
Microelectronics Reliability 126 (2021) 114209

Available online 11 October 2021
0026-2714/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Constitutive equations for strain rate and temperature dependent 
mechanical behaviour of porous Ag-sintered joints in electronic packages 

M. Lederer a,b,*, Z. Gökdeniz a,b, G. Khatibi a,b, J. Nicolics b 

a Christian Doppler Laboratory for Lifetime and Reliability of Interfaces in Complex Multi-Material Electronics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria 
b Institute for Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria   

A R T I C L E  I N F O   

Keywords: 
Finite element analysis 
Creep 
Sintered silver 

A B S T R A C T   

Sintering of silver attracts increasing attention in electronic packaging owing to superior bonding quality and 
high operation temperatures. However, the mechanical properties of sintered joints strongly depend on fabri
cation parameters like sintering temperature, pressure or organic solvents in the silver paste. In consequence, the 
mechanical characterization of this material is a challenging task. In the present article, unified constitutive 
equations for plasticity and creep of sintered silver are established. Thereby, particular interest is devoted to the 
influence of porosity on the mechanical properties. The assumptions of the model are validated by mechanical 
tests carried out with samples prepared under constant sintering conditions. The model parameters are fitted to 
test results performed in tension mode, in shear mode and under conditions of stress relaxation. This material 
model is implemented in the commercial software ABAQUS through user subroutines UMAT and VUMAT. In 
conclusion, the constitutive material model can be used as prerequisite for reliability predictions of Ag-sintered 
joints in electronic packages.   

1. Introduction 

In the last decade sintering of silver paste at temperatures compa
rable to those of soldering processes received increasingly attention as 
novel interconnection technique with particular features like superior 
bonding properties also at high operation temperatures, the impossi
bility of formation of quality-degrading intermetallic layers, and the 
avoidance of flux enclosures [1]. The combination of these features 
predestine silver sintering as a replacement of soldering for both, 
embedding and surface attachment of power devices and attracts more 
and more power electronics manufacturer, since this technique allows 
double-sided cooling [2], promises a further significant step towards 
saving weight, reducing package dimensions, parasitic impedances, and 
cost, while improving ecological measures by avoiding of lead- 
containing alloys [3]. As consequence of the low sintering tempera
tures the bonding silver layer exhibits an extremely porous structure 
which, in turn, is responsible for a conspicuous creep behaviour making 
it favorable as a highly reliable stress releasing and compliant bonding 
layer [4,5]. However, since the mechanical properties of this bonding 
layer strongly depend on fabrication parameters and operation condi
tions, full use of advantages requires accurate numerical modelling of 

assemblies during their design phase based on adequate temperature 
and time dependent material models. 

In recent years, several constitutive models were applied to sintered 
nanosilver. Yu et al. [6] preferred the viscoplastic Anand model [7], 
because of its temperature and strain rate dependence. Chen et al. [8] 
also applied the Anand model and compared it to a kinematic hardening 
model with temperature dependent material parameters. Finite Element 
simulations showed good agreement between those two models on the 
one side and experiments on the other. A drawback of the here 
mentioned models might be that the porosity of sintered silver was not 
considered in detail. A model including porosity was proposed by Yao 
and Gong [9]. They started their investigation from the Gurson model 
[10] and extended it to a model of unified creep and plasticity. 

In the present study, a constitutive model is developed from the 
phenomenological point of view. Mechanical tests were performed in 
tension, in shear, under cyclic load and under conditions of stress 
relaxation. Consequently, a constitutive material model is elaborated, 
which is in accordance with all relevant experiments. 
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2. Experimental 

Two main types of samples were prepared for mechanical tests. 
Firstly, dumbbell shaped specimens of sintered silver were produced for 
uniaxial tensile tests and for stress relaxation after tensile loading. The 
tests were performed by using a micro tensile machine equipped with a 
laser speckle extensometer, with load cell capacities of 100 N for the 
dumbbell shaped samples and 1000 N for the lap-joints. The dumbbell 
shaped samples had a parallel length of about 30 mm, a width of 4 mm 
and a thickness of approximately 75 μm. The shape of a sample before 
testing is depicted in Fig. 1 (a), while Fig. 1 (b) and (c) show the cross 
section of a tensile sample after rupture. 

Secondly, lap-joints connecting two pieces of copper base material 
with sintered silver were prepared for shear tests under monotonic and 
cyclic loading, and for testing under conditions of stress relaxation. The 
pieces of copper base material had a cross section of 3 × 1 mm and a 
length of 50 mm each. The overlap length of a lap-joint was typically 
between 4 and 5 mm, and the thickness of the sintered silver layer was in 

the range between 45 μm and 70 μm, as shown in Fig. 2 (a, c). An EBSD 
scan of its microstructure is depicted in Fig. 2 (d). Fig. 2 (b) shows a lap- 
joint sample mounted onto the tensile machine, and the illuminated red 
dots indicate the position of laser beams of the laser speckle exten
someter, which was used for strain measurements. 

Fig. 1. (a) Dumbbell shaped specimen, (b) and (c) SEM micrographs of its 
fracture surface. 

Fig. 2. (a) Cu-Ag-Cu lap-joint, (b) mounted onto a tensile machine, (c) SEM 
micrograph showing its porosity. (d) EBSD scan showing its grain sizes and 
orientations. 
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A metallographic examination confirmed that dumbbell shaped 
samples and lap-joints showed the same porosity and microstructure. By 
gravimetric analysis, the porosity was determined as 38%. Further de
tails of the production process used for sintering may be found in ref
erences [4,5]. The average tensile and shear strength of the samples at 
different test temperatures are summarized in Table 1. In stress relaxa
tion experiments, samples were at first loaded to about 75% of their 
ultimate strength, and thereafter the decay of stress was measured for 1 
h. In addition, experiments of cyclic loading and unloading were per
formed with lap-joints, as shown in Fig. 3. 

A collection of cyclic shear experiments with Ag-sintered lap-joints 
and a detailed description of the setup are included in reference [4]. 

3. Constitutive model 

3.1. Fundamental assumptions 

An advanced material model for sintered silver is developed here, 
whereby meaningful ideas of already existing theories are merged in 
order to derive optimized accordance with relevant experiments. At 
first, it is recognized that stress-strain curves of sintered silver under 
cyclic loading show qualitative agreement with experiments for cyclic 
loading of metallic fcc bulk material. Such behaviour of cyclic hardening 
and ratcheting has well been described by a combination of kinematic 
and isotropic hardening [11]. Therefore, we will take over this method 
for the present model. 

Further, the stress relaxation curves of the present study are in 
qualitative agreement with experiments of Kariya et al. [12], who fitted 
this behaviour with the Garofalo model. Moreover, the tensile test data 
of the present study also show a similarity with experiments, which were 

successfully interpreted with the Anand model [6,7]. In conclusion, the 
temperature dependent strain rates are well described by a hyperbolic 
sine creep law. 

Furthermore, it is noticed here that stress relaxation experiments 
show more compliance under tensile load compared to relaxation under 
shear load. This behaviour seems to be a consequence of porosity. Ac
cording to analyses of McClintock [13], Rice and Tracey [14] there 
occur stress concentrations at the holes of porous metals, which induce 
plastic deformation and finally lead to rupture. Such stress concentra
tions increase, when hydrostatic and deviatoric stresses are super
imposed. This effect is well described by the Gurson model [10]. In the 
model of the present study, an orthogonal decomposition of stresses in 
hydrostatic and deviatoric parts will be utilized to account for this 
behaviour. 

3.2. Constitutive equations 

The hydrostatic pressure in a solid is defined as 

p = −
1
3

tr(σ) (1)  

where tr denotes the trace of a tensor and σ is the Cauchy stress. The 
deviatoric stress reads as 

S = σ + p∙I, (2)  

where I is the unity matrix. Further, the volumetric strain is defined as 

εvol =
1
3

tr(ε)∙I, (3)  

while the deviatoric strain writes as 

εdev = ε − εvol. (4) 

It is assumed that the strain tensor 

ε = εel + εine (5)  

can additively be decomposed into an elastic part εel and an inelastic 
part εine. The accumulated inelastic strain at time t1 is here defined as 

εine
acc =

∫ t1

t0

⃦
⃦
⃦ε̇ine

⃦
⃦
⃦dt, (6)  

where ‖ε‖ denotes the Euklidean norm of the tensor ε. The derivative 
with respect to time is written according to the dot notation. Next, we 
define the effective stress 

σeff = σ − χ (7)  

where χ is called backstress. The backstress in the material occurs in 
consequence of the dislocation structure developed during plastic 
deformation. The backstress follows the time evolution. 

χ̇ = χ0 + k1ε̇ine − k2∙_εineacc∙χ, (8)  

where k1 and k2 are material constants. χ0 is the initial value of back
stress. In context with isotropic hardening, we need to define the 
deformation resistance 

D = D1∙
(
1 − exp

{
− D2∙

(
εineacc+ ε0

) } )
, (9)  

where D1 and D2 are material constants, and ε0 is the initial value of 
plastic strain. A value of ε0 > 0 is needed to obtain a finite value of the 
deformation resistance in the initial state. Furthermore, a temperature 
dependent scalar threshold value of 

σth(T) = A∙
(

1 − exp
{

−
Q
kBT

})

(10) 

Table 1 
Summary of averaged values for tensile strengths of dumbbell shaped samples 
and shear strengths of lap-joints.  

Test temperature Dumbbell shaped 
tensile strength 

Lap-joints 
shear strength 

RT 53.2 MPa 33.8 MPa 
403 K 42.1 MPa 34 MPa 
473 K 42.2 MPa 26.9 MPa 

The dumbbell shaped samples and the lap-joints were produced with use of the 
commercial silver paste Heraeus mAgic 338 under equivalent sintering condi
tions at a pressure of 70 MPa and a temperature of 503 K, respectively. 

Fig. 3. Stress-strain curves representing the relative longitudinal elongation of 
a Cu-Ag-Cu lap-joint measured between two points with initial distance of 
23 mm. 
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is defined for the stress, below which creep deformation does not occur. 
Here, Q plays the role of an activation energy, kB is the Boltzmann 
constant, A > 0 is a material parameter and T is the temperature in units 
of Kelvin. Thus, we are in the position to define the creep rate of the 
viscoplastic model. With use of an orthogonal decomposition into 
volumetric and deviatoric parts, we define the rates of creep strain 

⃦
⃦
⃦
⃦ε̇ine

vol

⃦
⃦
⃦
⃦ = c1∙exp

{

−
Q
kBT

}

∙sinh

(

c3∙f∙
( ̅̅̅
3

√
‖peff‖ − σvolth

)

D

)n1

(11a) 

⃦
⃦
⃦
⃦ε̇ine

dev

⃦
⃦
⃦
⃦ = c2∙exp

{

−
Q
kBT

}

∙sinh
(
‖Seff‖ − σdevth

D

)n2
(11b)  

for 
⃦
⃦σeff

⃦
⃦ > σth (11c)  

with 

σvol
th =

̅̅̅
3

√ ⃦
⃦peff

⃦
⃦

⃦
⃦σeff

⃦
⃦

σth (11d)  

and 

σdev
th =

⃦
⃦Seff

⃦
⃦

⃦
⃦σeff

⃦
⃦

σth, (11e)  

where σth
vol and σth

dev are the volumetric and deviatoric parts of the 
threshold stress. Further, c1, c2 and c3 > 0 are material constants and f is 
the porosity, i.e., the volume fraction of pores in the material. n1 and n2 
are the stress exponents of the hyperbolic sine creep law. Seff is the 
deviatoric part of the effective stress σeff. Due to inelastic volume change 
in view of porosity, there also occurs a hydrostatic part of the backstress, 
and in consequence an effective hydrostatic pressure peff. The volumetric 
part of strain rate causes compression under positive effective pressure 
and in the opposite case it leads to expansion. The direction of the 
deviatoric strain rate is parallel to the effective deviatoric stress Seff. 
Finally, conservation of mass implies an evolution of porosity according 
to 

ḟ = (1 − f )∙tr
(

_εine
)

(12)  

3.3. Damage accumulation 

The equations describing the evolution of stresses, strains and 
porosity of the material are a prerequisite for the formulation of lifetime 
models. In addition, a rule of damage accumulation is required to obtain 
reliability assessments based on FEM simulations. In metal plasticity, it 
is usually assumed that the hydrostatic pressure stress has a small in
fluence on plastic yielding, but a large influence on ductility [13–15]. 
Under triaxial tension, significant void growth is observed, and this ef
fect appears to be particularly relevant for materials of high porosity. In 
the case of monotonic loading, the inelastic strain leading to fracture can 
be described by an equation of the form 

εf = h1∙exp{ − h2∙peff} (13)  

where h1 and h2 > 0 are material parameters, while the effective pres
sure peff has the same meaning as in Eqs. (11a) and (11d). Further, 
damage accumulation follows the rule 

H =
∑∆ε

εf
, (14)  

where H plays the role of a damage variable. Fracture is initiated, when 
the value of the damage variable H approaches the value of 1. Eqs. (13) 

and (14) represent a simplified version of a fracture criterion proposed 
by Johnson and Cook [15]. 

For the case of cyclic loading under steady-state conditions, we here 
suggest a modified Coffin Manson lifetime model, where the number Nf 
of loading cycles to failure is expressed as 

Nf = a

(
∆εine

εmean
f

)b

, (15)  

where a and b are material parameters, Δεine is the inelastic strain 
increment per loading cycle, and εf

mean is defined as 

εmean
f = h1∙exp

{
− h2∙pmeaneff

}
(16) 

Here, peff
mean is the mean value of effective hydrostatic pressure, which 

is averaged over one period of cyclic deformation. Owing to a temper
ature dependence of ductility, the parameters a, b, h1 and h2 are 

Fig. 4. Shear stress relaxation curves of the model compared to experi
mental results. 

Fig. 5. Stress relaxation curves after tensile loading. Model calculations were 
fitted to experimental results. 
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considered as temperature dependent. 

3.4. Numerical fitting of material parameters 

The material parameters of the model are determined from fits to 
mechanical tests under tension and shear loads. 

The numerical fits shown in Figs. 4 and 5 were based on the 
assumption that the sintered material is homogeneously deformed so 
that conditions of uniaxial tension and simple shear are fulfilled to a 
good approximation. The fitting procedure was at first performed for 
shear tests, because this state of stress is purely deviatoric, and therefore 
the number of relevant fit parameters is reduced from the beginning. 
Thereafter, the remaining parameters were determined from fits to tests 
under tensile load. 

Fig. 4 shows fits to stress relaxation experiments performed with lap- 
joints in shear mode at temperatures of RT, 403 K and 473 K. The initial 
shear stresses of these experiments were 30 MPa, 30 MPa and 23 MPa, 
respectively. Thus, fits at equivalent temperatures were performed for 
stress relaxation of dumbbell shaped samples after tensile loading, as 
depicted in Fig. 5. The initial tensile stresses of these experiments were 
43.2 MPa, 30.7 MPa and 31.7 MPa respectively. The parameters deter
mined through the fits of Figs. 4 and 5 are summarized in Table 2. The 
values of elastic material constants were chosen in agreement with 
literature data [17] for sintered silver of the same porosity. 

4. FEM implementation in ABAQUS 

The constitutive equations for the evolution of stresses, strains and 
porosity are now implemented in the commercial software ABAQUS 
Standard through user subroutine UMAT and in ABAQUS Explicit 
through user subroutine VUMAT [18], respectively. The implementa
tion in ABAQUS Explicit is straightforward, but when applied to long 
time scales it gets computationally expensive. On the other hand, the 
implementation in ABAQUS Standard is more difficult to achieve, 
because the stiffness matrix of a nonlinear material has to be calculated. 
However, with use of this algorithm larger time increments can be 
evaluated, and therefore the computation is faster. 

For simplicity, we here start with the algorithm used for the sub
routine VUMAT: This subroutine is called for every increment of the 
simulation. The interface of the user subroutine to the main program is 
defined in the sense that stresses and state variables, which are valid at 

the beginning of the increment, are passed in by the main program 
together with incremental values dt for time and Δε for strain, respec
tively. The subroutine has to return the updated values for the stress 
tensor and the state variables at the end of the increment. The 8 state 
variables used in this algorithm are the components of the backstress 
tensor, the value of accumulated inelastic strain and the updated value 
for the porosity of the material. 

In the first step of the algorithm, a trial stress 

σtrial = σini +C∙(εfin − εini) (17)  

is calculated, where C represents the elastic tensor. Further, the mean 
stress 

σmean =
1
2
(σini + σtrial) (18)  

representing the time average of stress active in this increment is 
calculated. Next, the effective mean stress 

σeff
mean = σmean − χini (19)  

is evaluated by subtraction of the backstress. Here, the backstress χini for 
the beginning of the increment is inserted. Thus, the effective mean 
stress is decomposed into hydrostatic and deviatoric parts, and the 
correlated Euklidean norms of these tensors are calculated. Then, it is 
checked whether the inequality of Eq. (11c) is satisfied. In the case that 
the effective stresses are below the threshold value for creep, σtrial is used 
as result for the stress at the end of the increment. Otherwise, the values 
for the volumetric and deviatoric strain rates are calculated according to 
Eqs. (11a) and (11b). In fact, the time increments used by ABAQUS 
Explicit are extremely small. Therefore, strains may be interpolated 
linearly within the increment, and one receives. 

Δεine
vol = ε̇ine

vol∙dt (20a)  

and 

Δεine
dev = ε̇ine

dev∙dt. (20b) 

Consequently, the stress at the end of the increment becomes 

σfin = σtrial − 2GΔεine
dev − KΔεine

vol, (21)  

where G and K are shear modulus and bulk modulus of an isotropic 
elastic material, respectively. Finally, the state variables are updated 
according to the equations 

χfin = χini + k1∙Δεine − k2∙‖Δεine‖∙χini (22)  

εine
acc,fin = εine

acc,ini +‖Δεine‖ (23)  

ffin = fini +(1 − fini)∙Δtr(εine) (24) 

This update of the state variables completes the subroutine VUMAT. 
Next, the subroutine UMAT for ABAQUS Standard is explained: The 

algorithm used for UMAT divides the time increment dt into N intervals, 
whereby every interval is evaluated according to the algorithm, which 
was already described in Eqs. (17) to (24). Thereby, N serves as solution 
parameter, and a value of N = 10 intervals proved to be useful. Further, 
the stresses and state variables at the end of every interval are used as 
start values for the subsequent interval. In consequence, one finally 
obtains the update for the stresses and state variables at the end of the 
time increment. 

Furthermore, the 36 components of the material Jacobian matrix ∂∆σij
∂∆εkl 

at the end of the increment are to be evaluated. This is done numerically 
with use of the stress update algorithm in combination with an increased 
strain increment ∆ε = εfin − εini. This procedure is carried out for every 
component of the strain tensor, whereby an additional strain increase of 
at least 10− 12 per strain component was assumed. 

Table 2 
Material parameters used for the plots of Figs. 4 and 5.  

Temperature Shear modulus Bulk modulus 

298 [K] 8460 [MPa] 18,333 [MPa] 
403 [K] 7920 [MPa] 17,167 [MPa] 
473 [K] 7580 [MPa] 16,417 [MPa]   

Isotropic hardening D1 D2 ε0 

Parameter 16 [MPa] 3 0.09   

Kinematic hardening k1 k2 

Parameter 20 [MPa] 7   

Activation energy Threshold stress value A Initial porosity 

133 kJ/ (mol K) 2.0 [MPa] 0.38 
P  

Creep c1 c2 c3 

Coefficients 3e11 2e9 0.22   

Stress n1 (volumetric) n2 (deviatoric) 

Exponents 1.9 3.5  
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5. Simulation results 

Examples of FEM simulations performed with subroutine UMAT are 
shown in Figs. 6–8. Fig. 6 shows the stress relaxation of a tensile spec
imen at 403 K using the material parameters of Table 2. For simplicity, 
only the parallel length of the sample was simulated. Prior to relaxation, 
the sample was loaded to 30.7 MPa within 8 s. Thereupon, the sample 
was kept at constant length. In Fig. 6, t = 0 indicates the time step of 
maximum stress at the onset of stress relaxation. 10 s later, a consider
able stress reduction is observed. The material behaviour seen in the 

FEM simulation is in good agreement with the numerical results of 
Fig. 5, which was derived for a homogeneously deformed sample. 

In Fig. 7 one can see the stress relaxation of a lap-joint at room 
temperature. The entire sample including the copper parts of 50 mm 
length was simulated. The Figure shows the region in the vicinity of the 
sintered area. The time step of t = 0 indicates the onset of stress relax
ation after loading. Thereupon, further increase of inelastic strain is 
observed in the sintered material. 

The cut view depicted in Fig. 8 shows the strain distribution in the 
sintered silver after 10 s of stress relaxation at room temperature. 

Obviously, the distribution of strain is not homogeneous. Neverthe
less, the amount of tensile stress reduction at the ends of the lap-joint 
appeared to be plausible with respect to experimental data. In conclu
sion, the material parameters of Table 2 can be used for modelling of 
sintered silver without need of further optimization. 

6. Summary and conclusions 

In summary, a unified material model for sintered silver was devel
oped, which can be applied to reliability assessments of sintered joints in 
electronic packages. Lifetime estimates are usually deduced from models 
of damage accumulation, whereby damage develops in dependence of 
the accumulated inelastic strain observed during simulation of elec
tronic assemblies [16]. In praxis, simplified material models as for 
instance bilinear kinematic hardening are used for this purpose. In this 
context, advanced material models for the sintered joints may provide 
more accurate estimates for expected lifetimes of electronic modules. 
However, follow up studies seem to be necessary in order to obtain 
further insight into damage accumulation. In particular, it is planned to 
study ageing effects of the sintered material in future investigations. 
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