
is approximately normally distributed, so this assumption is met. Since there Levene
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Figure 7.6: ROC-AUC scores for all preprocessing methods and all models on MTAT
using genre tags

Test for homoscedasticity shows a significant heterogeneity of variances, the data is
transformed using the following transformation: 1

log10(x) . Analyzing the model diagnostic
plots in Figure 7.10 shows that the model fits the assumption of homoscedasticity. The
red lines representing the means of the residuals are all approximately horizontally, and
the normal Q-Q plot roughly follows the slope of 1 [Bevans, 2020].

Source Sum Sq DF MS F p-unc np2
preprocessing_method 119.1147 4 29.7787 51.5857 2.91E-27 0.5791
model 418.1733 4 104.5433 181.1007 2.39E-56 0.8285
preprocessing_method * model 229.5219 16 14.3451 24.8501 2.78E-34 0.7261
Residual 86.5899 150 0.5773

Table 7.9: Two-way ANOVA results on MTAT with transformation for mood tags

Table 7.9 shows the results for the transformed ANOVA-analysis on the mood tags. It
shows similar p-values and np2-values for all sources as for all previous tag-categories.
Therefore, all sources significantly impact the classification performance of mood tags.
Figure 7.11 displays the respective ROC-AUC scores. Table 7.10 presents the results
for the Tukey-HSD test on the preprocessing methods. The results for the mood tags
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Figure 7.7: Distribution of residuals for Two-way ANOVA on MTAT using instrument
tags

deviate strongly from the other tag categories. The CQT transformation performs
significantly worse than all other input representations, followed by the raw waveform and
the Mel spectrogram, which have equally good results. Surprisingly, MFCCs significantly
outperform the latter two, and STFT significantly shows the best overall results. Since
MFCCs are much smaller than the other input representations it is worth considering
this preprocessing method for mood-classification tasks. However, if the goal is only to
reach the maximum classification performance, then the best choice for all other tag
categories would be to use STFT. The results presented in this section are validated or
rejected on the MTGJ dataset in the following section.

7.1.2 Experiment 1.2: Comparison on MTGJ

The primary purpose of this experiment is to validate or reject the findings of experiment
1.1. Therefore, the observations and conclusions of the previous experiment are discussed
further based on the results of the MTGJ dataset. This experiment is structured equally
to the previous one, so the first section compares all tags and the second section with
the individual tag categories.
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Figure 7.8: ROC-AUC scores for all preprocessing methods and all models on MTAT
using instrument tags

Comparison over all tags

Figure 7.12 shows the ROC-AUC scores of all five runs on the MTGJ dataset, and
Figure 7.13 shows all PR-AUC scores. As for MTAT, the raw waveform performs the
worst and is again followed by MFCCs. All other three models approximately perform
equally well with the best average results for STFT. Especially noticeable is the excellent
performance of the CQT transformation compared to the other dataset. It even provides
the best results for Musicnn and dilated CNN.

The Two-way ANOVA analysis is conducted similarly to the previous experiment. Again,
the interaction model is preferable to the other without the interaction. Next, the
required assumptions are checked to guarantee the validity of the results. Again, the
independence of observations assumption is met due to the experimental design. The
Levene Test to check the homoscedasticity shows a p-value of 0.1921 which means that
this assumption holds without further data transformations. Figure 7.14 shows that the
distribution of the residuals for the models is approximately normally distributed with
only a slight skewness, so this last assumption is fulfilled as well.

Table 7.11 displays the results for the Two-way ANOVA analysis. As for the MTAT
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Figure 7.9: Distribution of residuals for Two-way ANOVA on MTAT using mood tags

input diff (transf.) P-value
MEL-CQT 0.5968 0.0109
MFCC-CQT 1.7685 2.89E-14
RAW-CQT 0.8743 3.50E-05
STFT-CQT 2.3011 0.0000
MFCC-MEL 1.1717 1.44E-08
RAW-MEL 0.2775 0.5461
STFT-MEL 1.7042 2.96E-14
RAW-MFCC -0.8942 2.17E-05
STFT-MFCC 0.5325 0.0314
STFT-RAW 1.4268 7.11E-12

Table 7.10: Tukey-HSD ROC-AUC results for preprocessing methods on MTAT using
mood tags

dataset, the p-values all show a strong statistical significance for all sources. Therefore,
both models and preprocessing methods significantly influence the results as well as the
combination of them. The trends of the effect sizes are also very similar to the previous
experiment. The model has the most significant impact, followed by the interaction of
both values.

Table 7.12 shows the results for the Tukey-HSD range test on the preprocessing methods.
The results are very similar to MTAT. Raw waveform again performs worse than all other
inputs, but now the significance for MFCCs outperforming the raw waveform is much
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Figure 7.10: Residual-plots for ROC-AUC on MTAT using mood tags

Source Sum Sq DF MS F p-unc np2
preprocessing_method 0.0080 4 0.0020 63.6155 1.23E-26 0.7179
model 0.0260 4 0.0065 205.5154 2.63E-47 0.8915
preprocessing_method * model 0.0101 16 0.0006 20.0451 2.61E-24 0.7623
Residual 0.0032 100 3.16E-05

Table 7.11: Two-way ANOVA results on MTGJ

stronger, with a p-value of 8.22e-05 for having a 0.75% higher ROC-score. On average,
the Mel spectrogram significantly performs 0.85% better than the MFCCs, and the CQT
transformation performs 1.1% better than the latter. In contrast to the previous dataset,
the Mel spectrogram and the CQT transformation perform equally well. The STFT
significantly performs 0.62% better than the Mel spectrogram. However, for the CQT
transformation, there is no statistical significance the STFT outperforms it with a p-value
of 0.1472. The PR-AUC score are very similar to the ROC-AUC scores, as shown in
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Figure 7.11: ROC-AUC scores for all preprocessing methods and all models on MTAT
using mood tags

Table 7.13, so they will not be further discussed here.

The Tukey-HSD range test on the different models displayed in Table 7.14 shows the
same ranking as for the MTAT dataset. Again, there is no significant difference between
the Musicnn and the dilated CNN, which perform the best overall. Vgg-16 performs
worse than all other models, followed by ResNet and SeNet.

Overall, it can be stated that the results of this experiment validate the results of
the previous one for the most part. The STFT again performs the best of all input
representations. However, the CQT transformation show similarly good results, which
is the biggest difference to the MTAT dataset, where the Mel spectrogram performs
significantly better than the former one.

Comparison for individual tag categories

To validate the results of the MTAT dataset in Section 7.1.1, the Two-way ANOVA
analysis is run separately for each tag category on the respective ROC-AUC scores as
well as the Tukey-HSD range test. For each category, the assumptions for the variance
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Figure 7.12: ROC-AUC scores for all preprocessing methods and all models on MTGJ

input diff P-value
MEL-CQT -0.0025 0.5060
MFCC-CQT -0.0110 4.53E-09
RAW-CQT -0.0185 1.21E-10
STFT-CQT 0.0037 0.1472
MFCC-MEL -0.0085 6.10E-06
RAW-MEL -0.0159 1.21E-10
STFT-MEL 0.0062 0.0015
RAW-MFCC -0.0075 8.22E-05
STFT-MFCC 0.0147 1.22E-10
STFT-RAW 0.0222 1.21E-10

Table 7.12: Tukey-HSD ROC-AUC results for preprocessing methods on MTGJ

analysis have to be checked first, and afterward, the results are presented. The model -
preprocessing method interaction model is used for the ANOVA test.

Genre Figure 7.15 shows the distribution of the residuals for the ANOVA model, which
is approximately normally distributed, so this assumption is met. The Levene test shows
a p-value of 0.2614, so the assumption of homoscedasticity is fulfilled too.
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Figure 7.13: PR-AUC scores for all preprocessing methods and all models on MTGJ

Figure 7.14: Distribution of residuals for Two-way ANOVA on MTGJ
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input diff P-value
MEL-CQT -0.0046 0.1975
MFCC-CQT -0.0147 4.31E-09
RAW-CQT -0.0266 1.21E-10
STFT-CQT 0.0044 0.2451
MFCC-MEL -0.0101 6.53E-05
RAW-MEL -0.0220 1.21E-10
STFT-MEL 0.0090 0.0005
RAW-MFCC -0.0119 2.11E-06
STFT-MFCC 0.0191 1.22E-10
STFT-RAW 0.0310 1.21E-10

Table 7.13: Tukey-HSD PR-AUC results for preprocessing methods on MTGJ

model diff P-value
musicnn-dil_cnn -0.0037 0.1371
resnet-dil_cnn -0.0301 1.21E-10
senet-dil_cnn -0.0176 1.21E-10
vgg16-dil_cnn -0.0371 1.21E-10
resnet-musicnn -0.0264 1.21E-10
senet-musicnn -0.0138 1.22E-10
vgg16-musicnn -0.0334 1.21E-10
senet-resnet 0.0126 1.57E-10
vgg16-resnet -0.0070 0.0003
vgg16-senet -0.0196 1.21E-10

Table 7.14: Tukey-HSD ROC-AUC results for models on MTGJ

Source Sum Sq DF MS F p-unc np2
preprocessing_method 0.0099 4 0.0025 67.7536 1.27E-27 0.7305
model 0.0229 4 0.0057 156.3477 4.13E-42 0.8621
preprocessing_method * model 0.0113 16 0.0007 19.2833 1.06E-23 0.7552
Residual 0.0037 100 3.66E-05

Table 7.15: Two-way ANOVA results on MTGJ for genre tags

Table 7.5 shows the results of the ANOVA analysis. The results are very similar to the
test over all tags, and all sources have a significant impact, which is also the case for the
MTAT dataset. The np2-value shows almost identical trends as the previous experiment,
with the strongest effect size for the model. Figure 7.16 displays the ROC-AUC scores
for genre tags. The Tukey-HSD range test in Table 7.16 shows the same ranking for
the input representations as in the other dataset. The only difference is that the STFT
now significantly outperforms the CQT transformation and the Mel spectrogram, which
perform equally well. Raw waveforms significantly perform the worst, followed by MFCCs.
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Figure 7.15: Distribution of residuals for Two-way ANOVA on MTGJ using genre tags

input diff P-value
MEL-CQT -0.0023 0.6693
MFCC-CQT -0.0114 1.49E-08
RAW-CQT -0.0200 1.21E-10
STFT-CQT 0.0051 0.0294
MFCC-MEL -0.0091 6.09E-06
RAW-MEL -0.0177 1.21E-10
STFT-MEL 0.0074 0.0004
RAW-MFCC -0.0086 2.31E-05
STFT-MFCC 0.0165 1.21E-10
STFT-RAW 0.0251 1.21E-10

Table 7.16: Tukey-HSD ROC-AUC results for preprocessing methods on MTGJ using
genre tags
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Figure 7.16: ROC-AUC scores for all preprocessing methods and all models on MTGJ
using genre tags

Instrument Figure 7.17 shows the distribution of the residuals for the ANOVA model,
which is approximately normally distributed, so this assumption is met. The Levene test
results in a p-value of 0.1911, so the assumption of homoscedasticity is fulfilled too.

Source Sum Sq DF MS F p-unc np2
preprocessing_method 0.0058 4 0.0015 37.0539 5.60E-19 0.5971
model 0.0369 4 0.0092 235.7249 5.66E-50 0.9041
preprocessing_method * model 0.0102 16 0.0006 16.2895 4.03E-21 0.7227
Residual 0.0039 100 3.92E-05

Table 7.17: Two-way ANOVA results on MTGJ for instrument tags

Table 7.7 shows the results of the ANOVA analysis. Again, all sources significantly impact
the results. The np2 values show similar trends as all previous analyses, with models
having the strongest impact, followed by the interaction of model and preprocessing
method. The results of the Tukey-HSD range test are presented in Table 7.18, which
shows a slightly different picture than in the MTAT dataset. Figure 7.18 displays the
ROC-AUC scores for instrument tags. Again, the best preprocessing method is the
STFT, with a significantly better average ROC-score over 0.61% than Mel spectrograms.
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Figure 7.17: Distribution of residuals for Two-way ANOVA on MTGJ using instr-tags

However, the CQT transformation is not significantly worse than the former with a
p-value of 0.6132 but does not outperform the Mel spectrogram. It has a higher average
ROC-score of 0.36%, but the difference is insignificant, with a p-value of 0.2516. Raw
waveform significantly performs 0.57% worse than MFCCs with a p-value of 0.0144,
which shows much worse results than the other three spectrograms. All in all, it can be
stated that STFT has the best results across both datasets and raw waveform the worst.
However, there is too much difference in between the other preprocessing methods to
make further statements.

input diff P-value
MEL-CQT -0.0036 0.2516
MFCC-CQT -0.0103 6.72E-07
RAW-CQT -0.0160 1.22E-10
STFT-CQT 0.0025 0.6132
MFCC-MEL -0.0067 0.0024
RAW-MEL -0.0124 2.99E-09
STFT-MEL 0.0061 0.0067
RAW-MFCC -0.0057 0.0144
STFT-MFCC 0.0128 9.90E-10
STFT-RAW 0.0186 1.21E-10

Table 7.18: Tukey-HSD ROC-AUC results for preprocessing methods on MTGJ using
instrument tags

Mood Figure 7.19 shows the distribution of the residuals for the ANOVA model, which
is approximately normally distributed, so this assumption is met. The Levene test results
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Figure 7.18: ROC-AUC scores for all preprocessing methods and all models on MTGJ
using instrument tags

in a p-value of 0.0122, showing a slight significance for a heteroscedastic distribution.
Since this is an edge case considering the p-value and all other assumptions are fulfilled,
no additional transformation is applied to the data. Therefore, for the interpretation of
the results, only very strong significance levels, e.g., p-values < 0.001, will be accepted
to draw conclusions. As discussed in the previous experiment, this should not strongly
influence the results due to the balanced sample data.

Source Sum Sq DF MS F p-unc np2
preprocessing_method 0.0050 4 0.0012 18.8436 1.42E-11 0.4298
model 0.0219 4 0.0055 83.2362 5.95E-31 0.7690
preprocessing_method * model 0.0078 16 0.0005 7.3901 4.62E-11 0.5418
Residual 0.0066 100 6.57E-05

Table 7.19: Two-way ANOVA results on MTGJ for mood tags

Table 7.19 presents the results for the ANOVA-analysis for mood tags, resulting in a
strong significance for the impact of all sources. Again, the model has the strongest
effect on the ROC scores with an np2-value of 0.7690, followed by the interaction of the
preprocessing method and the model with a value of 0.5418 and the preprocessing method

73



7. Results and Discussion

Figure 7.19: Distribution of residuals for Two-way ANOVA on MTGJ using mood tags

with 0.4298. The Tukey-HSD test results in Table 7.20 show very weak significance levels
across almost all combinations. The STFT, CQT transformation, and Mel spectrogram
perform equally well and significantly better than the raw waveform. Compared to
MFCCs, the CQT transformation has the lowest p-value of 0.001, with an average 1.04%
higher ROC-AUC score. The Mel spectrogram shows a strong significance compared to
MFCCs with a p-value of 0.0007, but for the STFT, it is only 0.0024, which is already
an edge case due to the slight heteroscedasticity. The MFCCs do not significantly
outperform the raw waveform due to a p-value of 0.1190. The results differ strongly from
the MTAT dataset, and it is hard to make general statements. The STFT shows good
classification scores across both datasets. Apart from that, as displayed in Figure 7.20,
the average ROC-AUC scores lie closely together, and the MFCCs might still be a good
choice for tasks requiring a lower resource consumption since the difference to the other
spectrograms is < 1%.

7.2 Part 2: Dilated CNN

7.2.1 Experiment 2.1: Dilated CNN with ResNet
To evaluate the results of the models developed during this and the following experiment,
the results of the Musicnn model, displayed in Table 7.21, serve as a reference.

The dilated CNN model is trained and tested with MFCCs, Mel spectrogram, and raw
waveform as input. The results are shown in Table 7.22. Both the PR- and ROC-values
are about 0.5%-2.0% worse for the two-dimensional inputs of the dilated CNN than
for Musicnn. This could be due to the slightly lighter frontend with fewer trainable
parameters caused by the dilations. Raw waveforms perform slightly better for the dilated
CNN than for Musicnn, which might be due to the much deeper backend of the ResNet
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input diff P-value
MQL-CQT -0.0010 0.9925
MFCC-CQT -0.0104 0.0001
RAW-CQT -0.0160 3.61E-09
STFT-CQT -0.0017 0.9415
MFCC-MEL -0.0094 0.0007
RAW-MEL -0.0150 2.73E-08
STFT-MEL -0.0007 0.9976
RAW-MFCC -0.0055 0.1190
STFT-MFCC 0.0087 0.0024
STFT-RAW 0.0142 1.23E-07

Table 7.20: Tukey-HSD ROC-AUC results for preprocessing methods on MTGJ using
mood tags

input PR-all PR-gen PR-instr PR-mood ROC-all ROC-gen ROC-instr ROC-mood
CQT 0.3714 0.3563 0.4411 0.2453 0.9097 0.9343 0.9011 0.8857
MEL 0.3725 0.3544 0.4424 0.2506 0.9109 0.9330 0.9037 0.8882
MFCC 0.3588 0.3390 0.4245 0.2499 0.9059 0.9257 0.8959 0.8943
RAW 0.3327 0.3105 0.3905 0.2448 0.8950 0.9130 0.8851 0.8867
STFT 0.3674 0.3489 0.4295 0.2642 0.9099 0.9300 0.8995 0.8996

Table 7.21: Avg. results for Musicnn on MTAT

than of the original Musicnn. All in all, the dilated ResNet backend does not achieve
the intended improvements. For the next experiment, the focus lies in enhancing the
frontend with stacked dilations.

input PR-all PR-gen PR-instr PR-mood ROC-all ROC-gen ROC-instr ROC-mood
MEL 0.3626 0.3448 0.4285 0.2463 0.9061 0.9301 0.8970 0.8846
RAW 0.3429 0.3324 0.4006 0.2322 0.9018 0.9255 0.8898 0.8885
MFCC 0.3423 0.3199 0.4019 0.2466 0.9002 0.9176 0.8901 0.8922

Table 7.22: Results Dilated CNN with ResNet on MTAT

7.2.2 Experiment 2.2: Dilated CNN with parallel stacked dilations

The model developed in experiment 2.1 has already improved the training time but only
for an average worse classification accuracy. In order to overcome this issue, stacked
parallel dilated convolutions are used to keep the feature extraction in the frontend as
good as possible while reducing the training time. The experiments are conducted on
the MTAT dataset in de first subsection and then validated in the second one.
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Figure 7.20: ROC-AUC scores for all preprocessing methods and all models on MTGJ
using mood tags

input PR-all PR-gen PR-instr PR-mood ROC-all ROC-gen ROC-instr ROC-mood
CQT 0.3793 0.3676 0.4479 0.2501 0.9119 0.9357 0.9042 0.8880
MEL 0.3780 0.3618 0.4477 0.2555 0.9119 0.9341 0.9050 0.8893
MFCC 0.3629 0.3439 0.4284 0.2536 0.9071 0.9272 0.8971 0.8946
RAW 0.3194 0.3018 0.3638 0.2510 0.8880 0.9065 0.8736 0.8882
STFT 0.3778 0.3592 0.4445 0.2667 0.9149 0.9377 0.9049 0.8998

Table 7.23: Avg. results for Dilated CNN on MTAT

Experiment on MTAT

Table 7.23 displays the average results for the dilated CNN grouped by the preprocessing
methods. Compared to Table 7.21, all metrics for all tag categories slightly improved
on the two-dimensional spectrograms. However, almost all values are worse for the raw
waveform than for the original Musicnn model. The only exception is the mood tags
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results, which slightly increased too. The better classification of mood tags might be due
to the better extraction of broader features of the dilated convolutions since mood tags
intentionally depend on longer audio segments.

Figure 7.21: ROC-AUC scores of dilated CNN vs. Musicnn on MTAT

A graphical visualization of the ROC-AUC scores for both models is displayed in Fig-
ure 7.21. The graphic shows the same trends: the increase in classification performance
on the spectrogram inputs and a decrease for the raw waveform.

The results are validated using T-tests for the means of two independent variables.
Since the results differ greatly between the two- and one-dimensional preprocessing
methods, the significance-tests are performed for each input representation separately.
The following four assumptions have to be fulfilled to guarantee the meaningfulness of the
results: interval- or ratio scaled data, normality/symmetry of the population-distributions,
equality of variances, and skewness and kurtosis [Rietveld and van Hout, 2015]. The
assumption of a ratio scaled data is trivially fulfilled for ROC-AUC and PR-AUC since
both are decimals between 0 and 1.0. The tests for normal distribution hold for all
ROC-AUC and PR-AUC scores on all preprocessing methods except for STFT and Mel
spectrogram. The non-normal distribution of the former one is probably due to an outlier,
as shown in Figure 7.21. For the latter one, the p-values around 0.03 are very close to
the threshold of 0.05. These results still suggest applying the T-tests as planned and
considering those violations of the assumption in the discussion of the T-test scores. As
shown in the result tables, the assumption of the equality of variances holds since there is
no difference between the models higher than a factor of two for any input representation.
Since we have a normal distribution for almost all configurations and two borderline
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cases, the fourth assumption is negligible to check. The tables show that the t-statistic
value is larger than two for all two-dimensional inputs, and the p-values are all <= 0.05.
Therefore the dilated CNN performs significant better than Musicnn for those input
representations. For the STFT (cf. Table 7.25), the p-values for both metrics are close
to 0.05. Considering the violation of the normal distribution, more samples would be
necessary to draw clear conclusions, which is not possible in the scope of this thesis
due to resource limitations. However, the mean value is about 0.5% higher than for
Musicnn for ROC-AUC, and around 1% higher for PR-AUC. For the Mel spectrogram
(cf. Table 7.24), the p-value for the ROC-AUC score is also close to the threshold of 0.05.
However, the p-value of the PR-AUC score shows a very strong statistical significance
with 3.77e-05. Therefore the dilated CNN clearly outperforms the Musicnn for Mel
spectrograms. For the raw waveform Table 7.27 shows a strong statistical significance for
the outperformance of Musicnn over the dilated CNN.

ROC-AUC PR-AUC
model var mean t_stat p-val var mean t_stat p-val
dil_cnn 4.40E-07 0.9119 2.2011 0.0480 1.23E-06 0.3780 6.3302 3.77E-05
musicnn 7.76E-07 0.9109 -2.2011 0.0480 3.32E-06 0.3725 -6.3302 3.77E-05

Table 7.24: T-Tests for dilated CNN vs. Musicnn on MTAT using Mel spectrogram

ROC-AUC PR-AUC
model var mean t_stat p-val var mean t_stat p-val
dil_cnn 1.55E-07 0.9149 2.4229 0.0321 9.13E-06 0.3778 2.1892 0.0491
musicnn 2.57E-05 0.9099 -2.4229 0.0321 1.27E-04 0.3674 -2.1892 0.0491

Table 7.25: T-Tests for dilated CNN vs. Musicnn on MTAT using STFT

ROC-AUC PR-AUC
model var mean t_stat p-val var mean t_stat p-val
dil_cnn 2.00E-07 0.9071 5.1207 0.0003 3.31E-06 0.3629 4.3089 0.0010
musicnn 9.28E-08 0.9059 -5.1207 0.0003 2.04E-06 0.3588 -4.3089 0.0010

Table 7.26: T-Tests for dilated CNN vs. Musicnn on MTAT using MFCCs

ROC-AUC PR-AUC
model var mean t_stat p-val var mean t_stat p-val
dil_cnn 1.99E-06 0.8880 -6.8489 1.78E-05 5.69E-06 0.3194 -7.0720 1.30E-05
musicnn 4.25E-06 0.8950 6.8489 1.78E-05 1.57E-05 0.3327 7.0720 1.30E-05

Table 7.27: T-Tests for dilated CNN vs. Musicnn on MTAT using raw waveform

Table 7.29 shows the average epoch training times for each input representation for the
dilated CNN and Musicnn. 1 The training times for the dilated CNN are approximately

1To ensure the comparability of the values, only the values of the Nvidia GTX 2080 are used for this
comparison
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ROC-AUC PR-AUC
model var mean t_stat p-val var mean t_stat p-val
dil_cnn 3.50E-06 0.9119 2.7251 0.0184 2.29E-05 0.3793 3.7296 0.0029
musicnn 6.62E-07 0.9097 -2.7251 0.0184 4.25E-06 0.3714 -3.7296 0.0029

Table 7.28: T-Tests for dilated CNN vs. Musicnn on MTAT using CQT

half of the size as for Musicnn for CQT, Mel spectrogram, and MFCCs. For STFT, it
is almost only a quarter the size. The only exception is the raw waveform, where the
training time is 10% longer than for Musicnn. Therefore, not only the classification
performance could be increased for the two-dimensional input representations, but also
the training time could be decreased significantly.

input time_dil_cnn (minutes) time_musicnn (minutes)
CQT 52.21 105.75
MEL 51.38 106.39
MFCC 16.94 25.21
RAW 122.60 109.49
STFT 65.24 215.82

Table 7.29: Avg. epoch times for dilated CNN vs. Musicnn on MTAT

To sum up, the results suggest that dilated convolutions and more concretely stacked
parallel dilated convolutions can be beneficial for the classification performance and the
training time of CNNs for music autotagging. Especially when using two-dimensional
input representations, it is worth considering them for the architectural design of the
network. However, the raw waveforms did not benefit from the extension with the dilated
convolutions.

Experiment on MTGJ

Figure 7.22 shows the results for the dilated CNN and Musicnn for all input representations.
The trends are very similar to the previous dataset, and again all spectrograms perform
better than the raw waveform input. The latter is also the only one there the Musicnn
performs better than the dilated CNN. It is also striking that the CQT transformation
performs even slightly better than the STFT on both models.

T-tests are used to validate or reject the MTAT dataset results. Again the following
four assumptions must be checked first: interval- or ratio scaled data, normality/sym-
metry of the population-distributions, equality of variances, and skewness and kurtosis
[Rietveld and van Hout, 2015]. The first assumption is again trivially fulfilled for ROC-
AUC and PR-AUC since both are decimals between 0 and 1.0. The tests for normal
distribution hold for all ROC-AUC and PR-AUC scores on all preprocessing methods
except for the raw waveform on Musicnn, probably due to an outlier. This violation will
be considered during the discussion of the results. As shown in the result tables, the
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Figure 7.22: ROC-AUC scores of dilated CNN vs. Musicnn on MTGJ

assumption of the equality of variances holds since there is no difference between the
models larger than a factor of two for any input representation. Since we have a normal
distribution for almost all configurations, the fourth assumption is negligible to check.

ROC-AUC PR-AUC
model var mean t_stat p-val var mean t_stat p-val
dil_cnn 1.85E-06 0.7933 12.0371 2.09E-06 5.68E-06 0.2373 8.2365 3.54E-05
musicnn 3.15E-06 0.7798 -12.0371 2.09E-06 3.03E-05 0.2126 -8.2365 3.54E-05

Table 7.30: T-Tests for dilated CNN vs. Musicnn on MTGJ using Mel spectrogram

ROC-AUC PR-AUC
model var mean t_stat p-val var mean t_stat p-val
dil_cnn 6.14E-07 0.7950 8.1952 3.67E-05 3.04E-06 0.2428 5.4314 0.0006
musicnn 2.01E-06 0.7883 -8.1952 3.67E-05 6.66E-06 0.2343 -5.4314 0.0006

Table 7.31: T-Tests for dilated CNN vs. Musicnn on MTGJ using STFT

The results of the t-tests are consistent with the previous results of the MTAT dataset.
For all input spectrograms, the dilated CNN significantly outperforms the Musicnn
model, and it performs worse for the raw waveform. Therefore, this underlines the
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ROC-AUC PR-AUC
model var mean t_stat p-val var mean t_stat p-val
dil_cnn 3.78E-06 0.7817 3.6332 0.0067 1.12E-05 0.2238 3.0632 0.0155
musicnn 1.34E-05 0.7742 -3.6332 0.0067 9.24E-05 0.2082 -3.0632 0.0155

Table 7.32: T-Tests for dilated CNN vs. Musicnn on MTGJ using MFCCs

ROC-AUC PR-AUC
model var mean t_stat p-val var mean t_stat p-val
dil_cnn 0.0001 0.7501 -1.9729 0.0840 0.0002 0.1784 -2.3388 0.0475
musicnn 6.03E-05 0.7644 1.9729 0.0840 7.42E-05 0.1965 2.3388 0.0475

Table 7.33: T-Tests for dilated CNN vs. Musicnn on MTGJ using raw waveform

ROC-AUC PR-AUC
model var mean t_stat p-val var mean t_stat p-val
dil_cnn 9.90E-08 0.7965 10.4859 5.95E-06 7.95E-07 0.2430 12.9611 1.19E-06
musicnn 9.55E-07 0.7911 -10.4859 5.95E-06 8.98E-07 0.2346 -12.9611 1.19E-06

Table 7.34: T-Tests for dilated CNN vs. Musicnn on MTGJ using CQT

previous conclusion that the stacked parallel dilated convolutions can be beneficial for the
classification performance of CNNs for music autotagging. However, this also validates
the observation that models using the raw waveform as input might not benefit from
dilated convolutions.

7.3 Summary
To sum up, the evaluation in this chapter shows that both model and preprocessing
methods significantly impact the classification results during all experiments. Both
experimental parts are conducted on two different datasets to validate the results.
Therefore, this section is structured into consistent and inconsistent findings.

7.3.1 Consistent Findings

The STFT provides the best overall results on almost all tested configurations. This
comes to the price of higher resource consumption due to the larger size of this input
representation. Raw waveforms show the worst results on all configurations which might
be because all models are originally designed for two-dimensional inputs and are adapted
for this study. Despite their small size, MFCCs perform well across almost all models,
so they might be a good choice for tasks requiring low resource consumption. Mel
spectrograms show solid performances across all models but are still significantly worse
than the STFT. However, due to their around ten times smaller size, they are much less
resource-consuming which might be the reason why they are the more commonly used
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input representation. The dilated CNN significantly outperforms the original Musicnn
on the two-dimensional preprocessing methods and performs worse on the raw waveform.

7.3.2 Inconsistent Findings
On MTAT the CQT transformation has the second-worst results but on MTGJ it performs
equally well as the STFT. Therefore, no general conclusion can be drawn about the
performance of this input representation whose size is comparable to the Mel spectrogram.
Besides that, the evaluation of the individual tag categories differed too much between the
two datasets to make further statements. For genre tags, similar results can be observed
between MTAT and MTGJ but there is no particular trend identifiable compared to
the evaluation across all tags. The results suggest that mood classification differs the
most from the other tag categories. For example, MFCCs perform the second-worst for
genre- and instrument classification but the second-best on mood tags. However, this
was not the case for MTGJ, where MFCCs only show slightly better results than the raw
waveform.

The following chapter summarizes this thesis and presents the main insights regarding
the research questions.
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CHAPTER 8
Conclusion

8.1 Summary
In this thesis, I investigated the suitability of different preprocessing methods on CNN
models for music autotagging. Moreover, I discussed why dilated CNNs could be beneficial
for this task and developed a new stacked dilated CNN from an existing model.

Chapter 1 introduced the topic, and I formulated the problem statements there. In
Chapter 2, the most relevant work on music autotagging and other related topics useful
for the investigation were presented. The most relevant basic knowledge of audio signals
was described in Chapter 3, as well as the description, calculation, and recent research of
the relevant preprocessing methods. Chapter 4 extensively discussed the relevant datasets
MTAT and MTGJ for this study, the respective preprocessing steps, and some other
datasets for music autotagging and related tasks. Some basic knowledge about CNNs
was presented in Chapter 5 and relevant models for this thesis, including the developed
dilated CNN. In Chapter 6, I proposed the concrete methodology for the experiments
and evaluation to answer the research questions. Moreover, this chapter presented the
concrete setup and preconditions for the experiments and a detailed description for
each one. The goal of the first experiment was to develop a dilated CNN that could
enhance the performance of existing models without dilated convolutions. In the second
part of the experiments, five different CNN models are evaluated with all five input
representations on both datasets. The results were presented and discussed in Chapter 7.
The experimentation with dilated convolutions has shown that they can be useful for music
autotagging models, especially for the two-dimensional input representations. Comparing
the different inputs and models in the second experimental part has shown that the
STFT input performed very well in all configurations. The raw waveform performed
worse than the other inputs except for a few configurations. MFCCs have shown a
solid performance across all models except for the Vgg-16. Since it is a comparatively
small input representation, it is worth considering for use cases requiring low resource
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consumption. The performance metrics have shown that the performance of the inputs
depends on the dataset used, so for example, CQT transformation was rather bad for
MTAT but outperformed Mel spectrogram and MFCCs on MTGJs. Therefore, I could
not conclude if CQT transformation or Mel spectrogram perform better overall. The
results show a different picture between the two datasets for the specific tag categories.
As for all tags, the STFT provides good classification scores across all categories, and the
raw waveform always has the worst average score. The results suggest that genre- and
instrument tags show similar trends as the evaluation overall tags do, whereas the mood
tags differentiate stronger between the input representations. For example, MFCCs on
MTAT provided the second-worst results for genre,- instrument,- and overall tags but
second best on mood tags. However, this was not the case for the MTGJ dataset, where
the CQT transformation had the best average ROC-AUC score and MFCCs performed
only slightly better than the worst raw waveform.

8.2 Insights regarding research questions
To conclude this thesis, the three main research questions are answered using the insights
gained in this work.

Which audio input representations generally provide better results for CNNs
than others, and to what extent?

Looking at the results in Chapter 7, it can be seen that the STFT shows the best
performance among all input representations on almost all models. Raw waveforms
did perform comparatively badly on both datasets. The results on MTAT suggest
that this input can lead to good results on some models, but it probably requires an
appropriate adaption. The other three two-dimensional input representations performed
worse than STFT on most configurations. Therefore, it can be stated that for maximum
classification performance, STFT might be the best choice for CNNs. CQT outperformed
Mel spectrogram and MFCCs on the MTGJ dataset, whereas, on average, it performed
worse than all other two-dimensional preprocessing methods on MTAT. Mel spectrograms
showed a consistent and solid performance throughout both datasets but rarely top
results. MFCCs performed well on MTAT, but on the bigger MTGJ, it was the worst
two-dimensional input. However, the average training time was much lower than for the
other input representations, and also, for tasks with limited resources, it might be a good
option.

How much difference in classification performance is between different audio
input representations for certain tag categories?

As discussed in the previous subsection, there was too much difference between the two
datasets to make general statements for the performance on the separate tag categories.
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On MTAT, for example, the MFCCs outperformed all other preprocessing methods,
except for STFT, on mood tags, whereas it performed worse on the other categories. On
MTGJ, this was not the case, and moreover, the CQT transformation outperformed all
other input representations for mood tags. On MTAT, this input performed worse than
all other preprocessing methods for mood tags, which contradicts the other dataset. All
in all, it can be stated that there is not enough evidence for any input representation to
perform better on one tag category than on the others. There are recognizable differences,
but further research on this question is needed on different datasets and models to give a
more concrete answer to it.

To what extent are dilated convolutions beneficial for music autotagging in
terms of classification performance and training time?

As seen in the first experimental part in Section 7.1, dilated convolutions can enhance
both classification performance and training time. The enhanced Musicnn with stacked
parallel dilated convolutions outperformed the original model in both aspects on all two-
dimensional input representations. However, for raw waveforms, it even performed worse,
so for this one-dimensional input representation, more research is required to see if dilated
convolutions can be beneficial for it too. Overall, the dilated CNN could significantly
improve the classification and training time, and therefore it is worth considering those
dilated convolutions for future research on music autotagging.

8.3 Limitations and outlook
8.3.1 Limitations
The investigated scope of this thesis was rather extensive and included five different input
representations on five different models and two datasets. The goal was to cover the most
important preprocessing methods and test them on different CNN architectures to keep
the generalization of the results as high as possible. However, this inevitably led to huge
resource consumption, and therefore it was only possible to run five to seven runs per
configuration which is a relatively small number for statistical evaluations.

The experiments have shown that it is hard to compare the one-dimensional raw waveforms
with the two-dimensional inputs. Such a comparison might require more extensive
adaptions on the respective models than it was possible in the scope of this thesis. It has
been shown that this input could reach good results on specific models like ResNet on
MTAT, so it is hard to say if this was only the case for this individual model or if the
other models need more adjustment for reaching good results.

The investigation on the effect of dilated convolutions for music autotagging models was
only one part of this thesis and therefore had to be restricted. Instead of developing a
completely new model, the existing Musicnn that reached state-of-the-art performance
during its publication in 2019 was adapted accordingly to reduce training time and

85



8. Conclusion

increase classification performance [Pons and Serra, 2019]. It is not enough to assess
the effects of dilated convolutions on one or two models, so the results reveal only their
potential advantages.

8.3.2 Outlook
Future research on this topic could focus on a smaller number of input representations.
An interesting comparison would be STFT versus raw waveforms since the STFT provided
the best results among all two-dimensional preprocessing methods. This would allow to
better adapt the models for the one-dimensional input and test more different models.
Important would also be to test different adaptions for all investigated models to unleash
both models´ full potential and ensure that no model is under- or overfitting. Not part
of this thesis was the effect of different parameter configurations and scaling techniques
for the input representations. There is already some research on this topic, like in
[Ferraro et al., 2021], where Mel spectrograms are tested with different numbers of Mel
bands against different sampling rates. It would also be interesting to compare different
window lengths for the STFT and different resolutions and octave numbers for CQT.

The effects of dilated convolutions for music autotagging models also require further
investigation. Moreover, it would be interesting to develop an entirely new CNN archi-
tecture based on the insights gained in this thesis that exposes the strengths of dilated
convolutions.
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