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A B S T R A C T   

Finding and optimizing robust schemes for field-free switching remains a challenging problem in spin-orbit 
torque magnetoresistive random access memories. In this work reinforcement learning is employed for the 
optimization of switching schemes for such memory cells. A cell is switched purely electrically by applying pulses 
to two orthogonal metal wires. It is shown that a neural network model trained on a fixed material parameter set 
is suitable to determine optimal pulse sequences for reliable switching in the presence of thermal fluctuations, 
material parameter variations and reduction of the current to a sub-critical value. Multiple realizations of 
switching by means of simulation prove the reliability of magnetization reversal based on the pulse sequences 
found via reinforcement learning and show that the failure rate due to material parameter variations in these 
memory devices can be significantly reduced.   

1. Introduction 

Standard charge-based static random access memory (SRAM) cells 
are volatile by design and the progressive down-scaling of the CMOS 
technology utilized for their fabrication has led to an increase in standby 
power consumption. A possible solution to this problem is to use 
adequate nonvolatile memory devices. Spin-orbit torque magnetoresis
tive random access memory (SOT-MRAM) is one of the most promising 
variants. SOT-MRAM devices exhibit large endurance and very fast 
operation, which makes them particularly suitable for caches, where 
currently CMOS-based SRAM is predominant. Another technology 
development entering various scientific fields is machine learning (ML). 
Its ability to handle huge data sets and infer knowledge from them has 
enabled many scientific advances [1]. The ML sub-branch of reinforce
ment learning (RL) [2] is based on the imitation of the way humans 
learn, with impressive demonstrations of superior performance in chess 
or Go [3]. 

In this work we extend the previously published proof-of-concept 
[4], which showed that RL can find switching pulse sequences for an 
SOT-MRAM cell, but where some manual intervention was still neces
sary. We demonstrate that RL can be used to autonomously improve the 

switching efficiency of SOT-MRAM cells by learning how to apply pulses 
to achieve fast reversal of the magnetization in the memory cell. Most 
importantly, a model trained for a specific parameter set performs 
excellently on a broad distribution of varying materials and parameters 
and can even cope with a reduction of the switching current to below the 
critical value. 

2. Spin-orbit torque memory 

At the heart of MRAM devices lies a magnetic tunnel junction (MTJ), 
consisting of two ferromagnetic layers sandwiching a non-magnetic 
tunnel barrier. In SOT-MRAM devices, switching is achieved by pass
ing a current through a heavy metal wire attached to the magnetic free 
layer (FL). The heavy metal wire exhibits a large spin Hall angle, which 
translates the charge current into a transverse spin current interacting 
with the ferromagnetic FL. In contrast to spin-transfer torque MRAM, the 
read and write paths are separated in SOT devices, leading to increased 
reliability, as no oxide degradation occurs in the MTJ and no accidental 
writing during a read operation can happen. This read-write-path sep
aration also leads to a more energy-efficient operation. Although for the 
write current densities in the range of ~200 MA cm− 2 high endurance is 
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still achieved, to reduce the stress on the surrounding circuitry, further 
decreasing the required currents is essential [5,6]. An issue with 
perpendicular SOT-MRAM is the need for an external magnetic field to 
reliably switch the FL [7]. Besides solutions which circumvent this 
problem by breaking the mirror symmetry [8,9], a recently proposed 
scheme allows purely electrical switching by adding a second heavy 
metal wire orthogonal to the first one, only partially overlapping the FL 
(c.f. Fig. 1) [10]. The right part, consisting of NM1, FL and NM2, is 
responsible for the writing of the memory cell, while the left part deals 
with the read-out of the stored information. A sequence of current pulses 
through the two heavy metal wires, NM1 and NM2, is able to reverse the 
perpendicularly magnetized FL. It has been shown that the critical 
current, which is required to reliably reverse the magnetization in the 
memory cell, depends on the value of the anisotropy constant as well as 
on the saturation magnetization [11]. 

3. Reinforcement learning 

The general reinforcement learning setup consists of an agent and an 
environment. The agent repeatedly interacts with the environment by 
performing certain actions, making the environment transition from one 
state to another. After every transition, the environment returns the new 
state, as well as a reward to the agent. The basis for the decision-making 
in so-called value-based learning algorithms, like Q-learning [2], is the 
action-value function, defined as 

Qπ(s, a) = E

[
∑T

t=0
γtRt | St = s,At = a

]

, (1)  

which describes the expected cumulative discounted reward for taking 
action a in state s at time t following a policy π, with γ being the discount 
factor that defines how strongly future rewards influence the estimate at 
time t. In the described experiments we employed the deep Q-network 
(DQN) algorithm [12], a version of the Q-learning algorithm using a 
neural network (NN) as function approximator. Due to the repeated 
interaction with the environment during a learning phase, the agent 
adjusts the weights of the neural network representing the action-value 
function to improve its approximation. Having an estimate of the quality 
of the state-action pairs, the agent can either make a greedy decision and 
take the action which promises the highest cumulative reward and 
exploit its current knowledge, or it can decide to further explore the 
state-action space by performing a - from the current point of view - sub- 
optimal action, with the possibility of discovering a new, better policy. 
In order to make the best possible decision, the agent must have a good 
estimate of Eq. (1). Thus, during the learning phase, it is important to 
thoroughly explore the state-action space, such that as many state-action 
pairs as possible are represented in the Q-function approximation. This 
can be influenced by the exploration probability ε. Each time an action 
can be taken, an explorative, random action is taken with probability ε, 

and a greedy action is taken with probability 1-ε. As learning progresses, 
the initial value of ε is gradually reduced to a small value to allow the 
action-value function to converge. 

4. RL for SOT switching 

The general setup of the pulsed switching cell in an RL setting can be 
seen in Fig. 2. For the basic RL functionality an existing Python RL li
brary was used [13]. The single components will be described in the 
following. 

4.1. Agent 

For the DQN agent, the implementation of [13] is used. To approx
imate the Q-function, the DQN algorithm uses a neural network. Apart 
from the parameters given in Table 1, the default configuration pa
rameters were used, which empirically delivered the best results. 

4.2. Environment 

The environment contains a simulation of the two-pulse switching 
memory cell. For this purpose, an in-house developed simulator [14] 
was applied. This finite difference simulator solves the Landau-Lifshitz- 
Gilbert equation which describes the magnetization dynamics: 

∂m
∂t

= − γμ0m × Heff + αm ×
∂m
∂t

− γ
ℏ
2e

θSHj1

MSd
[m × (m × y) ]θ1(t)

+γ
ℏ
2e

θSHj2

MSd
[m × (m × x) ]θ2(t)

(2) 

Here, m is the normalized magnetization, γ is the gyromagnetic ratio, 
μ0 is the vacuum permeability, α is the Gilbert damping factor, and MS is 
the saturation magnetization. The effective field Heff includes the ex
change field, the uniaxial perpendicular anisotropy field, the demag
netizing field, the current-induced field, and a stochastic thermal field at 
300 K. The SOT, which acts on the memory cell and is generated by the 
currents through the NM1 and NM2 wires, is described by the latter two 
terms on the right-hand side. e is the elementary charge, ℏ is the reduced 
Plank constant, θSH is the effective Hall angle, j1,2 are the current den
sities in the two wires, d is the thickness of the FL and θ1,2 are functions 
describing when the pulses in NM1 and NM2 are active. x and y are the 
unit vectors pointing into the direction of the two heavy metal wires. 
The parameters used in the simulation are given in Table 2. 

4.3. State 

A crucial part for deciding which action to take depends on the state 
vector returned to the RL agent at every time step. It has to be ensured 
that ambiguities are avoided and that the state delivers sufficient 

Fig. 1. SOT-MRAM cell for switching based on two orthogonal current pulses. 
The pulses are sent through the structure via two non-magnetic heavy metal 
wires, of which one is fully overlapping the FL (NM1) and one only 
partially (NM2). 

Fig. 2. General setup of the reinforcement learning approach: A simulation of 
the SOT-MRAM cell acts as environment which an agent interacts with to build 
up a policy based on a neural network. 
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information for the agent to make a decision. The state vector used for 
the experiments consists of 11 variables:  

• The average x/y/z magnetization components,  
• the average x/y/z effective field components,  
• the difference of the magnetization's average x/y/z components to 

the previous time step, and  
• two variables indicating whether the pulses are currently settable. 

While the importance of the average magnetization components is 
apparent, as they are the state variables we ultimately want to change, it 
is also important that data about the dynamics of the magnetization are 
included, because it would not be possible to decide on the best action 
without knowing in which direction the magnetization components are 
moving. 

4.4. Actions 

The action space of the RL agent is restricted to four actions, namely 
having both pulses off or both pulses on, as well as switching them on 
individually. The current value of the two pulses is fixed to 130 μA for 
the NM1 wire and 100 μA for the NM2 wire, and the minimum time 
between pulse state changes is 100 ps. 

4.5. Reward 

The rewarding scheme is what leads the learning algorithm in the 
right direction and thus has to be designed carefully. The objective of the 
experiments has been to achieve a fast transition of the average z- 
component of the magnetization from +1 to − 1. For every simulation 
step, the agent receives a negative reward, whose exact value depends 
on the distance between the current position of the average z-component 
mz, current and the target value mz, target and is defined as: 

r = mz,target − mz,current (3) 

Thus, with mz, target = − 1, the further away the magnetization is from 
the target value, the more negative the reward is. This also ensures that 
the agent tries to get the z-component towards the target value rapidly, 
in order to reduce the overall accumulated negative reward. 

5. Results 

By employing this RL approach the RL agent learns how to reverse 
the magnetization of an SOT-MRAM cell. For 106 training simulation 
steps, which correspond to 50 switching simulations, the agent refined 
its action-selection policy and was able to successfully reverse the 
magnetization. The trained model can subsequently be used to carry out 
switching simulations in which the model decides when to apply current 
pulses. To check the switching reliability of the best-performing neural 
network model found during the learning phase, 50 realizations under 
thermal fluctuations were subsequently performed with it. The results 
are shown in Fig. 3. The slight transparency of the single trajectories is 
intended to show paths that are taken more often and appear more solid, 
and those that are taken less often, which are only faintly visible. Up 
until 1 ns, the applied pulses as well as the trajectories of the z- 
component of the magnetization are basically identical for every reali
zation. Only afterwards, when the thermal field leads to a slight diver
gence of the magnetization between the runs, the neural network model 
applies further NM2 pulses whose exact positions vary depending on the 
respective trajectory of the magnetization. Nevertheless, in all re
alizations the z-component of the magnetization is deterministically 
reversed from +1 to − 1. 

To further study the reliability of the learned model, experiments 
with varying material parameters were performed. The anisotropy 
constant K as well as the saturation magnetization MS were varied 
individually up to ±5%. The pulses applied by the model and the tra
jectories of the z-component of the magnetization can be seen in Figs. 4 
and 5, respectively. The two figures do not provide specific information 
about single switching simulations, but due to the slight transparency of 
the single plot lines, they deliver a good overview of the behavior of the 
learned neural network model. Compared to the results for fixed mate
rial parameters (Fig. 3), varying the material parameters also creates 
more variation in the applied pulses as well as in the magnetization 
trajectories. This indicates that the model indeed makes decisions which 
depend on the state of the system and does not simply apply a static set 
of pulses. In the simulated time window of 2 ns, ~75% of the trajectories 
are still successfully brought below the threshold of − 0.9, at which we 
considered the cell to be switched. However, there are material 
parameter combinations for which the magnetization cannot even be 
brought below the xy-plane. For a clearer picture of the performance of 
the model in this varied-parameter scenario, Fig. 6 gives an overview of 
the achieved accumulated reward for all the examined variation 

Table 1 
DQN parameters.  

Parameter Value 

Size of NN layers 11 × 150 × 100 × 4 
Discount factor, γ 0.9997 
Learning rate 7.5 × 10− 4 

Exploration fraction 0.2 
Final exploration probability, ε 0.01 
Replay buffer size 3 × 105 

Batch size 512  

Table 2 
Simulation parameters. Assuming β-tungsten metal wires, CoFeB magnetic 
layers and an MgO tunnel barrier.  

Parameter Value 

Saturation magnetization, MS 1.1 × 106 A/m 
Perpendicular anisotropy, K 8.4 × 105 J/m3 

Exchange constant, A 1.0 × 10− 11 J/m 
Gilbert damping factor, α 0.035 
Spin Hall angle, θSH 0.3 
Free layer dimensions 40 nm × 20 nm × 1.2 nm 
NM1: w1 × l 20 nm × 3 nm 
NM2: w2 × l 20 nm × 3 nm  

Fig. 3. Results of 50 realizations for fixed material parameters and an NM1 
current value of 130 μA using the learned neural network model. Results of the 
single runs are plotted slightly transparent, such that regions where multiple 
lines overlap appear more solid. 
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combinations. Most apparent is the upper left corner, for which the 
model accumulates more negative rewards, i.e. struggles to bring the z- 
component closer to − 1. These low-performing runs correspond to the 
magnetization trajectories whose z-components stay positive 
throughout the simulation. This, however, is consistent with results 
published in [11], which indicate that in this range of the two material 
parameters, a higher current is required to deterministically switch the 
memory cell. Seeing how good the switching performance across this 
wide range of parameter variations is, further experiments were per
formed with a reduction of the NM1 current to 110 μA, which lies below 
the critical value of 120 μA [11]. First, again 50 realizations under the 
influence of a thermal field and with fixed material parameters were 
carried out, resulting in the trajectories shown in Fig. 7. Interestingly, 
setting the current value of the NM1 wire to below the critical one, it 
seems to be easier for the model to reverse the magnetization. Due to the 
reduced slope of the decreasing z-component of the magnetization, the 
NM1 pulse and the first NM2 pulse are kept on slightly longer. After the 

initial two pulses on the NM2 wire, no further pulses are required. 
Looking at the magnetization trajectories, one can see why no further 
NM2 pulses were needed. There is less variation between the re
alizations and the − 0.9 threshold is reached ~800 ps earlier than with 
the higher current. Again, also for this reduced-current scenario, the 
model trained on fixed material parameters was confronted with the 
variations of the anisotropy constant and the saturation magnetization 
of ±5%. The overview of the accumulated reward is presented in Fig. 8. 
The line separating the higher-performing runs from the lower- 
performing ones has shifted slightly towards the bottom right corner. 
The model though is still capable of reversing the magnetization in a 
large portion of the parameter variation space and the number of tra
jectories with successful switching has only reduced to ~59%. 

6. Conclusion 

We demonstrated that reinforcement learning is a promising tech
nique to guarantee reliable switching of SOT-MRAM cells. An optimal 
pulse scheme for deterministic switching in the presence of thermal 

Fig. 4. Pulses applied to NM1 and NM2 during 121 realizations with varying 
material parameters and an NM1 current value of 130 μA. The results of the 
single runs are plotted slightly transparent, such that regions where multiple 
lines overlap appear more solid. 

Fig. 5. Average z-component of the magnetization for 121 realizations with 
varying material parameters and an NM1 current value of 130 μA. Results of the 
single runs are plotted slightly transparent, such that regions where multiple 
lines overlap appear more solid. 

Fig. 6. Accumulated reward achieved for anisotropy constant K and saturation 
magnetization MS varied by ±5% and an NM1 current value of 130 μA. Results 
are shown for a total of 121 realizations. 

Fig. 7. Results of 50 realizations for fixed material parameters and an NM1 
current value of 110 μA using the learned neural network model. Results of the 
single runs are plotted slightly transparent, such that regions where multiple 
lines overlap appear more solid. 
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fluctuations and parameter variations is achieved after training the 
neural network model to maximize its received reward during the 
learning phase for a fixed material parameter set. Using the trained 
model afterwards to perform simulations, we could not only show that 
the model is flexible and can cope with varying material parameters, but 
as well deal with sub-critical current values. However, a further reduc
tion of the switching current is still desirable to reduce stress in the 
overall circuitry of the memory cells. 
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