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Abstract 

AI models, especially transformers, are becoming increasingly important in industrial 

maintenance. One of the biggest challenges of these models is the lack of explainability 

in the model decisions. Most of the time, it is difficult for humans to determine how the 

model arrived at a particular decision, which leads to mistrust and scepticism towards 

the models. Therefore, explainability is crucial to increase trust in these models so that 

they can be applied in real-world applications. The Transformer Event Extraction 

Explainer (TEEE) application improves the explainability of transformer models by 

clearly explaining the model’s decisions. 

This diploma thesis focuses on developing and evaluating an event extraction 

application that improves the explainability of model decisions in industrial 

maintenance. The main objective is to create a model to extract relevant maintenance 

events in unstructured texts and explain their importance for model decision-making. 

The application is based on transformer models, particularly Google’s BERT1 model, 

which has been fine-tuned for extracting events from texts. The TEEE application 

makes it possible to quantify the influence of individual words on the model predictions 

and make them explainable through visual representations. This is done with the help 

of SHAP2 values, which indicate positive and negative influences on the event 

extraction probability at the word level. An overall evaluation is made using a plot that 

shows the average event probability and the event quantity for the entire analyzed text. 

This work’s results show that TEEE can reliably extract relevant events from industrial 

maintenance texts and transparently present their impact on the model decision. The 

developed method enables a better understanding of the decision-making process in 

event extraction with a transformer and thus increases confidence in applying such 

models. 

Overall, this thesis contributes to the connection of transformer models and actual 

applications in industrial maintenance and forms the basis for future optimizations and 

adaptations, especially by using training-specific data from the respective domain. 

 
1 Bidirectional Encoder Representations from Transformers 
2 SHapley Additive exPlanations 



Kurzfassung 

KI-Modelle, insbesondere Transformer, sind in der industriellen Instandhaltung immer 

wichtiger geworden. Eine der größten Herausforderungen bei der Anwendung dieser 

Modelle ist die mangelnde Erklärbarkeit der Modellentscheidungen. Meistens ist es für 

Menschen schwer zu erkennen, wie das Modell zu einer bestimmten Entscheidung 

gekommen ist, was zu Misstrauen und Skepsis führt. Die Erklärbarkeit ist von großer 

Bedeutung, um das Vertrauen in Transformer Modelle zu stärken und ihren Einsatz in 

praktischen Anwendungen zu ermöglichen. Der Transformer Event Extraction 

Explainer (TEEE) verbessert die Erklärbarkeit von Vorhersagen von Transformer 

Modellen, indem er die Entscheidungen des Modells nachvollziehbar macht. 

Diese Diplomarbeit beschäftigt sich mit der Entwicklung und Evaluierung einer 

Anwendung zur Ereignisextraktion, welche die Erklärbarkeit der 

Modellentscheidungen im Bereich der industriellen Instandhaltung verbessert. Das 

Hauptziel besteht darin, eine Applikation zu entwickeln, welche relevante Ereignisse 

aus der industriellen Instandhaltung in unstrukturierten Texten extrahiert und die 

Bedeutung dieser für die Entscheidungsfindung des Modells erklären kann. 

Die Applikation basiert auf der Verwendung von Transformer-Modellen, insbesondere 

dem BERT-Modell von Google, das für die Extraktion von Ereignissen aus Texten 

feinabgestimmt wurde. Der entwickelte TEEE ermöglicht es, den Einfluss einzelner 

Wörter auf die Modellvorhersagen zu quantifizieren und durch visuelle Darstellungen 

verständlich zu machen. Dies geschieht mit Hilfe von SHAP-Werten (SHapley Additive 

exPlanations), die positive und negative Einflüsse auf die 

Ereigniserkennungswahrscheinlichkeit auf Wortebene anzeigen. Eine 

Gesamtbewertung erfolgt mit Hilfe eines übersichtlichen Plots, der die mittlere 

Ereigniswahrscheinlichkeit und die Ereignisquantität für den gesamten analysierten 

Text darstellt. 

Die Ergebnisse dieser Arbeit zeigen, dass TEEE in der Lage ist, relevante Ereignisse 

aus industriellen Instandhaltungstexten zuverlässig zu extrahieren und deren Einfluss 

auf die Modellentscheidung transparent darzustellen. Die entwickelte Methode 

ermöglicht ein besseres Verständnis der Entscheidungsfindung bei der 
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Ereignisextraktion mit einem Transformer und erhöht somit das Vertrauen in die 

Anwendung solcher Modelle. 

Insgesamt trägt diese Arbeit zur Verbindung von Transformer-Modellen und realen 

Anwendungen in der industriellen Instandhaltung bei und bildet die Basis für zukünftige 

Optimierungen und Anpassungen, insbesondere durch die Verwendung 

trainingsspezifischer Daten aus der jeweiligen Domäne. 

 



List of abbreviations 

AI Artificial Intelligence 

AAI Accountable Artificial Intelligence 

BERT Bidirectional Encoder Representations from Transformers 

CNN Convolutional Neural Network 

CPS Cyber-Physical Systems 

CPPS Cyber-Physical Production Systems 

CPU Central Processing Unit 

CSV Comma Separated Value 

DDR4 Double Data Rate 4 

DL Deep Learning 

DNNs Deep Neural Networks 

DSR Design Science Research 

ERP Enterprise Resource Planning 

FAI Fair Artificial Intelligence 

GDDR5 Graphics Double Data Rate 5 

GPU Graphics Processing Unit 

GAI Green Artificial Intelligence 

Grad-CAM Gradient-weighted Class Activation Mapping 

GRU Gated Recurrent Unit 

GPT Generative Pre-trained Transformer 

GUI Graphical User Interface 

HTML Hypertext Markup Language 

HCAI Human-Centric Artificial Intelligence 



Introduction 2 

IIoT Industrial Internet of Things 

LRP Layer-Wise Relevance Propagation 

LSTM Long Short-Term Memory 

MES Manufacturing Execution System 

MLM Masked-Language Modeling 

NBC Naïve Bayes Classifier 

NER Named-entity Recognition 

NLP Natural Language Processing 

NLU Natural Language Understanding 

PdM Predictive Maintenance 

POS Part-of-speech Tagging 

PriMa Prescriptive Maintenance Model for Cyber-Physical 

Production Systems 

RAI Responsible Artificial Intelligence 

RNN Recurrent Neural Network 

SOC Sum of Squares due to Change 

TLP Technical Language Processing 

TEEE Transformer Event Extraction Explainer 

TXT Text File Format 

ULMFiT Universal Language Model Fine-Tuning 

XAI Explainable Artificial Intelligence 



Table of contents 

1 Introduction .................................................................................................................................. 1 

1.1 Problem Definition ................................................................................................................. 2 

1.2 Research Question and Aim of the Thesis ............................................................................ 4 

1.3 Methodology of Research and Architecture of the artefact ................................................... 6 

2 Theoretical Background .............................................................................................................. 9 

2.1 Transformation of maintenance strategies in industry 4.0 ..................................................... 9 

2.2 Technical Language Processing (TLP) ............................................................................... 14 
2.2.1 NLP Methods for Industrial Maintenance ........................................................................ 14 

2.3 Transformer Models ............................................................................................................ 18 
2.3.1 Deep Neural Networks (DNNs) ....................................................................................... 18 
2.3.2 Attention Mechanism ....................................................................................................... 19 
2.3.3 The Transformer ............................................................................................................. 20 
2.3.4 Bidirectional and Unidirectional Transformer Models ...................................................... 21 
2.3.5 Encoder and Decoder Transformer Models .................................................................... 21 
2.3.6 Transfer Learning in NLP ................................................................................................ 23 

3 State-of-the-Art Explainability of Transformer Models ........................................................... 25 

3.1 Methodology of the Systematic Literature Review .............................................................. 25 

3.2 Summary and Results ......................................................................................................... 32 

4 Transformer Models for Zero-Shot Event Extraction in Industrial Use-Cases ..................... 35 

4.1 Hugging Face Transformer Models ..................................................................................... 36 

4.2 Evaluation of Transformer Models for Event Extraction in Industrial Maintenance ............. 37 
4.2.1 Evaluation Methodology .................................................................................................. 37 
4.2.2 Evaluation Results .......................................................................................................... 40 

4.3 Explainability of Transformer Models .................................................................................. 45 
4.3.1 XAI Terminology .............................................................................................................. 47 
4.3.2 Dimensions of Transformer Model Explainability ............................................................ 49 
4.3.3 Transformer Explainability Taxonomy ............................................................................. 52 

4.4 Implementation of an Explainability Framework for Zero-Shot Event Extraction ................. 56 
4.4.1 The “Transformer Event Extraction Explainer” (TEEE) ................................................... 58 
4.4.2 Key components of TEEE ............................................................................................... 61 

5 Evaluation of the Transformer Event Extraction Explainer (TEEE) ....................................... 65 



Introduction 2 

5.1 Evaluation Methodology and Dataset .................................................................................. 65 

5.2 Quantitative Evaluation of TEEE Runtime ........................................................................... 66 

5.3 Qualitative Evaluation of TEEE Explanations ...................................................................... 68 

6 Conclusion and Outlook ............................................................................................................ 73 

6.1 Limitations and Future Work ................................................................................................ 75 

References .......................................................................................................................................... 77 

List of Figures ..................................................................................................................................... 87 

List of Tables ....................................................................................................................................... 88 

Appendix ............................................................................................................................................. 89 



Introduction 
 

1 

1 Introduction 

Introducing Industry 4.0 has led to a comprehensive transformation in the 

manufacturing industry. The manufacturing environment is constantly becoming more 

connected, complex, and transformative (Peres et al., 2020). As a result, more and 

more data is being generated, as shown in Figure 1, and informed decision-making 

based on this data is becoming increasingly important for manufacturing companies 

(C. Li et al., 2022). A subsidiary discipline of artificial intelligence (AI), natural language 

processing (NLP) is a key technology for informed decision-making. Many research 

institutions are focusing on AI technologies. Although AI technologies are being 

actively developed in research institutions, their practical application in an industrial 

environment needs to catch up with the state-of-the-art in research (Peres et al., 2020). 

 

Figure 1 Volume of worldwide Data (Statista, 2024) 

The predictive maintenance (PdM) technologies market has been growing in recent 

years, with a report by IOT Analytics (2021) predicting its growth from 6.9 Billion USD 

in 2021 to 28.2 Billion USD by 2026 (IOT Analytics, 2021). PdM aims to detect 

impending machine failures in advance and thus avoid machine downtimes in 

production (Lee et al., 2006). By using historical data and specialist knowledge in 

combination with statistical or machine learning models, trends or correlations in the 
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data can be identified, thus allowing for the minimization of machine downtimes. (Peres 

et al., 2020). 

The use of transformer models has seen a significant increase in the field of NLP. 

Transformer models currently represent the state-of-the-art in NLP. However, their 

deep neural network architecture complicates making these models explainable or 

interpretable to human understanding (Tamekuri et al., 2022). To use these models in 

critical areas such as industrial maintenance, they have to gain the trust of all 

stakeholders. This trust depends on the explainability of the models, highlighting the 

importance of achieving transparency and interpretability in the operation of 

transformer models (Besinger et al., 2023). Therefore, the main challenge is bridging 

the gap between their performance and explainability (Di Flumeri, 2022). In this 

chapter, the problem is defined, followed by the research question and the aim of the 

thesis. The methodology and approach used are then discussed and finally, the 

architecture of the artefact, namely TEEE3, is presented. 

1.1  Problem Definition 

Industry 4.0 is one of the major developments in the field of maintenance, focusing 

mainly on the analysis and application of data in the industrial sector. In general, 

Industry 4.0 focuses on generating knowledge from data (May et al., 2022). In Industry 

4.0, structured sensor data is mainly used for data analysis (Yan et al., 2017). 

Professionals’ experience and knowledge are often documented but not formalized 

and processed, which does not ensure the efficient use of this data (May et al., 2022). 

For this reason, natural language data is not considered in many cases (May et al., 

2022). Event extraction is an essential application of NLP in the industrial maintenance 

sector. Event extraction in natural language text can be used to identify maintenance-

related events, trends, and patterns. Despite the growing understanding in the area of 

NLP, further research is needed on the explainability of transformer model decisions, 

especially in industrial maintenance (P1) (Ding et al., 2022). In the following thesis, the 

term transformer models is interchangeably used, referring to the field of NLP. 

NLP methods, especially transformer models, have demonstrated efficacy in various 

scientific domains, but their utility in industrial maintenance use cases remains 

 
3 Transformer Event Extraction Explainer 
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uncertain (P2) (Ansari et al., 2021). The analysis of maintenance-related texts presents 

a significant challenge due to their inherent characteristics. These texts may contain 

incomplete information and various errors that affect data quality (Mahlamäki et al., 

2016). The use of individual jargon by machine operators in maintenance reports 

especially negatively impacts the quality of the data (Sexton & Fuge, 2019). 

Consequently, this thesis investigates the potential usefulness of state-of-the-art 

transformer models, such as BERT, in industrial maintenance settings. Specifically, 

the current state-of-the-art transformer models will be examined to assess its suitability 

for industrial maintenance applications. 

In an industrial environment, models such as BERT must make accurate predictions. 

Explainability is key to achieving this trust (Di Flumeri, 2022). Explainability of 

transformer models is the ability of a human to justify the results of the transformer 

model (Namatēvs et al., 2022). However, the effectiveness of event extraction cannot 

be judged from this, as it depends on several other factors such as the F14 score. This 

thesis focuses on the explainability of transformer models for zero-shot event 

extraction in industrial maintenance use cases. Zero-shot event extraction is a 

downstream task where a model extracts specific information from a document without 

having seen any annotated examples of that information during training (H. Zhang et 

al., 2022). 

For this reason, the effectiveness of event extraction is evaluated in a simplified way 

based on the F1 score, the accuracy, and the model runtime. The understanding of the 

logic behind the model predictions of transformer models in industrial maintenance 

scenarios through practical experimentation and analysis is incomplete (P3) (Klaise et 

al., 2020). To address P2 and P3, an industrial dataset sourced explicitly from the 

maintenance field will be utilized throughout the practical component of this thesis. 

Table 1 describes the problems P1, P2 and P3 of this thesis. 

 

 

 

 
4 The F1 score is the harmonic mean of a model’s precision and recall. 



Introduction 4 

Table 1 Problems P1, P2 and P3 

Problem Description 
P1: Lack of understanding of how transformer models can be explained, 

especially within the context of industrial maintenance. 

P2: Lack of practical application of transformer models in industrial 

maintenance use cases, especially for event extraction. 

P3: Lack of explainability of transformer models predictions for event 

extraction in industrial maintenance use cases. 

1.2  Research Question and Aim of the Thesis 

To generate knowledge from natural language texts, NLP methods offer a large variety 

of different approaches. The application of transformer models, such as BERT, is one 

of the most sophisticated approaches. The solution to the problem (P1) will be a 

literature review on the explainability of transformer models, especially in industrial 

maintenance (O1). 

Transformer models are already being used successfully in various technology fields, 

such as conversational agents. Applying transformer models to a domain-specific 

dataset, focusing on event extraction will clarify the current utilization and success rate 

of transformer models in industrial maintenance (P2). The F1 score and the accuracy 

will be used to evaluate the fine-tuned transformer models. This will identify transformer 

models’ applicability in industrial maintenance use cases (O2).  

The explainability of the transformer model predictions in the area of industrial 

maintenance will be evaluated using quantitative and qualitative methods. To achieve 

this objective, (P3) will be addressed, and the explainability of transformer model 

predictions, especially for event extraction, will be evaluated in industrial maintenance 

use cases (O3).  

This thesis’s primary objective will be to clarify the explainability of transformer models 

and apply these to specific industrial maintenance use cases. A morphology of 

transformer models will be created by conducting literature research on the 

explainability of transformer models in industrial maintenance use cases and utilizing 
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state-of-the-art methodology in transformer models. Based on the considerations 

above, the primary research inquiry emerges as follows: 

“How to increase the explainability of transformer model predictions for zero-
shot event extraction in industrial maintenance?” 

Table 2 presents the sub research questions RQ1, RQ2 and RQ3. 

Table 2 Sub Research Questions for P1, P2 and P3 

Abbreviation Research Question 
RQ1: What explainability methodology can be used to explain transformer 

model predictions for zero-shot event extraction? 

RQ2: What is the utilization and success rate of transformer models when 

applied to an industrial maintenance dataset for zero-sot event 

extraction tasks? 

RQ3: What measurement methods can be used to evaluate the 

explainability of transformer models when applied to an industrial 

maintenance dataset for zero-shot event extraction tasks? 

 

Based on the sub-research questions RQ1, RQ2 and RQ3 defined in Table 2, the 

objectives of this thesis are defined in Table 3. 

Table 3 Objectives of this Thesis 

Abbreviation Objective 
O1: Identify state-of-the-art for understanding and enhancing the 

explainability of transformer model predictions 

O2: Evaluation of transformer models for zero-shot event extraction in 

industrial maintenance  

O3: Evaluating explainability of transformer models for zero-shot event 

extraction in industrial maintenance  
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1.3  Methodology of Research and Architecture of the 
artefact 

The methodology of this thesis is based on the three-cycle view of the Design Science 

Research (DSR) framework by (Hevner, 2007). This methodology aims to create a new 

and innovative artefact that should be evaluated through appropriate approaches. 

Artefacts are constructs, models, methods, and instantiations (Hevner et al., 2004). In 

the context of this work, the artefact is a tool, namely TEEE, which enhances the 

explainability of transformer models in industrial maintenance. To ensure clear 

definitions, boundaries, guidelines, and outcomes of this work, it will be carried out 

according to the framework of the DSR, as seen in Figure 2 by (Hevner,2007). 

 

Figure 2 Design Science Research Cycle based on (Hevner, 2007) 

DSR aims to improve the environment through new and innovative artefacts and 

document the process of artefact discovery (Simon, 2008). In this work, an 

explainability software tool for transformer model-based zero-shot event extraction in 

industrial maintenance will emerge as an artefact. Primarily, the relevance cycle 

initiates the definition of the problems, the opportunities, and the requirements in the 

specific environment of the application. The relevance cycle also defines the success 

criteria for the research project. The research results should then be reintegrated into 

the background for analysis. The concept of three cycles is understood as an iterative 

solution approach applied in each cycle (Hevner, 2007). 

The rigor cycle focuses on the knowledge base and state-of-the-art. (Hevner, 2007) 

distinguishes between two types of knowledge: 
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- The expertise that constitutes the current best practices within the research’s 

application area. 

- Artefacts have already been discovered and evaluated in the research area. 

The rigor cycle helps to ensure that innovative research is carried out and not just 

routine design based on known procedures (Hevner et al., 2004). All achieved findings, 

theories and artefacts are added to the knowledge base after successful testing in the 

application environment (Hevner, 2007). In this thesis, the rigor cycle ensures that the 

development of the TEEE is based on the latest existing knowledge in the field of 

explainability of transformer models. 

The design cycle is the primary component of the DSR cycle. The design cycle iterates 

between the artefact’s design, evaluation, and the implementation of improvements. 

This means the design is iterated in the design cycle until it fulfils the requirements. 

The requirements that must be fulfilled are defined in the relevance cycle. The rigor 

cycle analyzes the fundamental knowledge base (Hevner, 2007). In this thesis, the 

development of the TEEE is performed in the design cycle. In the relevance cycle, 

different transformer models are evaluated for the application in the TEEE on the one 

hand and the explainability of the TEEE is evaluated on the other hand. 

This thesis will be elaborated according to the framework of the three cycles by 

(Hevner, 2007). The requirements are raised in the recurring meetings with the 

supervisor. In the context of this thesis, the supervisor represents the environment. 

The artefact is generated based on these requirements and the expertise out of the 

knowledge database (Rigor Cycle). After the design cycle is completed, the artefact is 

applied to appropriate use cases defined by the supervisor. The accomplished thesis 

represents the contribution to the knowledge base within the framework of the rigor 

cycle. 

It is worth noting that the application “Transformer Event Extraction Explainer”, 

shortened to TEEE, emerges as the artefact of this master thesis. TEEE, which is 

based on the BERT model, is designed for human interpretation of transformer model-

based event extraction predictions. TEEE is a tool that takes a maintenance text from 

a machine logbook and a list of possible events to extract from the text as input. Initially, 

the input passes through a specially developed Event Extraction Pipeline in TEEE, 

which calculates the event’s probability predictions. Subsequently, a dynamic 
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threshold for event detection is computed, and the predictions are compared against 

this threshold. This calculation is based on a combination of the mean and standard 

deviation of the event scores. Next, Shapley values for all extracted events are 

calculated for each token. If the text contains multiple sentences, this process is 

repeated for each sentence. TEEE generates two output diagrams: The overall results 

plot visually represents the average event extraction probability and the count of events 

extracted from the given text. The explainability plot with Shapley values provides 

explanations for each detected event within every sentence token. This plot visualizes 

the contribution of each token to the model’s prediction. Figure 3 below illustrates the 

overall architecture of TEEE using a simple example. 

 

Figure 3 Overall Architecture of TEEE 
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2 Theoretical Background 

Data-driven approaches have gained significant importance in numerous sectors 

during the current era of digitization and Industry 4.0. The ability to gather and analyze 

large volumes of data has changed how businesses and industries operate. The 

industrial maintenance sector, in particular, has undergone one of the most significant 

transformations. This transformation includes the introduction of data-driven 

technologies, such as predictive maintenance or IIoT (Industrial Internet of Things) 

(Matyas, 2022). For this reason, this chapter explores the theoretical basis of data-

driven industrial maintenance in Section 2.1, NLP in industrial maintenance in Section 

2.2, and the transformer model in general in Section 2.3. 

2.1  Transformation of maintenance strategies in industry 
4.0 

Given the increasing complexity of production processes, the classical maintenance 

methods - failure repair, time-controlled periodic maintenance, and condition-based 

maintenance - are insufficient to ensure the reliability demanded by the plant. Classical 

maintenance strategies can still be successfully employed in constantly operating 

mass production systems (Nemeth et al., 2015). 

The interconnection of numerous systems and the possibility of processing and 

analyzing large amounts of data and obtaining helpful information is part of the fourth 

industrial revolution, also known as Industry 4.0 (Kagermann et al., 2013). Industry 4.0 

aims to make all materials, products, production facilities, tools, transport technologies, 

conveyor and storage systems, and buildings “smart”. (Matyas, 2022). 

The following section introduces three classic maintenance methods: run-to-failure, 

time-controlled periodic, and condition-based maintenance. It then discusses two 

innovative industrial maintenance approaches: predictive and prescriptive 

maintenance. 

In the maintenance strategy known as run-to-failure, machines or systems are 

operated until they break down, and then the necessary repairs are made. This 

approach results in the longest possible maintenance interval but often leads to 
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unplanned downtime during production. Maintenance typically involves finding a skilled 

mechanic to diagnose and fix the problem, procuring spare parts, and testing the 

system to ensure it functions properly before restarting production. However, the run-

to-failure strategy has limited usefulness in modern industrial maintenance. This 

approach is only recommended in cases where the affected machine is redundant or 

of secondary importance to the production process. In most cases, other maintenance 

strategies are preferable to minimize downtime and maintain optimal production 

efficiency. (Matyas, 2022). 

Time-controlled periodic maintenance involves the preventive maintenance of 

predefined assemblies or individual parts after a set lifetime. This means that the 

machine is maintained after the predefined period, regardless of its actual condition. 

This maintenance strategy is beneficial when machine failure could potentially impact 

safety or the environment or when the estimated lifetime of the parts is known, and the 

other components are still in good condition. Planned maintenance is generally quicker 

and, therefore, cheaper than unplanned maintenance. It is essential to keep 

maintenance and equipment downtime costs as low as possible in industrial 

maintenance. To achieve this, the periodic maintenance interval must be adjusted to 

the utilization reserve of the parts under observation. If maintenance is performed too 

early, the utilization reserve of the parts is not optimally utilized (Matyas, 2022). 

On the other hand, if maintenance is delayed, it may result in increased wear of other 

components or an unplanned machine fault, which is the worst-case scenario. 

Determining the optimal period for time-controlled periodic maintenance is complex 

and time-consuming. However, this problem can be solved using the condition-based 

maintenance strategy (Matyas, 2022). 

Condition-based maintenance is an approach that involves adjusting maintenance 

processes based on the specific degree of wear of the object being maintained. By 

using suitable monitoring and diagnostic systems, the level of wear is measured, and 

when there is a significant deviation from the required machine performance, an 

appropriate information system initiates the maintenance process. This approach 

ensures a highly efficient and dynamic adjustment of maintenance intervals and 

utilization reserves. In most cases, there are warning signs of a potential fault before a 

genuine fault occurs in a machine. The period between potential and genuine faults 

can vary from milliseconds to several years. The primary goal of condition-based 
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maintenance is to predict failures immediately to avoid unexpected faults. Maintenance 

measures are applied after a potential fault has been identified to ensure the machine 

can deliver the required performance. Another essential aim of the condition-based 

maintenance strategy is to monitor the actual degree of machine wear. The degree of 

wear is measured using monitoring systems and system diagnostics, often called 

“technical diagnostics” in academic literature. In the industry, such systems used to 

monitor machine conditions are known as “condition monitoring” systems. The 

condition-based maintenance strategy has significant economic benefits, including 

decreased operating costs, plant expenses, maintenance expenses, downtime 

expenses, and technical advantages. By continuously monitoring the machine’s 

condition, the plant’s safety can always be guaranteed (Matyas, 2022). 

Many companies have flexible manufacturing systems for a wide range of products. A 

predictive and holistic maintenance strategy is crucial to reliably using such flexible 

production systems while saving resources. It must incorporate data from many 

systems, e.g., condition monitoring systems, quality and machine data, and historical 

knowledge about failure events (Nemeth et al., 2015). Predictive maintenance utilizes 

various data sources to identify anomalous behaviour within a plant (diagnosis), 

accurately anticipate faults that may occur in the future (forecasting), and enable well-

informed decisions beforehand (proactive decision-making) (Bousdekis et al., 2019). 

The anticipation of wear signs and their effects on the production process is crucial for 

the development of future maintenance planning. Therefore, predictive maintenance 

models access historical machine condition data. Probabilistic models, such as the 

Weibull distribution, can be applied to this data to gain insight into the future wear 

behaviour of the individual components or the entire machine (Siener & Aurich, 2011). 

The predictive maintenance market has been growing in recent years, with a report by 

Kondyurin (2022) predicting its growth from 6.9 billion USD in 2021 to 28.2 billion USD 

by 2026. The amount of data generated in this sector increases significantly yearly 

(IOT Analytics, 2021). 

As part of Industry 4.0, industrial maintenance must be updated with “smart” methods. 

This new industrial maintenance era is commonly called “Maintenance 4.0” (Matyas, 

2022). One of the major problems with traditional maintenance strategies is their one-

sided perspective, such as condition-based maintenance. Additionally, they lack a 

comprehensive maintenance strategy, such as “Total Productive Maintenance.” The 
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need for timely data on machine conditions makes maintaining machines at optimal 

operating times and wear levels difficult, which should align with production 

requirements and desired quality. An integrated and predictive maintenance approach 

requires a holistic view of the machine, product, and process. With such a strategy, 

pre-calculated machine life calculations can be compared in real-time with the actual 

wear of machine components during production and adjusted accordingly. A suitable 

model can help determine maintenance time points, product quality, and energy 

consumption based on a combined view of condition monitoring data, quality control 

data, data from previously recorded failure patterns, and machine loads (Matyas, 

2022). 

In today’s advanced technological environment, embedded systems have enabled 

advanced networking between the internet and each other. This trend is causing a 

convergence between the physical and digital domains, leading to the emergence of 

“Cyber-Physical Systems” (CPS). This concerns explicitly “Cyber-Physical Production 

Systems” (CPPS) in the industrial maintenance environment. CPPS represent the 

integration of embedded systems with various processes, including production, 

logistics, engineering, coordination, and management. These systems capture 

physical data directly from sensors while actuators intervene in the physical processes. 
Digital networks connect these systems, giving them access to globally available data 

and services. CPPS also have multimodal human-machine interfaces, making them 

open sociotechnical systems and enabling various new functions and services for the 

industrial maintenance sector (Kagermann et al., 2013). 

In their paper, Ansari et al. (2019) state that the emergence of CPPS as Industry 4.0 

technology is triggering a paradigm shift from descriptive to prescriptive maintenance. 

In this context, Ansari et al. (2019) introduce PriMa5, a novel prescriptive maintenance 

model for CPPS. Marques & Giacotto (2019) describe in their 2019 study prescriptive 

maintenance as a technology that provides real-time adaptive suggestions about tasks 

to be performed with the help of AI. The distinction between predictive maintenance 

and prescriptive maintenance can be defined as follows: whereas predictive 

maintenance is based on the analysis of data patterns and trends to predict failure, 

prescriptive maintenance also takes into account the maintenance process of the 

 
5 Prescriptive Maintenance Model 
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respective organization and thus provides suggestions and supports the solution-

finding process (Marques & Giacotto, 2019). 

Ansari et al. (2019) propose a four-layer structure for PriMa, comprising data 

management, a predictive maintenance toolbox, a recommender, and a decision 

support dashboard. On top of this, they identify an additional overarching layer for 

semantic-based learning and reasoning. The PriMa method is designed to enhance 

the processing of large, heterogeneous datasets and to facilitate the generation of 

decision-supporting measures for the optimization of maintenance plans (Ansari et al., 

2019). The following Figure 4 illustrates the overall architecture of Prima, introduced 

by Ansari et al. (2019). 

 

Figure 4 Overall Architecture of PriMa (Ansari et al., 2019) 

The data management layer, which is based on a scalable data warehousing solution, 

continuously collects maintenance data, which primarily consists of management, cost, 

and operational data from machines, processes, and products. This data can be 

mapped with both the horizontal and vertical data flow of the CPPS and all participating 

processes and components (e.g., maintenance managers, engineers, MES 

(Manufacturing Execution System), ERP (Enterprise Resource Planning)).  One of the 

principal attributes of PriMa is its capacity to accommodate the multimodality of 

maintenance data. As a result, various aspects of maintenance are considered, and 

several influencing factors can be linked in order to obtain a comprehensive picture of 

the system status and thus generate new maintenance knowledge (Ansari et al., 2019). 
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2.2  Technical Language Processing (TLP) 

In the industrial maintenance sector, while structured sensor data is primarily used for 

data analysis, text, as a form of unstructured data, also plays a significant role. The 

experience and knowledge of professionals are often documented but need to be 

formalized and processed to ensure the efficient use of this data. For this reason, 

natural language data is not considered in many cases (May et al., 2022). Section 2.2 

provides a comprehensive analysis of the significance of TLP, which is an adaptation 

of NLP in the context of engineering and industry. Brundage et al. (2021) introduced in 

their 2021 paper the term TLP as a domain-driven approach to use NLP in a technical 

engineering setting. In their 2021 paper, Brundage et al. (2021) introduced the term 

TLP as a domain-driven approach to using NLP in an engineering environment. 

Brundage et al. (2021) define TLP as an iterative process involving human input to 

optimize NLP tools on engineering data. The underlying methodologies are therefore 

identical for NLP and TLP. Consequently, the most relevant NLP methods for the 

domain of industrial maintenance are introduced in Section 2.2.1. 

According to Quarteroni (2018), NLP is a subfield of AI that primarily uses machine 

learning techniques to analyze natural language text. NLP has a long history, with 

significant milestones, such as developing the first search engine, namely SMART6, to 

allow natural language queries in 1960 (Salton et al., 1975). The scientific literature 

shows that NLP has made significant progress using deep neural networks (DNNs) in 

the last few years. Before the introduction of the transformer in 2016 by Vaswani et al. 

(2017), mainly recurrent neural networks (RNNs) and long short-term memory (LSTM) 

models were used for NLP applications. The state-of-the-art models for NLP, 

especially the transformer, are introduced in Section 2.3 of this thesis. 

2.2.1 NLP Methods for Industrial Maintenance 

NLP is widely used in both research and practical applications. It covers various 

methods commonly employed for specific applications, such as part-of-speech tagging 

(POS), named entity recognition (NER), sentiment analysis, text classification and text 

generation. 

 
6 System for the Mechanical Analysis and Retrieval of Text 
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Event extraction is an essential application of NLP in the industrial maintenance sector. 

Event extraction in natural language text can be used to identify maintenance-related 

events, trends, and patterns. 

Natural language data is mainly generated in logbooks for failure documentation in 

industrial maintenance. Gandomi & Haider (2015) show in their paper that 

approximately 80-90% of all business-relevant data is only available in unstructured 

form, mainly text data. AI techniques can be integrated into human-generated 

documents and reports to transform unstructured data into an automated prediction 

and reasoning framework. An AI-based method is essential to maximize the value of 

textual data in logbooks. AI methods can extract and convert all relevant textual 

information into a structured format, providing valuable and structured insights for 

better decision-making (Ansari et al., 2021). 

Logbooks typically contain free text fields that are filled with non-standard text content. 

These texts may contain incomplete information and various errors that affect data 

quality (Akhbardeh et al., 2020). Machine operators’ use of individual jargon in 

logbooks negatively impacts the data quality (Sexton & Fuge, 2019). The practical 

application of NLP in industrial maintenance is limited by the lack of pre-trained models 

specifically trained on the jargon and language patterns prevalent in this domain. As a 

result, the adoption and use of NLP methods in industrial maintenance tasks have not 

reached their full potential (Akhbardeh et al., 2020).  

The following paragraphs present the most common NLP methods used in the 

industrial maintenance sector. In recent years, text classification has become 

increasingly important in industrial maintenance, enabling efficient analysis of large 

volumes of textual data. According to Kowsari et al. (2019), most text classification 

applications can be divided into four phases, see Figure 5: Feature extraction, 

dimension reduction, classifier selection, and evaluations. 

 

Figure 5 Text Classification Pipeline (Kowsari et al., 2019) 
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The unstructured text must be transformed into a structured feature space in the 

feature extraction phase through data cleaning and formal feature extraction methods. 

In the dimensionality reduction phase, techniques are applied to the structured data, 

for example, converting all text to lowercase. The optimal classifier for the classification 

task is selected in the classifier selection phase. The Naïve Bayes Classifier (NBC) is 

very common. In the final stage of the classification pipeline, the evaluation phase, the 

classification model is evaluated, and various evaluation methods can be used. The 

accuracy evaluation is most commonly used (Kowsari et al., 2019). 

An example of classification application in industrial maintenance can be found in a 

case study by Edwards et al. (2008). This case study aimed to classify repair jobs from 

a dam pump maintenance logbook as planned or unplanned. This case study aimed 

to investigate whether it is possible to classify natural language text into structured 

attributes to make business decisions based on data instead of best guesses (Edwards 

et al., 2008). 

In 2018, when the paper “Natural Language Processing for Industrial Applications” by 

Quarteroni (2018) was published, a notable trend in using NLP in the industrial sector 

was the application of conversational agents. In contrast to conventional 

conversational agents designed to carry on a conversation, conversational agents in 

the industrial sector are used as task-oriented dialogue systems that cooperate with 

operators to complete a specific task. Conversational agents are primarily used in the 

industry to provide interactive systems to customers and reduce the cost of human 

agents (Quarteroni, 2018). 

For example, a conversational agent could be used in a car manufacturer’s service 

hotline. In this scenario, the conversational agent would handle pre-defined service 

cases, while human agents can focus on the more complex and individual service 

requests. 

The popularity of smart home devices such as Amazon Echo™ and Google Home™ 

has increased people’s awareness of the benefits of conversational agents. This has 

opened other potential applications for conversational agents in the industrial sector. 

One application uses conversational agents as shortcuts for specific industrial 

processes or services. For example, conversational agents can automate the booking 

work equipment such as cars (Quarteroni, 2018).  
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Information extraction is the most essential NLP method for this thesis and one of 

the most relevant methods in industrial maintenance. Information extraction 

automatically detects and extracts certain information from natural language text. 

Information extraction can be classified into closed-domain and open-domain 

information extraction. In closed-domain information extraction, the model is aware of 

the information it needs to extract. By contrast, an open-domain information extraction 

model does not know which information to extract. The model focuses on extracting 

new and unexpected information from texts (J. Liu et al., 2021). 

Conventional information extraction models are usually trained using supervised 

learning methods. The problem is that such models can only detect information if the 

model has learned it. Furthermore, supervised learning is very time-consuming and, 

therefore, expensive. Zero-shot information extraction models can address these 

limitations of conventional information extraction models. H. Zhang et al. (2022) define 

zero-shot information extraction as a problem where a document consisting of one or 

more sentences and a list of information is known. The zero-shot information extraction 

model must now extract information in the document from the known list of information 

without prior annotation in the training phase (H. Zhang et al., 2022). Figure 6 below 

illustrates the extraction of zero-shot information. The information passed to the model 

in this example are Leakage, Oil change, and Noises. 

 

 

Figure 6 Zero-Shot Information Extraction Task Demonstration 
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2.3  Transformer Models 

In recent years, significant progress has been made in NLP, primarily through the 

application of transformer models (H. Liu et al., 2020). Before introducing the 

transformer model in this thesis, it is important to define deep neural networks (DNNs) 

and the attention mechanism in Sections 2.3.1 and 2.3.2. 

2.3.1 Deep Neural Networks (DNNs) 

In general, neural networks in the context of AI are models that connect artificial 

neurons, also called nodes, together. Each of these neurons performs simple 

calculations, but together, they form a complex model that can solve different tasks 

(Shah et al., 2018). Various definitions of DNNs can be found in AI in the scientific 

literature. Yi et al. (2016) use the term DNN to refer to neural networks with a network 

depth greater than or equal to four. In contrast, Shah et al. (2018) refer to a DNN when 

the number of hidden layers of neurons is greater than one. In this thesis, the term 

DNN refers to the definition of Shah et al. (2018). The depth of a DNN corresponds to 

the number of hidden layers of neurons, as shown in Figure 7 (Yi et al., 2016). 

 

 

Figure 7 Structure of a DNN with Depth 1 (Lopez & Kalita, 2017) 
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DNNs have become increasingly important due to their empirical success in various 

fields of AI, especially in NLP (Barredo Arrieta et al., 2020). DNNs have successfully 

solved complex learning problems (Lopez & Kalita, 2017). The structure of DNNs is 

inspired by nature, namely the mammalian visual system. This visual system contains 

many layers of a neural network. In this visual system, information is processed layer 

by layer from the retina to the visual centre (Serre et al., 2007). The layers in a DNN 

are often referred to as embedded layers in the scientific literature. The information in 

DNNs is processed, as in the mammalian visual system, resulting in a progressive 

abstraction of the input information. The number of embedded layers in a neural 

network positively correlates with extracting complex and abstract features from the 

data (Shah et al., 2018). Cohen et al. (2019) have shown that DNNs outperform usual 

neural networks, as DNNs improve feature abstraction with each additional embedded 

layer. 

2.3.2 Attention Mechanism 

The Google paper that introduced the transformer model in 2017 by Vaswani et al. 

(2017) is titled “Attention Is All You Need”. To understand the architecture of the 

transformer model, it is essential first to understand the attention mechanism based on 

the human visual system. In human vision, only a tiny part of the image can be focused, 

and this small area is called the fovea. The rest of the image, which is out of focus, is 

called the periphery. To enable humans to identify the desired information from the 

image, the fovea focuses on different significant parts until it has enough information 

to recognize the image. This feature extraction process is called the visual attention 

mechanism (Alpaydin, 1995). In the context of AI, the attention mechanism stores a 

group of hidden information; the size of this information depends on the size of the 

model input. The attention mechanism selects this information so that, in the context 

of the other information, it obtains a holistic understanding of the input, like the human 

visual mechanism, which requires several significant parts of the image to recognize 

it. The attention mechanism dynamically selects which positions of the input it focuses 

on, and it adjusts the weights assigned to each position. This method allows the model 

to vary the memory length to scale itself for different complex applications (Kim et al., 

2017). Transformer models utilize a special type of attention mechanism called self-

attention. Using self-attention, the positions in the same sequence can be related to 
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themselves. As a result, self-attention focuses on the relationships between positions 

in the same input sequence (Vaswani et al., 2017). By applying a self-attention 

mechanism to a text, the single words in this text are related to other words so that the 

model can capture complex relationships. 

2.3.3 The Transformer 

The transformer architecture belongs to the category of DNNs. Google introduced it in 

2017, and it is the first transduction model based entirely on the self-attention 

mechanism, without using RNNs or convolution. The transformer architecture is based 

on an encoder-decoder structure. The encoder takes an input sequence (𝑥S, … , 𝑥a) of 

symbol representations and generates a continuous output sequence 𝒛 = (𝑧S, … , 𝑧a) 

that can be processed by the following transformer operations. The decoder gets 𝒛 as 

input and sequentially computes the output (𝑦S, … , 𝑦 ). At each successive step, the 

model uses the output of the previous steps and considers it in calculating the new 

step. This characteristic is called auto-regression. (Vaswani et al., 2017). Figure 8 

shows the transformer architecture. The encoder (left half) and decoder (right half) use 

the self-attention mechanism. 

 

Figure 8 The Transformer Model Architecture (Vaswani et al., 2017) 
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The encoder and the decoder consist of N = 6 identical layers. In the encoder, each 

layer has two sub-layers. The first sub-layer of the encoder is the multi-head self-

attention mechanism, and the second sub-layer is a fully connected feed-forward 

network. In the decoder, each layer has three sub-layers. The second and third sub-

layers are identical to those of the encoder. The first sub-layer is different from the 

encoder layers. The first sub-layer in the decoder is a masked multi-head attention 

layer that is applied to the encoder output. The result is always normalized after each 

sub-layer. The decoder output is linearly transformed, and the soft-max function is 

applied to the output. This converts the decoder output into the predicted probabilities 

for the next token (Vaswani et al., 2017). 

2.3.4 Bidirectional and Unidirectional Transformer Models 

Transformer models can be distinguished by how they process the input text, 

bidirectional or unidirectional (Alawneh et al., 2020). This section introduces the 

differences between bidirectional and unidirectional transformer models. 

Bidirectional models, such as BERT, always have forward and backward layers 

(Alawneh et al., 2020). This implies that a bidirectional transformer model always 

considers the token on the left and the token on the right in the prediction. This 

bidirectional approach allows the model to understand better the input text (Devlin et 

al., 2019). 

In comparison, unidirectional transformer models only have forward layers. They only 

interpret the input text in one direction, either left to right or right to left. An example of 

a unidirectional model are the GPT7-models, which process the text from left to right 

(Brown et al., 2020). Unidirectional models are particularly effective for text-generation 

tasks because they generate text sequentially (Devlin et al., 2019). 

2.3.5 Encoder and Decoder Transformer Models 

Generally, three types of transformer models can be distinguished: encoder-decoder 

models, encoder-only models, and decoder-only models. The functionality of the 

decoder and encoder layer in the transformer architecture has already been explained 

 
7 Generative pre-trained transformer 
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in Section 2.3.3. Therefore, it will not be described in more detail. Encoder-decoder 

transformer models are mainly used in sequence-to-sequence modelling (e.g., neural 

machine translation) (Brown et al., 2020). An encoder-only transformer model uses the 

encoder of the transformer architecture to represent the input. This encoder-only 

architecture is often used for NLU (Natural Language Understanding) tasks such as 

text classification (Sexton & Fuge, 2019). BERT, developed by Google, is one of the 

most well-known encoder-only models. A decoder-only transformer model is typically 

used for text-generation tasks (Devlin et al., 2019). GPT models by OpenAI are among 

the most well-known decoder-only models (Brown et al., 2020). The following two 

sections present the best-known bidirectional encoder, BERT, and the best-known 

unidirectional decoder, GPT-3. 

Devlin et al. (2019) introduced 2019 BERT, Bidirectional Encoder Representations 

from Transformers. The novelty of BERT at the time of its presentation was its ability 

to learn deep bidirectional representations by pre-training on unlabeled text. BERT 

considers the left and right context in all layers of the model. The developers of BERT 

used “Masked-Language Modelling” (MLM) and “next sentence prediction” as pre-

training objectives. This allows BERT to be easily fine-tuned for many different state-

of-the-art NLP applications, such as question answering or named entity recognition. 

Labelled data is required to fine-tune the model to adapt BERT to specific downstream 

tasks. It is characteristic of BERT that it can be fine-tuned with only one additional 

output layer (Devlin et al., 2019). The architecture of BERT is very similar to the 

transformer architecture introduced by Vaswani et al. (2017). The main distinction is 

that BERT utilizes only the encoder component of the transformer architecture 

proposed by Vaswani et al. (2017). 

In their paper, Devlin et al. (2019) presented two BERT models with different 

parameters, named 𝐵𝐸𝑅𝑇VU\W and  𝐵𝐸𝑅𝑇ZU[YW. In total, 𝐵𝐸𝑅𝑇VU\W has 110 million 

parameters, and 𝐵𝐸𝑅𝑇ZU[YW has 340 million parameters. 𝐵𝐸𝑅𝑇ZU[YW, with its 

significantly higher number of parameters compared to 𝐵𝐸𝑅𝑇VU\W, achieves slightly 

better performance in several benchmarks (Devlin et al., 2019). 

Since 2019, many BERT-based models have been introduced and published in the 

literature. According to Y. Liu et al. (2019), BERT is significantly under-trained and 

subsequent models based on BERT typically outperform it. Two notable examples of 

models based on BERT are RoBERTa (Robustly optimized BERT approach), 
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developed by Y. Liu et al. (2019), and XLM (cross-lingual language model), developed 

by Lample & Conneau (2019). Both models, RoBERTa (Y. Liu et al., 2019) and XLM 

(Lample & Conneau, 2019), outperform BERT in standard performance tests. 

However, due to its popularity, BERT is still often used as a starting model for many 

tasks. 

Brown et al. (2020) introduced GPT-3 in 2020, which stands for Generative Pretrained 

Transformer 3. GPT-3 is an evolution of GPT-2. The models share the same 

architecture. GPT-3 is based on an unidirectional and autoregressive decoder-only 

transformer that generates the output from left to right. GPT-3’s self-attention 

mechanism and feed-forward neural networks make it particularly effective at 

interpreting long-term dependencies in input and generating text from them. When 

GPT-3 was introduced, it was outstanding for its many parameters. GPT-3 has 175 

billion parameters (Brown et al., 2020). In comparison, 𝐵𝐸𝑅𝑇VU\W has 110 million 

parameters (Devlin et al., 2019). Bidirectional models such as BERT have a higher 

fine-tuning efficiency for downstream tasks than unidirectional models such as GPT-3. 

The scientific literature currently lacks studies of models that combine the scale of 

GPT-3, which provides a better understanding of dependencies in human language, 

with a bidirectional approach that improves the fine-tuning capabilities of the model 

(Brown et al., 2020).   

2.3.6 Transfer Learning in NLP 

Transfer learning is an approach to optimize the training process of transformer 

models. Transfer learning allows the learned knowledge of an existing model, such as 

BERT, to be used as a base model for a new model with a different task. In this way, 

the training effort required to train a model adapted to a new application can be 

minimized (Briceno-Mena et al., 2022). 

In particular, the transfer learning method ULMFiT (Universal Language Model Fine-

tuning) introduced by Howard & Ruder (2018) enables effective transfer learning for all 

NLP applications with universal language models. The first step of ULMFiT is pre-

training the general domain language model. In this phase, the model is pre-trained 

with unlabeled text, for example, from Wikipedia. The second step of the ULMFiT 

method marks the beginning of fine-tuning, focusing on domain adaptation. The pre-
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trained language model is adapted to the required domain corpus in this step. As the 

model has already been pre-trained on a large dataset in step one, a small dataset is 

sufficient for this step. The third and last step of the ULMFiT method is the final fine-

tuning step. In this step, the classifier of the model is fine-tuned with a small dataset. 

With the introduction of the ULMFiT framework in 2018, transformers could be easily 

adapted to individual NLP applications, making transformers state-of-the-art in NLP 

(Howard & Ruder, 2018). 
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3 State-of-the-Art Explainability of Transformer 
Models 

Section 2.3 introduced the complex architecture of transformer models. One of the 

most challenging aspects of transformer models is that humans are unable to 

understand the inner workings of these complex deep-learning models. Du et al. (2019) 

demonstrate in their paper that numerous approaches to explain such models have 

already been developed, yet further research is required. 

Consequently, this section presents the state-of-the-art on the explainability of 

transformer models through a systematic literature review. This chapter first presents 

the methodology of the systematic literature review. This process involves the 

identification of the search string, the definition of the exclusion criteria, and the 

screening of the papers. The objective of this state-of-the-art comparison is to identify 

the most appropriate explainability approach for the TEEE. 

3.1  Methodology of the Systematic Literature Review 

The systematic literature review is based on the strategy presented by Zonta et al. 

(2020) and Peres et al. (2020), which both conduct systematic reviews evaluating and 

summarizing the application of AI in the field of Industry 4.0. Figure 9 illustrates the 

methodology employed in the systematic literature review, which was used to identify 

the relevant literature for this study. 

 

Figure 9 Steps of Systematic Literature Review 
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Defining an appropriate search string for a systematic literature search is critical to any 

research project. The search string was constructed step by step using the most 

comprehensive database, Google Scholar. Initially, the term “transformer 

explainability” and its synonyms were applied to the database. Based on the first 30 

results, the quality of the results for all synonyms was evaluated. This revealed that 

the optimal results were obtained with the terms “transformer explainability” and 

“transformer interpretability”. The initial two terms identified were then varied with 

synonyms of NLP and the results were evaluated once more. This procedure was then 

repeated with synonyms of “industrial maintenance” until the final search string in 

Figure 10 was determined and the quality of the results was correspondingly high. 

Once successfully identified, the search string is applied to Google Scholar, IEEE 

Xplore, and Science Direct databases. This process requires careful selection and 

construction of the search string, primarily due to the limitations associated with 

applying the search string to these databases and the subsequent impact on the 

relevance of the search results. Specifically, these limitations can take the form of 

restrictions on the number of Boolean operators allowed per query, as illustrated by 

Science Direct, which accepts a maximum of eight Boolean operators. Similarly, 

Google Scholar imposes a character limit of 256 characters per query. Awareness of 

these limitations must influence the design of the search string to ensure that the most 

relevant literature is identified in line with the research objectives. The search string 

was primarily constructed using Google Scholar as the starting database. This choice 

was motivated by the large size of the Google Scholar database compared to IEEE 

Xplore and Science Direct, which provide a more comprehensive range of literature. 

The extraction from the databases was conducted on the 26th of February, 2023.  

The first research question investigates the explainability of transformer models 

through a systematic literature review. Special attention is given to the explainability of 

transformer model predictions in the field of NLP for industrial maintenance 

applications.  

A limited corpus of literature exists on the explainability of transformer models, with a 

particular focus on industrial maintenance.  This limitation challenged the formulation 

of the search string, and consequently, this specific aspect was excluded from it. The 

decision to exclude it was made to avoid the limitations resulting in a lack of results 

from the systematic literature review. Therefore, it guarantees the inclusion of all 
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relevant literature concerning the industrial maintenance sector in the final search 

result. The comprehensiveness of this approach ensures an exhaustive review of the 

first objective of this thesis. The final search string is shown in Figure 10. A further 

restriction was introduced to the search to reduce the large number of search results 

and increase the density of relevant search results. In addition to the search string 

shown in Figure 10, the terms “explainability” or “interpretability” have to appear in the 

title of each paper. The remaining part of the search string must only appear in the 

abstract, keyword list, or heading for the article to be included. 

 

Figure 10 Search String 

The search string was applied to the databases Google Scholar, IEEE Xplore and 

Science Direct, and the results were extracted. All databases are configured so only 

publications published after 2018 are returned as hits; this limitation was chosen in line 

with (Zonta et al., 2020). This restriction was implemented because research in the 

field of AI explainability, particularly regarding transformer models, is evolving rapidly. 

This ensures that the thesis is based on the state-of-the-art and does not rely on 

outdated methods or findings. Before starting the screening process, defining the 

exclusion criteria for the search results is necessary. These criteria play a crucial role 

in the screening process and help to identify and remove irrelevant resources. The 

following Table 4 lists these exclusion criteria. 

Table 4 Exclusion Criteria 

Exclusion criteria Description 
Criterion 0 Only peer-reviewed publications were considered 

Criterion 1 Remove duplicates 

Criterion 2 Remove publications that only reference other publications 

Criterion 3 Remove publications that do not have transformer AND explainability in the title (or 

synonyms thereof) 

Criterion 4 Remove all publications that are not in English or German 

Criterion 5 Remove all publications that do not address the explainability of transformer models for NLP  

 

transformer AND (explainability OR interpretability) AND (NLP OR "natural 

language processing") 
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The first criterion, 0, excludes all publications which were non-peer-reviewed. Non-

peer-reviewed publications are often at an early research stage and could prove 

inferior in scientific quality. Criterion 1 removes all duplicates to avoid unnecessary 

database expansion and ensures that each study included provides unique 

information. In the next exclusion step, criterion 2, all studies that only reference other 

publications are excluded. These studies do not contain new research results and are 

secondary sources that only reference other works, thereby not improving the quality 

of the database for this thesis. Criterion 3 includes only those publications that contain 

the terms “transformer” and “explainability”, or synonyms of these two terms, in the 

title. This reduces the likelihood of including papers only marginally related to the topic 

or considering it in a different context. Criterion 4 excludes all publications that are not 

written in English or German. The purpose of this exclusion criterion is to avoid possible 

misunderstandings or misinterpretations due to translation errors. After exclusion 

criterion 4, all abstracts of the remaining papers are reviewed. With criterion 5, as the 

last exclusion criterion, all publications not addressing the explainability of transformer 

models are excluded. This criterion ensures the relevance of the selected studies for 

the paper and allows a deeper analysis of the explainability of transformer models. 

Figure 11 below visually outlines the screening process utilized in this thesis, detailing 

how search results from each database were processed and specifying the criteria 

used to exclude publications. After applying all six predetermined exclusion criteria, 34 

relevant studies remained for further review in this thesis.  
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Figure 11 Screening Process 

Table 5 lists all publications included in the systematic literature review after applying 

the six exclusion criteria to the identified papers. In addition to the papers from the 

screening process, other relevant papers that are essential for understanding and 

gaining a comprehensive perspective on the explainability of transformer models were 

identified. These papers are presented in Table 16, located in the appendix of this 

thesis. Including these additional papers aims to ensure a broader perspective and 

increase the thesis’ relevance. Table 5 provides a concise overview of each of the 
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selected papers, indicating whether they are related to industrial maintenance and the 

publication type and source of the initial selection. 

Table 5 Selected Publications from Screening 

Article Aim of the paper Maintenance 
related 

Type First 
selection 
source 

(Attanasio et al., 2022) The paper is a benchmark study for hate speech 

detection with transformer-based NLP models. 

X Conference 

Paper 

Google 

Scholar 

(Alammar, 2021) The paper presents an open-source library, called 

Ecco, which increases transparency of NLP 

transformer models. 

X Conference 

Paper 

Google 

Scholar 

(Vashishth et al., 2019) The paper researches the explainability of 

attention weights in NLP models. 

X Preprint Google 

Scholar 

(Zini & Awad, 2022) The paper presents methods to explain the inner 

workings of deep networks, such as transformer 

models and a comprehensive investigation of 

these methods for NLP models. 

X Journal 

Article 

Google 

Scholar 

(Danilevsky et al., 

2020) 

The paper presents a taxonomy for the 

classification of explanations and identifies the 

most important explainability techniques. 

X Conference 

Paper 

Google 

Scholar 

(Naylor et al., 2021) The paper demonstrates the state-of-the-art in 

the explainability of NLP AI models, such as 

transformer analyzes the concepts of 

explainability and interpretability through a case 

study of mortality prediction in clinical notes.  

X Preprint Google 

Scholar 

(L. Wang et al., 2022) The paper introduces a benchmark to evaluate 

the interpretability of neural models covering 

three NLP tasks: sentiment analysis, textual 

similarity, and reading comprehension. 

X Preprint Google 

Scholar 

(Schwenke & 

Atzmueller, 2021) 

The paper explains transformer models for time 

series classification. The authors present 

interpretation methods that use visualisations to 

reveal the attention patterns of transformer 

models. 

X Journal 

Article 

Google 

Scholar 

(Mylonas et al., 2022) The paper presents a new technique that selects 

the most faithful attention-based interpretation 

method by combining different head, layer, and 

matrix operations. 

X Preprint Google 

Scholar 

(Du et al., 2019) The paper presents a survey of the existing 

interpretability methods to increase the 

interpretability of machine learning. 

X Preprint Google 

Scholar 

(Dong et al., 2022) The paper explores the relationship between the 

word saliency and the word properties to explain 

the predictions of NLP models. 

X Preprint Google 

Scholar 

(Madsen et al., 2023) The paper presents a categorization of post-hoc 

interpretability methods and evaluates the value 

of each method for the human understanding. 

X Journal 

Article 

Google 

Scholar 
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Article Aim of the paper Maintenance 
related 

Type First 
selection 
source 

(Rychener et al., 2023) The paper outlines the limitations of LIME8 and 

SHAP when using complex BERT-based 

classifiers. 

X Conference 

Paper 

Google 

Scholar 

(Rychener et al., 2023) The paper outlines the limitations of LIME and 

SHAP when using complex BERT-based 

classifiers. 

X Conference 

Paper 

Google 

Scholar 

(Molnar, 2021)  The paper presents a guide for making black-box 

AI models explainable. 

X Journal 

Article 

Google 

Scholar 

(Martindale & Stewart, 

2021) 

In the paper a transformer explainability package, 

called TX^2, for Jupiter Notebooks is developed. 

X Journal 

Article 

Google 

Scholar 

(Szczepański et al., 

2021) 

The paper presents an explainability method for 

BERT-based fake news detection models based 

on LIME and anchors. 

X Journal 

Article 

Google 

Scholar 

(Eyzaguirre et al., 

2021) 

The paper presents a modified BERT-based 

model, called DACT-BERT, which has an 

increased interpretability by adding an adaptive 

computation mechanism to the pipeline. 

X Journal 

Article 

Google 

Scholar 

(Arya et al., 2019) The paper presents a toolkit with eight 

explainability methods, two evaluation metrics 

and a taxonomy of explainability methods. 

X Preprint Google 

Scholar 

(Turbé et al., 2022) The paper presents an approach to evaluate the 

performance of interpretability methods for time 

series classification. 

X Preprint Google 

Scholar 

(Sen et al., 2020) The paper compares human versus 

computational attention mechanism for text 

classification. 

X Conference 

Paper 

Google 

Scholar 

(Tamekuri et al., 2022) The paper classifies open-data news documents 

by their theme and proposes an interpretability 

method for this use case. 

X Journal 

Article 

Google 

Scholar 

(Atanasova et al., 

2020) 

In the paper a method is developed for evaluating 

existing explainability methods for text 

classification. 

X Preprint Google 

Scholar 

(Tang et al., 2020) This paper introduces an interpretability approach 

for event extraction that balances generalization 

and interpretability by jointly training a classifier 

and a rule decoder within an encoder-decoder 

architecture. 

X Conference 

Paper 

Google 

Scholar 

(Cheong et al., 2022) This paper evaluates the explainability of 

traditional (XGBoost) and deep learning (LSTM 

with Attention) models on longitudinal healthcare 

data, using SHAP, LRP, and Attention. 

X Preprint Google 

Scholar 

(X. Li et al., 2022) The paper presents a taxonomy for explainability 

methods and surveys the performance metrics of 

the methods. 

X Journal 

Article 

Google 

Scholar 
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Article Aim of the paper Maintenance
related

Type First
selection
source

(Namatēvs et al.,

2022)

The paper presents a taxonomy for explainability

methods and presents the most important

definitions in the context of AI explainability.

X Journal

Article

Google

Scholar

(S. Liu et al., 2021) In the paper two explainability methods, called

AGrad and RePAGrad, are developed. They

produce directional relevance scores based on

the attention weights.

X Conference

Paper

IEEE Xplore

(Adadi & Berrada,

2018)

This paper provides an introduction for

researchers and practitioners to XAI and outlining

future research directions in the literature.

X Journal

Article

IEEE Xplore

(Z. Zhang et al., 2022) This paper presents a transformer, originally

trained on natural language, for sensor fusion

tasks in industrial monitoring. The paper analyses

the model interpretability with the attention

mechanism.

Journal

Article

IEEE Xplore

(Barredo Arrieta et al.,

2020)

This paper presents the challenges in the field of

XAI and introduces a taxonomy for deep neural

networks explainability.

X Journal

Article

Science

Direct

(Jiao et al., 2022) This paper presents a framework for bearing fault

diagnosis using a transformer model. The paper

analyzes the interpretability of the model

prediction by using the attention mechanism.

Journal

Article

Science

Direct

(Lu et al., 2022) This paper introduces a framework, called

ExpDEE, for document-level event extraction that

increases the explainability by detecting

references to sentence-level events during the

extraction process.

X Journal

Article

Science

Direct

(Guo et al., 2022) This paper presents an attention network for tool

wear monitoring in high-speed milling, which

enhances both monitoring accuracy and

interpretability.

Journal

Article

Science

Direct

(Montavon et al., 2018) This paper is an introduction for the explainability

of the predictions of deep neural network models.

The paper focuses on the LRP technique.

x Journal

Article

Science

Direct

3.2 Summary and Results

This chapter presents the results of the systematic literature review on the state-of-the-

art of the explainability of transformer models, with a focus on their application in the

domain of industrial maintenance. This chapter first presents the methodology used for

the systematic literature review. This process includes the definition of the search

string, the definition of the exclusion criteria, and finally the screening of the results. As

part of the screening process, 34 scientific papers were identified that are relevant to
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the state-of-the-art about the explainability of transformer models. The focus here is 

on the domain of industrial maintenance. As mentioned in Section 3.1, there is a limited 

body of literature on the explainability of transformer models, with a particular focus on 

industrial maintenance. Therefore, this aspect was not explicitly included in the 

definition of the search string in order to identify relevant state-of-the-art papers from 

other domains. Figure 12 shows that with the search string defined in Figure 10, a total 

of three papers were identified that address the explainability of transformer models in 

the context of maintenance. 

 

 

Figure 12 Breakdown of Maintenance-Related Screening Results and Non-
Maintenance-Related Screening Results 

In their paper, Guo et al. (2022) present an attention network for tool wear monitoring 

in high-speed milling, which improves both monitoring accuracy and interpretability. 

Jiao et al. (2022) introduce a framework using a transformer model for bearing fault 

diagnosis and analyze the model’s predictions for interpretability using the attention 

mechanism. Similarly, Z. Zhang et al. (2022) use a transformer-based model, trained 

with natural language, for a sensor fusion task. This model is tested on three datasets: 

a hydraulic system dataset, a bearing dataset, and a transmission dataset, with a focus 

on feature extraction. The interpretability of the model is analyzed using the attention 

mechanism (Z. Zhang et al., 2022). 

3

31

Maintenance related Non maintenance related
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These studies by Guo et al. (2022), Jiao et al. (2022), and Z. Zhang et al. (2022) are 

all maintenance-related and investigate interpretability through the attention 

mechanism. Conversely, other works that are not maintenance-related, such as the 

paper by Attanasio et al. (2022) on hate speech detection, conclude that SHAP and 

SOC provide more plausible and trustworthy explanations for predictions than 

gradient-based and attention-based methods. This conclusion is further supported by 

Turbé et al. (2022), which addresses the interpretability of neural networks in time 

series classification, finding that SHAP and Integrated Gradients offer the most 

effective explanations for their datasets. 

This analysis demonstrates that all three maintenance-related papers rely on the 

attention mechanism for interpretability. However, the screening did not identify any 

papers that explain the predictions of transformer models in the field of industrial 

maintenance using post-hoc methods such as SHAP or LIME. In contrast, numerous 

other studies, such as those by Turbé et al. (2022) and Attanasio et al. (2022), illustrate 

that in other domains, post-hoc methods like SHAP provide the most effective 

explanations for AI predictions. Consequently, this state-of-the-art analysis highlights 

a significant research gap. While the attention mechanism is commonly used for the 

interpretability of transformer models in maintenance-related studies, there is a notable 

absence of studies applying post-hoc explainability methods such as SHAP or LIME to 

transformer model predictions in the field of industrial maintenance. In contrast, 

numerous studies in other domains demonstrate the superiority of post-hoc methods 

like SHAP for providing effective explanations for predictions. This gap indicates the 

contribution of this thesis to the scientific literature: the explainability of transformer 

model predictions in industrial maintenance using a post-hoc method, namely SHAP. 
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4 Transformer Models for Zero-Shot Event 
Extraction in Industrial Use-Cases 

The development of transformer models, such as BERT or GPT models, is a complex 

and computationally intensive process (Dankar et al., 2023). This is due to the 

necessity of immense computational resources, extensive data preprocessing, and 

robust infrastructure to effectively manage and train their high number of parameters. 

With the introduction of the transformer by (Vaswani et al., 2017), a transformer 

translation model was trained from scratch. This model was trained on numerous 

sentence pairs in different languages. However, in most use cases for NLP with 

transformer models, there is too little or no annotated data to train a model in this way 

(Tunstall, 2022). Also, for industrial applications, the annotated data required to train a 

transformer model in this way must be improved. In addition, implementing transformer 

models would be very complex and resource-intensive, making them from scratch-

implementation unattractive for industrial use. The solution to these challenges is the 

concept of transfer learning, introduced in Section 2.3.6, which enables fine-tuning of 

pre-trained models to adapt to specific tasks with less data and fewer computational 

resources. 

In the first Section, 4.1, of this chapter, the Hugging Face Transformers library is 

introduced, followed by the presentation of four selected models from this library that 

have been specifically optimized for zero-shot event extraction. Section 4.2 then 

evaluates the event extraction capabilities of these four models within the realm of 

industrial maintenance scenarios, addressing Research Question 2 (RQ2). The model 

exhibiting superior performance in this evaluation, detailed in Section 4.2.2, is chosen 

as the foundational model for the TEEE, the artefact of this thesis, introduced in Section 

4.4. 

Following the model selection of TEEE’s event extraction capabilities, the next step 

involves identifying the most suitable explainability framework for explaining the 

predictions made by the applied transformer model. To address this sub-goal, in 

Section 4.3 the relevant explainable artificial intelligence (XAI) model terminology is 

introduced. Thereafter, Section 4.3.2 presents the dimensions of explainability for 

transformer models, setting the groundwork for the introduction of a taxonomy for 

transformer model explainability for event extraction in Section 4.3.3. Utilizing this 
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taxonomy, the most effective method for elucidating the predictions of the TEEE is 

determined. 

4.1  Hugging Face Transformer Models 

After transformers became very popular in the field of NLP in 2018 through the 

ULMFiT9 framework (Howard & Ruder, 2018), it was difficult for different research 

institutes to develop their transformer models in different frameworks (e.g., PyTorch or 

TensorFlow). This made it also difficult for companies and others interested in NLP to 

use the transformer models developed by large institutions such as Google or OpenAI 

in practical applications. The open-source library developed as Hugging Face 

Transformers could resolve these problems (Tunstall, 2022). The Hugging Face 

Transformers library offers a variety of pre-trained models for different NLP 

applications. Therefore, fine-tuned multilingual models for zero-shot event extraction 

are used for the practical part of this thesis. The following section presents and 

evaluates the four most exciting models for zero-shot event extraction in English and 

German from the Hugging Face Transformers library for the industrial use case in this 

thesis (Tunstall, 2022). 

The model mDeBERTa-v3-base-mnli-xnli (referred to as Transformer Model 1) is 

based on a model introduced by Microsoft called DeBERTaV3 (He et al., 2023), which 

was pre-trained on the CC100 dataset by Conneau et al. (2020). Laurer et al. (2022) 

subsequently fine-tuned the mDeBERTa model for the downstream task of multilingual 

zero-shot event extraction. For fine-tuning, they used the XNLI (Conneau et al., 2018) 

and MNLI (Williams et al., 2018) datasets (Laurer et al., 2022). 

The model multilingual-MiniLMv2-L6-mnli-xnli (referred to as Transformer Model 2) 

is based on the MiniLM-L6 (W. Wang et al., 2020) model by Microsoft and was distilled 

from the XLM-RoBERTa-large (Conneau et al., 2020) model. Distillation in the AI 

context means that a smaller model, in this case, MiniLM-L6, has been trained to 

imitate the behaviour of a larger model (XLM-RoBERTa-large). The main advantage 

of distillation is that the smaller model can run faster and use less computational 

resources than the larger language model while trying to maintain the performance of 

the larger model (Hsieh et al., 2023). Laurer et al. (2022) subsequently fine-tuned the 
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MiniLM-L6 model for the downstream task of multilingual zero-shot event extraction. 

For fine-tuning, they used the XNLI (Conneau et al., 2018) and MNLI (Williams et al., 

2018) datasets (Laurer et al., 2022). 

The model xlm-v-base-mnli-xnli (referred to as Transformer Model 3) is based on a 

model introduced by Meta AI called XLM-V-base (Liang et al., 2023), which was pre-

trained on the CC100 dataset by Conneau et al. (2020). Laurer et al. (2022) 

subsequently fine-tuned the XLM-V-base model for the downstream task of multilingual 

zero-shot event extraction. For fine-tuning, they used the XNLI (Conneau et al., 2018) 

and MNLI (Williams et al., 2018) datasets (Laurer et al., 2022). 

The model ernie-m-large-mnli-xnli (referred to as Transformer Model 4)  is based on 

a model introduced by Meta AI called RoBERTa (Y. Liu et al., 2019), which was pre-

trained on the CC100 dataset by Conneau et al. (2020). Ouyang et al. (2021) 

subsequently fine-tuned the RoBERTa model for the downstream task of multilingual 

zero-shot event extraction. For fine-tuning, they used the XNLI (Conneau et al., 2018) 

and MNLI (Williams et al., 2018) datasets. The ERNIE-M model outperforms similar 

RoBERTa models of the same size (Laurer et al., 2022). 

4.2  Evaluation of Transformer Models for Event Extraction 
in Industrial Maintenance 

4.2.1 Evaluation Methodology 

In this section, the four models presented in the previous section are evaluated in terms 

of how they perform in the downstream task of zero-shot event extraction in industrial 

maintenance. The models were selected from a total of 14 models that support both 

English and German and are fine-tuned for this task in the Hugging Face Transformer 

library (as of 30.06.23). The four models that were chosen are mDeBERTa-v3-base-

mnli-xnli, multilingual MiniLMv2-L6-mnli-xnli, xlm-v-base-mnli-xnli, and ernie-m-large-

mnli-xnli. These models have been chosen because they are based on foundational 

models from well-known organizations and are all state-of-the-art. These models are 

directly relevant to the objective of this thesis, as they having been explicitly developed 

for zero-shot event extraction using different approaches to address this problem. The 
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evaluation of all 14 models is irrelevant to this thesis, as the four selected models are 

a representative sample of the 14 models. 

Two different evaluation datasets have been used to gather relevant benchmarks to 

evaluate the models. One of the datasets, comprising 40 entries, contains one event 

for each sentence, while the other dataset, also comprising 40 entries, always contains 

two events per sentence. Both datasets were translated into English to evaluate the 

models’ ability to process English and German texts. This results in four different 

datasets on which the models are evaluated. These datasets are fictitious and are 

related to industrial maintenance. However, it closely resembles scenarios that can 

occur within industrial settings, which provides a credible context for assessing the 

models. This ensures that the evaluation is based on a context reflecting possible real-

world applications, even though the data is not from real-world applications. The 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑔𝑒𝑟𝑚𝑎𝑛 dataset, written in German, assigns one specific event to 

each entry, while the 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑒𝑛𝑔𝑙𝑖𝑠ℎ, written in English, follows the same 

pattern. The 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑔𝑒𝑟𝑚𝑎𝑛_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 dataset assigns two specific events to 

each entry, while the 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑒𝑛𝑔𝑙𝑖𝑠ℎ_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 dataset also follows the same 

pattern. The 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑔𝑒𝑟𝑚𝑎𝑛 and 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑒𝑛𝑔𝑙𝑖𝑠ℎ datasets each 

contain six unique events and comprise 40 observations each. In contrast, the 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑔𝑒𝑟𝑚𝑎𝑛_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 and 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑒𝑛𝑔𝑙𝑖𝑠ℎ_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 datasets 

each have twelve unique events and comprise 80 observations each. In Table 6 below 

are some examples of one entry from each dataset. 

Table 6 Example Entries with Corresponding Events from the Various Datasets 

Dataset Entry Event 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑔𝑒𝑟𝑚𝑎𝑛 Die Drehmaschine hat plötzlich 

aufgehört zu arbeiten. 

Maschinenstopp 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑒𝑛𝑔𝑙𝑖𝑠ℎ The late has suddenly stopped working. Machine stop 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑔𝑒𝑟𝑚𝑎𝑛_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 

 

 

 

 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑡𝑒𝑠𝑡_𝑒𝑛𝑔𝑙𝑖𝑠ℎ_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 

Die Maschine hat den Betrieb wieder 

gestoppt, und während des Betriebs 

wurden übermäßige Vibrationen 

beobachtet. 

The machine has stopped operation 

again, and excessive vibrations were 

observed during operation. 

Maschinenstopp, 

Übermäßige Vibrationen 

 

 

Machine stop, Excessive 

vibration 

 

The evaluation of a language model, particularly in the context of classification and 

event extraction, is often assessed using accuracy as the primary metric. Accuracy is 
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the percentage of correct model predictions out of all model predictions, as shown in 

Equation 1 (Hossin & M.N, 2015).  

Equation 1 Accuracy (Sokolova et al., 2006) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑡𝑝 + 𝑡𝑛𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 + 𝑡𝑛 

An accuracy of 1 means that all the predictions made by the model are correct, while 

an accuracy of 0 means the exact opposite. In this case, these are the correct extracted 

events in a dataset unknown to the model. 

The following accuracy values are determined for the four models using the four 

datasets as follows: Accuaracy_single_event_german, Accuaracy_single_event_english, Accuaracy_multiple_event_german, Accuaracy_multiple_event_english. 

The F1 score is another important metric for evaluating several NLP downstream 

tasks; the formula is shown in Equation 2. 

Equation 2 F1 Score (Sokolova et al., 2006) 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

The F1 score is the harmonic mean of a model’s precision and recall. The precision of 

a model is the ratio of true positive predictions to the sum of true and false positive 

predictions. Therefore, the precision of a model indicates how many of the positive 

predictions are actually positive. The recall is the ratio of true positive predictions to 

the sum of true positive and false negative predictions. Recall indicates how many of 

the true positive predictions were correctly predicted by the model. 

The following accuracy values are determined for the four models using the four 

datasets as follows: F1_single_event_german, F1_single_event_english, F1_multiple_event_german, F1_multiple_event_english. 

The model runtime is the computational time the model requires to perform its task 

on a given dataset. In the context of this thesis, it is the time a model takes to perform 

event extraction on the evaluation datasets. This evaluation metric is crucial for this 

thesis as it allows the evaluation of the model’s efficiency. For this thesis, a model with 

a high accuracy and F1 score but a very high runtime would not be optimal, as quick 

decisions are required, especially in industry. Conversely, models with a slightly lower 



Transformer Models for Zero-Shot Event Extraction in Industrial Use-Cases 40 

accuracy and F1 score but a much better runtime are usually the best choice for most 

applications. 

The model runtime for the four selected models is calculated for each of the four 

datasets:  Runtime_single_event_german, Runtime_single_event_english, Runtime_multiple_event_german, and Runtime_multiple_event_english. 

To determine the model runtime, the computing power of the hardware on which the 

model runs is decisive. For this evaluation, model runtimes are measured on a 2018 

Apple MacBook Pro with a 6-core Intel i7 processor clocked at 2.6GHz, 16GB of DDR4 

memory, and a Radeon Pro 560X graphics card with 4GB of GDDR5 memory. 

4.2.2 Evaluation Results 

In this section, the models are evaluated quantitatively and qualitatively on four fictional 

industrial maintenance datasets.  

Quantitative Results: The following Table 7 and Table 8 show the evaluation results of 

the four models for the downstream tasks of zero-shot event extraction with industrial 

maintenance datasets. In the interest of clarity, the evaluation results of the models 

have been split into two separate tables. Each table shows the scores for two of the 

models. Table 7 presents the quantitative evaluation results of the transformer model 

1 and 2. 
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Table 7 Quantitative Evaluation Transformer Models 1 & 2 

 Transformer Model 1 Transformer Model 2 

Base Model Name DeBERTaV3 base XLM-RoBERTa-large 

Base Model pretraining Dataset CC100 multilingual 2.5TB of filtered Common 

Crawl data 

Fine-tuned Model Name MoritzLaurer/mDeBERTa-v3-base-

mnli-xnli 

MoritzLaurer/multilingual-

MiniLMv2-L6-mnli-xnli 

Fine-tuned Model pretraining Datasets XNLI, MNLI XNLI, MNLI Accuaracy_single_event_german 0,85 0,68 Accuaracy_single_event_english 0,98 0,75 Accuaracy_multiple_event_german 0,16 0,38 Accuaracy_multiple_event_english 0,55 0,50 F1_single_event_german 0,85 0,68 F1_single_event_english 0,97 0,76 F1_multiple_event_german 0,13 0,34 F1_multiple_event_english 0,54 0,48 Runtime_single_event_german 424,16 seconds 26,19 seconds Runtime_single_event_english 447,88 seconds 27,55 seconds Runtime_multiple_event_german 794,77 seconds 46,83 seconds Runtime_multiple_event_english 941,55 seconds 68,98 seconds 

 

Table 8 presents the quantitative evaluation results of transformer model 3 and 4. 

Table 8 Quantitative Evaluation Transformer Models 3 & 4 

 Transformer Model 3 Transformer Model 4 

Base Model Name XLM-V-base model RoBERTa 

Base Model pretraining Dataset 2.5TB of filtered Common Crawl data CC100 

Fine-tuned Model Name MoritzLaurer/xlm-v-base-mnli-xnli MoritzLaurer/ernie-m-large-

mnli-xnli 

Fine-tuned Model pretraining Datasets XNLI, MNLI XNLI, MNLI Accuaracy_single_event_german 0,93 1,00 Accuaracy_single_event_english 0,90 0,94 Accuaracy_multiple_event_german 0,14 0,22 Accuaracy_multiple_event_english 0,55 0,55 F1_single_event_german 0,92 1,00 F1_single_event_english 0,90 0,94 F1_multiple_event_german 0,11 0,22 F1_multiple_event_english 0,54 0,53 Runtime_single_event_german 135,00 seconds 478,27 seconds Runtime_single_event_english 137,71 seconds 420,450seconds Runtime_multiple_event_german 249,74 seconds 841,77 seconds Runtime_multiple_event_english 332,92 seconds 965,70 seconds 

 

Qualitative Results: The qualitative analysis aims to compare the strengths and 

weaknesses of each model in practical applications. The numerical results of the 
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quantitative results and the conclusions of the qualitative analysis are used to find the 

overall best model for the use case of zero-shot event extraction for the industrial 

maintenance sector. 

The transformer models employed in this thesis are based on widely used models, 

such as DeBERTaV3, XLM-RoBERTa, XLM-V, and RoBERTa. To ensure a uniform 

benchmark test, the models underwent fine-tuning on identical datasets, namely XNLI 

and MNLI. 

When evaluating the accuracy and F1 scores, Model 4, in particular, stands out with 

the highest F1 scores and accuracy levels for the extraction of single events in German 

and English. Model 3 demonstrates good F1 scores and accuracy in extracting single 

events in German and English. However, it produced the worst results in extracting 

multiple German events. Model 2 obtains the lowest F1 scores and accuracy values 

on average, but it can achieve the most stable results across all aspects, including 

German, English, and single or multiple event extraction. Model 2 achieved the highest 

F1 score and accuracy for multiple event extraction in German. Model 1 demonstrates 

good F1 scores and accuracy in extracting single events in German and English. 

However, the model did not achieve a good F1 score or accuracy in extracting multiple 

German events. 

The models should be highly efficient in processing German and English use cases, 

and extracting single or multiple events. The quantitative evaluation results show 

significant differences in performance between the four models for extracting single 

and multiple events. All four models have the worst accuracy and F1 score 

performance when extracting multiple German events. Nevertheless, this is a critical 

aspect of this thesis, as most maintenance texts in the German-speaking area are in 

German and contain multiple events per sentence. 

Looking at the runtimes of the models, it is evident that Model 2 outperforms the rest 

in both languages and tasks, making it the most effective among the analyzed 

transformer models. 

Model Selection: Based on the presented qualitative and quantitative results, 

selecting the best model for zero-shot event extraction in the industrial maintenance 

sector requires a careful balance between performance and efficiency. Maintaining a 

balance between the two factors is of significant importance, as high performance 



Transformer Models for Zero-Shot Event Extraction in Industrial Use-Cases 43 

ensures accurate and reliable event extraction, essential for informed maintenance 

decisions. Efficiency is equally important in practical use, given the constraints on 

computational resources, real-time processing, and cost-effectiveness present in 

industrial environments. Although a complex model is usually highly accurate, it is 

impractical in industrial environments due to the high computational requirements, 

slower processing times, and higher costs. Consequently, the optimal model must 

prioritize efficiency while providing high accuracy to meet the application’s resource-

constrained and time-critical industrial requirements. Figure 13 presents the single 

event accuracy and the single event F1 scores. Model 4 produces the best results in 

German, while Model 1 produces the best results in English. In contrast, Model 2 

delivers the worst results in both languages. 

 

Figure 13 Single Event Accuracy and F1 Score 

Figure 14 presents the multiple event accuracy and the multiple event F1 scores. All 

models yield comparable outcomes in the extraction of multiple English events. Model 

2 demonstrates superior performance in the extraction of multiple German events, 

which is crucial for the practical application of this thesis. 
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Figure 14 Multiple Event Accuracy and F1 Score 

Figure 15 presents the runtime for single and multiple event extraction. This 

comparison demonstrates that the runtimes of Model 1 and Model 4 range from 400 to 

almost 1000 seconds, respectively. Model 2 is the only model to have runtimes of less 

than 100 seconds for all tasks and for both German and English event extraction, which 

is a significant advantage in the practical application of industrial maintenance.  

Figure 15 Runtime Single- and Multiple Event 

 

It is important to highlight the clear superiority of Model 2 in multiple event extraction 

in German, as shown in Figure 14. The remaining models achieve results that are at 

least 33% worse than those of Model 2 in the multiple event extraction task in German. 
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Model accuracy can be significantly enhanced through further research and model 

fine-tuning in the context of industrial maintenance. Therefore, the consistent and 

stable performance of Model 2 across all categories, combined with its superior runtime 

efficiency in both German and English for single and multiple events, makes it the best-

suited model for this thesis. Although it may not achieve the highest scores in all fields, 

its outstanding efficiency aligns best with the requirements of the targeted use case in 

the industrial maintenance sector in the German-speaking region.  

TEEE is primarily intended to support decision-making in industrial maintenance 

processes. For an AI application to be used as an instrument in real decision-making 

processes, the tool should be both accurate and transparent. This connection is crucial 

because the selected model’s applicability in real industrial scenarios should be 

complemented by its transparency and comprehensibility. The focus on explainability 

in the following chapters is a natural progression from model selection to ensure that 

the chosen model is effective and meets the increasing demand for clarity and 

confidence in AI applications. 

4.3  Explainability of Transformer Models 

In recent years, the application of AI has increased significantly in many sectors. The 

increase in the number of AI publications is shown in Figure 16. The current results 

achieved with AI applications are promising and show a high potential for further 

improvements. In almost all sectors, it is crucial for AI models to not only produce 

significant results but also to be explainable to gain the trust of all stakeholders. This 

critical aspect of AI development is called explainable artificial intelligence (XAI). XAI 

aims to break down the black-box nature of AI models to increase stakeholders’ 

confidence in the model’s predictions. Trustworthiness is essential for using AI models 

in critical areas such as medicine and management. Current research has focused on 

the application of AI, but now the issue of XAI must be addressed, especially in the 

area of transformer models (Barredo Arrieta et al., 2020). 
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Figure 16 Number of AI Publications in the World 2010-2021 (The AI Index Report 
2022 – Artificial Intelligence Index, 2022) 

In Section 4.3.1, the terminology of explainability and interpretability is discussed as 

they are often incorrectly used as synonyms. Subsequently, to establish a taxonomy 

for the explainability of transformer models, the basic dimensions of transformer 

explainability (local/global, ante-hoc/post-hoc, model-agnostic/model-specific) are 

introduced in Section 4.3.2. This taxonomy is established in Section 4.3.3, based on 

which the most appropriate explainability method for NLP transformer models is 

selected. This is based on the method proposed by Liu et al. (2021), which specifically 

addresses the explainability of transformer models in text classification. This work 

focuses on the explainability of transformer models, a sub-area of deep neural 

networks.  

Transformer models rely on the self-attention mechanism, through this mechanism, 

every word in a sentence can be related to every other word, increasing the contextual 

understanding of the model. As a result, transformer models can capture contextual 

relationships better than conventional ML models. However, due to this self-attention 

mechanism, the decision-making process is far more complex than with conventional 

ML models (Vaswani et al., 2017). In addition, most transformer models are based on 

large pre-trained models such as BERT or GPT models, which have been trained on 

large amounts of text data. Pre-training and subsequent fine-tuning use transfer 

learning to adapt these models to specific downstream tasks (Howard & Ruder, 2018). 

For this reason, the following sections focus on the relevant methodologies for deep 

neural networks. Section 4.3.1 defines key XAI model explainability terms, forming the 

basis for a taxonomy of transformer model explainability for event extraction in Section 
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4.3.3. Using this taxonomy, the most effective method to elucidate the predictions of 

this thesis’s artefact, the TEEE, is identified. 

4.3.1 XAI Terminology 

Responsible Artificial Intelligence (RAI) is introduced before defining XAI terminology, 

i.e., a sub-area of RAI. Dignum (2017) introduced the concept of RAI. He described 

the characteristics of accountability, responsibility and transparency as the “ART” of 

AI. Benjamins et al. (2019) list the attributes of explainability, fairness, human-

centricity, and privacy & security as the main characteristics of an RAI. Besinger et al. 

(2023) added the dimensions of Green AI and Accountable AI to optimize the RAI 

concept for the manufacturing sector.  According to Besinger et al. (2023), the 

manufacturing domain of RAI  encompasses the following dimensions: Accountable AI 

(AAI), Explainable AI (XAI), Fair AI (FAI), Human-Centric AI (HCAI), Green AI (GAI), 

and Privacy & Security. Figure 17 illustrates the interaction of the individual RAI 

domains. For this thesis, the XAI domain is primarily relevant. 

 

Figure 17 Responsible AI for the Domain of Manufacturing (Besinger et al., 2023)  

In order to be consistent throughout this thesis, in the following sections important XAI 

terminology, i.e., interpretability, explainability, black-box and white-box models are 

introduced. 
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The definition of interpretability and explainability varies in the literature, and there 

is a need for more terminological clarity. However, the concepts of interpretability and 

explainability are fundamentally different, and this misuse of terminology prevents the 

harmonization of terminology in the field of XAI (Barredo Arrieta et al., 2020). 

Numerous definitions of interpretability and explainability have been proposed in the 

existing literature. According to Gilpin et al. (2019), interpretability is defined as the 

goal of elucidating the inner workings of systems in a way that is understandable to 

humans. This definition is close to those of the authors (Doshi-Velez and Kim, 2017, 

p.2): “Interpretability is the ability to explain or to present in understandable terms to a 

human”. Many other definitions of interpretability exist in the scientific literature. The 

core message of most definitions is that interpretability is the ability of a system to be 

understood by humans. 

In contrast, for Barredo Arrieta et al. (2020), explainability can be seen as an active 

characteristic of a model. Explainability involves any action or procedure that explains 

the output of a model’s prediction. According to the definition proposed by Montavon 

et al. (2018), explainability is a compilation of features within the interpretable range 

that contribute to the decision-making process for a specific example. In the survey by 

the authors (Namatēvs et al., 2022, p.308 ), they define the terminology of explainability 

as follows: “Explainability means the ability by which a human can justify the cause of 

the explanatory rule of the deep learning (DL) model’s results.” Once the terminology 

between interpretability and explainability has been established, it should be noted that 

all the following sections and the practical part of this work refer to explainability, 

especially regarding transformer models. 

Before defining the terms white-box and black-box models, it is necessary to clarify 

what model transparency means. In broad terms, a model is considered transparent 

if it is understandable. White-box models are always transparent and therefore 

explainable by design. Such models require no further explanation to be considered 

explainable. In recent years, DNNs have become increasingly important due to their 

empirical success in various fields of AI, especially in NLP (Barredo Arrieta et al., 

2020). Transformer models belong to the category of DNNs. DNNs have many layers 

and parameters, and their internal workings are not easily understood; therefore, DNNs 

are considered black-box models. 
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Black-box models are the opposite of white-box models, as shown in Figure 18. In 

black-box models, the input and output are known, but everything in between is a black 

box, which is the opposite of transparent (Castelvecchi, 2016). This work focuses on 

the explainability of transformer models, which are black-box models. For this reason, 

the following explainability methodologies refer to the explainability of black-box 

models. 

 

Figure 18 Black-box Model and White-box Model 

4.3.2 Dimensions of Transformer Model Explainability 

In the subsequent sections, the key dimensions of transformer model explainability are 

introduced to establish a taxonomy for the explainability of transformer models in 

Section 4.3.3. 

The terms local and global explainability are often used in the XAI literature. This 

distinction is referred to as the scope of explainability in this thesis. There are many 

definitions of local and global explainability in the literature, but there is general 

agreement on the fundamental meaning of these terms. Local explainability focuses 

on the explainability of each prediction outcome. The goal of local explainability is to 

evaluate the contribution of each input feature to the produced output; for example, in 

text classification, each word in the input text is evaluated for its contribution to the final 

classification. Local explainability is concerned with resolving the question: What is the 

reason for a particular decision made by the model (Namatēvs et al., 2022)? 

In contrast, global explainability focuses on the explainability of the model itself rather 

than its predictions. Global explainability describes the behaviour of the model. The 

logic of the model can be followed from the input to output (Arya et al., 2019). This 
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thesis aims to break down the black-box nature of the transformer model’s predictions 

to increase the confidence of the stakeholders. Therefore, the explainability of 

individual predictions is essential, which is why the practical part of this thesis focuses 

on local explainability. 

According to Namatēvs et al. (2022), explainability methods can be categorized into 

model-specific and model-agnostic, based on their methodological view of 

explanation. Model-specific explainability methods explain a particular model based on 

its unique architecture and decision-making processes (Adadi & Berrada, 2018). 

Model-specific explainability methods analyze the inner workings of the network (Du et 

al., 2019). Model-specific methods can be applied to a particular class of models 

(Namatēvs et al., 2022). 

Model-agnostic methods are used to explain black-box models. Model-agnostic 

methods are not limited in their application to a particular class of models (Namatēvs 

et al., 2022). They require access to the predictive function of the model to explain it. 

For the explanation of DL models, especially transformer models, model-agnostic 

methods are used post-hoc (Zini & Awad, 2022). Post-hoc terminology is specified in 

the following. 

Ante-hoc originates from Latin and means “before”. Ante-hoc explainability methods 

are built into the architecture of a model and are incorporated into the development 

process. Ante-hoc explanations illustrate the rationale behind the decision-making 

process between model input and output. Ante-hoc explainability is generally 

considered an intrinsic approach to model explainability. In the scientific literature, the 

terms self-explaining or directly interpretable methods are often used for ante-hoc 

explanations (Namatēvs et al., 2022). 

In contrast to ante-hoc explanations, post-hoc methods require further steps after the 

model prediction, such as a second model to provide the explanations (Danilevsky et 

al., 2020). Post-hoc explanations address the decision-making process of a trained 

model that is not explainable by design and the relationships between each input 

feature and the prediction results (Turbé et al., 2022). Generally, post-hoc approaches 

offer more flexibility in their application to different models, but they provide less 

explanation about the DL model. Post-hoc methods do not explain the internal 
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workings of the model. However, they explain how the output is generated, such as by 

identifying the relevant input features for the final output (Namatēvs et al., 2022).  

Perturbation-based methods evaluate the importance of input features for the final 

output by systematically perturbing the input feature and evaluating the changes in the 

output (S. Liu et al., 2021). Perturbations can include masking, removing, or changing 

input features. Perturbations can be achieved by permuting the feature values or 

replacing the feature values with a random sample from a uniform distribution. Based 

on these perturbations, the different input features are evaluated for their contribution 

to the output (Namatēvs et al., 2022). According to Namatēvs et al. (2022), 

perturbation-based methods rely on the manipulation (altering, removing or deleting) 

of input features or intermediate layers (activations). 

Gradient-based explainability approaches calculate the rate of change of the output 

with respect to input changes (Atanasova et al., 2020). In gradient-based methods, the 

gradients are used to measure the change in the prediction within a local environment 

around the original point when certain input features are changed. In the scientific 

literature, many variants of gradient-based methods are mentioned. In this work, the 

term gradient-based methods is used broadly to refer to the current state-of-the-art 

gradient-based methods that sum up the gradient value at multiple points (S. Liu et al., 

2021). 

According to Liu et al. (2021), propagation-based methods are defined as methods 

that propagate layer by layer from the model output to the input features. This method 

of propagation is known as backward propagation. In the scientific literature, various 

propagation rules, such as forward propagation, are detailed (S. Liu et al., 2021). A 

further definition of  propagation-based explainability methods is given by (Namatēvs 

et al., 2022, p.319): “Explainability of the DL model can be explained by considering 

the deep network as a function (each neuron or group of neurons) by using gradient 

and backpropagation axioms of the function of interest to define the explanatory rule.” 

Before clarifying the definition of attention-based methods, the term attention map 

needs to be defined. According to Sen et al. (2020), an attention map can be defined 

as a vector where each vector value is associated with a word positioned at the 

corresponding location within the text being analyzed. The vector values indicate the 

relevance of the corresponding word for a classification task. This is also called the 
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level of attention (Sen et al., 2020). Attention-based methods focus on understanding 

the logic behind DNNs with self-attention maps (S. Liu et al., 2021). Attention-based 

explainability methods are used in sequence-based tasks and work with a conditional 

distribution over a given input sequence of variable size. A weighted combination of all 

encoded input vectors is then calculated. These weights reflect the relevance of the 

input features to the output. The higher the weights, the greater the relevance of an 

input feature. If this calculation is performed for only one input sequence of the model, 

it is called self-attention (Namatēvs et al., 2022). 

The following Table 9 shows a comparison matrix of perturbation-, gradient-, 

propagation-, and attention-based explainability methods. 

Table 9 Feature Matrix of Perturbation-, Gradient-, Propagation-, and Attention-Based 
Explainability Methods 

Feature Perturbation-based Gradient-based Propagation-based Attention-based 
Principle Systematically alters 

the input feature and 

evaluates the changes 

in the output. 

Compares gradients 

of output with respect 

to input. 

Propagate layer by 

layer from the model 

output to the input 

features. 

Use attention weights 

as importance 

measures. 

Explainability scope Local Local and global Local and global Local 

Methodological 

explanatory 

Model-agnostic Model-specific Model-specific Model-specific 

Examples SHAP, LIME Grad-CAM (Gradient-

weighted Class 

Activation Mapping) 

LRP (Layerwise 

Relevance 

Propagation) 

Self-Attention 

Mechanism 

Strengths No model modification 

needed (works with 

any model). Intuitive to 

understand. 

Precise and detailed 

explanations. 

Robust against model 

changes if well 

implemented. 

Easy to visualize and 

interpret. 

Weaknesses Computationally 

intensive (resource-

heavy). 

Requires gradient 

information. 

Depends on network 

architecture. 

Understanding of 

model internals 

necessary. 

Only useful for 

attention-based 

models. Attention 

weights not always 

correlate with 

importance. 

 

4.3.3 Transformer Explainability Taxonomy 

Several basic approaches are currently being adopted in research on the classification 

of XAI. Barredo Arrieta et al. (2020) have provided a taxonomy that distinguishes 

between local and global explanations and also between model-agnostic and model-

specific explanations. This taxonomy, or similar ones, is very common in the literature. 
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In their paper, Adadi & Berrada (2018) distinguish between the same two explainability 

approaches as Barredo Arrieta et al. (2020) in the context of model explainability. The 

taxonomy of Arya et al. (2019) focuses on the following questions: 

- What is explained (data or model)?  

- How is it explained (ante-hoc or post-hoc)?  

- At what scale is it explained (local or global)? 
 

In their paper, Liu et al. (2021) present a taxonomy for the explainability of transformer 

models, particularly for NLP applications. The taxonomy proposed by Liu et al. (2021) 

is used as the basic framework, providing a comprehensive basis for analysis. 

Additionally, this work extends the taxonomy by including relevant additional 

dimensions that contribute to a more comprehensive classification of the explainability 

of transformer models. 

According to Liu et al. (2021), explanation methods for DNNs can be divided into 

perturbation-based, gradient-based, propagation-based, and attention-based 

methods. The terminology of these methods has already been introduced in Section 

4.3.2. To increase the applicability of the taxonomy framework introduced by Liu et al. 

(2021) to a wide range of transformer applications, several additional dimensions are 

incorporated into the taxonomy introduced in this thesis. These additional dimensions 

expand the scope of the taxonomy and enable a more comprehensive and 

multipurpose classification system for the explainability methods of transformer 

models. The taxonomies proposed by Barredo Arrieta et al. (2020) and Arya et al. 

(2019) serve as valuable references in developing the taxonomy framework in this 

work. An overview of the taxonomy introduced in this thesis can be found in Table 10. 
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Table 10 Taxonomy for the Explainability of Transformer Models 

Explainability Taxonomy Characteristics 
Explainability scope Global 

explainability 

Local 

explainability 

  

Methodological 

explanatory 

Model-

specific 

Model-

agnostic 

  

Explainability stage Ante-hoc 

explainability 

Post-hoc 

explainability 

  

Explainability methods for 

NLP 

Perturbation-

based 

methods 

Gradient- 

based 

methods 

Propagation 

based 

methods 

Attention 

based 

methods 

 

The taxonomy introduced in this thesis includes the dimensions of explainability 

methods for NLP, stage of explainability, methodological explanatory, and scope of 

explainability. In the practical part of this thesis, the evaluation of explainability focuses 

on several transformer models that have been fine-tuned, especially for event 

extraction tasks. Given the need to assess explainability across multiple models, a 

local, model-agnostic, post-hoc explainability method is employed. Considering these 

aspects, two specific explainability methods, namely SHAP introduced by Lundberg & 

Lee (2017) and LIME (Local Interpretable Model-agnostic Explanations) introduced by 

Ribeiro et al. (2016), stand out prominently within the scientific literature. Therefore, 

SHAP and LIME are introduced in this section. 

LIME (Local Interpretable Model-agnostic Explanations) is an explainability 

method that explains the predictions of various models. It achieves this by creating a 

local approximation of the model’s prediction using an interpretable model. When 

considering a complex model at a local level, it can be observed that any complex 

model is linear at this level. This insight allows an excellent local approximation using 

an interpretable model (Ribeiro et al., 2016). In the context of LIME, the original 

instance is first altered to obtain a new set of samples. These perturbed samples are 

then used to make predictions with the complex model 𝑓. Subsequently, the samples 

are assigned weights based on their proximity to the original instance 𝑥. The weighting 

function is given by Equation 3 (Ribeiro et al., 2016): 
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Equation 3 LIME weighting function (Ribeiro et al., 2016) 𝜋b(𝑧) = exp (− 𝐷(𝑥, 𝑧)T𝜎T ) 

In this equation, 𝐷(𝑥, 𝑧) represents the distance between 𝑥 and the perturbed sample 𝑧 with the width 𝜎. The next step is to train a simple model 𝑔 based on the 

aforementioned weights to approximate 𝑓 by 𝑥. This is achieved by minimizing 

Equation 4 (Ribeiro et al., 2016). 

Equation 4 LIME function (Ribeiro et al., 2016) 𝜁(𝑥) = argmin^ ∈ Y J 𝜋b(𝑧)(𝑓(𝑧) − 𝑔(𝑧d))Tc,ce∈ ]  

In Equation 4, 𝐺 represents the class of interpretable models, 𝑍 represents the dataset 

of perturbed samples with the associated labels, and 𝑧d is an interpretable instance 

from 𝑧 around the interpretable instance of 𝑥 which is 𝑥d. LIME is a computationally 

intensive method that requires extensive computing resources to generate 

explanations. Furthermore, finding a suitable approximation function can be 

challenging (Molnar, 2021). Due to these practical limitations, LIME is not used in the 

practical part of this thesis.  

SHAP (SHapley Additive exPlanations) is a local, model-agnostic, post-hoc, and 

perturbation-based explainability framework for interpreting model predictions based 

on game theory. By utilizing SHAP, the importance of each feature to the model’s 

predictions can be evaluated. The model’s prediction can be seen as a game in the 

context of game theory (Lundberg & Lee, 2017). Each input feature acts as a player in 

the game (Shapley & Roth, 1988). The SHAP values represent the importance of each 

feature to the model’s prediction (Lundberg & Lee, 2017). 

SHAP is a perturbation-based explainability method that operates by perturbing the 

input features to understand the relationship between the model prediction and the 

input features. By systematically changing the values of individual features while 

keeping the remaining features constant, SHAP quantifies the importance of each 

feature to the model’s prediction (S. Liu et al., 2021). In their paper, Lundberg & Lee 

(2017) introduced different variants of SHAP, each with specific advantages and 

disadvantages depending on the use cases. SHAP values are unitless. They quantify 

how much a particular feature influences the prediction relative to the baseline. The 
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baseline is the average prediction of the model over the entire dataset. The classic 

Shapley values are calculated according to the following Equation 5. It is necessary to 

retrain all feature subsets 𝑆 ⊆ 𝐹 to the model. 𝐹 represents the set of all features. 

SHAP assigns a value to each feature which reflects its importance for the model 

prediction. To calculate the influence on the model prediction, a model 𝑓\⋃{_} is trained 

with the feature in question and a model 𝑓\ without this feature. The two models’ 

predictions for the current input are then compared: 𝑓\⋃{_}H𝑥\⋃{_}I  −  𝑓\(𝑥\). In this 

context, 𝑥\ represents the values of the input feature in the text 𝑆. The impact of 

omitting one feature influences other features. Consequently, the differences in these 

features are calculated for all possible combinations of characteristics 𝑆 ⊆ 𝐹\ {𝑖} 
(Lundberg & Lee, 2017). The formula for calculating the Shapley values is shown in 

Equation 5. 

Equation 5 Calculation of Shapley values (Lundberg & Lee, 2017) 𝜙_ =  J |𝑆|! (|𝐹| −  |𝑆| − 1)!|𝐹|! [𝑓\⋃{_}H𝑥\⋃{_}I  −  𝑓\(𝑥\)]\⊆X\{_}  

The subsequent section introduces the TEEE artefact, which is implemented to 

facilitate the explainability of zero-shot event extraction using SHAP values. This tool 

utilizes the model selected in Section 4.2 for the downstream task of zero-shot event 

extraction. The TEEE employs SHAP to analyze the contribution of each word within 

a sentence to the model’s predictions, thus elucidating the model’s decision-making 

process in identifying events without prior specific training on those events. 

4.4  Implementation of an Explainability Framework for 
Zero-Shot Event Extraction 

Before introducing the explainability framework for zero-shot event extraction in this 

chapter, the overall architecture of TEEE is briefly reviewed. TEEE is a tool that 

processes maintenance texts from a machine logbook and a list of possible events to 

extract from those logbooks. First, the text passes through TEEE’s Event Extraction 

Pipeline, which calculates the probability of each defined event. A dynamic threshold 

based on the mean and standard deviation of the event scores is then used to detect 

the events. Shapley values are then calculated for each token and event to provide 
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detailed explanations of the model predictions. For multi-sentence texts, this process 

is repeated for each sentence. TEEE produces two output graphs: one showing the 

average event extraction probability and the number of extracted events, and another 

showing the SHAP values for each token and event detected.  Figure 3 in Section 1.3 

illustrates the overall architecture of TEEE using a simple example. 

Before developing TEEE, it was imperative to identify an appropriate transformer 

model for zero-shot event extraction and to determine a framework capable of 

elucidating model decisions. Consequently, these two critical tasks were defined as 

objectives of this thesis. In Section 4.2, different transformer models underwent 

rigorous testing to select one that excelled in accuracy and pragmatically aligned with 

the demands of industrial maintenance. Furthermore, as detailed in Section 4.3, a 

thorough investigation was conducted to find a fitting explainability framework (SHAP), 

which was subsequently incorporated into TEEE. This integration aims to render the 

model’s predictions transparent and comprehensible to end-users, thereby creating 

trust and smoothing the pathway for adopting transformer models in essential 

maintenance tasks. 

 The SHAP values play a crucial role in enhancing the explainability of the TEEE, 

especially in the context of industrial maintenance. As described in Chapter 4.3.3, 

SHAP assigns each feature (word) from the input text an importance score, which 

indicates how much each feature contributes to the model’s prediction (event 

extraction). For example, in the context of industrial maintenance, TEEE could extract 

“vibration” as an event from a machine logbook. Using the SHAP values, the user can 

then understand that, for example, “shock” and “increased” are the words from the 

logbook with the highest contribution to the “vibration” model decision. Therefore, 

TEEE can use SHAP to highlight which specific terms or phrases led to the prediction 

of a particular event, which can help maintenance personnel understand the reasoning 

behind each prediction, increasing the confidence and usability of TEEE. By using 

SHAP, the TEEE decision-making process becomes more transparent. Maintenance 

teams can see consistent explanations for predictions, which helps verify the reliability 

of TEEE. For example, if the term “overheating” consistently appears with high SHAP 

values in the machine logbook when predicting the event “engine failure,” it indicates 

that TEEE accurately identifies relevant events. The correlation between high SHAP 

values and known problems such as overheating allows the maintenance personnel to 
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better understand and trust the model’s predictions. This shows that the model is able 

to identify words that are relevant to a model decision, in this case, event extraction. 

This enables the maintenance personnel to understand which words have the greatest 

impact on the model decision, significantly increasing the transparency of the model 

decision. 

4.4.1 The “Transformer Event Extraction Explainer” (TEEE) 

The application “Transformer Event Extraction Explainer”, shortened to TEEE, 

emerges as the artefact of this master thesis. TEEE provides an intuitive graphical user 

interface (GUI) designed for human interpretation of transformer model-based event 

extraction predictions. After initiating TEEE, users can upload text and event files 

through the graphical user interface. Once loaded, users may analyze individual 

sentences in the text or display a comprehensive overview of the predicted events. 

TEEE is designed to predict and extract significant maintenance events from industrial 

maintenance texts. These industrial maintenance texts often contain valuable 

information about machine performance, faults, and necessary repairs. The primary 

aim is to identify and extract the events specified by the user with an explanation of the 

predictions. Various industrial maintenance tasks can be performed using this data 

(extracted events) from the TEEE. In a practical scenario, a use case for TEEE is fault 

detection. For this application, various potential faults must be defined and submitted 

to TEEE as events. TEEE then processes industrial maintenance texts to identify and 

extract these predefined faults. For this practical use case, TEEE must first be given 

the potential faults (events), such as “vibrations” or “overheating”, and the maintenance 

logbook text to analyze. TEEE then analyzes the text for mentions of these faults and 

extracts the relevant events that indicate potential faults. After TEEE has extracted the 

relevant events, the user can use the Shapley values to analyze how the prediction 

was generated, i.e., the contribution of each word in the sentence to the extraction of 

the event. The extracted events can then be synchronized with historical and real-time 

machine data in a suitable data analytics tool to validate the extracted events and 

predict future faults. This correlation makes it possible to combine the data generated 

by TEEE to predict future failures and recommend preventive maintenance actions. 

Figure 19 below shows the TEEE user interface with a short user guide. 
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Figure 19 TEEE User Interface 

TEEE provides a visual representation of the average event extraction probability, the 

number of events extracted from the given text, and in-depth SHAP explanations for 

each detected event within a sentence. A bar chart displays the SHAP values of every 

word within the sentence. These explanations are crucial to make the predictions of 

the transformer model transparent and understandable for humans. 

Events can be entered manually in the “Insert Events” text box (1a) or loaded directly 

using the “Browse Events” button (1b). Text can also be entered directly in the text box 

(2a) or by using the “Browse Text” button (2b) on the interface. The events must be 

entered in comma-separated value (CSV) format (e.g., leak, oil loss). In the same way, 

the text in the “Insert text” box can be written manually or loaded directly. The text must 

be in standard text file format (TXT), and sentences must be separated by a full stop 

(e.g., The machine is losing oil. The bearing is making a noise.). 
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Once the text and events have been entered into the appropriate text boxes, users can 

click the “Event Results Overview” button (3), shown in Figure 20, to display a graph 

showing the average probability and number of events extracted from the text.  

 

 

Figure 20 Overview Event Results Graph 

The user can also press the “SHAP Values of the first sentence” button (4), shown in 

Figure 21, to get a list of detected events from the first sentence. For each event from 

the first sentence detected by the model, a graph shows the SHAP value of each word 

from the sentence for the corresponding event. Pressing the button again displays the 

same information for the second sentence so that each sentence of the text can be 

viewed in detail. 
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Figure 21 SHAP Values for the first Sentence 

4.4.2 Key components of TEEE 

Event Extraction Pipeline: The pre-processing of input data, in the case of this thesis, 

namely the text and list of events, is a crucial task in NLP. In the summer of 2023 (i.e., 

time of conducting this research), Hugging Face did not provide an explicit pipeline for 

zero-shot event extraction in its Hugging Face Hub. Therefore, a specialized pipeline 

needed to be designed for the subsequent process of zero-shot event extraction. The 

developed event extraction pipeline is based on the “ZeroShotClassificationPipeline” 

from Hugging Face and was adapted to the needs of this thesis. The key modification 

to the “ZeroShotClassificationPipeline” is its flexible classification labeling adjustment. 

This empowers the pipeline to handle customized user events, respectively, labels. 

Conversely, the “ZeroShotClassificationPipeline” strictly deals with fixed, predefined 

labels. After adjusting the flexible label classification, the input is tokenized, the loaded 

Hugging Face model is applied to the input, and finally, post-processing is performed. 

Moreover, the __call__ method of the “ZeroShotClassificationPipeline” has been 

redefined to guarantee that the pipeline produces the anticipated labels and their 
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associated scores in a structured format that suits the demands of the event extraction 

procedure. The event extraction pipeline architecture is shown in Figure 22 and the 

event extraction pipeline code is shown in Figure 29 in the Appendix. 

 

Figure 22 Event Extraction Pipeline Architecture 

Event processing: For each sentence, the model anticipates possible events and 

their respective probabilities. The TEEE uses a dynamic threshold to extract only 

relevant events. The algorithm determines the probabilities of all potential events, 

isolating only those with a probability surpassing the threshold. Rather than employing 

a static, predetermined threshold, the threshold is calculated using the mean and 

standard deviation of all event probabilities. This adaptable approach ensures that the 

threshold adjusts to the variability and central tendency of the values, allowing for a 

more precise extraction of significant events. The event extraction pipeline code is 

shown in Figure 29 of the Appendix. 

Explainability Plot with Shapley Values: The explainability plot with Shapley values 

is generated for each sentence and each extracted event within the sentence. 

Stopwords, such as articles, are excluded from TEEE as the exclusion of stopwords 

significantly increases the performance of NLP models, such as TEEE (Sarica & Luo, 

2021). The following Table 11 presents an example input for the TEEE.  

Table 11 Fictional Example Sentence with Evaluation Events 

Example sentence The main conveyor belt had misaligned, causing a 

disruption in the production line. 

Events to extract misalignment, calibration issue, malfunction 

 

Figure 23 below shows the explainability plot showing the Shapley values for the 

example sentence (stopwords excluded) containing the identified misalignment event. 
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Figure 23 Explainability Plot with Shapley Values 

The horizontal axis shows the example sentence words separately, while the vertical 

axis shows the SHAP values assigned to each. SHAP values can be positive, negative, 

or zero. The use of different colors, mainly green for positive SHAP values and red for 

negative, provides an intuitive way to quickly identify which words the model considers 

to be driving forces for or against the occurrence of a particular event. A positive SHAP 

value indicates that a word increases the likelihood of extracting the event, while a 

negative value decreases the probability of the event occurring. In this context, SHAP 

values explain how each word in a sentence affects the model’s prediction. SHAP 

values are unitless. They quantify how much a particular feature influences the 

prediction relative to the baseline. The baseline is the average prediction of the model 

over the entire dataset. For example, a SHAP value of 0.16 for the word “misaligned” 

means that the presence of this word increases the prediction probability for the event 

“misalignment” by 0.16 units from the baseline. These units are on the same scale of 

the probability value of the model prediction (event value), which in the case of TEEE 

is between 0 and 1. 

Overall Result Plot: The overall result plot displays all events extracted from the text 

with their corresponding extraction probability and quantity. Figure 24 below shows an 

example of an overall result plot. 
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Figure 24 Overall Result Plot 

This diagram compares two primary metrics: the average event probability (event 

score) and the event quantity. The horizontal axis shows the detected events. The left 

vertical axis, shown in blue, plots the average probability for each event based on the 

model’s predictions. This indicates how likely the model believes a given event will 

occur based on the text. In parallel, the right vertical axis, shown in red, lists the number 

(quantity) of identified events in the text. This shows how often a particular event was 

detected in the analyzed text segment. The red line with markers illustrates this count. 

The combination of these two metrics allows us to understand both the model’s 

reliability in detecting a particular event and the relevance or frequency of that event in 

the given text. For example, an event frequently detected with high probability could 

be considered a critical or dominant theme in the analyzed text segment. 
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5 Evaluation of the Transformer Event Extraction 
Explainer (TEEE) 

After identifying and evaluating all necessary components for developing the TEEE in 

Chapter 3, Chapter 4 evaluates the TEEE based on the previous section describing 

the implementation and key elements. This section focuses on a comprehensive 

evaluation of the TEEE, aiming to measure its performance and highlight any 

limitations. The evaluation provides both quantitative metrics and qualitative insights. 

Evaluation datasets are introduced in Section 5.1 and are used to measure the 

runtimes of the application and provide a quantitative analysis in Section 5.2 of TEEE 

efficiency. The same datasets are used as the basis for a qualitative assessment in 

Section 5.3, analyzing the accuracy and relevance of the TEEE output. This two-

pronged approach provides a holistic understanding of the TEEE’s capabilities and 

potential areas for improvement. 

5.1  Evaluation Methodology and Dataset 

The TEEE is evaluated in this section using fictional English and German industrial 

maintenance datasets; see Table 12 and Table 13. In the evaluation with the German 

dataset, the context from the English dataset is intentionally used but written simply to 

assess how the model handles poorly formulated texts. However, it closely resembles 

scenarios that can occur within industrial maintenance settings, providing a credible 

context for assessing the TEEE. This ensures that the evaluation is based on a context 

that reflects possible real-world applications, even though the data is not from real-

world applications. The evaluation datasets consist of ten sentences with ten potential 

events. The evaluation text is first divided into separate tokens and then fed into the 

“ZeroShotClassificationPipeline”, introduced in Chapter 4.4.2. These tokens represent 

the individual words in the text, excluding any punctuation marks. This division helps 

TEEE capture the text’s structural and semantic aspects. In the subsequent analysis, 

each token of a sentence is plotted on the horizontal axis of the explainability plot. This 

enables users to view the SHAP value of each token, through which they can 

determine the contribution of each token to the model’s decision. The datasets were 

designed to cover the diversity of real industrial maintenance scenarios. 
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The model runtime is analyzed quantitatively, and the application’s performance is 

analyzed qualitatively. Table 12 shows the English dataset. 

Table 12 English Evaluation Text and Events (English Dataset) 
Evaluation Text During the afternoon shift, the milling machine began emitting unusual vibrations, and 

technicians reported poor oil dispensation. The gear system seemed to be under additional 

stress, which raised suspicions about the cooling system’s efficiency. The next day, a 

maintenance team found the cooling system malfunctioning. Additionally, the filtration unit 

seemed overwhelmed with dust and debris. Moreover, the machine logs showed sudden motor 

heat spikes, possibly indicating spindle wear, or missed software updates. A subsequent 

inspection of the device revealed a significant decrease in the lubrication unit’s efficiency. 

Addressing both the motor’s temperature and potential software issues became a priority for the 

technicians. By the end of the week, it was evident that a machine overhaul was needed, 

accompanied by the implementation of preventive measures. Furthermore, the staff decided to 

routinely monitor the spindle for any signs of degradation. The team also planned to improve 

cleaning routines to prevent future dust accumulation. 

Evaluation Events vibrations, lubrication problem, gear stress, cooling issue, filtration dust, motor heat, missed 

updates, spindle wear, overhaul needed, preventive measures 

 

Table 13 shows the German dataset. The text and events are adapted from the English 

dataset but written in an industrial maintenance style. 

Table 13 German Evaluation Text and Events (German Dataset) 
Evaluation Text Fräsmaschine vibrierte stark, schlechte Ölabgabe. Getriebe unter Stress, Verdacht auf 

Kühlsystem. Kühlsystem defekt, Filtereinheit voll mit Staub. Motor-Temperaturspitzen, möglicher 

Spindelverschleiß oder verpasste Software-Updates. Schmierungseinheit ineffizient. 

Motortemperatur und Softwareprobleme beheben. Maschinenüberholung nötig, präventive 

Maßnahmen eingeführt. Spindel regelmäßig überwachen, Reinigungsroutinen verbessern, 

Staubansammlung verhindern. Pumpe blockiert, Kühlprobleme. Filter verstopft, 

Schmierprobleme. 

Evaluation Events Vibrationen, Schmierprobleme, Getriebestress, Kühlungsprobleme, Filterstaub, Motorwärme, 

verpasste Updates, Spindelverschleiß, notwendige Überholung, Präventivmaßnahmen 

5.2  Quantitative Evaluation of TEEE Runtime 

A crucial aspect of this thesis is to evaluate the computational efficiency of the TEEE. 

The runtime required to load the explainability plots with SHAP values was measured 

for each sentence. In addition, the time taken to load the overall results plot in its 

entirety was also measured. Table 14 and Table 15 below show the quantitative 

outcomes of the runtime for the English and German datasets. 
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Table 14 Quantitative Evaluation of TEEE Runtime (English Dataset) 

Task to be calculated Runtime 

Explainability Plot Sentence 1 28 seconds 

Explainability Plot Sentence 2 19 seconds 

Explainability Plot Sentence 3 7 seconds 

Explainability Plot Sentence 4 18 seconds 

Explainability Plot Sentence 5 23 seconds 

Explainability Plot Sentence 6 11 seconds 

Explainability Plot Sentence 7 23 seconds 

Explainability Plot Sentence 8 43 seconds 

Explainability Plot Sentence 9 29 seconds 

Explainability Plot Sentence 10 15 seconds 

Overall Result Plot 233 seconds 

 

On average, it took around 21.6 seconds to load the explainability plots for each 

sentence of the English dataset. The total runtime for the explainability plots was 216 

seconds for all sentences. The overall result plot required about 233 seconds, 

approximately 1.1 times the cumulative time of the individual explainability plots. 

Table 15 below shows the quantitative outcomes of the German dataset. 

Table 15 Quantitative Evaluation of TEEE Runtime (German Dataset) 
Task to be calculated Runtime 

Explainability Plot Sentence 1 14 seconds 

Explainability Plot Sentence 2 9 seconds 

Explainability Plot Sentence 3 8 seconds 

Explainability Plot Sentence 4 31 seconds 

Explainability Plot Sentence 5 5 seconds 

Explainability Plot Sentence 6 6 seconds 

Explainability Plot Sentence 7 9 seconds 

Explainability Plot Sentence 8 18 seconds 

Explainability Plot Sentence 9 11 seconds 

Explainability Plot Sentence 10 13 seconds 

Overall Result Plot 112 seconds 

 

On average, it took around 12.4 seconds to load the explainability plots for each 

sentence of the German dataset. The total runtime for the explainability plots was 124 

seconds for all sentences. The overall result plot required about 126 seconds. It is 

noticeable that the average runtime of the German simplified maintenance style 

dataset differs significantly from the English well-formulated dataset: the average 

runtime of the explainability plots for each sentence is 2.6 times faster for the simplified 

German dataset than for the English well-formulated dataset. 
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The computing power of the hardware on which the application runs is decisive in 

determining the runtimes. For this evaluation, application runtimes are measured on a 

2018 Apple MacBook Pro with a 6-core Intel i7 processor clocked at 2.6GHz, 16GB of 

DDR4 memory, and a Radeon Pro 560X graphics card with 4GB of GDDR5 memory. 

The performance metrics suggest that the application performs satisfactorily on this 

hardware. However, if the scope of the evaluation is broadened or the application is 

used in industry, it may be necessary to use more powerful computing resources. 

5.3  Qualitative Evaluation of TEEE Explanations 

The qualitative evaluation examines the quality of the explanations provided by the 

TEEE. Since the evaluation of the transformer model’s event extraction capability has 

already been conducted in Section 4.2, no further assessment is required for the quality 

of event extraction from the TEEE. Therefore, explainability plots with Shapley values 

from the evaluation dataset are examined more closely in this section. To evaluate the 

TEEE explanations, two graphs from the English dataset and two graphs from the 

German dataset are analyzed in depth. One sentence from each dataset, in which two 

events were extracted from the TEEE, is analyzed.  The sentence from the English 

dataset for the evaluation is: “Addressing both the motor’s temperature and potential 

software issues became a priority for the technicians.”  The sentence from the German 

dataset for the evaluation is: “Kühlsystem defekt, Filtereinheit voll mit Staub.”   

Within the given English sentence, the TEEE has identified the events of motor heat 

and preventive measures. The following Figure 25 and Figure 26 show the 

explainability plot with the SHAP values of the English sentence. 
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Figure 25 Explainability Plot Motor Heat (English Dataset) 

Figure 25 shows that the words „Addressing“, „motor’s“, and „temperature“ in particular 

have high SHAP values when predicting the event „motor heat“. The remaining words 

have a relatively small positive or negative influence on the prediction. High positive 

SHAP values for words directly related to the predicted event, in this case, motor and 

temperature, confirm the model’s focus on the relevant words and thus increase the 

explainability of the TEEE’s predictions. 

 
Figure 26 Explainability Plot Preventive Measures (English Dataset) 
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The SHAP values shown in Figure 26 for “preventive measures” are not as meaningful 

as for the event “motor heat”, as a synonym of “preventive measures” does not appear 

directly in the sentence. The words „Addressing“, „motor’s“ and „temperature“ have a 

high SHAP value, but a much lower one compared to the event „motor heat“ in Figure 

25. More strikingly, the word „potential“ has a high negative SHAP value, indicating 

that it reduces the likelihood of predicting „preventive measures“ from the sentence. 

This suggests that in the context of the sentence, „potential“ is less relevant or inversely 

related to the event of preventive measures. 

Upon examination of the two figures, certain peculiarities can be noted. In examining 

the SHAP value distributions for these two events, it is noticeable that “Addressing”, 

“software, “issue”, “became” and “priority” have almost similar SHAP values for both 

events, indicating their consistently low contribution to the likelihood of the predicted 

events. High consistency of the SHAP values of specific tokens across different events 

indicate that the contributions of these tokens to the model decision are relatively 

stable. Based on this observation, it is possible to deduce in advance how certain 

tokens contribute to the model’s decision, which increases human confidence in the 

model decisions. Figure 25 clearly shows that the words “motor’s” and “temperature” 

have high SHAP values for predicting the event “motor heat”. These terms are closely 

related to the “motor heat” event, making their significant contribution to the model’s 

prediction intuitively understandable to humans. This explanation increases the 

transparency of the TEEE, thereby enhancing user trust in its predictions. 

 

Figure 27 Explainability Plot Kühlungsprobleme (German Dataset) 
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Figure 27 shows the SHAP values from the “Kühlungsprobleme“ event. The German 

evaluation text was deliberately given to TEEE in a simple manner to assess how the 

model handles poorly formulated texts. It closely resembles scenarios that can occur 

within industrial maintenance settings. Figure 27 shows that the words “Kühlsystem“ 

and “defekt“ in particular have high SHAP values when predicting the event 

“Kühlungsprobleme“. The high positive SHAP values for words directly related to the 

predicted event, in this case, “Kühlsystem“ and “defekt“, confirm the model‘s focus on 

the relevant words and thus increase the explainability of the TEEE’s predictions also 

for poorly formulated texts that occur in the practical setting of industrial maintenance. 

 

Figure 28 Explainability Plot Filterstaub (German Dataset) 

Figure 28 shows the SHAP values for the “Filterstaub” event. The word “Staub” has 

the highest positive SHAP value, suggesting it is strongly associated with the prediction 

of “Filterstaub”. As “Staub” is directly related to the event “Filterstaub”, its presence 

significantly increases the likelihood of this prediction. 

From Figures 27 and 28, it is particularly noticeable that certain words show a high 

variation in their SHAP values for the two different events. The high variation in SHAP 

values for the words “Kühlsystem”, “Filtereinheit” and “Staub” in the two diagrams 

highlight their contextual impact. For example, the word “Filtereinheit” has a high SHAP 

value when TEEE predicts the event “Kühlungsprobleme“ and a low SHAP value when 

TEEE predicts the event “Filterstaub“. This variability underscores the importance of 

individual words for the model predictions. This variance in the SHAP values of 
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individual tokens can therefore help to increase the explainability of the model. By 

understanding how the meaning and influence of words change with context, it is 

possible to understand more easily why the model makes certain decisions. 

In contrast, the words “defekt” and “voll” have relatively similar SHAP values when 

predicting the two different events. These two words cannot be directly associated with 

either of the two events and are therefore not of primary importance in predicting the 

events. It is easy to understand from the logical way of thinking of humans that words 

that are not directly related to the predicted events always make a similarly small 

contribution to the prediction. This increases the trust of humans in the model and thus 

in its decisions. Additionally, the analysis of the German dataset shows that TEEE can 

also be used for poorly formulated texts that occur in practical industrial maintenance 

environments. 

The qualitative analysis of the results reveals important information about the model’s 

decision-making process. Depending on the context, the model assigns very different 

SHAP values to the same words, illustrating the model’s sensitivity to individual words.  

The evaluation of TEEE explanations indicates that they clarify the decision-making 

process, increasing the explainability of the predictions of transformer models for 

human interpreters. This leads to increased trust in using transformer models such as 

TEEE in industrial maintenance scenarios. 
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6 Conclusion and Outlook 

In this thesis, an application known as TEEE was developed utilizing the design 

science research methodology. This work aims to create an application that initially 

extracts events from industrial maintenance texts using a transformer model and 

renders the outcomes of this downstream task comprehensible. Consequently, the 

sub-research questions, defined in Section 1.2, were defined as follows: 

RQ1: What explainability methodology can be used to explain transformer models 

predictions for zero-shot event extraction? 

In recent years, transformer models have been successfully deployed in various 

sectors. Numerous scientific studies have demonstrated the benefits and accuracy of 

transformer models. However, the practical application of transformer models poses a 

significant challenge: their predictions are not easily understandable for humans due 

to their black-box nature. Their predictions must be both accurate and understandable 

for transformer models to be used successfully in practical applications, such as 

industrial maintenance. People working with transformer models must trust their 

predictions to be effective. Due to the importance of the explainability of transformer 

models, a systematic literature review was conducted for this sub-research question. 

The systematic literature review in Section 4.3 initially analyzed the basics of XAI. 

Subsequently, a taxonomy for the explainability of transformer models was created 

based on the current state-of-the-art literature. With the help of this taxonomy, the most 

suitable explainability framework was selected for this thesis. SHAP, which stands for 

SHapley Additive exPlanations, was identified as this work’s most suitable 

explainability framework. SHAP uses game theory to interpret model predictions and 

evaluates the importance of each feature towards the model’s predictions. 

RQ2: What is the utilization and success rate of transformer models when applied to 

an industrial maintenance dataset for zero-sot event extraction tasks? 

Scientific studies in various areas have already confirmed the benefits and success of 

transformer models. In industrial maintenance, very little scientific literature was 

available when this thesis was written. For this reason, various fine-tuned transformer 

models were presented in Section 4.1 and evaluated using several fictional datasets 

from industrial maintenance in Section 4.2. Four models for the downstream task of 
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zero-shot event extraction were compared quantitatively and qualitatively. The models 

were compared quantitatively based on the accuracy, the F1 score and the model 

runtime. The qualitative analysis used to compare the models in this section focused 

on their practical applicability in real-world scenarios, specifically for zero-shot event 

extraction in industrial maintenance texts. The qualitative analysis involved a more 

nuanced evaluation of the models beyond raw performance metrics. The model 

“MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli” proved to be the most suitable 

model for the use case of this thesis, primarily due to its consistent and stable 

performance across all categories, combined with its superior runtime efficiency in both 

German and English for single and multiple events. 

RQ3: What measurement methods can be used to evaluate the explainability of 

transformer models when applied to an industrial maintenance dataset for zero-shot 

event extraction tasks? 

In this work, TEEE was developed as a framework to enhance the explainability of 

transformer models in industrial maintenance. The methodology for explainability 

employed in TEEE is based on the literature research presented in Chapter 3, thus 

addressing the first research question. TEEE‘s capability for zero-shot event extraction 

is based on the transformer model selected in Section 4.2, responding to the second 

research question.  

Evaluating the explainability of transformer models is challenging because it requires 

balancing the model’s performance with the quality of explanation provided in terms 

humans can understand. Chapter 5 of this thesis addresses this issue. One way to 

assess the explainability of TEEE is to evaluate its ability to explain its predictions in a 

way understandable to humans. This was achieved through qualitative analysis using 

a fictional example sentence in the domain of industrial maintenance. Additionally, the 

model’s runtime was evaluated quantitatively, revealing relevant patterns within the 

example sentence that were meaningful from a human perspective and, thus, 

understandable. 

 
Primary research question: “How to increase the explainability of transformer models 

predictions for zero-shot event extraction in industrial maintenance?” 
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By answering research questions 1-3, a framework, the TEEE, was developed, which 

emerges as the artefact of this diploma thesis and simultaneously answers the primary 

research question in one sentence. The TEEE increases the explainability of 

transformer model predictions in industrial maintenance. 

6.1  Limitations and Future Work 

The TEEE produces promising results in explaining event extraction tasks within the 

industrial maintenance domain. However, TEEE, like any established application or 

model, has limitations, and future work will be necessary. 

One advantage of TEEE is its applicability to different domains, as it is not restricted to 

industrial maintenance applications. The transformer model was not explicitly fine-

tuned for an industrial maintenance dataset.  While this broad applicability is a strength, 

it also represents a significant potential for future improvement. At the time of writing 

this thesis, no suitable dataset was available for event extraction in the industrial 

maintenance sector. For this reason, an already fine-tuned transformer model was 

used. If a suitable training dataset is available in the future, it can be used to fine-tune 

the current transformer and subsequently substitute it within the application. By fine-

tuning the current model using a specific data set from the industrial maintenance 

sector, TEEE can be significantly improved for the industrial maintenance domain. 

Evaluating the explainability of the TEEE is a challenging task that requires balancing 

the model’s performance and the quality of its explanations regarding explainability to 

humans. The qualitative analysis within this study revealed patterns in the fictional 

sentence from industrial maintenance that were meaningful and understandable from 

a human viewpoint. However, these patterns are specific to the fictional sentence 

evaluated in this thesis. A substantial dataset would be required to uncover a broader 

range of relevant patterns in the transformer model underlying TEEE. This dataset 

must then be analyzed to identify and understand general patterns behind TEEE 

comprehensively. 

Another limitation of TEEE is the significant delay in processing long texts. This latency, 

particularly in real-time applications where quick decisions are essential, could affect 

its practical applicability. Further optimization of TEEE in terms of processing time will 

be a fundamental part of future developments. 
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In conclusion, TEEE is already successfully contributing to the explainability of event 

extraction in industrial maintenance, but its potential has yet to be fully realized. The 

flexible architecture of TEEE allows it to be applied to a wide range of domains, but a 

fine-tuned transformer would optimize the application domain specifically. As the field 

of explainable AI, especially transformer models and event extraction continues to 

grow and more specialized datasets become available, there will be opportunities in 

the future to optimize TEEE for successful application in the industry. In the future, 

developing an even more efficient and specific TEEE will be possible, further closing 

the gap between transformer explainability and real-world applications. 
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