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Kurzfassung

Bei Ontology-Mediated Querying fragen NutzerInnen Daten mit Hilfe einer Ontologie ab.
Eine Ontologie bietet nicht nur ein Mittel, Daten aus heterogenen Quellen miteinander
zu verbinden, sondern auch die Möglichkeit, bei unvollständigen Daten Schlüsse zu
ziehen. Moderne Systeme erlauben NutzerInnen ihre Daten mit SPARQL 1.1 abzufragen,
wobei davon ausgegangen wird, dass diese in einem relationalen Schema gespeichert sind.
Obwohl diese Systeme von Graph-strukturierten Daten ausgehen, ermöglichen sie keine
Abfragen mit Navigationsfunktionen. Unser Ziel ist es, NutzerInnen die Möglichkeit zu
geben, eine Neo4j Property-Graph Datenbank mit Ontologien und einer Abfragesprache
mit Navigationsfunktionen abzufragen. In unserer Arbeit diskutieren wir die Unterschiede
in der Semantik zwischen SPARQL 1.1 und der Property-Graph Abfragesprache Cypher.
Abfragen in unserem Framework sollen in Bezug auf eine gegebene Ontologie umschreibbar,
und ihre Auswertung hinsichtlich der Datenkomplexität praktisch ausführbar sein. Wir
schlagen ein Framework für die Abfrage von Neo4j Property-Graphen mit Ontologien
vor. Darüber hinaus definieren wir Bedingungen, die sicherstellen, dass die Antworten
in den betrachteten Abfragesprachen übereinstimmen. Unsere Arbeit umfasst auch
eine neue Umschreibetechnik für Abfragen in unserem Framework. Weiters zeigen wir,
dass unsere Umschreibung vollständig und korrekt ist und dass die Beantwortung von
Abfragen praktisch umsetzbar ist. Abschließend stellen wir eine Implementierung unserer
Umschreibung vor und diskutieren die Realisierbarkeit unseres Ansatzes anhand eines
Anwendungsfalls aus dem Bereich des autonomen Fahrens, der von der Virtual Vehicle
Research GmbH bereitgestellt wurde. Unsere Ergebnisse weisen darauf hin, dass die
Abfrage von Property-Graphen mit Ontologien in der Praxis realisierbar ist. Darüber
hinaus zeigt sich, dass wir Property-Graph Datenbankmanagementsysteme nutzen können,
um Navigationsabfragen in Bezug auf Ontologien zu beantworten.
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Abstract

In ontology-mediated querying, users query their data by the means of an ontology. Not
only does an ontology provide a means to connect data from heterogeneous sources
together, but also a way to reason about incompleteness in the data. State of the art
systems allow users to query their data with SPARQL 1.1, which is assumed to be stored
in a relational schema. Despite the fact that these systems assume graph-structured data,
they do not facilitate querying with navigational features. We aim to enable users to
query a Neo4j property graph database with ontologies and navigational features in the
query language. In our work, we discuss the differences in semantics between SPARQL
1.1 and the property graph query language Cypher. Finally, queries in our framework
should be rewritable with respect to an input ontology, and evaluating them should
be tractable in data complexity. We propose a framework for querying Neo4j property
graphs with ontologies. Further, we define conditions which ensure that the answers
given by the query languages under consideration coincide. Our work also includes a
novel rewriting technique for queries in our framework. In addition, we show that our
rewriting is complete and correct, and query answering is feasible. Finally, we present an
implementation of our rewriting and discuss the viability of our approach based on a
use case from the autonomous driving industry, provided by Virtual Vehicle Research
GmbH. Our results indicate that querying of property graphs with ontologies is viable in
practice. Furthermore, it shows that we can make use of the property graph database
management system to answer navigational queries with regard to ontologies.
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CHAPTER 1
Introduction

1.1 Motivation
The ontology-mediated querying (OMQ) paradigm has garnered much attention in the
last years from both academia as well as industry [Bie16]. Ontologies encapsulate domain-
specific semantic knowledge of the data. Instead of using the vocabulary of the data
schema, users query the data through the ontology with the vocabulary they are familiar
with. An OMQ system can integrate data from multiple sources with different schemata,
but users can still formulate queries relying on a unified, global view of the data. The
answers to user queries are enriched with implied knowledge from the ontology, adding
results from incomplete data. The combination of an ontology with data is referred to as
a knowledge base.

Despite the fact that OMQ assumes and is even tailored for graph-structured data,
existing systems lack crucial functionalities present in all query languages for graphs.
Even if modern ontology-based data access (OBDA) systems such as Ontop [XLK+20]
implement a large portion of SPARQL 1.1 [SH13], the property path functionality is not
supported. In essence, property paths enable the users to query whether two objects in
the knowledge graph are connected by a user-specified path of possibly arbitrary length.
Such query language features are also referred to as navigational features. Moreover, such
systems use relational database management systems (RDBMS) for query evaluation,
which are not optimized for query evaluation in graph databases. This is an obstacle to
users who want to leverage the advantages of OBDA with property graph databases.

1.2 Problem Statement
Currently, there is no framework for OMQ which assumes that the underlying data the
users are querying through the ontology are stored and accessed as graph databases.
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1. Introduction

Even if graph schemata can be abstracted to relational schemata, enabling the use of
current state of the art OMQ systems, we lose the capabilities of the native graph
database management system to efficiently evaluate navigational queries over the sources.
A framework for OMQ of property graphs consists of a query language and an ontology
language. In addition, queries should be answered with regard to an ontology over the
plain data.

Our work focuses on answering queries where the data is stored with Neo4j’s propri-
etary property graph model. Neo4j is one of the world’s most popular graph database
management systems. The graphs of a Neo4j database can be queried with the Cypher
query language [FGG+18]. However, the semantics of Cypher are different to the seman-
tics of SPARQL 1.1 and ontology queries. Cypher has isomorphism-based semantics,
whereas SPARQL 1.1 and ontologies follow homomorphism-based semantics. Therefore,
any framework that that aims to answer OMQs over Neo4j property graph databases
must ensure an adequate semantics for OMQs with Cypher and that its relationship
with the usual homomorphism-based semantics is understood. Moreover, Cypher only
supports a subset of the property path fragment of the SPARQL 1.1 query language. As
a consequence, we must ensure that the query language in our framework is powerful
enough to capture conjunctive queries with navigational features in addition to being
implementable in Cypher and SPARQL 1.1.

Finally, we want to enable query answering using standard query engines, and evaluating
queries over the plain data. The query rewriting methodology is a well-known methodology
within OMQ [CGL+07, BOS15, BOS15] to achieve this. In a nutshell, given a query q
and an ontology T , the query q should be reformulated to a query q′ which encapsulates
the knowledge in T and is evaluated directly over the graph data. In a complete rewriting,
the answers of q′ coincide with the answers of q over the given data including inferred
relations and objects from the combination of T and the data.

1.3 Research Questions

Our work is guided towards answering the following research questions:

RQ1: What is an appropriate way to enable OMQ of property graphs?

An OMQ framework description should include a definition of an ontology and query
language. The query language should allow for conjunctive queries with navigational
features. In addition, the semantics of the queries should be well-defined for both Cypher
and SPARQL 1.1. Users should be able to query their data using the vocabulary of
an ontology, and the answers should consider the implicit knowledge of the ontology.
Moreover, the queries should be evaluated without adding the implied facts from the
ontology to the data. Answering queries with regard to ontologies should be tractable in
data complexity.

2



1.3. Research Questions

We show the viability of our approach on a concrete use case, provided by Virtual Vehicle
GmbH, one of Europe’s largest research centers for autonomous driving.

RQ2: How do Cypher semantics affect the answers of navigational queries?

By using Cypher as a target language, we are required to define cases where the answers
returned by a Cypher query coincide with the answers of a query language whose answers
are based on homomorphisms. Such a definition is necessary to ensure that a rewriting
of an input query with regard to an ontology returns the correct answers when executed
as a Cypher query. A proper semantics for OMQ with property graphs has not yet been
proposed.

In other words, we must investigate investigate which restrictions of paths or query
language properties are necessary to achieve this. We will show that we can define a set
of syntactic restrictions on the knowledge base such that the answers coincide for Cypher
and SPARQL 1.1 semantics. Furthermore, we show that we can define a set of syntactic
restrictions on the data and the ontology for which the answers coincide on the canonical
model of the knowledge base.

RQ3: What is a suitable rewriting strategy using Cypher as a target
language?

The primary objective of a rewriting is to avoid materialization of the implied facts of
a knowledge base. Depending on the ontology, the size of the materialization of the
knowledge base may be infinite, in which case query evaluation is infeasible.

Therefore, we require a rewriting procedure for our ontology and query language. We
will present such a rewriting procedure and show that it can be used with Cypher as a
target language for query evaluation.

RQ4: How feasible are Cypher rewritings for OMQ of property graphs?

The feasibility of Cypher rewritings is dependent on the computational complexity of
query evaluation in graph databases. Moreover, it is well-known that conjunctive query
answering with navigational features is intractable in combined complexity. However,
the complexity of query answering is often described in data complexity. For query
languages with homomorphism-based semantics, the data complexity of conjunctive
query answering with navigational features is tractable. Still, the semantics of Cypher
can lead to intractability in data complexity.

Based on our rewritings, we show the data complexity of answering queries with Cypher
as a target language.

3



1. Introduction

1.4 Solution Approach
The main goal of this thesis is to develop a framework for ontology-mediated querying
with navigational features for property graphs that is practical to use in a real-life use
case. In our work, we follow the methodology of ontology-mediated querying [Bie16].

As a prerequisite, we introduce the Neo4j proprietary graph model and the ontology
language DL-Lite. We define models for DL-Lite which can be interpreted as property
graphs. Furthermore, we analyze the semantics of query languages and define sets of
roles Ξ which are safe to use in paths. Based on this, we define the notion of Ξ-acyclicity
and Ξ-compliance, which are syntactic restrictions on the knowledge base. The query
language in our framework is a subset of C2RPQs, but can still express a useful variety
of paths. For a knowledge base with Ξ-acyclic data and a Ξ-compliant ontology, we show
that in the canonical model the answers under both semantics coincide for our query
language.

Our main contribution is a rewriting procedure for our query language and DL-Lite
ontologies. Using an ontology and a query as an input, it returns a set of queries which
can be evaluated in Cypher. We also prove its termination and correctness, and present
a query answering algorithm which uses our rewriting procedure as its core element. To
show the feasibility of our approach, we show the computational complexity of query
rewriting and query answering in our framework. For this, we leverage traditional
methods from complexity theory.

1.5 Thesis Structure
We introduce the relevant concepts of ontology-mediated querying in Chapter 2. This
includes the description of property graphs, ontologies and the notion of models in relation
to property graphs. Furthermore, we define the semantics of the query languages we
consider in our work and present the state of the art for OMQ and OBDA. In Chapter 3
we present the query language for our framework, where we also discuss the answers to
queries in our query language under different semantics. There, we also present syntactic
restrictions to ensure that the answers coincide in the canonical model of the knowledge
base. We describe our rewriting algorithm for ontology-mediated querying in Chapter 4.
Moreover, we prove its correctness under homomorphism-based semantics and show
that using Cypher as a target language returns the expected answers. In addition, we
discuss the computational complexity of an answering procedure based on our rewriting.
Chapter 5 outlines our implementation of our rewriting algorithm, which produces a
Cypher query given an ontology and a query. We present a use case for OMQ with
property graphs in Chapter 6, where we used an ontology to bridge the gap between
different datasets in the same Neo4j database. Finally, we summarize our work, answer
the research questions, and give an outlook for future work in Chapter 7.

4



CHAPTER 2
Background and State Of the Art

The main goal of this thesis is to develop a framework for ontology-mediated querying
of property graphs with navigational features. Before we can describe our approach,
however, we must define each of the aspects this thesis is concerned with. Therefore,
we must first describe what property graphs and ontologies are. We must line out the
fundamental terminologies and definitions. While it may sound trivial at first glance, we
must also introduce what queries are in this context. Most importantly, we must define
how queries are interpreted, which amounts to describing their semantics. Our framework
is designed for Neo4j property graphs. As a consequence, we must also introduce the
Cypher query language and its relation to our defined semantics and ontologies. We must
bridge the gap between data models, ontologies and query semantics. Finally, we also
present examples, known results, and technologies from the realm of the semantic web
ontology-mediated data access and querying systems, whose success we build our own
work on.

2.1 Property Graphs
Graph databases have experienced an increase in popularity in the last decade. They
can be categorized as NoSQL (“Not only SQL”) databases, as they are inherently non-
relational. Nodes and relationships are the core elements of a graph database compared
to tables in relational databases. As such, nodes and relationships (edges) are often
treated as first-class citizens.

Many domains can be naturally expressed with property graphs. For example, the Inter-
national Consortium of Investigative Journalists organized the data from the Panama
Papers leak in a property graph database and made it available for download to the
public1. Other notable examples of use cases for property graphs include social network

1https://github.com/ICIJ/offshoreleaks-data-packages, accessed 17th May, 2022
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analysis [DKT16], bioinformatics [LRS+16], and, more generally, knowledge graph cre-
ation [KBL+21]. Nevertheless, there does not yet exist a standard for property graphs.
Moreover, the development of a standard graph query language analogous to SQL is still
an ongoing project2.

Our work is focused on the most popular graph database management system is Neo4j
with its query language Cypher. Property graphs are the core data model underlying the
Neo4j system. We first provide a brief overview of the Neo4j proprietary model.

2.1.1 Model
The Neo4j proprietary model described by Francis et al. [FGG+18] relies on the three
disjoint, countably infinite sets of node identifiers N , relationship identifiers R and
property keys K.

Definition 2.1.1 (Neo4j Property Graphs [FGG+18]). Let L be the countable set of
node labels and T the countable set of relationship types. Then, a property graph G is a
tuple ⟨N, R, src, tgt, ι, λ, τ⟩, where:

• N ⊆ N is a finite set of nodes in G.

• R ⊆ R is a finite set of relationships in G.

• src ∶ R → N is a function mapping each relationship to its source node.

• tgt ∶ R → N is a function mapping each relationship to its target node.

• λ ∶ N → 2L is a function mapping each node to a finite set of labels.

• τ ∶ R → T is a function mapping each relationship to a relationship type.

• ι ∶ (N ∪R) × K → V is a function mapping a node or relationship and a property
key to a value.

For illustration purposes we assume two base types: The set Z of integers and the set Σ∗
of finite strings over the alphabet Σ. The set of values V is defined inductively as follows:

• Elements of N ,R are values.

• Elements of the base types (Z, Σ∗) are values.

• true, false, and null are values

• list() is a value. If v1, . . . , vn are values, then list(v1, . . . , vn) is a value.
2https://www.gqlstandards.org/home, accessed 17th May, 2022

6
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2.2. Ontologies

• map() is a value. If v1, . . . , vn are values and k1, . . . kn are distinct property keys,
then map((k1, v1), . . . , (kn, vn)) is a value.

• path(n) is a value if n ∈ N . If n1, . . . , nm are elements of N and r1, . . . , rm are
elements of R, then path(n1, r1, n2, . . . rm, nm) is a value.

From the definition of property graphs it follows that Neo4j property graphs are multi-
valued property graphs [AAB+17]. However, multi-values are restricted to the labels of
nodes only. Relationships are assigned exactly one relationship type, and each (node,
key) or (relationship, key) pair is assigned to exactly one value (which can be null).
Nevertheless, such a value can be a list.

2.2 Ontologies
Ontologies are a formalism to define domain knowledge in a structured manner. The
formal basis of ontologies are Description Logics (DLs), fragments of first-order logic.
DLs have shown to be useful in a variety of scenarios [BHLS17]. Description Logics are
especially suited to reasoning about incomplete data. Moreover, they inherently assume
that data is incomplete. Thus, it is no surprise that DLs have also become the foundation
of reasoning within the Semantic Web.

For our intents and purposes, we will leverage the fact that DLs can reason about
incomplete data for querying property graph data. The first step is, however, to formally
define DLs and ontologies both syntactically and semantically. We present a DL suited for
representing the domain knowledge in a property graph that has desirable computational
properties when it comes to query answering.

2.2.1 Syntax
The core building blocks of DLs are basic concepts, roles, individuals and relationships.
Basic concepts can be viewed as labels or classes for individuals. For example, the concept
Person denotes people in our domain. Roles are binary relations between objects in the
domain. To illustrate, we can use the role name friendOf to define pairs of people who are
friends. Individuals are, as the name suggests, objects in our domain. Contrary to the
common definition of the DL vocabulary, we extend it by a set of relationships. Because
edges are objects in property graphs, we also define the set of relationship names in our
vocabulary. This way, we interpret them as semantic objects.

Definition 2.2.1 (Vocabulary). The DL vocabulary consists of the three countably
infinite and mutually disjoint sets

• NC of basic concept names,

• NR of role names and,

7



2. Background and State Of the Art

• NI of individual names and,

• NE of relationship names.

In the case of role names, we are often also interested in the inverse of roles. For a
role r ∈ NR, r− denotes the inverse role. We use N±R to define the union of the symbols
NR ∪ {r− ∣ r ∈ NR} for convenience.

Using the DL vocabulary, we can define concepts. Similar to basic concepts, these can
be viewed as labels or classes for individuals. However, we can use concept constructors
to define more complex structures than simple labels. The constructors we use in our
description logic language are fairly simple.

Definition 2.2.2 (DL Concept Constructors). Let NC and NR be our sets of basic
concept and role names. Then,

• every A ∈ NC is a concept.

• ∃s is a concept if s ∈ N±R.

DL concepts can be used to build an ontology, which is a set of terminological axioms.
Simply speaking, an axiom is an abstract representation of domain knowledge. An
axiom expresses our beliefs by putting conditions on objects in our domain. Axioms are
sometimes also referred to as general concept inclusions (GCIs). The general intuition
behind this term is that an axiom consists of a left-hand side and a right-hand side. We
interpret an axiom involving concepts as follows: If an object is described by the concept
of the left-hand side, then it can also be described by the concept on the right-hand side
(but not the other way around). Similarly, for axioms between roles, if two objects are
in a relation described by the left-hand side, then their relation can also be described
by the right-hand side. Put together, sets of axioms encapsulate all of our background
knowledge.

One prominent family of DLs for which query answering is tractable in data complexity is
referred to as DL-Lite in the literature [CGL+07]. DL-Lite has been designed specifically
with efficient query answering in mind and is used extensively in knowledge-based systems.
As such, the types of concepts and axioms we define can be considered a part of the
DL-Lite family.

Definition 2.2.3 (Axioms). Let B and C be arbitrary constructed concepts. Then,
B ⊑ C is a positive concept inclusion. Moreover, role inclusions are of the form s ⊑ t for
s, t ∈ N±R are also axioms.

We also allow for negative inclusions of the form B ⊑ ¬C and s ⊑ ¬t for s, t ∈ N±R.
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Negative inclusions describe situations where we consider the objects represented by the
concept on the left-hand side disjoint from the objects represented by the concepts on
the right-hand side. A negative inclusion between roles defines that objects which are in
the relation described by the left-hand side can not be in the relation described by the
right-hand side. For example, a negative inclusion of the form Person ⊑ ¬Machine would
describe that Person and Machine share no common objects. Similarly, we would not
want objects that are related by friendOf to be also in a relation enemyOf, or for short
friendOf ⊑ ¬enemyOf.

The set of axioms is the terminological component of our DL knowledge base. Therefore,
we also call it a TBox or ontology for short and denote it with T . However, the ontology
is only half of what we would consider a knowledge base. Up to now, we have only
discussed how we express our conceptual view of a domain with Description Logics. What
is usually more interesting is how our conceptual view behaves when we add data to it,
because we ultimately want to query the data with our conceptual view.

We only have a limited number of assertions to consider. For one, there are concept
assertions for objects in our domain. Role assertions describe which object domains are
connected by an edge object. The edge object also determines the relationship type.

Definition 2.2.4 (Assertions). Let NC and NR be our sets of concept and role names
and NI and NE our sets of individual and relationship names. Then,

• a ∶ A for a ∈ NI, A ∈ NC is a concept assertion.

• e ∶ r(a, b) for a, b ∈ NI, e ∈ NE, r ∈ NR is a role assertion.

We refer to a set of assertions as an ABox A. Additionally, we refer as Ind(A) to the set
of individuals that occur in A, and Rel(A) refers to the set of relationships that occur inA.

In property graph terms, these assertions would be equivalent to two things: One, the
individual names present in the concept assertions must be in our database. Two, these
objects must be annotated with the labels specified in the assertions. Finally, two objects
in the data are connected by an edge object that must be of one specific type.

A TBox T and an Abox A together form a DL knowledge base (KB) K = (T , A). Right
now, a KB K has no meaning, because we have only defined the syntax of the KB. As it
stands for now, KBs are just an assortment of symbols. Therefore, we must define the
semantics of DL KBs so that we can reason about the elements therein.

2.2.2 Semantics
The semantics of a DL KB is defined by the notion of interpretations. This is, again, a
slight variation of the literature standard for DL interpretations to accommodate our
edge objects.

9



2. Background and State Of the Art

Definition 2.2.5 (Interpretations). We consider an interpretation as a tuple (∆IV , ∆IE ,⋅I , src, tgt, role), where

• ∆IV is a non-empty set called the individual domain, containing the objects in our
domain.

• ∆IE is a non-empty set called the relationship domain, containing the relationships
between objects in our domain.

• src ∶∆IE →∆IV is a total function that assigns each relationship its source node.

• tgt ∶∆IE →∆IV is a total function that assigns each relationship its target node.

• role ∶∆IE → NR is a total function that assigns each relationship its role name.

• ⋅I is the interpretation function.

The interpretation function ⋅I maps:

• Each individual name a ∈ NI to an element aI ∈∆IV
• Each relationship name e ∈ NE to an element eI ∈∆IE
• Each basic concept name A ∈ NC to AI ⊆∆IV
• Each role name r ∈ NR to rI = {(v, w) ∣ ∃u ∈ ∆IE ∶ src(u) = v, tgt(u) = w, role(u) =

r} ⊆ (∆IV ×∆IV )
In essence, we assign all individuals and relationships from our vocabulary to objects in
the interpretation domains. In turn, basic concepts are interpreted as sets of objects in
the domain ∆IV and roles as sets of objects that contain the objects that are connected
by a relationship object from ∆IE with the appropriate role.

For a concept C, we call CI the extension of C in I. We can extend the interpretation
function ⋅I to general concepts and roles as follows:

• (¬A)I =∆IV ∖AI
• (s−)I = {(v, w) ∣ (w, v) ∈ sI}
• (¬s)I = (∆IV ×∆IV ) ∖ sI
• (∃s)I = {v ∣ (v, w) ∈ sI}

With this definition of an interpretation in place, we can now define the semantics of
DL TBoxes and ABoxes. However, we are usually not interested in interpretations that
only satisfy part of the TBox. We want to focus on interpretations that satisfy all of the
axioms in the TBox. Such interpretations are referred to as models.

10
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Definition 2.2.6 (TBox Models). An interpretation I satisfies a TBox inclusion C ⊑
D ∈ T if CI ⊆DI , denoted I ⊧ C ⊑D. The interpretation is a model of T if it satisfies
all inclusions in T .

For ABoxes, we are again not particularly interested in interpretations that only partially
cover the assertions made in the ABox. Therefore, we define models of ABoxes similar to
models of TBoxes.

Definition 2.2.7 (ABox Models). An interpretation I satisfies an ABox class assertion
a ∶ A if aI ∈ AI and a role assertion e ∶ r(a, b) if role(eI) = r, src(eI) = aI , and tgt(eI) = bI .
As a shorthand, we write I ⊧ A(a) if I satisfies a ∶ A, and I ⊧ e ∶ r(a, b) if it satisfies
e ∶ r(a, b). I is a model of an ABox A if it satisfies all assertions in A.

One and the same interpretation can satisfy a TBox, but not an ABox. Thus, when we
define models of DL knowledge bases, we only want those interpretations that satisfy
both the TBox and the ABox.

Definition 2.2.8 (KB Models). An interpretation I is a model of a knowledge baseK = (T ,A) if I is a model of T and a model of A.

We call a knowledge base K satisfiable if there exists a model for K. Otherwise, we
call K unsatisfiable. For ontology languages in the DL-Lite family, one model holds a
special position: The canonical (universal) model. One property that makes the canonical
model useful in designing query answering algorithms for DL-Lite is that it can be
homomorphically embedded into any other model of the KB [BHLS17].

Definition 2.2.9 (Canonical Models). Let K = (T ,A) be a KB of our ontology lan-
guage. Then, we define the canonical model of the KB inductively. We start with the
interpretation I0, obtained in the following way:

• ∆I0
V = Ind(A)

• ∆I0
E = Rel(A)

• AI0 = {a ∈ Ind(A) ∣ a ∶ A ∈ A}
• aI0 = a

• eI0 = e

• For each role assertion e ∶ r(a, b) ∈ A ∶ src(e) = a, tgt(e) = b, role(e) = r

Then, starting with I0, the following three rules are exhaustively applied:

1. If v ∈ BIi , B ⊑ C ∈ T , then add v to CIi+1 .

11
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2. If v ∈ BIi , B ⊑ ∃s ∈ T , then add a fresh element w to ∆Ii+1
V , and a fresh element

u to ∆Ii+1
E . If s is the inverse of a role r ∈ NR i.e., s = r−, then define src(u) ∶= w,

tgt(u) ∶= v, and role(u) ∶= r. Otherwise, define src(u) ∶= v, tgt(u) ∶= w, and
role(u) ∶= s.

3. If s ⊑ t ∈ T , (v, w) ∈ sI , then add a fresh element u to ∆Ii+1
E . If both s and t are

role names or inverse roles, then define src(u) ∶= v, tgt(u) ∶= w, and role(u) ∶= t.
Otherwise, define src(u) ∶= w, tgt(u) ∶= v, and role(u) ∶= t if the inverse role is s,
otherwise role(u) ∶= r for r− = t.

We assume fairness of application of the rules i.e., any rule that can be applied, will
eventually be applied. We set the canonical model IT ,A (or IK) to the limit of the
sequence I0,I1, . . . . Note that the canonical model can be infinite. It can be shown thatIT ,A is a model if the knowledge base is satisfiable [BHLS17].

2.2.3 Relation Between Interpretations and Property Graphs
Recall the definition of property graphs from Definition 2.1.1 and interpretations from
Definition 2.2.5. If we compare the two definitions, we can see that we can transform a
property graph into an interpretation and vice-versa. This exemplifies the strong relation
between interpretations of ontologies and graph-structured data (resp. property graphs).

To translate an interpretation into a property graph, we can set the set of nodes in the
graph to ∆IV and the set of relationships to ∆IE . The functions src and tgt remain largely
unchanged, except for their domain and range. We can proceed similarly to define the
mapping τ in the property graph from the function role of the interpretation. Finally,
the function λ can be constructed from the extension of each of the basic concepts in NC.

Moreover, we can consider the interpretation I0 from Definition 2.2.9 as the minimal
model of the ABox A. The interpretation I0 contains exactly those elements that are
also present in A. With a slight abuse of notation, we set db(A) = I0 as the ABox A
considered as a property graph. In the remainder of this thesis, we will focus on answering
queries (with regard to ontologies) by reducing them to answering queries over db(A).
2.3 Graph Querying
Query languages for graphs have been studied long before the recent advent of graph
databases and the semantic web. In the following, we will first describe the relevant
types of queries for this thesis and their syntax. This includes the description of the
different types of semantics, more specifically homomorphism-based and no-repeated-edges
semantics. We will discuss the relation between these two types of semantics in the
context of the Cypher query language [FGG+18, AAB+17, MNT20]. Moreover, we will
present known results for the complexity of querying data under different semantics.
Finally, we discuss how these results relate to querying data in the presence of ontologies.
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2.3.1 Syntax
Any discussion of a query language for graph-structured data must begin with a description
of a query syntax. We will describe the syntax of queries and relevant jargon by means of
examples. In simple terms, we describe which queries are permitted. We define different
types of query languages in logic notation. More specifically, we use Datalog notation for
our queries. In this notation, every query has a head and a body. The head of the query
contains the free answer variables i.e., the answers to our query. We refer to the number
of variables in the head as the arity of a query. Queries of arity zero i.e., queries without
answer variables, are called Boolean. Usually, the variables and individuals in a query
are referred to as the terms of the query.

Conjunctive queries are some of the most-used queries in data access. As the name
suggests, the body of conjunctive queries contains conjunctions of atoms with our answer
variables and possibly additional ones. In the realm of graph query languages, CQs are
often also referred to as basic graph patterns.

Example 2.3.1 (Conjunctive Queries). Consider a database which contains sensor data
from an autonomous vehicle. The data are organized in scenes for each driving scenario.
Each Scene contains samples that are organized in time with a relation called next. The
first Sample of a Scene is identified by the relation first from the Scene to the first Sample.
The query

q(x) ← Scene(y), first(y, x), Sample(x)
returns the first samples in the data. Note that the head of the query only contains
one free variable, but the body has two variables. In Datalog notation, the variable y is
implicitly existentially quantified. Hence, conjunctive queries are also a type of positive
existential first-order queries.

Definition 2.3.1 (Conjunctive Queries). A conjunctive query (CQ) has the form q(x⃗) ←∃y⃗.ϕ where x⃗ and y⃗ are disjoint tuples of variables, and ϕ is a conjunction of atoms of
the form

1. A(t) where A ∈ NC and t ∈ NI ∪ x⃗ ∪ y⃗.

2. r(t, t′) where r ∈ NR and t, t′ ∈ NI ∪ x⃗ ∪ y⃗

One limitation of conjunctive queries is that we can only express patterns of fixed
size. For example, imagine we wanted to extract all the samples of a scene by only
using the relations first and next. In short, we want to navigate the data along the
relationships. This type of query is common in graph database settings. Navigation
along relationships can be achieved by defining a regular expression over the relations
in the graph. Hence, such queries are also referred to as regular path queries (RPQs).
Furthermore, because these types of queries enable navigation in the graph, they are also
referred to as navigational graph patterns.
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Example 2.3.2 (Regular Path Queries). Assume we have the same scenario as in
Example 2.3.1. We can retrieve all scenes with their respective samples by the query

q(x, y) ← first ⋅ next∗(x, y)
The regular expression first ⋅ next∗(x, y) denotes that x and y are connected by a path of
relations that starts with first and ends with an arbitrary number of traversals of the
next relation. Note that in an RPQ there are exactly two variables both in the head and
body of the query.

Definition 2.3.2 (Regular Path Queries). A navigational query (RPQ) has the form
q(t, t′) ← ρ(t, t′), where ρ is a regular expression over the alphabet NR.

A very simple and common extension of RPQs are 2RPQs. 2RPQs allow regular
expressions over the alphabet N±R i.e., they can use role names and inverses.

Of course, we can combine conjunctive queries and (2)RPQs into a new query language
called conjunctive relational path queries (C(2)RPQs). With C(2)RPQs, we gain access
to new types of queries that can process more complex relationship structures along with
additional restrictions on the variables in the query.

Example 2.3.3 (C2RPQs). We extend the scenario from Example 2.3.1. Assume we wish
to specify that the objects connected by first and next are Scene and Sample, respectively.
We can express this in the following query, which is a combination of the previous two:

q(x, y) ← Scene(x), first ⋅ next∗(x, y), Sample(y)
Definition 2.3.3 (C2RPQs). A conjunctive 2-way conjunctive query (C2RPQ) has the
form q(x⃗) ← ∃y⃗.ϕ where x⃗ and y⃗ are disjoint tuples of variables, and ϕ is a conjunction
of atoms of the form

1. A(t) where A ∈ NC and t ∈ NI ∪ x⃗ ∪ y⃗.

2. ρ(t, t′), where ρ is a regular expression over the alphabet N±R
Finally, we define unions of queries in a generic way. We will use the letter “U” to denote
unions of queries with the abbreviations we have introduced so far. For example, the
term UCQ denotes a union of conjunctive queries.

Definition 2.3.4 (Unions of queries). A union of queries is a set of queries q which have
the same arity.
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2.3.2 Semantics
Up to now, we have only defined the syntax of query languages. However, no discussion
of query languages is complete without defining the semantics of queries. In the following,
we will describe semantics for C2RPQs. Note that these semantics can also be applied to
CQs and (2)RPQs, as they are a subset of C2RPQs.

There have been many different semantics proposed for graph query languages that
have also been implemented in database systems [AAB+17]. We will focus on the two
semantics which are relevant to this thesis: Homomorphism-based semantics and no-
repeated-edges semantics. In both cases, we will assume set semantics. Homomorphism-
based set semantics (h-semantics) are the standard semantics in ontology-mediated
querying [BHLS17, CGL+07, BOS15, Bie16] and underlie the SPARQL 1.1 query lan-
guage [SH13]. No-repeated-edges semantics (nre-semantics), also known as trail seman-
tics [MNT20] are the backbone of the Cypher query language [FGG+18, AAB+17]. Even
if Cypher assumes bag semantics, we can explicitly use set semantics, as we will show later.
The distinction between bag and set semantics becomes relevant when we discuss the
complexity of querying under different semantics, especially when we factor in extensions
such as unions and projection.

We define answers to queries in interpretations. Since interpretations can be viewed
as property graphs, we can cover the discussion of querying of property graphs at the
same time. Furthermore, answers in OMQ rely on knowledge base models, which are
interpretations as well.

Query answers in an interpretation I (or a property graph db(A)) are defined by matches.
Simply put, matches are mappings from the variables in the query to objects in the
domain vI1 , . . . , vIn ∈∆IV of an interpretation I. Still, we can not define the semantics of
queries before we define what a path exactly is. We base our definition of paths and their
semantics on the work of Bienvenu et al. [BOS15]. Nevertheless, we modify the definition
to account for the use of edge objects.

Definition 2.3.5 (Paths). A sequence u1u2 . . . un, n ≥ 0 is a path from v0 to vn in an
interpretation I if all ui ∈ ∆IE , src(u1) = v0, tgt(un) = vn, and for every 1 ≤ i ≤ n ∶
src(ui+1) = tgt(ui).
Sometimes it is more useful to talk about the roles occurring in a path rather than the
individuals and relationships that constitute a path.

Definition 2.3.6 (Path Labels). The label λ(p) of a path p = u1u2 . . . un in an inter-
pretation I is the word r1r2 . . . rn where ri = role(ui) for all i < 0 ≤ n. If n = 0, then
λ(p) = ϵ.

The label of a path can be considered as the “route” we take in an interpretation from
the first object on the path to the last one.
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For the discussion of semantics, it is helpful to imagine a query as a graph. As the name
already suggests, h-semantics describe a semantics where the matches to queries are
homomorphisms from the query to the underlying interpretation.

We begin the definition of C2RPQ h-semantics by defining the semantics for a regular
path expression. The matches of path expressions are based on the labels of a path. For
h-semantics, we are not concerned whether an edge is traversed twice.

Definition 2.3.7 (Homomorphism-Based Semantics of Path Expressions). Let L be a
regular language over N±R. Then, the semantics of L in an interpretation I is defined as
follows:

LIh = {(v0, vn) ∣ there is a path p = u1 . . . un from v0 to vn such that λ(p) ∈ L}
Finally, we can define matches for queries in h-semantics.

Definition 2.3.8 (Homomorphism-Based Matches). A homomorophism-based match
(h-match) for a C2RPQ q in an interpretation I is a mapping π from the terms in q to
elements in ∆IV such that:

• π(c) = cI for each c ∈ NI,

• π(t) ∈ AI for each atom A(t) in q, and

• (π(t), π(t′)) ∈ L(ρ)Ih for each ρ(t, t′) in q.

From Defintion 2.3.8, we can see that joins are implicit in h-semantics. Colloquially
speaking, a join is the combination of two single-atom queries with that share variables,
similar to joins in relational algebra. Using another analogy from relational algebra, the
answer variables are akin to selection.

No-repeated-edges semantics are a subset of homomorphism-based semantics. They are
based on isomorphisms. Matches for queries must have an isomorphism from the edges in
the query graph to the objects of ∆IE of the interpretation. The simple paths semantics
are closely related to nre-semantics, only that the isomorphism is between nodes of the
query and the objects of ∆IV of the interpretation. Similar to before, we first define the
semantics of regular path expressions in nre semantics.

Definition 2.3.9 (No-Repeated-Edges Semantics of Path Expressions). Let L be a regular
language over NR. Then, the no-repeated-edges semantics of L w.r.t. an interpretation I
is defined as follows:

LInre = {(v0, vn) ∣ there is a path p = u1 . . . un from v0 to vn such that each ui

is distinct and λ(p) ∈ L}
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For our framework, we can define a semantics which is equivalent to h-semantics except
for the semantics of path expressions. In the next section, we will discuss how we can
express queries in Cypher such that they follow exactly these semantics.

Definition 2.3.10 (No-Repeated-Edges Matches). A no-repeated-edges match (nre-
match) for a C2RPQ q in an interpretation I is a mapping π from the terms in q to
elements in ∆IV such that:

• π(c) = cI for each c ∈ NI,

• π(t) ∈ AI for each atom A(t) in q, and

• (π(t), π(t′)) ∈ L(ρ)Inre for each ρ(t, t′) in q.

It is easy to see that every nre-match is an h-match, while the converse is not true. Lastly,
we define the notion of answers to queries.

Definition 2.3.11 (Homomorphism-Based Answers). A tuple (a1, . . . , an) ∈ NI is an
h-answer to a query q(x⃗) = ∃y⃗ϕ in an interpretation I if there exists an h-match π such
that π(xi) = aIi for every xi ∈ x⃗. We denote the set of h-answers for for a query q w.r.t. an
interpretation I as ansh(q,I).
Definition 2.3.12 (No-Repeated-Edges Answers). A tuple (a1, . . . , an) ∈ NI is an nre-
answer to a query q(x⃗) = ∃y⃗ϕ in an interpretation I if there exists an nre-match π such
that π(xi) = aIi for every xi ∈ x⃗. We denote the set of nre-answers for for a query q
w.r.t. an interpretation I as ansnre(q,I).
2.3.3 A Brief Introduction to the Cypher Query Language
The Cypher query language is used by Neo4j’s graph databases [FGG+18]. It is tailored
to the Neo4j property graph model. As a graph query language, it supports basic graph
pattern matching in a “ASCII-art” graphical format. This feature enables users to
visualize the pattern that should be matched in their query. Moreover, these graph
patterns also allow users to specify an arbitrary length of a path between two nodes in
the graph. Cypher also supports the creation of graphs (i.e., the command CREATE) and
modifications of the graph (i.e., DELETE, SET or MERGE). However, we are focusing on
the querying capabilities on Cypher in this work.

The basic structure of a Cypher query is shown in Figure 2.1. It consists of a MATCH,
WHERE, and RETURN clause. The MATCH clause defines the query graph which should be
matched. In the WHERE clause, we can add filters to the matches of the query, similar
to the selection operator in relational algebra. Finally, the RETURN clause defines the
variables which should be returned in the query. In this thesis, we will only use nodes
as return objects. However, Cypher can return a wide range of values, such as property
values [FGG+18] of a node or relation. Needless to say, Cypher also recognizes the UNION
keyword for unions of queries.

17



2. Background and State Of the Art

MATCH . . . [MATCH . . . ] ∗
WHERE . . .
RETURN . . .

Figure 2.1: Basic structure of a Cypher query

By default, Cypher follows no-repeated-edges bag semantics in the MATCH clause. How-
ever, there are a number of possibilities to bring Cypher “closer” to the behavior of
h-semantics. Firstly, Cypher supports the explicit use of set semantics by including the
DISTINCT keyword in the RETURN clause. Second, we can simulate h-semantics for
CQs in Cypher by making the join operation, which is implicit in h-semantics, explicit.
Cypher performs a join operation for each shared variable of the MATCH clauses in the
query. Therefore, we can define a separate MATCH clause for each atom in a CQ. Because
there are no navigational atoms in CQs, the semantics of a Cypher query constructed in
such a way is the same as in h-semantics [AAB+17, CS17].

Nevertheless, it is widely known that Cypher does not support full 2RPQs or even
RPQs [AAB+17, FGG+18]. Moreover, Cypher does not support inverses in disjunctions
of path expressions. However, Cypher allows arbitrary-length expressions as shown in
Example 2.3.2. Still, there is no way in Cypher to enable the use of h-semantics in RPQs.
Therefore, we can set the semantics of Cypher as presented in Definition 2.3.10.

2.3.4 Complexity of Querying
For this section, we briefly introduce the following complexity classes which are relevant
to our work:

AC0 ⊂ NL ⊆ P ⊆ NP ⊆ PSPACE

Among the most famous complexity classes are P and NP. The class P describes problems
which can be solved in polynomial time, while NP describes those that can be solved
in non-deterministic polynomial time. At the time of the publication of this thesis, it
is still unknown whether P ≠ NP. The complexity class NL describes problems which
can be solved in non-deterministic logarithmic space, wherein the complexity class AC0

is contained. Problems that are contained in P (and by extension, in AC0 and in NL),
are called tractable. Finally, we introduce the class of problems which can be solved in
polynomial space, PSPACE. NP and PSPACE represent intractable problems.

While many might be familiar with the notion of combined complexity, the notion of data
complexity [Var82] is less known. Data complexity has received increased attention in the
database community in recent times. It is more specific than combined complexity. In
data complexity, we fix the queries and describe the complexity of querying with regard
to database size.

The discussion of the query complexity for property graphs is based on the following
decision problem: Given a query q and a tuple t⃗ ∈ Ind(A), is t⃗ an answer to q in db(A)
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i.e., is t⃗ ∈ ans(q, db(A))? We will assume set semantics for all cases. It is known that bag
semantics increases the complexity of querying, especially for C2RPQs [AAB+17].

It has been long-known that CQ answering is in AC0 in data complexity and NP-complete
in combined complexity [AHV95]. Moreover, these results hold for CQs with projection
as well for both h- and nre-semantics. Because we only include projection, filtering and
joins in CQs, the complexity does not change [AAB+17].

Evaluation of C2RPQs is inherently more difficult [AAB+17]. With h-semantics (in this
context, the term arbitrary paths semantics is also often used), the data complexity
jumps to NL. However, the combined complexity remains in NP. Most notably, these
complexity bounds hold for SPARQL 1.1, if we restrict ourselves to projection, filtering
and joins [AAB+17].

The complexity of evaluating C2RPQs with nre-semantics is even more difficult. Eval-
uating arbitrary (2)RPQs is already NP-complete, and therefore intractable, in data
complexity. The combined complexity remains in NP. However, Martens et al. [MNT20]
have described expressions for which RPQ evaluation is tractable with nre-semantics.
Important for us, RPQs where each role in a Kleene star appears at most once in the
regular expression, are tractable in data complexity [MNT20, Observation 3.7]. These
are also referred to as single-occurrence RPQs.

Because we use Cypher with set semantics and in such a way that we use a MATCH clause
for each atom in the query, complexity of evaluation of these queries is the same as in
SPARQL, if we restrain navigational features to the ones described by Martens et al.

Nevertheless, we must be careful when we define the query language for our framework
that we do not define queries which are not tractable in data complexity if we allow
navigational atoms.

2.4 Ontology-Mediated Querying
In ontology-mediated querying (OMQ), we aim to combine the domain knowledge
expressed in T with the assertions made in the ABox A. The standard semantics for
queries over ontologies and knowledge bases are homomorphism-based [CGL+07, BOS15].

In general, the answers to a query depend on the model of the knowledge base (T , A)
that we are considering. Some tuples might be answers w.r.t. an interpretation I, but
not another interpretation J . One common way to extract the answers the users are
looking for is to only return those answers that have a match in all of the models. We
refer to them as certain answers.

Definition 2.4.1 (Homomorphism-Based Certain Answers). A tuple (a1, . . . , an) ∈ NI is
a certain h-answer to a query q(x⃗) = ∃y⃗ϕ in a KB (T ,A) if there exists an h-match π
such that π(xi) = aIi for every xi ∈ x⃗ in every model of the KB.
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We denote by certh(q,T ,A) the certain answers to the query q under homomorphism-
based semantics. It is widely known that IT ,A can be embedded into any model of a
DL-Lite KB. Additionally, it can be shown that homomorphism-based C(2)RPQ matches
are preserved under homomorphisms. Therefore, if an h-match is present in IT ,A, it is
present in every model of a KB [BOS15, CGL+07]. Hence, ansh(q,IT ,A) = certh(q,T ,A).
However, we can show that nre-matches are not preserved under homomorphisms. This
is an important aspect that we further address in Chapter 3.

Lemma 2.4.1. nre-matches are not preserved under homomorphisms.

Proof. Let A = {a ∶ C},T = {C ⊑ ∃r,∃r− ⊑ C}. Then, the canonical model IT ,A consists
of a chain of C’s connected via r-relations. Consider the interpretation I:

∆IV = {a, v},
∆IE = {u1, u2},
src = {u1 ↦ a, u2 ↦ v},
tgt = {u1 ↦ v, u2 ↦ a},

role = {u1 ↦ r, u2 ↦ r},
CI = {a, v},
rI = {(a, v), (v, a)},

which is a model of (T ,A). Let q(x) = ∃y.r ⋅ r ⋅ r(x, y) be a query. Then, there are
infinitely many nre-matches in the canonical model IT ,A, but none in the model I.

Nevertheless, we can still present known complexity bounds for ontology-mediated
querying for DL-Lite. The discussion of the query complexity for ontologies is based on
the following decision problem: Given a query q and a tuple t⃗ ∈ Ind(A), is t⃗ an answer to
q in every model of (T , A) i.e., is t⃗ ∈ certh(q,T ,A)?
CQ answering is AC0 in data complexity and NP-complete in combined complexity [CGL+07].
For C(2)RPQs, the data complexity increases to NL, while the combined complexity is in
PSPACE [BOS15]. Note that in the case of CQs, the worst-case complexities are in-line
with the complexity of query answering over plain graphs. However, the complexity of
C(2)RPQ answering increases compared to the case where we do not have to consider a
TBox.

2.5 Ontology-Mediated Querying in Practice
Ontologies can be considered a part of the semantic web technologies stack. They form the
core of reasoning and establishing a shared vocabulary in practice. The recommendations
and standards issued by the World Wide Web Consortium (W3C) have been paramount
in enabling the development of tools and systems with ontologies. Most important for us
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are the Resource Description Framework (RDF), the Web Ontology Language OWL 2,
and the query language for RDF, SPARQL 1.1.

RDF data can be seen as graph-structured data [CLW14]. It is a more simple scheme
than property graphs, as data are organized in sets of triples. Each triple consists of a
subject, predicate and object. Using property graph terminology, the subject and object
are interpreted as nodes, and the property is the label of the directed relation between
the subject and object. Subjects are either IRIs or blank nodes (similar to anonymous
objects in the canonical model of an ontology). Objects are either IRIs, blank nodes or
literals, describing data values.

Much of the work we describe in the following is based on an RDF representation of the
data, upon which an ontology is added. To emphasize, the OBDA paradigm includes a
layer where data in a database is mapped to an RDF graph. Moreover, the underlying
data are queried by the users with SPARQL rather than the native query language of the
data store. We also discuss how ontologies can be integrated into queries in an efficient
manner by introducing query rewriting. Finally, we give a brief overview of the work
that has been done in the intersection between the semantic web and property graphs,
focusing on Neo4j and Cypher specifically.

2.5.1 OWL2 QL
The W3C recommends the OWL 2 Web Ontology Language to define ontologies in
interchangable formats, most notably in the W3C’s RDF [PSPM12]. OWL 2 provides a
DL-based semantics that is referred to as the Direct Semantics. The ontologies described
in the direct semantics form the class of OWL 2 DL. OWL 2 DL is far too powerful to
facilitate reasoning in polynomial time, as it describes the DL SROIQ. For this DL,
even consistency checking is already beyond PSPACE [BHLS17].

However, there are three profiles within OWL 2 DL which have been designed with
tractable reasoning in mind: OWL 2 RL, OWL 2 QL and OWL 2 EL [HMG+12]. Of these
three profiles, OWL 2 QL can express the ontology language we described in Section 2.2.1.
We will not go into the details of all available axioms in OWL2 QL. However, we do
mention that OWL 2 QL is can express a more powerful version of the DL-Lite variant
we have decscribed. For example, the ontology language can be extended with functional
relations, which describes DL-LiteF [CGL+07].

2.5.2 Query Rewriting
The success of ontology-mediated querying has been reliant on the fact that queries in
lightweight ontologies such as DL-Lite can be rewritten into (sets of) queries that can
be evaluated directly over the ABox. Simply speaking, queries q are reformulated with
regard to a TBox T into a new query qT , which incorporates the domain knowledge in T .
This way, answering queries can be delegated to the underlying database management
system (DBMS), and make use of the optimizations therein.
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For CQs, the first-order-rewritablility of DL-Lite has been paramount in the development
of OMQ in practice. Many popular OMQ systems assume that db(A) is a relational
database e.g, Ontop [XLK+20]. Any CQ can be rewritten with regard to a DL-Lite TBoxT into a UCQ Q such that

certh(q,T ,A) = ⋃
q∈Q ansh(q, db(A)).

As a consequence, OMQs can be evaluated directly over relational DBMS [CGL+07,
BHLS17].
The first such algorithm for conjunctive query rewriting in DL-Lite was the aptly named
PerfectRef procedure proposed by Calvanese et al. [CGL+07]. In a nutshell, the PerfectRef
procedure generates all possible ways of replacing query atoms by another query atom
that is implied by it. The new query is written as a union of conjunctive queries. In
the rewriting, we have to take note of the fact that query atoms can not be rewritten
arbitrarily. It is essential for the correctness of the algorithm that shared variables matter,
as well as which variables are unbound. An unbound variable is not an answer variable,
not a constant, and does not occur in more than one atom. In addition, rewritings create
new variables in the query, some of which have to be unified so that a new replacement
might be applicable.
Naturally, the PerfectRef procedure did not increase the computational complexity of
query answering in DL-Lite. CQ answering with PerfectRef is in AC0 in data complexity
and in NP in combined complexity. However, the number of queries contained in the UCQ
generated with this method is exponential in the size of the TBox T . As a consequence,
query evaluation could potentially take a lot of time.
In the years since, a number of different rewriting techniques for CQs and DL-Lite have
been proposed. Some of these approaches such as the combined approach [KLT+10],
included adding individuals to the ABox to facilitate a more efficient rewriting. However,
it has been shown that there exists no polynomial-time algorithm for pure rewriting
of CQs in DL-Lite [KKZ11] without changing the data. Hence, the number of queries
generated by PerfectRef is worst-case optimal.
Nevertheless, a more practical pure rewriting has been developed by Kikot et al. [KKZ12]
and is known as tree witness rewriting. To understand tree witness rewriting, it is helpful
to consider the canonical model IT ,A of a DL-Lite knowledge base as a tree with the
individuals in the ABox as roots. The general idea is to generate queries for each axiom
with an existential on the right-hand side. Only these axioms can generate new objects in
the canonical model of the knowledge base. The second step is then combining compatible
tree witnesses and replacing the atoms which can be implied by each witness.
As is the case with PerfectRef, the UCQ generated by this procedure has exponential size
in the worst case. On the other hand, the tree witness rewriting has polynomial-time
rewritings for many real-world ontologies. It has been shown that, in practice, very few
tree witnesses have to be generated. In other words, the ontologies of real-life systems
are quite simple.
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2.5.3 Ontology-Based Data Access
The ontology-based data access (OBDA) paradigm for query answering has been very
successful since its inception more than a decade ago [CGL+07, PLC+08]. The OBDA
approach combines reasoning over incomplete data in description logics (DLs) with,
possibly remote, heterogeneous data sources. The use of ontologies enables the users to
enrich their queries with domain knowledge. Early adapters of OBDA designed their
systems for querying relational data with SQL [PLC+08]. Recent developments have lead
to adding non-relational sources such as MongoDB to OBDA systems [BCC+19].

From a user’s standpoint, OBDA enables querying the data with a more user-friendly
language than SQL i.e., SPARQL. The vocabulary of the query is designed by domain
experts and ontology engineers. Another advantage is transparency: An OBDA system
can integrate data from multiple sources, but users see the data as one centralized source.
OBDA has been used in a variety of scenarios: oil and gas [KHS+17], healthcare [RLT+14],
maritime security [BBXK16], and machine monitoring [KKM+16].

An OBDA system can be viewed as a three-layered architecture [XCK+18]. The top layer
is the ontology O. It encapsulates the domain-specific knowledge of the users in a DL
as a set of axioms. The DL of choice should have some desirable properties in terms of
complexity of query answering for the OBDA system to be useful in practice. One such
DL is DL-Lite, which was specifically designed with tractable query answering in mind.
The current industry standard for expressing ontologies is OWL 2 [PSPM12]. Queries
are usually expressed in SPARQL [SH13].

The mapping layer M links the ontology layer O to the database schema S. Mappings
translate the data from the sources to objects in our ontology. The objects in the ontology
form a graph with edges between the objects to signify a relationship. Translations
have to be handled with care due to the impedance mismatch between data and objects
and vice-versa. The World Wide Web Consortium recommends R2RML [DCS12] as
a standard to define mappings. However, some systems have implemented their own
mapping language, such as Ontop [XLK+20].

Finally, the data source schema S defines the shape of our data. This is usually a
relational schema with tables consisting of rows of columns with primary and foreign keys
and constraints. However, note that this high-level definition also allows for non-relational
or NoSQL schemata. The three layers O,M and S together form the OBDA specificationP = ⟨O,M,S⟩. Queries are answered over a concrete data instance D that conforms to
the schema S.

We provide an intuition of how these OBDA systems work in practice by presenting an
example. Assume we wish to extract all persons from a movie domain. We know that the
domain contains actors and directors, which are both of type Person. This knowledge
can be encapsulated with the following DL axioms:

Actor ⊑ Person
Director ⊑ Person
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In the relational source schema, the actors and directors are stored in two different tables
with their social security numbers as the primary key e.g.,

Actor ∶ {ssn ∶ integer, name ∶ string, . . .}
Director ∶ {ssn ∶ integer, name ∶ string, . . .}

Objects from a database conforming to the source schema are retrieved by the mappings

Actor(x) � SELECT ssn FROM Actor
Director(x) � SELECT ssn from Director

Using this OBDA specification, we can populate our ontology from the sources. In
addition, we can add the fact that Actor and Director are Person to all our objects. This
enables us to answer our query

q(x) ← Person(x)
However, when post our query, we are not forced to materialize the objects from the
sources if we use an appropriate DL language. For example, we can encapsulate the axioms
from our ontology by replacing the Person atom with Actor and Director, respectively:

qa(x) ← Actor(x)
qd(x) ← Director(x)

For these two queries qa and qd, we know how to obtain the objects from the mappings
and, therefore, from the sources directly. Unsurprisingly, the possibility of not having
to materialize the ontology has lead to the notion of virtual knowledge graph (VKG)
systems. An OBDA specification is also referred to as a VKG specification in the
literature [XCK+18].

Most OBDA systems implement a form of query rewriting for these conjunctive queries
we presented here. For example, Ontop uses tree witness rewriting to answer CQs over the
data [KKZ12]. More often than not, these systems also cover more aspects of SPARQL
1.1 such as filtering, optional, or aggregation [XLK+20].

As of 2013, the query language SPARQL includes property paths as part of its query
language [SH13]. In a nutshell, property paths allow us to query which tuples are in a
relation expressed as a regular expression. Queries of this type are RPQs. As an example,
assume that we extend our movie domain with relations between actors and directors. A
relation friendOf denotes that x is a friend of y. The simple RPQ

q(x, y) ← friendOf(x, y)
returns all pairs of objects that are friends. This query is both a conjunctive query and a
RPQ. Still, RPQs allow us to traverse the relationship more than one time i.e.,

q(x, y) ← (friendOf)+(x, y)
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With this, we can retrieve all pairs that are connected by a path along the friendOf
relation. This second query is not expressible as a conjunctive query because we can not
express a path of arbitrary length.

However, popular ontology-based data access (OBDA) systems such as Ontop [XLK+20]
or Mastro [CDGL+11] do not support navigational features. While an implementation of
property paths is possible, a translation to SQL is cumbersome, and, more importantly,
expensive.

2.5.4 Property Graphs and the Semantic Web
Adding ontological knowledge to property graphs has become an emerging field of interest
in both the academic as well as the industrial community. There have also been numerous
efforts to translate SPARQL queries into Cypher, though to our knowledge no full
translation engine has been formulated yet [MR20, ASM22]. As we previously discussed,
the semantics of SPARQL and Cypher are inherently different, so any translation must
take these into account. This is especially true if property paths should be translated to
Cypher. However, we also know that Cypher only supports a fragment of RPQs.

Nevertheless, we want to mention some efforts which are not only relevant to this thesis,
but could also be considered in further work to implement a full OBDA system for Cypher
such as Ontop has done for relational databases.

Mapping Property Graphs to RDF

A recent effort to execute SPARQL queries in a property graph database has been
undertaken by Fathy et al. [FGBH20]. The main motivation for this work was to query
the underlying data with a common vocabulary, an advantage we have discussed in the
previous section. As a mapping language, the authors used xR2RML, an extension of
the R2RML standard for NoSQL databases and query languages [MDFZM17]. First,
SPARQL queries are translated into a graph query algebra, and normalized. Then,
similar to the approach described above, the mappings are unfolded into the query to
generate a Cypher query.

While the authors tested a number of queries, none of them covered the case where
a relation would have to be traversed twice. Moreover, only conjunctive queries were
tested, for which a semantically equivalent translation always exists. Hence, for the
sixteen queries they tested, all of them returned the same results as an RDF triple
store. Nevertheless, they demonstrated the use of mappings to make the property graph
accessible to SPARQL.

Extensions of RDF have been proposed which could bring property graphs and RDF
closer together. One such extension is RDF* (RDF-star), which allows for nesting of
triples in the subject or object position of a triple [Har17]. RDF* enables a compact
representation of metadata in this way. Still, RDF* should be understood as syntactic
sugar on top of RDF. Any RDF* statement can be expressed in RDF.
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Querying with Concept Hierarchies

Similar to our work, Cysneiros and Salgado proposed a query rewriting for concept hierar-
chies and property graphs [CS16]. Again, Neo4j and Cypher was used to demonstrate the
viability of their approach. Concept hierarchies are a simple type of ontologies where all
axioms are of the type A ⊑ A1, where A, A1 are basic concept names from NC. Different to
the OBDA approach however, their approach included storing the basic concept names in
the graph database as nodes and connecting all objects of a concept to the ontology object
in the database with a special role name. This allowed the implementation of a simple
rewriting algorithm, but also put constraints on how to formulate the query. For example,
the query q(x) ← Food(x) has to be formulated as q(x) ← instanceOf(x, y), Food(y). As
we can see, this approach is orthogonal to our proposed approach, where we assume the
node labels are the classes of the objects in the ABox. However, the rewriting was quite
simple: For each node label that occurs in the ontology, a reasoner is used to derive all
subclasses. The subclasses are then added to the Cypher query with a disjunction in the
WHERE clause on the label of the queried node(s). For this, a reasoner from the OWLAPI
was used [Hor11].

Neosemantics

Recently, Neo4j has added the neosemantics (n10s) [Neo21a] plugin to its distribution.
The main functionality of n10s is the import and storage of data in RDF format. The
data can then be queried with Cypher. In addition, n10s can also use SHACL to validate
the data [KK17]. Moreover, Neo4j property graphs can be exported as RDF triples with
n10s.

Because ontologies can be expressed in RDF, n10s also allows importing ontologies. The
ontology is then also stored as nodes and relations in the same property graph as the
other RDF triples. Similar to the previous case, the semantic objects are connected to
the concepts they belong to with special relations in the database. However, n10s only
allows for select ontology axioms to be imported into Neo4j. Most notably, axioms with
existentials on the right hand side can not be imported. As a consequence, the reasoning
capabilities of n10s are also limited to hierarchies. However, n10s allows inference on
both concept and role hierarchies.
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CHAPTER 3
Query Language Design

The query language is the interface of our framework: Users interact with our system
by posting queries and interpreting the answers. Hence, it is important that the query
language is powerful enough to express the information desires of our users. In particular,
we want to be able to formulate conjunctive queries with navigational features i.e.,
C(2)RPQs.

We define our query language in logic notation. In addition, the query language should be
expressible in common graph query languages for the semantic web and property graphs.
Specifically, we want the query language to be expressible in SPARQL 1.1 [SH13] and
Cypher [FGG+18]. In addition, we would wish that we get the same answers regardless
of whether we use SPARQL 1.1 or Cypher. However, we have already shown that the
different semantics of path expressions in SPARQL 1.1 and Cypher are not compatible.
More specifically, we have provided a proof that no-repeated edges semantics matches are
not preserved under homomorphisms. This means that we can not use the certain answer
semantics that are usually applied in this context [PLC+08, Bie16, BOS15]. Still, we
can show that the certain answers under h-semantics and nre-semantics coincide in the
canonical model if we place specific restrictions on the query language and the knowledge
base.

3.1 Preliminaries
Before we present our query language for ontology-mediated querying with property
graphs, we must define some additional terminology. As we have discussed in the previous
section, we can define queries in Cypher where only the paths follow nre-semantics. Other
than that, the semantics are equivalent to h-semantics, and SPARQL 1.1 semantics,
respectively. Our main goal is therefore to identify cases where path nre-path semantics
and h-path semantics coincide. However, we must also keep in mind that the navigational
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features we allow do not lead to intractability in data complexity when we evaluate the
queries with Cypher as a target language.

We can use the paths to define syntactic restrictions on sets of roles in the KB. The
general idea is that for sets of roles for which we can guarantee no cycle occurs in the
canonical model, nre- and h-semantics for paths overlap. For this, we introduce role
clusterings, Ξ-acyclic structures and Ξ-compliant TBoxes. First, we define the set of roles
that occur in a path.

Definition 3.1.1 (Path Roles). Let p = u1u2 . . . un, n ≥ 0 be a path from v0 to vn in an
interpretation I. Then, roles(p) = ⋃n

i=1{r ∣ role(ui) = r} is the set of roles occurring in
λ(p) If p = ϵ, then roles(p) = ∅.

In the following, we will define which roles can be used in navigational atoms. Role
clusterings enumerate the relevant sets of role names from all possible combinations of
roles.

Definition 3.1.2 (Role Clustering). A role clustering Ξ ⊆ 2NR is a subset of the power
set of the role names NR.

If we wish to ensure that no cycles occur in the canonical model, acyclicity in the
underlying ABox of the knowledge base is a prerequisite.

Definition 3.1.3 (Ξ-Acyclic Structures). A structure I is Ξ-acyclic if there is no path
p = u1u2 . . . un, n > 0 such that src(u1) = tgt(un) and roles(p) ⊆ ξ for any ξ ∈ Ξ.

We also refer to A as a Ξ-acyclic ABox if the property graph representation db(A) ofA is Ξ-acyclic. Moreover, we also have to keep in mind that our target query language,
Cypher, can only express a subset of RPQs. Our ontology language DL-Lite allows
for inverses to appear in subrole axioms. As a consequence, a path that only uses role
names can be implied by a path that uses inverses. However, Cypher can not express
such navigational patters without raising the data complexity to an intractable level.
Therefore, we must also place syntactic restrictions on the TBox to ensure no such path
with inverses can be implied by the data and ontology.

Definition 3.1.4 (Ξ-Compliant TBoxes). A TBox T is Ξ-compliant if for all positive
role inclusions s ⊑ t ∈ T and all ξ ∈ Ξ:

• If t ∈ ξ, then s ∈ ξ, and

• If t− ∈ ξ, then s− ∈ ξ

Finally, we show that the canonical model IT ,A preserves Ξ-acyclicity if A is Ξ-acyclic
and T is Ξ-compliant.
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Lemma 3.1.1. Let Ξ be a role clustering, A a Ξ-acyclic ABox and T a Ξ-compliant
TBox such that K = (T ,A) is satisfiable. Then, the canonical model IT ,A of the KB K is
Ξ-acyclic.

Proof. Assume that Ξ is a role clustering, A a Ξ-acyclic ABox and T a Ξ-compliant
TBox. Let I0,I1, . . . ,In be the sequence of interpretations used in the construction ofIT ,A. We show by induction on i that the canonical model IT ,A of the KB K = (T ,A)
is Ξ-acyclic. For the induction start, I0 is Ξ-acyclic because it contains exactly those
assertions made in A, and A is Ξ-acyclic. For the induction step, assume that Ii is
Ξ-acyclic. To show that Ii+1 is Ξ-acyclic, we make a case distinction by the rule that
was applied to obtain Ii+1 from Ii.

1. If v ∈ BIi , B ⊑ C ∈ T , then add v to CIi+1 .
This rule does not add any new paths to Ii+1. Hence, Ii+1 is Ξ-acyclic.

2. If v ∈ BIi , B ⊑ ∃s ∈ T , then add a fresh element w to ∆Ii+1
V , and a fresh element

u to ∆Ii+1
E . If s is the inverse of a role r ∈ NR i.e., s = r−, then define src(u) ∶= w,

tgt(u) ∶= v, and role(u) ∶= r. Otherwise, define src(u) ∶= v, tgt(u) ∶= w, and
role(u) ∶= s.
Assume that this rule creates a path p = u1u2 . . . un, n > 0 such that src(u1) = tgt(un)
and roles(p) ⊆ ξ for a ξ ∈ Ξ. If Ii is Ξ-acyclic, then the addition of v and u to Ii

has created a cycle in Ii+1. It follows that u is an element of the path p. Therefore,
role(u) ∈ roles(p). If u is an element of p, role(u) ∈ roles(p) and roles(p) ⊆ ξ, then
role(u) ∈ ξ. By definition, Ξ ⊆ 2NR . Hence, ξ ⊆ NR. If role(u) ∈ ξ and ξ ⊆ NR, then
role(u) ∈ NR. Thus, src(u) = v, tgt(u) = w, and role(u) = s.
Furthermore, if u is an element of the path, then p must pass through v and
w. However, w is a fresh element in ∆IV and there is no u′ ∈ ∆IE such that
src(u′) = w. Hence, w can not be part of any path p = u1u2 . . . un, n > 0 such that
src(u1) = tgt(un) and roles(p) ⊆ ξ for a ξ ∈ Ξ. Therefore, Ii+1 is Ξ-acyclic.

3. If s ⊑ t ∈ T , (v, w) ∈ sI , then add a fresh element u to ∆Ii+1
E . If both s and t are

role names or inverse roles, then define src(u) ∶= v, tgt(u) ∶= w, and role(u) ∶= t.
Otherwise, define src(u) ∶= w, tgt(u) ∶= v, and role(u) ∶= t if the inverse role is s,
otherwise role(u) ∶= r for r− = t.
Assume that this rule creates a path p = u1u2 . . . un, n > 0 such that src(u1) = tgt(un)
and roles(p) ⊆ ξ for a ξ ∈ Ξ. If Ii is Ξ-acyclic, then the addition of u to Ii has
created a cycle in Ii+1. It follows that u is an element of the path p. Therefore,
role(u) ∈ roles(p). If u is an element of p, role(u) ∈ roles(p) and roles(p) ⊆ ξ, then
role(u) ∈ ξ. By definition, Ξ ⊆ 2NR . Hence, ξ ⊆ NR. If role(u) ∈ ξ and ξ ⊆ NR, then
role(u) ∈ NR.
If (v, w) ∈ sI , then there must exist a u′ ∈ ∆Ii

E such that src(u′) = v, tgt(u′) = w,
and role(u′) = s. From the Ξ-acyclicity of T it follows that if role(u) ∈ ξ, then
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role(u′) ∈ ξ. Therefore, Ii can not be Ξ-acylic, since there must exist a path
q = u1u2 . . . un, n > 0 in Ii such that src(u1) = tgt(un) and roles(p) ⊆ ξ for a ξ ∈ Ξ,
where u′ is a part of p. This contradicts our initial assumption that Ii is Ξ-acyclic.
Therefore, Ii+1 is Ξ-acyclic.

3.2 Query Language
The query language for our framework is a modification of conjunctive regular path
queries as defined by Bienvenu et al. [BOS15]. Most notably, we only allow arbitrary
length expressions over elements of Ξ if the ABox A is Ξ-acyclic and the TBox T is
Ξ-compliant. Moreover, the application of Kleene stars is restricted to unions of the sets
of roles in Ξ.

Definition 3.2.1 (Ξ-Restricted C2RPQs). Let Ξ be a role clustering. A Ξ-restricted
C2RPQ has the form q(x⃗) ← ∃y⃗.ϕ where x⃗ and y⃗ are disjoint tuples of variables, and ϕ is
a conjunction of atoms of the forms:

1. A(t) where A ∈ NC and t ∈ NI ∪ x⃗ ∪ y⃗.

2. (s1 ∪ s2 ∪ . . . sn)(t, t′), where n ≥ 1, si ∈ N±R and t, t′ ∈ NI ∪ x⃗ ∪ y⃗

3. ρ(t, t′), where ρ is a concatenation of ri ∈ ξ, ξ ∈ Ξ the following forms:

(r1 ∪ ⋅ ⋅ ⋅ ∪ rn) or (r1 ∪ ⋅ ⋅ ⋅ ∪ rn)∗,
n ≥ 1, t, t′ ∈ NI ∪ x⃗ ∪ y⃗

In the remainder of this thesis we write Ξ-restricted queries when we refer to Ξ-restricted
C2RPQs. For all atoms with two terms, we refer to them as binary atoms. The order of
the atoms in the body of the query has no influence on the semantics. Hence, we can
view the body of a query as a set of atoms. Moreover, we will also consider unions of
Ξ-restricted queries as sets of queries.

Our query language is strictly more expressive than conjunctive queries, which are covered
by 1. and 2. in our definition. Moreover, we allow for disjunction of arbitrary role
names and their inverses. They allow for more succinct rewritings, as we will show in the
following chapter.

We allow for path atoms in the last point of the description of our query language.
Furthermore, they are a special type of binary atoms we denote as arbitrary length atoms,
because they can describe paths that can be of length zero or more. Still, arbitrary
length atoms are subject to restrictions on the ABox and TBox. We do note however,
that Ξ-acyclicity of ABoxes and Ξ-compliance are strictly syntactic restrictions.
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We have shown previously in Lemma 2.4.1 that nre-matches are not preserved under
homomorphisms. Therefore, certain answer semantics do not seem adequate for nre-
semantics. Nevertheless, we can still use certain answers for homomorphism-based
semantics. If we restrict our queries to Ξ-acyclic KBs, then we get the same answers
under h-semantics and nre-semantics.

Lemma 3.2.1. For any interpretation I that is Ξ-acyclic and any Ξ-restricted C2RPQ
q(x⃗), it holds that π is an h-match iff π is an nre-match.

Proof. Let Ξ be an arbitrary role clustering, I a Ξ-acyclic interpretation, and q a Ξ-
restricted CRPQ. If q is a CQ without a regular path expression, then any match π is
an h-match iff π is an nre-match because the definitions of the matches are identical in
this case. If q contains a regular path expression, then the definition of h-matches and
nre-matches only differ in the definition of mappings for regular expressions ρ(t, t′).
If-direction: Let π be an arbitrary nre-match. Then, π is also an h-match because
LInre ⊆ LIh.
Only-If-direction: Let π be an arbitrary h-match and ρ(t, t′) a path expression in
q. Since π is an h-match, we know that (π(t), π(t′)) ∈ LIh. Hence, there exists a path
p = u1 . . . un, n > 0 in I such that λ(p) ∈ L(ρ). However, we also know that I is Ξ-acyclic
and that ρ is a regular expression using role names from one ξ ∈ Ξ. It follows that for
every i /= j, ui /= uj holds because there is no path p′ = u′1u′2 . . . u′m, m > 0 in I such that
src(u′1) = tgt(u′m) and roles(p) ⊆ ξ. Therefore, (π(t), π(t′)) ∈ LInre. Finally, we have that
π is an nre-match.

As an extension of Lemma 3.2.1, our framework ensures that for the canonical modelIT ,A, the h-answers coincide with the nre-answers if the ABox A and the TBox T are
Ξ-acyclic, resp. Ξ-compliant.

Lemma 3.2.2. Let Ξ be a role clustering, A a Ξ-acyclic ABox, T a Ξ-compliant TBox
and q a Ξ-restricted C2RPQ. Then, ansh(q,IT ,A) = ansnre(q,IT ,A).
Proof. From Lemma 3.1.1 it follows that IT ,A is Ξ-acyclic. Because IT ,A is a Ξ-acyclic
interpretation, and q is a Ξ-restricted CRPQ, any match π is an h-match iff π is an
nre-match by Lemma 3.2.1. Hence, ansh(q,IT ,A) = ansnre(q,IT ,A).
As a consequence of Lemma 3.2.2, it follows that certh(q,T ,A) = ansnre(q,IT ,A). In other
words, any certain answer to q under h-semantics is an nre-answer in the canonical model.
Because nre-answers are not preserved under homomorphisms, we deem it adequate to
define the nre-answers as those tuples that have an nre-match in the canonical model.

Definition 3.2.2 (No-repeated-Edges Certain Answers). A tuple (a1, . . . , an) ∈ NI is a
certain nre-answer to a query q(x⃗) = ∃y⃗ϕ in a KB (T ,A) if (a1, . . . , an) ∈ ansnre(q,IT ,A).
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This is not a rare occurrence: Alternative semantics to queries have been proposed in
multiple domains. Most notably, in the case of queries with aggregates, the certain
answers can be empty under standard open-world semantics [CKNT08]. As an example,
the query from the proof of Lemma 2.4.1 has (a) as an answer in our framework.

The coincidence of answers in the canonical model for both semantics has another
consequence we wish to mention. Because our path atoms are quite simple, we can break
up the concatenation into single binary atoms with fresh variables. For example, a path
expression like r(s ∪ t)∗r(x, y) is rewritten as r(x, z1), (s ∪ t)∗(z1, z2), r(z2, y) with zi as
fresh variables in q. It is easy to see that under h-semantics, both expressions have the
same matches for x and y. Not only will we make use of this fact in rewritings, but it
also means that our arbitrary length atoms are all of the form (r1 ∪ r2 ∪ . . . rn)∗(x, y),
which are tractable in data complexity under nre-semantics (and h-semantics).

Finally, we must discuss the usability of navigational atoms in our query language. At
first glance, it might seem restrictive that path atoms can only be directed. However,
we also note that paths which include inverse roles can also be included by “splitting
up” the path atom. With conjunctive queries a path like rs−t∗(x, y) can be simulated by
writing r(x, z1), s−(z1, z2), t∗(z2, y), even if the roles r, s and t form a cycle in A. Still,
this comes at the cost that the semantics of the two expressions are not equivalent, as the
second expression can potentially have more matches. On the other hand, Cypher also
does not allow for using inverses in arbitrary length expressions. In addition, navigational
features are often used in simple ways such as r1 ⋅r∗2 or r∗, as was shown from the analysis
of SPARQL query logs [BMT17, BMT19]. Moreover, Martens et al. [MNT20] report
that 99.8% of the RPQs contained in the SPARQL query logs obtained by Bonifati et
al. [BMT17] were single-occurrence RPQs. While not all single-occurrence RPQs can be
captured in our query language, we can still cover a wide range of them.

32



CHAPTER 4
Ontology-Mediated Querying by

Rewriting

The success of OMQ systems relies on the efficient rewriting of queries posed to the
knowledge base K = (T ,A) as a query over the source. Intuitively, a rewriting injects our
domain knowledge expressed in the TBox T into the query. This way, we can make use
of the optimization techniques employed by the database management system (DBMS)
for query answering.

We present a simple rewriting technique based on the PerfectRef algorithm for DL-Lite
[CGL+07]. The rewriting algorithm transforms a query in our query language to a union
of queries in our query language, which can also be expressed in Cypher. We also prove
that the rewriting is correct for nre-semantics and Ξ-compliant TBoxes. Moreover, the
Cypher rewritings return the correct answers when they are executed over the plain data.
Finally, we analyze the computational complexity of query rewriting.

4.1 A Naïve Rewriting
For Ξ-restricted queries, we extend the PerfectRef algorithm [CGL+07] for path expressions
and atoms with inverse roles. We present our rewriting algorithm Rewrite in Algorithm 4.1.
Steps (a) and (b) in the algorithm are identical to the original formulation of the PerfectRef
algorithm. However, to account for atoms with disjunction and arbitrary length atoms,
we need to make some adjustments to the Replace function, which is also present in
PerfectRef. Furthermore, the functions SaturatePaths, Concatenate, Merge and
Drop are new additions to the algorithm.

The function τ is marks all occurrences of unbound variables as such. In the following, we
will use ‘_’ to denote unbound variables. However, we assume that we record a unique
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4. Ontology-Mediated Querying by Rewriting

name for each unbound variable. We need unique names for variables in the rewriting of
arbitrary length atoms.

An arbitrary length expression can only contain role names from NR. Note that for a
Ξ-compliant TBox, there is no axiom in T such that a rewriting could introduce an
inverse role in an arbitrary length expression. Moreover, the answers to Ξ-restricted
queries with path atoms coincide under both nre- and h-semantics only if the TBox T
is Ξ-compliant and the ABox A is Ξ-acyclic. Hence, our rewritings are only applicable
if the TBox is Ξ-compliant, and only returns the correct answers for queries with path
expressions if the ABox is also Ξ-acylic. We also wish to mention that our query language
allows inverse roles for binary atoms that are not of arbitrary length. For any atom(s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(x, y), the atom (s−1 ∪ ⋅ ⋅ ⋅ ∪ s−n)(y, x) is semantically equivalent. As a result,
we consider them to be equivalent when we describe a query as a set of atoms. The
rules we describe in this section are purely on a syntactic level i.e. there is no reasoning
involved. Hence, for any operation that includes atoms with inverse roles, we consider
both “versions” of the atom.

4.1.1 Path Saturation
We begin our rewriting of Ξ-restricted queries by first splitting up path atoms into
single atoms with fresh variables. For example, a path expression like r(s ∪ t)∗r(x, y) is
rewritten as r(x, z1), (s ∪ t)∗(z1, z2), r(z2, y) with zi as fresh variables in q. As a result,
all the atoms in the query are of the following three forms:

• A(x)
• (s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(x, y)
• (r1 ∪ ⋅ ⋅ ⋅ ∪ rn)∗(x, y)

Note that we have “eliminated” concatenations of relations from our query. We then
saturate the roles occurring in each binary atom.

Definition 4.1.1 (Roles of Binary Atoms). Let α = ρ(x, y) be a binary atom and
s1, . . . sn the roles from NR

± occurring in ρ. Then, roles(α) = {s1, . . . , sn}.
Definition 4.1.2 (Saturation of Binary Atoms). Let α = ρ(x, y) be a binary atom. Then,
the saturation S of roles(α) w.r.t. a TBox T is inductively defined in the following way:

• If s ∈ roles(α), then s ∈ S.

• If s ∈ S, and s1 ⊑ s ∈ T , then s1 ∈ S.

• If s ∈ S, and s1 ⊑ s− ∈ T , then s−1 ∈ S.

The saturation of α is then (s1 ∪ ⋅ ⋅ ⋅ ∪ sn)∗(x, y) for si ∈ S if α was an arbitrary length
atom, and (s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(x, y) otherwise.
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Algorithm 4.1: Rewrite
Input: A Ξ-restricted query q, and a Ξ-compliant TBox T
Output: Q a set of Ξ-restricted queries

1 Q← {τ(SaturatePaths(q,T ))};
2 Q′ ← ∅;
3 while Q ≠ Q′ do
4 Q′ ← Q;
5 foreach q ∈ Q′ do
6 (a) foreach atom α ∈ q do
7 foreach PI I ∈ T do
8 if I is applicable to α then
9 Q← Q ∪ {τ(Replace(q, α, I))};

10 end
11 end
12 (b) foreach pair of atoms α1, α2 ∈ q do
13 if α1 and α2 unify then
14 Q← Q ∪ {τ(Reduce(q, α1, α2))};
15 end
16 (c) foreach pair of path atoms α1, α2 ∈ q do
17 if α1 and α2 can be concatenated then
18 Q← Q ∪ {τ(Concatenate(q, α1, α2))};
19 end
20 (d) foreach pair of path atoms α1, α2 ∈ q do
21 if α1 and α2 can be merged then
22 Q← Q ∪ {τ(Merge(q, α1, α2))};
23 end
24 (e) foreach atom α ∈ q do
25 if α is an arbitrary-length path atom with an unbound variable then
26 Q← Q ∪ {τ(Drop(q, α))}
27 end
28 end
29 end
30 return Q;
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Note that s and s1 can be role names or inverse roles, but in the case of arbitrary length
expressions they are only role names because of the Ξ-compliance of T . As an example,
if our arbitrary length atom is (r∪ s)∗(x, y) and t ⊑ r ∈ T , then we write (r∪ s∪ t)∗(x, y).
Both the path splitting operation and the saturation of the roles of the binary atoms is
done by SaturatePaths, shown in Algorithm 4.2. In the main body, the binary atoms
are split and each new atom that was obtained by splitting is saturated. Unary atoms
remain unchanged in SaturatePaths. The function Saturate performs saturation
as described in Definition 4.1.2, with a binary atom and a TBox as an input.

Algorithm 4.2: SaturatePaths
Input: A Ξ-restricted query q, and a Ξ-compliant TBox T
Output: q′ a Ξ-restricted query

1 q′ ← ∅;
2 foreach atom α ∈ q do
3 if α is a binary atom of the form ρ1 . . . ρn(x, y) then
4 left ← x;
5 foreach concatenation element ρi do
6 if ρi = ρn then
7 right ← y;
8 else
9 right ← fresh variable not occurring in q or q′;

10 q′ ← q′ ∪ Saturate(ρi(left, right),T );
11 end
12 else
13 q′ ← q′ ∪ α;
14 end
15 return q′;

4.1.2 Replacement of Query Atoms
The main idea behind replacing an atom α with an atom α′ in a query q is to generate a
query q′ for which a match for q′ implies that there is a match for q. In essence, it could
be that the match for α was added to the model of the knowledge base to satisfy an
axiom in the TBox T .

Example 4.1.1 (Replacement of Query Atoms). Let q(x) ← A(x) be a query andK = ({A1 ⊑ A},{A1(a)}). Then, for any interpretation I to be a model, I ⊧ A(a).
Therefore, (a) must be a certain answer to the query q.

Example 4.1.1 shows that in our rewriting algorithm, we should add a query q(x) ← A1(x)
to our set of queries. We present the replacement rules for each possible combination of
query atom and concept inclusion in Table 4.1. We say that a concept inclusion or axiom
is applicable to a query atom if they appear in Table 4.1. In Algorithm 4.1, applying

36



4.1. A Naïve Rewriting

the replacement of atoms is done by the function Replace. Note that arbitrary length
atoms can not be replaced.

Axiom Query Atom Rewriting
A1 ⊑ A A(x) A1(x)∃s ⊑ A A(x) Saturate(s(x, _),T )
A ⊑ ∃s (s ∪ . . . )(x, _) A(x)∃s1 ⊑ ∃s (s ∪ . . . )(x, _) Saturate(s1(x, _),T )
A ⊑ ∃s− (s ∪ . . . )(_, x) A(x)∃s1 ⊑ ∃s− (s ∪ . . . )(_, x) Saturate(s1(x, _),T )

Table 4.1: PerfectRef rewritings with disjunctions, “_” denote unbound variables

4.1.3 Unification
If two atoms α1 and α2 in a query q unify, then the result is a new query q′ where the
most general unifier of α1 and α2 has been applied to q. As is the case for PerfectRef,
each occurrence of ‘_’ must be considered a separate variable. Moreover, the most general
unifier replaces each occurrence of ‘_’ with the corresponding variable in the other atom.
Example 4.1.2 shows the unification for two binary atoms with unbound variables.

Example 4.1.2 (Unification of Atoms). Let q(x) ← r(x, _), r(_, y) be a query. Then,
the unification of the atoms r(x, _) and r(_, y) results in the query q(x) ← r(x, y).
If the corresponding variable is also unbound, the result is also ‘_’. In Algorithm 4.1,
unification of atoms in q is performed by Reduce.

4.1.4 Concatenation of Arbitrary Length Atoms
Regarding rules for arbitrary length atoms, there are a number of cases we have to
consider. First, there are cases where we can rewrite an arbitrary length atoms by
appending it to the start or the end of the other atom i.e., performing a concatenation.

Example 4.1.3 (Concatenation of Arbitrary Length Atoms). Consider the query q(x) ←(r ∪ s∪ t)∗(x, y), r(x, z). Then, the query q(x) ← (r ∪ s∪ t)∗(z, y), r(x, z) is the result of
concatenating the second atom to the start of the first atom.

Note that by applying this operation, the variable z turned from an unbound variable to
a bound variable. To add, the atom r(x, z) has remained unchanged. We describe this
rewriting rule in the following definition.

Definition 4.1.3 (Concatenation of Arbitrary Length Atoms). Let α1 be a binary atom
and α2 an arbitrary length atom such that roles(α1) ⊆ roles(α2). There are two cases:
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• Assume α1 = ρ(x, z) and α2 = ρ∗(x, y). Then, the rewriting of α2 is ρ∗(z, y). The
concatenation of α1 and α2 is then ρ(x, z), ρ∗(z, y).

• Assume α1 = ρ(x, y) and α2 = ρ∗(z, y). Then, the rewriting of α2 is ρ∗(z, x). The
concatenation of α1 and α2 is then ρ(x, y), ρ∗(z, x).

For clarification, we want to mention that there is no way to concatenate a binary
atom with inverse roles to an arbitrary length atom. By definition, the roles occurring
in an arbitrary length atom can not be inverse roles for a Ξ-restricted query and a
Ξ-compliant TBox T . Therefore, if a binary atom contains role names and inverse roles,
the condition that the roles of the atom are a subset of the arbitrary length atom it
should be concatenated to can never be fulfilled. However, if the binary atom contains
only inverse roles, then we have to consider the semantically equivalent “inverse” version
of the atom. In Algorithm 4.1, this operation is done by Concatenate.

4.1.5 Merging of Binary Atoms

Second, we add a rule for merging binary atoms. In a nutshell, merging of binary atoms
is akin to finding the most common denominator of two binary atoms.

Example 4.1.4 (Merging of Binary Atoms). Let q(x, y) ← (r ∪ r1 ∪ r2)(x, _), (r ∪ r3 ∪
r4)∗(_, y). If we merge the two atoms in the query, we get q(x, y) ← r(x, y).
Definition 4.1.4 (Merging of Binary Atoms). Let α1 and α2 be binary atoms such
that roles(α1) ∩ roles(α2) ≠ ∅ and the terms of α1 and α2 are unifiable. We define the
binary atoms α′1 and α′2 as the result of replacing the roles of α1 and α2 respectively
with roles(α1)∩ roles(α2). Moreover, if either of α1 or α2 is not an arbitrary length atom,
then both α′1 and α′2 are not arbitrary length atoms. Then, the query q′ obtained as
the result of merging α1 and α2 is obtained by replacing them with α′1 and α′2 in q, and
applying the most general unifier of α′1 and α′2 to q.

We want to mention that because the roles in both α1 and α2 are saturated, the
intersection of the roles of the atoms is also saturated. In other words, the roles of the
merged atom is closed under the subrole hierarchy. We must address one small issue
with the definition of merging. For atoms with inverse roles, it can happen that there
are two ways of merging the atoms. Therefore, we have to consider the inverses of binary
atoms that are not of arbitrary length.

Example 4.1.5 (Merging of Binary Atoms with Inverses). Let q() ← (r ∪ s−)(x, y), (r ∪
s)(x, z). Then, there are two possible ways of merging the binary atoms in q: q() ← r(x, y)
and q() ← s(x, x).
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4.1.6 Dropping Arbitrary Length Atoms
Finally, we drop arbitrary length path atoms from the query if one of the variables in the
expression is unbound. As the name implies, the function Drop applies this operation to
q.

For the new queries that are created in the reformulation of the initial query, the rules
for reformulation can again be applied. We illustrate this by a simple example.

Example 4.1.6. LetT = {A ⊑ ∃r−,∃r ⊑ ∃s−,∃s ⊑ ∃t−} and A = {a ∶ A}. Assume we wish
to rewrite the Ξ-restricted query q() ← ts∗r(x, y) over the KB K = (T , A). We go over
the execution of Rewrite one step at a time. First, we rewrite the query as

q() ← t(_, z1), s∗(z1, z2), r(z2, _)
Then, the procedure enters the main loop. In the first step of the main loop, the axiom∃s ⊑ ∃t− is applicable. Hence, the query

q() ← s(z1, _), s∗(z1, z2), r(z2, _)
is added to the output set queries. This rule application makes merging of the first two
binary atoms in the query possible, therefore adding

q() ← s(_, z2), r(z2, _)
to the set of queries to rewrite. However, we can also perform concatenation of s(z1, _)
and s∗(z1, z2). As a consequence, the query

q() ← s(_, x), s∗(x, z2), r(z2, _)
is also a result of applying a rewriting to the second query. Note that x has turned from
an unbound variable to a bound variable, and vice-versa for z1. Now, we can replace the
atom s(_, x) by r(x, _) because the axiom ∃r ⊑ ∃s− is applicable. Thus, the query

q() ← r(x, _), s∗(x, z2), r(z2, _)
will be added after one loop of the procedure. The atoms r(x, _) and r(z2, _) can be
unified, which leads to

q() ← r(x, _), s∗(x, x)
to be added to the set of queries. In one of the previous loops of the algorithm, the
procedure will have added the query

q() ← r(x, _), s(x, x)
because the binary atoms s(_, x) and s∗(x, z2) from the fourth query can be merged.
Furthermore, the query

q() ← r(_, _)
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was also added in an iteration of the main loop because the axiom ∃r ⊑ ∃s− is applicable
to s(_, z2) from the third query. Finally, the last query which is in the output of Rewrite
is

q() ← A(_)
as a result of applying the axiom A ⊑ ∃r− to the previous query. In essence, we unravel
the path in the implied part of the canonical model in the query. This small example
already shows that the unraveling of paths creates many different rewritings, all of which
but A(_) return an empty result.

The following example highlights the use of path unification and rewriting with other
atoms in a Ξ-restricted query with multiple atoms.

Example 4.1.7. Let T = {C ⊑ ∃t,∃t− ⊑ ∃s,∃s− ⊑ B, s ⊑ r, t ⊑ r}. We want to rewrite the
Ξ-restricted query q() ← A(x), r∗(x, y), B(y) with T . Similar to the previous example,
we will discuss the rewriting step-by-step. First, we rewrite the query as

q() ← A(x), (r ∪ s ∪ t)∗(x, y), B(y)
by saturating the arbitrary length atom in the input query with regard to the ontology.
In the first iteration of the main loop, only the replacement of B(y) is done by the
algorithm. The axiom ∃s− ⊑ B is applicable, hence

q() ← A(x), (r ∪ s ∪ t)∗(x, y), s(_, y)
is added to the set of queries. On this new query, both merging and concatenation can be
performed. We first show the result of concatenating the binary atoms, which generates
the query

q() ← A(x), (r ∪ s ∪ t)∗(x, z), s(z, _)
that is added to the output. The result of merging is the query

q() ← A(x), s(x, _)
on which we can once again apply an axiom. This time, the axiom in question is ∃t− ⊑ ∃s,
which leads to

q() ← A(x), t(_, x)
being added to our set of queries. Furthermore, merging is applicable to the third query,
therefore

q() ← A(x), s(x, x)
is added to the rewriting. However, we can not apply any axioms to this query. Still, we
have a query in our set of queries on which an axiom can be applied. More specifically,
the axiom ∃t− ⊑ ∃s can be applied to the third query. Hence, we can add

q() ← A(x), (r ∪ s ∪ t)∗(x, z), t(_, z)
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to our set of queries. Similar to before, we can perform both merging and concatenation
on this query. The result of concatenation is

q() ← A(x), (r ∪ s ∪ t)∗(x, z), t(z, _)
and the result of merging is

q() ← A(x), t(x, _)
on which we can both finally apply the axiom C ⊑ ∃t. If we apply the axiom to the first
of these two queries, we get that

q() ← A(x), (r ∪ s ∪ t)∗(x, z), C(z)
is a part of our rewritten query. Applying the axiom to the second of these two queries
yields

q() ← A(x), C(x)
to be added to our rewriting. Only one more rule can be used for rewriting, which is
merging the atoms in the last query we generated from concatenation. Finally, the query

q() ← A(x), t(x, x)
is generated and the rewriting terminates.

4.2 Termination of Rewriting
A fundamental property for our algorithm Rewrite to be viable for query answering is that
it must terminate for a Ξ-restricted query q and a Ξ-compliant TBox T . Our argument
is based on the proof of termination for PerfectRef [CGL+07].

Lemma 4.2.1 (Termination of Rewrite). Let q be a Ξ-restricted query, and T a Ξ-
compliant TBox. Then, the algorithm Rewrite(q,T ) terminates.

Proof. The first step of the algorithm, SaturatePaths, returns a query with n atoms.
It is easy to see that this first step terminates. We base our proof for termination of
Rewrite on the following observations:

1. For any of the steps (a)-(e) in the procedure, the number of atoms is bounded by n.
In other words, no step adds an atom to the query. Replace and Concatenate
replace an atom in the query by another atom. The steps Reduce, Merge, and
Drop either combine two atoms into one atom, or remove an arbitrary length atom.

2. The number of distinct terms occurring in the queries generated by Rewrite is also
bounded by n. More specifically, it is bounded by the number of terms in the query
generated by SaturatePaths plus the symbol ‘_’ used for unbound variables.
Fresh unbound variables can only be introduced by Replace in binary atoms.
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Because we consider binary atoms to be equal (on a syntactic level) if they have
the same sets of roles and the same terms, the atom created by Replace can only
be added once to each query where the atom in question has not been replaced yet.
Even if concatenation can turn an unbound variable into a bound one, we record a
unique name for each one of them. As a consequence, the concatenation operation
can be executed only once for each binary atom that contains an unbound variable
that may become bound this way.

3. If k is the number of times a fresh unbound variable can be introduced into the
query, then the number of distinct atoms generated by Rewrite is bounded by
m ⋅ (n + k)2, where m is the number of role names and concept names.

4. We record the queries generated by Rewrite in a set. Queries are only added to this
set, and never removed.

The first three points imply that the number of queries that Rewrite can generate is
bounded. The last point dictates that no query is generated twice by the algorithm.
Therefore, the algorithm is bound to terminate. For each possible replacement of a query
atom a new query is generated. Hence, every combination of replacements is generated
by Rewrite, and the number of distinct queries is exponential in the number of atoms
contained in the query.

4.3 Correctness of Rewriting
We now show that Rewrite is a complete and correct rewriting for Ξ-restricted queries q
over Ξ-compliant TBoxes and Ξ-acyclic ABoxes in nre-semantics. In nre-semantics, we
defined the certain answers of queries with regard to ontologies as the answers in the
canonical model. However, the canonical model IT ,A may be infinite. Still, we can show
that Rewrite can add all implied knowledge into the rewriting of an input query. In turn,
the rewritten query can be evaluated over the property graph representation of the ABox.

For this, we have to show that the union of answers obtained from evaluating each
query q′ ∈ Rewrite(q,T ) over the database db(A) are exactly the certain answers of q
over the knowledge base (T ,A) i.e., ⋃q′∈Rewrite(q,T ) ansnre(q′, db(A)) = certnre(q, (T ,A)).
Therefore, showing that Rewrite(q,T ) is a complete and correct rewriting is equivalent to
proving ⋃q′∈Rewrite(q,T ) ansnre(q′, db(A)) = ansnre(q,IT ,A). Our proof will consist of two
Lemmas, one for showing completeness and one for showing correctness.

Lemma 4.3.1 (Correctness of Rewriting). Let q be a Ξ-restricted query, T a Ξ-compliant
TBox, and A a Ξ-acyclic ABox such that (T ,A) is satisfiable. Then,

⋃
q′∈Rewrite(q,T ) ansnre(q′, db(A)) ⊆ ansnre(q,IT ,A).
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Proof. In order to prove our claim, it suffices to show ansnre(q′, db(A)) ⊆ ansnre(q,IT ,A)
holds for any q′ ∈ Rewrite(q,T ). Moreover, this is an immediate consequence of showing
that ansnre(q′,IT ,A) ⊆ ansnre(q,IT ,A).
We start our proof with the first step of the algorithm, which is reformulating all path
expressions in q. SaturatePaths first splits up path atoms into single atoms with
fresh variables. Let q′ be the query obtained from q in this step, and a⃗ ∈ ansnre(q′,IT ,A)
an answer to q′ in IT ,A. We assumed that A is Ξ-acyclic and T is Ξ-compliant. Hence,IT ,A is also Ξ-acyclic (Lemma 3.1.1). It follows that there are no cycles using the roles
in Ξ. Thus, any nre-match that satisfies the new binary atoms in q′ also satisfies the
binary atoms in q. Hence, a⃗ must also be an element of ansnre(q,IT ,A). Note that ifIT ,A were not Ξ-acyclic, then splitting up the path atoms could add answers where path
atoms do not have an nre-match (cf. the example from Lemma 2.4.1).

Then, all binary atoms are saturated. Let q′′ be the query obtained from q′ in this step,
and a⃗ ∈ ansnre(q′′,IT ,A) an answer to q′′ in IT ,A. From the Ξ-compliance of T it follows
that if r ∈ NR occurs in an arbitrary length atom, there is no s− ⊑ r or r ⊑ s− in T . Hence
the query q′ generated in this step only uses r ∈ NR for arbitrary length atoms, and is still
a Ξ-restricted query. It is easy to see that a⃗ ∈ ansnre(q′,IT ,A). Therefore, for the query q′′
obtained from SaturatePaths(q,T ), we have that ansnre(q′′,IT ,A) ⊆ ansnre(q,IT ,A).
We now move on to the main body of the Rewrite algorithm, for which we will show that
for any query qi+1 obtained from qi obtained in any of the steps, ansnre(qi+1,IT ,A) ⊆
ansnre(qi,IT ,A). Let a⃗ ∈ ansnre(qi+1,IT ,A) be an answer to qi+1 in IT ,A. Assume that
qi+1 was obtained from any of the following steps in the main body of the algorithm:

(a) Assume that qi+1 was obtained from qi by applying one of the rules in Table 4.1
by Replace(q, α, I). Let I be the concept inclusion A1 ⊑ A that was used in this
step i.e., qi+1 was obtained from qi by replacing the atom A(x) with A1(x). If
a⃗ is a match for qi+1, then there must exist a v ∈ ∆IT ,A

V such that π(x) = v and
v ∈ A

IT ,A
1 . From the definition of the construction of IT ,A it follows that the first

rule is applicable such that v ∈ AIT ,A . Hence, a⃗ ∈ ansnre(qi,IT ,A). The proofs for
the other cases in Table 4.1 are analogous.

(b) Assume that qi+1 = τ(Reduce(qi, α1, α2)), where α1 and α2 are atoms that unify.
Let σ be the most general unifier of α1 and α2 and π′ a match for a⃗ for qi+1 in IT ,A.
We can construct a mapping π(t) for all terms t in qi by setting π(t) = π′(t ⋅ σ).
Moreover, π(xi) = π′(x′i ⋅ σ) for any answer variable xi and x′i of q and q′. It is
easy to check that π is a match for a⃗ for qi in IT ,A. Thus, π(x⃗) = a⃗. Therefore,
a⃗ ∈ ansnre(qi,IT ,A).

(c) Assume that qi+1 = τ(Concatenate(qi, α1, α2)), where α1 and α2 are binary
atoms that can be concatenated into one path. Let α1 = ρ1(x, z) and α2 = ρ∗2(x, y)
such that roles(ρ1) ⊆ roles(ρ2) with the result ρ1(x, z), ρ∗2(z, y). We can see that a
match for a⃗ for qi+1 in IT ,A, which must exist because a⃗ is an answer to qi+1, is
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also a match for qi. It follows that a⃗ ∈ ansnre(qi,IT ,A). The proof for the other
forms of α1, α2 are analogous.

(d) Assume that qi+1 = τ(Merge(qi, α1, α2)), where α1 and α2 are binary atoms that
can be merged into one binary atom. Let α1 = ρ1(x, y) and α2 = ρ∗2(x′, y′). The
result of this operation is a new path atom which describes a path of length one
that uses one of the role names described in the intersection of role names of ρ1 and
ρ2. Moreover, the most general unifier of (x, y) and (x′, y′), respectively, has been
applied to q. Akin to the case for Reduce, we can construct a mapping π from
the most general unifier σ. We can see that the obtained mapping is a match for a⃗
for qi in IT ,A. As a result, a⃗ ∈ ansnre(qi,IT ,A). The proofs for the other forms of
α1, α2 are analogous.

(e) Assume that qi+1 = τ(Drop(qi, α)), where α is an arbitrary length path atom that
contains an unbound variable. It is easy to check that a⃗ ∈ ansnre(qi,IT ,A).

We can see that for any query q′ obtained from the main body of Rewrite, we have that
ansnre(q′,IT ,A) ⊆ ansnre(q,IT ,A). Because ansnre(q′, db(A)) ⊆ ansnre(q′,IT ,A) for a Ξ-
acyclic ABoxA and a Ξ-compliant TBox T , we have that⋃q′∈Rewrite(q,T ) ansnre(q′, db(A)) ⊆
ansnre(q,IT ,A).
Lemma 4.3.2 (Completeness of Rewriting). Let q be a Ξ-restricted query, T a Ξ-
compliant TBox, and A a Ξ-acyclic ABox such that (T ,A) is satisfiable. Then,

ansnre(q,IT ,A) ⊆ ⋃
q′∈Rewrite(q,T ) ansnre(q′, db(A)).

Proof. The proof of the completeness of the rewriting follows if for any answer a⃗ ∈
ansnre(q,IT ,A), there exists a query q′ ∈ Rewrite(q,T ) such that a⃗ ∈ ansnre(q′, db(A)).
We will show this claim holds by inductively showing that in each rewriting step, we
are “moving up” in the part of the canonical model IT ,A that is induced by the axioms
in T . Note that the canonical model IT ,A can be seen as a forest with roots as ABox
assertions in A. As such, we can define the depth n of each element v ∈ ∆IT ,A

V . If the
mapping assigns a term to an element of the ABox, then the depth is zero.

Let a⃗ ∈ ansnre(q,IT ,A) and π a mapping. If depth(π(y)) = 0 for all variables y in the
query, then we are done i.e., all variables in the query are mapped to elements of Ind(A).
Otherwise, there must exist some variable y with π(y) ∈∆IT ,A

V ∖ Ind(A) such that there
is no variable z in q, and π(z) is a child of y. In short, we assume that π(y) is the
deepest element in a branch of the tree of IT ,A a query variable is mapped to. We will
show that there is q′ ∈ Rewrite(q,T ) such that we can construct a mapping π′ for a⃗ with
depth(π′(y)) < depth(π(y)). By repeatedly applying this operation, we will eventually
obtain a query q∗ ∈ Rewrite(q,T ) such that we can construct a mapping π∗ where all
query variables have depth zero i.e., are mapped to elements of Ind(A).
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Assume that π(y) = v ∈ ∆IT ,A
V ∖Ind(A) was added to IT ,A by the following rule: w ∈ ∆IT ,A

V
with w ∈ AIT ,A and A ⊑ ∃r ∈ T , where A ∈ NC and r ∈ NR (the proof for the claim in
the other cases is analogous). Without loss of generality, we assume that q is the query
generated from SaturatePaths(q,T ). This means that any binary atom is closed
under the subrole hierarchy. Note that atoms of the form (s1 ∪ s2 ∪ ⋅ ⋅ ⋅ ∪ sn)(y, y′) can
occur in q even if π(y) is the deepest element of a branch in IT ,A, because the si can be
inverse roles. However, because we know that v was added to ∆IT ,A

V by A ⊑ ∃r, any path
in IT ,A must reach π(y) via an r-relation. Therefore, for any binary atom that includes
y and contains inverse roles, we can re-express it with y on the right-hand side. Then, for
any such atom if ρ(x, y) ∈ q, then r ∈ roles(ρ). For the sake of clarity, we will assume for
the remainder of this section that all such binary atoms contain r in the set of roles and
y on the right side of the atom. There are two cases: Either y occurs only in arbitrary
length atoms, or there is at least one atom of the forms A(y), or (r ∪ s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(x, y)
in q.

Assume that y only occurs in arbitrary length path atoms and q only contains arbitrary
length path atoms. Arbitrary length atoms can not contain any inverse roles if the TBoxT is Ξ-compliant. Hence, arbitrary length atoms which contain y must be of the form
ρ∗(x, y) with r ∈ roles(ρ). If there are only arbitrary length atoms in q, then we can
construct a mapping π′ for a⃗ for q in IT ,A where we map every variable to the same
element in db (A) (arbitrary length atoms only implies that there is a match for a⃗ for q
in db (A)). It is simple to verify that π′ is a match for a⃗ such that the depth of each
mapped variable is zero.

Assume y only occurs in q in the form of (r ∪ r1 ∪ ⋅ ⋅ ⋅ ∪ rn)∗(x, y). If y is bound in q, then
there must be another arbitrary length atom ρ(x′, y) in q such that it can be merged
with (r∪ r1 ∪ ⋅ ⋅ ⋅ ∪ rn)∗(x, y). Their intersection contains at least r and since π is a match
for a⃗ for q, it implies that the terms of the atoms are unifiable. The result of merging
these two arbitrary length atoms is another arbitrary length atom which contains r in its
roles. For the resulting query q′, we can construct a mapping π′ such that π′ is a match
for a⃗ in IT ,A. Hence, by repeatedly applying this operation, we can obtain a query q′
such that y is unbound. If y is unbound in an arbitrary length path expression and π(y)
is the deepest element of a branch in IT ,A, then we drop the atom in q (y unbound in q
in an arbitrary length atom implies that we can make a match for a⃗ that “does not go to
y”).

We now turn to the case where there is at least one atom of the forms A(y), or (r ∪ s1 ∪⋅ ⋅ ⋅∪sn)(x, y) in q. Because π(y) = v, and v is a leaf in IT ,A, for all B(y) ∈ q, it must hold
that T ⊧ ∃r ⊑ B. It is easy to see that we can rewrite B(y) into (r∪ s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(_, y) in
a finite number of steps with the rules in Table 4.1. We have shown that we can rewrite
q into a query q′ where all atoms are binary atoms of the form (r ∪ s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(x, y) or(r ∪ r1 ∪ ⋅ ⋅ ⋅ ∪ rn)∗(x, y) in a finite number of steps. Moreover, we can construct a match
π′ for a⃗ for q′.
If y is a bound variable, there must be at least one other atom in q′ that uses r and has
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y as a variable.

• Assume the other atom is of the form (r ∪ s′1 ∪ ⋅ ⋅ ⋅ ∪ s′m)(x′, y). Then, there are
two operations that are possible. One, the atoms are unifiable i.e. contain exactly
the same roles. The result is a new query q′′ with either (r ∪ s′1 ∪ ⋅ ⋅ ⋅ ∪ s′m)(x, y) or(r ∪ s′1 ∪ ⋅ ⋅ ⋅ ∪ s′m)(x′, y), depending on which of x or x′ is bound or unbound.
Otherwise, the atoms can be merged because their intersection contains at least
r and since π′ is a match for a⃗ for q′, it implies that the terms of the atoms are
unifiable.
The resulting query q′′ then contains the intersection of the roles, which is closed
under the sub-role hierarchy, and either (x, y) or (x′, y) as terms, depending on
which of x or x′ is bound or unbound. In both cases, we can construct a match π′′
for a⃗ in the rewritten query q′′. Moreover, y may become unbound as a result of
the operations.

• Assume the other atom is of the form (r ∪ r1 ∪ ⋅ ⋅ ⋅ ∪ rn, )∗(x′, y). Again, there
are two operations that are possible. First, the atom can be merged into a non-
arbitrary length atom such that r is included in the roles. Similar to the case above,
the resulting query q′′ contains this atom with either (x, y) or (x′, y) as terms,
depending on which of x or x′ is bound or unbound.
If the roles of the atom (r∪s1∪⋅ ⋅ ⋅∪sn)(x, y) are not a subset of the arbitrary length
atom, then it can not be concatenated to the arbitrary length atom. However, this
implies that π′(y) can only be reached by an r-relation, because π′ is a match for
a⃗. This case is covered if we merge the atoms as above.
Otherwise, the atom (r ∪ s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(x, y) can be concatenated to the arbitrary
length atom with the arbitrary length atom at the front. The result is a query q′′
that contains the atoms (r ∪ r1 ∪ ⋅ ⋅ ⋅ ∪ rn, )∗(x′, x), (r ∪ s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(x, y).
In both cases, we can construct a match π′′ for a⃗ in the rewritten query q′′. Moreover,
y may become unbound as a result of the operations.

By repeatedly merging, unifying and concatenating (r ∪ s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(x, y) with the other
atoms in the query, we get that y becomes an unbound variable. Finally, we can apply
the PI A ⊑ ∃r to the atom to obtain a query which replaces (r ∪ s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(x, y) with
A(x). Hence, we have mapped the query variables in the branch of π(y) in IT ,A one
step closer to db(A).
We have assumed nre-semantics in our correctness and completeness proofs. However,
we can also show that our framework returns the certain answers under h-semantics. In
Lemma 3.2.2, we have shown that ansh(q,IT ,A) = ansnre(q,IT ,A). Furthermore, we have
defined the answers in our framework to be the answers obtained from the canonical
model IT ,A, where the answers coincide for nre- and h-semantics if T is Ξ-compliant and
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A is Ξ-acyclic. It remains to show that the execution of the rewritten query returns the
intended answers.

Lemma 4.3.3 (Evaluation of Rewriting with Homomorphism-Based Semantics). Let
q be a Ξ-restricted query, T a Ξ-compliant TBox, and A a Ξ-acyclic ABox such that(T ,A) is satisfiable. Then,

⋃
q′∈Rewrite(q,T ) ansh(q′, db(A)) = ⋃

q′∈Rewrite(q,T ) ansnre(q′, db(A)).
Proof. If A is Ξ-acyclic, then db(A) is Ξ-acyclic by definition. From Lemma 3.2.1
it follows that for any Ξ-restricted query q ansh(q, db(A)) = ansnre(q, db(A)). As a
consequence, ⋃q′∈Rewrite(q,T ) ansh(q′, db(A)) = ⋃q′∈Rewrite(q,T ) ansnre(q′, db(A)).
Finally, we have established that we can use query rewriting for Ξ-restricted queries,
Ξ-compliant TBoxes and Ξ-acyclic ABoxes. The answers are defined by the answers over
the canonical model, which can be retrieved from a property graph database which uses
nre-semantics for paths in its query language. Additionally, we have shown that our
framework also returns the answers under the standard semantics for OMQ.

4.4 Query Answering with Rewriting
With a correct and complete rewriting procedure in place, we can now describe a method
for answering Ξ-restricted queries. In our discussion of answering queries in our framework,
we decouple checking that the restrictions in our framework hold from evaluating the
queries.

4.4.1 Checking Framework Restrictions
The restrictions are dependent on the role clustering Ξ. For a system that uses our
framework for query answering, there are two options for checking the restrictions of the
framework. One option is that the role clustering Ξ is given by the users, and the other
is inferring a minimal role clustering from the query. Still, checking that the TBox is
Ξ-compliant and the ABox A is Ξ-acyclic can be done independently of how the role
clustering Ξ was created.

If the role clustering is not given by the users, then we can generate the role cluster Ξ in
the following way: For each path atom in the input query q, we collect the role names
that occur in a set. Then, we saturate each set of roles, yielding a role clustering.

Should a role clustering be given, we also need to saturate each set in the clustering.
From the definition of role clusterings (Definition 3.1.2), it follows that each set in the
clustering is already saturated. However, if the users only define sets of roles, which are
not necessarily role clusterings, we can still saturate the sets to generate a role clustering.
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Asserting that T is Ξ-compliant and A is Ξ-acyclic is relatively simple. If an inverse is
in the saturation of the roles, then T is not Ξ-compliant. Then, for each saturated set
of roles, we check that they are acyclic in db(A). For a database that uses Cypher as
a query language, this can be queried as shown in Figure 4.1. The query depicted in
Figure 4.1 assumes that the roles that should be checked for acyclicity are r, s, and t. If
there is a path using a combination of these roles that returns to the same node, then
the query returns a result. Otherwise, the result of the query is empty. We note that the
query is tractable in data complexity for both h-and nre set semantics because it falls
into the category of single-occurrence RPQs [MNT20].

1 MATCH (x)-[:r|s|t *]->(x)

2 RETURN DISTINCT x

3 LIMIT 1

Figure 4.1: Cypher query to check acyclicity of roles

If this check fails, then our rewriting procedure is not guaranteed to return the correct
results. How a system that implements our approach handles this case can be varied,
for example an error message could be shown to the users that the query can not be
answered correctly.

4.4.2 Query Answering
The algorithm Answer is based on the answering procedure for PerfectRef [CGL+07] and
takes as input a Ξ-restricted query q, a TBox T , and an ABox A. We present this
procedure in Algorithm 4.3.

First, the answering procedure must check whether the knowledge base (without con-
sidering the query) is satisfiable with the function Consistent. Calvanese et al. have
shown that this consistency check can reduced to answering a UCQ over db(A) [CGL+07,
Theorem 17]. If the knowledge base is unsatisfiable, then every tuple in Ind(A) of the
same arity as q is an answer to the query. The function AllTuples returns all tuples
in Ind(A) with the same arity as q. In Cypher, a query to retrieve all tuples is fairly
straightforward to construct. Figure 4.2 shows a Cypher query which returns all tuples
of arity two in the database.

1 MATCH (x), (y)

2 RETURN *

Figure 4.2: Cypher query to return all tuples of arity two

Then, we can call the rewriting procedure Rewrite with q and T to generate the UCQ Q
that should be evaluated over the plain data db(A).
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Algorithm 4.3: Answer
Input: A Ξ-restricted query q, a Ξ-compliant TBox T , and a Ξ-acyclic ABox A

1 if not Consistent(T ,A) then
2 return AllTuples(q,A);
3 Q← Rewrite(q,T );
4 return ⋃qi∈Q ans(qi, db(A));

This answering procedure returns the correct answers, as the next lemma shows.

Lemma 4.4.1 (Correctness of Answer). a⃗ is a certain answer to a Ξ-restricted query q
over (T ,A) if and only if a⃗ ∈ Answer(q,T ,A).
Proof. The correctness of Answer in the case of a satisfiable knowledge base (T ,A)
is a direct consequence of the correctness and completeness of Rewrite shown in Lem-
mas 4.3.1 and 4.3.2. If the knowledge base is unsatisfiable, then it is easy to check that
AllTuples(q,T ,A) = cert(q,T ,A).
Finally, we can discuss the complexity of query answering with our framework. In general,
the complexity of query answering in DL-Lite depends on the complexity of evaluating
C(2)RPQs in a (graph) database.

Lemma 4.4.2 (Complexity of Ξ-restricted query answering in DL-Lite). The complexity
of Answer is

1. NL in data complexity.

2. NP-complete in combined complexity.

Proof. Our proof is based on the following two observations:

1. The check for consistency can be performed in non-deterministic logarithmic space
in ∣A∣ [CGL+07]. The procedure Rewrite constructs a set of C2RPQs where there
are no concatenations of paths, which means that each role in a Kleene star appears
at most once in an arbitrary length atom. Hence, the evaluation of a union of such
queries is in NL in data complexity under both h-and nre set semantics.

2. Similar to the argument for PerfectRef [CGL+07], we can formulate a version of
Rewrite which doesn’t generate a set of queries Q, but non-deterministically returns
one q′ ∈ Q. We know that the number of queries generated by Rewrite is polynomial
in the size of the TBox (cf. Lemma 4.2.1). Therefore, we can generate one query
q′ in a polynomial number of steps from the initial query q. Confirming the
consistency of the knowledge base is feasible in combined complexity [CGL+07].
Therefore, for a boolean Ξ-restricted query, a non-deterministic version of Answer is
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in NP. NP-hardness follows from the NP-hardness of evaluating C2RPQs in graph
databases.

Recall that C2RPQ answering for arbitrary path atoms is NL in data complexity and
PSPACE-complete in combined complexity for DL-Lite [BOS15]. Indeed, our query
language is less expressive than C2RPQs, but gains the advantage of lower combined
complexity. Moreover, our query language pushes the limit of what we can express in
Cypher, and is tractable in data complexity under no-repeated-edges set semantics.
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CHAPTER 5
Implementation

We implemented the algorithm Rewrite that we described in Chapter 4 in an object-
oriented way with Java as a simple CLI tool. The code for our project is publically
available on Github1. Figure 5.1 depicts the workflow of the CLI: Upon staring the tool,
the users are first asked to provide an ontology file and then a query using the vocabulary
provided in the ontology. Then, the query is rewritten with regard to the ontology as laid
out in Algorithm 4.1. Finally, the rewritten query is translated into a Cypher query that
can be executed over a database. This query is copied to the users’ clipboard, such that
they can copy-and-paste it into a Neo4j Cypher shell or the Neo4j Desktop application.

Figure 5.1: Implementation Workflow

First, we describe each object in our implementation and the corresponding concept
from ontology-mediated querying. We will use serif to denote classes or functions in our
implementation, and the standard font otherwise. Following that, we present the context-
free ANTLR4 grammar used to define the query language we discussed in Chapter 3.

1https://github.com/nikdra/omq-cypher, accessed 17th May, 2022
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In addition, we briefly outline how we used ANTLR4 to parse the query string into a
query object our rewriter recognizes. The interface Rewriter and its lone implementation
RewriterImpl contain the Java version of the rewrite procedure we defined in Algorithm 4.1.
As the last step of our implementation, we show how we translated query objects and sets
thereof into a Cypher query string. We illustrate the usage of our implementation by a
simple example. Finally, we discuss the advantages and drawbacks of our implementation
and extensions for future work.

5.1 Object Representation
Each conceptual object in OMQ is represented by a Java object, and therefore a specific
class. For more general concepts, we used interfaces and abstract classes to capture
shared traits.

5.1.1 Ontology
As the name suggests, the Ontology class represents an ontology. We used the OWL
API [Hor11] for reading and storing OWL ontology axioms. More specifically, we store
the OWLOntology object from the OWL API in a variable of our Ontology class. An
OWLOntology object is a set of OWLAxioms, which is the pendant to our notion of a
TBox T . The constructor of the Ontology class accepts a file path string as an argument
executes the following three steps:

1. Load the ontology specified by the file path, and assert that the ontology adheres
to the OWL2 QL standard.

2. Generate a map classMap from the signature of the ontology with the basic concept
names as the keys and the IRIs of the basic concepts as the values.

3. Generate a map propertyMap from the signature of the ontology with the role names
as the keys and the IRIs of the roles as the values.

The maps classMap and propertyMap serve the purpose of connecting the concept and
role names the users use in the query to IRIs in the ontology. We can then store the IRIs
in the atoms’ objects so that we can access them during reasoning with axioms, where
only IRIs are used.

5.1.2 Terms
Recall that the terms of a query are variables or individuals. Moreover, a variable can be
bound or unbound. In our implementation, we omit individuals. This can be simulated
by using dedicated concept names. For example, we can assume that an assertion a ∶ Na
in present in the ABox for each individual a, where Na is a concept that does not occur
anywhere else. Then, we can replace each occurrence of an individual a in a query with
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a fresh variable xa and add the atom Na(xa) to the query. Additionally, Neo4j does not
recommend using its internal node identifiers in applications [Neo21b]. Rather, users
should utilize application-generated identifiers and store them as properties. An ideal way
for us to obtain unique names would therefore be from the mappings of a complete OBDA
system for property graphs, or to use properties in querying. Both of these approaches
are outside the scope of this thesis, thus we leave this topic for future work.

We decided to implement Terms as an interface. The classes UnboundVariable and
BoundVariable implment this interface. Objects that implement the Terms interface can
be used in objects of Atom. Figure 5.2 depicts an overview of the Terms interface. The
function applySubstitution applies a substitution to a term and returns the term that
results from the substitution. For convenience, we implemented the functions getName
and getFresh, which return the name of the term and a new Term object with the same
name, respectively.

Figure 5.2: UML class diagram of Terms

5.1.3 Query
We defined an interface Query as an umbrella for the classes InputQuery and RewritableQuery.
Both these classes have a variable head that is a set of Variable, and a variable body
that is a set of Atom. The main difference between those classes is that RewritableQuery
only has RewritableAtoms in its body that can be used in the main loop of the rewriting
algorithm. In essence, the rewriter generates a RewritableQuery from an InputQuery in
the first step of the rewriting, which is SaturatePaths.

5.1.4 Atom
Atoms are, both conceptually and in our implementation, the basic building blocks of
the body of a query. An overview of the types of atoms we implemented is shown in
Figure 5.3.
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Figure 5.3: UML class diagram of atoms and related elements

Our object representation is a reflection of the different types of atoms in a Ξ-restricted
query from Definition 3.2.1. The class Conceptname represents an atom of the form
A(x), while the class Role represents an atom of the form (s1 ∪ s2 ∪ . . . sn)(x, y). A
path atom is a special case, because it contains a regular expression with concatenation,
possibly with a Kleene star. We represent the elements of the concatenation with
ArbitraryLengthPathElement and SingleLengthPathElement.

Path

Ignoring requirements on the TBox and ABox, a path atom contains concatenations of
the form (r1 ∪ ⋅ ⋅ ⋅ ∪ rn) or (r1 ∪ ⋅ ⋅ ⋅ ∪ rn)∗. We refer to each conjunct as a path element,
reflected by the PathElement abstract class. In addition, a Path atom has two terms.
Figure 5.4 shows an overview of paths and path elements with their fields and functions.

Path Elements

The abstract class PathElement defines that each subclass contains a set of role names,
and can be converted to a Binary atom given two terms. In addition, the abstract class
implements a function that facilitates saturation of the paths given an ontology.

A path element of the form (r1 ∪ ⋅ ⋅ ⋅ ∪ rn) is a single length path element, denoted by the
SingleLengthPathElement class. Conversely, a path element of the form (r1 ∪ ⋅ ⋅ ⋅ ∪ rn)∗ is
an arbitrary length path element, represented by the ArbitraryLengthPathElement class.

Rewritable Atoms

Rewritable atoms are atoms of the forms that can occur in the main loop after the path
atoms have been split up in Rewrite. Figure 5.5 provides an overview of the interfaces
and classes that implement the RewritableAtoms interface.
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Figure 5.4: UML class diagram for paths and path elements

Figure 5.5: UML class diagram of rewritable atoms
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All classes that implement the RewritableAtom interface implement the following three
functions:

• applicable: Given an OWLAxiom object, determine whether the axiom is applicable
to the atom as specified in Section 4.1.2. Note that for ArbitraryLengthAtom objects,
this function must always return false.

• apply: Given an OWLAxiom object, an Ontology object and a Rewriter object, return
the RewritableAtom that results from applying the given axiom to this atom. The
precondition for correctness of this function is that applicable was called before
and returned true. Because the result of apply might return a Role, we hand over
the ontology as a parameter such that the atom can be saturated. The Rewriter
object keeps track of the unbound variables that have been created in the rewriting
process, hence we need it in case a new unbound variable is introduced.

• applySubstitution: Given a substitution, apply the substitution to the terms of the
atom.

The Binary interface defines functions that we use for convenience in our implementation.
Moreover, it implies that each binary atom contains a set of OWLObjectPropertyEpression
objects, which are objects that represent roles or their inverses in the OWL API.

Conceptname

This class represents atoms of the form A(x). We use the variable name to store the
OWLClass of the atom.

Roles

Binary atoms of the form (s1 ∪ ⋅ ⋅ ⋅ ∪ sn)(x, y) are represented by the Roles class. Over
the course of the query rewriting process, it might be necessary to saturate the atom
with regard to the ontology. Therefore, Roles defines the function saturate with Ontology
with a parameter.

Arbitrary Length Atoms

Arbitrary Length Atoms are of the form (r1 ∪ ⋅ ⋅ ⋅ ∪ rn)∗(x, y). In the rewriting, they can
only be modified by merging or concatenation. There are no rules to replace an arbitrary
length atom, therefore the functions applicable and apply required by the RewritableAtom
interface return false and null, respectively.

5.1.5 Unifier and Substitution
The Unifier class takes as class constructor arguments two query atoms and computes
the most general unifier, if one exists. We chose the algorithm described by Martelli and
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Montanari [MM82] to determine the most general unifier. For the unifier, we chose to
represent it as a list of Substitution objects and store it in the Unifier object. If no unifier
exists, then the list is empty.

5.2 Query Parsing

We decided to use the Java ANTLR 4 library [Par13] to parse the users’ queries to
the CLI. ANTLR 4 provides the functionality to parse input defined by a context-free
grammar. Moreover, it can automatically generate not only parser classes that can be
used in Java directly, but also a parse tree visitor. In our implementation, we extended
the visitor to transform the parse tree of our query into a InputQuery object with Atom
objects. Figure 5.6 shows a Java code snippet which we use in our implementation to
parse an input query in string form. The InputQueryBuilder class is our extension of the
Visitor generated by ANTLR 4.

1 // parse query from string

2 CharStream cs = CharStreams.fromString(queryString);

3 QLexer lexer = new QLexer(cs);

4 QParser parser = new QParser(new CommonTokenStream(lexer));

5

6 ParseTree tree = parser.query();

7

8 InputQuery q = (InputQuery) new InputQueryBuilder(ontology).visit(tree);

Figure 5.6: Java example for parsing a query string with ANTLR

The syntax of the queries mostly adheres to the syntax we have used in our examples
throughout this thesis. However, for path atoms, the concatenation symbol for the path
elements is “/”. We present the grammar we used for parsing Ξ-restricted queries in
Figure 5.7.

5.3 Rewriting

The Rewriter interface defines the functions we used in the main loop of the algorithm
Rewrite (cf. Algorithm 4.1). We implemented the interface in the class RewriterImpl,
where the function rewrite is the function that should be called to rewrite an input query.
No arguments are needed to instantiate a new RewriterImpl object. The main class of
our implementation which defines the CLI, simply instantiates a new Rewriter and passes
the input query to the rewrite function of the Rewriter object.
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1 grammar Q ;

2
3 query : head ':-' body EOF ;

4
5 head : 'q(' (variable (',' variable)*)? ')' ;

6
7 variable : WORD ;

8
9 body : atom (',' atom )* ;

10
11 atom : conceptname | roles | path;

12
13 conceptname : words '(' variable ')' ;

14
15 roles : properties '(' left=variable ',' right=variable ')' ;

16
17 path : elements '(' left=variable ',' right=variable ')' ;

18
19 elements : pathElement ('/' pathElement)* ;

20
21 pathElement : arbitraryLengthPathElement | singleLengthPathElement ;

22
23 arbitraryLengthPathElement : rolename '*' | '(' rolename ('|' rolename)+ ')' '*';

24
25 singleLengthPathElement : rolename | '(' rolename ('|' rolename)+ ')' ;

26
27 properties : property | '(' property ('|' property)+ ')' ;

28
29 property : rolename | inverse ;

30
31 rolename : words ;

32
33 inverse : words'-' ;

34
35 words : WORD ('_' WORD)* ;

36
37 WORD : LETTER+ ;

38
39 fragment LETTER : ('a'..'z' | 'A'..'Z') ;

40
41 UNKNOWN_CHAR : . ;

Figure 5.7: ANTLR 4 grammar for our query language
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5.4 Cypher Translation

The translation of (unions of) RewritableQuery objects is carried out by a specific class,
the CypherTranslator. This class implements the interface Translator, which specifies
only one function, translate. The discussion of the remainder of this section is based on
Cypher/Neo4j v4.4 [Neo21b].

In our discussion of Ξ-restricted queries, we assumed nre-semantics only for the path
expressions, because we can express CQs with homomorphism-based semantics in Cypher.
Only path expressions remain under nre-semantics, which we have shown return the
same answers under homomorphism-based semantics provided the ABox and TBox are
Ξ-acyclic and Ξ-compliant, respectively.

Let q(x⃗) = ∃y.ϕ be a Ξ-restricted query, where the path atoms have been broken up into
individual binary atoms. Then, we can express this query in Cypher by replacing the
atoms in the query with the Cypher expressions given in Table 5.1.

Finally, we place the free variables in a return statement at the end of the Cypher query
i.e., RETURN distinct x1, x2, . . . , xn for each xi ∈ x⃗. If there are no answer variables
(i.e. the query is boolean), we set the return clause to RETURN 1. This will return 1 for
each match of the query, and nothing otherwise.

Another special case we must mention is atoms with role names and their inverses.
Because such atoms can be matched “in both directions” depending on the role name,
we can not set the direction of the edge in the Cypher clause. Moreover, such atoms can
only be expressed in Neo4j’s implementation of Cypher, as we have to use the scalar
function startNode()2 to determine the direction of the relation, which is part of the
opencypher standard3, but not necessarily implemented in every graph DBMS. This
scalar function can only be used in the WHERE clause of the query, and we have to add
such constraints for each atom that has both role names and inverses. For example,
consider the query q(x) ← (teaches ∪ taughtBy−)(x, y). In Neo4j’s Cypher, this can be
expressed as shown in Figure 5.8.

However, we note that there is an alternative to using Neo4j’s Cypher implementation.
For each query that contains a binary atom with inverses, we can formulate two queries
where one query contains the atom with only the role names, and the other the “inverse”
version of atom with only the inverses. Still, this has to be done for each combination of
binary atoms in the query, raising the number of queries exponentially.

2https://neo4j.com/docs/cypher-manual/4.4/functions/scalar/, accessed 17th May,
2022

3https://opencypher.org/resources/, accessed 17th May, 2022
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1 match (x)-[r1:teaches|taughtBy]-(y)

2 where (startnode(r1) = x and type(r1) = "teaches") or (startnode(r1) = y and

3 type(r1) = "taughtBy")

4 return distinct x

Figure 5.8: Cypher translation of queries with role names and their inverses

Atom Cypher Match Clause
A(x) MATCH (x:A)
r(x, y) MATCH (x)-[:r]->(y)(r ∪ ⋅ ⋅ ⋅ ∪ s)(x, y) MATCH (x)-[:r|...|s]->(y)(r ∪ ⋅ ⋅ ⋅ ∪ s−)(x, y) MATCH (x)-[:r|...|s]-(y)(r ∪ ⋅ ⋅ ⋅ ∪ rn)∗(x, y) MATCH (x)-[:r|...|s *0..]->(y)
r∗(x, y) MATCH (x)-[:r *0..]->(y)

Table 5.1: Rewriting of Ξ-restricted query atoms to Cypher

5.5 Project Structure, Dependency Management and
Building

Our project uses Java 11 for compilation. The src directory of the repository contains
both our source code in main/java/at/ac/tuwien/informatics and the tests we
wrote over the course of our test-driven development strategy in test. We decided to
use Maven4 (Version 4.0.0) to manage the dependencies of our implementation. The
dependencies are listed in the pom.xml file of our repository. Table 5.2 contains a
summary of dependencies in pom.xml. Moreover, we also used the ANTLR 4 plugin for
Maven.

Group ID Artifact ID Version
org.antlr antlr4-runtime 4.9.3
org.junit.jupiter junit-jupiter-engine 5.4.0
net.sourceforge.owlapi owlapi-distribution 5.1.20

Table 5.2: Implementation dependencies

The project can be built with Java 11 and by executing the commands maven clean
compile and maven package. This command generates an executable .jar file
which contains all needed dependencies and starts the CLI. In an IDE, the class Cli
contains the main function of the project.

4https://maven.apache.org/, accessed 17th May, 2022
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5.6 Example Rewriting
We now present an example workflow for our implementation with the ontology from
Example 4.1.7. Upon starting the CLI in our console, we are asked to provide a
path to an ontology file. Assume our ontology is stored at my/path/ontology.owl
and contains the elements shown in Figure 5.9. This OWL file represents the TBoxT = {A ⊑ ∃r−,∃r ⊑ ∃s−,∃s ⊑ ∃t−}.
Then, we are asked to specify a query that should be rewritten with regard to the given
ontology. We specify the following query: q(x):-t*(y,zp),s*(zp,zpp),r(zpp,x).
The resulting Cypher query is a union of four queries, shown in Figure 5.10.

5.7 Summary
In this chapter, we described our object-oriented implementation of the rewriting algorithm
that we defined in Chapter 4. Our implementation is a simple CLI tool that accepts an
ontology in OWL format and a query as an input, and returns a (Neo4j) Cypher query
as the output. However, there are some limitations to our implementation.

First, we did not implement using individuals (constants) as terms in query atoms. The
main reason is that in OMQ systems, individual names are represented by IRIs. In the
Neo4j proprietary property graph model, nodes are represented by internal identifiers (an
integer identifier). However, Neo4j does not recommend using internal identifiers directly,
and instead proposes application-generated identifiers which are stored as properties.
Therefore, for an appropriate use of individuals in queries, we would have to define
mappings from Cypher nodes and their properties to IRIs, or add querying of properties.
Both of these options are outside of the scope of this thesis.

Second, our rewritten queries are written into Neo4j’s Cypher implementation. We
use functions specific to Neo4j to express combinations of role names and inverse roles
in binary atoms. However, each query containing an atom with inverse roles can be
re-expressed in two queries. One for the the inverse roles and one for the role names
in the atom. Even if the queries can be written into the Cypher syntax described by
Francis et al. [FGG+18], the number of queries can become exponentially larger.

Finally, our implementation is not an answering algorithm. For this, a check of the ABox,
and therefore a database connection, is necessary. Still, this can be added with Neo4j’s
Java driver5. Nevertheless, the correctness of our rewriting is still given if the underlying
data is not inconsistent with the ontology.

5https://neo4j.com/developer/java/, accessed 17th May, 2022
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<?xml version="1.0"?>

<rdf:RDF xmlns="http://www.semanticweb.org/crpqs1#"

xml:base="http://www.semanticweb.org/crpqs1"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xml="http://www.w3.org/XML/1998/namespace"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<owl:Ontology rdf:about="http://www.semanticweb.org/crpqs1"/>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/crpqs1#r">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topObjectProperty"/>
<rdfs:domain>

<owl:Restriction>
<owl:onProperty>

<rdf:Description>
<owl:inverseOf rdf:resource="http://www.semanticweb.org/crpqs1#s"/>

</rdf:Description>
</owl:onProperty>
<owl:someValuesFrom rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Restriction>
</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/crpqs1#s">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topObjectProperty"/>
<rdfs:domain>

<owl:Restriction>
<owl:onProperty>

<rdf:Description>
<owl:inverseOf rdf:resource="http://www.semanticweb.org/crpqs1#t"/>

</rdf:Description>
</owl:onProperty>
<owl:someValuesFrom rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Restriction>
</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/crpqs1#t">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topObjectProperty"/>

</owl:ObjectProperty>

<owl:Class rdf:about="http://www.semanticweb.org/crpqs1#A">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>

<rdf:Description>
<owl:inverseOf rdf:resource="http://www.semanticweb.org/crpqs1#r"/>

</rdf:Description>
</owl:onProperty>
<owl:someValuesFrom rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
</rdf:RDF>

Figure 5.9: Example OWL ontology in RDF format
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1 match (zpp)-[:r]->(x)

2 match (zp)-[:s*0..]->(zpp)

3 match (y)-[:t*0..]->(zp)

4 return distinct x as x

5 union

6 match (x:A)

7 return distinct x as x

8 union

9 match (zpp)-[:r]->(x)

10 match (zp)-[:s*0..]->(zpp)

11 return distinct x as x

12 union

13 match (zpp)-[:r]->(x)

14 return distinct x as x

Figure 5.10: Cypher result of rewriting
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CHAPTER 6
A Real-World Use Case

The Virtual Vehicle Research GmbH1 (VVR) is Europe’s largest research and development
center whose main focus is the development of application-oriented vehicle development
and future vehicle concepts. A key interest of VVR is “smart mobility” with the goal
that future vehicles should be affordable, safe and environmentally friendly. VVR mainly
researches the integration of numerical simulation and hardware testing. From the testing
and simulation of single components and technologies to complete vehicles, VVR aims to
integrate hardware and software aspects of autonomous driving into one cohesive vehicle
perspective. More than 100 national and international industrial partners and over 40
national and international scientific institutions have collaborated with VVR.

One component of modern vehicles is autonomous driving, which has been mainly
propelled by ever more powerful machine learning models. Training and validation of
machine learning models in and of itself is a challenge, more so for a safety-critical
application such as autonomous driving. To this end, several open-source datasets for
autonomous driving have been published, such as nuScenes [CBL+20] and Lyft [KUH+19].
These two datasets share the same schema. Hence, VVR uses the combination of these
two datasets in their autonomous driving research. Even if the two datasets share the
same meta model, they differ in the description of attributes and categories. Therefore,
querying the two datasets together is difficult for users, especially if they are not familiar
with the particularities of the datasets and the relationships between them. We aim to
enable the users to ask queries which ensure data quality and extract scenarios which are
safety-critical for autonomous vehicles. For this, we present an ontology which provides a
shared vocabulary for these two data sets. The tool we developed in Chapter 5 adds the
domain knowledge from the ontology into the query. We have identified five representative
queries for the data which should be answered with regard to the domain knowledge.

1https://www.v2c2.at/, accessed 17th May, 2022
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In the following, we will describe the nuScenes and Lyft datasets on a schematic level.
We then present the VVR property graph, which is a combination of these two datasets,
where some additional labels and relations have been added to facilitate easier querying.
Next, we describe the queries which should be answered over the VVR property graph.
Then we describe the ontology that binds the vocabularies in the annotations together
such that the rewritten queries return results from both datasets. Finally, we analyze
the rewritings of the queries with regard to the ontology, and discuss the results with
respect to our findings in Chapter 5.

6.1 Dataset Description
The nuScenes [CBL+20] and Lyft dataset [KUH+19] have been designed with the objective
to provide an open-source benchmark set for object detection and trajectory prediction
of road users in the domain of autonomous driving. For both datasets, the data were
collected in a similar manner. A car with radar, LIDAR and camera sensors was driven
on public roads, and the data from each of the sensors were collected and annotated by
humans. Moreover, the position and orientation of the vehicle (also referred to as the
ego vehicle) is recorded on a map. While the number and exact placement of the sensors
were different for the two datasets, they are annotated and organized according to the
same schema. The schema of the datasets is written in such a way that it can be stored
in a relational database. However, because the data are basically time series, they can
be naturally translated to a graph schema. The meta model we show in Figure 6.1 and
describe in the following is the same as the one described by NuScenes [CBL+20], but
translated from a relational model to a graph model. In our description of the schema,
we focus on the entities and the relationships between them.

Scenes are the main building blocks of the datasets. Each scene is a sequence of frames
(samples). In the nuScenes and Lyft datasets, scenes are 20 and 25 seconds long,
respectively. The log of a scene contains information about the vehicle, the location of
the scene, and a relation to a map.

Samples are annotated keyframes. The data of a sample are those that are collected
approximately to the timestamp of a single LIDAR sweep. For the nuScenes and Lyft
dataset, the keyframes are collected at 2Hz.

Depending on the sensor, sample data can be an image (camera), point cloud (LIDAR)
or a radar return. All sample data point to the sample that is closest in time. The
associated ego pose is the vehicle pose at a particular time stamp based on the position
on the map. In addition, the related calibrated sensor contains the calibration of a
particular sensor on the ego vehicle, i.e. the position of the sensor relative to the ego
vehicle. Each calibrated sensor has a relation to a sensor that describes its type.

Every sample has annotations associated with it. A sample annotation represents a
bounding box of an object in a sample. With each sample annotation, the visibility of
the object is also recorded by a relation. Moreover, the annotations also have a relation
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Figure 6.1: The dataset graph schema

to an attribute which describes the object of the annotation. Annotated objects are
denoted by instances, which belong to specific categories. Categories are organized in
simple category taxonomies, which we will describe in more detail in the next section.

6.2 VVR Property Graph Description

The VVR property graph stores both the Lyft and nuScenes datasets in the same Neo4j
property graph database according to the graph schema depicted in Figure 6.1. However,
the basic schema has been extended to facilitate better querying.

For one, two types of relations were added between instances and sample annotations. The
relation FIRST_ANNOTATION connects each instance to its first annotation. Similarly,
LAST_ANNOTATION connects each instance to its last annotation.

Second, each instance has been labelled with the semantic category it belongs to according
to the information in the category node. The categories and their taxonomies are different
for each instance, depending on which dataset it originally belongs to. To illustrate, the
nuScenes dataset contains 23 different categories, while the Lyft dataset only has eight.
Table 6.1 shows the names of the categories and which label has been added to each
instance connected to it. For example, a node that is labelled with instance and has a
relation to a category node that is named animal, is also labelled with animal.
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Category name Dataset New instance label
animal motional animal
human.pedestrian.adult motional adult
human.pedestrian.child motional child
human.pedestrian.construction_worker motional construction_worker
human.pedestrian.personal_mobility motional personal_mobility
human.pedestrian.police_officer motional police_officer
human.pedestrian.stroller motional stroller
human.pedestrian.wheelchair motional wheelchair
movable_object.barrier motional barrier
movable_object.debris motional debris
movable_object.pushable_pullable motional pushable_pullable
movable_object.trafficcone motional trafficcone
static_object.bicycle_rack motional bicycle_rack
vehicle.bicycle motional bicycle
vehicle.bus.bendy motional bendybus
vehicle.bus.rigid motional rigidbus
vehicle.car motional car
vehicle.construction motional constructionvehicle
vehicle.emergency.ambulance motional ambulance
vehicle.emergency.police motional police
vehicle.motorcycle motional motorcycle
vehicle.trailer motional trailer
vehicle.truck motional truck
pedestrian Lyft pedestrian
animal Lyft animal
other_vehicle Lyft vehicle
bus Lyft bus
motorcycle Lyft motorcycle
truck Lyft truck
emergency_vehicle Lyft emergency
bicycle Lyft bicycle

Table 6.1: Categories and associated instance labels
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The graph schema shows that each sample_annotation can have a HAS relation to an
attribute node. This structure allows modelling changes of the status of instances (or
objects) in the scene over time. For example, if the attribute were connected to the
instance, then the attribute would be static. Moreover, it could lead to problems during
reasoning if the object were moving and stopping in the scene over time. Any axioms
that encode that an object can not be stationary and moving at the same time would
lead to an inconsistency. In the VVR property graph, the semantic label has been added
to all attribute nodes according to their description.

In the motional dataset, there are eight distinct attribute nodes:

• vehicle.moving: Only for vehicles with four or more wheels. A moving vehicle.

• vehicle.stopped: Only for vehicles with four or more wheels. A stopped vehicle
with no immediate intent to move.

• vehicle.parked: Only for vehicles with four or more wheels. A stopped vehicle that
has an intent to move.

• cycle.with_rider: Only for bicycles and motorcycles. Has a rider on it.

• cycle.without_rider: Only for bicycles and motorcycles. Has no rider on it.

• pedestrian.sitting_lying_down: Only for humans. Sitting or lying down.

• pedestrian.standing: Only for humans. Standing.

• pedestrian.moving: Only for humans. Moving.

In the Lyft dataset, the attribute nodes are more fine-grained:

• is_stationary: A stationary object

• object_action_abnormal_or_traffic_violation: An object behaving abnormally or
committing a traffic violation

• object_action_driving_straight_forward: A vehicle driving straight forward

• object_action_gliding_on_wheels: A vehicle gliding on wheels

• object_action_lane_change_left: A vehicle changing lanes to the left

• object_action_lane_change_right: A vehicle changing lanes to the right

• object_action_left_turn: A vehicle turning left

• object_action_loss_of_control: A vehicle losing control

• object_action_other_motion: A vehicle performing some other motion
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• object_action_parked: A parked vehicle

• object_action_reversing: A vehicle driving in reverse

• object_action_right_turn: A vehicle turning right

• object_action_running: A person running

• object_action_sitting: A person sitting

• object_action_standing: A person standing

• object_action_stopped: An object that is stopped

• object_action_u_turn: A vehicle performing a U-turn

• object_action_walking: A person walking

As we can see, the differences in the description of the instances and attributes constitutes
a challenge from a user perspective.

Nevertheless, the combination of these two datasets can provide valuable insights for
researchers in the domain of autonomous driving. It should be possible to use both
these datasets in the process of researching and designing autonomous driving processes.
Moreover, we should be able to provide the users with a holistic view of the data in the
domain.

For this purpose, we have identified five representative queries to demonstrate the viability
of our approach to achieve this goal. These queries are in part to ensure data quality,
and in part to detect scenes which provide a challenge for autonomous vehicles, or the
machine learning models they act on. For example, the same pedestrian should not
be annotated as two different instances. In addition, these queries identify scenes that
include safety-critical scenarios automated driving models should be tested against. More
specifically, the following queries should be answered over the VVR property graph:

Q1 Which instances are pedestrians?

Q2 Which pedestrians disappear from a scene, and have another pedestrian appear
some time after?

Q3 In which samples do two different humans appear at consecutive times?

Q4 Which pedestrians change from moving to being stationary?

Q5 Which pedestrians change from being stationary to moving?

Each of these queries can be formulated as a Ξ-restricted query. The relation NEXT in the
property graph signifies objects or events which are consecutive in time, and therefore the
relation is acyclic by nature. Below, we present the above queries in our logic notation:
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Q1 q(x) ← pedestrian(x)
Q2 q(x, xp) ← pedestrian(x), LAST_ANNOTATION(x, y), OF(y, z), sample(z),

NEXT ⋅NEXT∗(z, zp), OF(yp, zp), FIRST_ANNOTATION(xp, yp), pedestrian(xp)
Q3 q(z, zp) ← pedestrian(x), LAST_ANNOTATION(x, y), OF(y, z), sample(z),

NEXT ⋅NEXT∗(z, zp), OF(yp, zp), FIRST_ANNOTATION(xp, yp), pedestrian(xp)
Q4 q(x) ← pedestrian(x), OF(y, x), HAS(y, z), pedestrian_moving(z),

NEXT ⋅NEXT∗(y, yp), HAS(yp, zp), pedestrian_stationary(zp)
Q5 q(x) ← pedestrian(x), OF(y, x), HAS(y, z), pedestrian_stationary(z),

NEXT ⋅NEXT∗(y, yp), HAS(yp, zp), pedestrian_moving(zp)
6.3 Adding Domain-Specific Knowledge
To relate the labels of the categories and attributes of the two datasets together, we
designed a simple ontology. It contains all the labels in the VVR property graph described
in the previous chapter as basic concepts. In addition, we defined the following role
names in the ontology: OF, HAS, FIRST, LAST, NEXT, FIRST_ANNOTATION, and
LAST_ANNOTATION.

As we have already mentioned, categories are organized in a hierarchy. Similarly, the
attributes can also be organized hierarchically. Therefore, our ontology is a concept
taxonomy. For better readability, we show the taxonomy for categories in Figure 6.2, and
the one for attributes in Figure 6.3. Still, these two (disjoint) taxonomies are part of the
same ontology.

Using only taxonomies does not utilize the full expressive power of DL-Lite. However,
given with how the data is structured in the use case, the benefits of a more complex
DL-Lite ontology are not apparent for the queries considered so far. The data contains
only few, generic role names. For example, the relation OF is used between many different
concepts. If there were more specific role names present in the schema, then more specific
axioms and role inclusions could be added in a meaningful way to the ontology, enabling
us to formulate more interesting queries.

6.4 Rewriting
We executed the query rewriting algorithm on the queries Q1-Q5 with regard to the
ontology described in the previous section. In addition, we recorded the time needed to
perform the rewritings on our machine. We used a Windows 10 machine with a 6-core
AMD Ryzen 5 3600 CPU running at 3.6 GHz and 32 GB of RAM.

Note that the rewriting is independent from the underlying data i.e., the Cypher queries
can be executed on any database that accepts the Cypher query language. Therefore,
the number of queries in the union of C2RPQs returned by our rewriting and the time
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Figure 6.2: Category taxonomy

needed to generate the rewritings is also independent from the data. Hence, when we
discuss the size of the rewritings and the time needed to generate them, we only take the
ontology into account.

Query Size of UC2RPQ Time
Q1 8 3
Q2 880 1112
Q3 880 922
Q4 1056 1152
Q5 1056 1168

Table 6.2: Summary of query sizes and rewriting execution times (ms)

Table 6.2 depicts the sizes of the queries rewritten by our implementation. While the
rewriting of the first query consists only of a set of eight queries, the other four queries
have 880 and 1056 different queries in their rewriting. For the first query, we can easily
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Figure 6.3: Attribute taxonomy

deduce the number of queries from the taxonomy shown in Figure 6.2. The concept
pedestrian has seven distinct sub-concepts. Hence, for each sub-concept, our rewriting
algorithm introduces a new query. For example, adult is a sub-concept of pedestrian.
Therefore, our rewriting will add the query q(x) ← adult(x) to the set of queries.

However, as we have also discussed in Section 4.4, the number of queries returned by
our procedure may be exponential in the number of atoms. For example, consider a
“simpler” version of query Q2: q(x, y) ← pedestrian(x), pedestrian(y). It is easy to see
that a complete and correct rewriting must contain at least 8 × 8 = 64 queries for each
possible combination of replacing the atoms of pedestrian with a sub-concept. Thus, it is
not surprising that the number of queries contained in the rewritings of queries Q2-Q5
are much larger than the number of queries in the rewriting of Q1.
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6.5 Query Evaluation
We evaluated the queries on a database constructed from a sample of the Lyft2 and
nuScenes 3 datasets, which are available for public download. The VVR property graph
can be constructed in Neo4j from these data by translating the associated metadata
to the graph schema shown in Figure 6.1 and following the descriptions laid out in
Section 6.2. For example, the creation of the relations FIRST_ANNOTATION and
LAST_ANNOTATION is shown in Figure 6.4. Regarding the category labels, we show
an example query for adding the bicycle label in Figure 6.5.

1 // create edge from instance to the first annotation

2 match (x:instance)<-[:OF]-(y:sample_annotation)

3 where x.first_annotation_token = y.token

4 create (x)-[:FIRST_ANNOTATION]->(y)

5

6 // create edge from instance to the last annotation

7 match (x:instance)<-[:OF]-(y:sample_annotation)

8 where x.last_annotation_token = y.token

9 create (x)-[:LAST_ANNOTATION]->(y)

Figure 6.4: Creation of the relations FIRST_ANNOTATION and LAST_ANNOTATION

1 match (a:category {name: 'vehicle.bicycle'})<-[:OF]-(x:instance)

2 set x:bicycle

Figure 6.5: Creation of the appropriate labels for bicycle

The property graph we created this way contains 91.891 nodes and 254.555 distinct
relations. Table 6.3 shows the result sizes (number of tuples) and time needed to execute
the queries. We can see that even if the result sizes are not large, the queries need a lot
of time to be executed because of the number of queries contained in the rewritings.

6.6 Summary
In this chapter, we have shown how ontologies can be utilized in a real-life use case
to query data from heterogeneous sources in a property graph database setting. We
could answer queries with regard to ontologies with our rewriting procedure. Still, the

2https://level-5.global/download/, accessed 17th May, 2022
3https://www.nuscenes.org/nuscenes#download, accessed 17th May, 2022
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6.6. Summary

Query Result size Time
Q1 234 1
Q2 751 111071
Q3 264 109209
Q4 10 136767
Q5 8 143516

Table 6.3: Summary of Cypher query execution times (ms)

evaluation of our representative sample of queries has shown that the possibly exponential
number of queries in the rewriting can occur in practice.

The data in presented in our use case have been complete in the sense that there were no
entities missing from the data. This is reflected by the fact that the ontology we designed
is a taxonomy. However, the DL-Lite ontology our framework supports can also reason
about missing data by using axioms with existentials on the right-hand side. Moreover,
if ontologies are intended to be used at the start of the design of an OMQ system, some
data preparation may become redundant. Basic concepts or roles between individuals
could be inferred from the ontology, removing the need to explicitly add them to the
data.

Finally, ontologies can make integration of data into standardized processes easier. For
example, if a new standard for describing data is released in the form of an ontology,
then the integration of existing data can be facilitated through this ontology. In the
autonomous driving domain, such standardization efforts are heralded by the Association
for Standardization of Automation and Measuring Systems (ASAM).
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CHAPTER 7
Conclusion and Future Work

In our work, we have presented a framework for querying property graphs with ontologies.
This included defining a query and ontology language, as well as developing a new
rewriting procedure to answer those queries with Cypher over a Neo4j database.

We conclude our work by answering the research questions from Section 1.3. In our
discussion of the answers to the research questions, we will point to the relevant sections
of our thesis where they were addressed. Finally, we present possible improvements to
our approach, as well as extensions to our framework and possible avenues for further
research on OMQ for property graphs.

7.1 Research Questions
Our research questions aim at utilizing the underlying graph database management
system as much as possible. We aimed to refer much of the query answering to the
underlying DBMS, where we can make use of its query optimization techniques which
have been developed for more than a decade. Moreover, one of our goals was to make
the different query semantics of ontologies, SPARQL 1.1 and Cypher compatible.

RQ1: What is an appropriate way to enable OMQ of property graphs?

In our work, we have presented a framework capable to add domain knowledge from
a DL-Lite ontology to the answers of a Cypher query. Users can pose a query using
the vocabulary of the ontology and receive a Cypher query which can be evaluated
over a Neo4j graph database. Moreover, we allow navigational features in addition to
conjunctive queries in our query language.

We defined a query language in Chapter 3 which can be expressed in Cypher and
SPARQL 1.1. Our query language is capable of expressing conjunctive queries, and also
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has navigational features. In addition, we defined an appropriate semantics for the query
language.

Queries in our framework can be rewritten into a set of queries which can be evaluated over
the plain data, thus eliminating the need to complete the data with domain knowledge.
We described this rewriting technique in Chapter 4, and showed that the complexity of
query answering in our framework does not exceed the complexity of query answering in
graph databases.

One caveat of our approach is that the roles used in paths must be acyclic in the data,
and the TBox must adhere to certain syntactic restrictions such that the returned answers
are the same in SPARQL 1.1 and Cypher semantics. Nevertheless, confirming that these
restrictions hold do not make query answering harder i.e., they do not increase the
computational complexity of our approach.

We provide a description of our implementation our rewriting algorithm in Chapter 5,
which was used to answer queries using data from a real-life use case presented in
Chapter 6. The evaluation of the queries showed that computing the rewriting consumed
less time than evaluating the queries in the database. This was expected, as our rewriting
can produce an exponential number of queries, which makes query evaluation in databases
time-consuming.

RQ2: How do Cypher semantics affect the answers of navigational queries?

In Section 2.3.2, we have extensively discussed the semantics of query languages in our
framework. Cypher follows no-repeated-edges semantics, compared to the homomorphism-
based semantics used in ontologies and SPARQL 1.1. We have shown that Cypher queries
can be formulated in such a way that the difference to homomorphism-based semantics
is only in the definition of matches for paths. From our definition of no-repeated-edges
semantics it also follows that any no-repeated-edges match is a homomorphism-based
match. However, the converse does not hold i.e., not every homomorphism-based match
is a no-repeated-edges match.

In Lemma 2.4.1, we proved that no-repeated-edges matches are not preserved under
homomorphisms, showing that the certain answer semantics from ontology-mediated
querying is not appropriate for no-repeated-edges semantics. Thus, we demonstrated
the need not only for restrictions on the knowledge base, but also for an alternative
semantics for ontology-mediated querying in graph databases with Cypher. We defined
such syntactic restrictions on the knowledge base in 3.1 and shown that under those
restrictions, the answers coincide for the canonical model of the knowledge base. Hence,
we defined the no-repeated-edges semantics certain answers to queries in our knowledge
base as the answers in the canonical model.
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RQ3: What is a suitable rewriting strategy using Cypher as a target
language?

We presented a rewriting algorithm for queries in our framework and DL-Lite ontologies
in Chapter 4 (Algorithm 4.1). Furthermore, we proved the correctness and completeness
of our rewriting approach, in addition to termination. The number of queries generated
by our rewriting procedure is exponential in the number of atoms in the input query.
However, this is already the case for conjunctive queries. Still, rewriting is independent
of the data, because it only requires a query and an ontology as an input. Therefore, we
demonstrated that it is a viable approach to rewriting in our framework.

RQ4: How feasible are Cypher rewritings for OMQ of property graphs?

Based on our rewriting, we designed a query answering procedure for our framework
(Algorithm 4.3). Additionally, we discussed the computational complexity of query
answering in our framework. We showed that query answering with regard to ontologies
does not increase the computational complexity of query answering in graph databases.
In particular, query answering in our framework is in NL in data complexity for no-
repeated-edges set semantics for paths. The combined complexity of evaluating queries
is not harder than evaluating C2RPQs with Cypher, but still NP-complete.

In Chapter 6, we presented the application of our rewriting on a use case from the
autonomous driving domain. We used an ontology to query data from two sources with
different vocabularies. Our rewritings could be executed over the plain data in Neo4j,
and returned the answers in reasonable time compared to the number of queries in the
rewriting.

7.2 Future Work

The framework we have presented in this thesis opens a wide variety of interesting
questions which can be subject to additional research. In the following, we will describe
three such questions of which we deem that they would most improve the usability of
our approach in practice.

Query Containment

Query containment describes a classical problem in database theory [AHV95]. The
goal of the query containment problem is to decide whether the answers to a query q1
are contained in the answers to a query q2 in every database. Consider our rewriting
from Example 4.1.6, which contains the two queries q1() ← r(x, _), s(x, x) and q2() ←
r(x, _), s∗(x, x). We can see that q1 is contained in q2, as q2 returns the empty tuple if
q1 returns the empty tuple. Because the rewriting is a union of C2RPQs, we do not lose
any answers if we remove q1 from our set of queries.
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As illustrated by our example, the rewriting technique we presented in Chapter 4 does
not necessarily produce a minimal set of queries, as is the case for PerfectRef [CGL+07].
In addition, we did not consider any optimizations or reductions of the rewriting in our
implementation described in Chapter 5. Thus, one possible improvement would be to
study query containment for DL-Lite ontologies and Ξ-restricted C2RPQs, and apply it
to the output of our rewritings.

Querying Properties

Property graphs distinguish themselves from other graph-structured data models by
adding property keys and data values to their model. Each semantic object, such as a
node in a graph, can be adorned with a set of property (attribute) keys and corresponding
values. For example, the Neo4j proprietary model (Definition 2.1.1) allows to not only
add properties to nodes, but also to relations. This way, property graphs can model
relations with arities greater than one. Consider a relation friendOf between Person
objects, where we also store where the two parties met (met) and since when they have
been friends (friends_since). In a Neo4j property graph, this can easily be added to the
relation object itself via a property key and corresponding value. On the other hand, an
RDF representation would not be as straightforward. One possibility to model such a
relation in RDF would be to add a new object that represents the relationship, then add
triples to relate the two Person objects to the relationship object, and finally add triples
with the relationship object to store the additional information.

Thus, extending our framework to account for property values in property graph databases
would be a useful feature. Indeed, if we recall our definition of interpretations (Defi-
nition 2.2.5), we consider both nodes and relations in the graph as semantic objects.
Hence, adding property keys and values should be possible for our interpretations. Still,
we would also need to extend our query language and semantics to account for this
extension. A simple way to include property-value pairs for individuals would be to
interpret them as special binary atoms. However, we did not include any atoms that
use relation objects directly in our query language. Hence, querying the properties of
relations, and by extension paths, is a more intricate problem that requires more care,
especially if domain knowledge about properties should be included.

Extending the Ontology Language

Related to the querying of properties in the underlying graph database is an extension
of the ontology language which uses property values in its concepts. Kharlamov et
al. [KKM+16] defined the ontology language DL-LiteAagg, which uses aggregation of
property values in its concepts. The use of concepts based on the aggregation of property
values has proven useful in the use case from Siemens that they discussed in their
work. Thus, using such an ontology language could also be suitable for property graph
databases.
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