


Abstract

Device miniaturization has steadily progressed since the invention of the integrated
circuit in the 1950s. The many challenges which arose along the years were surpassed
by advancements in processing technologies. Smaller devices meant more chips per
wafer, lower power consumption, and higher speeds. Eventually, it is expected that
device miniaturization will reach a limit and the basics elements of the current device
technology have shown signs of weariness.

Naturally, several ideas have appeared with claims to overcome the challenges. Some
involve the reformulation of a device or a process, while others involve enhancements
of the current technology. Depending on the chosen path, the cost of implementation
can be a drawback for the fast implementation of the technology by industry. It is not
uncommon that a new semiconductor plant requires investments in the excess of two
billion US dollars. It is unlikely that any industry would be willing to invest, in the
short and middle term, in the development of technologies not compatible with their
current plant. Therefore, a solution for the current integration problems should take
into consideration the processing technologies available in the industry today.

Three-dimensional integration is a well balanced solution. It presents possibilities for
an increase in device integration in every sense: device miniaturization, lower power
consumption, and higher speeds. There are varying approaches for the manufacture
of devices, but the majority relies on a “through silicon via” (TSV) to electrically
bind the devices along the third dimension. The construction of a TSV is challenging,
mainly due to its size. Among the required processing steps are the etching of high
aspect ratio structures, wafer thinning, and several film depositions. A particular
problem with TSVs is the mechanical stability of the structure and its influence on its
surroundings. Such a large metal structure in the middle of the silicon circuit is prone
to create a high level of stress during device operation and processing.

Within this work an extensive analysis of the mechanical aspects of the TSV is per-
formed by means of simulations. A macro scale investigation of the mechanical effects
of the TSV on its surroundings is performed. Subsequently, the via is analyzed locally,
with a consideration of processing and handling scenarios. Lastly, microstructural ef-
fects are studied for the formation of residual stress during metal growth. The main
objective is to provide a comprehensive characterization of the mechanical stability of
the TSV, from its effects on the silicon circuit down to the manufacturing of the via.
A collection of simulation techniques and models is developed and presented as the
main contribution of this work.
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Kurzfassung

Seit der Erfindung des integrierten Schaltkreises im Jahr 1950 schreitet die Minia-
turisierung der Bauelemente kontinuierlich voran. Kleinere Bauelemente bedeuteten
niedrigere Kosten, geringeren Energieverbrauch und höhere Geschwindigkeit. Früher
oder später wird dieser Miniaturisierungsprozess an seine Grenzen stoßen und bereits
jetzt ist zu erkennen, dass grundlegende Elemente Schwachstellen aufweisen.

Um die daraus resultierenden Herausforderungen zu bewältigen, wurden bereits ver-
schiedene Ansätze entwickelt. Manche beinhalten die Verbesserung von bestehenden
Technologien, während andere die Entwicklung von neuen Bauelementen beziehungs-
weise Fertigungsverfahren erfordern. Je nach Ansatz können die Kosten einen Nachteil
darstellen, was die Einführung der Technologien in die Industrie erschwert. Eine Ferti-
gungsanlage kann Investitionen in der Höhe von zwei Mrd. US Dollar erfordern. Es ist
daher unwahrscheinlich, dass eine Industrie bereit ist, mittelfristig in die Entwicklung
von Technologien zu investieren, die nicht zu ihrer Anlage kompatibel sind.

Dreidimensionale Integration gibt die Möglichkeit die Miniaturisierung der Halblei-
terbauelemente voranzuführen und gleichzeitig den Energieverbrauch zu verringern
und die Geschwindigkeit zu erhöhen. Es gibt eine Vielzahl an unterschiedlichen
Ansätzen für die Herstellung eines dreidimensionalen Bauelements. Die meist ver-
breitetste Methode ist eine Durchkontaktierung durch das Silizium (through silicon
via, TSV), um eine elektrische Verbindung in der dritten Dimension zu ermöglichen.
Der Aufbau eines TSV ist vor allem wegen seiner Größe eine Herausforderung. Zu den
notwendigen Schritten zählen das Ätzen von Strukturen mit einem großem Höhe zu
Breite Verhältnis, Waferdünnung, und mehrere Schichtabscheidungen. Ein besonderes
Problem, das TSVs mit sich bringen, ist die mechanische Stabilität des Aufbaus und
ihr Einfluss auf ihre Umgebung. Solche großen metallischen Strukturen inmitten der
Silizium-Schaltung sind während des Betriebs der Fertigung stressanfällig.

In dieser Arbeit wurde eine ausführliche mechanische Analyse von TSVs durch Simu-
lationen durchgeführt. Die mechanischen Auswirkungen der TSVs auf ihre Umgebung
wurden auf Makroebene untersucht. Anschließend wurde die Durchkontaktierung lokal
analysiert. Abschließend wurden die makrostrukturellen Effekte, die zum Aufbau von
Spannungen im Schichtsystem von TSVs während der Metallabscheidung führen, un-
tersucht. Das Hauptziel war eine umfassende Charakterisierung der mechanischen Sta-
bilität von TSVs vorzunehmen, welche die Auswirkungen auf den Silizium-Schaltkreis
bis zur Herstellung der TSVs beinhaltet. Eine Reihe von Simulationstechniken und
Modelle wurden entwickelt und als Mittelpunkt dieser Arbeit vorgestellt.
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Resumo

A miniaturização de dispositivos eletrônicos progrediu regularmente desde a invenção
do circuito integrado em 1950. Os muitos desafios ao longo dos anos foram superados
por avanços nas tecnologias de fabricação de semicondutores. Eventualmente, espera-
se que o processo de miniaturização atinja o seu limite, de fato elementos básicos da
tecnologia atual de processamento tem mostrado sinais de desgaste.

Naturalmente, várias idéias surgiram para superar os atuais desafios da miniaturização.
Algumas envolvem a reformulação de um dispositivo ou um processo, enquanto outras
envolvem o aperfeiçoamento da tecnologia atual de processamento. Dependendo do
caminho escolhido, o custo de implementação pode ser inconveniente para uma rápida
adoção da tecnologia pela indústria. Uma nova fábrica de semicondutores pode de-
mandar investimentos na altura de dois bilhões de dólares. É improvável que qualquer
indústria esteja disposta a investir, a curto e médio prazo, para o desenvolvimento de
tecnologias não compat́ıveis com a sua planta atual.

A integração em 3D é uma solução equilibrada. Ela apresenta possibilidades de um
aumento na integração de dispositivos em todos os sentidos: miniaturização dos dis-
positivos, menor consumo de energia e maior velocidade. Existem diversas abordagens
para a produção de um dispositivo 3D, mas a maioria baseia-se na construção de uma
via através do siĺıcio (through silicon via, TSV) para ligar eletricamente os dispos-
itivos ao longo da terceira dimensão. A fabricação de um TSV é complexa, princi-
palmente devido ao seu tamanho. Dentre as etapas necessárias para o processamento
encontram-se a criação de estruturas com alta razão de aspecto, redução da espessura
do wafer e várias deposições de filmes finos. Um problema em particular com os TSVs
é a estabilidade mecânica da estrutura e do seu entorno. Tal estrutura de metal no
meio de um circuito integrado tende a originar um grande ńıvel de estresse durante o
funcionamento e o processamento do dispositivo devido a variações de temperatura.

Neste trabalho, uma extensa análise dos aspectos mecânicos do TSV é realizada por
meio de simulações. Uma investigação dos efeitos mecânicos em macro escala do TSV
em seus arredores é realizada. Em seguida, a via é analisada localmente, considerando
diferentes cenários de processamento e manuseio. Por fim, os efeitos microestruturais
são estudados para a formação da tensão residual durante o crescimento de metais
no TSV. O principal objetivo é fornecer uma caracterização completa da estabilidade
mecânica do TSV, desde seus efeitos sobre o integrado até a fabricação da via. Uma
coleção de técnicas de simulação e modelos são desenvolvidos e apresentados como a
principal contribuição deste trabalho.
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1. Introduction

1.1. History of Device Integration Technology

By the end of World War II, the power of computational devices was brought to
the society attention and, by the advent of mechanical and electrical machines, their
advancement has reached the technological limits of the time. These machines were
responsible for the automation of complex calculation procedures, such as projectile
trajectories and cryptography. A famous example is the crack of the cryptography
messages produced by the German machines known as Enigma [1]. At the time,
the British army built a decrypt machine named Bombe based on an earlier Polish
technology. The Bombe was 2.1m wide, 1.98m tall and 0.61m deep and weighted
approximately one ton [1]. It was an enormous machine which was dedicated to
perform an algorithm which fits today in a few hundreds lines of code and which can
be executed in almost every modern computer. The technological revolution which
allowed this miniaturization outbreak began in the mid of 1950s with the first steps
towards the invention and realization of the integrated circuit (IC).

Contrary to common sense, IC invention was not driven mainly by miniaturization
of electronic devices, but by the need for reliability [2][3]. The first general purpose
computer known as ENIAC had 17468 vacuum tubes, 7200 crystal diodes, 1500 relays,
70000 resistors, 10000 capacitors and around 5 million hand-soldered joints [4]. Having
a vacuum tube burn out was quite a common occurrence during the warm-up or cool-
down process, and every failure had to be manually fixed. There are rumors which
state that ENIAC has had a non-operation time of 50%, which is quite unlikely. At
the height of ENIAC reliability technology the computer was able to operate, on
average, every 2 days without burning a tube [5]. The invention of the transistor in
1947 eliminated the problems associated with the vacuum tubes as electronic devices
became more reliable [6]. However, the need for more computation power required
more devices. The huge amount of electronic devices led to the problem known as
“Tyranny of numbers” [6]. The design of new devices was very complex and the amount
of wiring connections required between the components was absurd, considering they
all needed to be done manually. A solder fail was quite a frequent event which was
very difficult to locate and to diagnose.

Circuit integration was presented as a solution for this reliability problem [2][3][6].
The idea of manufacturing electronic components in a monolithic piece of semicon-
ductor was very tempting. The number of manually wired connections would be
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drastically reduced and more than one device could be manufactured at once, reduc-
ing the production costs. However, circuit integration faced three major challenges at
the beginning of the 1950s [7]. First, for the integration itself, there was no available
technology which was able to create different components on a single semiconductor
substrate. Second, the isolation: if a multiple number of components were success-
fully produced in a single substrate, they would need to be electrically isolated from
each other. However, nobody really knew how to do this, at the time. Lastly, the
interconnections: there was no financially feasible solution to electrically connect the
integrated components.

The first successful solution for integration was developed by Jack Kilby in the summer
of 1958 [8][9]. He realized that all circuit elements (e.g. resistors and capacitors) could
be made using a semiconductor material, moreover they can be formed on a single
substrate. Kilby used several earlier developments such as mesa transistor and mesa
diodes to build a single-transistor oscillator with a distributed RC feedback. It is
considered by many the first IC ever made, a schematic of which is shown in Fig. 1.1
[2][3].

Figure 1.1.: Kilby’s device with mesa components (a) and circuit description of the single-
transistor oscillator (b). Image based on [8].

Kilby’s biggest contribution was to show that any electrical component could be built
in a single chip. However, his implementation had some flaws; the device isolation was
made by cutting grooves and the connections were manually wired.
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At the end of 1958, Kurt Lehovec developed a method to electrically isolate multiple
components which are placed on a single substrate[10]. He claimed that the use of
several p-n junctions in series could prevent current flow between the elements. The
junction could be biased, if needed, in the blocking direction. Lehovec’s idea was
successfully tested using the structure depicted in Fig. 1.2.

Figure 1.2.: Schematic of the device constructed by Lehovec. The PN junction in series works
as a barrier to prevent the undesired current flow through the silicon. Image
based on [10].

In 1959 Robet Noyce developed, based on Jean Hoerni’s work, the manufacturing
process, which would enable the adaptation of ICs on large scale. He adapted the
ideas of Kilby and Lehovec to the new planar transistor developed by Hoerni [11].
The process of planar transistor fabrication is very similar to the manner in which
devices are fabricated today. The process is initiated with an undoped silicon wafer
covered by a layer of silicon oxide. Then, a window is opened by photolithography in
the corresponding device planned location. Finally, impurities are diffused to form the
conduction wells and the planar transistor is complete. A summary of the process is
depicted in Fig. 1.3.

In addition to the planar process, Noyce developed a method to make the electrical
connections of the devices without manual intervention. The idea was quite obvious
after the development of the planar transistor; it consists of the preservation of the
oxide layer on the top of the device (except on the contact points with the active
regions). In that way, metal layers could be deposited on the oxide, which would work
as isolation between the metal interconnections and the substrate.

The invention of ICs was the object of discussion for several years, which led to a patent
war between several leading electrical companies [2]. For many years the invention
was mainly accredited to Jack Kilby and Robert Noyce. But in 2000, only Jack Kilby
received the physics Nobel prize “for his part in the invention of the integrated circuit”
[12]. This led to a new debate of the legitimate inventors of the IC, but in the end
the invention of the IC is viewed as a collaborative result with contributions from
several engineers and scientists, which improved the fabrication process step by step
until enabling mass production.
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Figure 1.3.: Description of the planar process developed by Jean Hoerni for a diode (left side)
and a transistor (right side). A sample of an n-type Silicon substrate is prepared
with silicon oxide on top (a and e). In predetermined regions the oxide is etched
(b and f), opening spots for impurity diffusion (c, f, and g). After diffusion,
an oxide layer is regrown in the etched openings and the metal contacts are
deposited (d and h). Image based on [11].

1.2. Limitations of the Current Technology

After the successful invention of the IC, the benefits of continuous integration became
evident as time progressed. Smaller devices yielded higher speed, lower power con-
sumption, and reduced manufacturing costs, since it was possible to produce more
devices on a single wafer [13]. Gordon Moore, a renowned pioneer in the semicon-
ductor industry, predicted in 1965 that the number of transistors on IC would double
approximately every two years, a trend shown in Fig. 1.4 [13][14]. His estimative has
been proven accurate through the years, but such exponential growth cannot persist
indefinitely. A minor slow-down in the miniaturization pace has already been detected
and leading foundries have been discussing the post-Moore era [15][16][17].

Further integration in the current semiconductor technology is bounded by device
operation and processing limitations. A not exhaustive list is presented below with
the most common scaling problems for various applications.

4



1. Introduction

Figure 1.4.: Moore’s law in semi-log scale.

Current Leakage

When analyzing digital circuits, a transistor has two modes of operation: “on” and
“off”. Ideally, the current flows through the device only, when the transistor is “on”.
During the “off” state the flow is blocked and there is no power consumption. In
real devices the “off” state is not completely free of power consumption. There is a
small current flow, which should be negligible in comparison to the “on” state. Such
undesired flow of current in a transistor is defined as current leakage [18].

As the devices get smaller current leakage increases mainly by two mechanisms. The
first is known as gate leakage. It occurs due to the thin gate isolation in smaller devices.
In that situation the electrons present in the gate tunnels to the conducting channel,
deteriorating the transistor operation. The second mechanism is the subthreshold
leakage. The channel length and threshold voltage of a transistor decreases as the
overall device size decreases. The reduction of these two parameters increases the
current flow between drain and source during “off” state. Leakage currents are severe
problems of modern devices fabrication and, in some cases, they can account for more
than 50% of the device’s power consumption [19].
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Process Variation

Smaller devices are very susceptible to eventual processing deviations. For example,
as described by Haselman and Hauck [18], the gate oxide in current devices is only
five atoms thick. A misplacement of only one atom can modify the device design
specification by 20%. Such sensitivity of device fabrication can damage yield and
increases fabrication costs.

Lithography

For many years, lithography improvements were made by enhancements on the lens,
improvements in the imaging material technology, and the reduction of the source
wavelength. Naturally, it is expected that at some point the feature size becomes
smaller than the resolution power of optical systems [18][20]. In fact, such a situation
is already true in modern lithography technology. The 32nm node had to implement
advanced optical techniques such as, optical proximity, phase-shift masks, and immer-
sion lithography [21]. However, those enhancements are not enough for the 22nm and
16nm nodes, and new advancements in pattern transfer are needed [20][21] [22][23].

Interconnections

The increasing integration of devices demands longer and thinner interconnects. Such
conditions lead to slower interconnections and higher power dissipation, increasing
the device temperature during operation. Low resistivity metals and low-k oxides
are currently employed to ease the Joule dissipation and signal delay, respectively
[24]. However, they suffer from processing and reliability problems which can lead
to increased production costs. The interconnection can be engineered in a more effi-
cient way with the development of optical interconnects and three-dimensional (3D)
integration technologies.

1.3. Three-Dimensional Integration and TSVs

Since the development of the planar process, the integration paradigm is to increase
the number of devices on the wafer surface. However, one can clearly see that there is
plenty of available space along the depth of the wafer. What prevented its utilization
was the lack of processing know-how to handle three-dimensional (3D) integration.
Furthermore, there was no commercial reason to invest in vertical integration, since
planar devices sufficed so far. However, in the last decade, the scenario has changed due
to the limitations presented in Section 1.2, and the proper use of the third dimension
provides an alternative to continue along the miniaturization path. Moreover, 3D
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integration promises additional benefits, such as increased bandwidth, reduced power
consumption, improved performance, and multi-functionality [25].

1.3.1. Types of Three-Dimensional Integration

There are at least three different modes to implement 3D integration: Monolithic, die
stacking, and wafer stacking [25]. The first relates to the construction of two or more
device layers in one single wafer. The other two consist of piling up multiple die or
wafers and a connection through the intermittent layers, as depicted in Fig. 1.5.

Figure 1.5.: Different implementations of a 3D IC: Monolithic device (a), Die-to-die integra-
tion (b), and Wafer-to-wafer integration (c).

Naturally, every approach has a specific process to reach its final configuration. The
maturity of the technology and the process involved in the fabrication will determine
the mode to be adopted by industry. Monolithic devices are the farthest from com-
mercial use and there are few reports from companies using this technology [26][27],
while for die and wafer stacking there is a variety of publications from the industry
and academy [28][29].

Die or wafers stacking presents similar challenges due to the nature of the concept.
However, a very specific requirement for both methods is the communication between
different stacked layers. A vertical interconnection is needed to go through the entire
wafer in order to bind the devices in a 3D network. Those interconnections are known
as Through Silicon Vias (TSV). The importance of the TSVs for the successful imple-
mentation of 3D integration is reflected in the great amount of literature available.
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1.3.2. TSV Fabrication

TSVs are big vertical interconnections, usually made of metal. The structure can
be bulky (filled TSV) or hollow (unfilled TSV) depending on the design and process
requirements. TSV fabrication can be split in 4 steps: Etching, metal deposition,
wafer thinning, and bonding [30][31].

The Bosch process is usually employed to etch the planned TSVs wells, but other
processes such as Non-Bosch DRIE and Laser drilling can be used. Subsequently, a
metal or poly-Si is deposited in order to create the conduction path inside the via.
However, it is very tough to produce a TSV which is long enough to go through
the entire depth of a commercial wafer (∼750µm). Hence, in addition to the TSV
building, a polishing process is needed to reduce the wafer thickness. After polishing,
the wafers (or die) are aligned and piled upon each other using a bonding process
shown in Fig. 1.6.

Figure 1.6.: Typical processing of a TSV. A Die (or wafer) ready (a) for TSV manufacturing
is polished (b) on its backside to reduce the thickness. In the following, the
sample is structured by photolithography (c) and the via hole is etched (d).
Then, the metal pad is exposed (e) and the conduction metal is deposited (f and
g), accordingly to the TSV type. Finally, the die (or wafers) are stacked and
bonded.
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1.3.3. Via First, Via Middle, and Via Last

The execution order of the TSV fabrication steps depends on the chip fabrication
stage at which the via is formed. There are three approaches available [32]: before the
devices fabrication (Via first), before metal lines fabrication (Via middle) and after
metal lines fabrication (Via last), as sketched in Fig. 1.7.

Figure 1.7.: The three main approaches for TSV fabrication: Via First, Via Middle and Via
Last. Image based on [32].

1.4. Challenges and Opportunities

There are many expectations surrounding 3D integration [31]. Some commercial ap-
plications are already available on the market, but there is a general feeling in the
engineering community that a “killer application” is missing. Actually, the mass pro-
duction of 3D devices in the mainstream is not yet a reality. The technology still faces
many challenges [33]. In the processing steps, TSVs suffer from high mechanical and
thermal stresses, which compromises their structural stability. Obtaining a high yield
is also a concern, since an economically viable yield rate is difficult to achieve. There
are also open concerns during device operation, such as thermal management being of
particular concern. The piling up of devices can hinder the thermal dissipation and
temperatures beyond the devices’ operation range can be easily reached. In addition
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to the process and operation issues there is also a lack of software design tools. A 3D
IC needs a specific tool for design and the currently available software is unable to
handle the particularities of this technology. Finally, the last obstacle involves test.
New methodologies to probe the devices are needed, especially the devices which are
found in the lower layers.

Judging by the amount of obstacles, it appears unlikely that the realization of 3D IC
technology is feasible in the near future in a large volume. However, such analysis
shows a very pessimistic view. The 3D IC technology based on TSVs is already
available on some markets for commercial applications, especially sensors and digital
cameras [34][35]. Naturally, very high density integration is not the goal of these
markets but they point in the direction which could lead to solving the problems
associated with this technology. TSVs are also being employed in so called 2.5D
technologies such as interposers [36]. The dies are not piled up but instead, they can
be placed closer to each other, thereby reducing metal lines length as depict in Fig.
1.8.

Figure 1.8.: A conceptual example of 2.5D technology. The silicon interposer is used to
reduce the connection paths between the chips.

1.5. Outline of the Thesis

This work contains ultimately a collection of techniques to assess the impact of TSVs in
silicon-based technologies. The goal of the work is to present a comprehensive analysis
of the mechanical behavior of TSVs in different scenarios by means of simulations. In
order to fulfill the objective, new simulation schemes, material and mechanical models
were developed. They constitute a substantial part of the work and are described in
detail in the sections to follow.

This dissertation is divided into seven chapters, including this introductory chapter.
Chapter 2 and Chapter 3 provide the general background for the approach taken for
the simulation of mechanical problems in TSVs. In Chapter 2, the classical mechanics
theory is explained with a focus on microelectronics applications. In the chapter to
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follow, the mathematical fundamentals of the simulation techniques used are discussed.
Chapter 4, Chapter 5, and Chapter 6 present the developed novel approaches and form
the bulk of this thesis. The flow of the document starts with the analysis of TSVs
on a macro scale and move toward a micro scale analysis. Chapter 4 considers the
TSV as a big structure on a silicon wafer and discusses the mechanical impact in its
neighborhood. Chapter 5 deals with the local stress in the TSV, which is created
by small features, processing, and handling. Chapter 6 closes the work describing
an estimation for residual stress in the metal layers of the TSVs. Finally, Chapter 7
summarizes the thesis with the main achievements and presents an outlook for further
steps.
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2. Mechanics in Microelectronics

The mechanics reliability problems in microelectronics require a careful approach.
The small dimensions and the thin layers modify the material behavior, leading to
the development of phenomena not yet fully understood. This chapter presents the
basic framework common to all mechanics problems in engineering. Meanwhile, the
specifics in dealing with the mechanics of the TSV structure are described in Chapter 4,
Chapter 5 and Chapter 6.

2.1. Mechanical Systems

A semiconductor device is a complex piece of engineering. Its concept and operation
span through electronics, optics, materials science, and several other fields of science.
A proper understanding and control of such technology demands a multidisciplinary
approach. For instance, using strained semiconductors is a relatively old field – but
still very active – in which the main goal is to understand how stress and strain impact
the carriers’ mobility in the device. In order to have full comprehension of strained
devices, one should consider a combined knowledge from electronics, mechanics, and
materials science. The overlap between disciplines in semiconductor research and
development is quite common. Therefore, mechanics in microelectronics requires a
different approach by the engineer who must consider the interaction between several
physical and chemical phenomena.

Mechanical stress in microelectronics arises mainly from two sources: intrinsic stress
of films and thermal stress. Those effects are present in front-end of line (FEOL)
processes, back-end of line (BEOL) processes, packaging, and device operation [37].
The device is under stress during its entire lifetime and the invention of a technology
which neglects it is quite unlikely. Thus, one can only try to manage the stress, either
by taking advantage of it or limiting its effects in order to prevent damage to the
device.

To control the stress, engineers use the structural geometry of the device, material
properties, thermal management, and different manufacturing techniques. However,
stress management is a difficult task, especially in microelectronics. The small scale of
layers and components invalidate some aspects of classical mechanics theory. Addition-
ally, materials’ microstructural effects play a significant role in such dimensions and
cannot be neglected. Even material properties can be different when comparing thin
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films and bulk films with the same material composition [38]. Well documented bulk
material properties cannot be used freely in small structures. Sometimes a relationship
can be traced between them, but this is not always the case. Naturally, experimental
procedures are used to extract material properties, but to complete this task, experi-
mentalists face challenges of their own. In summary, mechanics in microelectronics is
a multiscale physical problem, where at small dimensions, the modification of material
properties gives rise to new physical effects.

2.2. Mechanical Theory

Atoms of a solid object move as response to an applied force. This movement changes
the object’s shape and size, and it is called deformation [39]. A deformation can be
temporary or permanent. A temporary deformation is reversible and linearly depen-
dent on the applied force. When the force ceases to exist, the object returns to its
original size and shape. This behavior of solids is called elasticity. On the other hand,
permanent deformations are usually non-linearly dependent on the applied force and,
as the name suggests, are irreversible. This behavior is called plasticity. The vast
majority of materials presents both elastic and plastic behavior depending on how big
the applied force is. A typical evolution of deformation regarding force is shown in
Fig. 2.1.

Figure 2.1.: Relationship between force and deformation. The linear region is known as the
elastic regime and any deformation in this regime is temporary and ceases to exist
after unloading. Beyond the elastic limit the deformations become permanent
and the material enters the plastic regime.

In order to quantitatively study the deformation of solids, a traditional approach is to
look at the material as a continuum [39]. This means that the solid is not considered
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as a set of arranged atoms, but rather it is treated as a body of matter without empty
spaces and every point has the same properties, even if it is sub-divided infinitesimally.
Therefore, the solid is treated as a single material defined by its geometry and confined
to a single set of parameters. With these considerations, it is possible to describe
mathematically the elastic portion of the graphics in Fig. 2.1 for small deformations.

2.2.1. Infinitesimal Strain Theory

Infinitesimal strain theory describes solid behavior for deformations much smaller than
the body dimensions [37][39]. Qualitatively, this means that the body geometry is
assumed unchanged during the deformation process. It can sound inconsistent, but it
is the most common situation for solids. For example, when a car drives over a bridge,
it certainly applies some force on the bridge and such force leads to some deformation.
However, one can say that the bridge remains immutable, since any deformation is
irrelevant, when the full enormity of the bridge is considered. For an engineer it is still
important to know the effect which the car has on the bridge. For that analysis, the
infinitesimal strain theory is applied.

There are two different ways to describe very small deformations of solids. The first
one is based on the linearization of Lagrangian or Eulerian strain tensors of finite
strain theory [40], a generalization of infinite strain theory. The second method is a
geometric based description, which is derived in the section which follows.

Strain Tensor Derivation

Consider the infinitesimal volume of a solid as in Fig. 2.2a. Due to some external
influence (e.g. force, heat) this infinitesimal body is deformed, assuming the shape of
the Fig. 2.2b. Deformation can be quantified as the amount of elongation, contraction
or torsion an infinitesimal side suffers.

The displacement field accounts for every movement inside the solid, therefore rigid
body translation and rotation are included. To measure the deformation of a body,
the side ab can be taken into consideration. The deformation of the side ab (Dx) is
given by the difference between the displacement vectors (u(x, y, z)) of the points b
and a

Dx = u(x+ dx, y, z) − u(x, y, z) . (2.1)
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Figure 2.2.: General deformation of a body after external loading. Rigid body movements
such as translation and rotation are included, although they should not count
for the final body deformed state.

The vector Dx can be explicitly defined in terms of each of its components

Dx =


ux(x+ dx, y, z)− ux(x, y, z)
uy(x+ dx, y, z)− uy(x, y, z)
uz(x+ dx, y, z)− uz(x, y, z)


 . (2.2)

The first term of each component can be expanded in Taylor series as shown in (2.3).
Only the term for ux is shown for the sake of brevity:

ux(x+ dx) = ux(x, y, z) +
∂ux

∂x
dx+O(dx2) . (2.3)

Since very small deformations are considered, any term of the second order can be
ignored and the vector Dx is rewritten as in

Dx =




∂ux

∂x
dx

∂uy

∂x
dx

∂uz

∂x
dx


 . (2.4)
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The vector Dx specifies the extent of the deformation of the side ab in the direction of
the three coordinate axis. However, it is more convenient to express the deformation
in normalized units related to the original ab size (dx) as in

ǫx =
Dx

dx
=




∂ux

∂x
∂ux

∂y
∂ux

∂z




. (2.5)

This relative measure of deformation is known as strain. This definition provides a
better feeling of how much the solid has changed in comparison to the undeformed
solid. The strain in the original direction of the side ab (x-direction) is called normal
strain (∂u/∂x). It reflects the tendency of the points, originally aligned (in this case,
parallel to x-axis), to move away (stretch) or to approach (contract) each other along
the same direction of the side ab. The deformation of the other two components of
ex describes the tendency of the points to skew in relation to each other toward the
direction of each component (y or z). The same procedure can be repeated for each
side (cd and ef ) parallel to the coordinate axis of the infinitesimal solid. The same
result holds, except for an index change.

ǫy =




∂ux

∂y
∂uy

∂y
∂uz

∂y




, (2.6)

ǫz =




∂ux

∂z
∂uy

∂z
∂uz

∂z


 . (2.7)

The skew deformations are related to the angles formed between the original sides and
the deformed sides as defined in Fig. 2.3 (α, β, γ, φ, θ, and ω). For example, the angle
α can be expressed in terms of the skew y-component according to

tanα =

∂uy

∂x
dx

dx+
∂ux

∂x
dx

=

∂uy

∂x

1 +
∂ux
∂x

. (2.8)
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Where, for α << 1 the relation (2.8) can be further simplified by

α ≈ ∂ux

∂y
. (2.9)

A similar relation also holds for β regarding the skew x-component.

A common method to measure the skew of a solid is to sum up the angular deviation
in a particular coordinate plane. For example the skew of the solid in the plane-xy
is given by the sum of α and β. For the plane-xz is the sum of θ and ω, and for the
plane-yz is the sum of φ and γ. This measure is called shear strain.

In summary, a solid deformation is represented by 3 normal strain components (one
for each direction) and 3 shear strain components (one for each coordinate plane). The
usual nomenclature is stated below and the geometrical view of the strained component
is sketched in Fig. 2.3.

εxx =
∂ux

∂x
εyy =

∂uy

∂x
εzz =

∂uz

∂x

γxy =
∂ux

∂y
+

∂uy

∂x
γxz =

∂ux

∂z
+

∂uz

∂x
γyz =

∂uy

∂z
+

∂uz

∂y

(2.10)

Figure 2.3.: Geometrical representation of the normal and shear strain.
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For mathematical handling, it is very convenient to represent the strains of a solid
deformation as a tensor:


εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


 =



εxx

γxy

2

γxz

2
γyx

2
εyy

γyz

2
γzx

2

γzy

2
εzz


 . (2.11)

The factor 1/2 is added in order to simplify the manipulation of constants in future
applications of the strain tensor. The strain tensor is symmetric and has 3 components
not discussed previously, namely ǫyx, ǫzx, and ǫzy, where ǫyx = ǫxy, ǫzx = ǫxz, and
ǫzy = ǫyz. Those components represent the complement of the skew angles in each
coordinate plane, as depicted in Fig. 2.4.

Figure 2.4.: Complementary angles in the plane xy. The indicated angles on the bottom left
corner of the quadrilateral are equal to those on the upper right corner, due to
triangle symmetry.

Stress

Every solid body reacts to deformations. Internal forces arise in the solid as a response
to strain, similar to the restoration force in a spring. These forces are known as
stress and act to restore the undeformed state of the body [39]. Stress might have
several sources: it can be a reaction to external forces, temperature variation, or
electromagnetic fields (e.g. piezoelectric devices). Stress can also arise during material
fabrication, due to microstructural phenomena. Those are referred to as residual
stress or intrinsic stress. An example is the formation of metal lines for semiconductor
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devices. The characteristics of the metal growth process and the particular interaction
between the metal and silicon create residual stress in the lines. The same situation
occurs in oxide growth, material deposition, and any other process which involves the
introduction of new materials during thin films fabrication.

The stress is defined qualitatively as the force between adjacent parts of a solid acting
on an imaginary surface, divided by the area of this surface, as sketched in Fig. 2.5. The
force’s magnitude and direction usually depend on the chosen surface. The situation
depicted in Fig. 2.6 is used as an example.

Figure 2.5.: Uniaxal load of a body. The stress is defined as the force divided by the area.

According to the chosen imaginary plane, the force applied on it will be such as to
satisfy the force equilibrium condition of the solid. Therefore a proper description
of the stress at a point of a body cannot be accomplished by a single vector and
the information about the chosen plane should be included. Augustin-Louis Cauchy
realized that the force has a linear relationship with the surface normal [39][40]. He
described this relationship as tensor which is independent of the chosen surface and
describes only the stress state at a specific point in a body, as defined in


T1

T2

T3


 =


σxx σxy σxz
σyx σyy σyz
σzx σzy σzz




n1

n2

n3


 , (2.12)

where T is the force vector on the surface with normal n and σ is the stress tensor
suggested by Cauchy. Additionally, Cauchy has shown that the stress tensor at a
point P is formed by the stress vectors of 3 mutually perpendicular planes which
pass through P [41]. The stress vector in any other plane passing through P can be
obtained by a coordinate transformation of the stress tensor. Fig. 2.7 depicts Cauchy
stress definition in a cube.
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Figure 2.6.: The dependence of stress on the chosen plane. A body under a load (a) can have
different stress configurations at a point, depending on the considered plane (b
and c). However, they must describe the same physical phenomenon.

Like the strain nomenclature, the stress components have special names according to
their direction. The components aligned to the normal of the three perpendicular
planes are called normal stress and those perpendicular to the normal of the plane
are the shear stress. The Cartesian coordinate system is suitable for the application
of Cauchy’s definition. The sub-indexes used in (2.12) refer to the Cartesian coordi-
nate system (But any other coordinate system can be used without (2.12) losing its
generality).

An important stress tensor’s property is symmetry. The stress must hold this property,
in order to satisfy conservation of angular momentum. Since the stress tensor is a
second-order object (matrix), the symmetry eases the mathematical handling of the
tensor. It is possible to prove that a symmetric matrix has real eigenvalues and
perpendicular eigenvectors [42]. Hence, the eigenvectors can define a space to apply
the Cauchy stress definition. Furthermore, in this space the stress tensor is a diagonal
matrix of the eigenvalues. This means that, in the “eigenspace” the stress tensor has
no shear stress, it has only normal stress. These components (eigenvalues) are called
principal stresses and the eigenvectors are known as the principal stress directions.

20



2. Mechanics in Microelectronics

Figure 2.7.: Stress definition in a cube.

2.2.2. Hooke’s Law

The elastic behavior of solids can be modeled by the same principle which governs
spring deformations, known as Hooke’s law. The law suggests a linear relationship
between the deformation and the force applied to a string or in a solid. Hence, the
relation stress-strain in solid bodies in the elastic regime can be expressed by

¯̄σ = C ¯̄ǫ , (2.13)

where C is a linear mapping between the two tensors ¯̄σ and ¯̄ǫ. This implies that C is
a fourth-order tensor with 81 components (each of the 9 strain tensor components is
related with each of the 9 stress tensor components). However, due to the symmetry
of the strain and stress tensors the number of independent components of C can
be reduced to 21. This simplification process can be seen graphically in Fig. 2.8.
Therefore a 6x6 symmetric matrix is a convenient way for representing the tensor C

and the stress-strain relation can be rewritten as in
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εxx
εyy
εzz
γxy
γxz
γyz



=




C1 C2 C3 0 0 0
C4 C5 C6 0 0 0
C7 C8 C9 0 0 0
0 0 0 C10 0 0
0 0 0 0 C11 0
0 0 0 0 0 C12







σxx
σyy
σzz
σxy
σxz
σyz




, (2.14)

where Ci are constants to be determined in the next sections. The matrix in (2.14) is
also known as stiffness matrix.

Figure 2.8.: Visualization of the tensorial Hooke’s law. Strain symmetry forces symmetry on
the C tensor on all components in the form Cij21, Cij31, and Cij32 indicated by
numbers in gray. Strain symmetry is enforced on the components C21kl, C31kl,
and C32kl indicated by the brown squares.

Coefficient Determination for the Normal Components

The coefficients of the stiffness matrix for the normal components can be obtained
from the superposition of two effects in a solid. For doing so, a force which is applied
to a body is considered, as depicted in Fig. 2.9.

The body stretches in the same direction of the load and shrinks in the perpendic-
ular direction. These two deformations can be treated separately and then added
together by the principle of linear superposition of the resulting strains produced by
each phenomena depicted in Fig. 2.9. The strain in the parallel direction is given by
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Figure 2.9.: Superposition of effects during an uniaxial loading of a body, where ΔL/L is the
normal strain ǫparallel along the direction of the applied force and ΔL′/L is the
normal strain ǫperp in the directions perpendicular to the force.

the uniaxial (1D) Hooke’s Law. Consequently, the linear mapping between the stress
and strain is described by a constant

σ = Eǫparallel , (2.15)

where, ǫparallel is the strain in the direction to the parallel to the applied force. It should
be noted that in the one-dimensional case the stress and the strain are no longer a
tensor but a scalar. The proportionality constant E is known as Young modulus (or
elastic modulus). The Young’s modulus depends on the material of the solid and
characterizes the material stiffness. Materials with high values of E are stiffer and
harder to deform. Typical values of Young’s modulus for different materials essential
in semiconductor industry are listed in Table 2.1.

Table 2.1.: Mechanical properties of common materials used in semiconductor device manu-
facturing.

Material Young Modulus (GPa) Poisson ration CTE (K/10−6) Reference

W 410 0.30 4 [39][43]
Cu 124 0.34 16 [39][44]
Al 69-79 0.35 22 [39]
Si 107 0.22 5 [39]
SiO2 94 0.16 0.5 [39]
Ti 116 0.30 9 [39]
TiN 440-640 0.25-0.29 9.4 [45][46][47]
Ta 185 0.35 6.5 [48][49][50]
SiN 270-320 0.22 3 [39]

The strain in the perpendicular direction is also defined by the uniaxial Hooke’s Law
but with a different proportionality constant as in
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σ =
E

ν
ǫperp , (2.16)

where ν is known as the Poisson ratio and ǫperp is the strain in a direction perpendicular
to the applied force. The Poisson ration describes the deformation in the perpendicular
direction as a proportion of the deformation in the parallel direction. Typical values
of the Poisson ratio for semiconductor materials are also given in Table 2.1.

For a general treatment, forces applied in all three coordinate directions should be
considered. A complete description for a 3D system is given by the set of equations

ǫ1xx =
1

E
σxx ǫ1yy = − ν

E
σxx ǫ1zz = − ν

E
σxx

ǫ2xx =
ν

E
σyy ǫ2yy = − 1

E
σyy ǫ2zz = − ν

E
σyy

ǫ3xx =
ν

E
σzz ǫ3yy = − ν

E
σzz ǫ3zz = − 1

E
σzz

, (2.17)

where the indexes xx, yy, and zz stand for the normal strains and stresses. The super-
indexes 1, 2, and 3 refer to the deformations induced by forces in the x, y, and z
directions, respectively.

Finally, all the strains in each direction can be superimposed (ǫii = ǫ1ii + ǫ2ii + ǫ3ii) and
with some algebraic manipulation the final total strain in each direction is given by

ǫxx =
(1 + ν)

E
σxx −

ν

E
(σxx + σyy + σzz)

ǫyy =
(1 + ν)

E
σyy −

ν

E
(σxx + σyy + σzz)

ǫzz =
(1 + ν)

E
σzz −

ν

E
(σxx + σyy + σzz)

. (2.18)

Coefficient Determination for the Shear Components

Regarding the shear components, the coefficient determination follows directly from
the uniaxial Hooke’s Law. Similarly to the previous case, the shear stress relates to
the strain by a coefficient as in

τ =
G

γ
, (2.19)

where τ and γ are the shear stress and strain. G is the shear modulus and defines
the resistance of a body to torsion. The shear modulus can be written in terms of the
Young modulus and the Poisson ratio according to
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G =
E

2(1 + ν)
. (2.20)

In conclusion, Hooke’s law with all constants is given by




εxx
εyy
εzz
2εxy
2εxz
2εyz



=




εxx
εyy
εzz
γxy
γxz
γyz



=

1

E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 (1 + ν) 0 0
0 0 0 0 (1 + ν) 0
0 0 0 0 0 (1 + ν)







σxx
σyy
σzz
σxy
σxz
σyz




. (2.21)

The inverse relation with the stress on the left side is written as




σxx
σyy
σzz
σxy
σxz
σyz



=




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0
(1− 2ν)

2
0 0

0 0 0 0
(1− 2ν)

2
0

0 0 0 0 0
(1− 2ν)

2







εxx
εyy
εzz
2εxy
2εxz
2εyz




. (2.22)

2.2.3. Thermal Expansion

So far the discussion has treated indistinguishably the source of stress. However, for
thermal sources a special treatment is suitable, due to its importance in engineering
problems. Temperature variation in a solid leads to its expansion or retraction, and
consequently to deformations. Thus, thermal strains can be described by

εth = αΔT , (2.23)

where εth is the thermal strain, ΔT is the temperature variation and α is the coefficient
of thermal expansion (CTE). Typical values of CTE for materials in semiconductor
industry are listed in Table 2.1.

Thermal expansion is an isotropic effect, which means that the material expands ac-
cording to (2.23) in every direction. Additionally, there is no skew deformations in-
duced by thermal variations, meaning only normal components of the strain tensor
are affected. Hooke’s law, with thermal effects included is given by
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εxx
εyy
εzz
γxy
γxz
γyz



=

1

E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 (1 + ν) 0 0
0 0 0 0 (1 + ν) 0
0 0 0 0 0 (1 + ν)







σxx
σyy
σzz
σxy
σxz
σyz



+ αΔT




1
1
1
0
0
0




, (2.24)

which can be represented inversely with




σxx
σyy
σzz
σxy
σxz
σyz



= ¯̄K




εxx
εyy
εzz
2εxy
2εxz
2εyz



− EαΔT

1− 2ν




1
1
1
0
0
0




, (2.25)

where

¯̄K =




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0
(1− 2ν)

2
0 0

0 0 0 0
(1− 2ν)

2
0

0 0 0 0 0
(1− 2ν)

2




.

To conclude this section, it is worth to make some remarks regarding the presented ap-
proach. First, the adopted strain definition is commonly referred as engineering strain,
but there are other measures (e.g. True strain [51], Stretch ratio [51], Green strain
[40], and Almansi strain [40]) which are particularly useful for describing phenomena
outside the infinitesimal strain theory [39][40][41]. Usually, mechanical deformation in
semiconductor devices can be properly treated solely by implementing the engineering
strain definition, but some scenarios may demand the True strain definition.

Second, Hooke’s law was derived assuming that the solid was made of an isotropic
material, which assures that the material constants (E, ν, and α) are independent
of direction. However, for some materials this condition is not valid as in the case of
silicon, where the Young modulus can variate between 130GPa and 189GPa depending
on the direction [52].
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Lastly, in literature it is possible to find Hooke’s law described using other material
constants, for example the Lamé parameters [39]. There is a suitable relation between
the set of constants and it is a matter of preference or ease of notation for one to use
one as opposed to the other.

2.3. Reliability

Reliability concerns the characteristic of a device to remain functional during a period
of time under established environmental conditions. Ultimately, every device will
eventually fail. The task of the reliability study is to provide technology to keep a
device economically viable despite failure. Reliability of semiconductors has its own
particularities, which were summarized in a 2010 report from the Reneseas Electronics
Corporation of 2010 [53] as:

1. Semiconductor devices have a configuration, which is fundamentally
very sensitive to impurities and particles, and the stability status of
the surface state is extremely important. Consequently, to manufac-
ture these devices it is necessary to manage many processes while com-
pletely controlling the level of impurities and particles. Furthermore,
the quality of the finished product depends upon the complex relation-
ship of each interacting substance in the semiconductor, including chip
material, metallization and package.

2. The problems of thin films and micro-processes must be fully under-
stood as they apply to metallization and bonding. It is also necessary
to analyze surface phenomena from the aspect of thin films.

3. Due to the rapid advances in technology, many new products are de-
veloped using new processes and materials, and there is a high demand
for product development in a short time period. Consequently, it is
not possible to refer to the reliability achievements of existing devices.

4. In greed, semiconductor products are manufactured in high in volume.
In addition, repair of finished semiconductor products is impractical.
Therefore incorporation of reliability at the design stage and reduction
of variation in the production stage have become essential.

5. Reliability of semiconductor devices may depend on assembly, use,
and environmental conditions. Stress factors effecting device reliabil-
ity include voltage, current density, temperature, humidity, gas, dust,
contamination, mechanical stress, vibration, shock, radiation, and in-
tensity of electrical and magnetic fields.
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Those five points emphasize the importance of a good design and process control to
prevent device failure. The mechanisms of failure must be understood during the
development stage of the product, otherwise it can be too late to repair it.

A device failure can have different reasons. It can arise from electrical effects (e.g.
negative-bias temperature instability), mechanical forces, material degradation, en-
vironmental, and even a combination of several effects (e.g. electromigration). The
mechanical reliability of semiconductor devices are commonly associated with fracture
and fatigue prevention. The main goal of the mechanical study is to identify situations,
where a device structure could be damaged beyond repair. Therefore, in addition to
the stress-strain theory established in the last section, a method is needed to determine
when a deformation ceases to be elastic and becomes plastic and permanent.

2.3.1. Yield

Yield is the name given to the point in the stress-strain curve where the material’s
response to an applied force switches from an elastic to an inelastic behavior [39]. A
body unloaded under a plastic regime keeps some strain (permanent deformations).
Thus, a future loading starts with an offset and the elastic regime is retained until the
prior unload point is reached, as sketched in Fig. 2.10. This means that the yield point
shifts accordingly to the load history of the material. Moreover, the yield strength in-
creases and the material becomes less prone to plastic deformations. This phenomenon
is known as hardening. It is behind the manufacturing of several engineering products,
such as the creation of blades. When a smith hits the metal, hardening takes place
and it becomes tougher to deform the metal permanently in any subsequent load,
especially during the use of the blade.

2.3.2. Yield Criteria

Although hardening modifies the position of the yield point, it is possible to treat
both effects separately. The yield point is considered fixed at its first position and the
hardening effects are added incrementally whenever needed.

In the literature are a variety of criteria to establish material yielding [39][40][41]. The
main challenge is to derive, from the stress tensor, a criterion which triggers yield
for different types of materials. For example, in brittle materials it is considered a
good criterion that yielding occurs – in fact, brittle materials fracture rather than
yield – whenever the largest principal stress surpasses an experimentally established
threshold [54]. However, for ductile materials functions of the maximum shear stress is
a more suited criterion. Furthermore, anisotropic materials need a different treatment
altogether, which considers the directional dependence of the material properties.
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Figure 2.10.: Material plasticity in the stress-strain curve. Unloads in the work hardening
region retain the deformation history and any subsequent load will relate lin-
early with the strain until the original unload point is reached (“New” Yield
strength). Beyond the work hardening region the material enters a perfect
plastic regime, where increases to the yield strength can be considered (most
of the time) negligible.

Usually, materials used in the semiconductor industry are ductile. For these types
of materials there are two most often implemented theories: Tresca theory (or the
Maximum Shear Stress) and von Mises theory (or Distortion Energy theory).

Tresca Theory

The study of yielding was, since the very beginning, motivated by the wish to predict
mechanical failure of materials. Yielding is considered as the beginning of a pro-
cess which will eventually lead to fracture, characterized by the breaking of the bonds
between atoms and separation of the material. It is possible to show that the stress re-
quired to break the atom bonds is roughly one third of the material’s Young’s modulus
[54]. However, ductile materials fail with stress values far smaller than this estimate.
For example, aluminium has a theoretical strength of 22GPa, but the stress required
for material failure is approximately 100MPa [54]. This inconsistency is justified by
the split mechanism of ductile materials. Instead of the rupture of atomic bonds, the
material is separated by sliding of atoms as shown in Fig. 2.11.
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Figure 2.11.: Defect movement triggered by shear stress.

This phenomenon is related to defects and the way they move inside the materials.
Chapter 5 discusses this phenomenon in greater detail. In conclusion, failure in ductile
materials is caused by shear deformations. Hence, it is logical to establish a yield
criterion in terms of the amount of shear stress a material is able to sustain. This is
the principle of the Tresca theory which can be quantified by

1
2 max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) > τmax , (2.26)

where σ1, σ2, and σ3 are the principal stresses and τmax is the maximum shear strain
a material can sustain until it starts to yield (usually obtained experimentally). It
is convenient to to define yield criteria by the principal components, since they are
invariant to any coordinate system.

Von Mises Theory

Like the Tresca criterion, the von Mises criterion also considers shear deformations
as the main mechanism to trigger yielding. However, instead of using the maximum
shear stress as the limit of elasticity, the strain energy of shear deformations (distortion
energy) is used [55]. In principle there is a critical distortion energy which, if surpassed,
pushes the material into the plastic regime. The total strain energy per unit of volume
of a body can be calculated in terms of the principal stresses by

UT = 1
2σ1ǫ1 +

1
2σ2ǫ2 +

1
2σ3ǫ3

= 1
2E

�
σ2
1 + σ2

2 + σ2
3 − 2ν (σ1σ2 + σ1σ3 + σ2σ3)

�
, (2.27)

where ǫ1, ǫ2 and ǫ3 are the principal strains. The relation (2.27) accounts for ev-
ery deformation in the body, while for yielding only shear deformations are relevant.
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Therefore, the energy stored by normal deformations (hydrostatic energy) must be
subtracted from (2.27) in order to obtain the distortion energy. The hydrostatic en-
ergy is given by

UH = 1−2ν
6E

�
σ2
1 + σ2

2 + σ2
3 + (σ1σ2 + σ1σ3 + σ2σ3)

�
. (2.28)

Consequently, the distortion energy is given by

UD = UT − UH

= (1+ν)
6E

�
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2
�
. (2.29)

Yielding occurs whenever UD exceeds a critical energy (UDmax) [54]. The experimental
determination of UDmax is challenging and it is more convenient to use a critical stress
value. Nonetheless, an uniaxial determination of the critical stress is straightforward
to obtain experimentally and the von Mises criterion remains valid in any situation.
Moreover UDmax is a material property and must be independent of the load config-
uration. Hence, for a body under an uniaxial load the relation (2.29) can be further
simplified for [(1 + ν)/6E]σ2

Max, where σ
2
Max is the critical stress required to yield the

material. The critical stress obtained by the uniaxial stress test can be used in (2.30)
to establish a criterion in terms of stress.

UD < UDmax

(1+ν)
6E

�
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2
�
< (1+ν)

6E σ2
Max�

(σ1 − σ2)
2 + (σ1 − σ3)

2 + (σ2 − σ3)
2
�1/2

< σMax , (2.30)

where the left hand side of the inequality is the equivalent stress which leads to yielding,
explicitly described by

σMises =
�
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2
�1/2

. (2.31)

The equivalent stress is also known as von Mises stress.
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Tresca Criterion vs. Von Mises Criterion

A comparison between the criteria is a good exercise to obtain a better understanding
of both theories. Consider the orthogonal space S defined by the principal stress
vectors. A point in S is called stress state. The inequalities (2.26) and (2.30) delineate
a region in S, where every stress state internal to the border is in the elastic regime,
while the states at the border and external to it refer to the plastic regime, as shown
in Fig. 2.12.

The Tresca theory is more conservative than the von Mises theory. It predicts a
narrower elastic region. The Tresca criterion can be safer from the design point of
view, but it could lead the engineer to take unnecessary measures to prevent an unlikely
failure. The criterion choice depends on the type of design and personal taste of the
designer.

To conclude this session a final remark regarding plasticity in the dimensions of mi-
croelectronic devices is warranted. At this scale, the traditional plasticity theory is
often unreliable. Sometimes the materials have a different plastic mechanism, while
at other times the material is not thick enough for plasticity to take place. Therefore,
the classical approach for plasticity is not considered and the plastic models used in
the further sections will be presented together with the situation where the mechanism
originates.

Figure 2.12.: Von Mises versus Tresca criteria in a 2D system.
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An substantial part of modeling and simulation of microelectronic phenomena involves
finding a solution to partial differential equations (PDEs). Solving PDEs is an essential
step in the simulation of semiconductor processing, device performance, and reliabil-
ity. A general solution to PDEs is usually unknown and the few known cases are only
available for simple problems under very confined conditions. However, engineering
problems are diversified and simplified solutions can spoil the analysis. With the ad-
vent of the electronic computer, numerical methods with high quality approximations
could be applied enabling physical simulations as a helpful tool in engineering analysis
and design. In this chapter the Finite Element Method (FEM) is briefly presented as
the technique to solve the PDEs. First, the mathematical background of the method
is discussed, then its application is analyzed with a general elastic problem. In the
last section, numerical schemes for time-dependent problems are treated, closing the
set of techniques used within this work.

3.1. Finite Element Method

The Finite Element Method (FEM) is a numerical technique used to approximate so-
lutions of PDEs [56]. The technique has surged in the mids 60s and it was intended
for solving problems which emerged from elastic theory and structural analysis, for
instance, to calculate stress in dams, buildings, and airplanes [57]. In the beginning,
FEM was shaped by structural analysts. Thus, the method presentation and nomen-
clature was particularly suitable for structural mechanics problems. However, the
successful progress of the FEM and the rise of the electronic computing industry in
the 70s attracted a lot of interest from the scientific community. In the same decade,
several mathematicians worked through the details of the FEM, and they could re-
late the theory behind it to the works of Galerkin, Ritz, and Rayleigh from the late
19th century [57][58]. This development has led to the generalization of the FEM and
enabled its use outside the structural mechanics field.

The main idea behind FEM is to approximate the solution of a PDE by a linear
combination of functions. Those functions are defined in discrete portions of the PDE
domain, the so called finite elements. In principle, FEM can be applied to solve
every kind of PDE, but in practice some types of equations are more numerically
challenging than others, and FEM would not be a suitable choice, or a modification
on the traditional approach is required. The method presented here will be restricted
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to elliptic PDEs [56], since solid mechanics problems can be represented by one of
those.

3.1.1. Variational Form

As a starting point, consider the boundary value problems (BVP) described by

−u′′(x) = f(x) (3.1)

x ∈ (0, 1);u(0) = u(1) = 0 .

Additionally, define a linear space V as:

V = {v: continous functions in [0,1] with v’ piecewise continous and
bounded in [0,1], and v(0)=v(1)=0}

Along this session, it will be shown how the space V can be used to reformulate the
problem (3.1). From this new version, a numerical method will be developed based on
the particular definition of V , in order to obtain an approximate solution of (3.1).

To begin, take an element of the space V , multiply by (3.1) and integrate over the
entire domain as in

�
u′′vdx =

�
fvdx . (3.2)

The function v is known as a test function. Initially, it is not clear how (3.2) can
help to solve (3.1), but it provides a different view of the problem (3.1). Indeed, it is
possible to simplify (3.2) by integrating the left hand side by parts, according to

−
�

u′′vdx = −u′(1)v(1) + u′(0)v(0) +

�
u′v′dx =

�
u′v′dx . (3.3)

Subsequently, substituting the results from (3.3) in (3.1) the relation holds

�
u′v′dx =

�
fvdx ∀v ∈ V . (3.4)

(3.4) is known as the variational formulation of the problem (3.1). Variational formu-
lations can be handled by several numerical methods, and it is usually easier to prove
the existence of the solution of a variational problem in comparison to a PDE.
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Seemingly, the solution of (3.1) solves (3.4), but to be useful, the variational formu-
lation should work in the opposite direction, where the solution of (3.4) solves (3.1).
This is true for the form described by (3.4), but usually the methods applied to solve
variational problems impose some restriction in the solution, which should also satisfy
(3.1).

3.1.2. Galerkin’s Method

The Galerkin method was developed by the mathematicians Boris Galerkin andWalther
Ritz (separately) to treat variational problems similar to (3.4) [56][57][58]. In fact,
Galerkin attempted to solve a restricted version of (3.4) as described by

Find u ∈ V such that

�
u′v′dx =

�
fvdx ∀v ∈ V . (3.5)

The constraints of the solution u to the same space of the test function (V ) is very
convenient, as it will be shown in the end of Section 3.1.5, but the central question
right now is, if the solution u of (3.5) still satisfies the original PDE, (3.1). In order
to prove that it does, a good strategy is to derive (3.1) from (3.5). Hence, let u be the
solution of (3.5), then it follows that (3.6) must also be satisfied

� 1

0
u′v′dx−

� 1

0
fvdx = 0 ∀v ∈ V and u ∈ V . (3.6)

In addition to the restrictions imposed on u, consider that u′′ exists and is continuous.
Integrating the first term by parts and using the boundary conditions (v(0) = v(1) =
0) the following relation holds

−
� 1

0
(u′′ + f)vdx = 0 ∀v ∈ V . (3.7)

Since u′′ + f is continuous, (3.7) can only stand, if the following relation is true [56]

(u′′ + f)(x) = 0, x ∈ [0, 1] . (3.8)

Consequently, u satisfies the original BVP (3.1). However, it was necessary to assume
u as a well behaved function (second differentiable continuous). This restriction should
satisfy most physical problems, but attention must be paid for careless application of
Galerkin’s method.
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So far only the equivalence of the solution between Galerkin’s problem and (3.1) was
discussed, but not the method itself. Galerkin’s method is developed upon the dis-
cretization of (3.6) based on the discretization of the space V as presented in the next
section.

3.1.3. Discretization

The basics of Galerkin’s method consist of a clever discretization of the infinite linear
space V in the problem (3.5). The purpose of such a process is to create a controlled
sub-space inside V , which can be designed to approximate the solution of (3.6) with
arbitrary precision.

Consider the finite sub-space Vh of V with dimension N. Consider also the functions
φj=1...N as an orthogonal basis of Vh. Hence, every function v in Vh can be written as
linear combination of the basis as in

v =
N�
j=1

Cjφj , v ∈ Vh ⊂ V . (3.9)

The discrete formulation of the variational problem (3.5) can be written as

Find uh ∈ Vh such that

�
u′hv

′dx =

�
fvdx ∀v ∈ Vh . (3.10)

Actually, the formulation (3.10) can be simplified. It can be proven that if uh satisfies
(3.10) only for the basis function of Vh, it satisfies it for every element in Vh. To show
this, replace v in (3.10) by the basis projection (3.9) as in

�
u′hv

′dx =

�
fvdx ,

�
u′h(

N�
j=1

Cjφj)
′dx =

�
f

N�
j=1

Cjφjdx ,

N�
j=1

Cj

�
u′hφ

′
jdx =

N�
j=1

Cj

�
fφjdx . (3.11)

On the assumption
�
u′hφ

′
j =

�
fφj for j = 1..N, the equality (3.11) holds and uh

satisfies (3.10) for every element of Vh. Consequently, the simplified version of (3.10)
can be summarized by:
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find uh ∈ Vh such that

�
u′hφ

′
jdx =

�
fφjdx, j = 1..N . (3.12)

The formulation (3.12) is well suitable for the construction of a numerical scheme,
because it restricts the search for the solution uh to the computation of a finite number
of equations (N). Hence, the problem shifts to a more concrete perspective, and a
method is required to compute uh from those N equations. For that purpose, consider
the expansion of uh in the basis of Vh, in the same way as was done before for vh (3.9).
By substituting vh appropriately in (3.10) the obtained function is

�
u′hφ

′
jdx =

�
fφjdx, j = 1..N ,

�
(

N�
i=1

Ciφi)
′φ′

jdx =

�
fφjdx, j = 1..N ,

N�
i=1

Ci

�
φ′
iφ

′
jdx =

�
fφjdx, j = 1..N . (3.13)

In fact, the substitution of uh expansion in (3.12) leads to the transformation of the
discrete problem in a linear system Ax = b with N equations, where A, x and b are
given by

A =



�
φ1φ1dx · · · �

φ1φNdx
...

. . .
...�

φNφ1dx · · · �
φNφNdx


 , x =



C1
...

CN


 , b =



�
fφ1dx
...�

fφNdx


 . (3.14)

3.1.4. Basis Functions and Domain Partitioning

In principle, there are no restrictions to choose the basis functions of the space Vh.
Nevertheless, the complexity of the linear system (3.14) is defined by them. The quality
of the approximated solution uh is expected to increase with the increased dimension of
Vh [59]. Thus, good approximations lead to big matrices (A) and consequently to the
increase in the computational costs of solving (3.14). From a pragmatic point of view,
a sparse matrix A would diminish the computational burden of a high-dimensional
Vh space. An ingenious choice of basis function should create sparse matrices while
keeping the requirements for a good approximation.

Polynomial piecewise functions are the most traditional choice for basis functions in
FEM [56][57]. They are defined in a particular way such that the domain needs to be
partitioned as in Fig. 3.3. Each partition is known as a finite element (the origin of
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the method name). In each element, a set of basis function is defined according to the
following criteria [57]:

• It assumes a non-zero value at a node i. In all other nodes the function is zero.
Therefore, one function per node.

• It vanishes over all the elements which contain the node i, following the estab-
lished polynomial rule.

• It must be an element of Vh, therefore it must be continuous and must have the
first derivative be piecewise continuous.

Figure 3.1.: A set of linear basis functions of Vh. As the number of partitions increases, the
amount of functions which are possible to represent the solution (Vh dimension)
also increases. As consequence, the quality of the approximation is enhanced.

This guidance enables the creation of sparse matrices and simplifies the post-processing
of the solution. In Fig. 3.2 a linear piecewise basis function is depicted, which was
constructed following the aforementioned criteria.

The construction of basis functions has been a process developed and refined along the
years to minimize the computational costs of FEM [57]. It is clear from the criteria
that the pattern of the basis function will repeat along the elements. The polynomial
in Fig. 3.3 can be generated by linear basis functions as in Fig. 3.2.

Usually, nodes are defined by the boundaries of the element, but some basis functions
may require additional nodes. Those points do not define the boundaries, instead they
are used as control points. Higher degree polynomials basis functions are created in
this fashion, while they also must follow the criteria. In Fig. 3.4, basis functions with
quadratic and cubic polynomials are exemplified.
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Figure 3.2.: Linear basis function constructed according to the presented criteria.

Figure 3.3.: An example of a piecewise linear polynomial function. For each partition a linear
function is defined.
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Figure 3.4.: Quadratic (left) and cubic (right) basis function.

As sample application, consider the partition of the BVP problem (3.1) discussed so
far. Let linear piecewise polynomials be the basis functions as in Fig. 3.1. Analytically,
the linear piecewise basis function can be defined by

φj =




1/hj [xj−1, xj ]
−1/hj+1 [xj , xj+1]

0 (x < xj−1) ∪ (x > xj+1)
, (3.15)

where hj is the size of the element as described in Fig. 3.2. As seen before, the discrete
variational formulation of the BVP problem leads to the linear system (3.14). In order
to solve the system, a computation of

�
φ′
iφ

′
jdx is required. For the basis functions

employed here this task is straightforward. If |i − j| > 1 then
�
φ′
iφ

′
jdx = 0, since

whenever |i − j| > 1 or φx(x) or φj(x) the solution is zero. In the cases of |i− j| < 1
the integration result for i = j is given by

�
φjφjdx =

� xj

xj−1

1/h2jdx+

� xj+1

xj

1/h2j+1dx = 1/hj + 1/hj+1 , (3.16)

while the result for i = j − 1 and i = j + 1 is given by

�
φjφj + 1dx =

�
φjφj − 1dx = −

� xj

xj−1

1/h2jdx = −1/hj . (3.17)

Assuming a homogeneous partition of the domain (1/hj = 1/hj−1) (3.14) can be
rewritten as
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2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . −1
0 · · · · · · 0 −1 2







C1
...
...
...
...

CN



=




�
fφ1dx
...
...
...
...�

fφNdx




. (3.18)

The linear system (3.18) is the final discretized form of the original BVP problem (3.1).
The matrix is sparse due to the choice of the basis functions, and it is also symmetric,
which is a great advantage for computing the solution of the system. Symmetry is a
desirable property which is very dependent on the problem, but the right choice of the
basis functions can ensure it for the linear system.

The development made so far is only suitable for differential equations in the same
form as described in (3.1), including the boundary conditions. The problem (3.1) is
rather common in nature. Heat transfer, elasticity, and electrostatics are examples
of phenomena described by it. The choice here was motivated by the use of (3.1)
for different fields and the importance to the models used in this work. Naturally,
another differential equation will lead to another variational form. However, the idea
remains the same: to multiply it by a function of the space V , to integrate it over the
domain, to discretize it by Vh, to partition the domain, to choose the basis functions,
and finally to solve the system, summarizing the steps for finding a solution using the
Finite Element Method.

Considerations for 2D and 3D Cases

For 2D and 3D problems the procedure is the same, while the mathematical semantics
and operations (derivatives and integrations) must be adapted for the proper dimen-
sion. The main difference lies in the partitioning of the domain, which can be split in
different ways. The creation procedure of a partition is called meshing and the resul-
tant domain division is a mesh. There are several algorithms available for meshing,
however, the vast majority of them creates triangular or quadrilateral meshes for 2D
domains and tetrahedral and quadrilaterally-faced hexahedral meshes for 3D domains
[60].

Regarding the basis functions, the concept for creation persists. The criteria for con-
struction should still be satisfied and they should be polynomials, but for this case
in 2D and 3D dimensions. The basis functions construction for 2D and 3D domains
is rather lengthy and cumbersome, however, well treated in a variety of textbooks
[56][57]. Examples of basis functions for 2D domains with quadratic meshes are de-
tailed in Fig. 3.5.
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Figure 3.5.: Basis functions defined in 2D domains. Linear (a) and quadratic (b) functions
in quadrilateral domains.
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3.1.5. Geometrical Interpretation of FEM

The manner in which the FEM was presented in this work makes the geometrical
interpretation of the method a natural consequence. In this section it will be shown
that this concept is intimately connected to the error of the linear space discretization
of the FEM. In order to proceed smoothly through the upcoming discussion, consider
that the linear space V is endowed with inner products for real functions defined by

< f, g >=

�
f ′g′dx . (3.19)

Furthermore, consider the norm induced by the inner product (3.19) as

�f� =

�
f2dx . (3.20)

Consequently, the variational form (3.5) and the discrete variational form (3.10) can
be rewritten as

< u, v >=

�
fvdx ∀v ∈ V (3.21)

and

< uh, v >=

�
fvdx ∀v ∈ Vh . (3.22)

The discrete problem solution (uh) is computed by FEM as seen in the previous sec-
tions, but the exact solution of the BVP problem is given by solving the continuous
variational form. Therefore, it is natural to ask how distant uh is from u. The answer
of this question leads to a geometrical view of the FEM.

Consider v ∈ Vh. The function v also belongs to V since Vh ⊂ V . Therefore, for every
v ∈ Vh (3.22) can be subtracted from (3.21), given by

< uh − u, v >= 0 ∀v ∈ Vh . (3.23)

As an inner product, (3.19) must hold the orthogonality property (< f, g >= 0 ⇔ f ⊥
g). This means that the discretization error (uh − u) is orthogonal to the space Vh.
As a consequence, the solution uh is the orthogonal projection of the exact solution u
in Vh. Fig. 3.6 illustrates this principle.
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Figure 3.6.: Geometrical interpretation of Galerkin’s method. The solution (u) of the original
problem is projected (uh) in the space defined by the basis of Vh. Galerkin’s
method can be understood as the procedure to find this projection.

As a result of the orthogonal projection, the element uh is the closest function to u
in comparison to all elements of Vh. Hence, the error of discretization is bounded
according to [56]

�u− uh� = �u− v� ∀v ∈ Vh . (3.24)

The relation (3.24) will not be proved here, but it is intuitively clear when orthogonal
projections are kept in mind. In conclusion, FEM provides the best approximation of
the exact solution u in the discretized space Vh, when the norm (3.20) is considered.

At this point, the advantage of the original Galerkin’s imposition for the solution u
and the test function v becomes evident – uh and vh, respectively, for the discrete
formulation – to reside in the same linear space. The formulation gains some formal
support, especially regarding the discretization error, since it is guaranteed that the
FEM solution is the best choice in a particular space.
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3.1.6. Final Remarks on FEM

The Finite Element Method is a vast and still very active subject of research. This
text is not intended to discuss it exhaustively, but to give a first intuitive approach
and still formal enough to understand this work. However, some points are still open,
for instance, an understanding of the conditions under which the FEM converges
is still needed. As mentioned previously, one expects that the discretized solution
(uh) converges to the exact solution (u) by increasing the Vh space dimension – in
other words, increasing the number of mesh points. Actually, this discussion leads
to restrictions of the basis functions to ensure FEM convergence (and also stability)
[56][59]. An in-depth treatment about this topic can be found in specific functional
analysis texts, as well as in FEM books [56][57][59].

Another point of contention is the boundary conditions. In the previous sections, only
specific Dirichlet boundary conditions [61] were discussed. Indeed, for general Dirichlet
conditions all the previous results remain unchanged, less a constant, but for Neumann
boundary conditions [61] a new development is needed, especially for the equivalence
between the BVP problem and the variational formulation. The procedure for deriving
FEM is still the same, as well as the conclusions, but the arguments must be modified
to include this kind of situation. A self-contained text about this subject can be found
in traditional FEM references [56]; in addition, an example with a Neumann boundary
condition will be provided in the next section.

3.2. Elasticity with FEM

Static equilibrium is the most common situation for mechanical problems in semicon-
ductor devices. In equilibrium, the sum of forces (and momentum) in a body must
be zero, including those produced by stress. In order to derive the equilibrium equa-
tions consider an infinitesimally small solid and the stress distribution on its faces, as
depicted in Fig. 3.7.

Each stress component is assumed to be a continuous differentiable function of x, y,
and z. Hence, they can be expanded by Taylor series and the stress on the faces of
the infinitesimal cube can be arranged as

σij(x+Δx, y, z) = σij(x, y, z) +
∂σij

∂x
+O(h2), i, j ∈ {x, y, z} , (3.25)

σij(x, y +Δy, z) = σij(x, y, z) +
∂σij

∂y
+O(h2), i, j ∈ {x, y, z} , (3.26)

σij(x, y, z +Δz) = σij(x, y, z) +
∂σij

∂z
+O(h2), i, j ∈ {x, y, z} . (3.27)
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Figure 3.7.: Inifinitesimally small stress cube. The stress is defined in the face of the cube,
however only σxx is explicitly shown. The others are omitted for the sake of
clarity in the picture.

The body can be under the influence of an external disturbance (e.g. gravity), which
must be considered in the equilibrium equations. In Fig. 3.7 the sum of all external
forces is represented by the vector F. The equilibrium of forces in the x-direction can
be obtained by

�
σxx +

∂σxx
∂x

Δx

�
ΔyΔz − σxxΔyΔz+�

σyx +
∂σyx
∂x

Δx

�
ΔyΔz − σyxΔyΔz+�

σzx +
∂σzx
∂x

Δx

�
ΔyΔz − σzxΔyΔz + fx = 0 ,

∂σxx
∂x

+
∂σyx
∂x

+
∂σzx
∂x

+
fx

ΔyΔz
= 0 , (3.28)

where fx is an external force in the x-direction. A similar treatment can be applied in
the y-direction and the z-direction. Thus, the equilibrium equations can be summa-
rized by
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�������
�������

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+

Fx

ΔyΔz
= 0

∂σyy

∂x
+

∂σyx

∂y
+

∂σyz

∂z
+

Fy

ΔxΔz
= 0

∂σzz

∂x
+

∂σxz

∂y
+

∂σyz

∂z
+

Fz

ΔxΔy
= 0

, (3.29)

where Fx, Fy and Fz are the external forces per unit area in the corresponding Carte-
sian direction.

A great deal of mechanical analysis in microelectronics relies on the elastic theory.
However, solving its fundamental equation is challenging. The solution is usually
unknown for varying geometries and conditions faced by the engineering design. The
few known solutions are only available to simple geometries (e.g. circle, square) and
restricted conditions, which can lead to an oversimplification of the analysis. In order
to enhance the mechanical analysis, FEM can be used to compute the elastic equations
on general geometries and conditions. It provides means to simulate elastic problems
by discretizing its fundamental equations.

To a generalized treatment of elastic problem by FEM, consider the problem depicted
in Fig. 3.8. The presented problem is rather general concerning geometry and condi-
tions. Dirichlet and Neumann boundary conditions are presented (u = 0 on ∂Ω2 and
¯̄σ.n = g on ∂Ω1, respectively). Additionally, the shape is amorphous, meaning no
preferred geometry.

Within this section, a tensorial treatment will be used for the sake of notation sim-
plicity. A table with tensorial definitions, properties and operations is available in the
appendix.

The body is assumed to be in static equilibrium; therefore (3.29) must be satisfied.
The system (3.29) can be rewritten in its tensorial form for convenience together with
its boundary conditions by

−∇.¯̄σ = F (3.30)

u = 0 on ∂Ω2 ¯̄σ.n = g on ∂Ω1 .

Following the same procedure to derive the FEM in the last session, (3.30) is multiplied
by a function v. However, this time v ∈ (V × V × V = V 3) is a vectorial function.
Since the static equilibrium problem is three-dimensional, a test function is needed for
each dimension. The multiplication result is described by

−
�
Ω
(∇.¯̄σ).v =

�
Ω
F.v . (3.31)
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Figure 3.8.: General elastic problem. B is the body force and g an external load. The surface
∂Ω1 is free to move, while ∂Ω2 is constrained.

The next step is the simplification of (3.31). In the last section the integration by
parts was used. For the current case, the first Green identity as described in [62] is
applied

�
Ω
(∇.¯̄Γ).w + ¯̄Γ : (∇w) =

�
∂Ω

(¯̄Γ.w)n , (3.32)

where ¯̄Γ is a second order tensor and w is a vector. An intriguing fact is that (3.32)
is the equivalent of the integral by parts in higher dimensions. Proceeding with the
proper substitution of (3.32) in (3.31) and some rearrangement, (3.31) can be rewritten
as

�
Ω

¯̄σ : (∇v) =

�
Ω
F.v +

�
∂Ω

(¯̄σ.v)n . (3.33)

So far, the equilibrium equations were stated in terms of the stress tensor, but the real
unknown is the displacement. As seen previously (Section 2.2.1) stress and strain can
be derived from displacement but the opposite is not as straightforward. Furthermore,
the description by means of stress challenges the imposition of boundary conditions on
the displacement field. Hence, a tensorial description of stress and strain is considered
using
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¯̄σ =

�
Eν

(1 + ν)(1− 2ν)
∇.u


¯̄I +

E

1 + ν
¯̄ǫ(u) (3.34)

and

¯̄ǫ =
1

2

�
(∇u)T +∇u

�
, (3.35)

respectively. Consistently, the definitions (3.34) and (3.35) are equivalent to (2.22)
and (2.10), but in Section 2.2.1 the physical meaning of the equations was preferred
over simplicity.

Finally, substituting (3.34) and (3.35) in (3.33) the variational formulation of (3.30)
is obtained as

Find u ∈ (V 3) such that ∀v ∈ (V 3)�
Ω

�
Eν

(1 + ν)(1− 2ν)
(∇.u)(∇.v)

�
+

G

2

�
(∇u)T +∇u

�
: ∇v =

�
Ω
F.v +

�
∂Ω

g.v .

(3.36)

From this point the same development of the previous section can be implemented.
Therefore, the coordinate space V 3 is dicretized (a basis set for each dimension), the
basis functions are chosen following the pre-established criteria and the linear system
is built. Recall the previous discussion regarding 2D and 3D problems, which fit to
this analysis.

For this specific problem, those aspects will not be discussed here, but they are avail-
able in several textbooks about the FEM in mechanical problems [57]. Furthermore,
they are not essentially different from the 1D problem presented in the previous sec-
tion. The dimensional generality of FEM is an asset of the technique.

3.3. Time Dependent Problems

Time dependence analysis is not particularly interesting for elastic deformations, since
the material recovers entirely after load removal. However, for plastic deformations,
the duration of a force application defines the amount of permanent deformation within
the body. Actually, plasticity has an elegant treatment with the FEM, which has been
developed along the years [40]. Although plastic deformation is studied in this work,
the classical approach of plasticity is not used. Instead, a specific model based on
ordinary differential equations (ODE) is employed as will be discussed in Chapter 5.
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This section intends to provide the background for the treatment of these kinds of
equations. Time dependent problems can be presented in the general form by [63]

df

dt
= g(t, f(t)), f(t0) = f0 . (3.37)

These types of equations, where the solution to the first step (f(t0) = f0) is known,
are defined as initial value problems (IVP). High order ODEs can always be converted
to a system of N first order equations in the same form as (3.37) by substitution. For
example, the ODE f ′′ = x can be rewritten as f ′ = u and u′ = x.

In general, the strategy for solving (3.37) numerically consists of the division of the
domain into small time steps; and for each step the solution is computed as shown in
Fig. 3.9.

Figure 3.9.: Partioning of the domain in time steps. The solution is computed at each time
step.

Numerical methods for ODEs can be divided between explicit and implicit methods.
The former handles (3.37) by computing the next state of the system based solely on
the current state (f(t+Δt = Y (f(t))), while implicit methods require also the future
state (f(t + Δt) = H(f(t), f(t + Δt)). The formulation of implicit methods seems
rather paradoxical, but in practice only an estimation of the future state is used to
compute H. Explicit methods are more intuitive and easy to implement, but they
require an unreasonable number of steps to properly approximate problems with fast
variations, the so called stiff problems, for which implicit methods are more suitable.
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In order to exemplify both categories, consider the approximations for the derivatives

df

dt
(t) ≈ f(t+Δt)− f(t)

Δt
(3.38)

and

df

dt
(t) ≈ f(t)− f(t−Δh)

Δt
. (3.39)

Substituting (3.38) and (3.39) in (3.37) the relations hold

f(t+Δt) ≈ f(t) + Δtg(t, f(t)) , (3.40)

f(t) ≈ f(t−Δt) + Δtg(t, f(t)) . (3.41)

One can notice the particular difference between the representation of (3.40) and
(3.41). For the first case the unknown variable (f(t+Δt)) is defined explicitly by the
terms on the right hand side. In the second case the unknown (f(t)) is needed in order
to compute the function g, which leads to an implicit definition of f(t). Each equation
defines a method for the solution of (3.37), where (3.40) is known as the Euler method
and (3.41) as backward Euler method.

In the scope of this work, implicit methods are more relevant, mainly because of
exponential variations in the models for describing plasticity in Chapter 5. The so
called Back Differentiation Formula (BDF) is the employed method for ODEs. The
BDF method approximates the function f by a Lagrangian polynomial as defined by
[64]

f(t) ≈ Ps−1(t) =
s−1�
m=0

pm(t)f(tn+m) , (3.42)

where pm(t) =
s−1�

j=0;j �=m

t+ tn+l

tn+m − tn+l
, m = 0, 1, ..., s − 1 .

The meaning of s will become clear soon, but right now (s − 1) can be understood
as the degree of the Lagrange polynomial. From the polynomial definition (3.42) the
BDF method can be built. The derivative of f(t) is approximated by the derivative
of the Lagrangian polynomial as described by

f(t) ≈ Ps−1 = g(tn, tn−1, ..., tn−s, fn, fn−1, ..., fn−s) . (3.43)
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From (3.43) one can see that s defines the number of past states, which is used to
calculate the current state of the system. As s increases the local error of the method
reduces, but for s > 6 the BDF is no longer convergent. Naturally, higher values
of s imply higher computational demands; hence a compromise between speed and
accuracy must be met. Table 3.1 represents the BDF method after expansion of the
Lagrangian polynomial for 1 < s < 5.

Table 3.1.: Expansion of the Lagrangian polynomial for 1 < s < 5.

Order Expression

BDF 1 yn+1 − yn = hf(tn+1, yn+1)
BDF 2 yn+2 − 4

3yn+1 +
1
3yn = 2

3hf(tn+2, yn+2)
BDF 3 yn+3 − 18

11yn+2 +
9
11yn+1 − 2

11yn = 6
11hf(tn+3, yn+3)

BDF 4 yn+4 − 48
25yn+3 +

36
25yn+2 − 16

25yn+1 +
3
25yn = 12

25hf(tn+4, yn+4)
BDF 5 yn+5 − 300

137yn+4 +
300
137yn+3 − 200

137yn+2 +
75
137yn+1 − 12

137yn = 60
137hf(tn+5, yn+5)

In practice, the computation for each time step requires the solution of a non-linear
equation. Newton’s method is the most common choice for solving the non-linear
problem, but other methods can be more suitable, depending on the form of g. As an
initial guess, an explicit method (such as the Euler method) can be used to provide a
reasonable choice for f(tn).

Naturally, the effort to compute the solution at each time step is bigger for BDF
methods than for explicit methods, but the argument for their utilization lies on the
stability. Implicit methods are more stable than explicit methods, an important feature
for the numerical solution of stiff ODEs. Such problems are by definition numerically
unstable, which means that small deviations of the solution in a particular step lead
to a large error in the subsequent steps. In fact, it can be proved that for s = 1, the
BDF is A-stable [64]. This means that for an ODE in the form y′ = ky, the exact
solution (y = ekx) and the BDF solution are asymptotically equivalent for k < 0. Such
a condition is only valid in the Euler method for very small time steps [64]. Evidently,
y′ = ky is not a general case, but it is commonly used as a test problem to evaluate
the stability of numerical methods for ODEs.
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This chapter initiates a discussion about the mechanical aspects of TSVs. The main
goal here is to provide a framework to assess the mechanical impact of the TSVs in
their surroundings. First, the materials employed in TSVs and how their properties
influence a via’s design is discussed. Afterward, the discussion proceeds with the
mechanical impact of a via on its surroundings, especially during thermal variations.
Finally, strategies for TSV placement are presented as well as methods for calculating
the keep away zone.

4.1. Properties of Interconnect Materials

The full functionality of an IC cannot be reached with the use of a single isolated
device. It requires an engineered interconnected network, which enables the proper
communication between the different components (e.g. resistors, capacitors, diodes,
transistors, and more). The interconnections should behave akin to an ideal wire and
minimize the disruption of the signal flux inside the circuit.

Interconnections may be composed by conductive lines, vias, wires, pads, and joints
[65]. Each of these components can be formed by different materials. Metals and
theirs alloys are usually the best choice for building interconnections, due to their
high electrical conductivity. In the very beginning of the semiconductor industry
aluminum and copper were the most common metals, but with the increasing demand
for performance, integration, and reliability a wider variety started to be employed,
such as tin, tungsten, zinc, gold, and nickel [66].

The introduction of metal structures inside semiconductor devices creates several prob-
lems. For instance, metals have a large CTE when compared to silicon, therefore
during thermal variation, stresses arise due to the thermal mismatch between the ma-
terials. Furthermore, the manufacturing process is also very challenging. Metals are
usually deposited by employing various methods, such as Chemical Vapor Deposition
(CVD), Physical Vapor Deposition (PVD), and their variations [38][66]. Each method
has its particularities regarding material quality, adhesion, and mechanical properties,
which also must be considered when attempting to generate reliable devices[38].

To overcome all the challenges of an interconnection fabrication, the implemented
materials and their interactions with the silicon must be understood. Each part of an
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interconnection demands a specific approach. In this work the focus stays with vias
and the materials most frequently found in a via structure.

Vias are the elements responsible for the vertical connections in a device. They make
the bridge between the different metal lines and, in the case of TSVs, between dies.
Aluminium, copper, and tungsten are the most common conduction metals, but there
is a large assortment of other materials required to support via fabrication. Some of
these materials and their purpose are present in Table 4.1.

Table 4.1.: Melting point and electrical resistivity of common interconnection materials.
The materials are grouped by their function within an interconnect structure.

Function Material Melt. point Electr. resist. Ref.
(◦C) (µΩ/cm)

Al 1084 1.70 [67]
Metal Cu 660 2.70 [44]

W 3410 5.65 [43]
PtSi 1229 25-35 [68]
TiSi2 1540 13-16 [69]

Silicides WSi2 2165 50 [70]
CoSi2 1326 18-20 [70][71]
NiSi 992 14-20 [70][72]

Barriers, TiN 2950 25 [47]
glues and TixW1−x 220 NA
passivations N+ polysilicon 1410 NA [73]

The function of each type of material can be summarized in the following:

• Silicides are used as a conductive material only in local regions of the structure,
which have to be exposed to high temperatures or oxidizing environment.

• Barriers are applied to prevent diffusion of metal atoms toward silicon, minimiz-
ing the risk of contamination and current leakage.

• Glues are needed to improve the adhesion of metal films in the silicon surface,
avoiding delamination problems which could lead to a via failure.

• Passivation materials are protective coating against the hazards of the ambient.

As seen in Table 4.1, copper is the most suitable material regarding electrical conduc-
tivity, but it was not used in large scale production as the conductive material in a via
until 1997. Several challenges were present which limited copper deposition, such as
patterning difficulties and silicon contamination. Volatile copper compounds were un-
known and the technology at the time required such compounds for metal deposition
[74]. The problem was overcome through the invention of the dual damascene process
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which patterns the silicon itself by etching and filling the created trenches and vias
with copper [74][75][76].

Silicon contamination was solved by the application of barriers metals (e.g. Ta, TaN),
which must prevent copper diffusion without drastically reducing the conductivity,
otherwise there is no benefit for copper utilization[75][76][77].

Before 1997, tungsten (vias) and aluminium (lines) were the dominant interconnection
materials [66]. The processing of Al-W interconnections is easier in comparison to the
processes required to generate copper based vias [66]. They do not face the severe
problems of silicon contamination and volatile compounds are known and available.
Moreover, aluminium and tungsten mechanical properties are more compatible with
silicon, i.e., aluminium and tungsten enjoy a lower CTE mismatch and higher melting
point than copper.

The effort required to incorporate high conductivity metals is justified only for some
industrial applications. The high conductivity metal allows for the creation of smaller
and more energy efficient devices, a very important feature in general purpose proces-
sors.

The idea behind a TSV is not different from the traditional via. Both are vertical
connections, but the dimension of the TSVs are much larger in comparison to the
metal line vias. Therefore, mechanical properties become much more relevant than
before. The manufacturing of TSVs demand a more careful design to manage the
increasing mechanical instability of the structure.

4.2. Design of TSVs

Through Silicon Vias are large structures in comparison to the components inside the
device. The TSVs radius can span from 5µm up to 300µm and the height usually
follows aspect ratios from 1:1 up to 1:10 in relation to the radius [29][78]. Therefore,
if CMOS 90nm technology is considered, a TSV would solely occupy the area of, at
least, several thousands of transistors. Such a large metal structure in the middle of
the device generates considerable stress, which can lead to device malfunction and
cracks in the silicon.

Thermal and residual stresses account for several reliability issues in TSVs. Conse-
quently, they have become a major concern in mechanical stability designs [79][80][81].
The thermo-mechanical stress arises from the difference between the coefficient of ther-
mal expansion (CTE) of silicon – which surrounds the via – and the interconnection
metal. Meanwhile, the residual stress results from different physical mechanisms which
take place during metal deposition.

The impact of each stress component can be controlled by the choice of materials
and the geometry forming the TSV. A good design should manage the mechanical
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issues while not compromising the electrical properties of the device. One of the
most common and well documented layouts is the cylindrical copper TSV. The good
electrical properties of copper and the ease of fabrication are an advantage of this
technology. However, the difference of more than one order of magnitude between
silicon CTE and copper CTE compromises its mechanical reliability.

CTE mismatch can be compensated with various strategies, for instance by the use
of polymer liners around the TSV [82]. The liners work as a barrier which absorbs
the stress and hinder its propagation towards the silicon. Another approach is the
use of an open (unfilled) TSV instead of a filled via [82][83]. This scheme reduces
the amount of material in the structure and provides room for the metal to expand
freely towards the axis of the via, leading to an overall stress reduction (depending on
the metal properties as will be discussed in the next section). Additionally, the stress
induced by the TSVs in the silicon can be attenuated by their particular placement
[83]. A device usually has several vias close to each other, which can be arranged in
such a way that the stress is mutually cancelled or reduced between them.

Circular shaped TSVs are preferred over other polygonal geometries. Such designs
results in stress accumulation points in the corners without bringing any particular
advantage to the overall process complexity or device performance.

This work attempts to cover two of the most frequent types of TSVs, filled TSVs and
unfilled (open) TSVs. However, special attention is given to the open TSVs due to a
lack of documentation and available information in the literature. Although the TSVs
can generally be classified in two types, each TSV technology has minor modifications
to handle local stress problems or even to treat processing challenges such as layer
delamination, material diffusion or to improve layer adhesion. In order to establish a
common ground for discussion, during this work two standard TSVs are considered, as
shown in Fig. 4.1: one for filled vias and another for unfilled vias. Any deviation from
the standard discussion of TSV performance and reliability will be properly addressed
and explained in the text. The design is based on a previous TSV technology [8][29],
for which experimental data were available.

4.3. Evaluating TSVs’ Mechanical Impact

During operation, the device is expected to work properly in the temperature range
of -40◦C to 125◦C. The goal here is to assess the mechanical response of the structure
in this scenario considering a stress free temperature of 25◦C, although, the existence
of residual stress in the metal layer of the TSV is known [85]. Pre-stress in elastic
simulations would only bias the final stress without major modifications to the general
behavior. Furthermore, residual stress has a much more local effect as will be described
in Chapter 5. Plasticity was also neglected, because its effects are destructive for the
devices in silicon. Therefore, any TSV design should keep the stress in the silicon
below the plastic threshold.
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Figure 4.1.: Schematic of the standard TSVs considered in this work for unfilled (a) and
filled (b) technology. The vias have a 100µm diameter and 250µm height. Filled
TSVs are usually smaller than the one presented here, however, the dimensions
were chosen in order to allow for a fair comparison between both technologies.

4.3.1. Thermo-mechanical Simulation of TSVs

FEM simulations were carried out to understand the stress behavior in the TSV struc-
ture under the aforementioned conditions. For unfilled vias the meshing process is a
challenging task. The thin layers of metal and oxide require a very fine mesh, in order
to have a good approximation of the solution in those layers and in the regions sur-
rounding them. Additionally, the cylindrical symmetry of the structure can be used
to reduce the size of the problem, speed up the meshing process, and the simulation.
In spite of that, one-quarter of the structure is employed in this section. The purpose
of this increase in computational burden was to prepare the setup for the cases where
the geometry symmetry can not be exploited, as will be seen in section 5.3.1.

Quadratic basis functions were used for the solution approximation and the BicGStab
method for the linear solver [64]. Pre-conditioning is needed in order to obtain reliable
results, especially in the case of the unfilled TSV, since the difference between the thin
layers and the rest of the structure leads to scaling issues in the linear system. It is
also possible to approach this problem by reducing the local meshing growth rate, but
this would increase the size of the linear system and slow down the simulation.

Von Mises stress plots are shown in Fig. 4.2 and Fig. 4.3 for the unfilled and the
filled geometry, respectively. During thermal cycling, geometrical features influence
the distribution of mechanical stress, especially on the top and the bottom of the via.
One can see that the highest stress occurs in the metal layer at the bottom and near
the top of the structures. In those regions the structures are under the influence of
two factors: the thermal mismatch between the metal and the surrounding layers and
the geometry. High mechanical stress in connection with microstructural properties,
which weaken the stability of the crystal (dislocations, grain boundaries), can cause a
fracture in the metal layers resulting in a complete failure of the TSV.
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Figure 4.2.: Von Mises stress in the unfilled TSV. As depicted in the inset the top corner of
the via is a point of high stress, especially in the oxide. Naturally, the metal
sustains the highest stress in the structure. However, oxides are usually not as
resistant to mechanical stress as copper or tungsten. The scale is normalized to
the maximum stress obtained for this setup.

Figure 4.3.: Von Mises stress in the filled TSV. The stress pattern is similar to the unfilled
TSV (including the high stress spot at the top). However, the overall stress in
the silicon is higher than the stress in the unfilled TSV. The scale is normalized
to the maximum stress obtained for this setup.
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A two-dimensional cross section through the middle of the TSV provides a better
view of the stress development through the silicon, as shown in Fig. 4.4. The stress
distribution in the two designs are very similar in shape but not in magnitude.

For both geometries the stress decays very quickly towards the silicon, but the me-
chanical advantage of one TSV over the other is highly dependent on the choice of
metal present in the via. To clarify this argument, Fig. 4.5 shows the von Mises stress
in the silicon along the radial direction, when copper or tungsten are considered as
conductive metals.

For unfilled TSVs the stress in the silicon is practically independent of the employed
metal, due to the freedom of expansion toward the via’s middle axis. Actually, the
stress induced by thermal variations on the surface of the open TSVs wall is essentially
zero. In filled TSVs the situation is very different. The metal is constrained by
the silicon and there is no freedom of expansion. Hence, a CTE mismatch between

Figure 4.4.: Stress fields in the unfilled TSV (left) and filled TSV (right).
Cylindrical coordinates are used to simplify the analysis.
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Figure 4.5.: Von Mises stress through the silicon layer along the radial direction through
the middle of the TSV height. For the unfilled TSV the choice of material is
negligible for the stress level in the silicon. Most of the stress is produced by
the geometry itself. In the filled TSV the metal plays a significant role. A large
difference between the CTE of silicon and the metal creates high levels of stress,
as shown by the Cu filled TSV.

the silicon and metal defines the stress behavior. Copper has a CTE almost ten
times larger than silicon, therefore during thermal variation it will apply significant
pressure to the silicon in order to expand, leading to higher stress in comparison to the
unfilled TSVs. Alternatively, tungsten is very thermally compatible with silicon (low
CTE mismatch), diminishing the TSVs’ mechanical influence on the surroundings. In
summary, the stress induced in silicon by unfilled TSVs is mainly determined by the
geometry of the hole, while for filled TSVs the mechanical properties of the metal also
play a considerable role in determining the stress levels.
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4.3.2. Analytic Solution for the Stress Around One TSV

A previous work [82] from Lu et al. has developed an analytical solution for the curve
sketched in Fig. 4.5 for filled TSVs. Unfortunately, their solution and solving strategy
cannot be applied to unfilled vias. The exact solution for such cases will be developed
in this section.

Consider the equilibrium equation (3.29) in cylindrical coordinates as

σrr

dr
+

1

r
(σrr − σφφ) = −F , (4.1)

and Hooke’s Law with a thermal expansion (2.24) also adapted for cylindrical coordi-
nates in axis-symmetric geometries as stated in [39]
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σzz
σrφ
σrz
σφz
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dur/dr
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0
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0



− σT


11
1


 , (4.2)

K =
E

(1 + ν)(1− 2ν)
; σT =

EαΔT

(1− ν)
.

The problem domain is assumed to be a plate of a single material with an unconstrained
hole in the middle and constrained borders as depicted in Fig. 4.6.

The plane strain approximation is imposed, thus the normal strain in z-direction van-
ishes and Hooke’s law in (4.2) is simplified as

�
σrr
σφφ


= K

�
1− ν ν
ν 1− ν

 �
dur/dr
u/r


− σT


11
1


 . (4.3)

No body force is present in the structure, hence (4.2) becomes a homogeneous PDE
with the solution in the displacement field given by

u(r) = Ar +
B

r
, (4.4)

where A and B are integration constants. The unfilled via cross section is composed
of more materials layers (two oxide layers and one metal layer), therefore Fig. 4.6 does
not describe fully the original problem. However, the general solution is still useful.
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Figure 4.6.: Problem description of the stress created by unfilled TSVs due to thermal ex-
pansion.

The material properties manifest themselves only in the integration constants. Hence,
the solution differs solely by constants among the materials as shown in Fig. 4.7.

The different constants can be obtained by ensuring stress and displacement continuity
in the interfaces and, of course, by applying the boundary conditions of the problem
as in (4.5), (4.6), and (4.7).

Displacement continuity

C1R1 +
C2

R1
= C3R1 +

C4

R1
,

C3R2 +
C4

R2
= C5R2 +

C6

R2
, (4.5)

C5R3 +
C6

R3
= C7R3 +

C8

R3
.
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Stress continuity

Koxide

�
C1 +

(2ν − 1)C2

R2
1

�
= KW

�
C3 +

(2ν − 1)C4

R2
1

�
,

KW

�
C3 +

(2ν − 1)C4

R2
2

�
= Koxide

�
C5 +

(2ν − 1)C6

R2
2

�
, (4.6)

Koxide

�
C5 +

(2ν − 1)C6

R2
3

�
= KSi

�
C7 +

(2ν − 1)C8

R2
3

�
.

Boundary conditions

σrr(R0) = Koxide

�
C1 +

(2ν − 1)C2

R2
0

�
= 0 , (4.7)

u(R4) = C7R4 +
C8

R4
= 0 .

Figure 4.7.: Solution of the different materials. The solution form is kept, since the equi-
librium equation must be satisfied in every material. The constants are solely
determined by the material parameters and via geometry. They can be com-
puted by imposing boundary conditions and interface conditions (continuous
displacement and radial stress between the interfaces).
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Although the full development of the analytical solution is feasible, it is very lengthy.
A faster approach is to compute the constants directly with a linear solver or with the
transfer matrix method.

An additional consideration can be included to simplify the solution. Since the domain
dimensions are far larger than the stress spread zone, it is possible to consider the
exact solution under the infinite plane approximation. In that situation the constant
value C7 vanishes and one can calculate the displacement and stress in silicon for the
standard unfilled TSV by

uSi =
− 1.7759

r
, (4.8)

σSi
rr =

��
ESi(1− ν)

(1 + νSi)(1− 2ν)

��
− 1.7759

r2

��
− 1.7759ESiνSi

r(1 + νSi)(1 − 2ν)
+ σT , and (4.9)

σSi
φφ =

��
ESiνSi

(1 + νSi)(1− 2ν)

��
− 1.7759

r2

��
− 1.7759ESi(1− ν)

r(1 + νSi)(1 − 2ν)
+ σT . (4.10)

In Fig. 4.8 the displacement evolution in silicon along the radius of the TSV is shown in
comparison with the exact solution given by (4.8) . One can notice that this approach
also allows for the calculation of the exact solution for filled TSVs.

Figure 4.8.: Comparison between the FEM solution and the analytical solution described in
this section.
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4.3.3. Stress in a Group of TSVs

Although one isolated TSV is not very common in real devices, its analysis is extremely
useful. The vias are usually arranged following a particular pattern, which causes an
interaction between the stress fields around the TSVs. As an example consider an
arrangement of TSVs as shown in Fig. 4.9. It is irrelevant if the via is filled or
unfilled, since the stress around the TSV in both cases follows the same decaying law
(proportional to the inverse of the distance), as was derived in (4.9) and is shown in
Lu’s solution [82].

Figure 4.9.: A particular arrangement of 7 TSVs. The vias are equidistant (300µm) from
each other.

2D simulations of the 7 TSVs were performed. The result enables the analysis of
the stress field interaction between the TSVs as depicted in the von Mises plot of
Fig. 4.10. One can note a peculiar pattern formed. Superposition of the individual
stress fields of the TSVs leads to stress free regions in between them. Fig. 4.11 details
the stress between the two TSVs along the line T1-T2 from Fig. 4.9 and it shows the
superposition of the stress field of the two vias as described by (4.9).

Actually, it is possible to use the stress solution for one TSV and the superposition
principle to determine the localization of the stress-free zones. Consider the triangle
ABC of Fig. 4.10, where the stress inside this triangle is determined only by the TSVs
at each of its vertices. The influence of the other TSVs in the arrangement is negligible
because of the large distance to the triangle zone. Therefore the localization of the
stress minimum value is given by the solution of the problem posed by

min
r∈ΔABC

= σA
Mises + σB

Mises + σC
Mises . (4.11)
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The superscripts A, B, and C refer to the TSVs on the triangle vertices of Fig. 4.10.
In this situation, σrr and σφφ of each TSV is given by (4.9) and (4.10) translated
according to the origin of the coordinate system used for the minimization problem
in the triangle. The point obtained for this particular arrangement is indicated in
Fig. 4.10. It is located 85µm in the x-direction and 150µm in the y-direction away
from the center of the TSV centered in Vertex B.

In fact, this point is the geometric center of the triangle ABC, which in an equilateral
triangle is equally far from each vertex. Therefore, it is the point inside the triangle
least influenced by the stress field of the three TSVs. This means that it is possible
to determine the localization of each minimum in this arrangement of TSVs just by
determining the geometric center of each triangle. For any other arrangement a new
minimization problem must be formulated as was done in (4.11).

The TSVs arrangement can be used to control the stress around the vias. It can be
applied to maximize the area available for devices as well as to increase the mechanical
stability of the entire structure. The solution (4.8) is, in principle, only valid to
calculate the stress around the middle of the via, however it can also be used as
an estimate of the stress in the top and bottom of the TSV structure, as depicted
in Fig. 4.12. Therefore, the procedure described here can be easily applied to the
placement of TSVs, with the advantage that the development of the analytic solution
gives speed and simplicity to the process.

Figure 4.12.: Comparison between the stress along the radial direction at the top and bottom
of the TSV with the stress in the middle (analytical solution). For points close
to the TSV edges, the analytical solution provides a fair approximation. For
points further from the TSV edge (20um), it can still be used as a lower bound
estimate for the stress.
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4.3.4. Summary and Conclusion

Within this section, FEM elastic thermal-mechanical simulations were performed with
the purpose of analysing the stress behavior along the via and in the surrounding
silicon. Critical stress points on the metal layer at the top and bottom of the TSV were
identified by means of FEM simulations. It was also shown how the stress develops
in the bulk Si, and it was demonstrated that the stress drops in proportion to the
squared distance from the via border. A method for calculating the exact stress in the
middle region of an unfilled TSV was also presented. The results were successfully used
to predict the points of minimal stress in the arrangement of TSVs, explaining how
the spacing and the pattern in which the TSVs are laid out support high mechanical
stability and reliability of the entire structure. The same procedure can be used for
other via geometries and via placements in order to study the mechanical stability.
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The structure of the TSV itself is exposed to instability caused by stress. Within this
chapter the situations which arise from processing or device operation and which can be
dangerous for the TSV are discussed. Local features’ effects, such as Bosch scallops, are
investigated as well as mechanical effects during wafer handling. Particular attention
is paid to thin films, especially because of the lack of available information for such
systems. A deep look into the stress relaxation of metal films is presented and a scheme
to couple FEM simulation with relaxation models is provided.

5.1. Stress in Thin Films of TSVs

Solid thin films are widely used in semiconductor technology as metal lines, barriers,
glues, passivation layers as well as active materials for microelectromechanical systems
(MEMS) [38]. TSVs have thin films implemented along the entire structure. In fact,
in unfilled TSVs the via is made uniquely of very thin layers of multiple materials.

Thin films are usually defined as material layers with a thickness ranging from fractions
of nanometers up to hundreds of micrometers. The small thickness gives the material
a different behavior in comparison to its properties in bulk dimensions, especially
regarding mechanical characteristics. Thin layers respond differently to stress and
their fabrication generates internal forces which are high enough to potentially damage
the TSV structure.

In semiconductor technology a film is usually attached to a substrate which can be
hundreds of times thicker than the film itself, thereby limiting its deformation. In
such a system (substrate-film) stress can generate due to various phenomena. In 1988,
Doerner and Nix reviewed the main mechanisms for stress formation in thin films [86].
Freund summarized them in a comprehensive list [38], displayed in Table 5.1.

Growth stress (residual stress) is understood by Freund as the stress which arises
during film fabrication, and external stress (extrinsic stress) is any stress which is
generated due to a force which originates after film deposition.

The list of stress sources is quite vast and it is impossible to include a comprehensive
study of each item in this work. In addition, they are not all pertinent to the TSV
technology. Hence, this work presents three different studies of relevant stress issues in
TSVs related to thin films. The first is discussed in the following section and describes
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Table 5.1.: Stress sources identified by Doener and Nix.

Growth stress Extrinsic stress

Surface and/or interface stress Temperature change
Cluster coalescence Piezoelectric or electrostrictive response
Grain growth Electrostatic forces
Vacancy annihilation Gravitational or inertial forces
Grain boundary relaxation Compositional segregation
Shrinkage of grain boundary voids Electromigration
Incorporation of impurities Chemical reactions
Phase transformations and precipitation Stress induced phase transformations
Moisture adsorption or desorption Plastic or creep deformation
Epitaxy
Structural damage (deposition process)

the manner in which the final build-up of intrinsic stress in the metal layer affects the
mechanics of the TSV structure. The second topic is also discussed in this chapter and
details how some external stress sources, such as thermal variation and wafer handling,
can be dangerous for the vias. The last study demands a microstructural view of the
thin film materials and must be handled differently; therefore it is left to the next
chapter.

5.2. Influence of Stress in Metal Layers on TSVs

In this section only the standard unfilled TSV is considered, as defined in Chapter 4,
since there is no relevant thin metal film in filled TSVs. The point of interest is the
conduction layer along the wall of the unfilled TSV. Any mechanical instability in this
layer can lead to cracks which, after some time, could cause a complete failure of the
TSV.

Krauss et al. [85] performed X-Ray Diffraction (XRD) stress measurements on the
wall of a standard open TSV structure, but the specific via’s geometry permitted only
a measurement of the top 10µm. A full plate sample with an identical layer profile is
then used to support stress characterization depicted in Fig. 5.1. The purpose of the
full plate is to ease the measurement process and to improve its precision. Additionally,
it represents the best estimate for the stress in the middle of the via, since it is not
feasible to measure the stress at the full depth of the TSV.

However, the stress on the TSV tungsten film was found to be smaller than on the
full-plate samples. At the TSV’s wall scallops were observed, which were caused by
the Bosch process, as depicted in Fig. 5.2. The presence of scallops along the TSV
walls and the lack of them in the full-plate sample suggests that they might be the
reason behind the observed stress reduction.
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Figure 5.1.: A TSV (left) and a full-plate (right) sample during X-Ray measurements. The
TSV geometry hinders the X-Ray reach, while a full-plate sample with the same
layer profile is used to evaluate the stress in the metal.

Figure 5.2.: Two-dimensional cross section of the TSV. The Bosch scallops are shown in
detail.
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To explain the stress difference in the samples, the effects of the sidewall scallops on
the vias were studied. It is hypothesized that the scallops’ geometry causes the stress
reduction. This same interpretation was also mentioned by Krauss et al. Furthermore,
a possible weak adhesion of the scallops’ bottom due to shadowing effects was likewise
investigated. This phenomenon can lead to stress relaxation and can also further
explain the difference between the measurements.

A second structure with a double stack layer of W/TiN is considered in Krauss’s work.
It is probably employed in order to increase the TSV’s electrical conductivity without
any degradation of stress stability. This double stack structure is also considered here,
particularly due to the availability of experimental data for comparison.

To evaluate both hypotheses, mechanical simulations were performed on two structures
as depicted in Fig. 5.3.

For the simulation, an initial tensile residual stress was assumed on the tungsten lay-
ers, as measured on the full-plate samples [85]. The material interfaces of the scallops’
bottom were treated as a contact surface, thus the weak adhesion was properly con-
sidered. The solution of the resulting surface problem is computed by a combination
of the Lagrange and the penalty method as described by Faraji [87].

Figure 5.3.: Schematic of the single (a) and double (b) stack structures considered for the
simulation.
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5.2.1. Scallop Geometry

An accurate evaluation of the hypothesis relies on a good description of the scallop’s
geometric shape. A parabolic-like shape is suggested, as depicted on the previous cross
sectional TSV images in Fig. 5.2. The height and width of each scallop is estimated
to be 2µm and 0.5µm respectively.

The scallops’ geometry can be obtained using level set based Bosch process simulations.
However, to understand their influence on the TSV, different combinations of height
and width were studied. In order to study various scallop shapes, level set simulations
are an unfeasible approach, because the simulations can take a considerable amount of
time and the simulation results are not easily adaptable to the finite element tools used
in this work. Thus, an alternative solution was applied. A single Bosch simulation
was carried out, as shown in Fig. 5.4, and based on it an entire set of structures was
manually constructed for several dimensional combinations. The scallop shape is then
fitted to rational quadratic Bézier curves [88], for which the general form is given by

B(t) =
(1− t)2P1W1 + 2t(1− t)P2W2 + t2P3W3

(1− t)2W1 + 2t(1− t)W2 + t2W3
, (5.1)

where P1, P2, and P3 are control points as depicted in Fig. 5.5. W1, W2, and W3
are weights used for curvature control corresponding to each point of the curve (P1,
P2, and P3, respectively), and t is the curvature parameter which varies between 0
and 1. Fig. 5.4 depicts a visual comparison between the Bézier curve description of
the scallop, the Bosch simulation, and the observed scallop along a processed TSV
sidewall.

Two Bézier curves were used to form a scallop, as depicted in Fig. 5.5. For each scallop,
the curvature, size, and width were controlled by an appropriate choice of weights and
points in relation to both curves, following the rules below:

• P1 and P6 must be on the intended TSV wall (without scallops) and the distance
between them defines a scallop’s width.

• The distance between P1 and P2 defines the maximum scallop’s height which is
reached at the middle of the scallop’s width.

• P1 and P2 are placed on the same side of the scallop while P5 and P6 are placed
on the opposite side of the scallop.

• The weights W1, W3, W4, and W6 are given the value 1. The weights W2 and
W5 have the same value (which controls the scallop’s curvature), W2=W5=W.
It was chosen W=1/3.

Although this approach describes the scallops’ parabolic shape, the junction between
them is smoother than the Bézier curve can represent. This could lead to singularities
during simulation, resulting in high stress at the points where two scallops meet.
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Figure 5.4.: Comparison between the Bézier curve description of the scallops to the Bosch
process simulation (a) and the fabricated scallop (b). Bézier curves create sharp
points between the scallops, which could lead to unrealistic stress build-up at
these meeting points during simulation.
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Figure 5.5.: Scallop shape approximation by two Bézier curves. The curvature, height, and
width are controlled by the weights.

5.2.2. Meshing and Boundary Conditions

The simulation of the entire structure, as depicted in Fig. 4.1, is computationally unfea-
sible in the presence of a large number of scallops and contact surfaces. Consequently,
the simulation domain is reduced by taking into consideration the aforementioned
experimental constraint (10µm from the top of the TSV).

As boundary conditions, it was assumed that the extreme right side of the structure
is fixed, while the TSV’s inner side is free to move as well as the top. The bottom
boundary has a more complicated scenario, because a proper condition is unknown in
the adapted domain from Fig. 5.3. To handle this situation a symmetric boundary
condition was employed. Although this is not true, when the entire structure is con-
sidered, it is a good approximation for the geometry in the vicinity of the simulation
domain. Additionally, it reduces any possible boundary effect which could impact the
solution. The simulation was performed assuming symmetry around the central TSV
axis in order to capture the cylindrical shape of the TSV.

The scallop shape and the contact surfaces demand a fine mesh to prevent numerical
convergence issues, as depicted in Fig. 5.6. As a result the mesh is rather dense
near the scallops, leading to many mesh points and elements for a relatively small
structure. Triangular elements were used, because they showed a better adaptability
in this structure, when compared to quadrilateral elements. The mesh of the single
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stack structure has 12466 points and 24635 triangles, while the double stack structure
has 17945 points and 35461 triangles.

Figure 5.6.: Mesh details around the scallops for the single (a) and double (b) stack structure.

5.2.3. Simulation Results

The first goal of this study was to understand the reasons for the stress discrepancy
between the TSV and the full-plate samples. Therefore, the following configurations
were considered for simulation: TSV without scallops, TSV with scallops, and TSV
with weak adhesion. The first case was performed to control the hypothesis, whereas
the other two cases were used for an evaluation of each particular feature on stress.
The geometry of the scallops has been identified as the main cause for stress reduction
inside the tungsten layer, as shown in Fig. 5.7. Although the weak adhesion has
introduced some relaxation (∼17%), it superimposes to a stress state already reduced
by the geometry. Moreover, the in-plane stress on tungsten is not equal in every
direction in the presence of scallops. Krauss et al. were unaware of this fact during
their measurements and assumed an in-plane equibiaxial condition for the stress [85].
Nevertheless, this possibility is discussed in their work. Consequently, the reported
stress by Krauss et al. does not fully characterize the state in the tungsten layer, but
rather the average normal stress in the vertical direction, according to their described
experimental setup.
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Figure 5.7.: Stress distribution along the TSV in the vertical (top) and tangential direction
(bottom) considering vias with weak adhesion (left), no weak adhession (middle)
and without scallops (right). The stress is strongly reduced in the vertical direc-
tion, mainly due to the scalloped geometry. The weak adhesion induces a small
reduction, but it is not the main mechanism. Along the tangential direction, the
scalloped geometry is not so evident, hence the stress reduction is very small.

The double stack structure was simulated under the same conditions as the single
stack, except that the weak adhesion case was not considered, as shown in Fig. 5.8.
Since the equibiaxial stress assumption is not valid in the presence of scallops, the
simulated and experimental stress results have not been compared. Instead, the strain
was compared, which is a direct measure and free of any assumptions.

The average simulated strain of 0.00169 in the vertical direction was in reasonable
agreement with the measured strain of 0.00111 [85] for the tungsten layer. The intrinsic
stress on the Ti/TiN layers was ignored due to the lack of experimental data. However,
simulations considering a compressive stress in the Ti/TiN layers resulted in an average
strain of 0.00127 in the tungsten layer. Hence, the absence of the intrinsic stress on
Ti/TiN can justify the difference between simulated and observed values.
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Figure 5.8.: The same behavior for the stress is found in double stack structures. However,
the reduction due to the scalloped sidewall is slightly smaller when compared to
single stack TSVs.

The rigidity characteristic of the scallops in the vertical direction modifies the stress
distribution on TSV films. The tensile stress induces an inward movement in the
region of valleys between scallops, shown in Fig. 5.9. This leads to a relief of the stress
along the via, since the material finds a favorable point to stretch. Consequently,
the average normal stress in the vertical direction in tungsten is reduced, causing the
difference between TSV and full-plate samples. However, in the tangential direction
there is almost no stress reduction. Along this axis the geometry is not modified by
the scallops. Therefore, the initial load faces a similar scenario in the presence or
absence of scallops.

Additional insight concerning reliability is gathered from an analysis of the von Mises
stress. The mean values for structures with and without scallops are very similar
and no significant difference was detected. Hence, the full-plate sample measurements
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Figure 5.9.: Displacement in the radial direction. The scallop creates points which ease the
movement of the metal, relaxing the overall stress in the metal layer.

could be used safely to determine the average von Mises stress. However, the mean
value of the von Mises stress did not suffice when the scallops were present due to the
modified stress distribution. Fig. 5.10 outlines the accumulation stress points. The von
Mises stress can reach peaks of stress up to 3 times higher than those experienced on
full-plate samples. However, such high values could be the result of the sharp transition
between the Bézier curves used to represent the scallops (singularity points). Even
if the sharp transitions, observed with Bézier curves, were removed, there is still a
pinched transition region between scallops. There, points of pinch-off are a region of
potential failure, as increased stress could lead to a fracture in the metal.

Regarding scallop dimensions, the stress magnitude behavior depends on the scallops
height and width, as shown in Fig. 5.11. As the height increases, the stress increases
very rapidly until a peak is reached, then it drops slowly toward a saturation value.
For small heights most of the scallop still retains its flat geometry, impeding material
expansion and leading to an increased stress. This scenario persists until the scallop
reaches a height which favors the curvy geometry and material expansion (flat char-
acteristic is no longer dominant), resulting in stress relaxation. The peak stress in
Fig. 5.11 is defined by this change in the scallop geometry. As the scallops’ widths
are increased, the peaks broaden with a linear dependence, both in height and width
directions. This peak movement is a consequence of the fact that wide scallops need
higher heights to lose their flat behavior.
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Figure 5.10.: Points of high stress in the scallops. Although there is an overall reduction of
the stress in the metal layers, the scallops create points of stress accumulation,
which can easily surpass the average layer stress.

Figure 5.11.: Maximum von Mises stress variation dependence on the height and width of
the TSV sidewall scallops.
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5.2.4. Summary and Conclusion

Effects of Bosch scallops on stress reduction in metal layers of an open TSV technology
were studied. Two possibilities were evaluated for an explanation of the phenomenon,
including a weak adhesion of the scallops’ bottom and the geometry of the scallops
themselves. The latter causes most of the stress reduction, while weak adhesion is
only a secondary mechanism. The manner in which the scallop geometry modifies the
stress was described. Additionally, valleys between scallops were identified as potential
failure regions due to increased stress in pinch-off sites. It was also shown that the
equibiaxial stress assumption on the via walls in the presence of scallops is invalid.
This information is vital for the proper evaluation of the simulation and experimental
results. Finally, the simulations have shown to be consistent with experimental data,
validating the setup for further studies.

5.3. Impact of Wafer Bow in TSVs

This section mainly deals with a different scenario, although the context of device pro-
cessing and its influence on TSV performance is still present. The central purpose of
this section is to understand how the handling of the wafer on a macroscale (millime-
ters) can affect the stress in the TSV. For that examination one should understand
the conditions in which a wafer is found after TSV fabrication, more specifically after
thin film deposition.

Film depositions usually modify the wafer shape. They are generally performed at
several degrees above room temperature. At deposition temperature the material
conforms to the substrate and an intrinsic stress arises as result of several processes
during film formation, as described in Table 5.1.

After deposition the wafer is cooled down, but the film and the substrate contract at
different speeds, due to the difference in the coefficient of thermal expansion (CTE
mismatch). The variation of temperature creates stress in the materials, which in-
creases the intrinsic stress. In order to accommodate these additional stress effects
and reach a stable state, the system will bow itself up or down, depending on whether
the resultant stress is positive or negative as shown in Fig. 5.12.

G.G. Stoney in 1909 developed an elegant method to determine, from the wafer cur-
vature, the stress state of the film as in [89]

σf =
Msh

2
s

6hf

1

R
, (5.2)
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Figure 5.12.: Wafer bow due to film deposition. The curvature depends if the film stress is
tensile (positive) or compressive (negative).

where σf is the average stress on the plane of the film, Ms is the biaxial elastic modulus
of the substrate, hs is the substrate thickness, hf is the film thickness, and 1/R is the
system curvature.

At the time Stoney made strict constraints which were removed, as film deposition
studies progressed by several works which included more sophisticated systems and
multiple layered films [89]. This work does not intend to extensively discuss such
models, but instead to provide a brief explanation for wafer bowing.

5.3.1. Simulation of “Unbow” Wafer Movements

A curved wafer is a common occurrence during semiconductor processing and TSVs
are susceptible to its effects, especially in cases which disturb the bowed stable state.
For instance, during handling the wafer can be forced to a flat state with a machine
chuck for further processing or transportation. In such scenarios a question immedi-
ately arises: would a flattening process cause mechanical instability in the TSVs? In
order to find an answer, imagine that a wafer bowed 3µm negatively is forced flat by
an external force, as depicted in Fig. 5.13.

Figure 5.13.: A wafer forced to unbow during handling or processing.
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To assess the impact of the flattening process, mechanical FEM simulations were
performed. The simulation setup in this case is more challenging, because of the scale
difference between the considered structures. A wafer has a diameter of up to 300mm
while a standard TSV radius measures in the range of 100µm. The difference in length
scales creates several complications for the simulation regarding meshing, numerical
stability, and computing time.

A different approach is required in order to create a manageable simulation environ-
ment. The problem was treated in a hierarchical manner, where the simulation starts
with a domain in a length scale comparable to the wafer diameter and is reduced, until
the length scale of only one TSV is reached. A schematic of the adopted strategy is
depicted in Fig. 5.14.

Figure 5.14.: Schematic of the multilevel approach for a simulation of large scale effects in
the TSV.

At each step simulation level a simulation is required and the result is passed as
a boundary condition to the next level. For example, the simulation starts with the
flattening process of the entire wafer. At this point no TSVs are present in the domain,
only the wafer is considered. In the next step the domain is reduced to a radius of
5mm from the wafer center. The TSVs are already present in a simplified manner,
they are represented with holes in the silicon without any additional thin material
layers. The computed displacement of the previous step is then applied as a boundary
condition, forcing the solution to match at the domains’ intersection. Finally, the
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domain reduction process is applied again to a single TSV. All material layers are
present in this last simulation, where the boundary conditions are again computed
using the displacement calculated at the previous simulation level.

This multilevel approach allows for the treatment of features on domains with very
different scales. The complexity of the structures are included gradually, which re-
duces the computational cost of including all features at all simulation domains. The
weakness of this technique lies in the boundary conditions of the lower levels, since
their quality is limited by the solution of the upper levels. Therefore, a better refine-
ment of the mesh of the domains in the respective lower levels is needed to obtain
reliable results. Additionally, domain reductions of several orders of magnitude create
numerical instability, because the mesh might not be fine enough to resolve very small
domains. For example, a reduction from the wafer level directly to the TSV level would
be a problem, since it would be necessary for a mesh element located in the region
of a TSV to resolve the detailed TSV region, increasing drastically the computational
requirements. The multilevel simulation strategy described here can also be seen as a
special case of domain decomposition methods [90].

The result of the simulation for the last level of the filled TSV is depicted in Fig. 5.15,
while the results from all simulation levels for an unfilled TSV are shown in Fig. 5.16.
Measured intrinsic stress is considered on the film layers at the TSV level (last sim-
ulation). The stress at the TSV bottom of the unfilled via is very high, especially at
the corners. The structure at this region acts like a lever and the stress generated by
the “unbow” motion is magnified, producing potential failure spots on the TSV. Filled
TSVs are better supported in this situation. The metal inside the cavity hinders the
lever-like movement, increasing the mechanical stability of the structure against wafer
handling situations.

Figure 5.15.: Result of the last simulation level of a multilevel simulation of a filled TSV.
The material inside the cavity provides better support against forces at the
bottom of the TSV.
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Figure 5.16.: Simulation of the effects of a forced unbow on the TSV. In the first level, no
TSV is considered. For the second level the vias are treated as regular holes
in the silicon. Only at the last level the TSV is considered in full detail. The
unbow movement is particularly dangerous for the bottom and top corners of
the via.
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5.3.2. Summary and Conclusion

The impact of “unbow” movements due to handling was analyzed in this section.
Such scenarios are especially dangerous for unfilled TSVs, because of the lever-like
configuration at the bottom of the structure. Filled vias have a better support since
there are no open surfaces. A methodology for dealing with problems at different
scales was presented. It is particularly useful to study the effects on a macroscale (as
wafer bow) to the TSV. It should additionally be noted that the presented method is
a special case of the domain decomposition method.

5.4. Strain Relaxation

This section presents the last of the localized stress related problems discussed in
this chapter. A discussion regarding the behavior and origin of the intrinsic stress
is also initiated, but it will be covered in more detail in Chapter 6. In the last two
sections, the impact of the intrinsic stress on the mechanical stability of the TSV
became evident. The behavior and build-up of the intrinsic stress on a TSV’s metal
layer during thermal cycling is investigated. The system is stressed beyond the elastic
limit and a plastic model is required to describe the intrinsic stress evolution. In fact,
this plastic deformation will ultimately lead to an overall strain (stress) relaxation, as
will be explained later.

5.4.1. Strain Relaxation by Dislocation Glide

During film deposition, different stress sources pressure the material atoms to conform
to the substrate and to their environmental conditions. Consequently, the film sustains
a strained state and small deformations, also called dislocations, arise in the crystal
structure of the deposited material [91]. Dislocations manifest themselves in two forms:
edge dislocation and screw dislocation [91]. However, a mix of both types is the most
common observation in materials.

Dislocations can propagate through the film due to the actions of an external dis-
turbance. This movement, when sustained, relaxes the film and constitutes one of
the main mechanisms of strain relaxation of materials. A fair example of such a
phenomenon can be described by considering Fig. 5.17. A dislocation movement is
characterized by the breaking of an atomic bond around the defect, followed by a dif-
ferent bond formation. For a system in equilibrium, such processes occur in a random
fashion. However, when the system is disturbed by an external force, the crystal lattice
deforms elastically, which favors the dislocation propagation in a preferred direction.
If the force persists for sufficient time, the defect propagates to the material surface,
where boundary effects take place and part of the strained energy inside the film is

86



5. Stress Inside TSVs

Figure 5.17.: Dislocation propagation inside a film crystal.

released. Consequently, the film experiences a reduced strained state and a reduction
in the intrinsic stress.

The continuous propagation of the dislocations depends on several conditions and
properties inside the material. As shown in Fig. 5.18, the dislocation moves along the
indicated slip plane, following the slip direction [92]. Such slip systems are not available
for every plane inside the crystal, but are instead determined by the symmetries of
the lattice. Usually, slip planes are defined by the lattice with the highest atom
density (closed package configuration) and the slip direction is defined by the shortest
distance between atoms on the slip plane [91]. Naturally, the external force must favor
the movement of a dislocation in a slip system, otherwise a continuous propagation is
very unlikely.
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Figure 5.18.: Slip system inside a material. A force parallel to the slip plane must exist in
order to activate the dislocations movement.

The dynamic of dislocation glide is not governed solely by the slip system and the
external force. Dislocations interact with each other and with grain boundaries during
motion. Moreover, the propagation is a kinetic process and temperature effects can
not be neglected. In the case of polycrystalline materials, each grain has its own
slip system which should be accounted for. All these conditions make the modeling
of the dislocation glide a challenging task. Actually, there is a variety of models
available, which consider dislocation propagation under different conditions [92]. In
general, however, they can be divided into low and high temperature models. The
concept of low temperature in this case depends on the melting point of the material.
Any temperature below approximately 10% of the material’s melting point is usually
considered low [92]. This work is limited to the model named after Freund for low
temperature dislocation glide with obstacles [92], which is usually a suitable choice for
metals present in microelectronic metals’ structures[93].

The dislocation movement is by definition a plastic process, since the material changes
its structure permanently. As in every plastic process the amount of deformation will
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depend on the amount of time during which a material must withstand a stress state.
Moreover, the deformation is accumulated over time, which means that in order to
predict the plastic deformation of an eventual load, the previous amount of plastic
deformation should be known in advance. Unfortunately, this information is rarely
available. Therefore, it is more convenient to describe plastic deformations by means
of their rate over time. This rate is known as strain-rate, which is defined in the model
of low temperature dislocation glide with obstacles by

γ̇ = γ0exp

�
−ΔF

kT

�
1− σs

τ̂

��
, (5.3)

where γ0 is a pre-exponential factor assumed to be constant for high values of ΔF ,
k is the Boltzmann constant, T is the temperature, and σs is the shear stress over
the material. The symbol ΔF represents the activation energy of an obstacle and it
defines the energy needed for the dislocation to overcome a single obstacle without an
external force. Lastly, the property τ̂ describes the amount of shear stress required to
trigger the dislocation glide without aid from the thermal energy.

5.4.2. Strain Relaxation Driven by Temperature

Temperature variation is one the most common stress sources in metal films of semi-
conductor devices, especially during processing. Devices are baked several times in
thermal cycles which can reach up to 500◦C. In such situations, an understanding of
the stress evolution in metal films is mandatory to create mechanically stable TSVs.

During thermal variation every deformation (elastic or plastic) in the film is the result
of thermal expansion (or contraction) as described by

ǫT = Δα(T − T0) = ǫe + ǫp , (5.4)

where Δα stands for the CTE mismatch between the film and substrate, T is the
temperature during a thermal cycle, T0 is the initial temperature, and the indexes
T, e, and p refer to thermal, elastic, and plastic strain, respectively. The stress can
be related to the strain by Hooke’s law as described in Section 2.2.1. However, the
film is a 2D system so the relation can be simplified. Additionally, as mentioned in
the scallop problem of Section 5.2, an equibiaxial assumption in thin films’ analyses is
quite common. Hence, the problem dimension can still be further reduced to 1D and
Hooke’s relation for thin films can be described by

σF = Mf ǫe , (5.5)
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where σF is the stress in the film and Mf is known as the biaxial modulus. In order
to compute the effects of thermal variation on the stress, ǫe in (5.5) must be replaced
by (5.4) as in

σF = Mf (ǫT − ǫp)

= Mf [Δα(T − T0)]− ǫp . (5.6)

For reasons stated in the previous section, it is convenient to describe plastic defor-
mations by means of the time derivative. In principle, the same approach could be
applied to (5.6), but for the particular case of thermal variation, an analysis of (5.6)
by derivatives of temperature is of greater interest, as in [93]

dσF

dT
= Mf

�
Δα− dǫp

dT

�

= Mf

�
Δα− dǫp

dt

dt

dT

�
. (5.7)

Substituting (5.3) in (5.7) one obtains the final relation:

dσF

dT
= Mf (Δα)−Mf

dt

dT
γ0exp

�
−ΔF

kT

�
1− σs

τ̂

��
, (5.8)

where the shear stress σs relates to the equibiaxial stress by the Schmid factor (s) as
in σs = sσ.

5.5. Simulation of Stress Behavior in Thermal Cycles

Within this section, the implementation of the model (5.8) will be used to compute
the stress evolution in thin films during thermal cycles. The discussion starts with a
simple substrate/film system and evolves progressively towards thin films in a TSV,
where the equibiaxial assumption is no longer valid.

Consider again the full-plate sample of Fig. 5.1. Krauss et al. placed this sample
in a thermal cycle up to 500◦C at a rate of 1◦C/s and recorded the measured stress
at each step. It was inferred from this data, and also from other results of thin film
modeling [81][93], that the stress behavior can be explained by the dislocation glide
model described in the previous section by (5.8).
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5.5.1. Model Parameters

The acquisition of all necessary material parameters for the dislocation glide model is
a great challenge. Most of the data available in the literature refer to bulk materials
and thin film properties are usually very different. Moreover, the parameters are sen-
sitive to the deposition methods and conditions, which hinder their general usability.
Therefore, a safe approach is to obtain the parameters directly from stress measure-
ments in a controlled thermal cycle experiment, as was performed for the presented
experiment, in addition to the inclusion of previously available experimental data.

In order to obtain proper values for the material parameters, the dislocation glide
model (5.8) must fit the stress measurements [85]. Since (5.8) is a differential equation,
traditional fitting techniques based on gradient methods are not suitable. Therefore,
a meta-heuristic optimization technique known as Genetic Algorithm (GA) was im-
plemented [94][61]. The goal was to obtain a set of parameters (Mf , ΔF , τ̂ , and s),
which minimizes the distance between the experimental and the computed stress at
various temperatures. Hence, the objective can be described mathematically by

min
Mf ,ΔF, ˆtau,s

�
i

σE(Ti)− σ(Ti) , (5.9)

where σE(Ti) is the experimental stress measured at temperature Ti and σ(Ti) is the
stress computed by (5.8).

One drawback to this approach is the lack of evidence of the uniqueness of the solution
of (5.9). This means that there is a chance that two different sets of parameters
with different physical meaning can solve (5.9). However, during this work such a
situation was not encountered. The obtained parameter values are summarized in
Table 5.2. The calculated stress evolution with the obtained parameters is presented
in Section 5.5.2 along with a comparison with experimental data.

Table 5.2.: Parameters of the dislocation glide model obtained using a Genetic Algorithm
(GA).

Parameter Value

Mf (GPa) 555.85
ΔF (J) 2.8592×10−19

s 0.2119
τ̂ (GPa) 1.9655
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5.5.2. Coupling with FEM

In order to have a thermo-mechanical simulation of the TSV, which properly considers
the dislocation glide mechanism described in Section 5.4.2, (5.8) must be included in
the thermo-elastic FEM model of the structure. The coupling must consider the
breaking of the equibiaxial thin film assumption in the TSV and consequently, the
stress computed in Section 5.4.2 must be related to the individual stress components.
The relation is given by the associated flow rule:

˙ǫij =
γ̇

σ
σij −

1

3
δij

�
k=1..3

σkk , (5.10)

where ǫij are the strain rate tensor components, σij are the stress tensor components,
and σ is the thin film stress computed by (5.8). It is possible to obtain the individual
components of the stress tensor by proceeding with a derivation for each component,
similar to that shown for (5.8). Thus, the evolution of the film stress components is
described by

dσij

dT
= Mij (Δα) δij −Mij

dt

dT
˙ǫij , (5.11)

where Mij is the linear constant which relates the elastic strain to the stress (Sec-
tion 2.2.1). For the normal components, Mij is equal to the biaxial modulus (Mf ).
The relation (5.11) is the generalization of (5.8) in order to include scenarios where
the equibiaxial condition cannot be assured.

The framework described by (5.8), (5.10) and (5.11) summarizes the entire physics
required to design a simulation scheme to couple FEM with the dislocation glide
model, including the cases where the equibiaxial assumption is not valid. The coupling
strategy developed in this work is accomplished with the following procedure:

• Step 1 - Perform a thermo-mechanical elastic simulation of the structure with
an initial stress in the tungsten layer.

• Step 2 - Calculate the stress in the tungsten layer for the next temperature by
solving (5.11). The result of Step 1 is used as the current stress tensor to obtain
ǫ̇.

• Step 3 - Set the initial stress in the tungsten layer with the result of Step 2.

• Step 4 - If the last temperature value is not reached, return to Step 1 and repeat.
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6. Residual Stress in TSVs

In Chapter 5 the local stress of the TSV and the effects of small TSV features were
discussed, but the residual stress was given a priori as an embedded property of the
material. In this chapter the residual stress is investigated, the prevailing knowledge
of its origin is reviewed, and models for its calculation are presented. Based on the
calculations a methodology suitable for residual-stress conscious engineering design is
provided.

The discussion in this chapter is focused on metal films especially concerning their
importance in TSVs. With that in mind, the development of models is much more
important for unfilled TSVs, where the thin metal films’ behavior has a bigger impact
on the overall stress. In filled TSVs, the thin film impact is eclipsed by the stress
induced by CTE mismatch which plays the major role in determining the TSV stress.
Therefore, the sections to follow study the residual stress due to the deposition of the
thin metal films on the sidewall of the unfilled TSVs.

6.1. Growth of Metal Films

Metal films can be deposited using several methods which can be separated in two gen-
eral groups: chemical vapor deposition (CVD) and physical vapor deposition (PVD)
[38][95]. The former comprises the entire range of techniques which use volatile com-
pounds to deliver the metal atoms to the substrate. The different types of CVD deposi-
tions are usually distinguished by a particular characteristic of the deposition condition
(e.g. low pressure, aerosol assisted deposition, metal organic compounds as precursors,
etc.) [95]. In the semiconductor industry, plasma enhanced CVD (PECVD) is widely
employed. During PECVD processing, plasma discharges are applied to the film-
substrate system during deposition. The high energetic electrons from the plasma
enable reactions which would otherwise not be possible at low temperatures. Such
features are very important during BEOL, where temperature variations are limited.
Furthermore, PECVD is known for increased film adhesion, high deposition rates, and
lower resulting deposited film roughness.

PVD includes any technique which utilizes a physical mechanism to transport the
metal to the substrate [38]. For example, sputtering is a very popular PVD method in
the semiconductor industry. It consists of the ejection of metal atoms from a material
source (thin slab) by an inert gas (usually Ar). The atoms of the gas are ionized
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and accelerated toward the source, the impact causes the release of some metal atoms
which travel to the substrate, where they are deposited. The different types of PVD are
sorted accordingly to the physical mechanism implemented to release source atoms. In
addition to sputtering, evaporation, and electron beam PVD are frequently employed
during semiconductor fabrication.

Each deposition method has its advantages and disadvantages. CVD generally has
a better step coverage and film quality, but one must deal with hazardous products
contained in the chemical reactions. On the other hand, PVD is available for a wider
variety of materials (no volatile compound needed) and is more environmental friendly.
Ultimately, the deposition method is chosen based on the desired application and
eventually financial constraints [66][95][96].

Regardless of the applied deposition technique, thin film growth is a process with at
least six fundamental steps [38]:

1. The material is transported to the substrate, where physical interaction takes
place and the deposited atoms become weakly attached to the surface.

2. The adatoms – it is common in the literature to refer to atoms which lie in a
crystal surface as adatoms – diffuse over the substrate towards low energy sites.
Depending on the affinity of the adatoms and the substrate, a chemical bond is
formed between them.

3. At this point a cluster of adatoms merges at several locations in order to minimize
the system energy, a process known as nucleation.

4. As these agglomerates grow bigger and approach each other, film coalescence
occurs. This process takes place, when two or more droplets come in contact
during growing and merge to form a continuous material.

5. The islands compete against each other for the arriving adatoms, until the entire
substrate is covered. The remaining droplets delineate the grain boundaries,
forming the film microstructure.

6. Finally, film deposition ceases and processes, such as grain growth and diffusion,
take place, depending on the environmental conditions. The entire process is
summarized in Fig. 6.1.

Depending on a material’s affinity and environmental conditions, the growth process
described above can be carried out in one of three different modes known as Frank-van
der Merwe (FM), Volmer-Weber (VW), and Stransky-Krastanov (SK) growth[97]. In
FM mode the adatoms are very compatible with the substrate and prefer to attach
directly on it, hindering the formation of clusters. Therefore, the film coverage is very
smooth and conformal to the substrate. In VW mode the opposite is the case. The
interaction between the adatoms of the deposited material is stronger than the inter-
actions of the adatoms and the surface. Consequently, more islands of the deposited
material are formed. The SK mode is a mix of FM and VW. In this mode the growth
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Figure 6.1.: Typical steps during the growth of a thin film. The material is transported
towards the substrate (a), where it deposits. The adatoms diffuse (b) over the
surface, moving towards low energy sites. As more adatoms arrive, agglomerates
begin to form (c) and the first islands nucleate (d). The new arrived adatoms
are incorporated into the islands (e), which grow until they reach each other and
coalesce, forming the grain boundaries (f).

follows the FM pattern, until the film reaches a critical thickness. When this critical
thickness is reached, VM mode takes over and the islands are created as depicted in
Fig. 6.2.

Figure 6.2.: The three modes of film growth: Frank-van der Merwe (a), Volmer-Weber (b),
and Stransky-Karastanov (c).

Metals deposited on a surface of silicon dioxide usually form thin films using the
Volmer-Weber growth mode [98][99]. In this chapter this will be the only mode con-
sidered, since the entire discussion revolves around the residual stress in metal layers
of TSVs. For the considered TSV, the metal layer is deposited on a silicon dioxide
layer, meaning that the Wolmer-Weber growth model is expected.
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6.2. Residual Stress Formation

The focus of this section will remain concentrated on the metal layers used along the
TSV sidewall, where high stress can lead to failure of the entire via, especially in
the presence of Bosch scallops, as seen in Chapter 5. During metal deposition, stress
arises as a result of physical mechanisms which take place during film growth. Those
stresses are strongly related to the fabrication process and are known as intrinsic stress
or residual stress [98][99][100][101][102][103].

The residual stress can arise from various sources, as suggested in Table 5.1. A misfit
between lattice parameters, microstructural modifications (e.g. grain growth, coales-
cence) and deposition method are examples of the most common residual stress sources
[101]. In Volmer-Weber mode, the residual stress builds up since the initial stages of
nucleation. The lack of affinity between metal and substrate atoms leads to the retrac-
tion of the atoms in the droplets. Therefore, the island becomes compressed and stress
is generated from it. The compressive stress increases continually with island growth
until coalescence, where the merging process (also known as zipping) joins them and
a tensile force arises. As more droplets come together the tensile stress increases very
fast, suppressing the compressive component and leaving the film in a high tensile
state. At this point the material can have two different behaviors, depending on the
adatom mobility. If the material has high adatom mobility (e.g. Cu, Al, Ag), the new
adatoms will move towards the grain boundaries, increasing the grain sizes. This grain
growth leads to a compressive pressure in the film and counterbalances the coalescence
tensile stress. For materials with low mobility, the new adatoms do not move so easily,
which diminishes the compressive force triggered by the adatoms movement. A sum-
mary of the microstructure evolution is depicted in Fig. 6.3 and the stress evolution
along the growth is shown in Fig. 6.4.

6.3. Residual Stress Calculation of a Single Droplet

As described in the previous section there are three stages for stress generation during
film growth, but a careful analysis leads to some simplifications. The compressive
stress created by nucleation can be neglected for engineering purposes, because of its
small contribution to the eventual state of the thin film. Therefore, coalescence and
grain growth define the residual stress of the film. For low adatom mobility metals,
the effects of grain growth on the stress can also be ignored and the final state is solely
determined by the stress developed during coalescence.

The importance of coalescence stress is reflected in the variety of models in the lit-
erature, which attempt to explain it [101]. Three models are broadly known in the
scientific community either by their precision or by their physical meaning. Each
model will be explicitly presented in the following sections.
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Figure 6.3.: Metal film growth process. The final film structure depends on the adatom
mobility of the depositing metal.

Figure 6.4.: Stress behavior during the film growth process.
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6.3.1. Hoffman’s Model

Hoffman was the first to acknowledge the energy balance of the coalescence stress
formation [104]. He realized that adjacent islands snap together, in order to minimize
the free surface energy at the cost of an increased elastic energy. He claimed that the
zipping process (islands merging) takes place, when the distance between the islands
reach a critical distance (Δ). Nix reviewed Hoffman’s work and added a simplified
geometry model as depicted in Fig. 6.5.

Figure 6.5.: Hoffman model.

Nix restated Hoffman’s theory by looking into the energy balance of two islands before
and after impingement [105]. Before impingement, the system free energy is given by

E1 = E0 − 2γsv , (6.1)

where E0 is the free surface energy per unit area of the top surface of the film and the
substrate/film interface, and γsv is the free surface energy per unit area of the islands’
lateral surfaces. After islands merge the system free energy is given by

E2 = E0 + γgb +Mf

�
Δ

2R

�2

. (6.2)

Before island impingement there are two independent surfaces, one for each island,
with an amount of energy per surface area of γsv. After impingement part of the
surfaces energy (2γsv) is exerted for the formation of the interface between them (grain
boundary). This energy amount per unit area is represented by γgb. The remainder
of the surface free energy is converted by the islands’ stretching with elastic energy,
which is represented by the second term of (6.2). Actually, this is just the conservation
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of the free energy (E2 − E1 = 0), which can be used to calculate Δ. The resulting Δ
is

Δ =

�
4R (2γsv − γgb)

1− ν

E

�1/2

. (6.3)

The coalescence stress can then be computed from Hooke’s law using Δ as in

σ = Mf

�
Δ

2R

�
=

�
Mf

2γsv − γgb

2R

�1/2

. (6.4)

Hoffman’s model overestimates the coalescence stress in the film, mainly because of the
simple geometry assumed for the islands. However, it is a reasonable approach for low
adatom materials. Moreover, it is a simple model when compared to the alternatives
and it can be useful as a quick estimate of the upper bound of the coalescence stress.

6.3.2. Nix-Clemens Model

Nix and Clemens employed a different geometry for describing the droplets [105].
They considered islands with an elliptical shape which coalesces to form a cycloid
shape surface as depicted in Fig. 6.6.

Figure 6.6.: Nix-clemens model.

Instead of a critical distance (Δ), there is a critical height (z0) in Nix’s and Clemens’
approach. It defines the extension of the interface between the two islands.

In addition to the island shape, Nix and Clemens adopted a different view of the
problem. They treated each cusp of the cycloid surface as a crack and developed their
model based on this assumption. Their main argument was that the amount of the
energy which must be supplied to grow the crack further (strain energy release rate)
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must be equal to the amount of energy left after boundary formation (2γsv − γgb).
Their idea can be neatly summarized by

GR = (1− ν)2
K2

f

E
= (2γsv − γgb) , (6.5)

where GR is the strain energy release rate and Kf is the stress intensity factor which
is used as a parameter to estimate the stress around a cracked tip. Nix and Clemens

used Kf =
1

1 + ν
σ
√
2R from the results of Cheng-Hsin’s and Huajian’s work regarding

cycloid surfaces [106]. Hence, (6.5) can be further developed and the average film stress
is given by

σ =

�
1 + ν

1− ν
E
2γsv − γgb

2R

�1/2

. (6.6)

The Nix-Clemens model also overestimates the stress, but it is based on a more realistic
geometry. The criticism of Nix-Clemens’ model lies in the loose description of the
zipping process. It was assumed by Nix and Clemens that the average stress is linearly
dependent on the average strain. However, island coalescence is not an instantaneous
process and the problem configuration, as well as the average stress, changes during
the zipping process. In such cases the assumptions made by Nix and Clemens would
be invalid.

6.3.3. Freund-Chason Model

Freund and Chason took a completely different approach for the islands’ encounter
[107]. They treated the problem using the Hertzian contact theory with cohesive
attraction [108], in an attempt to overcome the deficiencies in the description of the
zipping process by Nix and Clemens. The geometry of the problem was also changed;
in fact, they claim that the conditions in the Nix-Clemens model are suitable in the
case of a fully covered substrate while the depositing material is only filling gaps.
Therefore, Freund and Chason proposed a change in the perspective of the problem.
Instead of using a transversal cross section, they decided to analyze the process using
a top view of the structure, as shown in Fig. 6.7.

In fact, the Freund-Chason model expands the dimensionality of the problem and
a 3D description of the geometry is also possible. The stress estimation using the
Freund-Chason model is given by

σ

E
= AN

�
2γsv − γgb

Ea

�cN

, N = 1, 2, 3 , (6.7)
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Figure 6.7.: Freund-chason model.

where N is the problem dimensionality. AN and cN are parameters which depend on
the stated problem dimension with values A1 = 0.82, A2 = 0.44, A3 = 4, and c1 = 1/2,
c2 = 2/3, c3 = 1. The Freund-Chason model is more in line with experimental
measurements, especially for materials with high adatom mobility.

6.4. FEM Calculations of Residual Stress in Single Droplets

Seel developed a FEM approach for the encounter of two islands discussed in the
previous section [98][99]. He posed the problem in the same manner as Nix and
Clemens and from his simulations he calculated a height Z0, which minimizes the
coalescence energy. By doing so, he imposed a series of displacements in both droplets’
surfaces toward the center and computed the coalescence height which minimizes the
energy per unit length of the island surfaces. A sketch is shown in Fig. 6.8.

A semi-analytical solution for Z0 was also developed in Seel’s work. He took an
approach similar to Hoffman, but instead of assuming free energy conservation, he
considered the total energy per unit length of the island interfaces, which is given
by

Etotal =
1

2
EY0 − (2γsv − γgb)Z0 , (6.8)

where Z0 = [(r/sinθ)2− (r−Y0)
2](1/2). The first term is the elastic energy which Seel

obtained by fitting the FEM results in different contact angles. As in the Hoffman
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instantaneously at the beginning of the growth process. It is not an optimal assump-
tion, but further improvements are left for future work. The island growth with time
is given by

dR

dt
=

sin θ3

(1− cos θ)2(2 + cos θ)
DR , (6.9)

where R is the island radius, θ is the contact angle, and DR is the deposition rate in
units of length per time. Here, a constant deposition rate was employed in the range
between 1nm/s and 3nm/s, thus the island radius in each instant can be obtained
by a simple multiplication of the right hand side of (6.9) by the time. A nucleation
rate of 0.01 nuclei per nanometer is assumed. In Fig. 6.9 a snapshot of the simulation
evolution at one instant in time is shown.

Figure 6.9.: Snapshot of the VW simulation used in this section. The grains will grow until
the entire substrate is covered.

During the VW growth simulation each island’s encounter characterizes an event. At
every time step the simulation algorithm looks for an event occurrence. When one is
found, the islands’ sizes are stored and the islands are marked as merged. In future
time steps, the intersection points of the merged islands are computed and a boundary
is defined at the line between the intersection point and the substrate, as depicted in
Fig. 6.8.

The simulation is terminated, when every droplet has at least one encounter and
the entire substrate is covered. At this point the histogram of the island size at first
encounter is calculated and a distribution curve can be fitted. It follows an exponential
decay as expected. A histogram, resulting from a sample simulation, is sketched in
Fig. 6.10.

6.5.2. Coalescence Simulation

After a VW growth simulation, a sample is taken from the droplet size distribution and
a FEM simulation is performed in order to compute the stress. The setup follows Seel’s
scheme, but Z0 is not computed from the FEM simulations; instead the numerical
minimization of (6.8) regarding Z0 is used. This approach is faster, because it avoids
extra FEM simulations in the search for Z0. A FEM simulation example of a grain
encounter is shown in Fig. 6.11.
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Figure 6.10.: Droplet size distribution during coalescence for the growth parameters consid-
ered in this work. The droplets’ sizes follow an exponential distribution.

Figure 6.11.: FEM simulation of a single encounter between two droplets. Symmetry con-
ditions are employed from both sides. A prescribed displacement is applied at
the surface of both grains up to a critical height Z0.

The calculated stresses are then averaged and the entire process is repeated for a
new sample from the droplets’ size distribution, until it reaches statistical significance
(usually in the order of several thousand simulations). Finally, an estimate for the
average stress in the film can be calculated together with the confidence interval. The
method is summarized in Fig. 6.12.
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Figure 6.12.: Method to estimate the average residual stress.

6.5.3. Stress Estimate

The grain size determines the final intrinsic stress magnitude (in materials with low
adatom mobility) as can be seen from Fig. 6.4. Bigger grains lead to smaller stress
generation and smaller grains lead to higher stress generation [99]. The resulting
grain size and distribution is affected by several processing and material parameters.
However, a process engineer can control – to some extent – the grain size distribution
only by the growth rate and the nucleation distribution (rate). Thus, the intrinsic
stress can be engineered, in principle, solely by those two parameters. All processing
steps after deposition have been neglected for this study, which may also alter the
microstructure of the material (e.g. annealing). A summary of the models which
discuss those processes can be found in a previous work [99].

108



6. Residual Stress in TSVs

The results obtained from the simulation were compared to the stress measurements
of tungsten films (low adatom mobility material)[85] as depicted in Fig. 6.13. The
mean of the distribution is the estimate for the residual stress and the distribution
spreading is the expected deviation of the estimate.

There is a tendency for the experimental data to lie above the estimated average
stress. This fact can be explained by a possibly undervalued nucleation distribution
of the tungsten, which could lead to overestimated averages. Nevertheless, more mea-
surements are needed to confirm this tendency. In summary, given a set of growth
parameters, the presented methodology provides the most probable interval, where
the average residual stress due to coalescence can lie, and the most likely value for the
residual stress in low adatom mobility metal thin films. In the case of high mobility
materials the compressive component after coalescence must be introduced, but the
procedure remains unchanged.

The problem of residual stress estimation requires a statistical approach due to the
random character of the coalescence process. Additionally, the obtained confidence
interval provides to the engineer a safeguard for the design of the TSVs. Naturally,
further improvements are needed such as 3D simulations (VW growth and FEM), non-
instantaneous island nucleation, and variable deposition rate.

Figure 6.13.: Residual stress estimation. The simulated results follow a normal distribution.
The mean is the residual stress estimate and the distribution spreading is the
expected deviation from the estimate.
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6.5.4. Summary and Conclusion

A methodology to estimate the residual stress of a metal film with low adatom mo-
bility was presented. The problem requires a statistical approach due to the random
characteristic of the coalescence process. A 1D simulation of the Volmer-Weber growth
process is performed and a droplets’ size distribution is generated from this simulation.
The distribution is then used as an input of an iterative process including finite ele-
ment simulations, in order to obtain an average stress in the film considering different
droplet sizes. The estimate was compared to previous experimental work. The sim-
ulated results suggest a tendency for underestimation, although it cannot be entirely
confirmed due to the small number of experimental data available.
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7. Summary and Outlook

Three-dimensional integration is a very likely alternative to proceed with more-than-
Moore device integration. The variety of advantages granted by the technology works
as a stimulus for the industry to move in this direction. Furthermore, the technology
is rather compatible with current processing techniques, reducing the cost for initial
production. However, the implementation of 3D technology is not straightforward,
especially for the manufacture of reliable devices.

Mass production of highly integrated devices is not yet a reality, but for some market
niches 3D integration with through silicon vias is already in production. A great deal of
effort has been placed on the further development of this technology. However, several
different aspects must be properly addressed, such as yield, thermal management,
mechanical stability, testing, and design, before mass production becomes a reality.

This work provides a theoretical contribution to surpass the mechanical challenges
of fabrication and operation of TSVs. The stress in TSVs was investigated in depth
under different scenarios. It is not always possible to understand experimentally the
mechanical behavior of TSVs. Therefore, simulation and analysis techniques must
be used in parallel to support and explain the observed behavior. The simulations
were kept as close as possible to realistic conditions, and experimental data was used
extensively when available. A high degree of caution must be followed, in spite of the
past successes of various simulation techniques, because it is not uncommon for some
detail to be overlooked during modeling.

The FEM was mainly implemented to approach the problems and develop models
addressed here. Within FEM, a series of techniques were developed to enable or to
improve the analysis. Initially, the stress generation for a TSV was studied and an
analytic description for the stress was developed. It compares nicely to FEM results
for stresses around the middle of the via. Furthermore, the analytical solution can
also serve the purpose of a safe lower bound estimate for the stress in the via top and
bottom. The combination of stress fields of a group of TSVs were also investigated
and a methodology to improve the placement of TSVs was presented. The objective
was to find the best TSV layout which will reduce the overall stress in the silicon
surrounding the TSV structures.

In addition, the TSV was analyzed locally. Previous experimental data pointed out
a stress reduction along the TSV’s sidewall, where Bosch scallops were present. A
simulation scheme was created considering an approximation for the scallop form.
The geometry of the scallops were identified as the most likely cause for this stress
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reduction. Furthermore, the effects of the scallop geometry for the stress along the
via was investigated. So far, it is well known that the stress depends on the scallops’
shape, and a careful description of the scallops’ geometry is needed. A better approach
is to use topography simulations of the Bosch process, but simulation time is the main
restriction for this approach.

Within the scope of local stress effects, the impact of wafer handling on the TSV
was investigated. The forced “unbow” of wafers was simulated during a mechanical
chuck down. This type of simulation has structures with a large aspect ratio and large
variation in length scales. A wafer diameter is usually in the range of hundreds of
millimeters, while the biggest dimension of a TSV is less than a tenth of a millimeter.
To address properly such a situation, a hierarchical scheme was proposed. The results
showed that unfilled TSVs are more susceptible to mechanical instability in this situ-
ation. The metal in filled TSVs provides a good protection against movements which
have a direct impact at the bottom of the TSV.

In the sequence, strain relaxation in the metal layers during thermal cycling was pre-
sented as the last of the local stress investigations. Experimental measurements of
stress in full-plate samples during thermal cycles were used to characterize the plastic
behavior of the metal films of a TSV. The challenge here was to obtain a model which
could be used to predict the stress inside the TSV. A previous model, low temperature
dislocation glide, was used to explain the stress measurements. However, the model
depends on parameters which are not readily available. Moreover, due to the partic-
ularities of the model, traditional fitting techniques are of no use. The problem was
overcome by applying a meta-heuristic search algorithm know as Genetic Algorithm.
The procedure was restrained, as much as possible, to produce physically meaningful
results. A very good match with experimental data was obtained. Subsequently, a
scheme to couple the thermo-elastic FEM simulations with the calibrated model was
developed. Hence, a full simulation of a TSV considering the scallops could be carried
out to study the stress inside the TSV. The results revealed a particular evolution for
the stress inside the via. The top and the middle of the via show different behaviors,
the middle being the most dangerous region. There, the stress increases during heating
and can reach values up to 10% larger than the initial stress.

Finally, the discussion moved down along the length scale in order to study mechanical
stress during thin film deposition. The residual stress creation was studied, consid-
ering the microstructural evolution of the metal during growth. The coalescence was
assumed as the only mechanism for generating stress during growth. Several mod-
els were discussed to compute the stress which is generated by the encounter of two
islands. However, the stress due to coalescence is not a product of only one island
encounter, instead it is the result of the impingement of islands with different sizes.
Therefore, a statistical approach was proposed, in which the size distribution of the
islands in a film was taken into consideration for the final stress of the film. As a re-
sult, the methodology provided an estimate for the residual stress due to coalescence
in addition to the confidence interval for the stress variation.

112



7. Summary and Outlook

This work has provided an assortment of simulation techniques for analysis of the me-
chanical stress in TSVs. Each technique was created to address a specific circumstance
during the via processing or operation. Naturally, further improvement is required and
some issues are already known. The first one is the improvement of the scallop de-
scription. Some unpublished results have shown that the description of the scallops
by Bézier curves is not the best approach, mainly because of the peaks created at
the scallop intersections. A connection between scallops made by a soft curve could
improve the results. Regarding strain relaxation, it is known that the coupled scheme
does not work for nonlinear variations of temperature. Modifications in the strain re-
laxation model are necessary in order to consider these problems. Finally, the estimate
for residual stress must include other stress sources. In fact, it is surprising that it was
possible to obtain a simulated value so close to the observed values by only considering
the coalescence and thermal effects. Furthermore, improvements to the VW simula-
tion are also needed, for instance, one should consider non-instantaneous nucleation of
islands. The quality of the solution produced by the simulations depends greatly on
the quality of the input data. This is especially true for microstructure simulations,
where the availability of material parameters is very limited.
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Appendix A.

Properties and Identities of First and

Second Rank Tensors

Several operations and identities of first and second order tensors are defined below for
fast consulting. The same notation of the main text is used. The capitalized letters
(U , S, T ) refer to tensors and the amount of bars above them identifies the tensor
ranking. The bold lower case letters (u, v) refer to vectors, while the not bold letters
are real numbers, except for f which refer to a real function.

Addition

¯̄U = ¯̄S + ¯̄T = ¯̄T + ¯̄S → Uij = Sij + Tij (A.1)

Product of a Tensor and a Vector

v = ¯̄Su → vi = Sijuj (A.2)

v = u¯̄S → vj = ujSji (A.3)

Product of two Tensors

¯̄U = ¯̄S · ¯̄T → U = SikTkj (A.4)
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Transpose

¯̄ST ≡

S11 S21 S31

S12 S22 S32

S13 S23 S33


 (A.5)

Trace

trace( ¯̄S) = S11 + S22 + S33 (A.6)

Inner Product

¯̄S : ¯̄T =
�

1<i<n
1<j<m

SijTij (A.7)

Tensor Product

u⊗ v ≡ uvT =


u1
u2
u3


�

v1 v2 v3
�
=


u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3


 (A.8)

u⊗ v =
n�

i=1

m�
j=1

aibjui ⊗ vj (A.9)

In A.9 the vectors ui and vi are basis of the space of u and v respectively.

Tensor Identities

∇ · (∇× Ū) = 0 (A.10)

∇ · (ΔŪ) = Δ(∇ · Ū) (A.11)

∇ · (fŪ) = f∇ · Ū + Ū · ∇f (A.12)
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∇ · (Ū ∧ V̄ ) = V̄ · ∇ × Ū − Ū · ∇ × V̄ (A.13)

∇ · (∇ ¯̄U) = ΔŪ (A.14)

∇ · (∇ ¯̄U)t = ∇(∇ · Ū) (A.15)

∇ · (Ū ⊗ V̄ ) = Ū∇ · V̄ +∇ ¯̄U · V̄ (A.16)

∇ · (f ¯̄T ) = f∇ · ¯̄T + ¯̄T · ∇f (A.17)

∇ · ( ¯̄T · Ū) = (∇ · ¯̄T · Ū)t + ¯̄T : ∇ ¯̄U (A.18)

∇ · (f ¯̄I) = ∇f (A.19)

∇× (∇× Ū) = ∇(∇ · Ū)−ΔŪ (A.20)

∇× (ΔŪ) = Δ(∇× Ū) (A.21)

∇× (fŪ) = f∇× Ū +∇f ∧ Ū (A.22)

∇× (Ū ∧ V̄ ) = ∇ ¯̄U · V̄ + Ū∇ · V̄ − V̄∇ · Ū −∇ ¯̄V · Ū (A.23)

∇(Ū · V̄ ) = ∇ ¯̄U · V̄ +∇ ¯̄V · Ū + Ū ∧ ∇× V̄ + V̄ ∧ ∇× Ū (A.24)

∇ ¯̄U · Ū = ∇× Ū ∧ Ū +∇U2

2
(A.25)
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