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Kurzfassung

Systeme der künstlichen Intelligenz (KI) basieren häufig auf maschinellen Lernverfah-
ren, die allein aus einem Datensatz lernen, ohne sich auf Allgemeinwissen oder andere
domänenspezifische Kenntnisse zu stützen, als die, die ausdrücklich als "Merkmaleïn den
Daten enthalten sind. Trotz der enormen Menge an Expertenwissen, das für den Bereich
existiert, und der Tatsache, dass ein Großteil davon in bestehenden Ontologien leicht
nutzbar ist, wird normalerweise nicht einmal ein kleiner Teil davon verwendet.

In dieser Arbeit untersuchen wir die Möglichkeiten der Nutzung von Domänenwissen,
insbesondere von medizinischen Ontologien, um das Lernen von Entscheidungsbäumen
für solche Domänen zu verbessern. Insbesondere bewerten wir Techniken sowohl für die
Konstruktion von Entscheidungsbäumen direkt aus Daten, als auch für die Konstruktion
von Entscheidungsbäumen als Approximation eines neuronalen Netzes aus dem Trepan-
Algorithmus, die mit einigen aus Ontologien berechneten Maßen erweitert werden können.
Wir wählen einige bestehende Ansätze aus der Literatur aus und analysieren sie, und
wir schlagen auch andere Varianten vor. Darüber hinaus bewerten wir die Auswirkungen
solcher ontologischen Maße sowohl auf die Verständlichkeit als auch auf die Genauigkeit
der resultierenden Bäume. Um die Verständlichkeit zu bewerten, werden neben zwei
syntaktischen Komplexitätsmaßen, die wir berechnen, führen wir auch drei Benutzerbe-
fragungen mit vier verschiedenen Aufgaben durch und bewerten die Ergebnisse in Bezug
auf Antwortzeit, Korrektheit, Vertrauen in die Antworten sowie die Wahrnehmung der
Verständlichkeit der Bäume durch die Benutzer. Für den Vergleich der Ansätze erstellen
wir einen Testsatz aus sieben medizinischen Datensätzen, gepaart mit themenspezifischen
Ontologien, die aus zuverlässigen, echten medizinischen Ontologie-Repositorien stammen.
Angesichts des Mangels an Benchmarks, die Datensätze des maschinellen Lernens mit
Ontologien verknüpfen, ist die Erstellung eines solchen Testsatzes wichtig für dieses
Forschungsgebiet.

Die Ergebnisse unserer Experimente zeigen, dass die Einbeziehung von Heuristiken aus
Ontologien in den Prozess der Entscheidungsbaumerstellung die Genauigkeit von Ent-
scheidungsbäumen für die meisten der von uns verwendeten Domänen mäßig verbessert,
insbesondere für Entscheidungsbäume, die aus einem neuronalen Netz unter Verwendung
des Trepan-Algorithmus extrahiert wurden.

Darüber hinaus stellen wir anhand der Ergebnisse der benutzerbasierten Umfragen fest,
dass die Benutzer den Baum, der mit unserer modifizierten Version von hubscore, genannt
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relevance-score, aus der SNOMED-CT-Ontologie erstellt wurde, im Durchschnitt etwas
einfacher zu verstehen finden und dass die Benutzer mehr Vertrauen in ihre Antworten
zu diesen Bäumen haben sowie einen höheren Anteil an richtigen Antworten geben.



Abstract

Artificial Intelligence (AI) systems often build on machine learning techniques that learn
from a dataset in isolation, without relying on any common sense knowledge, or any
knowledge of the domain other than what is explicitly reflected as ‘features’ in the data.
Despite the vast amount of expert knowledge that exists for the domain, and the fact
that much of it is readily usable in existing ontologies, usually not even a small fragment
of it is used.

In this thesis, we investigate how domain knowledge, especially medical ontologies, might
be used to improve decision tree learning. In particular, we assess techniques both for
constructing decision trees directly from data, as well as constructing decision trees as
approximation of a neural network extracted with the Trepan algorithm, that can be
enhanced with some measures computed from ontologies. We select and analyze some
existing approaches from the literature, and also propose some variations. Moreover,
we asses the impact of such ontological measures on both the understandability and
the accuracy of the resulting trees. For evaluating the understandability, beside two
syntactic complexity measures that we calculate, we also perform three user questionnaires
depending on the domain, with four different tasks and evaluate the results in terms of
time response, correctness, confidence on the answers, as well as the users’ perception of
the understandability of the trees.

For the comparison of the approaches we create a test set of seven medical datasets
paired with topic-specific ontologies extracted from reliable real-life medical ontology
repositories. Given the lack of benchmarks linking machine learning datasets and
ontologies, the construction of such a test set is important on its own.

The results of our experiments show that incorporating heuristics from ontologies into
the decision tree building process moderately improves the accuracy of decision trees
for most of the domains we use, particularly for decision trees extracted from a neural
network using Trepan.

Furthermore, based on the findings of the user-based surveys, we observe that users, on
average, find the tree built with our modified version of hubscore called relevance-score
from the SNOMED-CT ontology slightly easier to understand; users are more confident
in their answers concerning these trees, and give a higher proportion of correct answers.
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CHAPTER 1
Introduction

1.1 Motivation
The advancement of Artificial Intelligence (AI) during the last decade has been remarkable.
However, despite having overcome issues that looked unachievable only a few years ago,
AI is frequently allowed levels of autonomy that are out of proportion to its capabilities.
Machines have highly effective techniques of learning from data and discovering patterns
that humans cannot, but while doing it, they usually do not integrate such patterns with
other information and world models. AI systems are frequently built on Machine learning
(ML) approaches that learn from a dataset in isolation. The techniques for relying on
common sense knowledge or domain knowledge other than what is clearly reflected in
the data as ’features’ are still lacking.

To add to the challenges, many ML approaches are are often blackbox approaches and
understanding how they work is very difficult. Considering that ML is supposed to make
the life of people easier, this drawback presents a big hurdle in the integration of ML
in everyday life. The explainablity of ML models has become a very important field of
study, especially in critical sectors like medicine, where understanding why the particular
decisions are made is crucial [TJMG19, HLD+19, ZLFC18].There has been a growing
interest in explainable classifiers such as decision trees, which may be used as classifier or
as a technique to approximate other classifiers in order to comprehend them [XUD+19].

There are several techniques for explaining ML models, but very few of them seek to
include pre-existing domain knowledge into the process. A possible source for the domain
knowledge can be ontologies. Ontologies provide a logic-based data model for knowledge
representation by using description logics as its representational basis. This may be used
in a variety of real-world applications like for enhancing machine learning approaches,
because of their domain knowledge reasoning. There are several ontologies that have
been used for a variety of purposes and include high-quality knowledge. Given the
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1. Introduction

huge amount of medical knowledge in existing ontologies, it would make sense to try
to enhance such decision trees using that knowledge. But this calls for ontologies that
precisely match the features of the dataset of interest and such ontologies are not readily
available. This knowledge is frequently embedded in larger ontologies. In any case,
extracting topic-specific parts of such ontologies is an important topic that has been
widely investigated and we want to investigate what methods are being used in this
direction and whether any of them can be leveraged to improve decision trees.

There has been some work in the literature in recent years that uses knowledge to obtain
better explainable classifiers [CWBdPM21, PPP20]. However, as we discuss below, these
works are limited, not easy to apply and to compare in different domains. There are
only preliminary experimental results using handcrafted ontologies that are not realistic
medical ontologies and they are quite sensitive to the syntax of the ontology.

1.2 Aims of the thesis
The general aim of the thesis is to investigate possible applications of domain knowledge,
particularly medical ontologies, to increase the accuracy and understandability of decision
trees. We tackle the following research questions:

• (RQ1) How can we more systematically generate or extract meaningful medical
ontologies that contain domain knowledge about a set of ’features’ from given
datasets?

• (RQ2) Do the existing approaches that use domain knowledge obtain better and
more explainable classifiers?

• (RQ3) Are there other ways to harness knowledge from an ontology to obtain better
and more explainable classifiers?

1.3 Contributions
The main contributions of this thesis are:

• We build a test set of seven medical datasets linked with topic-specific ontologies
collected from existing reliable high-quality medical ontology containing the same
concepts as datasets’ features in a semantic level. Due to the scarcity of benchmarks
connecting machine learning datasets and ontologies, creating such a test set is a
noteworthy contribution in its own. Moreover, we handcraft two ontologies for heart
and breast cancer domains using corresponding datasets’ features as concepts and
roles, the same way the authors of Trepan Reloaded [CWBdPM21] did. In addition,
for these two domains we extend two existing ontologies with the corresponding
datatsets’ features.

2



1.4. Organization

• We study some specific heuristics to incorporate the knowledge from the ontologies
we created and extracted to decision tree construction algorithms. Specifically we
consider information content from Trepan Reloaded [CWBdPM21] and propose
another heuristic called relevance-score which works in cases when information
content gives is not applicable, which is the case in particular for ontologies extracted
from SNOMED-CT.

• We evaluate these two heuristics from different ontologies on two different ways
of obtaining decision trees, for direct decision tree construction and for decision
trees extracted with Trepan algorithm. We do this for seven domains. To compare
between the heuristics we use accuracy of the trees.

• To measure the understandability of the trees, we look into the syntactic complexity
of the decision trees using two different measures from the literature. Moreover,
we conduct three user-based studies analogous to Trepan Reloaded, with 234
participants, to see whether the reported improvements in understandability from
Trepan Reloaded paper are reproduced. Moreover, from the user-questionnaires
we find a correlation of syntactic complexities of the trees with user subjective
understandability, correctness of the responses and time response.

• From results we observe that the accuracy of decision trees when the heuristics
from ontologies are incorporated in the direct tree building process increases for
most of the considered domains, albeit modestly. Moreover, for the decision trees
extracted from Trepan algorithm, using domain knowledge from a high-quality
ontology either increases the accuracy or the accuracy stays the same for different
domains. Furthermore, from user-based questionnaires, we observe that users find
the tree built with our heuristic called relevance-score from the SNOMED-CT
ontology slightly simpler to understand on average, and users are more confidence
in their replies about these trees, as well as give a larger proportion of correct
answers.

1.4 Organization
The remainder of the thesis is structured as follows. In Chapter 2, we begin with
some preliminary material, we discuss the notion of ontologies, description logics, the
SNOMED-CT ontology, then we continue with explainability of machine learning and
decision trees. Then, in Chapter 3, we explore modularization and forgetting as two
methods for obtaining topic specific ontologies, and we focus on a method that combines
modularity and forgetting for ontology extraction from large ontologies. We cover several
attempts to incorporate domain knowledge at various stages of the machine learning
pipeline in Chapter 4, with an emphasis on the Trepan Reloaded algorithm. Our work
on different approaches to the improvement of learned decision trees using knowledge
from ontologies is then presented in Chapter 5. In Chapter 6, we present experimental
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1. Introduction

evaluation methods, followed by the results of such experiments. Finally, Chapter 7
concludes this thesis and gives an outlook on possible future work.

4



CHAPTER 2
Preliminaries

In this chapter we introduce some preliminaries that will be used throughout the rest of
this master thesis. In the first section we present the basics about ontologies, discuss
components and advantages of ontologies, the basics about description logics as a formal
language commonly used for defining ontologies, as well as the SNOMED-CT ontology.
In Section 2.2 we discuss machine learning and present explainability of machine learning,
with a focus on decision trees.

2.1 Ontologies
Ontology is a philosophical term that refers to the study of existence and the essence
of being. From the computer science perspective, Gruber [Gru93] in 1993 defined the
ontology notion as "explicit specifications of conceptualizations", whereas the notion of
conceptualization is defined as a simplified, abstract perspective of the world that we
want to portray for whatever reason.

An ontology establishes a standard terminology for sharing knowledge in a certain domain.
It comprises machine-interpretable definitions of key concepts in the domain as well as
relationships between them.

The types of knowledge that may be represented by ontologies varies. However, Corcho
et al. [CFLGP06] describe a core set of components that all ontologies have in common:

• Concepts (classes), represent types of objects in the domain, which may be abstract
or concrete. Ontology classes are usually organized into hierarchical taxonomies,
which may be used to apply inheritance methods by assessing if an object is
necessarily an instance of another class if it is an instance of one.

• Relations (roles) represent relations between concepts in the domain. Ontologies
usually contain binary relations, with the first argument being the domain of the

5



2. Preliminaries

relation and the second argument being the range. Relations, like classes, may be
arranged into taxonomies.

• Instances represent instantiations of concepts, i.e Person(Lisa) represents that
Lisa is an instance of concept Person.

• Axioms model statements in a domain that are always true and are usually utilized
to express information that can’t be formally specified by the other components.
Axioms are also used to ensure that the ontology is consistent.

Some of the advantages of utilizing an ontology include: humans or software agents
having a shared understanding of the structure of information, reusing and sharing
domain knowledge, making domain assumptions explicit, assessing domain knowledge,
and distinguishing domain knowledge from operational knowledge, or linking technical
language with human understandability [NM+01]. Due to these benefits, ontologies have
been used in different areas such as: artificial intelligence [BCM05, ?], software engineering
[HS06], computer security [RAA+14, KKK13] and biomedicine [SAMK05, RLM+06].

There are different categories based on the expressiveness of the knowledge representation
formalism used to build ontologies. Lassila and McGuinnes [LM01] categorized ontologies
into four groups from the least expressive to very expressive ontologies:

• Glossaries represent the most basic forms of ontologies, which are just a list of
concepts, a regulated vocabulary is an example of this type of ontology.

• Thesauri also known as taxonomies are ontologies as lists of concepts with a fixed
set of relationships between them.

• Ontologies represented using metadata, XML, schemas and data models. This
category of ontologies can specify concept hierarchies, attributes, relations, and
axioms.

• Ontologies represented using logical languages are the most expressive types of
ontologies. The formal languages include syntax, well-defined semantics, and
reasoning techniques like as consistency testing. A formal language commonly used
for defining ontologies is description logics. SNOMED-CT which we will discuss
into more details in Section 2.1.2 falls into this group of ontologies.

2.1.1 Desctiption Logics
Description Logics is a formal language for describing knowledge and reasoning about
it. In other words, description logics is a term for a family of knowledge representation
formalisms that express an application domain’s knowledge by first defining the domain’s
important concepts and then utilizing these concepts to specify attributes of objects and
individuals that appear in the domain [BN03].

6



2.1. Ontologies

In description logic languages, there are three fundamental building [BCM+03] compo-
nents:

• Atomic concepts or unary predicates which represent types of objects in the domain,
e.g. Woman, Man, Person.

• Atomic roles or binary predicates which represent binary relations between objects
in the domain, e.g. hasChild, hasParent, livesIn.

• Individuals or constants represent actual objects in the domain, e.g. lisa, vienna,
smith.

Complex concept and role descriptions may be created by combining these components
using logical constructors such as conjunction, disjunction, existential quantification, and
so on. There are different variants of description logics depending on the kind of logical
constructors they allow. The EL family, in which the ontologies in this thesis are written,
allows only conjunctions and existential restrictions.

The semantics of concepts are specified in terms of interpretations I that consists of a
non-empty domain ΔI and an interpretation function .I , which maps every individual
name to an element of the domain ΔI , each atomic concept to a subset of the domain,
each atomic role to a binary relation on the domain, and to each individual name an
object of the domain.

A knowledge base in description logics is divided into two parts: a terminological com-
ponent (TBox) and an assertional component (ABox). A TBox is made up of a finite
number of terminological axioms which are statements describing the relationships be-
tween concepts and roles. On the other hand, an ABox consists of assertional knowledge
which are statements regarding individual membership to concepts (concept assertions)
and relations between individuals (role assertions).

Subsumption, commonly represented as C � D, is the most fundamental inference on
concept expressions in Description Logics. The task of determining subsumption consists
on deciding if the concept indicated by D (the subsumer) is more general than the one
denoted by C (the subsumee). Subsumption, in other words, determines whether the
first concept always refers to a subset of the set signified by the second [NB03].

In this master’s thesis, we will capture the degree of generality or specificity of a concept
and utilize it as information content to mix with information gain while creating decision
trees, as well as the distance to a general concept. In chapter Chapter 5, we will go
through how to use information from ontologies in detail.

2.1.2 SNOMED-CT Ontology
Systematized Nomenclature of Medicine — Clinical Terms (SNOMED-CT)1 is a medical
terminology that is used to standardize the storage, retrieval, and interchange of electronic

1https://www.snomed.org
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2. Preliminaries

health data. SNOMED-CT’s purpose is to develop a taxonomy of terms referring to
entities in a specific medical environment, as well as a set of criteria to ensure that each
term is used with exactly one meaning.

The core component types in SNOMED-CT are: concepts, descriptions and relationships
[Bha15].

• Concepts: every concept has its distinct identifier and represents a distinct clinical
meaning.

• Descriptions: every concept has two sorts of descriptions: a fully specified name
(FSN), which is unique and displays the meaning of the concept, and a synonym,
which may be used to display or pick a concept. There may be multiple synonyms
for a notion, but only one FSN.

• Relationships: show a connection between two concepts. Within SNOMED-CT,
many forms of relationships are supported.

SNOMED-CT is used in over 50 countries and its 31st of July 2021 release, contains
more than 350,000 concepts. [Bha15] summarizes the benefits of SNOMED-CT as:

• Benefits to individuals: allowing for uniform recording of clinical data, providing
support systems with the ability to examine the record and offer real-time guidance,
supporting the exchange of relevant information with those involved in the delivery
of care, allowing all providers to comprehend the information in the same way.
Moreover, SNOMED-CT allows multilingual use, removing language barriers.

• Benefits to populations: early detection of emergent health risks, population
health monitoring, and reactions to changing healthcare practices are all made
easier, providing precise and focused access to important data, eliminating costly
duplications and mistakes, providing access to pertinent data to enable clinical
research and provide evidence for future treatment improvements and adding
possibilities for extensive study of clinical information to evaluate anomalies and
exceptions to care delivery audits.

SNOMED-CT has been utilized in a variety of clinical documentation applications because
it allows for the representation of comprehensive clinical data in a manner that can be
processed automatically [Bha15]. In this thesis, we will use SNOMED-CT which to the
best of our knowledge is the best high-quality ontology that contains a vast amount of
knowledge about the specific domains that we want to include.

8



2.2. Explainability of machine learning

2.2 Explainability of machine learning

The advancement of Artificial Intelligence (AI) during the last decade has been remark-
able. However, despite having overcome issues that looked far beyond reach only a
few years ago, AI is often granted levels of autonomy that are disproportionate to its
capabilities. AI systems often do not understand the world, and we do not understand
them. Machines have highly effective techniques of learning from data and discovering
patterns that humans cannot, but they are often unable to integrate such patterns with
other information and world models. Machine learning is a subfield of AI that aims to
analyze the structure of data and fit that data into models. It focuses on algorithms
that evolve as they analyze data, allowing computers to develop without having to be
explicitly programmed.

For humans, insights into decision making are usually opaque. Understanding decision
making is especially crucial in highly sensitive fields such as healthcare, the legal system,
finance, bio-informatics, and the automobile industry, where the wrong decision can
have serious consequences [BH21]. In machine learning, explainability involves being
able to explain what happens in your model from input to output. Another definition
of explainability is by Lepri et al. [LOL+18] as a way of improving the transparency of
machine learning models. Transparency encompasses a wide range of attempts to give
useful information about how a model reaches a decision, frequently seeking to increase
trustworthiness to end users [BXS+20]. Three degrees of transparency are considered by
Lipton [Lip18]: the training procedure (algorithmic transparency), specific components
such as parameters (decomposability), and the overall model (simulatability).

The value of explainability as a notion has been reflected in legal and ethical principles
for data and machine learning. Articles 13-15 of the European General Data Protection
Regulation (GDPR) require that data subjects are provided with some easily understand-
able information regarding the logic involved, as well as the importance and expected
implications of such processing for the data subject [SP18].

Various reasons why explainability of machine learning models is essential have been
investigated in literature. Arrieta et al. [ARS+20], summarized the arguments that we
found in the literature advocating for explainability:

goals pursued from literature toward reaching explainability:

• Trustworthiness: for the majority of the authors trustworthiness is the most
significant reason why machine learning explainability is important particularly
in high-risk industries like as healthcare and finance. Before machine learning
solutions are deployed and trusted, all stakeholders must properly understand how
the model works [Lip18]. Although trustworthiness should surely be a component
of any explainable model, this does not imply that every explainable model is
trustworthy on its own.

9



2. Preliminaries

• Casuality: discovering causality between data variables is another reason for explain-
ability. A machine learning model only finds correlations in the data it learns from,
which may not be enough to reveal a cause-and-effect link [CPC19]. Causation, on
the other hand, indicated that the change in one event is the result of the change
of the other event, therefore an explainable machine learning model might validate
the results produced by causality inference techniques or provide a first impression
of possible causal linkages within the available data.

• Transferability: models are constantly constrained, which should allow for smooth
transferability. In order to apply the prediction model with unseen data, the
prediction model must transmit a knowledge of future behavior to a human decision-
maker [Lip18].

• Informativeness: a considerable lot of information is required to be able to tie
the user’s decision to the model’s solution and avoid falling into misinterpretation
errors. Explainable machine learning models should provide information about the
problem being addressed for this purpose [ARS+20].

• Confidence: confidence should always be measured against a model that is expected
to be reliable [DVK17]. Models that are unstable should not give trustworthy
interpretations. As a result, an explainable model should include information
regarding the operating regime’s confidence.

• Fairness: knowing the reasoning for a particular choice is a societal requirement. In
order to perceive conformity to ethical norms, decision-makers must convey their
results in an intelligible manner. This right to explanation is available to anybody
who is impacted by an automated decision.

• Accessibility: some authors advocate for explainability as a quality that allows end
users to become more active in the process of upgrading and developing a particular
machine learning model [ARS+20].

• Interactivity: One of the aims of an explainable machine learning model is to
incorporate the capacity of a model to engage with the user. This aim is connected
to industries where end users are extremely important, and their capacity to alter
and interact with models is what assures success[DVK17, Lip18].

• Privacy awareness: Inability to comprehend what the model has recorded and
stored in its internal representation may constitute a breach of privacy. In contrast,
the capacity of non-authorized third parties to explain the inner relations of a
trained model may jeopardize the differential privacy of the data origin.

There are several techniques for describing the models and/or their decisions. There
are explanations for both global model behavior and local explanations for the model’s
decision about each occurrence in the data. Arrieta et al. [ARS+20] distinguish different
types of explanations such as:

10



2.2. Explainability of machine learning

• Text explanations: include natural language text or propositional symbols to
describe the model’s behavior by defining abstract concepts that represent high-
level operations.

• Visual explanation: include visuals that assist in the comprehension of a model.
Most visualizations are utilized as supplementary tools, particularly when appealing
to a non-expert audience.

• Local explanations: try to explain how a model works in a specific context. As a
result, the provided explanations may not always extend to a global scale, accurately
expressing the model’s overall behavior.

• Explanations by example: in this group there are explanations that show repre-
sentative examples from the training dataset. In this case, to be understood the
training data must be in a human-readable format.

• Explanations by simplification: relate to methods for approximating an opaque
model with a simpler, more interpretable one. The major problem is that the basic
model must be flexible enough to correctly represent the complicated one. The
trepan algorithm [CS95], which we will discuss in Section 4.1 falls into this group.

• Feature relevance explanations: Attempt to quantify the impact of each input
variable on a model’s decision. This yields a ranking of significance scores, with
higher scores indicating that the related variable was more significant to the model.

With increasingly advanced machine learning approaches like Neural Network, understand-
ing why the model reaches a conclusion is difficult. Neural Network models’ complexity
and their multi-layered neural structure makes decision-making transparency even more
difficult. Thus, in our thesis we use decision trees to interpret such models.

2.2.1 Decision Trees
A few machine learning models have the attribute of explainability, which includes
transparency, simplicity of understanding, and the ability to query. One of those are
decision trees. Decision trees is a type of a visual interpretation that depicts the decision-
making process by visualizing several courses of action and their potential outcomes.
Decision trees are arranged in a hierarchical manner and contain three types of nodes: leaf
nodes, inner nodes and a root node (the most upper node). Inner nodes are assigned with
a logical test based on the feature in the domain. Depending on whether the logical test
is over binary, nominal, or real values attributes, split nodes may have several branches.
In the most basic case, this test takes into account one feature, and the result is decided
by the value of that feature in the given sample.

In the case of classification, leaf nodes are given a class label, whereas in the case of
regression, a continuous quantity is assigned. The algorithm starts at the root node
(topmost node) and descends until it reaches a leaf node. A specific feature value is

11



2. Preliminaries

compared to the splitting value at each inner node. Depending on the conclusion of this
comparison, the traversal proceeds on the left or right path [BH21]. In Figure 2.1 is an
example of a decision tree and its components.

Figure 2.1: Example of a decision tree

Decision trees are typically used in situations where understandability is critical for the
application at hand, hence simple trees are preferable [BP21].
Different algorithms are used to build decision trees. The simplest and among the first
decision tree algorithms is ID3 algorithm introduced by Quinlan [Qui83, Qui86]. ID3
algorithm lack on handling numeric and missing values, as well as data may be over-
fitted [SG14]. To tackle this issues, the same author Quinlan introduced C4.5 [Qui14],
a successor of ID3, which we will discuss later in this section. Other known decision
tree algorithms are: Classification And Regression Tree (CART) [Lew00], CHi-squared
Automatic Interaction Detector (CHAID) [RB10] and Multivariate Adaptive Regression
Splines (MARS) [Fri91]. They differ in terms of the split at each node, the measure used
to gather input data, pruning, supporting categorical and/or continuous variables, being
able to perform regression tasks and so on.
In our work we will use the C4.5 algorithm. The advantages for using this decision tree
algorithm are: it supports categorical and continuous variables, has multiple splits at
each node, does pruning after construction and uses entropy and information gain as
measures for splitting nodes [CA21]. Information gain, as the name indicates, is the
amount of information obtained by an attribute, and it shows the significance of the
attribute. At each stage of the tree’s construction, information gain is utilized to choose
attribute that distinguishes the best the training samples based on their classification
objective, for this entropy is calculated. Entropy is the degree of impurity in the given
dataset. Entropy is calculated by Equation (2.1), where p(x) is the probability mass
function of the random variable X. In Algorithm 1 is shown the pseudocode of the C4.5
algorithm.
The base cases are [GGB12]:
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Algorithm 1 The pseudocode of the C4.5 algorithm [LP10].
1. Check for base cases.
2. For each attribute a.

find the normalized information gain from splitting on a.
3. Let a_best be the attribute with the highest normalized information gain
4. Create a decision node that splits on a_best
5. Recur on the sublists obtained by splitting on a_best, and add those nodes as
children of node.

• The training set is empty, then a tree leaf labeled ’failure’ is returned.

• The attribute list is empty, then a leaf with the most common class or the disjunction
of all classes is returned.

• All the training set’s examples belong to the same class, then a leaf labeled with
that class is returned.

H(X) = −E[logP (X)] = −
�
x∈X

p(x) log p(x) (2.1)

The greater the entropy, the more difficult it is to come at any conclusion. When the
sample is completely homogenous, the entropy is zero.

After the calculation of the entropy, the information gain is calculated by the formula
Equation (2.2), which compares the entropy before and after the split. The best split may
be determined by selecting the one that maximizes information gain based on entropy
values.

IG(T, X) = H(T ) − H(T, X) (2.2)

Despite the benefits, there are significant drawbacks to using decision trees as explainable
models. Such disadvantages include: minor change in the data might result in a significant
change in the structure of the decision tree, the training period for a decision tree
is frequently long, decision trees generally perform well when there are only a few
highly significant attributes, but less effectively when there are numerous complex
relationships, and most decision tree algorithms are insufficient on performing regression
[RM15, LB02, Qui96].
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CHAPTER 3
Obtaining topic specific ontologies

In this chapter, we discuss how to extract the knowledge we want from a given ontology.
One of our goals is to reuse existing knowledge. However, there are no particular ontologies
for the domains that we require, and that this information is frequently contained in
larger ontologies like SNOMED-CT, which is very accurate but also quite large, making
it not trivial to get the right knowledge. Extracting topic specific parts of such ontologies
is an important topic and it has been widely investigated. In this chapter, we want to
investigate what strategies can be employed in this direction, with a particular focus on
the two main ones, forgetting and modularity, and see whether any of them work for us.

The manual construction of ontologies is very expensive, taking a lot of time and
numerous resources. Several tools exist in computer science to assist end users and
system developers in developing high quality ontologies. Various tools, in particular,
assist individuals in creating categories, partonomies, taxonomies, and other organization
levels of ontologies, either manually or semi-automatically [CC05]. The following are
some of the most important ontology editors and managers: Protégé1, SWOOP2, OWL-S
Editor3, OntoManager4.

It’s generally always worthwhile to investigate what others have done and see if we can
improve and enhance current sources for our domain and goal. Many ontologies are
currently accessible in electronic form, and you may import them into your ontology-
development environment. However, many ontologies are large and detailed, such as
SNOMED-CT, in which we are interested. Working with and maintaining such vast
ontologies is difficult. Usually only a very small part of such ontologies is of importance
for our domain. One of the most essential success factors nowadays is the ability to

1http://protege.stanford. edu
2http://www.mindswap.org/2004/SWOOP
3http://owlseditor.semwebcentral.org
4http://ontoware.org/details/ontomanager
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eliminate any knowledge that is irrelevant to the task at hand, hence reducing the amount
of knowledge to be considered to a reasonable level. As a result, rather than starting
from scratch, one may build ontologies from existing ones, which saves time and reduces
the risk of errors.

In the literature one may find two approaches with the aim of building ontologies from
existing ones:

• Forgetting: The goal of forgetting is reducing an existing ontology by deleting
some concepts and roles while keeping all logical consequences up to the remaining
symbols. Forgetting allows one to focus on the information they need. Forgetting
may be described in two ways: syntactically as the dual of uniform interpolation
[KWW09], and model-theoretically as semantic forgetting [WWT+14]. Up to a
specific number of names, uniform interpolation keeps all logical consequences,
whereas semantic forgetting preserves equivalence up to a certain number of names.
As a result, semantic solutions are usually more powerful than uniform interpolants;
nonetheless, they typically require the target language to be extended to express
them. There are several algorithms and tools for forgetting. Some of the tools
are: LETHE, FAME, NUI and SCAN. We will go into further details regarding
forgetting tools in section 3.1.

• Modularity: The goal of modularization is to generate an ontology that includes all
of the ontology’s axioms that are relevant to the input signature, since there are
parts of a large ontology that may be extracted and utilised outside of the context
of the entire ontology. No consequences in the signature of a logical module are lost
when it is extracted from its original context, and no new consequences are acquired.
Thus, logical modules are self-contained components inside an ontology that may
be securely removed without adding or deleting entailments in the signature of
other modules, from a model-theoretic perspective [GPSK06]. Some approaches
for extracting sections of an ontology are semantic modules, minimal subsumption
modules and locality-based modules. We will go into further details regarding these
approaches in section 3.1.

The most essential use of both forgetting and modularity approaches is reusing parts of
larger ontologies, since it is easier for domain experts to use the terminology as well as
subontologies contain only terms relevant and familiar to a specified sub-domain.

The difference between forgetting and modularity is that unlike modularity in forgetting
approach the new ontology must be constructed without the ’forgotten’ symbols. Another
difference between the two methods is that forgetting is not constrained by how the original
ontology is expressed so it will be defined irrespective of the ontology’s axiomatisation,
whereas modules are subsets of the original ontology [KWZ10]. Eventhough it may seem
as a benefit, in some cases it may be perceived as a disadvantage of forgetting over
modularity due to the fact that ontology engineer is not familiar with the new axioms,
which might be difficult to understand and process [KWZ10].
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Figure 3.1: The top-level design of FAME[ZS18].

3.1 Approaches for Forgetting and Modularity
In the literature, there are several forgetting tools implemented such as FAME [ZS18],
LETHE [KSD+15], SCAN [GSS08] and NUI [KWW09].

FAME is among the first tools for semantic forgetting in description logics that is auto-
mated [ZS18]. It is a Java implementation of an Ackermann-based approach for forgetting
concept and role names from ontologies expressed using the ALCOIH description logic
[WDL+20]. The forgetting process in FAME is shown in fig. 3.1, where we distinguish
four main phases: clausification, which is converting ontology O into a collection of
clauses, the role forgetting phase, the concept forgetting phase and declausification, which
is converting the resultant clause set into an ontology O�.

Because concept definer names may be introduced during the role forgetting process,
FAME removes role names first (to facilitate the normalisation of the input ontology).
As a result, these definer names, which are treated as standard concept names, can be
deleted as part of the concept forgetting process. After this step FAME parses the result
as an ontology either in OWL or XML format and stores it.

LETHE [KSD+15] is another forgetting tool that aims to project a given ontology to a new
smaller ontology that utilizes the concepts selected by the user while deleting others, yet
retaining any logical entailments that can be represented with those concepts. LETHE
uses a resolution-based technique to compute its forgetting solution for description
logic-based ontologies.

LETHE is available as a command-line tool, a graphical user interface, and a Java library
[Koo20]. LETHE, as a command line or console interface, allows users to choose a time
out after which the partial uniform interpolant is stored even if the calculation has not
yet finished. Using a graphical user interface, the user uploads the ontologies in OWL
syntax and it is shown in description logic syntax. Then the user chooses the target
signature as well as the forgetting method to be used. During computation, the user is
shown a progressbar in which the current name is being forgotten. Furthermore, the user
can stop the operation at any time and view the current calculated uniform inerpolant.
The third form of using LETHE and the most relevant for practical application is the
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ability of using LETHE as a Java library. LETHE offers a facade that is compatible with
the OWL API 5.1.7 and supports conventional Java data structures.

Another forgetting tool is SCAN. It uses a resolution-based technique, notably the SCAN
algorithm [GO92], to compute forgetting solutions for knowledge-bases represented in
first-order logic. SCAN is not guaranteed to provide a solution since forgetting in first-
order logic is not frequently solvable. SCAN applies Skolemization to delete existing
quantifiers, hence Skolem expressions may occur in SCAN’s solutions [AS17].

The last forgetting tool that we are going to discuss is NUI [KWW09]. NUI is a framework
based on resolution, for forgetting concept and role names from TBoxes in ELH, a light-
weight description logic that is less expressive than ALC, extended with role inclusions and
domain and range restrictions [WDL+20]. This motivation on choosing this description
logic is the fact that forgetting appears to be of particular importance for large-scale
and comprehensive ontologies, and that many of these ontologies are provided in this
language.

The main difference between the tools is the forgetting methodology used and the
expressivity of the logics being supported. SCAN, LETHE and NUI use a resolution-
based approach to compute their forgetting solutions, whereas FAME uses an Ackermann’s
Lemma-based method. Another distinction is that LETHE and FAME guarantee that
they will terminate, whereas SCAN does not guarantee. Overall, NUI and LETHE
work with less expressive description logics, whereas FAME can handle more expressive
ontologies like ALCHOI. These tools perform well on medium-sized ontologies, but are
not very suitable to use when dealing with very large ontologies such as SNOMED-CT,
for which the tools do not seem to guarantee a solution.

The other approach that we are interesting in is modularization. We will discuss three
kinds of modules: semantic modules, minimal subsumption modules and locality-based
modules.

Semantic modules are logic-based modules [PJC09]. To formalize such modules the
model-theoretic inseparability relation [KLWW13] is used. Inseparability relation means
to be indistinguishable from the original ontology. Formally we say that two general
TBoxes T1 and T2 are Σ-inseparable, T1 ≡Σ T2, if {IΣ|I |= T1} = {IΣ|I |= T2} [CAS+19b].
Based on inseparability relation, several module notions have been proposed including
plain, self-contained and depleting modules [KLWW13, KWZ10]. From ontologies defined
as ELI-terminologies, the MEX system 5 extracts minimum depleting and self-contained
semantic modules.

The second modules that we discuss are minimal modules. Minimal modules can serve as
explanations for the complete set of entailments over a signature. Minimal modules can
help us grasp the internal structure of vast and complicated ontologies in this manner.
Furthermore, knowing how to compute all minimum modules helps us to choose the
smallest one. Minimal subsumption modules are often smaller than semantic modules

5https://cgi.csc.liv.ac.uk/ konev/software/
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Figure 3.2: Zooming in on an ontology. Modification from [CLMW17] figure.

[CLW18]. However, deciding whether or not to keep subsumption queries might be costly
[CAS+19b]. Extracting minimum modules is inherently difficult, which is why efficient
extractable approximations of the (union of all) minimal modules were created. The
family of syntactic locality-based modules is one of these approximations.

Another approach to modularization is locality-based modularization, which is one of the
most common ways of extracting parts of an ontology. Modularization methods based on
the notion of locality have been presented in [GHKS07], with the goal of identifying a
collection of axioms a ∈ A that do not modify the meaning of the terms in a signature Σ.
The authors in [GHKS07] define six different types of locality, the most commonly used
of which are:

• top locality (�-locality), if an axiom does not define new sub-concepts for a given
concept C, it is considered �-local for C

• bottom locality (⊥-locality) if it does not define new super-concepts, it is considered
⊥-local for C

• star modules integrates top and bottom locality notions by iterative and exhaustive
application [CAS+19a].

Locality-based modularization is used for more localized, and often easier, processing
using other tools like reasoning, querying, retrieval, and ontology mapping [CAS+19b].
Moreover, locality based modularization is available in the OWL API.

Based on the size of the extracted ontology, locality-based modules give larger ontologies,
followed by semantic modules and then minimal modules, as shown also in the Figure 3.2.

3.2 Ontology extraction for large ontologies via
modularity and forgetting

As we discussed in section Chapter 3, a module is a subset of an ontology’s axioms,
whereas forgetting is a compact representation of the ontology restricted to a subset of
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Figure 3.3: Workflow for computing uniform interpolants for the adjustment Σ∗ of the
signature Σ [CAS+19b].

the signature while removing any other concept names and roles. The issue with ontology
modules is that they contain a high number of symbols that are not part of the intended
signature specified as input. Current forgetting methods, on the other hand, suffer when
applied directly to large ontologies with small signatures. Due to the fact that we will
use SNOMED-CT in this thesis, neither of these approaches is good for us. Thus, we
will focus on another work that tackles these problems.

Chen et al. [CAS+19b] found a way to overcome this issues by proposing a method that
combines forgetting and modularity, and it is demonstrated to be a viable technique to
compute subontologies that only include terms of relevance to the developer or end-user.

The authors used three types of modules for modularization: locality-based, semantic,
and minimum subsumption modules, as well as three tools for forgetting: NUI, LETHE,
and FAME. For evaluations SNOMED-CT and NCIt 6 ontologies are used. We have
already discussed SNOMED-CT in Section 2.1.2, whereas NCIt (National Cancer Institute
Thesaurus) is a reference terminology that covers a wide range of cancer-related disorders,
findings, and anomalies.

An evaluation on standard concept name lists showed that precompiling ontology modules
minimizes the number of concepts that must be forgotten by the forgetting tools, which
allows then the tools to be feasible due to the size of the ontology being significantly
smaller.

The technique presented in this work uses an iterative process consisting of four stages:
extension of the given signature and, if necessary, partitioning, modularization, forgetting,
and domain expert evaluation. The domain expert input is used for signature extension
and according to their experiments, there is no need for the iterative process of the
domain expert giving feedback in the SNOMED-CT setting. The workflow for computing
subontologies from a bigger ontology is shown in Figure 3.3.

6https://www.ebi.ac.uk/ols/ontologies/ncit
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To begin, a signature Σ is provided as well as a large ontology τ , from which we want to
extract a smaller ontology. Signatures often include particular concept names of relevance
to the user as well as a list of concept names that already exist in the domain. For
adjusting these two types of signatures, signature extension and signature partition are
used. When given a small random signature, minimal subsumption modules, star modules,
and semantic modules typically show empty modules; hence, signature expansion with
roles and their target concepts is required. Furthermore, if there is a signature with a
high number of concepts, a smaller signature is required. Following signature adjustment,
the second phase is modularization, which is followed by the use of the three previously
described forgetting tools in such modules. Finally, the results are presented to the
domain expert, who provides feedback.

In this thesis, for extracting our real-life domain ontologies we will use a tool from github,
which is based on the ideas presented in the paper discussed above, due to its benefits
over modularization and forgetting tools on their own.
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CHAPTER 4
Using domain knowledge in

Machine Learning

In the rest of this chapter we discuss several attempts to incorporate domain knowledge at
different stages of the machine learning pipeline such as pre-processing, feature extraction
and selection phase, in order to improve the performance or reduce the cost of machine
learning methods. Moreover, we discuss the literature that uses ontologies to explain
black box models, with a particular focus on Trepan Reloaded, which will be discussed
in details in Section 4.2.

4.1 Different ways of using ontologies to enhance machine
learning process

For many years, researchers have been looking for ways to incorporate domain knowledge
from ontologies into machine learning steps. It is not yet a well established field and we
could not find a systematic discussion of these approaches, nevertheless, we mention some
existing approaches in the literature that try to improve performance or lower training
costs of machine learning process by incorporating domain knowledge.

In the paper [SMDE19] authors suggested a way for automatically generating features for
the Machine Learning algorithm using ontologies. The features are created by integrating
the existing concepts and relationships in the knowledge base, which are expressed as
an ontology. The technique can create new definitions that are subsequently used as
features by using "Expansion of features" and "Generation of derived class expansions"
algorithms shown in the paper. Authors compared this method with traditional approach
using several classifiers in Activities of Daily Living (ADLs) Recognition Using Binary
Sensors Data Set [OdTS13] and it was shown that this method improved performance by
1.9 percent on average.
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Another work in this direction is the system called SemML by Svetashova et al. [SZP+20].
SemML is a system that uses ontologies to enhance machine learning processes. Ontology
Extender, Domain Knowledge Annotator, Machine Learning Annotator, and Ontology
Interpreter are four semantic components proposed by the authors to improve the welding
quality monitoring process. The Bosch use-case of electric resistance welding was studied,
and it was found that this system helps in overcoming communication and data integration
problems.

Zhang et al. [ZSH02] presented a decision tree method modification that may leverage
user-supplied ontologies to infer classification rules at higher levels of abstraction. The
authors looked into decision tree learning, in which each attribute is connected with
a single hierarchically structured ontology and each instance is labeled with one of m
disjoint class labels. Whereas a standard decision tree algorithm recursively selects
an attribute from a set of candidate attributes based on an information gain criterion
at each step, in an ontology-driven decision tree algorithm, since each attribute has
a hierarchically structured taxonomy over possible values of the attributes associated
with it, the learning algorithm must choose not only a specific attribute, but also an
appropriate level of abstraction in the taxonomy. The authors offer some preliminary
findings to show that the suggested method is feasible.

Knowledge can be also used in pre-processing, feature extraction and selection phases
as was done in the paper [Van17]. The authors proposed a hybrid method (data-driven
and knowledge-based) for white box machine learning in order to obtain a more effective
and less expensive training phase. In order to accomplish so, domain knowledge was
included into the pre-processing, feature extraction, and selection phases. They suggested
a mechanism for class balance as pre-processing step. The authors combined SMOTE or
any other sampling technique’s beneficial properties with a knowledge-based sampling
method. For automatically feature discovery, the authors mapped the entities as URIs,
which correspond to nodes in a graph of linked data, and then tried to find new features
by doing a breadth first search in a graph of linked data, with the condition that the new
candidate must be informative, which means it must be correlated with the target and
have a low number of missing values. And for feature selection, the authors presented
a technique for describing knowledge as a graph, with nodes representing features and
edges expressing relationships between them. After sorting the features using a ranking
algorithm, the top k features are selected. This technique has a lower computational cost
than previous feature selection algorithms since it is dependent solely on the number
of features rather than the number of data samples, which can get very large in many
cases. Moreover the authors proposed a hybrid method for primary headache diagnosis,
in which they developed a mobile headache journal, which is a mobile application that
allows patients to record their headache attacks and the medications they’ve taken, and
then use this information, along with background knowledge, to generate a decision tree
that can help an expert make the right diagnosis. No evaluation is done in the paper.

In addition to improving performance or reducing the cost of machine learning operations,
ontologies may be used to explain black box models. Below are some of the contributions
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made in this direction.

Panigutti et al. [PPP20] introduced Doctor XAI, a model-agnostic explainability technique
that can cope with multi-labeled, ontology-linked data. The idea is to predict the patient’s
next time of visit, given the clinical history of the patient.Usually to do so a deep learning
model is employed, however due to the lack of understandability of such models, the
use and its acceptance is low. Doctor XAI focuses on providing local explanations for a
classification without using any internal parameter of the black box model to generate the
explanation. It begins by selecting neighbor patients while looking at semantically similar
patients using ontology-based similarity metrics, then they generate some synthetic
patients using the ontology, and label the synthetic patients using black box models.
These synthetic neighbors are then used to train a decision tree. The explanation is
shown as decision rules. Moreover, the authors demonstrated that incorporating an
ontology into the explanation process improves the fidelity of the interpretable model,
which measures how well the interpretable model mimics the behavior of the black box.

4.2 Trepan Reloaded
Confalonieria et al. [CWBdPM21] made a contribution in the direction of using ontologies
to explain black box models. They introduced a version of Trepan [CS95] called Trepan
Reloaded. Trepan algorithm was introduced in 1995 and it is an approach that extracts
concept description in the form of decision trees from a trained network as an inductive
learning problem. It varies from other inductive learning problems in that an oracle,
which may be the model or the network itself, can be used to answer questions during
the learning process. The function represented by the network is the target concept
in Trepan, and the hypothesis created by the learning method is a decision tree that
approximates the network [CS95].

Trepan Reloaded is an extension of Trepan that includes ontologies that model domain
knowledge in the process of extraction explanation to improve their understandability.

In their experiments, the authors used two datasets: Loan Prediction Problem Dataset
1 and Cleveland Heart Disease Data Set 2. Moreover, the authors hand crafted two
ontologies for the corresponding domains. The workflow of the Trepan Reloaded algorithm
is shown in Figure 4.1

The datasets are first preprocessed, with missing values being handled and the datasets
being normalized and encoded. The feed-forward model is then trained using the train-
test split method. Then each feature of the dataset is manually mapped to a concept
or role name from the ontology. Then the information content is calculated for every
concept or role name.

The authors hypothesized that features would be easier to understand if they were linked
to more general concepts in the ontology, therefore they looked into the concept of

1https://www.kaggle.com/datasets/altruistdelhite04/loan-prediction-problem-dataset
2https://archive.ics.uci.edu/ml/datasets/heart+disease
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Figure 4.1: Trepan Reloaded algorithm workflow.

information content, which evaluates a concept’s semantic generality or specificity based
on refinement operators.

Refinement operators are well-known in Inductive Logic Programming. In this setting
specialisation refinement operators are used, which take a concept C as input and return
a set of descriptions that are more specific than C by taking into account a TBox T .

The formula 4.1 is used to calculate the information content.

IC(Xi) :=
�

1 − log(|subConcepts(Xi)|)
log(sub(T )|) if Xi ∈ sub(T )

0 otherwise
(4.1)

Where subConconcept(Xi) is the set of specialisations for Xi and sub(T ) is the set of
subconcepts that may be constructed from axioms. After the information content is
calculated for each concept and role name, the Trepan Reloaded algorithm is applied to
extract the decision trees. The only difference from Trepan algorithm, which is shown
in Algorithm 2, is that when training the decision trees, instead of information gain,
the split is done based on the modified information gain which is calculated using the
information content by the Equation (4.2). Finally from this algorithm the decision tree
is extracted from the trained network.
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IG’(Xi, S|IC) :=
�

(1 − IC(Xi))IG(Xi, S) if 0 < IC(Xi) < 1
0 otherwise (4.2)

In this thesis for the sake of simplicity we will use Equation (4.3)

IG’(Xi, S|IC) :=
�

(1 − IC(Xi)) · IG(Xi, S) = log(|subConcepts(Xi)|)
log(sub(T )|) · IG(Xi, S) if 0 < IC(Xi) < 1

0 otherwise
(4.3)

And we will use IC’ instead of IC:

IC’(Xi) :=
� log(|subConcepts(Xi)|)

log(sub(T )|) ) if Xi ∈ sub(T )
0 otherwise

(4.4)

Algorithm 2 Trepan (Oracle,Training,Features)[CWBdPM21].
Priority queue Q ← ∅
Tree T ← ∅
use Oracle to label examples in Training
enqueue root node into Q
while nr_internal_nodes < size_limit do

pop node n from Q draw and store examplesn for n
store constantsn for n
use features to build set of candidate_splits
use examplesn and Oracle(constraintsn) to decide Best_split (from gain ratio)
add n to T
for element c ∈ Best_split do

add c as child of n
if c is not a leaf according to Oracle(constraintsn) then

enqueue node c into Q with negative information gain as priority
end

end
end
Return T

For evaluation of the resulting decision trees, the authors measured accuracy and fidelity.
Based on their results, they showed that in both heart and loan domains, there is a small
drop on fidelity, as well as accuracy, of trees extracted from Trepan Reloaded compared
to trees extracted from Trepan. Nevertheless, the authors showed that even that Trepan
Reloaded algorithm compromises little on the accuracy, it improves the understandability
of the trees. For understandability the authors measured a syntactic complexity, and
they performed user-based questionnaires on both domains. Based on the results that
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are achieved in [PLGM16], the authors defined the syntactic complexity of decision trees
as in Equation (4.5).

U(n, b) = α
n

k
+ (1 − α) b

k2 (4.5)

where b is number of branches, n is the number of leaves, k = 5 coefficient of the linear
regression and α ∈ [0, 1] is a tuning factor that adjust weight of n and b.

Whereas from user-based questionnaires, the authors measured the correct responses, the
response time for each questions, confidence and user understandability.

Based on the results from user-based questionnaires and the syntactic complexity, the
authors fitted a mixed-effect logistic regression model [BDB08], where they showed that
for trees with bigger syntactic complexity, are harder to answer correctly. Moreover, they
showed that people answered correctly and in less time to questions where the ontology
was present in the tree-building process. Another noteworthy finding, is that users find
decision trees build with the presence of the ontology more understandable.

In our work, we will test Trepan Reloaded algorithm with a variety of datasets in
the medical domain, as well as with ontologies extracted from existing high-quality
sources. We will also test the Trepan Algorithm with several heuristics from ontologies.
Furthermore, we will evaluate the improvement using a more accurate set of metrics.
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CHAPTER 5
Domain knowledge for better

decision trees

In this chapter we introduce the main contributions of this thesis. We start by describing
the ontology extraction workflow for seven domains that we have extracted. Then, we
discuss the improvements to the Trepan Reloaded approach as well as the improvements
to the decision tree algorithm. In particular, we introduce a variant of hubscore with
distance that we have used as a heuristic from the ontologies.

5.1 Extracting Ontologies
As we mentioned in Chapter 3 our motivation is to rely on existing ontologies, to extract
knowledge from them and use it to possibly improve some learning algorithms. One of
the challenges is that there are no specific ontologies for the domains that we consider,
and that this knowledge is often contained in larger ontologies. In our thesis to overcome
this problem we used the methodology explained in Section 3.2 for extracting the specific
ontologies for the domains that we used. We extracted seven ontologies from SNOMED-
CT with the corresponding signatures, which we choose to be the corresponding names
of the features from the datasets.

The seven datasets that we found for the domains that we analyzed are: Heart Disease
dataset (https://archive.ics.uci.-edu/ml/datasets/heart+disease), Breast Cancer dataset
(https://archive.ics.uci.edu/ml-/datasets/breast+cancer), Chronic Kidney Disease dataset
(https://www.kaggle.com/-mansoordaku/ckdisease), Hepatitis dataset (https://www.kag-
gle.com/codebreaker619/-hepatitis-data), Diabetes dataset (https://www.kaggle.com/ma-
thchi/diabetes-data-set), Lung Cancer dataset (https://www.kaggle.com/mysarahmadbh-
at/lung-cancer) and Stroke Prediction dataset (https://www.kaggle.com/fedesoriano/str-
oke-prediction-dataset). The details of the dataset are shown in Table 5.1.
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5. Domain knowledge for better decision trees

Domains Attributes Instances Attribute Charact. Missing values

Heart Disease 14 303 Categorical, Numeric Yes

Breast Cancer 9 286 Categorical Yes

Diabetes 9 768 Numeric No

Hepatitis 20 155 Categorical, Numeric Yes

Stroke Prediction 12 5109 Categorical, Numeric Yes

Chronic Kidney Disease 26 400 Categorical, Numeric Yes

Lung Cancer 16 309 Categorical, Numeric No

Table 5.1: Details of the datasets used

The workflow of the ontology extraction from SNOMED-CT having the datasets is shown
in Figure 5.1. We wanted the ontologies to represent the same features as the dataset
has, therefore we began by looking into the SNOMED-CT for the concepts that represent
corresponding features or the concepts that best explains our dataset’s features.To find
the corresponding concept we searched for SNOMED-CT concepts in bioportal 1 as
shown in Figure 5.2. Since every concept or relationship in SNOMED-CT has a unique
integer identifier, we found these identifiers and defined the signature list. In cases where
we could not find some feature from the dataset in SNOMED-CT we looked for other
concepts or roles with closely related meaning.

We did this for each of the seven domains and provided these signatures as well as the
SNOMED-CT ontology to the tool explained in Section 3.2, in order to extract ontologies
that are as similar to the datasets’ features as possible. Table 5.2 shows the sizes of the
signatures used to extract the ontologies for each domain, as well as the details of the
generated ontologies.

Moreover, besides for the extractions of these ontologies, for the breast cancer and heart
disease domains, we additionally obtained ontologies in two other ways:

• Hand-crafted, with we will refer to as small ontologies, similarly as the authors
have done it in Trepan Reloaded [CWBdPM21], starting from scratch and adding
features of the datasets as concepts or roles without the use of any domain expert.
An example of extended ontology is shown in Figure 5.3.

• Extended two existing ontologies, Heart Failure Ontology 2 and Breast Cancer
Grading Ontology 3 with the datasets’ features as concepts or roles that do not
exist in the existing ontology. We will refer to these extended ontologies as extended.
An example of extended ontology is shown in Figure 5.4, where the classes, object

1https://bioportal.bioontology.org/ontologies/SNOMEDCT?p=classesconceptid=429740004
2https://bioportal.bioontology.org/ontologies/HFO
3https://bioportal.bioontology.org/ontologies/BCGO
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5.1. Extracting Ontologies

Figure 5.1: The workflow of the ontology extraction process.

Figure 5.2: An example of searching for concepts in SNOMED-CT
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Input Signature Extracted ontology

Domains Size Logical axioms Classes
Object

properties

Heart 14 69 53 15

Breast 9 26 27 6

Diabetes 9 34 35 10

Hepatitis 18 94 92 11

Stroke 12 42 40 12

Kidney 25 90 87 20

Lung 17 53 51 9

Table 5.2: Sizes of the signatures used for ontology extraction from SNOMED-CT and
details of the generated ontologies

Ontologies Details Logical Axioms Classes Object prop.

Small
Heart Disease 66 29 3

Breast Cancer 49 23 2

Extended
Heart Disease 2107 1664 3

Breast Cancer 126 69 17

Table 5.3: Details of the ontologies created and extended for heart and breast cancer.

properties and data properties in red are added to the existing Breast Cancer
Grading Ontology.

The reason of using domain knowledge from different ontologies is to compare the results
with those in Trepan Reloaded paper, and also compare between hand-crafted and
extended ontologies that are done without the use of domain experts’ knowledge with
high-quality existing ontologies like SNOMED-CT. The details of these ontologies for
heart and breast cancer domains are shown in Table 5.3.

Because there are few benchmarks connecting machine learning datasets and ontologies,
developing such a test set with real-life medical ontologies is a significant contribution.
It allows us to evaluate the incorporation of knowledge from domain ontologies in the
decision tree building process from classical decision tree algorithms, as well as the trees
extracted using the Trepan method.
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Figure 5.3: An example of an hand-crafted ontology with concepts, object properties and
data properties.

Figure 5.4: An example of extending an ontology with concepts, object properties and
data properties, where red boxes are the extensions of Breast Cancer Grading ontology.
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5. Domain knowledge for better decision trees

Figure 5.5: Example when the information content of a feature is zero.

5.2 Improvement to Trepan Reloaded
In this thesis, we used Trepan algorithm to generate decision trees from a neural network.
In addition to [CWBdPM21], beside the heart domain that is used in the paper, we
evaluated six additional medical domains with real-life ontologies, in order to investigate
if their hypothesis that decision trees are more understandable if they link to more general
concepts existing in an ontology is valid for other domains as well.

Due to the way the information content is calculated from the ontology in Equation (4.1),
for the ontologies extracted from SNOMED-CT, the information content won’t work,
because the concept from signature would be placed in the lowest hierarchy in the
resulting ontology from SNOMED-CT, thus the formula for calculating the information
content would give us zero for every concept. An example is shown in Figure 5.5, where
we can see that the concept "Exercise-induced angina" has no sub-concepts thus the
information content would be 0.

Therefore, in addition to information content, we propose and modify another heuristic
called hubscore, in a way that preserve the spirit of the ideas of the information content
and can still give you a decent result if you use an off-the-shelf ontology. Furthermore,
we used various combinations of these two strategies. We will go into further details
about hubscore in Section 5.4.

Moreover, for two of the domains, in addition we evaluated trees extracted from Trepan
algorithm, when using the heuristics mentioned above from hand-crafted ontologies that
we created as well from the existing ontologies that we extended.
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5.3. Improvement to Decision Trees algorithm

5.3 Improvement to Decision Trees algorithm
In addition to using domain knowledge to generate decision trees from a neural network,
we used domain knowledge directly when creating decision trees from a classical decision
tree algorithm. We used the C4.5 algorithm as explained in Section 2.2.1. In our work
when calculating the information gain to find the best split for building the decision
tree, we combined it with domain knowledge. We evaluated seven domains with the
ontologies that we extracted. As with the trees extracted with Trepan algorithm, to
generate decision trees, we used information content from [CWBdPM21], a modification
of hubscore (more on hubscore in Section 5.4), as well as combinations of these heuristics.

Moreover, for two of the domains, same as for trees extracted with Trepan algorithm, in
addition we evaluated the decision trees when using the heuristics mentioned above from
hand-crafted ontologies that we created as well as from the existing ontologies that we
extended.

5.4 Hubscore and Relevance-score
Hubscore was introduced by Butt et al. [BHX16] as one of the features of a concept in an
ontology, together with the AuthorityScore, to determine its rank, known as DWRank.
The goal was to identify ontologies to represent their data by searching and ranking
ontologies based on a specific query term. The authors defined hubscore as a measure of
the centrality of a notion within an ontology, which is distinguished by two characteristics:

• Connectivity: A concept is more central to an ontology, if there are more intra-
ontology relationships originating from the concept.

• Neighbourhood: A concept is more central to an ontology, if there is an intra-
ontology relationship connecting it to another central concept.

An intra-ontology relationship Ia = ((v, u), O) is a directed edge (v, u), where (v, u) ∈
E(O) for v ∈ V (O), u ∈ V (O) and O = (V, E), V being a finite set of vertices, E being
a set of edges and O being an ontology as graph based formalisation.

To give a formal definition of hubscore the author firstly define forward link concepts
and back link concepts as:

• Forward link concepts CF Link(v, O) is a set of concepts V � in an ontology O, where
V � ⊂ V (O) and ∀vi ∈ V �, ∃(v, vi) ∈ E(O)

• Back link concepts CBLink(v, O) is a set of concepts V �� in an ontology O, where
V �� ⊂ V (O) and ∀vj ∈ V ��, ∃(vj , v) ∈ E(O)
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5. Domain knowledge for better decision trees

Figure 5.6: Example of hubscore calculation

The hubscore function formally is defined iterative function at any iteration k as:

hk(v, O) =
�

vi∈CF Link(v,O)

hk−1(vi, O)
|CBLink(vi, O| (5.1)

An example of hubscore calculation is given in Figure 5.6, where we want to calculate
the hubscore of concept 0. We can observe from Figure that concept 0 is related to three
other concepts, so the connectivity is three, and the neighbourhood is one since it has a
relation to another central concept, therefore the hubscore of concept 0 is four.

Algorithm 3 The pseudocode of calculating hubscore with distance (relevance-score)
1. For each concept or role i in the ontology

Calculate hubscore(Ci) as the sum of connectivity(Ci) and neighbourhood(Ci).
2. Define central concepts as concepts or roles with non minimal hubscore
3. Scale every concept’s hubscore from 0 to 1
4. For every Ci concept or role

if some hubscore_ancestorj(Ci) is bigger then hubscore(Ci) then
let distance(Ci,ancestor(Ci)) be the distance of the concept Ci to that ancestor
in the hierarchy
assign Ci with the hubscore of hubscore_ancestorj(Ci) divided by the
distance(Ci,ancestor(Ci))

We used hubscore to measure the degree of centrality of a concept. In addition to the
calculations from [BHX16] we added one more constraint to the measurement and defined
it as relevance-score. We calculate the hubscore for each concept and role in the ontology
that is represented as a feature in the domain dataset. Then, as a second phase, we select
central concepts with the highest hubscore or with a non-minimal hubscore. Furthermore,
we scale each concept’s hubscore from, and then for those with the lowest hubscore, we
calculate the distance to the closest central concept in the hierarchy, and then assign the
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5.4. Hubscore and Relevance-score

hubscore to that concept or role as the hubscore of the closest central concept divided
by the distance to that concept in the hierarchy. The reason for dividing hubscore by
the distance is that hubscore alone indicates centrality of the concept and usually in
ontologies extracted from real-life the concepts from the signature show up in the end
of the hierarchy and most of these concepts are subclasses of central concepts. The
pseudocode of calculating relevance-score is shown in Algorithm 3.

From now on, we will use IG for information gain, RS for relevance-score, and IC for
information content.
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CHAPTER 6
Experimental evaluation

In this part, we cover our experimental evaluation. We begin by discussing the methods
used in our experiments, as well as the metrics that we used to evaluate our experiments,
then we go into more details about the two methods that we have used to evaluate
the understandability of learned decision trees. Finally, we discuss the results of our
experiments.

6.1 Methods
In our experiments, in order to extract decision trees, we trained a Feed Forward Network
implemented in PyTorch. We generated three trees for every domain using the domain
knowledge extracted from SNOMED-CT ontology, one Trepan tree that does not use
any domain knowledge, one tree where the IG� = IG ∗ RS and one tree where the
IG� = RS. Beside those three trees, for heart disease and breast cancer domains, we
constructed six more trees when using small ontology and six more when using extended
ontology. Those six trees differ from each other the way information gain is calculated,
we distinguish: IG� = IG ∗ IC, IG� = IG ∗ RS, IG� = IC, IG� = RS, IG� = RS ∗ IC,
IG� = IG ∗ IC ∗ RS. For a better understanding we have shown in Table 6.1 for every
domain which trees we have constructed with different heuristics from different ontologies.

In addition, we used these heuristics from ontologies to build the decision trees from the
C4.5 decision tree algorithm, not only the trees extracted from Trepan algorithm.

For evaluating and comparing trees we used accuracy and fidelity. Accuracy in classifica-
tion tasks is the proportion of correct predictions made by our model compared to the
total number of predictions as shown in the Equation (6.1), whereas fidelity is defined as
the percentage of examples on which the classification by the surrogate, in our case the
build decision tree, agrees with that by the initial model, which in our case is the neural
network.
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Trep. Small Extended Snomed
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IG

IG
’=

IG
*I

C

IG
’=

IG
*R

S

IG
’=

IC

IG
’=

R
S

IG
’=

R
S*

IC

IG
’=

IG
*I

C
*R

S

IG
’=

IG
*I

C

IG
’=

IG
*R

S

IG
’=

IC

IG
’=

R
S

IG
’=

R
S*

IC

IG
’=

IG
*I

C
*R

S

IG
’=

R
S

IG
’=

R
S*

IC

Heart � � � � � � � � � � � � � � �
Breast � � � � � � � � � � � � � � �

Diabetes � � �
Hepatitis � � �

Stroke � � �
Kidney � � �
Lung � � �

Table 6.1: Trees constructed for each domain with different heuristics from various
ontologies.

Accuracy = Number of correct predictions
Total number of predictions (6.1)

Fidelity = Number of surrogate predictions that agree with initial model’s predictions
Total number of predictions

(6.2)

In order to evaluate the understandability of learned decision trees, we used two methods
based on:

• Syntactic complexity of a decision tree.

• User-based questionnaires, in which participants rate the trees based on their
understandability.

6.1.1 Syntactic Complexity
There has been a lot of research towards analyzing which syntactic properties of decision
trees correlate with and may act as proxies for their interpretability. Some of these
properties are the number of nodes, maximum/average depth, number of leaves, branching
factor and so on. For evaluating the syntactic complexity of our resulting trees we used
two syntactic measures.

The first measure that we used is by Gaines et al. [Gai96]. The authors suggested a
method for measuring syntactic complexity in order to evaluate the understandability of
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6.1. Methods

production rules, decision trees, and exception rules. The authors believed that properties
such as the number of nodes N , number of leaves (final nodes) F , number of arcs A and
number of clauses C, are the most important properties that influences the complexity
of the structure of the decision tree. As a result, the authors devised the complexity
measure as:

complexity := N + 2E + 3C

5 (6.3)

where E is the number of the so-called excesses calculated as follows:

E := A + F − N (6.4)

The second measure that we used for evaluating understandability of decision trees using
syntactic complexity is shown in [CWBdPM21]. Based on the results in [PLGM16], the
authors defined the syntactic complexity of decision trees as:

U(n, b) := α
n

k
+ (1 − α) b

k2 (6.5)

where b is number of branches, n is the number of leaves, k = 5 and α = 0.5. The value
k is a coefficient of the linear regression from [PLGM16] and α ∈ [0, 1] is a tuning factor
that adjust the weight of n and b and by taking α = 0.5 we give the same weight to n
and b, as the authors of Trepan Reloaded did.

6.1.2 User-based questionnaires
The second method that we used for evaluating the understandability of the decision
trees are user-based questionnaires. We created three online questionnaires using an
online software called soscisurvey 1. The questionnaires contain questions about four out
of the seven domains we analyzed. Two questionnaires are in the heart disease and breast
cancer domains, whereas the third questionnaire contains questions regarding chronic
kidney disease as well as hepatitis disease. The three questionnaires follow the same
structure as the one showed by Confalonieri et al. [CWBdPM21].

Every questionnaire begins with a video that explains what the users should do in the
questionnaire. The participants are then asked some questions regarding their age, gender,
education, and their familiarity with decision trees. Furthermore, each questionnaire
contains four tasks: classification, inspection, comparison and empowerment as it was done
first by Piltaver et al. [PLGM16] and then modified by Confalonieri et al. [CWBdPM21].

• In the classification task, participants were provided with an attribute-value table
and a decision tree, and were asked three questions: firstly to classify the instance
shown in the table using the decision tree provided, then to select how confident

1https://www.soscisurvey.de
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Trep. Small Extended Snomed
Domains IG’=IG IG’=IG*IC IG’=IG*IC IG’=IG*RS IG’=RS*IC

Heart � � �
Breast � � � � �

Kidney-Hepatitis � �

Table 6.2: Decision Trees shown in each questionnaire.

you are with your answer and the third question is to answer how understandable
you found that decision tree. An example of a classification task with its questions
is shown in Figure 6.1.

• In the inspection task, participants were presented with a sentence and a decision
tree, and were asked to determine whether the sentence is true. Moreover, the same
two questions as in the classification task about the confidence on the answer and
to rank the understandability of the decision tree were asked. An example of an
inspection task with its questions is shown in Figure 6.2.

• In the comparison task, participants were provided with two trees per question, one
tree extracted by Trepan without any ontology knowledge, and the other one using
any of the heuristics calculated from SNOMED-CT, Small or Extended ontology.
Participants were asked to select which tree they find more understandable and
rate it on a five-point scale. An example of a comparison task with its questions is
shown in Figure 6.3.

• In the empowerment task, participants were provided with a decision tree and a
specific statement, and they had to decide if there is any action that they could
take to change the decision outcome, and if there is, they had to specify it. An
example of a empowerment task with its questions is shown in Figure 6.4.

For the sake of simplicity for each task we showed at most six trees. We showed trees
extracted using Trepan (without domain knowledge) and trees build using modified
information gain IG� = IG ∗ RS, where the husbscore is calculated from the ontology
extracted from SNOMED-CT. In questionnaires with the heart and breast cancer domain,
in addition, questions regarding trees extracted from small ontologies when the information
gain is modified with information content as IG’=IG*IC were asked. In addition to
these trees, for the breast cancer questionnaire we also asked questions for the trees
extracted with the modified information gain IG� = IG∗IC and IG� = IG∗RS where the
information content is calculated from the extended ontology. For a better understanding
Table 6.2 shows for which decision trees the participants are questioned about in each
questionnaire.

For the first two tasks, classification and inspection, we measured:

• Correctness of the response
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Figure 6.1: Example of classification task.
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Figure 6.2: Example of inspection task.
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Figure 6.3: Example of comparison task.
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Figure 6.4: Example of empowerment task.

• Confidence in the response

• Response time

• Understandability of the tree

For comparison task, we look at which tree the participants find more understandable.
Whereas for the empowerment task we measure correctness of the response as well as the
response time.

The questionnaire about heart disease domain had:

• 104 participants in total, 62 females, 38 males and 4 did not give a gender,
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• the average age among the participants was 21 years old, the range was from 18 to
51 years old,

• 2 of them have a Ph.D. level of education, 11 a Master degree, 64 a Bachelor degree
and the rest had a high-school diploma and

• 57% of the participants were familiar with decision trees.

The questionnaire about breast cancer domain had:

• 75 participants in total, 41 females, 33 males and 1 did not give a gender,

• the average age among the participants was 23 years old, the range was from 18 to
44 years old,

• 1 of them has a Ph.D. level of education, 17 a Master degree, 48 a Bachelor degree
and the rest had a high-school diploma and

• 74% of the participants were familiar with decision trees.

The questionnaire about hepatitis and kidney disease had:

• 54 participants in total, 27 females, 27 males and 1 did not give a gender,

• the average age among the participants was 26.6 years old, the range was from 18
to 52 years old,

• 5 of them have a Ph.D. level of education, 21 a Master degree, 25 a Bachelor degree
and the rest had a high-school diploma and

• 94.4% of the participants were familiar with decision trees.

Overall, for all three questionnaires we had:

• 234 participants in total, 130 females, 98 males and 6 did not give a gender,

• the average age among the participants was 23.14 years old, the range was from 18
to 52 years old,

• 8 of them have a Ph.D. level of education, 49 a Master degree, 137 a Bachelor
degree and the rest had a high-school diploma and

• 70.94% of the participants were familiar with decision trees.
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6.2 Results
In this section, we present the results of our evaluation. We evaluated two techniques for
building decision trees:

1. directly from classical decision tree algorithm

2. extracted from Trepan algorithm

For each of the two, we considered the accuracy of the trees. For the decision trees
extracted with Trepan algorithm we also considered fidelity. Furthermore, as indicated in
Section 6.1.1, we provide the findings for syntactic complexity calculated in two different
ways. Furthermore, we provide the results from our performed user-based questionnaires,
comparing several matrices such as correct responses, time response and understandability,
when the ontology is not used and when different heuristics from the ontology are applied,
as well as the syntactic complexity of the trees.

6.2.1 Results for direct construction of Decision Trees
In Table 6.3 we show the test accuracy of decision trees for different domains. Moreover,
we present the accuracy of such decision trees when the C4.5 algorithm is programmed
from scratch 2 and when relevance-score is used to modify the information gain. We used
relevance-score calculated by the ontologies that are extracted from SNOMED-CT as
we discussed in Section 5.1. We show two forms of using relevance-score from ontologies
to modify information gain, the first one is when information gain is multiplied with
relevance-score, and the other one is when relevance-score is used instead of information
gain in the decision tree construction process.

From Table 6.3 we cannot conclude that using domain knowledge in the decision tree
construction helps in increasing the accuracy. For some of the domains such as breast
cancer, hepatitis, stroke, kidney and lung disease using relevance-score as information gain
outperforms the other methods shown in the table. For these domains using relevance-
score instead of information gain increases the accuracy by 7.6%, 15.25%, 0.5%, 9.52%
and 13.65% respectively when compared to using C4.5 with default information gain. For
the other domains such as heart and diabetes, using information from domain knowledge
did not help on increasing the accuracy, where the accuracy drop is significant from
74.6 and 68.5 when using C4.5 algorithm without ontology knowledge to 57.1 and 59.2
respectively, when modifying information gain with ontology knowledge.

In Table 6.4 we show the results for heart and breast cancer domains, when using
three different corresponding ontologies: small, extended and SNOMED-CT. From
small and extended ontologies we calculated the relevance-score and the information
content, whereas for SNOMED-CT using information content has no benefit as shown

2https://github.com/dpkravi/DecisionTreeClassifier
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Method Heart Breast Diabetes Hepatitis Stroke Kidney Lung

IG = IG 74.6022 63.0952 68.4809 73.7500 91.56 68.2500 80.8602

IG’ = IG*RS 57.0968 67.8836 58.7133 77.5000 92.0336 74.7500 91.9032

IG’ = RS 57.0968 67.8836 59.2310 85.0 91.7399 74.7500 91.9032

Table 6.3: Test accuracy in (%) using decision tree algorithm with and without relevance-
score from SNOMED-CT ontologies.

in Section 5.2, thus we use only relevance-score. For small and extended ontologies we
also use information content, relevance-score, and the combinations of these heuristics
with information gain. From the results on the Table 6.4 we can observe that for heart
disease using both relevance-score and information contents alone or multiplying with
information gain calculated from extended ontology, gives highest accuracy among other
methods for building trees when using heuristics from ontologies, and it increases the
accuracy compared to no domain knowledge from ontology is used. On the other hand,
for breast cancer domain, except when using information content alone or multiplying
with information gain from extended dataset, on any other case accuracy is increased
when trees are build with the heuristics from ontologies.

6.2.2 Results for Decision Trees build with Trepan Algorithm
In Table 6.5 we show the test accuracy of decision trees extracted from Trepan algorithm
with and without domain knowledge for different domains. We used relevance-score
calculated by corresponding ontologies that are extracted from SNOMED-CT as we
discussed in Section 5.1. We used relevance-score alone as well as multiplied with the
information gain. From Table 6.5 we observe that for heart, breast cancer, stroke and
kidney disease using relevance-score during tree construction increases the accuracy by
5.5, 18.2, 0.1 and 2.5 (or 7%, 23.2%, 0.1% and 2.6% increase) respectively. On the other
hand for diabetes, hepatitis and lung disease domain, the accuracy stays the same after
incorporating relevance-score into the decision tree construction.

In Table 6.6 we can observe that same as for the accuracy, for heart, breast, stroke
and kidney using relevance-score calculated by corresponding ontologies extracted from
SNOMED-CT increases the fidelity by 13.8, 1.9, 0.1 and 2.5 (or 18.8%, 2.4%, 0.1% and
2.6%) respectively. For diabetes and lung domains the fidelity is the same with and
without using relevance-score, whereas for hepatitis disease compared to decision trees
constructed without domain knowledge, the fidelity is decreased by 10 when multiplying
information gain with relevance-score and by 26.7 when using relevance-score instead of
information gain.

In Table 6.7 we show test accuracy and test fidelity for heart and breast cancer do-
mains. The experiments are done using relevance-score, information content and their
combinations from small, extended and snomed ontologies.

49



6. Experimental evaluation

Ontology Method Heart Breast

None IG = IG 74.6022 63.0952

Small IG’ = IG * IC 73.9462 68.2275

IG’ = IG * RS 76.9570 70.1058

IG’ = IC 73.9462 68.2275

IG’ = RS 76.9570 70.1058

IG’ = IC * RS 76.9570 70.1058

IG’ = IG * IC * RS 76.9570 70.1058

Extended IG’ = IG * IC 71.6129 61.2302

IG’ = IG * RS 76.6237 70.1058

IG’ = IC 71.6129 61.2302

IG’ = RS 76.6237 70.1058

IG’ = IC * RS 78.2688 70.1058

IG’ = IG * IC * RS 78.2688 70.1058

Snomed IG’ = IG*RS 57.0968 67.8836

IG’ = RS 57.0968 67.8836

Table 6.4: Test accuracy in (%) using decision tree algorithm for breast and heart domains,
without any ontology, as well as with heuristics from three different ontologies.

For heart domain we can observe that the best accuracy is achieved when building
the trees using the product of information gain and relevance-score from both small
and extended ontologies, by increasing the accuracy by 9,5 or 11.1% compared to not
using any information from the ontology. Moreover, when we look into test fidelity,
we observe that using the product of information gain and information content from
extended ontology we achieve the best fidelity of 93.5, which is 27.6% higher than not
using any information from the ontology.

When comparing test accuracy and test fidelity for breast cancer domain using different
ontologies and different measures from ontologies, we can observe that using information
content from extended ontology instead of information gain increases the accuracy from
78.1818 without knowledge from ontology, to 100. On the other hand, using information
content from small ontology instead of information gain achieves the best fidelity of 87.27,
which is 17.1% better than using Trepan without any knowledge from ontology.

Syntactic Complexity results

We calculated the syntactic complexity of the resultant trees built using the Trepan
algorithm with and without domain knowledge for each domain. In Table 6.8 we present
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6.2. Results

Method Heart Breast Diabetes Hepatitis Stroke Kidney Lung

Trepan 78.3333 78.1818 74.5098 66.6667 95.0951 97.4684 83.6066

IG’ = IG*RS 83.8710 76.3636 74.5098 56.6667 95.1952 100 83.6066

IG’ = RS 67.7419 96.3636 66.6667 66.6667 95.1952 100 83.6066

Table 6.5: Test accuracy in (%) of decision trees extracted with Trepan with and without
relevance-score from SNOMED-CT ontologies.

Method Heart Breast Diabetes Hepatitis Stroke Kidney Lung

Trepan 73.3333 74.5455 91.5033 76.6667 99.7998 97.4684 91.8033

IG’ = IG*RS 87.0968 67.2727 91.5033 66.6667 99.8999 100 91.8033

IG’ = RS 70.9677 76.3636 75.8170 50.0 99.1992 100 91.8033

Table 6.6: Test fidelity in (%) of decision trees extracted with Trepan with and without
relevance-score from SNOMED-CT ontologies.

two methods for calculating the syntactic complexity of the trees, syntactic complexity
TR (calculated from 6.5) and syntactic complexity EDAG (calculated from 6.3). When
comparing the syntactic complexity TR of trees built using Trepan with those generated
with domain knowledge, we cannot infer whether trees are less complicated than others
because the syntactic complexity is nearly always the same or differs by no more than
1. On the other hand, when analyzing syntactic complexity EDAG, we can observe
that for the breast cancer dataset, the tree constructed with relevance-score has much
lower syntactic complexity than the tree constructed without the relevance-score, with
a drop of 49.2%. The syntactic complexity for the heart, stroke, and kidney disease
domains is nearly or exactly the same, however the syntactic complexity for the diabetes
and hepatitis domains is 2 and 3.2 lower, respectively, compared to the tree when the
relevance-score is used.

User-based questionnaires results

From here on, "Small" refers to decision trees extracted from Trepan with the integration
of an ontology, where the ontology is handcrafted in the same way as the authors of
Trepan Reloaded did, and the information gain is multiplied by information content
IG� = IG ∗ IC during the tree construction. Furthermore, by "Ext. (RS*IG)" and "Ext.
(IC*IG)", we indicate taking an existing ontology and expanding it with concepts and
roles from the datasets, as well as adjusting the information gain with relevance-score and
information content, respectively. And when we say "Snomed", we mean using knowledge
from SNOMED-CT extracted ontologies and during the tree construction multiplying
relevance-score from the ontology with information gain. Furthermore, we use "Syntactic
Complexity TR" and "Syntactic Complexity EDAG" to denote the syntactic complexities
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6. Experimental evaluation

Domains Heart Breast

Ontology Methods Test Accuracy Test Fidelity Test Accuracy Test Fidelity

None Trepan 78.3333 73.3333 78.1818 74.5455

Small IG’ = IG*IC 80.6452 90.3226 76.3636 67.2727

IG’ = IG*RS 87.0968 90.3226 76.3636 78.1818

IG’ = IC 80.6452 83.8710 89.0909 87.2727

IG’ = RS 74.1935 77.4194 87.2727 70.9091

IG’ = RS*IC 80.6452 83.8710 87.2727 70.9091

IG’ = IG*IC*RS 87.0968 90.3226 76.3636 78.1818

Extended IG’ = IG*IC 83.8710 93.5484 78.1818 72.7273

IG’ = IG*RS 87.0968 90.3226 76.3636 78.1818

IG’ = IC 54.8387 51.6129 100 80.0

IG’ = RS 77.4194 80.6452 87.2727 70.9091

IG’ = RS*IC 54.8387 51.6129 78.1818 69.0909

IG’ = IG*IC*RS 80.6452 83.8710 78.1818 76.3636

Snomed IG’ = IG*RS 83.8710 87.0968 76.3636 67.2727

IG’ = RS 67.7419 70.9677 96.3636 76.3636

Table 6.7: Test accuracy and test fidelity in (%) of decision trees extracted with Trepan
using different heuristics and three different ontologies (Small, Extended and SNOMED-
CT)

Syntactic Complexity TR Syntactic Complexity EDAG

Domains Trepan IG’=IG*RS Trepan IG’=IG*RS

Heart 2.42 2.46 24.2 24.4

Breast 7.22 6.54 62.6 31.8

Diabetes 0.94 0.94 16.6 18.6

Hepatitis 0.8 1.08 10.6 13.8

Stroke 1.68 1.68 9.4 9.4

Kidney 1.22 1.36 19.6 19.6

Table 6.8: Syntactic complexities calculated by 6.5 and 6.3 for the trees extracted with
Trepan and with domain knowledge from ontologies extracted from SNOMED-CT.

52



6.2. Results

(a) (b)

Figure 6.5: Time response (a) in log scale and (b) in seconds when the ontology is not
present, and when it is present on different forms and different ontologies.

of the trees calculated with 6.5 and 6.3 respectively.

Figure 6.5 depicts time responses to questions asked to participants for the construction
of trees in various forms. We can observe that participants spent more time answering
questions about trees built using Trepan without the existence of an ontology than about
others. Furthermore, participants appear to respond faster to questions about trees built
using "Ext. (IC*RS)" than to questions about other trees.

Figure 6.6 illustrates the estimated main effects of time responses and syntactic complexity,
for TR and EDAG syntactic complexities. We can observe that as syntactic complexity
increases for both TR and EDAG complexities, the time response increases, implying
that more complex trees result in longer response times. The increase in time response is
more visible when the syntactic complexity TR is increased, whereas for the syntactic
complexity EDAG, the complexity of the trees results in a very little increase in time
response. In Figure 6.7 and Figure 6.8 we show the estimated main effects of two-way
interaction between time responses and syntactic complexity for each task separately for
TR and EDAG respectively.

In Figure 6.9 we illustrate the proportions of correct answers for trees constructed
with various methods. On average, for classification and inspection tasks, participants
responded more accurately for trees created without ontology than trees generated with
ontology. Furthermore, trees constructed with the snomed ontology gave more accurate
results than other trees with ontologies. Moreover, trees built with the extended ontology
with IG’=IG*RS produced less accurate results than the others.

Looking at the estimated effect of syntactic complexity on accuracy in Figure 6.10 we can
observe that for both syntactic complexities TR and EDAG, more complex trees produced
less accurate responses. Moreover, in Figure 6.11 we show the two-way interactions
between task and syntactic complexity TR on correct responses. We can observe that
for classification task the decrease of correct answers for more complex trees is less

53



6. Experimental evaluation

(a) (b)

Figure 6.6: Estimated main effects of syntactic complexity TR (a) and EDAG (b) on
time responses (in seconds).

Figure 6.7: Estimated main effects of two-way interactions between task and syntactic
complexity TR on time responses
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6.2. Results

Figure 6.8: Estimated main effects of two-way interactions between task and syntactic
complexity EDAG on time responses

Figure 6.9: Proportion in correct responses for Trepan and different ontology measures.

significant compared to inspection and empowerment tasks, where the proportion of
correct answers reduces by roughly 30% for more complex trees. On the other hand, for
syntactic complexity EDAG, we can see from Figure 6.12 that the drop of proportions of
correct responses when the complexity of the trees is increased is marginal for all three
tasks.

Another finding from the questionnaires is how understandable the trees generated with
different measurements from different ontologies were for the participants. In Figure 6.13
we show the understandability of the trees for different methods, based on the participants’
answers. We assigned a rating of 1 to 5, with 1 being very difficult to understand and
5 being very easy to understand. From the Figure we can observe that trees build
without and with snomed ontology seem to be more understandable compare to the
others, whereas trees generated with extended ontology using IG’=RS*IG produce less
understandable trees compare to others.
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(a) (b)

Figure 6.10: Estimated main effects of syntactic complexity (a) TR and (b) EDAG on
proportion of correct responses.

Figure 6.11: Effects of two-way interaction between task and syntactic complexity TR
on proportion of correct responses.
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Figure 6.12: Effects of two-way interaction between task and syntactic complexity EDAG
on proportion of correct responses.

Figure 6.13: Understandability for Trepan and different ontology measures.

When analyzing estimated main effects of syntactic complexity TR and EDAG on
understandability reported by users in Figure 6.14, we can conclude that trees are less
understandable as they get more syntactically complex. Moreover, when we compare
the understandability of the users between classification and inspection tasks shown in
Figure 6.15 and Figure 6.16 for syntactic complexity TR and EDAG respectively, we
may infer that the users found the inspection task harder to understand compared to
classification task.

Table 6.9 shows the mean and standard deviation of correct responses, response time,
confidence, and understandability for trees extracted using the Trepan method, for small
ontologies with IG’=IG*IC, extended ontologies with IG’=IG*IC and IG’=IG*RS, and
snomed ontologies with IG’=IG*RS. We do not have results for extended ontologies in
the empowerment task since no tree that was derived from the extended ontologies was
shown in the empowerment task in the questionnaires. According to the table, trees
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(a) (b)

Figure 6.14: Estimated main effects of syntactic complexity TR (a) and EDAG (b) on
understandability reported by users

Figure 6.15: Effects of two-way interaction between task and syntactic complexity TR
on understandability reported by users.
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6.2. Results

Figure 6.16: Effects of two-way interaction between task and syntactic complexity EDAG
on understandability reported by users.

Task Measure Trep. Small Ext.(IC*IG) Ext.(RS*IG) Snomed(IG*RS)

Class.

Correct resp. 0.85 (0.05) 0.84 (0.03) 0.82 (0) 0.68 (0) 0.83 (0.05)

Time (sec) 75.62 (334.05) 38.13 (58.81) 35.43 (42.92) 44.27 (59.02) 46.45 (82.62)

Confidence 4.42 (0.9) 4.3 (0.94) 4.08 (1.0) 4.19 (1.03) 4.44 (0.88)

Understand. 4.33 (0.94) 4.19 (1.03) 3.94 (1.1) 3.88 (1.11) 4.34 (0.94)

Insp.

Correct resp. 0.77 (0.18) 0.65 (0.14) 0.69 (0) 0.69 (0) 0.71 (0.15)

Time (sec) 46.81 (141.98) 32.2 (37.23) 32.29 (27.64) 43.69 (43.41) 46.21 (69.83)

Confidence 4.24 (0.93) 4.1 (0.97) 4.22 (0.94) 4.07 (0.83) 4.23 (0.92)

Understand. 4.14 (1.03) 3.94 (1.09) 4.03 (1.03) 3.9 (1.0) 4.11 (1.0)

Emp.
Correct resp. 0.43 (0.16) 0.4 (0.06) NA NA 0.61 (0.19)

Time (sec) 66.35 (59.65) 76.73 (128.82) NA NA 71.28 (196.85)

Table 6.9: Mean values of correct answers, time of response, user confidence, and user
understandability for trees extracted with Trepan, using different ontologies and measures.
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extracted from snomed with the use of relevance-score in the trees’ construction gave
a higher proportion of correct responses than other trees, with a significantly higher
proportion of correct responses on empowerment tasks and it was among the trees with
higher proportions of correct responses on classification and inspection tasks.

In terms of response time, we can see that the empowerment task appears to take longer
to complete than classification and inspection. The trees extracted from the extended
ontology built using IG’=IG*IC took the shortest time to answer for classification and
inspection, whereas for empowerment trees extracted from Trepan when no ontology is
used appear to take the shortest time to answer.

In terms of user confidence and understandability, we can see from the Table that for
classification task trees extracted from snomed appear to be more understandable and
users appear to be more confident on those trees than trees extracted and constructed in
other ways. Trees extracted using Trepan, on the other hand, appear to be marginally
more understandable for inspection tasks than trees extracted with snomed.

Overall, we can conclude from the table that users find the trees extracted from the
snomed ontology constructed using IG’=IG*RS to be more understandable as well as
they answered with higher proportion of correct answers than for the trees constructed
with other methods.
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CHAPTER 7
Conclusion

In this thesis, we investigated ways of incorporating domain knowledge into a machine
learning model, more specifically decision trees. We found and proposed heuristics from
ontologies which can be used in the decision tree building process.

We extracted seven topic specific ontologies from a high-quality source with corresponding
features from domain datasets as concepts and roles. Moreover, we used information
content presented in Trepan Reloaded [CWBdPM21] and our modified version of hubscore
metric (relevance-score), as well as their combination when building decision trees for the
seven domains. Moreover, we tested and compared decision trees built with or without
these two heuristics and their combinations when extracting decision trees using Trepan
algorithm from neural networks.

In order to evaluate the decision trees built with various heuristics from ontologies we
measured accuracy. Moreover, for trees extracted with Trepan algorithm with and without
the use of domain knowledge in the tree building process, we measured the fidelity as well
as two methods for calculating syntactic complexities of the trees. In addition, in order to
measure the understandability of these trees to the users, we performed three user-based
questionnaires in four different domains with 234 participants in total. We measured the
proportion of correct responses, time response, user confidence and understandability,
as well as the dependencies of time response, the proportions of correct answers and
understandability from the users with the syntactic complexities.

We found that information content is not applicable to the ontologies we extracted from
SNOMED-CT, thus in such cases we used our metric relevance-score.

For constructing direct decision trees, for six out of the seven domains that we experi-
mented with, using knowledge from ontologies improved the accuracy. Moreover, decision
trees constructed with our proposed relevance score, performed better for five out of seven
domains compared to decision trees constructed without any knowledge from ontologies.
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7. Conclusion

Thus, we conclude that using knowledge from ontologies and the proposed relevance-score
can be beneficial to improve the performance of decision trees.

When looking at the accuracy of decision trees extracted from Trepan algorithm with and
without ontologies, we can observe that using relevance-score from ontologies extracted
from SNOMED-CT ontology in the decision tree building process either increases the
accuracy or the accuracy stayed the same.

Another finding from the user-based questionnaires was that users found the trees
extracted from the SNOMED-CT ontology constructed using IG’=IG*RS to be more
understandable, and gave more correct answers than trees constructed in other methods
with or without ontology. Moreover, we observed that users found trees with a higher
syntactic complexity less understandable, and the proportions of correct responses from
users drops for higher syntactic complex trees.

Even though the improvement on the accuracy were modest when incorporating knowledge
from ontologies, the understandability of the decision trees improved based on the the
user-based questionnaires results. Moreover, we provided a systematic methodology for
using Trepan Reloaded with real-life ontologies, as well as a way to leverage knowledge
from the ontologies even in the cases where the information content cannot be used in
the decision tree building process.

This research identifies a number of possibilities for further research in this topic. In future
work we may focus on discovering new ways to extract knowledge from current ontologies
and incorporating it into various machine learning approaches. We also believe that
these methods should be tested and compared with other domains as well. Moreover, the
domain ontologies could be used for other purposes as well, such as to give explanations of
any classifiers’ prediction. Furthermore, user-based questionnaires have some limitations
due to the fact that there is the need for many users, and the results are very subjective,
therefore we need to keep working on better techniques to assess a way to measure
decision tree understandability.
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