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Kurzfassung

Binäre Addierer spielen in der digitalen Datenverarbeitung eine zentrale Rolle, weswegen
sehr viel Aufwand in ihre Optimierung gesteckt wurde, vor allem was die Verarbeitungszeit
angeht. Diese Optimierungen beziehen sich jedoch zum klar überwiegenden Teil auf
synchrone Logik.

Asynchrone Logik bietet im Vergleich dazu bereits eine implizite Optimierungen, da
sie, im Gegensatz zur synchronen Logik, wo die Verarbeitungszeit fix auf das ungüns-
tigste denkbare Szenario ausgelegt werden muss, sich auf die gegebenen Bedingungen
jeweils mögliche - und daher im Durchschnitt kürzere - Verarbeitungszeit adaptieren
kann. Andererseits muss asynchrone Logik dafür andere Abstriche machen, zum Beispiel
wird zusätzliche Logik in der Form der Completion Detection (CD) benötigt, und die
verwendeten Codierungen können ebenfalls zu einem Mehraufwand an Logik führen.

In dieser Arbeit wurden die Leistung, der Platzbedarf und die Komplexität, gemessen an
der Anzahl der Signalleitungen im Design, für eine ausgewählte Gruppe von Addieren
quantitativ analysiert, und zwar jeweils in synchroner wie auch in asynchroner Realisierung.
Die zugrundeliegenden Simulationsergebnisse wurden mit State of the Art Simulationtools
erlangt. Die dafür benötigten Designs wurden auf Basis einer offen verfügbaren Library
in VHDL implementiert. Ausführliche Vergleiche der genannten Charakteristiken der
Addierer, welche die Stärken und Schwächen der unterschiedlichen Implementationen
zeigen, wurden dann anhand dieser Ergebnisse aufgestellt.
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Abstract

Binary adders are a core component of most digital processing circuitry, and thus much
effort has been put forward to optimize them as much as possible, particularly regarding
the performance, as measured by the latency of the adder circuitry. However, all of these
optimizations are done within the context of a synchronous logic design.

Asynchronous logic, in comparison, already has the built-in performance gain of achieving
average-case performance, rather than the worst-case performance that synchronous logic
is limited by. On the other hand, asynchronous logic requires additional circuitry, such
as the Completion Detection (CD), and incurs overheads due to the used encoding for
example.

This thesis quantitatively analyzes the performance, area usage, and complexity, ex-
pressed as the number of nets in the design, of a select group of adder designs, each
in a synchronous and an asynchronous variant. These results were obtained by way of
simulation using state-of-the-art simulation tools. The designs themselves were imple-
mented in VHDL on the basis of an open cell library. Based on these results extensive
comparisons of the noted characteristics were made, which highlight the relative strengths
and weaknesses of the implementations.
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CHAPTER 1
Introduction

1.1 Introduction and Background
In his 1996 masters thesis [Lyn96] Thomas W. Lynch noted that there had been over 700
papers related to addition since the 1960s. He also noted the most common aspects of
these papers, such as the model used for a logic element or function, or the configuration
of the adder. While those adder designs are largely still in use today, the breadth of
the aspects of binary addition which are discussed in research papers has increased. In
particular modern papers focus on a key aspect that was considered uncommon back
then, and that is asynchronous logic.

As with many other applications of asynchronous logic the theoretical performance
gain is immediately obvious, as the worst-case performance that all synchronous logic
components are bounded by is instead shifted to an average-case performance.

Of course things are never this simple and asynchronous logic comes with both benefits
and drawbacks of its own. In particular less common and thus less optimized logic
components, such as the Muller C gate or threshold gates must be utilized to meet the
requirements that a given asynchronous design style imposes. Furthermore, modern
design tools are not built for asynchronous logic, which also hampers the creation of
optimized asynchronous circuits.

However, as this introduction already noted there is an abundance of research, much
of which is dedicated to finding the most optimal adder designs for various different
scenarios and applications. Some of these have been optimized for processing speed,
which will be quantified as the delay of the adder circuit and which will be obtained
trough simulation, or for the area that the adder occupies when implemented on the
substrate.

And with this we come to the main motivation for this thesis.
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1.2. Motivation

1.2 Motivation
As mentioned in the previous section, there have been many advancements made for
binary adders to improve the performance, reduce the needed area or reduce their power
consumption. More recent papers focus on implementing half-adder blocks, full-adder
blocks and even a full ripple-carry adder in asynchronous logic, utilizing and comparing
some of the different, commonly proposed asynchronous design styles.

In principle it makes sense to focus on the ripple-carry adder in particular, since it
exhibits the biggest difference between the average- and the worst-case performance.
This is further supported by the findings of Von Neumann [VNT63], which note that
given uniformly distributed random operands the average length of the longest carry
chain is proportional to log(n), where n is the width of the adder in bits. This must be
contrasted against the theoretical worst-case performance of the ripple-carry adder which
has, depending on the exact configuration, either a longest possible carry chain of length
n if subtraction utilizing twos-complement is supported, or n − 1 if the carry is generated
at the first bit-position and then propagated through the remainder of the adder.

Thus, many techniques which seek to improve the performance of the adder focus on
reducing the theoretical, longest possible carry chain, which would then allow the given
adder to be operated at higher clock frequencies. However, asynchronous implementations
already purport average-case performance. Since the improvements for synchronous adder
designs were focused on improving the worst-case in particular it remains to be seen if
these same techniques can also improve an asynchronous design, which already achieves
average-case performance. Furthermore, it remains to be seen whether the cost of these
improvements, judged for example by the additional required area, is worthwhile when
compared with the asynchronous ripple-carry adder.

1.3 Preliminaries
Before further discussing the contents specific to this thesis the main relevant concepts
for this subject matter will be introduced.

1.3.1 Critical path
An important concept for the evaluation in particular of synchronous logic is the critical
path. The critical path is the longest possible signal path through the circuit and in the
case of synchronous logic its length serves as a lower bound for the clock period, given
that any signal must be able to traverse the critical path within one clock period.

In contrast an asynchronous circuit has a data-dependent critical path, meaning that the
critical path can be different for different data that is processed.

2



1.3. Preliminaries

1.3.2 Group Carries
Unlike the ripple-carry adder, which simply calculates each carry as part of the single-bit
binary addition and then passes this carry on to the next single-bit adder block, i.e., a
Full Adder (FA), modern designs achieve some level of parallelism for the calculation of
the sum of the binary addition by calculating the carries ahead of time and as much as
possible in parallel.

Of the adders which calculate the carries ahead of time the most basic one is simply
called the Carry-Lookahead Adder (CLA). The CLA calculates the single-bit-position
carry-generate (gi), which indicates that this bit-position will generate a carry-out signal
(ci = 1), and carry-propagate (pi), which indicates that this bit-position will generate a
carry-out signal only if it receives a carry-in signal (ci = ci−1), signals ahead of time and
then passes them on to the adder blocks that calculate the sum for the given bit-position.
The generate and propagate signals for the bit at the ith bit-position are calculated as
follows:

gi = ai ∧ bi

pi = ai ⊕ bi
(1.1)

where ai and bi are the values of the operands at the ith bit-position.

Based on this the carry that is generated at a given bit-position i can be expressed as
follows:

ci = gi ∨ (pi ∧ ci−1) (1.2)

This recursive definition can be unrolled to calculate the carry for any bit-position of the
addition. However, this creates significant problems regarding the fan-out of the previous
gates, in particular the gates or storage elements which supply the least significant bits
of the two operands, a0 and b0. This is because these two signals will occur in the
calculations of all of the carries. Furthermore, for wider adders the logic depth for the
calculation of the carry at the most significant bit can also be quite deep.

Thus, to relieve the previous logic or buffer stage and to achieve better parallelism the
concept of the group carries is introduced. The group carry signals Gi:j and Pi:j represent
that a group of bit-positions from i down to j will generate a carry at its end, the ith
position, or propagate the incoming carry, cj−1 to the end, ci, respectively.

The definition for these group carries is given in Equation (1.3), with the base case given
in Equation (1.4). Both of these definitions are taken from Section 10.2.2.2 of [WH11].

Gi:j = Gi:k ∨ Pi:k ∧ Gk−1:j

Pi:j = Pi:k ∧ Pk−1:j
(1.3)

3



1.3. Preliminaries

Gi:i = Gi = gi

Pi:i = Pi = pi
(1.4)

As the papers which describe such adders show, smaller groups of bits can be calculated in
parallel and the groups can then be combined to form the carry signals for larger groups
of bits. This is usually accomplished using a tree structure, hence the adders utilizing
this techniques are commonly referred to as Parallel Prefix Tree Adders (PPTAs).

1.3.3 Asynchronous Logic
Asynchronous logic plays an important part in this thesis and its main draw, as already
mentioned, is the shift from worst-case performance as necessitated by synchronous logic
to average-case performance facilitated in practice by some form of handshaking protocol.

This handshaking can be realized in a number of ways, but in general it is based on a
request and an acknowledge signal, see Figure 1.1. The request signal signals to the data
sink that new data is available for processing, whereas the acknowledge signal notifies
the data source that the sink is ready for new data. As the design styles that will be
discussed later will show, the specific signals can also be implicit in the data, for example
by utilizing an encoding for the data from which the sink can infer that the transmitted
data is complete.

The handshaking can be realized in a 2-phase or a 4-phase manner. For the 2-phase
protocols each transition of the request signal signals the availability of new data from
the source to the sink. The following transition of the acknowledge signal then notifies
the source that the sink is ready for new data. In contrast the 4-phase protocols are
based on the states of the two signals and not on the transitions. This means that for
example a "1" or "true" on the request signal indicates the readiness of the data, and a
"true" on the acknowledge signal indicates that the data has been consumed. Naturally,
both signals then have to return to zero, "0" or "false", so that they can indicate their
respective function again for the next data cycle. Thus, the 2-phase protocols are referred
to as Non-Return-to-Zero (NRZ), whereas the 4-phase protocols are referred to as Return-
to-Zero (RZ). The phase of the 4-phase protocol where both signals have returned to
their idle state is then referred to as a reset or null phase.

While this thesis will only utilize a RZ protocol, which will be introduced later, for
completions sake it will be mentioned here that Return-to-One (RO) protocols also exist,
which work analogously to the RZ protocols, where instead of to "0" or "false" they return
to "1" or "true" for their reset or null phase, and thus indicate their respective function,
data readiness and data consumption, when they switch to "0" or "false".

1.3.3.1 Bundled Data (BD)

For the Bundled Data (BD) design style [Sut89], as the name suggests, the handshaking
signals, request and acknowledge, are "bundled" together with the data. This means that
data is put onto the data signal lines which can also lead through a possible combinational
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Figure 1.1: Asynchronous handshaking protocols

logic circuit, before arriving at the data sink, which in most cases is the next buffer stage
within a processing pipeline. The request signal is then put onto the signal line such that
it arrives at the sink only after the data at its inputs is complete and has settled. This
implies a timing requirement that is referred to as delay matching, as the specific design
implementation has to guarantee this timing assumption by matching the delay of the
request line to the delay of the data. This means the delay on the request line has to be
matched to the longest possible delay that the data can experience. However, to improve
performance variable delays can be used which then adapt to the specific data that is
currently being processed.

1.3.3.2 Delay-Insensitive (DI) Logic

Delay-Insensitive (DI) designs rely on a very weak timing assumption in which all wire
and gate delays are only assumed to be both positive and also bounded [vdS85]. As long
as these two requirements can be guaranteed a circuit implemented as a DI design can
be guaranteed to work regardless of the exact value that any delay assumes. However, it
has been shown that this timing assumption restricts this class of designs significantly, in
particular, because the selection of possible gates to construct a DI circuit is limited to
inverters and C gates only [Mar90].

1.3.3.3 Quasi Delay-Insensitive (QDI) Logic

In contrast to the DI designs the class of Quasi Delay-Insensitive designs is expanded
by the introduction of the concept of isochronic forks [Mar86, Mar90]. This means that
for some selected wire forks within the design it must be guaranteed that the signal
transitions occur at the same time at all endpoints of the fork, for Figure 1.2 this means
that δ2 = δ3. All other delays, in particular the gate delays, are as they would be in a
DI design. The introduction of this single relaxation to the otherwise Delay-Insensitive
designs allows that arbitrary circuits can be constructed.

1.3.3.4 Encoding

Both DI and QDI designs can encode the request signal directly into the transmitted
data utilizing a variety of different styles, although this is only possible if the chosen
code satisfies certain properties [Ver88]. One of the simplest encodings that can be used
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Figure 1.2: Asynchronous circuit model

for this purpose, and also the one this thesis will use for its design implementation, is
the dual-rail encoding, where a single logical signal is mapped to two physical wires,
referred to as rails, which represent the two possible truth values of the logical signal,
i.e., the logical signal x, which can be either "true" or "false" is mapped to the dual-rail
signal x = (x.T, x.F ), where x.T being "true" represents that x is "true" and x.F being
"true" represents x is "false". Such a dual-rail encoding can thus be realized as a RZ
or RO encoding, as described in the beginning of this section. However, as previously
mentioned, this thesis will utilize the RZ variant.

1.3.3.5 Completion Detection (CD)

Both the RZ (RO) and the NRZ encodings then allow a different component of the design,
the so called completion detector, to detect whether data at the inputs is complete. This
process is referred to as the Completion Detection (CD). Thus, in place of an explicit
request signal, which may experience a race condition versus the data, these designs
utilize an implicit request signal that is implied by the data.

As mentioned before, for the 4-phase encoding this process necessitates a null phase,
which is either represented by all "false" (all zeros) or all "true" (all ones) on the data
lines, to reset the Completion Detection. Otherwise a single transition could lead from
one valid data word to the next, and thus be detected as a new valid data word even
though the remaining signal transitions have not yet arrived. An example for such a CD
for a RZ implementation is given in Figure 1.3.

This further necessitates that the last output of a combinational DI or QDI circuit may
only transition after all of its inputs have arrived. In practice it is, however, difficult
or costly to always guarantee this directly within the logic design. Thus, it can be
advantageous to add an explicit signal, most commonly referred to as a done signal, to
the design which guarantees this requirement.

Some of the asynchronous designs within the class of the QDI designs have thus decided
to move the CD, which can be a large and comparatively slow sub circuit of the design,
off of the data path.

Certain designs can possibly benefit from moving the CD off of the data path, as the
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explicit CD that is separated from the implementation of the actual logic function could
in practice be shared, at least partially, with the Completion Detection of the preceding
buffer stage. Furthermore, the done signal of the combinational circuit is used together
with the CD of the following buffer stage to generate the acknowledge signal of this buffer,
this means there is some possible performance gain as the two CDs now run at least
partially in parallel as opposed to fully sequentially. These considerations will become
relevant again later when the obtained delay values for the various adder designs will be
discussed.

1.4 Research Question
This thesis seeks to answer two related questions regarding the design and implementation
of binary addition circuits in asynchronous logic. First, (a) it should be evaluated
whether asynchronous designs can at all benefit from the techniques that were developed
to improve the performance of synchronous binary addition, in particular the parallel-
prefix-tree method will be evaluated for this purpose. Second, (b) these asynchronous
implementations should be compared against an asynchronous implementation of the RCA
and be evaluated regarding the performance and area usage relative to the asynchronous
RCA.

1.4.1 Asynchronous Adder Implementation
This part of the thesis focuses on the implementation of the candidate adder architectures
in an asynchronous, particularly a QDI design style, and their subsequent evaluation
through simulation. This process can be subdivided into three main components:

• Selection of candidate adder architectures
For this purpose a total of 4 architectures that purport some differing benefits and
drawbacks, and exhibit various levels of logic complexity, will be identified.

• Implementation as QDI designs
The selected adders will be implemented as NCL with explicit CD (NCLX) designs.

• Evaluation through simulation
The finished designs will then be evaluated in both performance and area usage.

7
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The performance will be judged both in terms of the delay that the given adder
exhibits, from the application of the operands at the inputs until the correct result
is available at the outputs, and also through static analysis of the signal paths in
the design. The area will be reported by the design tool.

Based on this methodology the following research question can be answered:

RQ1 Can the same patterns of relative performance improvements that are present in
synchronous adder architectures also be observed in asynchronous implementations
when the same design techniques are applied?

1.4.2 Comparison with the RCA
As previously mentioned the theoretical improvement of the performance of a RCA when
implemented as an asynchronous design, due to the shift from worst-case to average-case
performance, is well supported in the research. However, it remains to be seen whether
any possible performance gain of the asynchronous adder implementations is worth the
potential cost in terms of circuit complexity and area usage.

While the matter of area usage can be answered in a straightforward manner, since the
total area usage will be reported by the design tool, the matter of circuit complexity
comes with some additional considerations. The additional complexity that the various
adder architectures have compared to the RCA has a sizable impact when translated to
the asynchronous designs.

Based on these considerations this thesis will answer the following additional question
regarding the comparison of the various asynchronous adder designs with the RCA:

RQ2 What is the cost of the more complex adder architectures when compared to the
RCA, as expressed through area usage and circuit complexity?

8



CHAPTER 2
Related Work

This chapter will focus on introducing the related work which has already been done
on the topics of adder comparison, particularly the comparison of synchronous and
asynchronous adders, whether about comparing the same base architecture implemented
in both design styles, or comparing novel architectures with established ones.

2.1 Performance Comparison of Asynchronous Adders
The 1994 paper [FP94] by Franklin et al. compares various well known adder designs.
It gives an overview of the statistical distribution of instructions performed in a typical
RISC processor (DLX) and finds that 72% of instructions carry out an addition or
subtraction in the data path. Based on this fact it can be reasoned that the adder has a
disproportionate influence on the overall system performance, as it is one of the most
frequently utilized modules of the processor.

Due to the work from [VNT63] we know that the worst-case, that is a carry bit propagating
through a chain of length n for an n-bit addition is unlikely to happen. In fact the
mean length of a carry propagation for such an addition is bounded by log2(n) − 0.5
from above. Of particular interest are the strictly synchronous techniques that achieve a
maximum delay bounded by O(log2(n)), such as the Conditional Sum Adder (CSA). As
the paper states, while work on the maximum delay has been extensive, research on the
average delay of the adders is comparatively quite scarce. The paper itself focuses on
a variety of "hybrid" designs which are larger than the Ripple-Carry Adder (RCA), yet
purport to have a faster average speed than strictly synchronous adders, which may also
be larger. The adders are simulated and their speeds compared within the context of a
simple asynchronous RISC processor.

The paper identifies four key advantages that asynchronous systems may have over
clocked ones:

9
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1. As clocked systems increase in size, clock skew becomes an issue and limits clock
rates, this delay is not present in asynchronous systems, although other delays are.

2. Hierarchical modular design techniques are ill suited to deal with global constraints
such as clock distribution.

3. Asynchronous systems may require less power, as currently "unused" modules
perform no switching, as compared to clocked systems.

4. The clock in clocked systems is based on the worst-case timing, see Subsection 1.3.1,
whereas asynchronous systems are primarily governed by average delays.

Furthermore, three key issues with asynchronous designs are listed:

1. If dual-rail encoding, see Subsubsection 1.3.3.4, is utilized, along with Completion
Detection, see Subsubsection 1.3.3.5, then this requires extra chip area and routing.

2. Completion Detection and handshaking, see Subsection 1.3.3, cause an additional
logic overhead and thus additional delays, although these overheads may be compa-
rable to the clocking overhead of synchronous systems.

3. Synchronous systems are generally considered easier to design due to the superior
tool support.

The paper models the speed of execution of the adders as cycle times where the cycle
time is generally composed of a computation time, tcomp and a synchronization time, tsync.
For clocked designs this resolves to the worst-case computation delay, tworst−case−comp,
as well as the clocking delay, that is the clock skew and latching delay, tclocking. For
the asynchronous case the average-case computation time is used, and a factor h, such
that h > 1, that models the synchronization time of an asynchronous circuit, which is
generally greater than the clocking time of a synchronous circuit, is introduced. This
results in the following formulas:

Cycle timeclk = tworst−case−comp + tclocking (2.1)

Cycle timeasyn = taverage−case−comp + h · tclocking (2.2)

The average-case computation time can further be expressed from the worst-case com-
putation time by introducing the factors i and d, such that i, d ≤ 1, which model
the instruction dependent and data dependent parts of the computation time. Thus,
taverage−case−comp = i · d · tworst−case−comp. Furthermore, clocked designs must budget
for the worst-case in terms of tolerances and other environmental parameters, whereas

10



2.1. Performance Comparison of Asynchronous Adders

asynchronous designs can take advantage of the nominal conditions. This is expressed as
a parameter e, such that e < 1. Thus, we finally get:

Cycle timeasyn = e · (i · d · tworst−case−comp + h · tclocking) (2.3)

Since only the data dependent parameter directly relies on the adder design it is the one
that the paper focuses on.

The paper classifies the adders into 3 categories, serial, tree or hybrid, based on their
high level design structure, and selects a total of 6 candidate adders for evaluation. The
selected adders are:

• Ripple-Carry Adder (RCA): Has the traditional serial structure, which leads
to a small size but large worst-case delay.

• Conditional Sum Adder (CSA): Performs in parallel one addition which assumes
the carry-in is 0 and a separate addition where the carry-in is assumed to be 1.
The results are then combined in a tree structure based on the actual value of the
carry-in.

• Completion Detection Conditional Sum Adder (CDA): A modified version
of the CSA which has more of an asynchronous flavor by detecting the availability of
true sum at each level of computation and latching it, ending the computation and
thus often avoiding the full tree delay. Its mean can be as small as O(log2(log2(n)),
but it requires extra logic to detect the true sum and route it from any arbitrary
level to the output latch.

• Carry-Lookahead Adder (CLA): Is considered in a hybrid structure, where
both P and G, see Subsection 1.3.2, are calculated with basic boolean functions for
each block of bits and then rippled through said block to calculate the sum.

• Carry-Skip adder (SKP): Is also considered in a hybrid structure, where P is
obtained through a boolean function, whereas G is obtained by rippling through
the block, with an assumed carry-in of 0.

• Carry-Select adder (SEL): Is also considered in a hybrid structure, where both
P and G are obtained by rippling through the block. For P a carry-in of 1 is
assumed, whereas for G a carry-in of 0 is assumed. Conditional sums are also
generated in this process and the correct sum is simply selected when the true carry
is known.

For the purpose of simulation the adder implementations were assumed to employ
Differential Cascode Voltage Switch Logic (DCVSL). The simulation itself is implemented
in a hierarchical way, first the delay values for basic cells were obtained for each possible
combination of inputs for the cell. These delay values were fed into a gate level simulation
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for each adder, where each gate is one such basic cell, which looked up the delay value
from a table based on the combination of inputs for the cell.

The CDA had the overall best performance due to its small mean of O(log2(log2(n)), but
the overhead for detecting and routing the true sum is unique to it, and so regarding
the fairness of the comparison it was not considered for the overall systems performance.
Overall, the 3 hybrid designs outperformed both the serial and tree structures. Among
the hybrid designs the SKP was worst due to its reliance on rippling for generating P
and G as well as the sum. Both CLA and SEL were very close as either used rippling for
either the generation of P and G or the calculation of the sum.

Finally, the adders are considered within the context of an asynchronous pipelined DLX
machine. The architecture is assumed to have 5 pipeline stages:

1. Instruction fetch (IF)

2. Instruction decode (ID)

3. Execution (EX)

4. Memory access (MA)

5. Write back (WB)

For simplicity of the simulation the pipeline is assumed to have no stalls and that there
is a 100% success of branch prediction. Furthermore, it is assumed that there is an
instruction prefetching buffer from which 75% of instructions are fetched, to relieve the
bottleneck in the IF stage. The delays for each stage are assumed to be 3 ns except when
a cache access is involved, in which case the delay is assumed to be 10 ns. The delay
distributions of the adders are taken from the simulation. The architecture is supplied
with a sequence of 100 000 instructions, randomly selected based on a distribution from
[PH90]. The results are evaluated in terms of MIPS, million of instructions per second,
with the SEL being the clear winner in the comparison. It outperforms an architecture
utilizing the RCA by 17% for 32 bit, and by 23% for 64 bit. However, it is of note that
the SEL is also 2.5 times larger than the RCA, but cost of the adder is assumed to be
small compared with the cost of the overall processor. Finally, under these conditions it
can be said that a comparable clocked processor, operating under the same assumptions
would require a clock cycle time of 10 ns and thus be outperformed by the asynchronous
version. However, this comparison only took into account instruction dependent and
data dependent parameters, environmental parameters and synchronization times would
have to also be considered for a more accurate comparison.
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2.2 An Evaluation of Asynchronous Addition
In his 1996 paper [Kin96] David Kinniment aims to clearly show why asynchronous
adder designs fail to achieve their purported, impressive theoretical performance gain, as
compared to synchronous designs, in practice, and to discuss the reasons for this.

According to Kinniment the Completion Detection, see Subsubsection 1.3.3.5, is the
essential feature of a self timed adder. The design by Gilchrist et al. [GPW55] utilizes
dual-rail encoding, see Subsubsection 1.3.3.4, for the carry paths. The dual carries, C0

and C1, are preset to a logic 0 and when one of them reaches a logic 1 in every stage,
then the output of an AND gate signals completion. However, if the n-input AND gate
is implemented in CMOS then for typical values of n, such as 8, 16, 32 or 64, the area of
the gate, as well as its delay will be significant. One alternative is to precharge the carry
paths with a logic 1 and detect the presence of a logic 0 using an n-input NOR gate, but
its delay still increases linearly with n. Kinniment proposes as a faster alternative to
build the n-input AND gate as a tree structure.

For the purpose of comparing the adders both the area and delay are considered, and
both are expressed in "gate equivalents" of 2-input gates. To this end the basic gates,
such as AND, OR, NAND and NOR, are all counted as 1 gate equivalent, both for area
and delay. For this a CMOS implementation style which is flexible enough to produce
for example NAND and NOR gates with similar characteristics is assumed. Additionally,
AND-OR-Inverter structures and tree structures of NAND or NOR gates are assumed
to have 80% of the delay of 2 levels of NAND gates. Furthermore, gates with a fan-in
greater than 4 are assumed to have a delay of log4(fan-in) 2-input gate equivalents and
occupy an area of 1.33 · log4(fan-in) gates. Similarly, extra delay and area was added to
the comparison as necessary to account for a fan-out greater than 4.

In total three adder designs are considered for this evaluation:

1. Simple parallel adder (SPA): What Kinniment calls SPA is based on his
description simply a RCA. It requires 7 gates per bit and incurs a total delay of
2 + 2n.

2. Asynchronous adder (ASY): is the asynchronous design by Gilchrist et al.
which was also evaluated previously by Sklansky in [Skl60], where it was called
IDA. The ASY requires 13.33 gates per bit to implement and incurs a total delay
of 2 + 2.5 · log2(n).

3. Conditional Sum Adder (CSA): Is the same adder design as already described
in Section 2.1. It requires 3n · (2.22 + 1.22log2(n + 1)) gates to implement and
incurs a total delay of 2 + 2log2(n + 1) if n + 1 ≤ 8, else the total delay is
3.5 + 0.25log2(n + 1)2 + 0.75log2(n + 1).
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It should be noted that Kinniments numbers for the required gates and the incurred delay
differ from Sklanskys for the ASY and the CSA due to Kinniments revised assumptions
regarding the area and delay cost for fan-in and fan-out greater than 4.

Plotting of these area and delay costs over the number of bits shows that the typical
CSA operation is slightly faster than the typical ASY operation for 64 bits or less, yet
the CSA has a significantly higher area cost. However, Kinniment also notes that this
only holds true for random data, and that the ASY’s performance can be significantly
degraded in a typical application due to its data dependence.

When it comes to real-world applications Kinniment notes three major factors for
consideration:

1. The effect of the hardware used to generate the completion signal.

2. The nature of the data that is being used.

3. The implementation technology.

As Kinniment goes on to show, using a wired-AND in place of his proposed gate tree
would significantly degrade the performance, even though it might map particularly
nicely to the chosen technology. On the other hand, if the input operands are random
in nature, with an equal chance of generating or propagating a carry at every stage,
than the maximum average carry chain for a 32 bit addition is between 4 and 5 [Rei60].
However, results also showed that the overall average for address and data calculations
is between 9 and 10 [Gar93]. When considering a split of 18% of operations that are
address calculations of the form (a − a), with a result of 0 and a carry propagation chain
of length n, then the average length of a carry chain can be considered partly dependent
on the word length of the adder. This split of 18% carry chains of length n and 82%
carry chains of length log2(n) − 0.5 is showcased by Kinniment. The result of this is
that the ASY incurs a significant loss of performance compared to the CSA yet it has a
comparable area-time product.

Based on these results it is stated that there is no clear advantage to using asynchronous
designs over the conventional synchronous CSA, as there is also little cost effectiveness
for the ASY. A further comparison with the results obtained by Franklin [FP94] and
Garside [Gar93] is given. To obtain the average values for this comparison two sets of
100 operand pairs were chosen, one random, and one with the previously mentioned
characteristics. The chosen technology for this simulation was such that the delay of
a 2-input NAND gate comes out to 0.42 ns, whereas Franklins values correspond to a
NAND gate delay of 0.7 ns. The simulations were carried out for a word length of 32 bit.
The following table, Table 2.1, gives an abbreviated overview of the results obtained by
Kinniment, showing the delays as gate equivalents.

As can be seen the asynchronous adders loose out to the worst-case of the synchronous
CSA when considering the non random case.
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2.3. Asynchronous Parallel Prefix Computation

32 bit Adder Average delay Average delay Worst case delay Basic gate delay(random) (non random)
SPA N/A N/A 66 0.42

Optimized SPA N/A N/A 55 0.42
ASY, Garside 17.2 19.2 40.1 0.42
ASY, Franklin 13.5 24.4 74 0.70
CSA, Franklin N/A N/A 11.3 0.70

CSA, Kinniment N/A N/A 13.5 N/A
ASY, Kinniment 14.5 24.4 66 N/A

Table 2.1: Abbreviated results from [Kin96]

Finally, Kinniment considers the application in a micropipelined system. Of note is the
high possible variance in computation time of the asynchronous adders and its effect on
the overall throughput of such a pipeline. A possible further performance loss comes
from the consideration that in, for example, a two stage pipeline both stages must be
ready for the data transfer. If either stage takes a long time then transfer is held up
and the overall throuput degrades. To illustrate this Kinniment has chosen a theoretical
two stage pipeline with one stage being the asynchronous adder and the other stage
having an assumed average delay matching that of the asynchronous adders, but with
a deviation of 1 gate delay. The delay values for the adders and hence also the other
pipeline stage are computed from data given by [Gar93], which comes out to an average
of 24.36 gate delays for the adder. The end results is that the adder can not improve
the overall throughput of this theoretical pipeline due to the more rigid timing of the
other stage, whereas it can degrade the overall throughput of the pipeline whenever it is
coming close to its worst-case timing. The final result is that the theoretical pipeline
using the ASY has an average throughput of one transfer every 33.39 gate delays. In
comparison a pipeline using two identical stages with an average delay of 24.36 gate
delays and a deviation of 1 would achieve one transfer every 25.38 gate delays.

2.3 Asynchronous Parallel Prefix Computation
In their 1998 paper Rajit Manohar and José A. Tierno present an asynchronous solution
to the parallel prefix problem [MT98]. While the prefix problem can be used to solve a
variety of different problems efficiently, Manohar and Tierno use their devised method to
construct an asynchronous adder with O(log log n) average-case latency.

The prefix problem is stated as such:
Let ⊗ be an associative operation, then for given x1, x2, ..., xn, the y1, y2, ..., yn should
be computed such that yk = x1 ⊗ x2 ⊗ ... ⊗ xk, for 1 ≤ k ≤ n [LF80].

The solution proposed in the paper is a tree structure which exploits the associativity of ⊗
to simply perform one ⊗ to compute yn given x1⊗x2⊗...⊗x⌊ n

2 ⌋ and x⌈ n
2 ⌉⊗x⌈ n

2 ⌉+1⊗...⊗xn.

The processing nodes resulting from this approach are then arranged in a tree structure.
They are also further augmented with additional input and output channels to send
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2.3. Asynchronous Parallel Prefix Computation

Adder type Worst case delay Average case delay Average case delay
(uniform) (workload)

SPA-32 55 N/A N/A
CSA-32 11.3 N/A N/A
CSA-64 14.1 N/A N/A
ASY-32 40.1 17.2 19.2
PA1-32 14.0 13.2 13.8
PA2-32 14.2 10.4 11.2
PA2-64 17.5 11.5 N/A

Table 2.2: Adder delay results from [MT98]

the required prefixes up and down through the tree. The process is further augmented
with appropriate acknowledge signals and buffering to permit pipelining of the prefix
computation.

The entire tree is finally augmented with a serial solution to the prefix problem. Assuming
that x ⊗ a = a for some a and any value of x, this serial solution can be fast depending
on the data. Thus, every node is modified such that it also serially receives the prefix
from its neighboring node and passes it on as well, on any given level of the tree. Since
the serial processing is designed such that it produces a fast output y = a for x = a based
on the assumption above, this is expected to improve the average-case performance.

This general solution to the prefix problem is then specifically used to implement an
asynchronous adder. The resulting delays for these adders are given in Table 2.2, where
PA1 is the implementation with the pipelining only, and PA2 has the added serial
computation. The "-32/64" denotes the width of the given adder. The results for the
other adders are taken from [Kin96] and are given as the number of gate delays. The
results are given for both a uniform distribution of inputs and a more realistic workload
for 32 bit adders taken from [Gar93].

As the data shows the PA2 adder implementation outperforms the CSA from [Kin96],
with the expectation that the gap increases with increasing adder width. The CSA’s
strong performance for small n is noted, however, and it is theorized that a better
asynchronous adder could be constructed by combining the carry select technique with
the prefix computation. Both the PA1 and PA2 have larger areas than the CSA due to
the overheads incurred from pipelining and the generation of the acknowledge signals.
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CHAPTER 3
Implementation and Simulation

3.1 Selection of Adder Architectures
As mentioned previously in Section 1.4 the selection of the adder architectures plays an
important part in this thesis, as we want to get a good overview of different performance
improvement techniques at various levels of complexity and with different benefits and
drawbacks. To keep the workload at a manageable level it was decided that four adder
architectures should be investigated in this thesis.

3.1.1 Ripple-Carry Adder (RCA)
The simplest adder architecture that we will investigate further is the Ripple-Carry Adder
(RCA). The RCA for a given width of n bits is implemented by chaining n Full Adder
(FA) blocks together. This is achieved by connecting the carry-out of the previous FA to
the carry-in of the subsequent FA.

Figure 3.1: Basic block diagram of a RCA with carry-in
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3.1. Selection of Adder Architectures

Figure 3.2: Block diagram of a 16 bit CSKA with carry-in

The main draw of the RCA has already been outlined in this thesis, but to reiterate, it
has the worst worst-case performance among the adders, namely that its critical path is
directly proportional to n (O(n)) where n is the width of the adder in bits. Thus, we
expect the most benefit when implementing this adder in asynchronous logic.

tcrit = n · tF A (3.1)

Equation (3.1) gives the delay of the critical path for the RCA where n is the width of
the adder in bits and tF A is the delay of a FA.

As stated in the second part of the research question, in Section 1.4, we will use the RCA
as a benchmark for the benefits and drawbacks of the other adder architectures.

3.1.2 Carry-Skip Adder (CSKA)
The next adder architecture chosen for our consideration is the Carry-Skip Adder (CSKA).
It is created by modifying a RCA with additional "skip"-logic which will allow the carry
to skip a certain amount of bit-positions. It should be noted here that the "skip"-part
and the other common name, carry-bypass adder, are both slight misnomers as the carry
still ripples through the "skipped" FAs, but it can also advance to the next block of FAs
to possibly start calculation of the respective sum-bits there almost in parallel.

This skipping of the blocks of FAs is achieved utilizing a skip-logic which calculates all
the propagate signals for the given block of bits ahead of time. The combined group
propagate signal then controls a Multiplexer (MUX) which "forwards" the carry-in of
this block directly to the next block. Thus, the next block already calculates the results
after one delay of the MUX rather than having to wait for the delay of m FAs.

Thus, the critical path of this adder is as follows:

tcrit = 2 · m · tF A + (k − 1) · tMUX (3.2)

where m is the number of bits in one group and k is the number of groups that the
adder is split into. It should be noted here that this formula should mainly illustrate
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Figure 3.3: Prefix tree of a 16 bit KSA

the significant shortening of the critical path when compared to the RCA. An analysis
which takes a more fine-grained view of this critical path, that considers the individual
gates which form the FA and the MUX will produce an overall slightly different looking
formula.

Finally, it should be noted that the CSKA was chosen for this thesis as it produces a
substantial improvement when implemented in synchronous logic, when compared to
the RCA, but at a minimal logic overhead in terms of additional gates or wiring needed.
While there is a significant amount of research regarding the optimal configuration of a
CSKA for some given parameters, this thesis will implement a very simple version of the
CSKA with a fixed group size of 4 bits per group and only a single level of skip-logic.

3.1.3 Kogge-Stone Adder (KSA)
The Kogge-Stone Adder (KSA) is based on a paper by Kogge and Stone which introduces
a general algorithm for solving recurrence problems [KS73]. The adder architecture itself
is based on the carry-lookahead adder which was discussed in Subsection 1.3.2. However,
rather than simply unrolling the recursive equation for the respective ci the algorithm by
Kogge and Stone introduces the blueprint for a tree structure that calculates the group
carries in a parallel manner.

The group carry signals are calculated based on the definition given in Equations (1.3)
and (1.4).

An example of this prefix tree is given in Figure 3.3, where the filled, black nodes represent
a processing node which implements the logic according to the previously mentioned
equation, and the empty, white nodes represent a simple throughput where the output is
equal to the input.

The KSA comes with some important benefits that make it worthwhile for this thesis,
namely it achieves a constant fan-out of 2 at every node and it achieves very good
performance due to its high degree of parallelism and its low logic depth. The logic depth
for the prefix tree of a KSA is log2(n) where n is the width of the adder in bits.
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Figure 3.4: Prefix tree of a 16 bit BKA

tcrit = log2(n) · tGC + tpg + tsum (3.3)

Equation (3.3) gives the critical path for the KSA where tGC is the delay of one processing
node, tpg is the delay of the logic block the calculates the initial gi and pi and tsum gives
the delay of the logic block which calculates the sum.

3.1.4 Brent-Kung Adder (BKA)
The Brent-Kung Adder (BKA) is the final adder architecture that will be considered for
this thesis. Like the KSA it is a parallel prefix tree adder, but it structures its prefix tree
using what Brent and Kung refer to as a "regular layout" [BK82]. This regular layout
improves the area utilization of the adder and contains fewer processing nodes than the
prefix tree of the KSA.

An example of this prefix tree is given in Figure 3.4. As can be seen the improved area
utilization and reduction in the number of processing nodes, which also helps with wire
congestion, comes at the cost of increased depth of the tree, which directly impacts the
performance of the adder. The prefix tree of the BKA has a depth of 2 · log2(n) − 1 where
n is the width of the adder in bits.

The BKA has some important differences to the KSA that make it a worthwhile candidate
adder architecture for this thesis. It uses significantly fewer processing nodes in its prefix
tree which greatly reduces area usage and its much sparser layout makes it easier to
implement on a chip. However, these benefits come at the cost of performance when
compared to the KSA.
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tcrit = (2 · log2(n) − 2) · tGC + tpg + tsum (3.4)

Equation (3.4) gives the critical path for the BKA with the tGC , tpg and tsum being the
same as for the KSA.

In general we suppose that tGC < tF A and that tpg < tF A since the processing node
represented by tGC introduces at most two basic gate delays and that the block calculating
the initial generate and propagate signals gi and pi introduces only a single gate delay.
Furthermore, tsum < tF A since it also introduces only a single gate delay, whereas the FA
introduces three gate delays. This argumentation assumes that the delays introduced by
basic logic gates, such as AND, OR or XOR, are roughly equivalent, and the difference
would not be significant for evaluating these critical paths.

3.2 Implementation
As mentioned in Subsection 1.4.1 the selected adders were implemented in NCLX design
style for the asynchronous version. For the implementation an open, 45nm cell library
which provides the basic logic gates (AND, OR, XOR) and function blocks (FA, MUX)
that we needed was chosen. The designs were implemented in VHDL and compiled using
the Synopsys Design Compiler (DC). This process, as well as the simulation process
described in the next section, was automated using a simple shell-script. The script
is configured with a list of architecture, a list of bit widths, and a simple selector to
determine whether the synchronous or QDI versions, or both, should be compiled and
simulated.

3.2.1 Synchronous Adder Implementation
The synchronous designs were implemented in a straightforward manner by instantiating
and interconnecting the cells provided in the aforementioned library. No additional opti-
mization by hand was done and the optimizations done automatically by DC were entirely
disabled. This approach was due to two main reasons. First, it was discovered early in
the implementation process that the DC, when not otherwise configured, "optimizes" the
more complex adder designs into logically equivalent combinations of prefix tree and
ripple-carry logic, which when simulated performed significantly worse than the simple
ripple-carry adder.

For this reason it was deemed necessary to turn off any automatic optimizations performed
by the tool. In addition, the asynchronous designs were not supposed to be optimized by
the tool anyways, since we would require the logic to be exactly what we specified, so
as to guarantee the QDI properties of the design. This required specifying a so called
"dont_touch" attribute for all cells and nets within the design, so as to guarantee that
the design remains exactly as specified. Furthermore, the boundary optimization which
optimizes across sub-design boundaries was turned off as well.
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architecture arch of rca_adder is
-- Components
component FA_X1

port (A, B, CI : in std_logic; CO, S : out std_logic);
end component;
-- Signals
signal c_s : std_logic_vector(BIT_WIDTH downto 0);

begin
c_s(0) <= c_in;

-- generate adder from full adder blocks
fa_gen : for i in 0 to (BIT_WIDTH-1)
generate

FA_inst : FA_X1
port map
(

A => a(i),
B => b(i),
CI => c_s(i),
S => s(i),
CO => c_s(i+1)

);
end generate;

c_out <= c_s(BIT_WIDTH);
end architecture;

Listing 1: VHDL architecture of a synchronous RCA

So to provide a better basis for the comparison and evaluation of the designs, and due to
the aforementioned complications, it was decided to turn off all optimizations by the tool
for the synchronous designs as well.

Listing 1 shows the implementation of the synchronous RCA in VHDL. Due to the FA
being available as a cell in the library it is quite simply a matter of connecting one FA
with the next, as well as connecting both of the carry-in and carry-out to the respective
signals going into or out of the first or last FA, respectively.

3.2.2 NCLX Adder Implementation
To implement the NCLX adder designs it was necessary to first create NCLX versions of
the logic gates and function blocks that were used in the designs from the available cells
of the library. Additionally, an implementation of the Muller C gate from the library
cells was also required.
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C

a.F
a.T

b.F
b.T

done

x.F

x.T

Figure 3.5: NCLX AND gate with explicit input CD

3.2.2.1 Basic gates

As previously mentioned, a possible advantage of the NCLX design style is the explicit
CD, which means that there are no C gates on the data path. Thus, the NCLX versions
of the logic gates and function blocks were also created without a CD or done signal.

Thus, the NCLX versions of the gates are essentially just dual-rail implementations of
the respective logic gates. For example the AND gate shown in Figure 3.5 is essentially
just one logic gate per output-rail which produces the required logic function for this rail.
Thus, the NCLX AND gate has one OR gate to assert the "false" rail when either of the
input "false" rails is asserted, and one AND gate which asserts the "true" rail when both
of the input "true" rails are asserted. The NCLX OR gate works analogously.

3.2.2.2 XOR

The NCLX version of the XOR gate is slightly more complicated. It requires 4 AND
gates to check for each of the possible input signal combinations and then 2 OR gates,
one for each of the rails, which assert the respective rail based on the output of the AND
gates. Since only one input combination can be applied to the XOR gate at any given
time only one of the AND gates and therefore only one of the OR gates asserts its output.

This approach allows us to forgo unnecessary, duplicate CDs for example for the input
signals, since rather than each NCLX gate individually checking whether the input signal
has arrived, considering the isochronic wire forks we can check a given signal just once
and assume that it has arrived at all of its endpoints.

3.2.2.3 FA & MUX

The slightly more complex function blocks, namely the FA and MUX, also needed to be
implemented in NCLX. For the synchronous designs both of these blocks were available
as cells in the library, but for the asynchronous design they were created from the NCLX
logic gates, according to their logic function, as defined by a truth table for example.
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Figure 3.6: Muller C gate, left is the schematic of the AOI222 cell from the library, top
right is the schematic symbol of the Muller C gate and bottom right shows how the
logical pins of the C gate map to the actual pins of the AOI222 cell

3.2.2.4 Muller C gate

The Muller C gate was implemented using an AOI222 cell from the library, as well as
an inverter cell, to create a storage loop that exhibits the desired hysteresis behavior.
Figure 3.6 shows how the Muller C gate was created from the AOI222 cell. It should
be noted that the output pin of the C gate, pin "C", is connected back to the inputs
to form a combinational storage loop, which is needed to created the aforementioned
hysteresis behavior. Furthermore, in practice an additional buffer cell was needed for
the output of the C gate, since the Design Compiler refused to establish a connection
between the internal signal and the actual output port of the C gate in certain cases
otherwise. The individual C gates of the CD are then combined into a tree structure, as
shown in Figure 3.7, and the individual done signals then combine into a final, single
done signal for the combinational logic. As the figure shows two internal done signals
can feed into one C gate, however, the intermediate results of these C gates have to be
combined in an additional C gate as well. In general we can say that n − 1 C gates
are necessary for combining n done signals. The same would also be true and perhaps
even more evident if we were to combine the done signals in a C gate chain, where at
every stage the respective C gate combines the results of the previous stage with one new
signal to form the new result. It should be noted here that for the tree structure and
for n : n > 1 ∧ n ̸= 2i : i ∈ N there are multiple ways of constructing the tree structure,
however, neither the required number of C gates nor the maximum depth and thus the
longest path through the tree depend on the specific way that the tree is constructed.
The advantage to using a tree structure is naturally that the longest path through the
structure is much shorter as it has logarithmic rather than linear scaling.

As Figure 3.5 shows the actual logic behind the CD without the required C gate structure
is rather simple. For each dual-rail signal one OR gate is needed.
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C
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done

done 1
done 2

done 3
done 4

Figure 3.7: Muller C gate tree

3.2.2.5 Adder

The adders themselves are implemented by taking the existing implementation of the
synchronous versions and replacing the occurrences of the library cells with the newly
created NCLX versions of the same cells. Of course this also means any port or signal has
to be replaced with a dual-rail version. Finally, a CD has to be added where required.

Listing 2 shows the QDI implementation of the RCA, which can be compared to the
synchronous version shown in Listing 1. The logic part itself looks quite similar, as would
be expected, given that it is the same logic, simply implemented in a dual-rail way. The
main differences are that the FAs now produce an additional output, the done signal. Of
course, there is also the top level CD, which combines all of the individual done signals.

3.3 Simulation
The implemented adder designs, both the synchronous and asynchronous versions, were
simulated using ModelSim. An overview of the complete compilation and simulation
process is given in Figure 3.8.

3.3.1 Simulation Setup
As described in the previous section, Section 3.2, the simulation process was automated
in the same way, and utilizing the same script as the compilation process. This allows
specifying which architectures, and whether either the synchronous or the asynchronous
or both version should be compiled and then simulated, as well as the bit widths of the
adders for which the specified designs should be simulated.

Additionally, it was also possible to specify the simulation mode for the smallest two
widths, 8 bit and 16 bit. This means specifying whether the operands of the addition are
selected randomly, based on a uniform distribution, exhaustively, meaning that every
possible combination of operands is applied, or as a counter, meaning that the adder
simply counts from 0 to the maximum for the given width. Simulation of the 8 bit wide
adders supports all 3 modes, whereas 16 bit only supports the random and the counter
mode, and the wider widths only support the random mode.

Overall, four common bit widths, namely 8 bit, 16 bit, 32 bit, and 64 bit, were chosen as
possible values for the width of the adders. The limitation of only simulating for these 4
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architecture arch of qdi_rca_adder is
-- Signals
signal c_s : dual_rail_vector_t(BIT_WIDTH downto 0);
signal done_s : std_logic_vector(BIT_WIDTH-1 downto 0);

begin
-- carry in
c_s(0) <= c_in;
-- generate adder from full adder blocks
fa_gen : for i in 0 to (BIT_WIDTH-1)
generate

fa_inst : entity work.qdi_fa
port map
(

a => a(i),
b => b(i),
c_in => c_s(i),
s => s(i),
c_out => c_s(i+1),
done => done_s(i)

);
end generate;

-- carry out
c_out <= c_s(BIT_WIDTH);

-- done signal
done_tree : entity work.c_gate_tree
generic map
(

SIGNALS => done_s'length
)
port map
(

input => done_s,
done => done

);
end architecture;

Listing 2: VHDL architecture of an asynchronous RCA
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specific widths also comes at least in part from the required simulation time. Anecdotally
we can say that simulating a given adder with a width of 64 bit for the same number of
iterations, i.e., executed additions, takes longer than the simulations for the 3 other bit
widths combined. Furthermore, having the 4 distinct bit widths already gives valuable
data to judge how well the given architecture scales for larger additions.

3.3.2 Simulation Run
A simulation run of a given adder design and simulation configuration involves embedding
the adder in a generic testbench which, based on the simulation mode, selects the operands
and applies them to the adder. The testbench then reports the operands, as well as the
start time, end time, and duration of the addition in a CSV file. For the duration only
the time until the correct result is present at the outputs is counted. This is done in a
loop for a specified number of iterations.

The random values for the operands are generated using the functionality provided by
the "RandomPkg" from OSVVM. This also guarantees us that we get the same random
operands for the different designs, so that they are properly comparable.

For the asynchronous adders the testbench also has to apply the null phase after each
addition. Especially for the asynchronous adders, in addition to the duration of the
addition, the time until the done signal transitioned to high, indicating that the data-
phase is now complete, as well as the time until the null phase is processed and the time
until the done signal transitioned to low, indicating that the null-phase is complete, were
also reported in the CSV file.

This of course allows for a proper comparison between the worst-case of the synchronous
and the full cycle time of the asynchronous adders.

Additionally, the synchronous adders were also reset after each performed addition, since
the goal is a statistical evaluation of the individual performed additions, rather than of
the theoretical throughput. This also had another positive effect, since especially for the
smaller two bit-widths it was not uncommon to have two consecutive pairs of operands
which produce the same result, resulting in a duration of 0 for that particular simulation
iteration.

3.3.3 Area and Timing Analysis
Unlike the delay values obtained by simulation, the area usage of the adders is directly
reported by DC using the simple "report_area" command. The area report contains
a listing of the number of ports, nets, and cells, as well as a further breakdown of the
types of cells, e.g. combinational or sequential. Additionally, the report also contains
the total area usage of the design, as well as a breakdown based on the type of area,
e.g. combinational, noncombinational or interconnect area. The report itself does not
contain a unit for the area value, rather the unit has to be taken from the library to
which the design is mapped. For the open library used for this thesis the area is given in

27



3.3. Simulation

square micro meters [µm2]. Furthermore, the library used by this thesis has an area value
of 0 defined for the wire load models. Thus, the area report cannot calculate a total
interconnect area for the design, instead the interconnect area and by extension the total
area of the design remain as "undefined". Due to this circumstance the thesis will instead
use the "total cell area" as the principal value for all of the comparisons. However, in
the grand scheme of things this should not cause any significant difference, as we would
expect the total interconnect area to be roughly proportional to the aforementioned
reported numbers, i.e., number of ports or number of nets.

Similarly the timing, or more specifically the maximum timing path in the design, which
is the critical path, can be reported directly by DC using the command "report_timing".
The generated report contains a listing of the points in the design along this unconstrained
maximum path, the increment that the given point adds and the cumulative length,
measured in time, that the path has from the start to that point. The report ends with
the "data arrival time" which for our unconstrained, maximum path is the time when
the data arrives at the output, when starting from the input at time 0. Like the unit
for the area the unit for the time values is also defined by the used library, in this case
the timing is given in nanoseconds [ns]. Furthermore, it is possible to set the number
of reported digits to control the output format for the reported values. This has no
influence on the precision of the calculation, which is always done with the maximum
possible precision that the operating system supports for floating point arithmetic. While
the maximum timing path is not as important for the asynchronous designs, since they
will be compared based on their average delay, as calculated from the simulation results,
it is very important for the synchronous designs, since they will be compared primarily
based on this reported value.

Special care had to be taken for CSKA since the timing analysis reports the longest
signal path that it can find, even if this signal path can not logically occur for any input
configuration. In this case this means that it chooses the path through the MUX which
goes through the block of FAs rather than "skipping" the block every time, even if this
implies logically that each block either generates or kills the carry-in at some bit-position
within the block. This of course does not form the actual critical path, however, since it
is theoretically an electrical signal connection that runs all the way through the adder it
gets reported as the longest signal path. Thus, it was necessary to constrain the timing
analysis to the path that was discussed in Subsection 3.1.2. However, it was possible to
achieve this in an automated way given that the path has a very regular composition,
going only through the first and last block and "skipping" the others.

3.3.4 Simulation Results
The results of the simulation are stored in a CSV file containing one row for each executed
addition. These CSV files are then loaded into a Jupyter Notebook, a Python based tool
with a Web-browser-based user interface, where they are processed.

This processing involves an evaluation of the statistical parameters of the given simulation
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Figure 3.8: Block diagram of the simulation setup

series. In particular the average and the maximum for any given adder are of importance.
Furthermore, the synchronous adders have the delay of their reported maximum timing
path, which is the critical path of the design, as described in Subsection 3.3.3 also added
to the processed results. These results are plotted as box plots, since this allows to show
all of the relevant data in a very compact form. The box plots have the average, maximum
and the reported worst-case path overlayed, to make comparison easier.

The key values for the performance, expressed as the delay of the adder, the area usage
and the number of nets were also printed as bar graphs to allow an easy comparison of
this key data. In addition to the total number of nets, the maximum and the average
fanout for the architectures are also displayed as bar graphs.
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CHAPTER 4
Results

Based on the aforementioned methodologies the architectures, both synchronous and
asynchronous, will now be compared on their key metrics, as outlined previously.

4.1 Performance
As mentioned in Chapter 1 the key metric which we want to evaluate is the performance.
For our purposes the performance will be evaluated as the delay from when the inputs
are applied to the adder until the correct result is present at the outputs, as mentioned
in Section 1.4. However, there are some additional considerations in place. Namely, we
have to consider that synchronous adders are judged on their worst-case performance,
since that is what determines the minimum clock period and conversely the maximum
clock frequency of a synchronous design. On the other hand, we have to also consider the
CD for the asynchronous adders. Even when the correct result is already present at the
output the adder is formally speaking only finished when the CD indicates this. So for
the synchronous adders the results regarding the delay were further enhanced with the
worst-case path, as obtained from the design tool, as already described in Subsection 3.3.3.
And for the asynchronous adders both the delay values with and without the CD are
available for comparison.

First, we will compare the synchronous implementations in order to establish the relative
performance gain of the more complex architectures against the RCA. For the plots in
this section we used the 16 bit variant in any such cases where only the results for a
specific width are plotted in a single plot. This is because the 16 bit variants in general
provide the best visual clarity for the plots, since the difference between the average
and the worst-case increases linearly with the width for the RCA. In comparison to the
other architecture this leads to a stretching of the diagrams, as the RCA’s worst-case
data-point is significantly far removed from all other relevant data.
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Figure 4.1: Delay results of the synchronous 16 bit adders

As can be seen in Figure 4.1, the average delay of all the architectures is very similar.
Based on the already stated observations this is an expected outcome, since the primary
focus of the improvements of the modern adder designs lies in reducing the critical path
of the adder as much as possible through parallelism. We can see this in the figure as
well, where the two parallel prefix adders, namely the KSA and BKA, have significantly
reduced worst-case paths when compared to the CSKA and especially when compared to
the RCA. Furthermore, we can also observe that the complex adders have their delay
values more tightly grouped around the mean. This may seem obvious for the delay
values which are larger than the mean. When the mean and the maximum or in this
specific case the worst-case delay are closer together then the values in between are
naturally more tightly grouped. However, for the parallel prefix adders that we have
observed here this is also true for the delays that are less than the mean. Since the prefix
tree has to be traversed in any case this means that a baseline delay is introduced even
for the simplest additions. Thus, both the RCA and CSKA which have either no such
overhead in the case of the RCA or only a very small overhead in the case of the CSKA
can produce faster additions in very specific cases, than the KSA or BKA can.

When we now examine the delay results of the asynchronous adders, as shown in
Figure 4.2, we can see that the results are almost the same. For these results the CD was
not considered, this shows us that expanding the conventional single-rail logic into the
dual-rail equivalent has, as expected, no noticeable impact on performance. Of course
the main drawback of this design style so far is that singular standard library cells are
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Figure 4.2: Delay results of the asynchronous 16 bit adders, without CD

replaced with multiple such cells to implement the same logic function. As mentioned
in Subsection 3.2.2 some of the cells such as XOR or MUX require multiple cells to
implement. Because these cells are not only in parallel, as is the case for the AND and
OR for example, this means that certain paths through the designs became slightly longer
when implemented in this way. This leads to the observable differences in the results
between Figure 4.1 and Figure 4.2.

However, for the overall results we can make the same general observations that we
already made for the synchronous results. So in the next step we will now also consider
the CD and observe how this changes the results regarding the performance. The results
are shown in Figure 4.3 and it is immediately obvious that the CD has a big impact on
the overall performance of the adders. While we can observe that the delay values still
show the same grouping patterns, in regards to how tightly the delays are grouped for
each architecture, we can now also see that the CD takes a significant amount of time
to produce the done signal. Since the CD has a different level of complexity for each
architecture we can see that the results are not merely shifted upwards by a flat amount,
instead the more complex architectures take significantly longer to produce their done
signal than the less complex adders. This can also be seen in Figure 4.6, which shows
the difference in time between when the data is available at the output and when the
done signal is finally available. This is of course because the size of the CD increases
with the number of intermediate signals in the design for which their arrival must be
detected. With these results we can also see that, at least for this bit width, while the
RCA still has the longest maximum delay it also now has the lowest average delay, which
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Figure 4.3: Delay results of the asynchronous 16 bit adders, with CD

is what we care about most in regards to the asynchronous adders.

Both Figure 4.2 and Figure 4.3 show the results for the data-phase of the calculations,
but every such calculation also has a null-phase. To that end Figure 4.4 and Figure 4.5
show the results of the null-phase without and with the CD. The first thing that we can
take note of is that all of the architectures are very quick at producing the "spacer" at its
output. When we then consider the total delays for the null-phase as seen in Figure 4.5
we can conclude that nearly all of this time is spent solely waiting on the CD. This is
further supported by Figure 4.7, which shows the difference between when the "spacer" is
available at the output and when the done signal finally goes to ’0’.

One explanation why the adders seem to have more overhead for "resetting" the done
signal is that the CD runs partially in parallel with the actual data-path of the adders.
Since the actual calculation or "forward"-path of the adder takes longer than producing
the "spacer" or "reverse" path does, the pure overhead, where the desired result is already
present and the time is purely spent waiting on the CD is thus perceived lower. Even
though these results suggest that "resetting" the CD simply takes longer, this is not the
whole truth. When comparing Figure 4.3 and Figure 4.5 we can see that mean time
for the RCA is roughly the same in both directions, whereas for the other architectures
it holds true that the "reverse" direction takes longer. The main result that supports
the fact that the "reverse" direction is slower stems from the KSA and BKA. For both
architectures the "reverse" direction is slower, even though producing the "spacer" is
significantly faster than the actual addition for both adders. However, when we also
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Figure 4.4: Delay results of the asynchronous 16 bit adders, without CD, null-phase

Figure 4.5: Delay results of the asynchronous 16 bit adders, with CD, null-phase
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Figure 4.6: Delay overhead of the CD for the asynchronous 16 bit adders, data-phase

consider the aforementioned results of the RCA this suggests that this difference in the
"forward" and "reverse" latency scales with the size of the CD. Overall, these results let us
identify the CD as the clear bottleneck in regards to the performance of the asynchronous
adders.

Finally, a full comparison of the cycle times of both the synchronous and asynchronous
adders can be seen in Figure 4.8. For the synchronous adders the worst-case is shown.
For the asynchronous adders on the other hand the full cycle, that is both the data- and
null-phase are shown. Of course, as previously mentioned, it is the mean cycle time that
is used for the asynchronous adders.

Despite the large overheads that were identified for the QDI adders it can be seen here
that the QDI RCA starts outperforming its synchronous counterpart on average at a
size of 32 bits. At a width of 64 bit all of the asynchronous adders outperform the
synchronous RCA on average.

4.1.1 Conclusion
In summary we can say that the adders exhibit the same relative performance character-
istics when implemented in NCLX as their synchronous counterparts, when considering
the data-path only. However, when the CD is also considered then the more complex
architectures experience a significant loss of performance as compared to the RCA. As
outlined already in Subsection 3.2.2 this is because the CD consists of Muller C gates
which are much more expensive in terms of performance. The more complex adders
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Figure 4.7: Delay overhead of the CD for the asynchronous 16 bit adders, null-phase

achieve their performance gain with higher degrees of parallelism as compared to the
RCA or the CSKA, and this in turn is achieved by having more total gates working
in parallel. This means that not only are the gates working more in parallel but there
simply are also more gates in the design in general. But this is in this case also the
downfall of these adders, what is gained on the data-path for the processing of the result
is then lost with the need for a larger CD due to the increased number of intermediate
signals. Furthermore, we naturally have to consider that the asynchronous adders require
a "spacer" or null-phase in this design style, to separate to valid data-words. This
not only halves the total throughput but as the results show the larger CDs seem to
disproportionately struggle with producing a logic 0 at their output.

4.2 Area Usage
It is well known that the more complex adder architecture have significantly larger areas
when compared to the RCA. As mentioned previously this fundamentally stems from the
higher degree of parallelism that most of these adders achieve. This parallelism comes
at the cost of additional logic that mostly operates on the aforementioned group carry
signals, see Subsection 1.3.2. For a simple approximation we can view the logic that
generates the initial single-bit group carries plus the logic that ultimately calculates the
sum for each bit position as roughly equivalent to a single FA per bit.

This approximation leaves the entirety of the tree-like structure itself as pure overhead
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Figure 4.8: Cycle times

for any of the PPTAs. For the CSKA on the other hand the area overhead is much more
immediately obvious, as it is simply an RCA with the additional bypass logic inserted
into its structure. Additionally, the increased logic comes with an increase in interconnect
which itself also occupies area of course.

In Figure 4.9 we can see a full comparison of the required area for both the synchronous
and asynchronous adders. As can be seen and should be expected the QDI adders
have a significantly increased area requirement, when compared to their synchronous
counterparts. Most of this has already been outlined in Subsection 3.2.2, but naturally
we can expect the area requirement of the asynchronous implementations to be at least
twice that of the synchronous due to the expansion from single-rail to dual-rail. As also
already stated in Subsection 3.2.2 some gates, such as the XOR, are more complicated to
realize in dual-rail and therefore incur even more area overhead. Finally, the CD has to
be considered. As stated multiple times throughout this thesis the CD consists mainly of
Muller C gates, which are expensive both in terms of area and performance.

To further analyze the actual area overhead we can see the area usage in µm2 for the
synchronous adders in Table 4.1. Furthermore, Table 4.2 shows us the relative increase
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Figure 4.9: Area usage

Width RCA CSKA KSA BKA
8 34.048 53.732 88.312 69.16
16 68.096 107.464 224.504 151.088
32 136.192 214.927 547.960 318.136
64 272.384 429.856 1297.016 655.424

Table 4.1: Area usage [µm2] of the synchronous adders

Width CSKA KSA BKA
8 57.81% 159.38% 103.13%
16 57.81% 229.69% 121.88%
32 57.81% 302.34% 133.59%
64 57.81% 376.17% 140.63%

Table 4.2: Area usage increase of the synchronous adders relative to the RCA
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Width RCA CSKA KSA BKA
8 → 16 100% 100% 154.22% 118.46%
16 → 32 100% 100% 144.08% 110.56%
32 → 64 100% 100% 136.70% 106.02%

Table 4.3: Area scaling of the synchronous adders

Width RCA CSKA KSA BKA
8 349.790 489.706 567.910 547.694
16 703.038 982.870 1434.006 1210.300
32 1409.534 1969.198 3485.398 2564.506
64 2822.526 3941.854 8226.582 5301.912

Table 4.4: Area usage [µm2] of the asynchronous adders

Width RCA CSKA KSA BKA
8 927.34% 811.39% 543.07% 691.92%
16 932.42% 814.60% 538.74% 701.06%
32 934.96% 816.22% 536.07% 706.10%
64 936.23% 817.02% 534.27% 708.93%

Table 4.5: Area overhead of the QDI adders in [%] relative to their synchronous counter-
parts

in area usage of the synchronous adders in %, relative to the synchronous RCA. As we
can see the area overhead of the bypass logic of the CSKA is relatively the same at every
width. In contrast to this both PPTAs grow relatively larger with increasing width as
compared to the RCA. In the case of the KSA it starts out at ∼ 2.6 times the size of the
RCA at 8 bits and grows to ∼ 4.8 times the size of the RCA at 64 bit. The BKA on the
other hand has a more reasonable scaling, starting out at roughly twice the size of the
RCA and growing to ∼ 2.4 times the size at 64 bit.

Table 4.3 shows how the area of synchronous adders scales with the width. Due to
their designs both the RCA and CSKA grow perfectly linearly, which can be seen here
as the area simply doubles at double the width. For the PPTAs the relative overhead
incurred by the respective tree structure is most prominent at the smallest width and
then relatively decreases with increasing width. For the KSA the structure can be seen
in Figure 3.3 and for the BKA it can be seen in Figure 3.4.

As Figure 4.9 already showed, and as Table 4.4 now confirms, the asynchronous adders
require significantly more area to implement. Table 4.5 shows this same fact but expressed
as a percentage. This means that, for example, the 16 bit wide asynchronous RCA has
932.42% more area than its synchronous counterpart. From Table 4.5 we can see that the
asynchronous RCA is roughly 10.3 times the size of its synchronous counterpart at every
width, although the relative area overhead slowly increases with increasing width. This
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Width CSKA KSA BKA
8 40.00% 62.36% 56.58%
16 39.80% 103.97% 72.15%
32 39.71% 147.27% 81.94%
64 39.66% 191.46% 87.84%

Table 4.6: Area usage increase of the asynchronous adders relative to the RCA

Width RCA CSKA KSA BKA
8 → 16 100.99% 100.71% 152.51% 120.98%
16 → 32 100.49% 100.35% 143.05% 111.89%
32 → 64 100.25% 100.18% 136.03% 106.74%

Table 4.7: Area scaling of the asynchronous adders

is because the CD is organized in a tree structure and this tree would require slightly
more than double the total nodes to combine twice the amount of done signals. When
these results are then compared to the CSKA, KSA and BKA we notice that the area
overhead from switching to a QDI implementation is relatively smaller. This is because
the synchronous RCA constitutes only of interconnected FAs which exist as a standard
cell in the library. A single such FA has an area of 4.256µm2 whereas building the same
functionality from 2 XOR gates, 2 AND gates and 1 OR gate would yield a total area of
6.916µm2. However, this exact thing happens when the RCA is implemented in NCLX,
since the NCLX FA is simply built from the NCLX versions of the underlying logic gates,
as described in Subsection 3.2.2. The same principle also applies to the CSKA which
also uses FAs from the library in the synchronous case. The PPTAs instead have the
carry generation and sum logic already split in the synchronous case and thus don’t use
any FAs to begin with, therefore the relative area overhead when implemented in NCLX
is lower.

Similarly to the synchronous case, Table 4.7 shows the scaling of the asynchronous adders
relative to the width. The first thing to take notice of is that both the RCA and CSKA
don’t exactly double in size for twice the width, but increase slightly more. Furthermore,
this increase also decreases slightly with increasing width, this is, as stated previously,
because the tree structure of the CD becomes more efficient for bigger widths. All three
of RCA, CSKA and BKA have slightly worse scaling in the asynchronous case when
compared to the synchronous case, meaning that the relative increase in adder area
relative to the increase in adder width is a higher percentage for these three architectures
for the asynchronous case. The KSA, however, scales slightly better in the asynchronous
case than in the synchronous case. However, the overall differences in scaling are very
minor for all four adders when comparing the synchronous and asynchronous cases.

Finally, we can see in Table 4.6 the comparison of the asynchronous adders to the
asynchronous RCA. The NCLX adders incur much less area overhead when compared
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to the NCLX RCA, as compared to the synchronous case. As stated previously, this is
mainly because the synchronous RCA, and the CSKA to a lesser extent, benefit from
the optimized FA library cell, whereas their asynchronous implementations have to build
the FA from the basic logic gates and are thus already much less area optimized when
compared to the PPTAs, than in the synchronous case.

4.2.1 Conclusion
As would be expected, the RCA is the most area efficient implementation. In the
synchronous case the CSKA has a fixed overhead and both it and the RCA scale linearly
with the width, requiring double the area at double the width. The synchronous PPTAs
in comparison not only require significantly more area from the outset, but also scale
worse, more than doubling their respective area requirements at double the width. Since
the tree structure of the PPTAs grows more efficient with growing size, the relative
increase with the width slowly decreases. Overall, the main advantage of the RCA, and
to a lesser extent the CSKA, is the optimized FA cell from the library that they can
make use of.

The asynchronous adders in comparison are of course much larger than their synchronous
counterparts. The difference is greatest for the RCA and least for the KSA. Since their
is no compact, optimized cell for an asynchronous FA the RCA suffers from having the
FAs expanded to their basic logic gates, which then are also expanded to dual-rail and
require a CD. However, this also means that the relative advantage regarding the area
that the RCA has in the synchronous case is significantly less in the asynchronous case.

4.3 Number of Nets
The number of nets in the designs is a complicated topic. Due to the issues outlined in
Section 3.2 and more specifically in Subsection 3.2.1 there is a mismatch between the
number of nets that the tool reports and the number of nets we would expect based
on a schematic of the design. Due to the issues with the optimization the tool has not
optimized away or combined any nets. Thus, we have a higher then expected number of
nets for each design other then the RCA. The total number of nets per adder and for
each bit width is shown in Figure 4.10.

For the following equations n will be the width of the adder, additionally the formulas
only consider n : n = 2i, i ∈ N.

The tables in the following subsections will provided a validation of the given formulas
versus the reported number of nets for each design. The main purpose is to show that
the formulas yield the correct number for the examined bit widths, rather than show the
difference between what is expected and what is reported. As the following explanations
will show, the formulas already account for the aforementioned difficulties and limitations
of the design tool.
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Figure 4.10: Number of nets

Width Reported Calculated
8 33 33
16 65 65
32 129 129
64 257 257

Table 4.8: Nets of the synchronous RCA

4.3.1 Synchronous
4.3.1.1 RCA

The number of nets for the synchronous RCA is given in Equation (4.1). The Nports

gives the ports of the adder, 3 · n as there are two operands and the sum, and +2 for
the carry-in and carry-out. The Ncarries gives the number of internal carry-signals that
connect the individual FAs.

Nports = 3 · n + 2
Ncarries = n − 1
NRCA = Nports + Ncarries

(4.1)

4.3.1.2 CSKA

Equation (4.2) gives the number of nets for the synchronous CSKA. Nports gives the
number of ports of the design. It is of course the same as for the RCA.
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Width Reported Calculated
8 73 73
16 145 145
32 289 289
64 577 577

Table 4.9: Nets of the synchronous CSKA

nblocks is the number of ripple-carry-blocks that comprise the adder. In our case the
block size was fixed at 4 bit and since we only considered adder widths that are multiples
of 4 this leaves us with an expression that evaluates to a whole number of blocks for our
use cases. Nblock in turn gives the number of nets in each such block. Each block has
3 · 4 + 2 ports, which are the 4 bit of the two operands, as well as the 4 bit of the sum and
the carry-in/out. Furthermore, each block also contains 4 internal carry-signals, as well
as the 4 propagate-signals from the skip-logic, and finally the select signal that controls
the MUX. Finally, the blocks themselves are connected with nblocks − 1 carry-signals.

Nports = 3 · n + 2
nblocks = n/4
Nblock = 3 · 4 + 2 + 4 + 4 + 1
Ncarries = (nblocks − 1)
NCSKA = Nports + nblocks · Nblock + Ncarries

(4.2)

4.3.1.3 KSA

For the KSA determining the number of nets is more complicated. The formula for the
number of nets in the design is given in Equation (4.3). The layout of the prefix tree is
illustrated in Figure 3.3, but the actual implementation is done in terms of stages, where
each horizontal row in the tree structure is one stage in the design.

nstages gives the number of stages for a given adder width. The total number of nodes
is shown in the equation as nnodes, due to the varying amount of nodes per stage it is
easier to express the total over the whole design. Similarly it is easier to express the
total amount of nets across all stages, rather than an amount per stage, which is given
as Nstages. For Nstages each processing node contributes three signals, which are the 2
inputs and 1 internal signal. Furthermore, each of the "empty" white nodes in the prefix
tree is simply a connection, that is the outputs of such a node are simply equal to its
inputs. However, due to aforementioned limitations with the design tool each such nodes
still contributes 2 nets to the total, since it has 2 inputs/outputs. Thus, at each stage 2 ·n
nets are added in total for all the outputs of the nodes. Additionally, n − 1 carry-signals,
which are the outputs of the prefix tree are needed for the sum computation. It is of
note here that the nth carry-signal is already counted as it is also the carry-out and in
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Width Reported Calculated
8 180 180
16 468 468
32 1156 1156
64 2756 2756

Table 4.10: Nets of the synchronous KSA

such instances where these nets are equivalent and on the same hierarchical level of the
design, the design compiler was able to combine them in spite of the aforementioned
constraints. It is for the same reason that the "empty" nodes in the tree only contribute
two nets per node rather than 4. Finally, Ngroup nets, the group carry signals, are needed
as interconnection between the stages, since on each stage of the tree both the calculated
group-generate and group-propagate signal have to be passed on to the next stage.

Nports = 3 · n + 2
nstages = log2(n)
nnodes = n · (nstages − 1) + 1
Nstages = nstages · 2 · n + 3 · nnodes

Ngroup = nstages · 2 · n

Ncarries = n − 1
NKSA = Nports + Ncarries + Nstages + Ngroup

(4.3)

4.3.1.4 BKA

Finally, the equation for the total nets of the BKA is shown in Equation (4.4). Similarly to
the KSA the BKA was also implemented in stages, see Figure 3.4, where each horizontal
row in the prefix tree is one stage. However, unlike the KSA, the overall prefix tree is
essentially made of two smaller trees, where one is appended to the other. Because of
this determining the total number of nets in the design is more complicated.

Nports, Ncarries and Ngroup are the same as for the KSA. Although for Ngroup it should
be noted that this only means that it is defined the same way, the actual number is of
course different, since nstages is different. nstages gives the total number of stages in the
tree, as described in Subsection 3.1.4. The signals connecting the stages are combined
into Nstages, in total 4 nets per bit and stage are needed, for both the carry generate and
carry propagate signals, for both input and output.

The number of nodes in a tree of size n is recursively defined as nnodes(n). For n = 1 no
processing node is needed as the required group carry signals for a single bit group are
equal to the single bit signals that pass into the tree, see Subsection 1.3.2. The initial
tree needs n − 1 nodes to calculate the group carry signals for half of the bit positions,
and then a similar tree for size n

2 is needed to calculate the remaining half.
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Width Reported Calculated
8 180 180
16 468 468
32 1156 1156
64 2756 2756

Table 4.11: Nets of the synchronous BKA

Finally, each node contributes 2 nets for its inputs and one net for the internal signal, as
well as 2 nets for the outputs. As with the KSA, for the "empty" nodes only one net per
input/output pair is needed, thus we elect to count the inputs only for the processing
nodes, and the output for all nodes. The total number of nets needed across all nodes is
given as Nnodes. If all of the above is put together then we arrive at the total number of
nets for the complete adder, given in Equation (4.4) as NBKA.

Nports = 3 · n + 2
Ncarries = n − 1
Ngroup = nstages · 2 · n

nstages = 2 · log2(n) − 1
Nstages = nstages · 4 · n

nnodes(1) = 0

nnodes(n) = (n − 1) + nnodes(n

2 )

Nnodes = 3 · nnodes + nstages · 2 · n

NBKA = Nports + Ncarries + Nstages + Ngroup + Nnodes

(4.4)

4.3.2 Asynchronous
4.3.2.1 CD

Before we look at any specific adder we will look at the CD. The CDs are organized in
tree structures to improve the performance, this is because in theory the path through
a binary tree should be of length log2(n) for n input signals, which correspond to the
input done signals.

Nc−gate = 5
Nports(x) = x + 1
NCD(1) = 1
NCD(2) = Nc−gate + Nports(2) = 8

NCD(n) = NCD(⌊(n + 1)/2⌋) + NCD(⌊n

2 ⌋) + 2 + Nc−gate + Nports(n)

(4.5)
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Equation (4.5) shows the recursive formula for the number of nets in a given C gate tree.
First, each C gate requires 5 nets. Subsubsection 3.2.2.4 describes the implementation
of the Muller C gate. From this we can see that of the 5 total nets, 3 are for the ports
of the gate, and 2 are for connecting the inverter from the output of the AOI structure
to the output port. Furthermore, each recursively defined branch of the tree has Nports

depending on the number of input signals to that branch, plus one output. The NCD(1)
and NCD(2) are the stopping points of the recursion, where the leafs of the tree are
generated. In the case of a branch containing only one signal, which happens for example
when there are 3 input signals to the parent branch, then no Muller C gate is needed.
In the case of 2 input signals to the leaf node a single C gate is instantiated which
together with the required ports requires a total of 8 nets. Finally, the formula recursively
generates branches each dealing with half of the input signals, in case of an odd number
of signals the extra signal is added to the left child branch.

4.3.2.2 FA

Subsubsection 3.2.2.3 describes the creation of the NCLX FA. In particular 2 AND gates,
2 XOR gates and one OR gate are required to build one such FA. The resulting number
of nets is given in Equation (4.6).

Nports = 5 · 2 + 1 = 11
Nxor = 2 · 3 = 6
Nand = 2 · 2 = 4
Nintermediate = 2
Ndone = 3 + 3 = 6
NF A = Nports + Nxor + Nand + Nintermediate + Ndone + NCD(6) = 83

(4.6)

First, we have the ports, as given by Nports, in total there are 11 ports, which are the 5
dual-rail signals, A, B, Cin, S and Cout, as well as the done signal of the FA itself. Next
we have the 2 XOR gates, for simplicity the nets of both XORs were combined into one
value. In total the asynchronous XORs contribute 8 nets, which are 2 times 3 nets for
the outputs of the 3 synchronous AND gates that form the first level of the XOR, with
each AND gate corresponding to one input combination. The fourth gate is not counted
here because it can be shared with the asynchronous AND gates that we will discuss
next. Next are the asynchronous AND gates, which contribute a total of 4 nets. This is
simply because each asynchronous AND gate contributes an intermediate dual-rail signal,
hence 2 · 2 nets. Then we also count the single intermediate signal coming out of the
first asynchronous XOR gate which naturally contributes 2 nets. Finally, we have a total
of 6 internal done signals coming out of the synchronous OR gates that detect whether
a dual-rail signal has transitioned. Of course 3 of these are for the input-CD of the 3
inputs and 3 are for the 3 intermediate signals, 2 from the asynchronous AND gates and
1 from the first asynchronous XOR gate. These internal done signals go into a C gate
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Width Reported Calculated
8 811 811
16 1643 1643
32 3323 3323
64 6715 6715

Table 4.12: Nets of the asynchronous RCA

tree which itself needs 54 nets to deal with the 6 signals, as the previous subsection,
Subsubsection 4.3.2.1, showed. In total this leaves us with 83 nets for a single NCLX FA.

4.3.2.3 RCA

For the asynchronous RCA Equation (4.7) gives us the number of nets depending on the
width n. First, an asynchronous n bit RCA needs Nports nets for its ports. These are
from the 2 n bit input vectors, A and B, and the n bit output vector S, as well as the
2 dual-rail ports, Cin and Cout. Additionally, the RCA itself of course also produces a
done signal. Next we have the internal carry signals that interconnect the individual FAs,
given as Ncarries. These are dual-rail signals of course, so they contribute twice as many
nets. The RCA of course consists of n FAs, which as a result contribute n · NF A nets in
total to the adder. Finally, for the n FAs n internal done signals are needed, which are
collected in a C gate tree, which itself then contributes NCD(n) nets. Table 4.12 confirms
that the number of nets calculated using this formula matches the numbers reported by
Synopsys Design Compiler.

Nports = 3 · n · 2 + 2 · 2 + 1
Ncarries = (n − 1) · 2
Ndone = n

NF A = Nports + Ncarries + n · NF A + Ndone + NCD(n)

(4.7)

4.3.2.4 CSKA

The asynchronous CSKA is significantly more complicated than its synchronous counter-
part regarding the total number of nets it requires. First, we look at the number of ports
of the adder itself, which is the same as for the asynchronous RCA. Next we have the
number of nets for the asynchronous versions of the XOR, AND and MUX. For the AND
and XOR it has to be mentioned that the number is different than for the NCLX FA, as
described in Subsubsection 4.3.2.2. This is because of previously mentioned optimization
regarding the shared synchronous AND gate in the implementation of the FA. Since the
asynchronous gates were simply instantiated here for the CSKA and due to the previously
mentioned limitations regarding the optimizations that the tool can perform the total
number of nets for the XOR and AND gates combined is higher here since it also includes
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the ports of these gates themselves, which was not the case in the section of the FA. In
total each XOR contributes 3 times 2 nets for its ports plus 4 internal signals for a total
of 10 nets. Similarly the AND contributes 3 times 2 nets for its ports with no internal
signals for a total of 6 nets. And lastly the MUX contributes 4 times 2 nets for its ports,
with 4 internal signals as well, for a total of 12 nets. Next we look at the nets of each 4
bit block. First, each such block needs a total of 29 nets for its ports, which is detailed in
N block

ports , where we can see that we have 3 4-bit dual-rail ports, for A, B and S respectively,
as well as the 2 single-bit dual-rail ports for Cin and Cout, and finally the done signal
output for the block. In addition to the N block

ports each block also contains 4 FAs, which
is given as 4 · NF A. Furthermore, each block needs 4 XOR gates, 3 AND gates and 1
MUX to create the skip logic. The 4 XORs and 3 AND gates each also produce a single
dual-rail output that has to considered. Finally, the internal CD of the block combines a
total of 11 done signals, 4 of which come from the 4 FAs, 4 of which come from the 4
XORs, and the last 3 of which come from the 3 AND gates. This of course also adds
the NCD(11) nets from the C gate tree itself. All of this is combined in Nblock, nblocks

such blocks are then needed to form the CSKA. In the end the total number of nets for
the entire CSKA is given as NCSKA, which combines its number of ports, Nports, the
nblocks blocks of Nblock nets each, and Ncarries carry signals that connect these blocks. Of
course the individual done signals, which in total contribute Ndone nets, of each block are
collected in a C gate tree, which contributes NCD(nblocks) nets. All of this is described
in Equation (4.8) and then validated in Table 4.13.

Nports = 3 · n · 2 + 2 · 2 + 1
nblocks = n/4
Nxor = 3 · 2 + 4
Nand = 3 · 2
Nmux = 4 · 2 + 4
N block

ports = 3 · 4 · 2 + 2 · 2 + 1
Nblock = N block

ports + 4 · NF A + 4 · (Nxor + 2) + 3 · (Nand + 2)+
4 · 2 + Nmux + 11 + NCD(11)

Ncarries = (nblocks − 1) · 2
Ndone = nblocks

NCSKA = Nports + nblocks · Nblock + Ncarries + Ndone + NCD(nblocks)

(4.8)

4.3.2.5 KSA

The asynchronous KSA is quite complex, which is reflected in the number of nets, as
described in Equation (4.9). The number of stages, nstages, is the same as for the
synchronous version, the explanation for which is given in Subsubsection 4.3.1.3. The
same is also true for the total number of processing nodes over all the stages, nnodes, which
is described in the same section. The number of ports for the adder, nports, is the same as
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Width Reported Calculated
8 1221 1221
16 2451 2451
32 4915 4915
64 9851 9851

Table 4.13: Nets of the asynchronous CSKA

for all the other asynchronous adders, and the number of nets for an asynchronous AND
or XOR gate is of course also the same as it was for the previous asynchronous adders,
the numbers are given as Nand and Nxor respectively. The NCLX KSA is the first of the
asynchronous designs that also uses an asynchronous OR gate, its number of nets is given
as Nor, unsurprisingly it is the same as for the AND gate. The first new component,
that is tracked separately, is the "preprocessing" logic, which computes the single bit
carry propagate and carry generate signals for all n inputs. This "preprocessing" logic
consists, as the formulas in Subsection 1.3.2 describe, of an asynchronous AND gate for
the generate signal, and an asynchronous XOR gate for the propagate signal. In total this
logic requires NGP nets. At the output of the prefix tree, which will be discussed a bit
later, are the group carry signals. However, for the sum only the group generate signals
are relevant. These are listed as Ncarries, and as usual for dual-rail signals require twice
as many nets. The computation of the actual sum itself is achieved with n XOR gates,
the nets of which are listed as Nsum. Also similarly to the synchronous KSA, there are
the group carry signals, that connect the individual stages of the tree, for these a total
of Ngroup nets are necessary. This number is similar to the number for the synchronous
KSA, except that there are twice as many nets for the dual-rail implementation of course.
However, the final n

2 propagate signals, which are unused and therefore not counted
in the synchronous version, have to be checked by the CD and therefore are now also
counted. Finally, the overall design combines Ndone done signals in its CD, which of
course also contribute a net each to the total. These Ndone signals are the results of the
input CD for A, B and Cin, as well as for the n

2 group generate and group propagate
signals that are produced by the last stage of the tree. The inputs have to be checked as
they are then fed into the preprocessing logic, and the final outputs of the tree have to
be checked as they are then fed to the sum logic. The intermediate group carry signals,
as well as the output of the preprocessing logic, however, need not be checked since each
stage of the tree has its own input CD. Naturally, an appropriately sized CD is needed
for these Ndone done signals, the total number of nets for it is expressed as Ncd(Ndone).

Now we still need to discuss the stages of the prefix tree. As with the synchronous version
it is easier to discuss the total over all stages, rather than each individual stage. The
resulting number is given in the equation as Nstages. First, the total ports over all stages
are given as the first term in Nstages. Because the white, non-filled nodes in the tree
contain no logic they also only contribute one net for each input/output pair of ports,
rather than two. Since there are a total of nnodes processing nodes in the tree, we can

49



4.3. Number of Nets

express the total number of nets for the ports over all stages as 2 ·nnodes ·2+2 ·nstages ·n ·2.
This is because we have two pairs of input/output signals per bit, but only the ones for
the processing nodes should be counted twice. Of course, since these are dual-rail signals
they have to be counted twice. Additionally, every stage outputs its own done signals,
which is the final term, nstages within this first term. Next is the actual logic within the
processing nodes. It consists of 2 AND and one OR gate, which require 2 · Nand + Nor

nets, as well as one internal dual-rail signal, of course nnodes of these are required in total.
This yields a total of 3 done signals per processing node, for a total of 3 · nnodes done
signals over all stages.

This is where it gets complicated. The number of nets for the CDs have to be tracked per
stages and then summed, because NCD(a) + NCD(b) ̸= NCD(a + b). This is expressed in
the term Nstages−CD. The number of nodes in an individual stag can be expressed as
n − 2i for i ∈ [0, nstages) and i ∈ N . As stated, each node has to check 3 signals for the
generation of the done signal, thus the CD contributes a total of NCD(3 · (n − 2i)) nets
for each stage. Of course, this is then simply summed over all stages to give the total
amount of nets for the CDs of the stages.

If we put all of the above together then we get the total number of nets for the entire
asynchronous KSA in Equation (4.9) as NKSA. The calculated values and the values
reported by DC for the considered widths can be found in Table 4.14.
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Width Reported Calculated
8 1866 1866
16 4995 4995
32 12778 12778
64 31595 31595

Table 4.14: Nets of the asynchronous KSA

nstages = log2(n)
nnodes = n · (nstages − 1) + 1
Nports = 3 · n · 2 + 2 · 2 + 1
Nxor = 3 · 2 + 4
Nand = 3 · 2
Nor = 3 · 2
NGP = n · (Nand + Nxor)
Ncarries = (n − 1) · 2
Nsum = n · Nxor

Ngroup = 2 · nstages · n · 2 + n

2 · 2

Ndone = 2 · n + 2 · n

2 + nstages + 1

Nstages−CD =
nstages−1�

i=0
NCD(3 · (n − 2i))

Nstages = ((2 · nnodes + 2 · nstages · n) · 2 + nstages)
+ nnodes · (2 · Nand + Nor + 2)
+ 3 · nnodes + Nstages−CD

NKSA = Nports + NGP + Ncarries + Nsum

+ Nstages + Ngroup + Ndone + NCD(Ndone)

(4.9)

4.3.2.6 BKA

As with the synchronous version, the asynchronous BKA is the most complex design, at
least regarding the number of nets. Equation (4.10) describes the number of nets within
the design, broken apart in the usual format of this section. Due to the differences in
design, as can be seen by comparing Figure 3.3 with Figure 3.4, which are the prefix
trees of the KSA and BKA respectively, the BKA has almost double the stages of the
KSA, which is reflected in nstages. The number of ports, nports, as well as the number
of nets of the asynchronous gates, e.g. AND, OR and XOR, are of course the same as
before. Furthermore, the number of nets for the "preprocessing", i.e., the base case of the
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group carry signals, NGP , the number of nets for calculating the sum from the group
carries, Nsum, the interconnect of the prefix tree, Ngroup, and the amount of done signal,
Ndone, are all the same as for the KSA, although it has to be said that, since nstages is
different, these numbers are only the same in definition, but not in value.

The main differences are of course to be found within the prefix tree. Nstages gives the
total number of nets across all stages, but for simplicity we will go through it line by
line. The term of the first line gives the ports for each stage across all stages, each stage
has the 2 n bit wide group carry signals as both input and output, as well as the done
signal output of each stage. The next term gives us the signals that are tracked per node.
First, we start with the input ports. As has been mentioned previously, the way that the
signals are defined and optimized by the tool is not always straightforward, so in general
the tool declares the input side signals of the group carries within a stage only for those
bit positions that contain a node, for the other positions the input and output signals
are combined, and thus counted as only one net. Thus, we have the 2 input signals and
1 intermediate signal per node, which of course contribute 2 nets, since they are dual
rail signals. Then we have the nets contributed by the logic within each node, namely 2
AND and 1 OR gate. Finally, each node requires 5 nets for its done signal, which are
the 4 inputs per node and the intermediate signal. Next we have the output ports of
each stage, as stated any bit position in each stage that contains no processing node
combines the inputs and outputs into one net per signal. Of course, each stage contains
its own CD. The total number of nets for the individual CDs across all stages is given as
Nstages−CD. Unlike the KSA, it is not quite so easy to express the number of nodes in
each stage, thus the formula for Nstage−modes(i) gives the number of nodes in stage i. As
stated before, there are 5 signals in each node for the CD, so NCD(5 · Nstage−nodes(i))
gives the number of nets for the CD for stage i.

In the end, as with any other adder so far, it is simply a matter of putting all of this
together to arrive at the total number of nets for the BKA, which is given as NBKA. The
comparison, showing that the formula matches the reported values, is given in Table 4.15.
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Width Reported Calculated
8 2204 2204
16 5403 5403
32 12609 12609
64 28550 28550

Table 4.15: Nets of the asynchronous BKA

nstages = 2 · log2(n) − 1
nnodes(1) = 0

nnodes(n) = (n − 1) + nnodes(n

2 )

Nports = 3 · n · 2 + 2 · 2 + 1
Nxor = 3 · 2 + 4
Nand = 3 · 2
Nor = 3 · 2
Ncarries = (n − 1) · 2
NGP = n · (Nand + Nxor)
Nsum = n · Nxor

Ngroup = 2 · nstages · n · 2 + n

2 · 2

Ndone = 2 · n + 2 · n

2 + nstages + 1

Nstage−nodes(i) =

��
n

2i+1 , if i < log2(n)

⌊ n − 2
22log2(n)−1−i

⌋, otherwise

Nstages−CD =
nstages−1�

i=0
NCD(5 · Nstage−nodes(i))

Nstages = nstages · (4 · n · 2 + 1)
+ nnodes · (3 · 2 + 2 · Nand + Nor + 5)
+ nstages · 2 · n · 2
+ Nstages−CD

NBKA = Nports + Ncarries + NGP

+ Nsum + Ngroup + Ndone

+ Nstages + NCD(Ndone)

(4.10)
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CHAPTER 5
Conclusion

As the previous chapter showed, the quantitative analysis and comparison of the syn-
chronous and asynchronous implementations along three main axis, namely performance,
area usage and number of nets, shows that the asynchronous adders cannot compete with
the most optimized synchronous designs, yet they are also more complex, as expressed in
the number of nets, and require significantly more area to implement.

The NCLX RCA emerges as the clear winner among the QDI implementations and is the
only asynchronous design that can outperform its synchronous counterpart in terms of
performance. However, it requires roughly 10 times as much area to implement without
accounting for the area cost of any interconnect. A quick look at the number of nets
reveals that this area overhead may be a rather low estimate given the serious difference
in the number of nets, and thus in complexity and possible area cost of the interconnect.

An important contribution of this work is that it clearly identifies the CD as the main
bottleneck for performance and as one of the main contributors to the high area usage.

With all of that said, it should still be noted that all of the asynchronous implementations
outperform the synchronous RCA at the highest examined bit width. This shows that
one of the main draws of asynchronous logic, the average-case performance, is not without
any merit. Furthermore, it can be stated here that, while not a focus of this work,
asynchronous logic has other draws as well, particularly in regards to robustness and
fault tolerance.

If we turn our attention to applications that require robustness rather than speed, then
the asynchronous implementations become contenders again. The synchronous adders
would usual require additional functionality to achieve the desired level of robustness,
such as a triple modular redundant implementation for example. The asynchronous
adders in comparison can achieve such robustness inherently. Thus, the results tell us
that the QDI RCA could be a viable alternative to the synchronous versions in any such
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cases were the focus lies on characteristics other than performance or area usage, given
that it is faster and also more robust at the same time.

5.1 Future Work
As stated in the previous section, the CD is the main bottleneck regarding the performance
of the asynchronous adders. The CD for all of the asynchronous implementations was
realized in the form of a tree structure to achieve the desired hysteresis behavior for
more than two signals at a time, as discussed in Subsubsection 3.2.2.4. Thus, both the C
gate itself as well as the C gate tree as a whole are therefore immediate candidates for
further optimization. In particular, the effects of combining a tree structure and a chain,
or simply having an unbalanced tree, could be explored. This is because the simple tree
structure has all of the input signals either at the same depth or at most one level closer
to the root, if the tree is only partially filled on its final level. However, this does not at
all reflect in any way the actual logic and the order in which these input signals would
logically arrive.

The NCLX FA is a good example of this. It has a total of 6 signals for which completion
must be detected, namely the 3 single bit inputs (A, B, Cin) and a further 3 intermediate
signals (the result of a ∧ b, the result of a ⊕ b and the result of Cin ∧ (a ⊕ b)). These
intermediate signals are all at different logic depths within the combinational logic, and
thus it would be reasonable to modify the structure of the CD such that their position
within an unbalanced tree would reflect the expected timing of these signals. Listing 2
which shows the actual implementation of an asynchronous RCA also shows this quite
well. As can be seen all of the individual done signals are combined into a tree, and
thus are all at the same depth, even though the expectation would be that they become
available in sequence, starting from the FA for the LSB and ending with the FA for the
MSB. Figure 5.1 gives an example of what such an optimization may look like. While
the path for the input CD signals is now longer the path for the intermediate signals
that we expect to be generated last is now much shorter. In the simple implementation
the signal which would have been expected to arrive last would still have to traverse the
entire tree, while it is now the case that the signal expected to arrive last would have to
go through one expensive gate only. The viability and possible effectiveness of such an
optimization could be explored for all instances of the CD in the various architectures.

Another case that may be worthwhile for further consideration is the embedding of the
adders in a pipeline. The expectation here is that the delay overhead caused by the CD is
more negligible because the done signals for the logic need only be ready by the time that
the next buffer stage has latched its new input. Furthermore, the preceding buffer stage
already performs an input CD and therefore this part of the CD for the combinational
logic may be omitted. Finally, depending on the characteristics of the surrounding
pipeline stages, it might be of use to explore the influence that the asynchronous adders
average-case performance has on the throughput of the pipeline.

To this end both of the works as summarized in Section 2.1 and Section 2.2, respectively
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C
C

C C
C

done(A)
done(B)

done(Cin)
done(A ∧ B)

done(A ⊕ B)
done(Cin ∧ (A ⊕ B)

done

Figure 5.1: Modified C gate tree for the NCLX FA

show that the pipeline configuration is arguably more important than the adders them-
selves. In both works it is not the adder within the pipeline that informs the overall
result. For [FP94] it is the memory which, as the overall slowest component, informs the
timing of the pipeline. For the synchronous adders this of course means that regardless of
their performance the clock period is fixed such that it accommodates this comparatively
much slower component. This of course illustrates one of the often purported advantages
of asynchronous logic, namely the average-case timing, and the benefits that can thus be
gained in any scenario where the memory would not be involved. In the second paper
[Kin96] on the other hand, it is the comparatively rigid timing of the second pipeline
stage that eliminates all possible advantages that the asynchronous adders might have.
Both of these works show that the configuration of the pipeline and the timing of the
surrounding stages play an important part in analyzing the overall throughput. Therefore
testing the asynchronous adders in a variety of different pipeline configurations and
comparing the results with a synchronous implementation might show the overall impact
that an asynchronous implementation can have on the performance of the whole pipeline.
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