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Kurzfassung

Diese Doktorarbeit untersucht eine mehrstufige Energiemanagementstrategie zur Opti-
mierung der Drehmomentaufteilung und Gangwahl für Hybridfahrzeuge mit Verbren-
nungsmotor (HEVs). Sie präsentiert drei wesentliche Beiträge, die jeweils in Fachpub-
likationen detailliert beschrieben sind und darauf abzielen, den Kraftstoffverbrauch und
die Schadstoffemissionen in HEVs weiter zu reduzieren. Während die Hybridisierung
von Fahrzeugen bereits erfolgreich zur Senkung des Kraftstoffverbrauchs eingesetzt
wird, sind neue Herausforderungen, vor allem bezüglich der Minimierung von Schad-
stoffemissionen, entstanden.
Der erste Beitrag dieser Arbeit zielt auf die systematische Kooperation zwischen den
Reglern und den Komponenten des Antriebsstranges ab. Die Kooperation wird dabei
durch parametrische Regler erzielt, die die Einflüsse der anderen Regler bei der Ak-
tualisierung der Reglerparameter berücksichtigen. Angewendet auf ein HEV zeigt die
Methode eine erhebliche Kraftstoffreduktion durch verbesserte Zusammenarbeit zwis-
chen den Reglern für Motor und Getriebe. Der zweite Beitrag konzentriert sich auf
die Modellierung und Minimierung von Schadstoffemissionen während transienter Be-
triebszustände. Hier wird eine generische Optimierungsmethode vorgestellt, die die
transienten Betriebszustände basierend auf einer funktionalen Darstellung der Stell-
größen berücksichtigt. Angewandt auf ein Diesel-Hybridfahrzeug zeigt die Methode
eine signifikante Reduktion der transienten Emissionen dank gleichmäßigeren Betrieb.
Der letzte Beitrag stellt ein generisches prädiktives Reglerdesign für die präzise Aktua-
torregelung der Antriebskomponenten vor. Eine modulare Vorsteuerung, die basierend
auf Messdaten identifiziert wurde und für nichtlineare Systeme geeignet ist, wird zur
Regelung des Luftpfads eines Dieselmotors eingesetzt. Dieser Regler liefert vergleich-
bare Ergebnisse zur optimalen Lösung, jedoch mit deutlich geringerem Rechenaufwand.
Die Beiträge dieser Arbeit wurden durch Simulationen mit detaillierten und experi-
mentell validierten Plattformen überprüft. Die Ergebnisse unterstreichen die Bedeutung
der Komponentenkooperation und der Berücksichtigung transienter Betriebszustände
bei der effektiven Reduzierung von Kraftstoffverbrauch und Schadstoffemissionen. Dank
ihrer Modularität können die entwickelten Lösunge auf verschiedene HEV-Architekturen
und Komponentenkonfigurationen angewendet werden. Anhand spezifischer Fallstudien
zeigt diese Arbeit signifikante eduktionen der Schadstoffemissionen bei Hybridfahrzeu-
gen mit Verbrennungsmotoren.
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Abstract

This PhD thesis investigates a multi-level energy management strategy to optimize
torque distribution and gear selection of hybrid electric vehicles (HEVs) with an internal
combustion engine. The thesis presents three significant contributions, each detailed
in a dedicated journal publication, to further reduce fuel consumption and pollutant
emissions of HEVs. While hybridization has long been recognized for its potential
to lower fuel consumption, new challenges have emerged, particularly in minimizing
pollutant emissions to achieve cleaner transportation.
The first contribution of this thesis is the systematic cooperation between control loops
and powertrain components. This cooperation is achieved using parametric controllers,
where the update of each controller’s parameters considers the reaction of the other con-
trollers. Applied to an HEV, the proposed method demonstrates notable fuel reduction
through enhanced collaboration between torque split and gear selection controllers.
The second contribution focuses on modeling and minimizing pollutant emissions during
transient operations. This thesis introduces a generic transient optimization method
based on a functional representation of the control variables. The proposed optimization
method is applied to control the engine torque, significantly reducing transient emissions
of a diesel HEV thanks to smooth engine operations.
The last contribution introduces a generic predictive controller design for precise control
of powertrain component actuators, ensuring accurate tracking of reference trajectories.
A modular feedforward controller structure, identified from measurement data and suit-
able for nonlinear systems, is proposed and applied to control the air path of a diesel
engine. This identified controller yields results comparable to an optimal solver but
with substantially lower computational complexity.
The contributions of this thesis have been validated through simulations on detailed
and experimentally validated platforms. The findings highlight the critical role of com-
ponent cooperation and transient operations in effectively reducing fuel consumption
and pollutant emissions. Emphasizing modularity, the developed solutions are appli-
cable to various HEV architectures and component configurations. Applied to specific
case studies, this thesis demonstrates significant reductions in pollutant emissions for
hybrid electric vehicles with combustion engines.
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Chapter 1

Overview

Hybridization of vehicles is a promising step toward sustainable transport. Indeed, the
battery and electric motor allow more freedom regarding the control of the combustion
engine. Using a state-of-the-art multi-level energy management strategy (EMS), this
thesis proposes three main contributions toward further reductions of fuel consumption
and pollutant emissions.

This work is organized as a cumulative thesis with an introduction chapter fol-
lowed by a chapter composed of three selected publications aiming at further reducing
fuel consumption and transient pollutant emissions of internal combustion engine hy-
brid electric vehicles (HEVs). The first chapter of this thesis describes the motivation
and problem statement and summarizes the thesis’s main contributions. Chapter 2
comprises the three journal publications detailing the main contributions of this thesis,
accompanied by an outline of the author’s contribution.

The main outcomes achieved in the proposed thesis are the guaranteed cooperation
between the powertrain components in Publication A, the minimization of transient
pollutant emissions in Publication B, and the control of engine actuators to realize
transient trajectory tracking in Publication C.

1.1 Motivation
To pursue the announcement of the European Green Deal in 2020, not only vehicles’
fuel consumption must decrease but also their pollutant emissions [1]. Therefore, a
smooth transition toward climate-neutral vehicles is necessary, resulting in a large-scale
hybridization of the European transport sector. Nowadays, increased efforts in EMS for
internal combustion engine HEVs are required to continue the pursuit of climate-neutral
vehicles.

This thesis focuses on further reducing fuel consumption and pollutant emissions
of HEVs with an internal combustion engine and a gearbox. A multi-level EMS is
employed in this thesis, with a low-level layer splitting the torque required by the driving

1
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Figure 1.1: Control problem for an HEV with an internal combustion engine.

mission between the engine and the electric motor and defining the gear selection. The
actuators are controlled in a second control layer to realize the expected torque split
and the gear selection. Lastly, a high-level control layer is employed to take advantage
of predictive information to update the EMS parameters depending on the predicted
driving conditions. The predictive information comprises the predicted vehicle speed
and road altitude from GPS data, onboard sensors, and communication from the vehicle
to its environment. The predicted information is consequently not always accurate, and
the prediction horizon can vary depending on the availability of the information.

The goal of the EMS is to reduce a cost including fuel consumption, pollutant
emissions, and the number of gearshifts for this thesis, while maintaining the state
of charge (SoC) within its feasible operating range. The minimization of this cost is
achieved through the control of the powertrain components. Figure 1.1 illustrates the
role of the EMS, first defining the components’ trajectories, i.e., the control variables
composed of the engine torque Tice and gear selection gear, to then control the compo-
nents’ actuators. During this thesis, different component variants have been considered
for the vehicle, and all the contributions are first introduced in a modular framework.
The outcomes of this thesis are, consequently, technical solutions adaptable to different
HEV architectures and component variants.

This thesis identified three main directions to reduce fuel consumption and emis-
sions further. First, a method is proposed in Publication A to ensure cooperation
between powertrain components, demonstrating the need for cooperation between en-
gine and gearbox to reduce the EMS costs efficiently. Then, a functional representation
of the engine torque is proposed in Publication B to account for transient operations,
significantly reducing pollutant emissions. Finally, the precise control of the engine
actuators during transient operations is achieved with an automated feedforward con-
troller design presented in Publication C, guaranteeing efficiency and low emissions
levels.
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1.2 State-of-the-art overview
The main task of an EMS for HEVs is to control the torque split between the engine and
the electric motor. Numerous EMSs have already been investigated, primarily focusing
on the torque split [2]. Offline methods have been proposed when the entire driving
mission is known before departure to generate a reference or evaluate the optimum fuel
consumption. Dynamic programming (DP), Pontryagin maximum principle (PMP),
and nonlinear optimization are the most employed methods to generate references before
the beginning of the driving mission [2, 3]. The equivalent consumption minimization
strategy (ECMS) is widely employed for an online implementation, i.e., to be employed
during the driving mission, thanks to its simplicity and robustness [4]. Numerous other
online methods exist, such as rule-based, fuzzy logic, optimization methods, or machine
learning. Despite the vast number of studies, the new emissions thresholds oblige a
drastic update of the standard torque split control strategies [5].

Further fuel and emission reductions are possible when considering the interac-
tions between the powertrain components. As shown by [6] considering the engine while
controlling the gear selection can further reduce fuel consumption. More interestingly,
considering cooperation between the gear selection and the torque split controller can be
beneficial toward achieving lower fuel consumption and emissions [7]. Multiple other
powertrain components, such as the battery management system or the exhaust af-
tertreatment systems, could also benefit from component cooperation. Having a central
optimization routine suffers from low modularity and considerable complexity. How-
ever, communication between decentralized controllers is seen as a possible perspective.
Sharing references between component controllers to find a consensus or using a hier-
archical structure is currently the main investigated research direction for cooperative
EMS [2].

The emissions of internal combustion engines depend on the engine operating
points and are further amplified by engine transient operations [8, 9]. Some models have
been proposed to capture the transient emissions, using the torque variations [10] or the
derivative of the power [10]. Considering such transient emissions models in the EMS
showed considerable emissions reduction [11]. Indeed, standard optimization methods,
such as PMP, ignore the transient engine operations, resulting in significant torque
variations and pic emissions. A few offline methods, such as DP, can consider transient
operations but are impractical online due to their complexity [12]. In contrast, for online
methods, the state-of-the-art real-time applicable method is to filter the actuator signal
resulting in only a slight reduction of transient emissions [13].

Another key aspect of recent EMS is the consideration of predictive information.
Indeed, using GPS data and onboard sensors, the EMS can estimate the future vehi-
cle speed and road elevation, hence optimizing the EMS over a receding horizon [14].
Therefore, model predictive control methods constitute the state-of-the-art to optimize
the powertrain behavior considering available predictive information [15]. However, the
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complexity of predictive algorithms remains a limiting factor for real-time implemen-
tation. Consequently, multi-level control has been proposed as a promising solution to
consider predictive information while guaranteeing real-time feasibility. Indeed, a high-
level layer can be employed to generate reference trajectories for the different powertrain
components [16]. Then, a low-level layer controls the powertrain components to follow
the references from the high-level layer [17]. The references can be generated during
the driving mission as proposed, for example by [17], when the predictive information
is not fully available before departure.

The low-level layer of a multi-level EMS defines reference trajectories for the pow-
ertrain components. However, accurately following these trajectories can be challenging
for nonlinear and multivariate systems with strong output coupling, such as internal
combustion engines [18, 19]. As a result, a component-level layer can be added, where
the powertrain component actuators are controlled to follow the trajectories provided
by the low-level layer. Different methods exist for realizing such a task, with recent
studies emphasizing the need for predictive methods to accurately track the reference
trajectory during transient operations [20, 19].

The state-of-the-art review concludes that the EMS for internal combustion HEV
needs essential updates to further reduce fuel consumption and pollutant emissions.
First, the interaction between the engine and the other components, such as the gear-
box, must be systematically considered in the EMS. Second, mitigating pollutant emis-
sions requires consideration of the transient engine operations. Third, a real-time and
modular predictive control method is needed to control the components actuators to
achieve precise reference following.

This thesis proposes important contributions to further reduce fuel consumption
and pollutant emissions of HEVs. Using a state-of-the-art multi-level EMS, the first
contribution of this thesis guarantees systematic cooperation between the powertrain
components. Using parametric controllers in the low-level, the high-level optimized the
low-level controllers’ parameters independently, yet considering the overall powertrain
reaction. The second contribution is a generic method to consider control variable
derivatives in an optimization problem. Applied to control the engine torque, the tran-
sient emissions are effectively reduced thanks to the smooth operations of the engine.
Finally, an automated feedforward controller synthesis is proposed. Identified directly
from measurement data, this modular method is applied to control the engine air path
actuators to follow transient reference trajectories.
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1.3 Outline

1.3.1 Objectives
Considering the large-scale hybridization of the European transport sector and the
ambition of climate-neutral vehicles, the main objective pursued in this thesis is formu-
lated:

Key objective (O)

Further reducing fuel consumption and pollutant emissions of
internal combustion engine HEVs

This objective practically corresponds to three subordinate goals
• Systematically taking advantage of powertrain components’ cooperation;
• Minimizing the pollutant emissions during transient engine operations;
• Controlling the engine actuators to precisely track reference trajectories during

transient engine operations.

1.3.2 Problem statement
Achieving the goal (O) corresponds to answering the following research question: (Q)
How to further reduce fuel consumption and pollutant emissions of internal combustion
engine HEVs?

To develop an exhaustive answer to the research question (Q) a collection of
subordinate research questions is formulated.

First, the different components of the powertrain need to cooperate with one
another to achieve the goals (O). The first conditions to successfully answer (Q) is
therefore formulated:

Components cooperation (Q-1)

How to ensure systematic cooperation
between different powertrain components?

The pollutant emissions during transient engine operations constitute the largest
part of the total emissions, the following subordinate question is consequently defined:

Transient pollutant emissions (Q-2)

How to further reduce pollutant emissions
during transient engine operations?
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Defining references for the powertrain components, such as the engine, implicitly
implies an accurate output tracking control, especially during transient operations.
Additionally, a modular and straightforward calibration method would be beneficial
for faster development cycles of powertrain control strategies. The third subordinate
question is consequently formulated:

Transient trajectory tracking (Q-3)

How to systematically identify a feedforward controller for accurate
transient output tracking of powertrain components?

In the following of this thesis, a solution is developed for each of the subordinate
research questions in order to achieve the overall goal (O).

1.3.3 Scientific approach
A collection of technical properties is employed throughout this thesis as a scientific
approach framework to address all the subordinate research questions, hence answering
the main research question (Q).

Multi-level control structure (F-1)
A multi-level control structure is considered throughout this thesis. In-
deed, different levels can simultaneously consider different aspects of the
EMS to efficiently take advantage of predictive information while ensuring
modularity and real-time feasibility.

Predictive control (F-2)
Predictive control is a crucial point to effectively achieve the objectives
(O). Using predictive information such as vehicle speed and road altitude
allows for efficient updates of the controllers.

Functional representation (F-3)
This thesis employs a functional representation of the input to realize
simple yet accurate and efficient control laws and guarantee real-time fea-
sibility.

Parametric modeling (F-4)
Employing parametric models and control laws is highly advantageous for
modularity and guaranteeing real-time capability. Additionally, paramet-
ric controllers’ behaviors are predictable, hence allowing systematic com-
ponents’ cooperation.
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Figure 1.2: Overview of the thesis.

Optimization methods (F-5)
Optimization methods play a crucial role in achieving the objectives (O)
while taking advantage of predictive information. Additionally, optimiza-
tion methods can be re-employed for different components of the same
nature, strengthening modularity.

The three main contributions of this thesis are proposed within a multi-level EMS.
Different layers are indeed used to reduce the overall complexity and increase the EMS
modularity. The low-level control layer is used to define references for each component.
The component-level layer controls the actuators of each powertrain component to track
the low-level reference trajectories. Finally, a high-level layer updates the low-level
controllers based on available predictive information.

The first contribution of this thesis is the use of parametric controllers in the
low-level layer to make components’ cooperation systematically possible for the updat-
ing routine in the high-level control layer. Indeed, when updating a specific controller,
the associated updating routine in the high-level layer can precisely estimate the reac-
tion of the other controllers of the low-level layer, efficiently answering (Q-1). Further
details are provided in Publication A, where this strategy is successfully applied to
ensure cooperation between the torque split and the gear selection controllers. Success-
fully demonstrating modularity and efficiency, the method has been submitted to the
European Patent Office [21].

The second contribution of this thesis is the parametrization of the engine torque
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with smooth basis functions to minimize pollutant emissions during transient engine
operations. A generic method is proposed to consider the input variations when min-
imizing fuel consumption and pollutant emissions over a predictive horizon. Using a
detailed model of an internal combustion engine HEV, the proposed method demon-
strated performances close to optimality, largely reducing pollutant emissions for only
a marginal increase in fuel consumption. The proposed method is exhaustively detailed
in Publication B.

The last main contribution of this thesis is an automated method to identify a
controller to realize precise transient trajectory tracking. Using a novel model structure,
a feedforward controller can be easily identified for a generic nonlinear multivariate
system and employed for a precise trajectory following. This method has been detailed
and successfully applied to control a diesel engine air path in Publication C and has been
protected with a patent [22]. Furthermore, a nonlinear Kalman filter has been proposed
to accurately estimate the system’s physical output to be tracked [23], allowing the use
of a feedback loop to enhance steady-state tracking accuracy.

1.3.4 Scientific outcome
The main scientific outcomes of this thesis are:

1. A method to systematically take advantage of cooperation between control loops
of HEVs. Within a state-of-the-art multi-level EMS, the method relies on indepen-
dent parametric controllers for real-time control of the powertrain components.
Each controller’s parameters can be updated independently based on predictive
information and the reactions of other controllers. This method allows systematic
cooperation between control loops of an EMS and is adaptable to various pow-
ertrain configurations. Applied to an HEV, it has shown encouraging results in
ensuring cooperation between the torque split and gear selection controllers.

2. A generic method has been proposed to minimize the EMS costs over a horizon
considering transient operations. The input variations are inherently considered
in the developed method, thanks to a functional input representation. Indeed, the
input is proposed to be represented as a sum of smooth basis functions. When
applied to reduce transient emissions in an HEV, this method delivers smooth
engine torque, closely approximating the optimal solution found with DP but
with significantly lower computational requirements.

3. An automated feedforward controller synthesis for multivariate nonlinear systems
has been proposed. This approach uses a novel model structure identified di-
rectly from measurement data, allowing for convenient feedforward control via
a straightforward least-squares algorithm. The method enables rapid controller
synthesis for any powertrain components, thanks to its robustness to model order
selection and non-minimum phase systems. Applied to control the actuators of a
diesel engine air path, it achieves precise reference trajectory following, particu-
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larly during transient operations.
These contributions were developed and tested through a collaborative research

effort between TU Wien and AVL List GmbH. The key findings, along with additional
related outcomes, have been documented in several publications in scientific journals
and presented at international conferences. Furthermore, two patents have been sub-
mitted to protect two of the primary contributions of this thesis.

Journal papers
The method employing a parametric controller to systematically ensure cooperation
between control loops and powertrain components is summarized in Section 1.4.1 and
detailed in:

A. Benaitier, F. Krainer, S. Jakubek, and C. Hametner. A Modular Ap-
proach for Cooperative Energy Management of Hybrid Electric Vehicles Con-
sidering Predictive Information. IEEE Access, Vol. 12 (2024), pages 60588-
60600, DOI: 10.1109/ACCESS.2024.3395019.

The optimization algorithm employing basis functions to consider transient operations
is presented in Section 1.4.2 and exhaustively described in:

A. Benaitier, F. Krainer, S. Jakubek, and C. Hametner. Optimal energy
management of hybrid electric vehicles considering pollutant emissions during
transient operations. Applied Energy, Vol. 344 (2023), pages 121267,
DOI: 10.1016/j.apenergy.2023.121267.

The automated feedforward controller synthesis introduced in Section 1.4.3 is thor-
oughly explained in:

A. Benaitier, S. Jakubek, F. Krainer, and C. Hametner. Automated non-
linear feedforward controller identification applied to engine air path output
tracking. International Journal of Control, Vol. 1 (2023), pages 1-12,
DOI: 10.1080/00207179.2023.2227740.

Conference papers
Additionally to the feedforward controller applied to an engine air path, a nonlinear
observer using an unscented Kalman filter has been proposed to simplify a PI imple-
mentation. This observer is presented and tested in simulation in:

https://www.doi.org/10.1109/ACCESS.2024.3395019
https://www.doi.org/10.1016/j.apenergy.2023.121267
https://www.doi.org/10.1080/00207179.2023.2227740
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A. Benaitier, F. Krainer, S. Jakubek, and C. Hametner. Robust physical
quantities estimation for diesel engine emission reduction using sensor fusion.
2022 IEEE Conference on Control Technology and Applications (CCTA), Tri-
este, Italy; 22.08.2022 - 25.08.2022, DOI: 10.1109/CCTA49430.2022.9966196.

The benefits of adding an electrically heated exhaust aftertreatment system to reduce
pollutant emissions have been studied, and a real-time feasible control law has been
proposed in:

A. Benaitier, F. Krainer, S. Jakubek, and C. Hametner. Optimal control of
aftertreatment electric heaters for mild hybrid vehicles during cold start. 2022
IEEE Vehicle Power and Propulsion Conference (VPPC), Merced, CA, USA;
01.11.2022 - 04.11.2022, DOI: 10.1109/VPPC55846.2022.10003358.

An exhaustive study of the advantages of considering torque vectoring capabilities in
the EMS has been studied and documented in:

D. Köppel, A. Benaitier, L. Kügerl, and C. Hametner. Efficient
optimization-based control of a fuel cell hybrid electric vehicle with torque
vectoring. IEEE 2023 Vehicle Power and Propulsion, Milan, Italy; 24.10.2023
- 27.10.2023, DOI: 10.1109/VPPC60535.2023.10403338.

Patents
To protect the novel automated feedforward synthesis method, a patent has been suc-
cessfully submitted:

F. Krainer, C. Hametner, and A. Benaitier. Verfahren zur Identi-
fizierung eines Gesetzes zur Vorwärtssteuerung eines Steuerungsparameters
eines Antriebsstrangs aus Messdaten. Status: patent granted (European
Patent Office number
DE102023111180).

The method for ensuring cooperation between control loops and powertrain components
has also been submitted for a patent:

F. Krainer, C. Hametner, and A. Benaitier. Kontrollverfahren und Kontroll-
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1.4 Methodology
This section summarizes the main ideas and outcomes of this thesis’s contributions.
While all the details of each proposed solution are available in the publications included
in Chapter 2, this section intends to provide the main ideas and outcomes in a concise
form.

A summary of the method for achieving systematic components cooperation as
introduced in Publication A is first presented. Using parametric controllers in the
low-level layer enables component cooperation in the high-level layer, where predictive
information is used to update the EMS parameters. Encouraging simulation results
are provided, emphasizing the benefit of cooperation between the torque split and the
gear selection controllers. Then, a functional representation of the engine input to
efficiently minimize transient emissions is summarized as proposed in Publication B.
A significant reduction of the transient emissions is achieved using a detailed HEV
simulation platform. Finally, the automated feedforward controller design proposed in
Publication C is succinctly detailed. Applied to control the air path of a diesel engine,
this method shows results close to a state-of-the-art reference tracking controller using
only a fraction of its computational complexity.

For the scope of this thesis, the EMS costs to be minimized comprise the fuel
consumption ṁfuel, the pollutant emissions ṁemi, and the mitigation of the number of
gearshifts. The considered components’ trajectories communicated from the low-level
to the component-level are the engine torque Tice and the gear selection gear. The
purpose of the EMS is to control the components’ actuators to follow the components’
trajectories defined to minimize the cost

[Tice, gear] = arg min
�
k∈C

((αfuelṁfuel (k) + αemiṁemi (k)) Ts + Qgear∆gear (k)) (1.1)

with αfuel and αice the relative trade-off between fuel consumption and pollutant emis-
sions, Qgear the equivalent cost of a gearshift, and C an arbitrary driving mission with
a constant sampling time Ts. Additionally, the torque request from the driving mission
must always be fulfilled, and the battery SoC should stay in a feasible range.

1.4.1 Components cooperation
The torque split between the engine and the electric motor has already been extensively
studied. Also, the other powertrain components are usually optimized separately and
eventually share their predicted trajectory with the torque split controller. Cooperation
between powertrain components is, however, necessary to answer (Q) for example,
cooperation between the gearbox and the engine has already been shown to significantly
reduce fuel consumption and emissions [6, 7]. This thesis proposes to use independent
parametric controllers to avoid the need for controller interactions while guaranteeing
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cooperative updates of the controller parameters. Using this proposed method, the
cooperation between the torque split and the gear selection controllers is shown to be
primordial to achieve efficient fuel reduction while mitigating the number of gearshifts.

Main idea

In a multi-level EMS (F-1), cooperation is usually achieved by sharing reference trajec-
tories between the controllers or making iterative decisions to meet a consensus. This
thesis proposes to use independent parametric controllers (F-4) to avoid the need for
controller interactions. Instead, the controllers are updated independently by a specific
predictive (F-2) updating routine that considers the reaction of the other controllers due
to their known structure. Besides its simplicity and usefulness for real-time feasibility,
this method is also highly modular, as each component has its own low-level controller
and high-level updating routine.

The technical aspect of this contribution resides in the use of independent para-
metric controllers in the low-level control layer. Each controller possesses its own up-
dating routine in the high-level control layer as illustrated in Figure 1.2. Each updating
routine updates the parameters of only a single controller yet considers the reaction
of the other controllers as their structure is known and parameters communicated. As
such, each updating routine only optimizes a reduced number of parameters, ensur-
ing real-time feasibility. Also, the communication between the low-level and high-level
control layers is reduced to only parameters. The proposed EMS structure has been
successfully applied to emphasize the need for cooperation between the engine and the
gearbox to attain further fuel reduction while mitigating the number of gearshifts.

Cooperation between gear selection and torque split

The proposed cooperative multi-level strategy is applied to a passenger HEV as de-
scribed in Figure 1.1. The main focus is to guarantee cooperation between the engine
and the gearbox to reduce fuel consumption further while mitigating the number of
gearshifts. Two parametric controllers are used in the low-level layer, with a dedicated
updating routine in the high-level layer. The first controller defines a reference for the
engine torque, while the second establishes the gear selection policy. Also, for simplifi-
cation, αfuel = 1, αemi = 0 and Qgear = 1.5 × 10−4 kg are used in (1.1), hence penalizing
both the fuel consumption and number of gearshifts.

The gear selection parametric controller is derived from the analysis of the optimal
solution found using DP and recorded driving missions. The gear selection is made to
stay close to a prescribed engine speed ω∗

ice observed to be proportional to the vehicle
speed at each time k

ω∗
ice (k) = ω0 + θ1,1 (k) vveh (k) (1.2a)
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with ω0 = 90 rad s−1 identified form the optimal solution, and θ1,1 taking values in the
range [20, 27] rad m−1 depending on the driving conditions. The gear selection controller
triggers a gearshift whenever the current gear engaged could be modified to bring the
engine speed closer to ω∗

ice. The required gear is therefore selected as the gear fulfilling
system constraints in terms of speed and torque limits and minimizing the difference
between the actual engine speed and the prescribed engine speed ω∗

ice

gear∗ (k) = arg min
ϵ∈gear(k)

abs (ωice (k, ϵ) − ω∗
ice (k)) + θ1,2 (k) abs (ϵ − gear (k)), (1.2b)

with gear (k) the set of feasible gears. The last term in (1.2b) penalizes a gearshift,
with a relative fuel cost corresponding to the second parameter of the gear selection
controller θ1,2. A gearshift is consequently triggered if necessary; that is

gear (k + 1) = gear (k) + ∆gear (k) (1.2c)
∆gear (k) = gear∗ (k) − gear (k) . (1.2d)

A parametric controller for the torque split between the engine and the electric
motor is directly formulated as an ECMS. Indeed, this controller has only one parameter
θ2 and is derived from optimal control, hence delivering the optimal solution to (1.1)
with respect to Tice and Tem associated with the provided gear selection policy.

The main idea of the ECMS method is to define an equivalent cost of electricity
λ to penalize battery SoC deviation. Using an equivalent battery model, the SoC
variations can be estimated

∆SoC = Ts
−Ub +



U2

b − 4RbPb

2RbQb
(1.3a)

Pb = ωemTemηem (ωemTem) (1.3b)

with ηem the efficiency map of the electric motor depending on the electric motor torque
and speed. The engine torque is consequently defined as the minimization of the total
cost, including the equivalent cost of electricity,

Tice (k) = arg min
Tice

(ṁice (Tice, k) + λ (k) ∆SoC (Tem, k)), (1.4a)

with the electric motor torque providing the remaining demanded torque Tgbx

Tem = Tgbx − Tice. (1.4b)

The equivalent cost of electricity λ varies with the battery SoC using a simple PI
controller and the ECMS controller parameter θ2

λ (k) = θ2 (k) + Kp (SoC (k) − SoCref) + Ki

k�
ki=1

(SoC (ki) − SoCref) . (1.4c)
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Figure 1.3: Cooperative multi-level EMS applied to the internal combustion HEV with
a gearbox. (source: Publication A)

The update of the controller parameters, i.e., θ1,1, θ1,2, and θ2, is realized by the
updating routines in the high-level layer. Each updating routine is called independently
with its own predictive horizon Np1 and Np2 , and its own updating frequency rate fup1

and fup2 respectively for the gear selection and torque split updating routine.
First, the gear selection updating routine updates the gear selection controller

parameters by varying the value of the current parameters and estimating the following
cost

Jθ1 =
ki+Np1�

k=ki

((ṁfuel (k)) Ts + Qgear∆gear (k)) +

λ (ki + Np1) (SoC (ki + Np1) − SoCcurrent)
(1.5)

with SoCcurrent the SoC at the end of the prediction horizon if the parameters of the
gear selection controller are kept unchanged. Indeed, the gear selection updating routine
needs to consider the equivalent cost of modifying the SoC at the end of the prediction
horizon to ensure cooperation with the torque split controller.

Second, the torque split controller parameter is updated by shooting different
values of θ1 to minimize

Jθ2 =
ki+Np2�

k=ki

((ṁfuel (k)) Ts + Qgear∆gear (k)) +

QSoC (SoC (ki + Np2) − SoCref)2

(1.6)

with QSoC = 1 × 103 kg manually calibrated to ensure that over a driving mission, the
SoC will always remain close to SoCref = 0.5. This constant SoC reference maintains
charging and discharging reserve in case of any non-predicted speed or road altitude
variation. The torque split updating routine also cooperates with the gear selection con-
troller by directly considering the equivalent cost of a gearshift thanks to the predictable
behavior of the gear selection parametric controller.

The proposed multi-level cooperative EMS applied to the introduced vehicle is
illustrated in Figure 1.3. The information exchanged between the high-level and the



1.4 Methodology 15

low-level layers is only the low-level controller parameters. The updating routines are
executed in the background, while the low-level controllers independently control the
powertrain. The component level has been ignored in this study due to the model’s
simplicity and to emphasize the need for cooperation between torque split and gear
selection controllers. Selected simulation results are provided below, highlighting the
benefits of components’ cooperation and optimization using predictive information.

Selected results

The introduced multi-level EMS is applied to control a gasoline engine HEV. The
passenger vehicle considered in the numerical study has a mass of 2000 kg, a six-speed
gearbox, and a battery with a small capacity of 0.95 kW h. To emphasize the advantage
of component cooperation, the proposed method is compared to an identical method,
but where the gear selection updating routine does not cooperate with the torque split.
Indeed, the non-cooperative method uses a gear selection updating routine minimizing
(1.5) without the last term referring to an SoC variation at the end of the prediction
horizon.

A specific section of a driving mission is illustrated in Figure 1.4 where the SoC
for both EMSs is identical at the beginning and the end; therefore, the cost (1.1) can be
directly compared. The non-cooperative gear selection strategy maximizes the number
of gearshifts and the fuel consumption only. The gear is consequently kept constant,
operating the engine in a low-efficiency region; therefore, the battery is used to reduce
fuel consumption further. The issue with the lack of cooperation is that the battery is
depleted, so the equivalent factor λ is decreased to force the regeneration of the battery.
More significant variations of λ are associated with higher fuel consumption and lead
to a relative cost increase of 3 % on this section only.

Table 1.1 presents the results of the cooperative and non-cooperative EMSs over
the complete 27 h driving mission, consisting of the concatenation of various cycles. The
cost is provided relative to the optimal solution found with DP. The first solution is
from a standard EMS consisting of a fixed gear selection policy and the same predictive
ECMS as the one proposed. When making a predictive update of the gear selection
parameter selection without considering cooperation, the overall cost is higher than
for a fixed gear selection policy. When the proposed cooperative EMS is proposed,
the overall EMS cost is significantly reduced. This result emphasizes the need for
component cooperation and the efficiency of the proposed solution.

The robustness of the proposed method concerning the prediction length, the
predicted information accuracy, and the updating frequency are further provided in
Publication A. Also, the proposed EMS is shown to be robust against update delays,
which is necessary to execute the updating routine on the actual hardware.
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Table 1.1: Cost of different control strategies over a complete driving mission.
Method Cost relative to optimal in %
State-of-the-art ECMS 1.31
Non-cooperative 1.36
Cooperative 0.84

Figure 1.4: Gear selection updating routine with and without cooperation.
(source: Publication A)
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1.4.2 Optimization during transient operations
Whereas the fuel consumption of modern diesel engines mainly relies on torque and
speed, the emissions are greatly affected by transient operations [24]. Taking advantage
of hybridization, this thesis proposes to consider the engine transients when minimizing
the emissions, hence using the electric motor to compensate for engine torque variations.
The proposed optimization method relies on a functional representation of the input
and shows large emissions reduction when applied to define the torque split of an HEV.

Main idea

The updating routines introduced in the proposed multi-level EMS, shown in Figure 1.2,
need to minimize the EMS cost efficiently. The engine pollutant emissions necessitate
the consideration of engine transient operations, hence explicitly considering the input
variations. Standard methods exist to reduce the EMS cost over a predicted horizon
(F-2). However, they usually don’t consider input variations. A functional represen-
tation (F-3) of the system input is consequently proposed in this thesis so that the
input variations are inherently considered when optimizing the EMS cost, leading to
an efficient reduction of pollutant emissions.

The main idea proposed to consider transient operations is to explicitly account
for the variations of the powertrain components input when optimizing (F-5) the pa-
rameters of the low-level controllers in the high-level updating routines. For that, the
EMS cost minimized in (1.1) can be written in a general form for a single input u as

u = arg min
�
k∈C

l


k, u (k) ,

du (t)
dt

�����
t=k

	
, (1.7)

with l (•) representing the EMS instantaneous cost, for example, the fuel and pollutant
emissions.

To minimize the cost (1.7) standard methods using a direct or indirect approach,
or DP can be used but need a very fine temporal discretization to correctly approximate
du(t)

dt
|t=k using a finite difference scheme. To make the updating routine applicable to

the vehicle hardware, a functional approach is proposed, ensuring an accurate estimate
of the input derivative for any arbitrary large time step.

Instead of directly looking for a sequence of control input u (k), the input is
parameterized using basis functions

u (k) = φ (k) γu (1.8a)
φ (k) =

�
φ (k) · · · φL (k)

�
(1.8b)

with φi, ∀i ∈ {1, · · · , L} a set of independent basis functions. The key advantage of
such a representation is the possibility to precisely evaluate the input derivative at any
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instant k

du (t)
dt

�����
t=k

= φ(1) (k) γu. (1.9)

The minimization of the EMS cost (1.7) can be realized by varying γu to indirectly
modify u

γu = arg min
�
k∈C

l (k, γu), (1.10)

and can be solved efficiently with standard direct and indirect methods. This thesis
proposes to use this functional representation of the input (1.9) to minimize the fuel
and emissions of an internal combustion engine. Using a polynomial representation of
the engine and battery behavior, computationally efficient direct and indirect methods
are proposed and evaluated on a high-fidelity simulation platform.

Optimization of transient operations

The proposed functional representation of the input (1.9) is employed in this thesis to
minimize the EMS cost (1.1), considering the gear as already defined. This coincides
with the role of the torque split updating routine considering a fixed parameterization
of the gear selection controller.

To efficiently estimate the engine torque minimizing the EMS cost, the fuel and
pollutant emissions are approximated with polynomials

ṁfuel = C0
f + C1

f u + C2
f u2 + o


u3


, (1.11a)

ṁemi = C0
e + C1

e u + C2
e u2 + C3

e u̇2 + o

u3, u̇3


, (1.11b)

with u = Tice and the coefficients C
{0,1,2,3}
{f,e} depending on the engine speed. The first

derivative of the input is quadratically considered for modeling the emissions, as they
tend to be higher during both positive and negative engine torque variations [25]. The
equivalent battery model already proposed in (1.3) is also simplified using a second-order
Taylor expansion. Expressing the electric motor torque from the gearbox demanded
torque and the engine torque (1.4b), the battery SoC is represented by a polynomial
expression of the input

˙SoC = C0
s + C1

s u + C2
s u2 + o


u3


, (1.11c)

with the coefficients C{0,1,2}
s dependent on the engine speed and the torque demand.
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The optimal control problem to be solved corresponds to finding the functional
representation of the input (1.9), to minimize (1.7) using the polynomial models (1.11)

OCP :

������������������������

min
γu

�
k∈C l (k, γu)

l (k, γu) = αfuelṁfuel + αemiṁemi

SoC ∈ [SoCmin, SoCmax]
u ∈ [umin, umax]
x (t0) = x0

x (t1) = x0

, (1.12)

with the conditions that the initial and final SoC are equal to x0. This condition is
employed to evaluate and compare the performance of the proposed algorithm on an
entire driving mission. It can be replaced by a final cost, as proposed in the previous
section, to ensure cooperation with the gear selection controller.

A direct approach can be used to solve the OCP (1.12). Indeed, using a lin-
earization of the SoC dynamic (1.11), OCP can be efficiently solved using a standard
quadratic programming (QP) algorithm. Further details are provided in Publication C.

An indirect approach can be efficiently used to solve OCP when directly consid-
ering the linear model (1.11). Using PMP, the indirect approach consists of finding λ,
as introduced in the previous section, to meet the following necessary conditions for
optimality

λ̇ = 0 (1.13)
γu = arg min

γu

H (γu, λ) , (1.14)

where the so-called Hamiltonian H = l (γu) + λ ˙SoC (γu) is minimized for the whole
driving mission thanks to the functional representation of the input. The resolution of
the indirect problem is achieved in two iterative steps, starting with an initial guess for
λ:

1. The parameters γu are found by minimising H as in (1.14) and using the actual
λ,

2. λ is updated using the secant method to meet SoC (t1) = x0,
3. Step 1 and 2 are repeated until SoC (t1) = x0 up to a provided tolerance.

The solution provided by the proposed indirect method accurately considers the
variation of the input when evaluating the EMS cost. Moreover, the minimization of
H is realized with a QP algorithm initialized from the solution found at the previous
iteration of step 1. The algorithm’s convergence is, therefore, fast even for a large driving
mission, hence perfectly adapted to be employed in the updating routines presented in
the previous section.
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Table 1.2: Methods comparison using the high-fidelity simulation platform, all values
are given relative to the PMP method. The fuel-to-emissions trade-off is as
follow: αfuel = 0.16, αemiṁemi = 0.42ṁNOx + 0.42ṁsoot.

Method ∆fuel % ∆NOx % ∆soot % ∆J % ∆time %
PMP smooth 0.58 -2.57 -4.60 -2.57 11
DP 3.40 -9.77 -6.46 -7.03 7267
Direct 3.68 -6.48 -13.44 -6.57 -60
Indirect 3.68 -7.48 -10.71 -6.56 -84

Selected results

A high-fidelity simulation platform of a heavy-duty diesel vehicle is used to demonstrate
the performances of the proposed optimization method. The emissions to be minimized
are the NOx and soot. The simulation platform fully models the engine air path and
uses a crank angle resolved engine model to accurately account for transient emissions.

State-of-the-art methods are employed to compare the efficiency of the proposed
solution. First, the optimal solution is found using DP. Then, the PMP and a low-pass
filtered version of the PMP solutions are constructed, representing the main options for
reasonable calculation time. All these comparative methods directly use the nonlinear
model of the engine and the equivalent battery model (1.3) instead of their polynomial
approximation (1.11).

Table 1.2 summarizes the results obtained on the high-fidelity simulation plat-
form for the proposed controller against the presented state-of-the-art controllers. The
results are for an entire driving mission of around 12 minutes, corresponding to a short
predictive horizon. In terms of fuel consumption, the PMP and PMP smooth achieve
the best results, as they do not consider the transient emissions, focusing mainly on fuel
consumption. Although, the PMP smooth reduces the NOx and soot emissions; much
more reduction is provided by the DP or the proposed direct and indirect methods.
In the end, the PMP smooth achieves 2.5 % cost reduction, far from the optimality of
DP achieving 7 % cost reduction. The proposed direct and indirect methods achieved
almost as much cost reduction as the DP with around 6.6 % reduction. More notice-
ably, the DP is 72 times slower than the PMP method. In contrast, the proposed direct
and indirect methods are even faster than the PMP method thanks to the polynomial
model of the engine instead of a nonlinear model with lookup tables.

The proposed methods have been shown to efficiently consider the transient emis-
sions, delivering almost the optimal solution with low computational requirements.
The direct or indirect approach can consequently be employed in the high-level up-
dating routines to consider transient operations of powertrain components. Moreover,
the functional representation of the control variables can be reused for other powertrain
components, in order to effectively minimize the EMS costs during transient operations.
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1.4.3 Automated 2DoF controller design
The component references defined in the low-level control layer do not always coincide
with the actuators. For example, for internal combustion engines, several controllers
must be controlled to track an expected torque demand accurately. Furthermore, the
realization of a specific torque is not necessarily unique, with different possibilities
exhibiting different fuel consumption and pollutant emissions. This thesis proposes
an automated feedforward controller design, and successfully applies it to control a
diesel engine air path. Using a novel model structure, the method is shown to be
robust to model order selection and provides accurate reference tracking with very low
computational requirements.

Main idea

The component-level control layer is proposed to define actuators’ trajectories to fol-
low a desired reference. Rather than relying on feedback information, the actuators
can more accurately track the desired reference, especially during transient operations.
The fuel consumption, pollutant emissions, and all other EMS costs depending on tran-
sient behaviors can be efficiently minimized. The third contribution of this thesis is
an automated feedforward controller design capable of defining the trajectory u of m
actuators to follow the desired reference y of the m outputs of an arbitrary powertrain
component (F-2).

The solution elaborated in this thesis aims to identify a feedforward controller
directly from measurement data. Indeed, feedforward control is very advantageous as it
provides an actuator trajectory to follow a component reference, guaranteeing accurate
tracking during transient operations. The motivation for directly identifying a feed-
forward controller results from the need to invert a model Σ (θ) to realize feedforward
control design using traditional methods. As such, problems such as lack of observabil-
ity or unstable internal dynamics can be circumvented as no model is being identified,
only the controller. Figure 1.5 schematically represents the traditional indirect method,
where Σ (θ) is estimated by fitting the model output ŷ, and then Σ−1 (θ) is found using
model inversion. The proposed direct method, where Σ−1 (θ) is directly estimated by
fitting the inverse model input û is also depicted in Figure 1.5.

To realize successively the identification of the inverse model from measurement
data and the design of a feedforward controller, a model structure is proposed�

dy(r1)
1 , · · · , dy(rm)

m

�
θy =

�
du(r∗)

1 , · · · , du(r∗)
m

�
θu (1.15)

with the notation dx(k) :=
�
x x(1) · · · x(k)

�T
and the model parameters θy and θu

(F-4). The ri first derivatives of each output signal i are weighted and equal to a
weighted sum of the first r∗ derivatives of each input. The second key idea developed in
this thesis is to consider a functional approach (F-3) to model each input, output, and



1.4 Methodology 22

Direct

Indirect

Physical
system

Model Inversion

Figure 1.5: Indirect and direct approach for inverse model parameters identification.
(source: Publication C)

their derivatives using basis functions. Each input and output signal is modeled using
the same functional approach presented in (1.8) and their derivatives with (1.9). Each
input ui or output yj and their derivatives are consequently described by the parameters
γui

and γyj
respectively.

The following of this section introduces succinctly the proposed identification
method and how to use the proposed model structure (1.15) for feedforward control.
Finally, numerical results are shown to control the engine air path of a diesel engine
using a detailed and experimentally validated simulation platform.

Automated feedforward controller design

One of the advantages of the proposed model structure (1.15) is the linearity regarding
the parameters θy and θu. Using this linearity property, a total least squares is proposed
in this thesis to identify the parameters, considering noise and inaccuracy in both the
input and output signals and their derivatives.

After collecting measured input u and output y signals, their derivatives need to
be found to identify the proposed model structure. To determine the time derivatives
precisely, the input and output signals are first modeled with basis functions as in (1.8)
using standard least squares regression. Knowing the modeled input and output signals
as well as their derivatives the proposed model structure can be written as

�
du(r∗)

1 , · · · , du(r∗)
m , dy(r1)

1 , · · · , dy(rm)
m

� �
θu

−θy

�
= 0. (1.16)

Applying the total least squares approach, the singular value decomposition (SVD)
of the matrix containing the input and output signals and their derivative in (1.16) is
numerically computed. From this SVD, the user can freely define a threshold that sepa-
rates large from small singular values. The smallest singular values span the nullspace of
the matrix built with the input and output signals and their derivatives. This nullspace
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is directly reused to define the model’s parameters in (1.16). All the details and numer-
ical results emphasizing the advantages of TLS for defining the number of derivatives
needed for each input and output are exhaustively discussed in Publication C.

Once the proposed model structure (1.15) has been identified, a feedforward con-
troller can be easily defined. Indeed, given the expected reference output y∗ and their
k-th derivatives y(k) the inputs u realizing this reference trajectory can be efficiently
estimated.

First, the inputs are once again parameterized with basis function as in (1.8),
where γu are unknown parameters defining the input trajectories and consequently
their derivatives. The proposed model structure (1.15) can be directly re-employed,
and the unknown parameters γu can be directly identified using least squares. Also, to
guarantee a realizable input trajectory in the case the system exhibits non-minimum
phase behavior, regularization terms are employed

γu =

ϕT

uϕu + CT
regCreg

−1
ϕT

uϕy, (1.17)

with ϕu and ϕy matrices arranging the input, output, and their derivatives, using the
identified model structure (1.15), all details being provided in Publication C. The matrix
Creg is a block diagonal matrix, weighting each input and its derivatives independently

Creg = diag (Creg,i) , (1.18a)
Creg,i = ci,kφ(k)T

, (1.18b)

with the positive scalar ci,k weighting the k-th derivative of the i-th input.
The last main advantage of the proposed model structure (1.15) is the possibility

to merge different models to create a local model network. Indeed, different models
can be identified at different operating points, defined by a so-called scheduling vector.
Then, all these models can be combined into a single parameter-varying model using
nonlinear activation functions defining the weighting interpolation of each model at a
given operating point. The parameters θu and θy become functions of the scheduling
vector. Thanks to this possibility, the proposed feedforward method can be employed
for nonlinear models such as a diesel engine air path, described in the following selected
results.

Selected results

The proposed feedforward controller has been applied to control the air path of a diesel
engine. The goal is to find the trajectory of the variable geometry turbocharger (VGT)
and the engine gas recirculation (EGR) valve to follow a reference exhaust manifold
pressure Pexh and exhaust nitrogen oxides mass flow NOx.
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Figure 1.6: Reference following during transient engine operations using different con-
trol methods. (source: Publication C)

First, a collection of local models (1.15) are identified for various fixed values of
the scheduling vector being composed of the engine speed Nice and torque Tice. Then,
radial basis functions centered around each local model are identified to create an
LMN, i.e., a model whose parameters are a function of the scheduling vector. Finally,
the proposed feedforward controller synthesis is applied and demonstrated on a detailed
and experimentally validated simulation platform.

A slow PI controller is added to remove any potential steady-state error due to
model mismatch and disturbances. By adding a feedback loop, i.e., a PI controller,
the proposed method results in a simple yet accurate 2-degrees-of-freedom (2DoF) con-
troller. The proposed controller is compared to the PI controller only, a network of
full-state feedback controllers with integration of the control error [26], and a flatness-
based MPC as proposed in [27].

Figure 1.6 illustrate the reference following accuracy of the proposed method
compared to the introduced state-of-the-art methods. The PI and feedback controller
are by nature slow to react during transient reference following. The proposed 2DoF
method tracks the output almost as accurately as the MPC. The main advantage of
the 2DoF is its simplicity compared to an MPC. The proposed feedforward calibration
and feedforward controller synthesis show encouraging tracking performances with low
computational requirements, hence making it capable of performing in real-time on the
vehicle hardware.

The proposed automated feedforward controller design method is of high value
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for designing a reference tracking controller in the component layer of the proposed
multi-layer EMS.

1.5 Scientific contribution
This thesis provides several contributions regarding the EMS of HEVs to further re-
duce fuel consumption and pollutant emissions. Starting from a standard multi-level
EMS, this thesis proposes solutions to systematically consider components’ coopera-
tion, minimize transient pollutant emissions, and control complex systems actuators
to accurately follow a reference trajectory. Therefore, the several subordinate research
questions proposed in Section 1.3.2 have been thoroughly answered, providing tangible
solutions to (Q).

Contributions to “Components cooperation” (Q-1)→ Publication A

• Through the exchange of parameters between controllers, the proposed EMS en-
sures cooperation between all the powertrain components. Applied specifically to
guarantee cooperation between the torque split and the gear selection controllers,
further fuel reduction while mitigating the number of gearshifts has shown to be
achievable.

• Thanks to the low-level control layer of independent controllers, the proposed EMS
is real-time feasible. The parameters’ updates are computed during uninterrupted
operations of the low-level controllers, and the proposed method is robust to
update time delays.

• The proposed cooperative EMS structure has been shown to be robust to inaccu-
rate predictive information and varying predictive horizons.

• The proposed solution is highly modular. Additional powertrain components can
be easily added thanks to the low-level layer consisting of independent controllers.

Contributions to “Transient pollutant emissions” (Q-2)→ Publication B

• A functional representation of the control variables with smooth basis functions is
proposed and applied to the engine torque to directly consider transient pollution
emissions.

• Both a direct and indirect method have been proposed with the introduced func-
tional representation of the control variable and polynomial powertrain com-
ponents model. In both cases, the fuel consumption and emissions reduction
achieved are close to the optimal solution computed from DP, yet using only a
fraction of its computational complexity.

• The proposed method can be directly re-used for a different system where tran-
sient behaviors must be considered. For example, battery degradation could be
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reduced thanks to smoother battery transient operations.

Contributions to “Transient trajectory tracking” (Q-3)→ Publication C

• An automated feedforward controller design has been proposed for nonlinear mul-
tivariate systems. Thanks to its generic structure and the employed regulariza-
tion, the proposed method can be applied to any system modeled by an LPV,
even with unstable internal dynamics.

• A strength of the method is the possibility to identify a feedforward controller
from measurement data directly. Also, the method has been shown to be robust
to model order selection thanks to a total least squares identification algorithm.

• Using a model structure employing directly the input, output, and their deriva-
tives, multiple controllers identified at various operating points can be easily
merged to form a local model network.

• Implemented with a simple PI controller to remove steady-state tracking inaccu-
racy, the proposed method showed encouraging tracking performances for a diesel
engine air path.

• With a simple least squares, the feedforward controller can be identified, con-
sequently simplifying the calibration. The generation of the actuator trajectory
to follow a desired output trajectory is directly obtained with a least squares
algorithm, making the solution feasible in real-time.

1.6 Conclusion
This cumulative thesis provides three main contributions toward a further reduction of
fuel consumption and pollutant emissions of HEVs with an internal combustion engine.
Each contribution brings a solution to a specific challenge faced by state-of-the-art
EMSs. The proposed contributions of this thesis are all formulated in a generic frame-
work and are consequently applicable to different HEV configurations and component
variants. The outcomes of each contribution of this thesis are investigated using specific
examples, providing a detailed solution for dedicated EMS challenges.

First, a parametrization of the EMS controller is proposed to allow systematic
components’ cooperation. This solution has been employed to emphasize the need
for cooperation between the torque split and the gear selection controller of an HEV,
bringing substantial fuel reduction while mitigating the number of gearshifts. Second,
a parameterization of the engine input with smooth basis functions is proposed to di-
rectly consider engine transient operations when minimizing pollutant emissions. A
significant reduction of pollutant emissions has been achieved, and the solution could
be re-employed to minimize powertrain component degradation during transient oper-
ations. Finally, a feedforward control structure has been identified to automatically
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design a feedforward controller from measurement data. Applied to control the air
path of a diesel engine, the proposed method showed excellent robustness to model or-
der selection and low computational requirements while guaranteeing accurate transient
trajectory tracking.

The contributions of this thesis are control methods aimed at further reducing fuel
consumption and pollutant emissions of HEVs. Indeed, using detailed simulation plat-
forms, components cooperation, reduced transient emissions, and accurate trajectory
following have been demonstrated. Using several technical properties, the outcomes of
this thesis are generic methods employable for various HEV configurations and com-
ponent variants. The main outlook of this PhD thesis resides in the adaptation and
implementation of the proposed methods to actual vehicles.
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ABSTRACT Energy management strategies (EMSs) for hybrid vehicles have been extensively studied to
achieve high system efficiency. EMSs usually focus on the torque split between the electric motor and the
main power source. Other powertrain components, such as the gearbox or battery management system, are
optimized individually. However, the cooperation between different powertrain components has been studied
for specific hybrid architectures and demonstrated to be highly beneficial. A modular EMS that ensures the
cooperation of multiple components with different characteristics, shared constraints and objectives, while
taking advantage of predictive information will be highly beneficial. To address this research gap, a modular
cooperative EMS is proposed using parametric controllers with parameter updates realized in the background
using available predictive information. The strategy emphasizes modularity, feasibility, and systematically
takes advantage of any available predictive information to improve the overall vehicle objectives, hence
considering all the components playing a role in the EMS. The proposed cooperative strategy is first detailed
for a generic EMS and then demonstrated for the control of the torque split and gear selection of a hybrid
electric vehicle. A numerical study is presented to compare the proposed method with the optimal strategy
derived from dynamic programming. The results are detailed for different available predictive information,
both in terms of quantity and quality. The proposed method is revealed to be robust against incomplete
predictive information and guarantees feasibility with low computational effort, making it real-time capable.

INDEX TERMS Cooperative control, energy management strategy, gear selection, hybrid electric vehicle,
multi-level control strategy, torque split.

I. INTRODUCTION
Hybrid Electric Vehicles (HEVs) are nowadays seen as an
effective intermediate step toward emission-free transporta-
tion systems. Hybrid architectures indeed benefit from lower
emissions and better efficiency thanks to an additional degree
of freedom, splitting the energy demand between the fuel
and the battery. The Energy Management Strategy (EMS)

The associate editor coordinating the review of this manuscript and

approving it for publication was Ricardo de Castro .

is specifically designed to take full advantage of the torque
split capabilities toward reduction of the vehicle operating
cost, i.e., fuel consumption, component degradation, comfort,
performance, etc. Also, the EMS can take advantage of
past and predictive information whenever available while
remaining relatively simple to allow its implementation
on vehicle hardware. This paper proposes a modular and
real-time capable EMS that emphasizes the cooperation of
powertrain components while taking advantage of available
predictive information.
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EMSs for hybrid electric vehicles have been continuously
developed for the past 30 years. However, nowadays,
powertrains consist of a growing number of components
and associated controllers, e.g., battery management sys-
tem [1], [2], after-treatment systems [3], ultra-capacitor [4],
electronic stability program [5], etc. The growing number
and interdependence of the powertrain components impose
multiple constraints, and the resulting operational cost to
minimize includes several costs related to fuel consumption,
emissions, degradation, comfort, performance, etc. Ideally,
the EMS coordinates and controls all the components
contributing to these common objectives while ensuring
feasibility and real-time capability [6], [7]. Controlling a
powertrain’s components, considering the interdependent
constraints and objectives, renders a generic and centralized
EMS challenging to design.

With the recent advancements in technology, predic-
tive information such as the future speed of a vehicle
or the altitude of the road ahead is now available [8].
This information can significantly benefit EMSs and has
already shown positive results in specific examples such as
torque split, battery recharging, and component degradation.
Huang et al. demonstrated the potential of predictive
information in torque split in [9], while Al-Ogaili et al.
highlighted its importance in battery recharging in [10] and
Swief et al. dealt with the uncertainties in the network during
battery recharging in [11]. Alyakhni et al. discussed its
significance in component degradation in [12]. However, the
accuracy and quantity of information ahead can significantly
vary from time to time. Robustness toward inaccurate or
missing information, together with a cooperative real-time
controller considering predictive information, is one of the
main challenges of current EMSs [6].

Several methods have been used to control the torque
split and reduce the operational cost of HEVs. Dynamic
Programming (DP) or Pontryagin’s Maximum Principle
(PMP) have been widely employed as offline methods to
deliver the optimal solution [13], which is practical as a
benchmark for determining the optimal control strategy.
However, these methods require precise knowledge of the
entire drive cycle, making them impractical for real-time
control. To overcome this limitation, numerous studies have
successfully derived efficient rule-based controllers from the
optimal policy, particularly for combinatorial problems such
as gear selection [14], [15], [16]. These rule-based controllers
have been successfully extracted from DP solutions and are
practical for real-time control. Nevertheless, when additional
components need to be considered in the powertrain,
optimal methods are no longer available due to their high
computational cost [17].

Extensive research has been done on controlling the torque
split of hybrid vehicles without the full knowledge of the
drive cycle. Derived from PMP, the Equivalent Consumption
Minimization Strategy (ECMS) with an adaptation of the
equivalent electricity cost is the most employed method [18].

Numerous variants exist to consider predictive information,
such as in [19] using a rule-based approach or employing
fuzzy logic as in [4] and [20]. Also, model predictive control
is another common option [21], followed by multiple other
techniques such as backstepping [22], sliding-mode [7], conic
formulation [23], or Bounded Load Following Strategy [24].
More recently, artificial intelligence and self-learning algo-
rithms have been employed to strengthen the modularity
of the EMS, i.e., simplifying the calibration for different
vehicles. A fuzzy logic controller identified from a neural
network is, for example, presented in [25], and reinforcement
learning based on Q-learning techniques has been employed
in [26] and [27].

In parallel to the torque split controller, the control of
other powertrain components, such as the gearbox, has
also been investigated but is generally optimized separately.
For example, the gear selection controller usually does not
communicate with the torque split controller, resulting in a
fixed gear selection policy, i.e., independent of the torque
split strategy. Such decentralized strategies, where the gear
selection is controlled independently, have been regularly
designed with a torque split controller relying on a model
predictive controller such as in [21] or a fuzzy-adaptive
ECMS in [20]. However, [28] shows that optimizing the gear
selection policy from DP along with an adaptive ECMS,
is beneficial. Moreover, optimizing the torque split and the
gear selection cooperatively is even more beneficial, as shown
in [29], where an agreement is found between a DP solver
used for the gear selection and a PMP routine for the torque
split. This latest example emphasizes the need for cooperation
between the different powertrain components but also the
difficulty in using a common solver between components of
various natures, e.g., actuators with continuous or discrete
input.

Modern powertrains are complex due to several inter-
connected components, with different input types and
optimization horizons. A real-time capable EMS, modular
for various types of vehicles, and taking advantage of
components cooperation as well as the available predicted
information will be highly beneficial. As a result, a multi-
level EMS, i.e., with a high-level and a low-level control,
is commonly employed [30], [31], [32]. The high-level layer
defines references for the low-level layer by minimizing the
overall vehicle cost, hence ensuring cooperation between the
powertrain components. On the other hand, the low-level
layer comprises several controllers, one for each powertrain
component. Each low-level controller tries to follow the
high-level references while further minimizing individual
components’ costs [30], [31]. Such a multi-level strategy is
more practical for implementation than a unique centralized
controller. However, the structure of such a multi-level pre-
dictive controller, to ensure feasibility, real-time capability,
and considering all the components’ costs, has not yet been
proposed for a generic HEV, i.e., modular and scalable to
various hybrid architectures.
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This paper introduces a modular EMS relying on a
multi-level strategy and emphasizing powertrain components
cooperation. First, a low-level parametric controller layer
ensures feasibility and real-time capability. Second, a high-
level updating routine layer takes advantage of past and
predictive speed and altitude information to update each
controller parameter to further approach the optimal behavior.
The resulting strategy is modular and can be applied to differ-
ent interacting powertrain components, with continuous and
discontinuous control variables and different optimization
horizons. The novelty of the modular EMS proposed in this
paper is to employ parametric controllers in the low-level
control layer to enable

• real-time control thanks to the low-level control layer,
• the optimization of the controllers’ parameters in the

background, i.e., high-level in parallel to low-level, and
considering predictive information,

• cooperation between powertrain components during the
parameters update thanks to the known structure of each
parametric controller and

• reduced communication between the powertrain com-
ponents controllers, exchanging only their control
parameters.

The proposed cooperative EMS is first detailed in
Section II. Then, Section III illustrates the proposed strategy
through a practical application detailed for an HEV with
a torque split and a gear selection controller. Section IV
presents comprehensive numerical results, first emphasizing
the benefits of cooperation between powertrain’s components
as well as considering predictive information, comparing the
proposed cooperative strategy to the global optimum and
studying the robustness to varying accuracy and availability
of predictive information. Also, cooperation is confirmed to
be a necessary concept for an efficient minimization of the
vehicle’s operational cost. Finally, Section V summarizes the
proposed concept, the main results and observations, and
provides an outlook regarding further usage of the proposed
cooperative strategy.

II. PROPOSED COOPERATIVE EMS CONCEPT
This section proposes a modular EMS for hybrid electric
vehicles, emphasizing the cooperation of powertrain compo-
nents. The proposed strategy focuses on modularity, feasibil-
ity, and taking advantage of available predictive information.
This section introduces the proposed cooperative EMS, which
is applied to control the gearbox and torque split of an HEV
in Section III as an example.

The proposed strategy relies on having a model of the
powertrain and vehicle to predict the vehicle’s behavior.
The model has no specific requirements apart from being
deterministic and consisting of inputs u, corresponding
to actuators such as battery power or gear engaged, and
measurement y such as the current vehicle speed. Generally,
the EMS’s goal is to reduce energy losses while ensuring
some level of performance, reducing component degradation,

and fulfilling technical constraints. A metric depending on the
control inputs u and called cost is defined and noted J .

An ideal EMS will find the optimal control inputs u∗ that
minimizes the cost J

u∗ = arg min
u

J (u) , (1)

and guaranteeing a feasible input u, i.e., fulfilling the
actuators and system technical requirements. The cost J typ-
ically comprises fuel consumption, component degradation,
or driver comfort. Such a centralized problem, i.e., defining
all the inputs at once, is generally hard to solve and requires
the knowledge of the entire cycle. Considering the centralized
problem directly for an online implementation is impractical.

In this paper, the proposed strategy first defines n agents,
each agent being a specific control strategy controlling one
or several powertrain components. Each agent j is responsible
for controlling inputs uj ⊂ u. To avoid the need for consensus
between agents [33], each input is controlled by only one
agent, i.e., ui ∩ uj = ∅,∀i ̸= j. For example, one agent can
control the torque split between the engine and the battery
while a second controls the gear selection, as demonstrated
in Section III.

To be able to simplify the complexity of cooperation
between agents, this paper proposes that each agent uses a
parametric controller

uj = uj
�
y, θ j

�
(2)

with θ j the parameters for the controller of agent j. With such
a controller, each agent makes a decision independently of the
other agents. Hence no real-time communication is needed,
and conflicts between agents are inherently avoided. This
first control layer, gathering independent agents with their
parametric controller, corresponds to the low-level layer of
the proposed strategy as depicted in Fig. 1.

A high-level layer is added in parallel to the low-level
layer to render the proposed EMS adaptive and predictive.
The high-level layer is composed of updating routines, with
the role of updating the parameters of the agents of the
low-level layer. Each updating routine updates only the
parameters of a single agent; hence the design of the updating
routine is simple and adapted to the dynamics and specificity
of the powertrain components controlled by each agent.
Additionally, the updating routines can consider past and any
available predictive information to update the parameters of
each agent’s controller efficiently.

The key point of the proposed strategy is the ability of
the updating routine of agent j to update the parameters θ j
while considering the reaction of all the other agents. Indeed,
the parametric controller of each agent i can be known from
the updating routine of agent j. Therefore the reaction of the
parametric controller of agent i can be estimated for any
modification of θ j. Considering the overall agents’ behavior
to a change of the parameters of a single agent inherently
makes the proposed control strategy cooperative. Indeed,
when updating the parameters of an agent j, the overall cost
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FIGURE 1. Overview of the proposed multi-level cooperative control
strategy.

is accurately considered, depending on the inputs controlled
by all the agents.

The proposed modular EMS is illustrated in Fig. 1, keeping
the main advantage of a multi-layer EMS, dissociating real-
time operation, low-level layer, and controller parameter
updates, high-level layer. Additionally, the agents in the
low-level control can be different, of various complexity,
and easily modified, added, or removed. Indeed, there is no
communication between the agents, simplifying the design of
each agent’s parametric controller.

The high-level layer has a crucial role in optimizing each
agent’s controller’s parameters to minimize the cost (1). Once
again, each parametric routine is different, using a dedicated
optimization algorithm over a specific horizon that considers
past and predictive information. Also, each updating routine
can be executed in the background, i.e., in parallel to the low-
level layer. The parameters of the agent j can be updated while
agent j controls the inputs uj, allowing the updating routine j
to employ an optimization algorithm without hindering real-
time capability. Finally, each updating routine can be called
using a different frequency, depending on the agent’s needs
and each component’s dynamics.

The proposed cooperative EMS approach can be employed
for various vehicle architectures. The requirements are easily
fulfilled, consisting of a parametric controller for each agent
and a method to update its parameters using predictive
information and considering the whole vehicle cost. Real-
time feasibility can be guaranteed by this EMS approach if
the chosen parametric controllers and updating routines can
be run in the hardware within their allocated computing time.

The following section applies the proposed cooperative
strategy to control a gasoline HEV along with its gearbox.
This example is considered, as it requires the control of
two coupled elements, i.e., engine and gearbox, with shared
constraints and objectives. Moreover, both controls have to be
considered on different time scales for the optimization and
are of different nature: the gear engaged is a discrete input,
taking integer values, whereas the torque split is continuous,
taking real values.

III. APPLICATION TO AN HEV WITH A GEARBOX
In this section, the cooperative EMS proposed in Section II
is applied to control the gearbox and torque split of an HEV.
A first agent is employed to control the gear selection, while

TABLE 1. Vehicle mass and coastdown coefficients.

a second agent controls the torque split between the engine
and the electric motor.

A. PROBLEM FORMULATION
A gasoline HEV is the vehicle considered for the demon-
strative application of the proposed cooperative EMS. For
this specific example, the EMS’s goal is to minimize a cost,
considering both fuel consumption and the number of gear
shifts. To minimize this cost, a simplified vehicle model is
employed, using both physical models and empirical laws
calibrated from the real vehicle under investigation. All the
models are expressed in discrete time, with a fixed sampling
time Ts = t (k + 1) − t (k) = 1 s.

A backward vehicle model is used to easily compare dif-
ferent controllers, while real measurement data are employed
to account for various driving conditions and scenarios.
Indeed, the impact of different drivers, traffic and weather
conditions, speed limits, etc., are accurately represented
using real-driving measurements. Multiple real driving cycles
consisting of speed and road altitude recorded across Europe
using equivalent vehicles are merged and used as a realistic
representation of all the standard driving scenarios possibly
encountered during the vehicle’s lifetime.

From the vehicle speed v, the slope s derived from the
altitude [34], and the acceleration a estimated using a finite
difference scheme, the required vehicle force Freq is defined
as

Freq (k) = ma (k) + mgsin (s (k))

+ cos (s (k))
�
F0 + F1v (k) + F2v2 (k)

�
(3)

with the vehicle parameters and coastdown coefficients
measured from the actual vehicle and provided in Table 1,
and g the constant of gravity.

Thanks to the backward vehicle model, the engine speed
and powertrain torque are directly linked to the vehicle speed
and road slope. The powertrain must provide the vehicle
force through the driveline and a 6-speed gearbox. The
engine’s angular velocity is directly expressed depending on
the vehicle speed and the current gear engaged gear (k)

ωice (k) = vveh (k)

ri
rdrrgear (gear (k)) (4)

with the driveline and gearbox transmission ratios, rdr and
rgear (•) shown in Table 2, and the rolling radius ri = 0.3 m.
The required powertrain torque at the input of the gearbox is
directly computed from the force applied at the wheels (3)
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TABLE 2. Driveline and gearbox transmission ratios.

and the current gear

Tgbx (k) = Freq (k) ri

rdrrgear (gear (k))
. (5)

The gearbox input torque demand (5) has to be fulfilled
by the powertrain, i.e., engine, electric motor, and brakes,
at all times. The engine is directly coupled to the gearbox
to provide this torque, whereas the electric motor is coupled
through a reduction gear rem = 2.7. The engine and electric
motor torque should therefore verify

Treq (k) = Tbrk (k) + Tice (k) + Tem (k) rem (6)

with Tbrk the equivalent torque applied by the brakes at the
gearbox input.

An accurate estimate of the electric motor efficiency,
as well as the battery State of Charge (SoC) is required for
the EMS to minimize fuel consumption. The electric motor
efficiency is tabulated in a static efficiency map depending on
the electric motor torque and speed. The inverter and power
electronics losses are also included in the efficiency map ηem
shown in Fig. 2.

An equivalent circuit model is employed to estimate the
battery SoC accurately. The battery parameters are identified
from the existing vehicle, with a capacity Qbat = 0.95 kWh,
a maximum C-rate of four during charge and discharge,
an open-circuit voltage Ubat = 47.6 V and a total internal
resistance Rbat = 0.196 �. The battery SoC dynamics is
expressed

SoC (k + 1) = SoC (k) + �SoC (k) , (7a)

�SoC (k) = Ts

−Ubat +
	

U2
bat − 4RbatPbat (k)

2RbatQbat
(7b)

with the battery power Pbat computed from the electric engine
speed and torque, and the electric motor static efficiency map

Pbat (k) = ωem (k) Tem (k)

ηem (ωem (k) 30/π, Tem (k))
. (7c)

The battery internal resistance and open-circuit voltage are
considered constant as only a reduced SoC range is allowed
in the vehicle for safety and degradation purposes [35], i.e.,
XSoC = [0.2, 0.8]. The SoC is not considered in the EMS
cost, but the EMS needs to keep the SoC within the allowed
range XSoC at all times. Keeping the SoC within its allowable
range becomes a key factor for the EMS, especially for the
considered vehicle, which has a small battery capacity to
reduce the vehicle price. Also, the simplified battery model

FIGURE 2. Electric motor and inverter efficiency ηem
�
Nem, Tem

�
.

FIGURE 3. Gasoline engine fuel consumption ṁfuel
�
Nice, Tice

�
.

employed here for illustrating the proposed method can be
replaced by any battery model fitting the actual vehicle
technology.

The engine is a four-cylinder 1.2 L turbocharged gasoline
engine. The EMS uses a static representation of the engine to
accurately account for the fuel consumption during the cycle
when evaluating the cost. The fuel consumption is indeed
directly tabulated as a function of the engine speed and torque
as shown in Fig. 3. The engine fuel map was derived from
testbed measurements and validated by comparing transient
cycle measurement and simulation.

Using the proposed models of the vehicle and powertrain
components, the EMS can effectively estimate the cost over
a cycle of N samples

J =
N


k=1

�
ṁfuel (k) Ts + Q�gear|�gear (k)|� (8)

with Q�gear = 1.5 × 10−4 kg the equivalent costs in terms
of fuel for each gear shift. Two control inputs are used
to minimize the cost (8). The first input is defined as a
modification of the current gear for the next sample u1 (k) =
�gear (k) leading to the gearbox dynamics

gear (k + 1) = gear (k) + u1 (k) . (9)

Regarding the torque split, the engine torque is set as the
second system input u2 (k) = Tice (k).

Controlling the vehicle powertrain corresponds to finding
(u1 (k) , u2 (k)) ∀k ∈ [1, N ] fulfilling (6) at each instant k and
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minimizing (8) while ensuring SoC ∈ XSoC and complying
with the engine and electric maximum speed and torque
limits.

B. PARAMETRIC CONTROLLERS
The EMS of the powertrain of the HEV introduced in the
previous section is responsible for controlling the gearbox,
the electric motor, and the engine. Therefore, two agents are
employed, the first for the gear selection and the second for
the torque split between the electric motor and the engine.

In the low-level layer depicted in Fig. 4, each agent is
composed of a parametric controller and receives several
measurements: the current gear engaged; the previous engine
torque; as well as the current cycle requirements in terms of
gearbox torque and speed

y (k) = �
gear (k) , Tice (k − 1) , Tgbx (k) , ωgbx (k)

�
. (10)

The gear selection parametric control law is designed from
the observation of the optimal gear selection behavior for
various cycles, derived using DP with the SoC and the current
gear as state variables. Indeed, the optimal engine speed
appears to be linearly correlated to the cycle speed. A target
engine speed ω∗

ice is accordingly formulated as a function of
the gearbox output speed

ωgbx,out (k) = vveh (k) rdrr
−1
i , (11a)

ω∗
ice (k) = ω0 + θ1,1 (k) ωgbx,out (k) (11b)

with ω0 identified as 90 rad s−1 and θ1,1 (k) a unitless
parameter observed to be in [1.3, 1.7] for all driving
conditions. A control law is hence derived, such that a gear
shift is triggered if a gear leading to an engine speed closer to
the target engine speed is possible.

To approach the target engine speed, first, the feasible set
of gear ratios gear (k) is defined at each time such that the
engine and motor torque speed limitations are fulfilled

gear (k) = {gear | (11d) ∧ (11e) ∧ (11f )} , (11c)

gear ∈ {1, 2, 3, 4, 5, 6} , (11d)

ωice (gear, k) ∈
�
ωmin

ice (k) , ωmax
ice (k)

�
, (11e)

Tgbx (k) ≤ T max
ice (gear) + remT max

em (gear) . (11f)

From the feasible set of gear ratios gear (k), the optimal
gear is chosen as the one leading to the engine speed closest
to ω∗

ice

gear∗ (k) = arg min
ϵ∈gear(k)

abs
�
ωice (ϵ, k) − ω∗

ice (k)
�

+ θ1,2 (k) abs (ϵ − gear (k)) (11g)

with θ1,2 (k) in rad s−1 a parameter penalizing a change
of the current gear engaged. This parameter allows the
consideration of the trade-off between a gear shift cost, i.e.,
�gear in (8), and the benefit of changing a gear in terms of
fuel consumption. A gear shift is consequently triggered to
follow gear∗ (k)

u1 (k) = gear∗ (k) − gear (k) (11h)

leading to a gear shift at the next iteration according to the
gearbox dynamics (9).

The torque split controller is a modified version of a
standard PI ECMS initially proposed in [18]. This method
results in minimizing, at each time, the fuel consumption as
well as a change of battery SoC weighted by an equivalent
fuel cost for using the battery energy. The proposed predictive
ECMS conserves the PI structure of a standard ECMS but
with a variable offset λ0 (k) as the parameter of the controller,
i.e., λ0 (k) = θ2 (k). The engine torque is defined to minimize
at each time step

u2 (k) = arg min
Tice

(ṁ (Tice) + λ (k) �SoC (Tice, k)) (12a)

with the ECMS PI correction of λ

λ (k) = θ2 (k) + Kp (SoC (k) − SoCref)

+ Ki

k

ki=1

(SoC (ki) − SoCref) Ts. (12b)

The reference SoC, i.e., SoCref, is considered constant and
taken as 0.5 for this study. This value corresponds to the SoC
average expectation to always guarantee both recharging and
depleting capabilities. Indeed, in the case of no predictive
information, depending on the cycle, the battery may need
to be depleted if the power demand is high or recharged if
the power demand is negative. Keeping the SoC at 0.5 is
consequently a standard strategy for non-predictive EMS [6].
For practical implementation, to avoid computing the sum
in (12b), λ is updated based on its previous value

λ (k) = λ (k − 1) + θ2 (k) − θ2 (k − 1)

+ Kp (SoC (k) − SoC (k − 1))

+ Ki (SoC (k) − SoCref) Ts. (12c)

The PI parameters of the ECMS are fixed for this study with
Kp = 0.144 kg and Ki = 2.4 × 10−4 kg s−1, and their
calibration is discussed in Section IV.

The parameters of the gear selection controller

θ1 (k) = �
θ1,1 (k) , θ1,2 (k)

�T
, (13)

and the predictive ECMS parameter θ2 (k) can be optimized
during the vehicle operation using available predictive
information. In the next section, a routine is defined for each
agent to update respectively θ1 and θ2 in the background and
considering all the terms in the cost (8).

C. UPDATING ROUTINES
The parametric controllers of the low-level layer defined
in the previous section ensure feasible operations as well
as a simple controller implementation. Nevertheless, their
respective parameters θ1 and θ2 need to be accordingly
updated to efficiently reduce the cost (8). For this reason,
an updating routine is designed for each agent in the
high-level updating routine layer as shown in Fig. 4. Each
routine is called individually and can be evaluated in
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parallel to the low-level controllers to guarantee the real-time
capability of the EMS. For this study, predictive information
is used by the updating routine, consisting of estimated
vehicle speed and road slope. Also, the length of the predicted
horizon and the quality of the estimate is studied in the
numerical study in Section IV.

The routine associated with the gear selection controller
will ideally minimize J from (8) with respect to θ1 only
over the remaining of the drive cycle. For practical imple-
mentation, considering predictive information only available
over a bounded horizon and to ensure low computational
effort for an update, the metric J is only minimized over the
horizon Np1 . A penalty term is necessarily added to account
for any modification of the second agent policy. Indeed, the
SoC reached at the end of the prediction horizon should stay
close to the one that would be reached without updating
the gear selection parameters, i.e., SoCcurrent. Taking the
modification of the SoC at the end of the horizon while
changing the gear selection parameterization is necessary to
ensure cooperation, hence minimizing the cost (8).

Consequently, a modified cost function as introduced
in [29] is employed, using the equivalent fuel cost for the
electric energy λ to account for a change in the predicted SoC
at the end of the prediction horizon

Jθ1 =
Np1

ki=k

�
ṁfuel (ki) Ts + Q�gear|�gear (ki)|

�
+ λ

�
Np1

� �
SoC

�
Np1

� − SoCcurrent
�
. (14)

For practical implementation and to envision fast computa-
tion time, the minimization of (14) is done by evaluating
the cost Jθ1 with predefined local variations of θ1. For this
study, nine variations are considered, plus or minus 0.08
for θ1,1 and plus or minus 8 rad s−1 for θ1,2 around the current
value of θ1. This type of local search has the advantage
of being scalable to the available computational power, i.e.,
changing the number of fixed variations, and only allows
the parameters to change within predefined limits and with
a maximum rate of change at each iteration defined by the
fixed variations themselves.

The proposed updating routine for the gear selection
controller cooperates with the torque split, as the torque split
reaction to a parameter change of the gear selection controller
is explicitly considered when evaluating the predicted cost.
Indeed, the torque split controller is known, and the current
parameter θ2 can be provided to the gear selection updating
routine. While minimizing Jθ1 , the gear selection updating
routine directly considers the torque split controller as being
part of the vehicle dynamics, and consequently the cost (8)
can be accurately predicted over the prediction horizon. The
optimization of θ1 is done directly considering (8), hence
efficiently going into the direction of a reduction of the
vehicle operational cost.

As for the gear selection updating routine, the torque
split updating routine needs to minimize the cost (8). Also,
the torque split updating routine minimizes J only over the

FIGURE 4. Cooperative EMS for the gasoline hybrid electric vehicle.

available prediction horizon of length Np2 . The SoC at the
end of the prediction horizon is consequently penalized when
not following the reference SoC set at 0.5. This adaptation is
made to implicitly consider the remaining of the cycle after
the prediction horizon to keep the possibility of depleting or
charging the battery after the prediction horizon, depending
on the power demand. The adapted cost for the torque split
updating routine is consequently formulated

Jθ2 =
Np2

ki=k

�
ṁfuel (ki) Ts + Q�gear|�gear (ki)|

�
+ QSoC,2

�
SoC

�
Np2

� − SoCref
�2 (15)

with QSoC,2 = 1 × 103 kg manually calibrated to make
sure that the SoC stays close enough to the reference while
maintaining a high system efficiency. Indeed, maintaining the
SoC close to its reference at the end of the prediction horizon
is necessary to stay away from the SoC constraints but can
partially hinder optimality during regeneration periods or
when the battery needs to be depleted.

The minimization of Jθ2 is done by shooting different
values of θ2 using a gradient method, defining a new testing
point in the direction of the negative gradient of Jθ2 . To ensure
fast computation time, the maximum number of testing points
is set to ten for this study but could be varied to fit the
available computational resources.

The torque split updating routine also cooperates with
the gearbox, as the gear selection controller reaction to a
change of θ2 is directly considered when optimizing J over
the horizon Np2 . The gear selection controller is indeed
known, and its parameters θ1 are communicated to the torque
split updating routine so that the gear selection controller
reaction to a change of θ2 is considered during the predicted
horizon. As a result, the minimization (15) efficiently updates
θ2 considering all the terms of the cost (8), hence going in the
direction of a reduction of J .

The gear selection and the torque split updating routine
are called in parallel to the low-level control layer, ensuring
real-time feasibility. Also, the updating frequency fup1 and
fup2 for the gear selection and torque split updating routine
can be chosen separately depending on the components’
requirements and the availability of predictive information.
A component with fast dynamics can be updated more often
especially when its operating conditions are modified, e.g.,
by updating the gear selection controller parameters just
before arriving at an intersection. Additionally, the gear
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FIGURE 5. Concatenated cycles used for the numerical study.

selection routine minimizing (14) uses a sampling time of 1 s
while the torque split routine minimizing (15) employs a
sampling time of 30 s. This possibility of using different
sampling times, adapted to each component is another
strength of the proposed multi-level EMS toward a real-time
implementation.

IV. NUMERICAL ANALYSIS
This section presents a numerical study emphasizing the ben-
efits of cooperation and predictive information for controlling
the presented HEV. The proposed cooperative strategy is
compared to the performances of a standard non-predictive
EMS as well as the optimal solution achievable when the
whole cycle is known in advance. To achieve a compre-
hensive comparison, different driving conditions and various
scenarios regarding the available predictive information are
considered. All models ave been developed using MATLAB
software, on a standard i7 with 16GB ram memory computer.

A. COMPARATIVE STUDY
Real-world driving data from multiple vehicles and drivers
across Europe have been combined to analyze different
EMS performances during various driving scenarios, such
as navigating through crowded cities, driving on highways,
and dealing with various weather conditions, road speed
limitations, and terrains. This data provides a comprehensive
view of the vehicle’s behavior under different conditions.
The resulting cycle, depicted in Fig. 5, represents more than
26 hours and 1300 km, with speed up to 140 kmh−1 and a
total positive elevation of 5900 m. Given the length of the
used test cycle and the size of the battery, a variation of SoC
at the end of the cycle will represent a marginal equivalent
fuel consumption and, hence, will not be distinguishable in
the cost (8).

The optimal gear selection and torque split for the proposed
cycle are computed and used as a benchmark. A DP algorithm
with two states, one for the SoC and one for the gear engaged
is used to find the optimal control strategy, i.e., revealing the
minimum cost for the proposed cycle. This minimum cost,
associated with the optimal solution, is noted J∗ throughout
this section. Such an optimal solution can only be found

when the exact speed and altitude profiles are known for the
entire cycle, and will only be used as the target cost for the
proposed EMS.

In the following, first, a predictive and non-predictive
ECMS are compared to emphasize the benefits of predictive
information. Second, the proposed cooperative EMS is
employed, and the cooperation benefit is illustrated. Then,
several sensitivity studies are conducted regarding the
accuracy and length of the available predicted information,
as well as the updating frequency and delay of the updating
routines. The proposed cooperative scheme is shown to be
robust to inaccurate predictive information, short prediction
horizons, and different updating routine call frequencies and
update delays.

B. EMS WITHOUT GEARBOX COOPERATION
The goal of this first study is to emphasize the benefit
of having a predictive control for the torque split. Indeed,
the SoC dynamics is slow, and the battery capacity is
relatively small for a two-ton vehicle. A predictive control
of the SoC brings opportunities for higher system efficiency
while keeping the SoC further away from its minimum
and maximum admissible values. The predictive ECMS
(P-ECMS) proposed in (12) is compared to a non-predictive
ECMS (ECMS), i.e., controller (12) with a fixed θ2 =
−0.25 kg. The parameter θ2 of the predictive ECMS is
updated every ten minutes with a horizon of one hour, i.e.,
fup2 = 6 h−1 and Np2 = 1 h. Both ECMSs have the same
calibration for Kp and Ki as proposed in Section III.

The benefits of using a predictive ECMS are summarized
in Table 3, for two different gear selection strategies. First,
for directly reusing the gear profile from the optimal solution
and then using the parametric gear selection controller
proposed in (11) with fixed parameters θ1,1 = 1.5 and
θ1,2 = 35 rad s−1 optimized to get the best results with the
non-predictive ECMS controller. The P-ECMS brings a lower
cost compared to a non-predictive ECMS, being almost as
efficient as the optimal solution when reusing the optimal
gear profile. With a gear selection controller with fixed
parameters, the P-ECMS is still better than the non-predictive
ECMS but with a cost of more than one percent higher than
the optimal solution.

The benefits of a predictive ECMS are illustrated in
Fig. 6, where the SoC profile of the optimal solution is
compared to the ECMS and P-ECMS SoC profiles. The
equivalent cost of fuel for electricity, i.e., λ, is also depicted
for the ECMS and the P-ECMS strategies. The P-ECMS is
especially advantageous in avoiding SoC constraints during
regeneration, depleting the SoC if necessary before a large
regeneration period, as shown shortly after five hours in
the cycle. Also, the P-ECMS is globally better than a
non-predictive ECMS at keeping the SoC within its minimum
and maximum admissible values. For the non-predictive
ECMS, λ is slower and later to react than λ of the P-ECMS
strategy, leading to SoC saturation during regeneration.
Furthermore, the non-predictive ECMS also saturates the
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TABLE 3. Cost with respect to the optimal cost for predictive and
non-predictive torque split strategies.

FIGURE 6. Non-predictive ECMS vs predictive ECMS using the gear
selection profile of the optimal solution.

SoC at its minimum value after large regeneration periods,
leading to blended powertrain operations, i.e., forced engine
operations without the possibility of using the electric motors
due to a low SoC.

The ECMS parameters, i.e., Kp and Ki, have been
calibrated to reach the minimum cost for this cycle for
the non-predictive ECMS strategy. Indeed, a less aggressive
ECMS will engender more SoC saturation, and so less
regeneration as well as more frequently blended operations
where only the engine can be used. On the opposite,
a more aggressive ECMS will engender more variations of λ,
hindering further more optimality. The P-ECMS calibration
could be adapted with a slightly less aggressive controller
when the predictive information is often and accurately
updated. In the following, the P-ECMS maintains the same
ECMS calibration to achieve a straightforward and resilient
controller, regardless of the accuracy and horizon of the
predictive information.

The second crucial information of Table 3 is the gap
between using the optimal gear profile and the non-adaptive
gear selection strategy. This gap suggests that adapting
the gear selection strategy parameters could be highly
beneficial toward a reduced cost. The adaptation of the
gear selection parameters using the proposed gear selection
updating routine (14) is presented in the next section, where
the cooperation between the gearbox and torque split is shown
to be essential for effectively reducing the cost.

C. BENEFITS OF COMPONENTS COOPERATION
This section emphasizes the benefits of cooperation between
the powertrain components, i.e., the gearbox, the engine, and
the electric motor. The same ECMS and P-ECMS controllers

TABLE 4. Cost with respect to the optimal cost for cooperative and
non-cooperative gearbox updating routine.

as in the previous section are employed for controlling the
torque split.

Regarding the gear selection, the parametric controller (11)
is employed with the parameters θ1 optimized every minute
with a predictive horizon of two minutes, i.e., fup1 = 1 min−1

and Np1 = 2 min. To emphasize the benefits of a gear
selection updating routine cooperating with the torque split,
the cooperative updating routine updating θ1 from (14)
is compared to a non-cooperative gear selection updating
routine. The non-cooperative gear selection updating routine
optimizes θ1 using a cost function alike (14) but without con-
sidering the SoC. Hence the non-cooperative gear selection
updating routines minimizes

Jθ1,no coop =
Np1

ki=k

�
ṁfuel (ki) Ts + Q�gear|�gear (ki)|

�
. (16)

Indeed, the cooperation from the gear selection to the torque
split is made possible through the consideration of the SoC at
the end of the prediction horizon.

The results in terms of relative cost to J∗ for the cooperative
and the non-cooperative gear selection updating routine are
presented in Table 4. As expected, the cooperative gear
selection updating routine is able to greatly decrease the
cost compared to the non-adaptive gear selection strategy
presented in Table 3. For example, using a P-ECMS, the
cost relative to the optimal solution is decreased from
1.31 % to 0.84 % when the gear selection updating routine
is cooperating with the torque split controller. However,
when the gear selection updating routine does not cooperate
with the torque split, adapting the gear selection strategy
parameters leads to a higher cost than when a non-adaptive
gear selection strategy is employed.

To understand the difference between a cooperative and
a non-cooperative gear selection updating routine, Fig. 7
depicts the SoC, λ, gear and cost difference for these two
strategies. The figure depicts a specific section of the cycle,
where both strategies start and end with the exact same SoC.
For the non-cooperative gear selection updating routine, the
gear is kept constant. Indeed, with the chosen gear selection
parameters, the non-cooperative gear selection updating
routine effectively minimizes the number of gear shifts,
keeping the same gear and staying at a bad operating engine
point efficiency such that the torque split favors battery
depletion, hence also minimizing the fuel consumption. The
problem with such a non-cooperative gear selection updating
routine is that it results in a decreasing SoC. Therefore, the
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FIGURE 7. Gear selection updating routine with and without cooperation.

ECMS needs to counteract to maintain the SoC close enough
to the reference.

In the end, the value of λ shows more significant
variations for the non-cooperative strategy to counteract
the gear selection policy, resulting in a higher cost. The
non-cooperative strategy appears to have a cost 3.2 % higher
on the presented cycle section. The cooperation between
the powertrain’s components consequently brings crucial
benefits toward effectively reducing the cost.

D. PREDICTIVE INFORMATION SENSITIVITY STUDY
For a practical application, the predictive information is
available for a specific horizon and is not always accurate.
This section investigates the sensitivity to predictive horizon
length, predictive information accuracy, and updating routine
call frequency.

Several scenarios are presented for the available predicted
information. From full knowledge of the vehicle speed and
road slope (exact) to knowing only the speed limits and road
slope (speed lim.), knowing the exact speed but without the
road slope (no slope) to knowing only the speed limits without
the road slope (speed lim & no slope). The speed limits are
estimated based on the vehicle speed, taking the closest speed
to some predefined values {0, 30, 50, 90, 130} km h−1, and
applying a low-pass filter to replicate plausible transients.

First, the predictive information is varied for the torque
split updating routine. The gear selection updating routine
parameters are set to fup1 = 1 min−1 and Np1 = 2 min and
considering a perfect speed and slope knowledge. The relative
cost to the optimal cost J∗ for a varying horizon and quality
of predictive information for the torque split updating routine
is presented in Fig. 8. For each value of Np2 , the average
relative cost to the optimal cost using fup2 ∈ {2, 3, 6} h−1 is
considered.

The first observation is that increasing the prediction
horizon, i.e., Np2 , is beneficial if the road slope is known.
If the road slope is unknown, increasing Np2 only brings a
marginal cost improvement. If the road slope is not known
and only the speed limits are known, the resulting P-ECMS
cost can become higher than for a non-predictive ECMS.
For that reason, the prediction horizon should be adapted

FIGURE 8. Variation of the torque split updating routine horizon and the
available predicted information accuracy.

FIGURE 9. Variation of the torque split updating routine call frequency
and the available predicted information accuracy.

to the accuracy of the predictive information. Whenever the
predictive information is not accurate, a simple ECMS should
be used instead to avoid undertaking counterproductive
θ2 updates. The proposed cooperative scheme could indeed
integrate a decision rule regarding when to allow a θ2 update
based on the availability and accuracy of the predictive
information.

The torque split updating routine call frequency is also
significant, as it defines how often θ2 is being updated using
predictive information. In Fig. 9, the torque split updating
routine call frequency is varied, and its resulting influence on
the cost is depicted. Each point is the average cost difference
to the optimal cost considering different prediction horizons
Np2 ∈ {30, 40, 60} min. The gear selection updating routine
is kept identical as in Fig. 8.

A higher updating frequency is beneficial whenever
the road slope is known, as it plays an important role
in determining the equivalent fuel cost of electricity λ.
Whenever the road slope is unknown, increasing the updating
frequency does not lead to a lower cost and can even be
counterproductive if only the speed limits are known further.
Indeed, with speed limits and no road slope data, the P-ECMS
has a higher cost than a non-predictive ECMS, as regular
updates using inaccurate information may lead to a higher
cost than a non-predictive strategy. Calling the torque split
updating routine could, therefore, be arbitrated depending
on the availability of the predictive information, avoiding
unnecessary computation in case of inaccurate or missing
information.

Second, the predictive information is varied for the gear
selection updating routine. The torque split updating routine
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FIGURE 10. Variation of the gear selection updating routine horizon and
the available predicted information accuracy.

FIGURE 11. Variation of the gear selection updating routine call
frequency and the available predicted information accuracy.

is parameterized taking fup2 = 6 h−1 and Np2 = 1 h, and
considering a perfect speed and slope knowledge. Fig. 10
presents the relative cost compared to the optimal cost for
a varying prediction horizon length and accuracy, used by
the gear selection updating routine. Each point is the average
for various gear selection updating routine frequency fup1 ∈
{0.5, 0.8, 1, 1.33, 2} min−1. The proposed cooperative EMS
has a relative cost to J∗ always at least 0.2 % better than
the non-adaptive, i.e., fixed θ1, gear updating routine. Also,
a small horizon is apparently more beneficial in ensuring
robustness to inaccurate measurements. Indeed, with a long
horizon, the update of θ1 is not only optimizing the objective
locally but for a large period, leading to a higher cost. It is
consequently preferable to keep a smaller prediction horizon
to allow the parameters of the gear selection controller to
adapt faster to the current driving conditions.

The gear selection updating routine call frequency is
analyzed in Fig. 11. For each point, the average relative
cost to J∗ using different prediction horizons is used Np1 ∈
{30, 60, 120, 180, 240} s. The torque split updating routine
used in Fig. 10 is kept unchanged. No trend toward a lower
or higher updating frequency could be observed, however,
the main aspect to emphasize is the robustness of the
proposed method. Indeed, for any gear selection updating
routine call frequency, the relative cost to J∗ for the adaptive
gear selection strategy is at least 0.2 % lower than for the
non-adaptive strategy. Only a minimum updating frequency
requirement can be observed. Indeed, updating the gear
selection controller parameters less than 0.8 times per minute
leads to higher costs whenever the prediction is not fully
known. Reducing further the gear selection updating routine

FIGURE 12. Variation of the gearbox and torque split updating routine
delay Td,gbx and Td,ts.

call frequency will eventually lead to the same cost as for the
non-adaptive gear selection strategy, i.e., fixed θ1.

E. UPDATING ROUTINE UPDATE DELAY
One of the main advantages of the proposed cooperative
EMS is the ability to update the controller with predictive
information while the low-level controller continues to con-
trol the powertrain. Obviously, an updating routine will need
some processing time to update a controller’s parameters,
leading to a delay between the processing and the actual
update. The time for an update depends on the hardware, the
horizon length, and the updating routine algorithm employed.
The updating routine delay is therefore variable, from a few
seconds for systems with fast dynamics and a short prediction
horizon to a few minutes for slower systems with a large
prediction horizon.

In this last section of the numerical results, an artificial
delay is added between the trigger of an updating routine
and the actual modification of a controller’s parameters.
The gearbox and torque split dynamics have different time
constants and optimization horizons. The delay added to each
updating routine is varied from zero seconds to the maximum
delay before another update. The delay associated with the
gear selection updating routine and torque split updating
routine is respectively noted Td,gbx and Td,ts.

The results of the variation of Td,gbx and Td,ts is presented
in Fig. 12. For this study, the gear selection updating routine
has a horizon of Np1 = 2 min and an update frequency
fup1 = 1 min−1, and the torque split updating routine uses
a horizon of Np2 = 1 h and is updated with the frequency
fup2 = 6 h−1. Both updating routines use perfect predictive
information knowledge. Obviously, when adding a delay
to the gear selection updating routine, the cost increases,
still staying lower than for a non-predictive gear selection
strategy. The only restriction is to keep the updating delay
lower than the time between two updates. Otherwise, the
updating routine is using the wrong assumption regarding the
current controller parameters, resulting in a higher cost than
for a non-predictive gear selection strategy. The torque split
updating routine delay is almost not visible in the results,
as the dynamics of λ is relatively slow. In summary, the
proposed cooperative control strategy is shown to be robust
against updating routine update delay and could, therefore,
be easily implemented in real-time in the vehicle.
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The influence of the predictive information on the torque
split cannot be easily observed, as the employed adaptive
ECMS is already robust to inaccurate or missing information.
In the case of no predictive information at all, as illustrated in
Fig. 6, the SoC profile without predictive information looks
quite different from the one using predictive information.
Still, both SoC profiles are almost identical in terms of local
variations; only the long-term trend is different or when SoC
constraints are active. As soon as predictive information is
available, even if not accurate, the torque split arbitration
is almost identical to the optimal one, up to a slight trend
creating an SoC offset over time.

V. CONCLUSION
This paper proposes a modular EMS for HEVs, focusing on
cooperation between the different powertrain components.
A multi-layer approach is suggested, with a low-level
layer consisting of agents controlling various powertrain
components. Each agent is independent and uses a parametric
controller to ensure feasibility and real-time capability. At the
same time, a high-level layer utilizes predictive information
to update the parameters of the low-level agents’ controllers
efficiently. Each agent’s controller parameters are updated
independently but take into account the other agent’s reaction.
This way, any agent update is made to decrease the overall
cost effectively.

The proposed cooperative strategy is highly modular and
can be adapted to guarantee cooperation between all the
components of a HEV powertrain. The EMS can easily
adapt to different powertrain components by adding an agent
for each new component. The low-level layer’s parametric
controllers are independent and can use various algorithms
and a suited sampling time. In the high-level layer, updating
routines are also specifically designed for each agent and
executed in parallel to the low-level layer, enabling higher
complexity for the parameters update without compromi-
sing the EMS real-time capability.

The proposed cooperative EMS benefits from controlling
the gearbox and torque split of a gasoline HEV are
demonstrated numerically. The proposed method surpasses
state-of-the-art real-time capable non-predictive and non-
cooperative strategies and shows great robustness against
inaccurate or missing predictive information. Indeed, pre-
dictive information and the cooperation between the gear
selection and torque split strategy are shown to be necessary
for effectively reducing the vehicle’s operational cost. Finally,
the length of the prediction horizon and frequency of updates
of each controller are analyzed, demonstrating the robustness
of the proposed EMS toward a practical implementation.

Further research is being conducted to implement more
agents, such as speed planning, exhaust aftertreatment sys-
tems, and multiple electric motors. Additionally, validating
the proposed EMS on an actual vehicle under real driving
conditions is the next step toward implementing the proposed
EMS concept in future vehicles.
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A B S T R A C T
The reduction of fossil-fuel vehicles’ pollutant emissions has been improved with exhaust aftertreatment
systems and, more recently, with electric hybridization. Indeed, hybrid electric vehicles (HEVs) can shift
engine operating points toward low fuel consumption and pollutant emissions regions. Also, engine transient
operations have already been shown to impact pollutant emissions negatively. As a result, the electric
motor can be additionally used to reduce the engine transient operations. The engine optimal control,
i.e., minimizing fuel consumption and pollutant emissions, must consequently consider the engine transient
dynamics. Therefore, this paper introduces a parametric approximation of the optimal engine control variable
based on a weighted sum of smooth basis functions to directly consider transient engine dynamics and
guarantee smooth engine operations. Two approaches are presented and compared to find the parametric
approximation of the engine control, minimizing fuel consumption and pollutant emissions. The proposed
direct and indirect approaches rely on polynomial approximations of the vehicle components’ models, leading
to efficient quadratic programming algorithms. In this paper, a high-fidelity simulation platform of a heavy-
duty HEV is employed to calibrate the controller model and then compare it to classical control methods.
The results from the proposed minimization approaches are shown to be close to the dynamic programming
optimality, yet being much faster alternatives.

1. Introduction

Hybrid electric vehicles (HEVs) are currently the preferred solu-
tion to reduce on-road vehicles’ fuel consumption and pollutant emis-
sions [1]. In combination with aftertreatment systems that have contin-
uously improved for several decades, modern vehicles already achieve
the current emissions target but need further improvement to com-
ply with future targets. Also, alternative fuels are now considered
to partially replace conventional diesel, but lead to higher CO and
NOx pollutant emissions [2] as well as particle number [3], especially
during transient engine operations [4]. In order to further decrease
the pollutant emissions of HEVs without complexifying their hybrid or
aftertreatment architecture, the engine needs to be precisely controlled.

Hybridization of fossil fuel vehicles adds a degree of freedom cor-
responding to splitting the power demand between fossil and electric
sources. Therefore, the engine operating points can be shifted to low
fuel and emissions regions, and the engine transient operations can be
reduced. As such, a large battery and a powerful electric motor are
beneficial to avoid transient engine operations but are inherently heavy

∗ Corresponding author.
E-mail address: alexis.benaitier@tuwien.ac.at (A. Benaitier).

and expensive. As a result, modern vehicles use a small battery and
an electric motor that cannot guarantee electric-only operations during
large accelerations, leading to more dynamic engine operations [5].
This paper proposes to use a smooth parametric approximation of
the engine control to efficiently reduce the engine transient opera-
tions toward fewer pollutant emissions while guaranteeing low fuel
consumption.

The engine-out emissions depend primarily on the engine operating
point, i.e., engine speed and load, but also on the variation of the engine
operating point. Indeed, for turbocharged diesel engine, the turbo lag
makes the air fuel ratio difficult to control during transient engine
operations, leading to high NOx [4] as well as soot emissions [6,7].
As measured by [8] on a turbocharged diesel engine, the NOx and
particulate emissions increase when the driver load demand jumps
from minimum to maximum. Multiple other authors made the same
observation, that the NOx, particulate, and soot emissions are higher
during fast variations of the engine operating point [7] or during
engine restart [9], and study the impact of considering these transient
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phases [10]. As a consequence, transient engine operations need to
be considered when estimating pollutant emissions as they represent
a large part of the overall cumulative emissions. Mera et al. [11] mea-
sured a possible NOx reduction in the range of 30 to 80%. Also, using
machine learning [12] or a semi empirical model [13], both considering
NOx transient emissions has been shown to be more accurate than
standard quasi-static emissions models.

Several models have already been proposed to capture the engine-
out emissions during transient engine operations. A classical method is
to add a correction to a quasi-static emissions model during transient
engine operations [14]. The air-fuel equivalence ratio is, for example,
used by [15,16] to correct the quasi-static estimate of several pollutant
emissions, with transient emissions being up to 50% higher than the
quasi-static estimate [15]. More recently, [17] created a neurofuzzy
modeling tree using the estimated emissions at the previous time step
to estimate the current emissions.

Using experimental data, [18] observed that the derivative of the
engine torque engenders a quasi-linear increment in the emissions of
NOx and unburned hydrocarbons. Also, [3] measured that the partic-
ulate emissions are increased during varying engine torque, and are
higher for alternative fuels than for regular diesel. To accurately predict
transient pollutant emissions a transient emissions correction to a quasi-
static emissions model has been proposed with a weighting factor
depending on the engine speed derivative and torque derivative [6]
or the engine power derivative [7]. Approximating the engine torque
derivative with the torque increment results in a precise estimation
of the transient emissions and therefore should to be considered for
optimal engine control [19].

Although multiple methods exist to minimize fuel consumption and
quasi-static emissions, they must be modified to consider transient
engine operations. For example, the Pontryagin’s maximum principle
(PMP) [20] is classically employed to minimize the fuel and quasi-static
emissions [21], but cannot directly account for the transient emissions.
Indeed, for a dynamic engine model, e.g., considering the engine torque
derivative, the PMP solution will need to be computed with at least one
additional state and states’ constraints. Directly reusing a classical PMP
formulation with a dynamic engine model is not straightforward and
has yet to be documented.

The concept of input smoothing proposed by [22,23] can be used
to filter the PMP solution, i.e., without directly considering the engine
torque derivative. The engine torque variations from the PMP can be
reduced with a simple filter or an advanced rule-based method. Also,
the smoothing algorithm needs to fulfill the engine torque constraints
and keep the battery state of charge close to the PMP reference. In that
sense, [24] uses PMP for fuel optimality and a rule-based controller to
reduce the soot emissions further.

Dynamic programming (DP) [25] is another method for HEV con-
trol. Always leading to an optimal control policy, DP has already
been employed to minimize fuel consumption and transient emis-
sions [26,27]. DP can inherently consider states’ constraints, making
its implementation with a dynamic engine model straightforward. For
example, [19] showed that using DP with a transient soot emissions
model based on the engine torque derivative leads to a better fuel
economy for the same amount of emissions compared to a strategy
considering only quasi-static emissions. Similarly, [17] showed the
advantages of using DP and a neurofuzzy modeling tree to estimate
the transient emissions, to minimize the fuel, the NOx and the soot
emissions.

The main difficulty with DP lies in its computational complexity.
First, a state must be added to consider the engine dynamic. And
second, the sampling time must be kept small enough to capture the
engine torque derivative accurately. In that sense, [10] used DP only
with a quasi-static map for fuel efficiency and then locally implemented
a linear quadratic regulator [25] to consider transient emissions.

Engine transient operations need to be considered to estimate pol-
lutant emissions accurately. Nevertheless, efficiently considering a dy-
namic engine model for fuel consumption and emissions minimization

Fig. 1. Diagram of the hybrid electric vehicle powertrain and driveline.

is still challenging. Rule-based methods can be employed but do not
guarantee optimality. And DP leads to optimal control but at a very
high computational cost hindering a practical implementation. A con-
trol method leading to low fuel consumption and smooth engine oper-
ations to minimize transient emissions would constitute an appreciable
step toward cleaner HEVs. Additionally, the proposed algorithm should
remain simple enough to allow synergies with the components-level
controllers and the route-planning strategy.

This paper proposes a parametric approximation of the engine
control using a weighted sum of smooth basis functions, to jointly
minimize the fuel consumption and the pollutant emissions of an HEV
during transient engine operations. With such a smooth representation
of the engine control, two approaches are proposed and compared
to minimize the fuel consumption, the NOx, and the soot emissions;
first using a direct approach and, second, adapting the standard PMP
algorithm. These approaches rely on efficient quadratic programming
techniques shown to achieve near DP optimality while being much
faster alternatives, allowing large-scale study analysis [28,29].

A heavy-duty HEV employing a turbocharged diesel engine and
a battery as main power sources is used to emphasize the proposed
approaches’ efficiency and low computational requirements. A high-
fidelity simulation platform of the HEV is used to verify the modeling
assumptions and show how close the results using the proposed ap-
proaches are to the DP results. This high-fidelity simulation platform
is built using the AVL CRUISE™ M software [30] and calibrated from
measurement data. The simulation platform employs a physical air path
and a crank angle resolved engine model to accurately estimate fuel
consumption and transient pollutant emissions.

Section 2 proposes a controller model relying on a dynamic engine
model to accurately capture the transient emissions while ensuring a
convenient model structure for the controller. The model estimated
pollutant emissions is calibrated and validated using the high-fidelity
simulation platform. A parametric approximation of the engine torque
with smooth basis functions is introduced in Section 3. Also, two differ-
ent approaches are proposed to estimate the parametric approximation
minimizing fuel consumption and pollutant emissions. Both proposed
approaches are shown to be close to DP optimality with only a fraction
of its complexity in Section 4. The proposed method is also compared
to DP using the high-fidelity simulation platform, showing that it is also
robust against model inaccuracies.

2. Control-oriented model

A control-oriented model is proposed in this section and calibrated
using the high-fidelity simulation platform to capture the fuel and
emissions, especially during transient engine operations. The proposed
nonlinear engine controller model and its polynomial counterpart di-
rectly consider the engine torque derivative to inherently account for
the emissions during transient engine operations. The resulting control-
oriented model is shown to be appropriate for an efficient control
algorithm proposed in Section 3 and accurate enough to achieve almost
optimal results in Section 4.
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Table 1
Vehicle model parameters.
Coastdown coefficient 𝑐0v 1413.42 N
Coastdown coefficient 𝑐1v 3.24 N sm−1

Coastdown coefficient 𝑐2v 0.27 N s2 m−2

Vehicle mass 𝑚veh 30 100 kg

2.1. Vehicle model

In this paper, the investigated HEV configuration is depicted in
Fig. 1, with the engine mechanically coupled to an automatic gearbox
and to the electric motor with a reduction gear 𝑟em = 2. The gear ratio
is defined with a standard automatic gearbox scheduling algorithm
based on the vehicle speed and required load to replicate feasible
and coherent gearbox operations. The clutch is used to disconnect the
engine from the transmission whenever the engine torque request is
zero, hence for electric-only operations.

A backward approach is used to estimate the resulting force acting
on the vehicle, considering that the vehicle follows a prescribed speed
trajectory 𝑣veh. The vehicle longitudinal force 𝐹veh is therefore directly
estimated from the vehicle speed and the road slope 𝛼r ,
𝐹veh =𝑐0v + 𝑚veh 𝑔 sin

(
𝛼r
)
+ 𝑐1v𝑣veh + 𝑐2v𝑣

2
veh + 𝑚veh𝑣̇veh, (1)

with the vehicle parameters detailed in Table 1 and 𝑔 the gravitational
constant.

The required gearbox torque, knowing the gearbox ratio 𝑟gbx, is
directly derived from the vehicle longitudinal force,

𝑇gbx = 𝐹veh
𝐷w
2𝑟gbx

, (2)

with 𝐷w the wheel diameter.
The engine torque 𝑇ice combined with the electric motor torque 𝑇em,

needs to provide the desired gearbox torque from (2) at each instant,
𝑇gbx = 𝑇ice + 𝑇em𝑟em + 𝑇brk . (3)
The braking torque 𝑇brk ≤ 0 is manually set to the torque difference
between the gearbox required torque and the lowest possible electric
motor torque to maximize the recuperated energy during deceleration.

2.2. Battery model

An accurate model of the battery dynamics and internal losses is
necessary to evaluate the vehicle’s energetic performance. The battery
state of charge is therefore modeled as a first-order dynamic model
based on an equivalent circuit approach that considers the battery
internal resistance [31],

𝜉̇ = − 1
2𝑅0𝑄0

(
𝑈0 −

√
𝑈2
0 − 4𝑅0𝑃bat

)
, (4)

with 𝜉 the state of charge of the battery, 𝑅0 = 100mΩ its internal
resistance, 𝑄0 = 50Ah its capacity and 𝑈0 = 350V the open circuit
voltage. The battery power 𝑃bat is a function of the electric motor torque
and speed,
𝑃bat = 𝜔em𝑇em𝜂em

(
𝑁em, 𝑇em

)
, (5)

with the electric motor efficiency map 𝜂em
(
𝑁em, 𝑇em

).
For control purposes, the nonlinear battery model (4) is approxi-

mated by its second-order Taylor expansion around 𝑃bat = 0,

𝜉̇ = − 1
𝑈0𝑄0

𝑃bat −
𝑅0

𝑈3
0𝑄0

𝑃 2
bat + 𝑜(𝑃 3

bat ), (6)

when the solver requires a quadratic model. Also, the battery state of
charge dynamics is expressed as a function of the engine torque, as
this variable will be selected as the control variable in Section 3.1.
Using relation (3) the electric motor torque is a function of the gearbox

Fig. 2. State of charge estimation from polynomials of order one and two compared
to the nonlinear battery model. With [

𝑇 0
ice , 𝑇

1
ice
]
1 = [0, 1500]Nm and [

𝑇 0
ice , 𝑇

1
ice
]
2 =

[350, 530]Nm.

and the engine torque, and the engine speed. Also, substituting (5) in
(6), the battery state of charge dynamics is directly modeled from the
engine torque,
𝜉̇ = 𝐶0

2 + 𝐶1
2𝑇ice + 𝐶2

2𝑇
2
ice + 𝑜

(
𝑇 3
ice
)
, (7)

where 𝐶0
2 , 𝐶1

2 and 𝐶2
2 are parameters varying with the engine speed and

the desired gearbox torque.
Additionally, the battery state of charge dynamics (4) can be esti-

mated by fitting a linear model to (7), using the least-squares method
on an interval [𝑇 0

ice, 𝑇
1
ice
],

𝜉̇ = 𝐶0
1 + 𝐶1

1𝑇ice + 𝑜
(
𝑇 2
ice
)
, (8)

where 𝐶0
1 and 𝐶1

1 vary with the engine speed and the desired gear-
box torque. This linearization can be quite inaccurate if the interval[
𝑇 0
ice, 𝑇

1
ice
] is large or if the battery capacity is small in comparison to

the admissible battery power. Although the accuracy of the linearized
battery state of charge dynamics is not very accurate, it will be shown
in Section 3 to be convenient for efficient control algorithms.

For the considered heavy-duty vehicle, the state of charge lineariza-
tion with a second-order polynomial (7) is sufficiently accurate as
shown in Fig. 2. A first-order approximation considering the full engine
load range is, however, not accurate enough to reach a predefined
target state of charge. As illustrated in Fig. 2, the linearization range[
𝑇 0
ice, 𝑇

1
ice
] can be narrowed around the most used engine torque range,

i.e., [𝑇 0
ice, 𝑇

1
ice
]
2 = [350, 530]Nm, resulting in a better estimate but with

a low accuracy outside of this engine operating region.

2.3. Engine model

The engine fuel consumption and pollutant emissions must be suf-
ficiently well approximated to precisely control the engine torque. The
engine fuel map depends on the engine speed 𝑁ice and torque 𝑇ice,
𝑚̇fuel = 𝛹fuel

(
𝑁ice, 𝑇ice

)
, (9)

and is calibrated using results data from stationary operating points in
the high-fidelity simulation platform.

The engine pollutant emissions are also modeled with maps depend-
ing on the engine speed and torque, but further consider the derivative
of the engine torque to capture the transient behaviors of the engine,
𝑚̇emi = 𝛹emi

(
𝑁ice, 𝑇ice

) (
1 +𝐾emi𝑇̇

2
ice
)
, (10)

where 𝐾emi ≥ 0 depends on the engine speed.
To apply efficient algorithmic techniques, i.e., quadratic program-

ming (QP), the fuel consumption (9) and the pollutant emissions (10)
need to be expressed as second-order polynomials of the input and
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Fig. 3. Cumulative emissions using the high-fidelity simulation platform, and estimated
by the nonlinear (NL) and polynomial (PM) models with and without transient
correction.

its derivative. The static fuel map 𝛹fuel is therefore expressed as a
second-order polynomial of the engine torque,
𝑚̇fuel = 𝐶0

fuel + 𝐶1
fuel𝑇ice + 𝐶2

fuel𝑇
2
ice + 𝑜(𝑇 3

ice), (11)
with the parameters 𝐶0

fuel, 𝐶1
fuel and 𝐶2

fuel function of the engine speed.
The emissions from (10) are also approximated with a second-order
polynomial model of the input but further include its first derivative,
𝑚̇emi =𝐶0

emi + 𝐶1
emi𝑇ice + 𝐶2

emi𝑇
2
ice + 𝐶3

emi𝑇̇
2
ice + 𝑜(𝑇 3

ice, 𝑇̇
3
ice). (12)

The first derivative is only considered in a quadratic form, as the
emissions tend to be higher during both positive and negative engine
torque variations [18].

The nonlinear (10) and polynomial (12) emissions models need to
be further filtered to capture the instantaneous transient emissions. A
first-order linear filter with a time delay 𝜏 > 0 is therefore employed to
reproduce the instantaneous emissions correctly,
𝛤 (𝑠) = 𝜔

𝑠 + 𝜔
𝑒−𝜏𝑠, (13)

in the frequency domain where 𝑠 represents the Laplace variable and
with 𝜔 > 0.

The filtered nonlinear (10) and polynomial (12) emissions models
and their respective filter (13) parameters are calibrated using results
from the high-fidelity simulation platform. Although the identified
filter (13) is needed for calibrating (10) and (12), it is not convenient
for the controller due to its additional dynamics, and not useful for
estimating the cumulative emissions. Indeed, the cumulative emissions
estimated with or without the filter (13) are identical as detailed in Ap-
pendix. The filter is considered in this section for model calibration, but
will not be used by the controller as only the cumulative emissions are
of interest.

The filter (13) and the coefficients related to the input derivative
in (10) and (12) are calibrated to match the transient results obtained
from the high-fidelity simulation platform. Compared to the static
estimation, i.e., without considering the engine torque derivative, the
dynamic estimation is more accurately captured. The resulting cumu-
lative emissions shown in Fig. 3 over a transient vehicle trajectory
are considerably higher when considering the input derivative and
much closer to the actual high-fidelity simulation platform results.
The proposed model cannot exactly match the high-fidelity simulation
platform emissions but is able to accurately predict the cumulative
emissions; which is of interest for an efficient controller.

To summarize, the nonlinear engine model corresponds to the fuel
(9) and the emissions (10) models. And the polynomial model consists
of second-order engine torque polynomials and its first derivative for
the fuel (11) and emissions (12) estimate. Both of these models are
calibrated using results from the high-fidelity simulation platform.

3. Optimal control with a parametric input approximation

This section details the optimal control problem (OCP) associated
with the minimization of the fuel consumption and the pollutant emis-
sions of the HEV detailed in Section 2. Also, a parametric approxima-
tion of the input as a linear sum of smooth basis functions is proposed
so that the derivative of the engine torque is directly considered by
the solver when estimating pollutant emissions. Two approaches are
presented to find a solution to the OCP using the parametric approxi-
mation, i.e., a direct and an indirect approach, both relying on iterative
QP algorithms. The proposed method is shown in Section 4 to be very
close to DP optimality while needing to solve only a few QP algorithms.

3.1. Optimal control problem

The OCP associated with the HEV Fig. 1, corresponds to finding the
optimal engine torque so that the fuel consumption and the pollutant
emissions are minimized. In the following, the OCP is described using
the standard formalism of control theory.

The battery state of charge is the only state
𝑥 (𝑡) = 𝜉 (𝑡) , (14)
and the engine torque is selected as the input
𝑢 (𝑡) = 𝑇ice (𝑡) , (15)
both being function of the time 𝑡 ∈

[
𝑡0, 𝑡1

].
The state dynamics described in (4) is written as

𝑥̇ (𝑡) = f (𝑥 (𝑡) , 𝑢 (𝑡)) . (16)
Additionally, the battery state of charge needs to remain within a
predefined operating range
𝑥 (𝑡) ∈

[
𝑥min, 𝑥max

]
, (17)

and the final state of charge should converge to a predefined value 𝜉,
to allow a straightforward comparison between controllers,
𝑥
(
𝑡1
)
= 𝜉. (18)

The input is constrained by time-varying lower and upper bounds to
account for the engine and electric motor torque limitations, and given
that (3) must hold at each time,
𝑢 (𝑡) ∈

[
𝑢min (𝑡) , 𝑢max (𝑡)

]
. (19)

The objective function corresponds to a linear weighting of the fuel
and the emissions

𝐽 (𝑥 (𝑡) , 𝑢 (𝑡)) =∫
𝑡1

𝑡0
𝑙 (𝑥 (𝑡) , 𝑢 (𝑡)) d𝑡, (20)

𝑙 (𝑥 (𝑡) , 𝑢 (𝑡)) =
(
1 − 𝛽1

) (
1 − 𝛽2

)
𝑚̇fuel (𝑥 (𝑡) , 𝑢 (𝑡)) +

𝛽1
(
1 − 𝛽2∕2

)
𝑚̇NOx

(𝑥 (𝑡) , 𝑢 (𝑡)) +(
1 − 𝛽1∕2

)
𝛽2𝑚̇soot (𝑥 (𝑡) , 𝑢 (𝑡)) , (21)

with the fuel-to-NOx and fuel-to-soot trade-off parameters 𝛽1 ∈ [0, 1]
and 𝛽2 ∈ [0, 1].

The OCP is summarized as

OCP ∶

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
𝑢(𝑡)

𝐽 (𝑥 (𝑡) , 𝑢 (𝑡))

𝑢 (𝑡) ∈
[
𝑢min (𝑡) , 𝑢max (𝑡)

]
𝑥 (𝑡) ∈

[
𝑥min, 𝑥max

]
𝑥̇ (𝑡) = f (𝑥 (𝑡) , 𝑢 (𝑡))
𝑥
(
𝑡1
)
= 𝜉

, (22)

where the control task is to find 𝑢, i.e., the engine torque trajectory
minimizing the objective function 𝐽 .

Dynamic programming can be used to solve the OCP (22) with a
finite difference scheme to estimate the input derivative for the selected
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emissions model (10) or (12). The resulting DP algorithm requires a fine
time discretization, implying a large number of input control actions
to be determined, leading to a high computational cost, as shown in
Section 4.

The following section proposes a parametric approximation of the
input 𝑢 as a weighted sum of smooth basis functions to solve the
OCP (22). The resulting input is, therefore, smooth, i.e., infinitely
differentiable, and the input derivative is directly known from the basis
functions derivatives.

3.2. Parametric input approximation with basis functions

The OCP (22) is not only a function of the input but also its
first time derivative. Even though different numerical methods exist to
approximate the derivative of a signal, the time discretization needs to
be chosen sufficiently small to provide an accurate estimate of the input
derivative.

Furthermore, most optimization algorithms, dynamic programming,
PMP, or nonlinear programming are usually employed in discrete time
with a large enough sampling time to reduce the computational com-
plexity. The resulting input trajectory needs to be re-sampled with
methods such as spline interpolation. The obtained re-sampled input
sometimes exhibits a derivative quite different from the one initially
estimated by the solver, yet leading to non-optimal behaviors.

To circumvent all the numerical difficulties associated with estimat-
ing the input derivative and re-sampling the input, a parametrization
with smooth basis functions is proposed. The input is expressed as a
weighted sum of basis functions
𝑢 = 𝝋𝜽 (23)
with 𝜽 ∈ R𝑁 the parametrization of the input trajectory approximation
and 𝑁 linearly independent functions
𝝋 =

[
𝜑1,… , 𝜑𝑁

]
, (24a)

𝜑𝑖 ∶ R → R,∀𝑖 ∈ {1, 2,… , 𝑁} . (24b)

The parametric approximation (23) is advantageous as any 𝑘th
derivative of the input 𝑢 is expressed as
𝑢(𝑘) = 𝝋(𝑘)𝜽, ∀𝑘 ∈ N∗, (25)
where 𝝋(𝑘) contains the 𝑘th derivative of each function 𝜑𝑖 defined in
(24). Finding the optimal engine torque is now equivalent to finding
the coefficients 𝜽 weighting the basis functions 𝜑𝑘,∀𝑘 ∈ {1,… , 𝑁}.

The solver can consider a sampled version of the parametric approx-
imation (23), with a time increment 𝛥𝑡. Collecting the values of each
basis function at the sampling point 𝑘𝛥𝑡 in a matrix 𝝋̂𝑘, where the input
at 𝑘𝛥𝑡 is written as
𝑢 (𝑘𝛥𝑡) = 𝝋̂𝑘𝜽. (26)
The discrete parameterized approximation of the input (26) is also
convenient when the input has to be re-sampled afterward. Indeed,
knowing the parameter 𝜽, the basis functions 𝝋 can be evaluated at
any time 𝑡 to recover 𝑢 (𝑡) using (23).

In order to solve the OCP (22) with the discrete parametric input
approximation (26), i.e., find the parameter vector 𝜽, a direct or an
indirect approach can be used. The direct approach has the advantage
of providing sufficient conditions for optimality but its realization re-
sults in a nonlinear programming problem. The indirect approach only
provides necessary conditions for optimality but with the advantage
of resulting in a nonlinear programming algorithm with only a single
decision variable. This paper compares both approaches, the implemen-
tation of the direct approach being detailed in Section 3.3 while the
implementation of the indirect approach is described in Section 3.4.

3.3. Direct approach

In this section, the OCP (22) is proposed to be solved with a
direct approach, using the parametric input approximation introduced
in (26). This direct approach consists in directly trying to find the input
parametrization 𝜽 that minimizes the objective function (20) while
fulfilling the constraints defined in (22). A polynomial approximation
of the objective function and a linearization of all the constraints is
proposed in this section so that a computationally efficient QP method
is used instead of a generic nonlinear optimization method.

Considering the polynomial models for the fuel (11) and the emis-
sions (12), the integrand of the objective function (21) is approximated
around 𝑡 = 𝑘𝛥𝑡 resulting in the following quadratic approximation
𝑙𝑘 (𝜽) = 𝜽T𝑯𝑘𝜽 + 𝒈T𝑘𝜽 + ℎ𝑘, (27)
with 𝑯𝑘 ∈ R𝑁×𝑁 being semi-positive definite, 𝒈𝑘 ∈ R𝑁 and ℎ𝑘 ∈ R.
The objective function (20) is approximated applying a zero-order hold
to 𝑙𝑘,
𝐽 (𝜽) =

∑
𝑘

𝑙𝑘 (𝜽)𝛥𝑡. (28)

The input constraints (19) are linearly dependent on the input and
so on the variable 𝜽. Using the first-order polynomial (7) to estimate the
state of charge dynamic, the final state constraint (18) becomes a linear
constraint with respect to 𝜽. Both the input and final state constraints
are written as
𝐀1𝜽 ≤ 𝐁1. (29)

The OCP (22), assuming that no state constraint violation happens
(17), and described with the parametric input approximation (26), is
expressed as the following quadratic programming

OCP1 ∶
⎧⎪⎨⎪⎩
min
(𝜽)

𝐽 (𝜽)

𝐀1𝜽 ≤ 𝐁1.
(30)

The assumption that the state 𝜉 stays between the lower and upper
bound defined in (17) is generally verified when the initial and final
states are far away from the constraints.

To avoid a large state of charge deviation at the end due to the
linearization of the state of charge dynamics (8), an iterative QP
algorithm is proposed in Algorithm 1. First, the initial QP problem (30)
is solved with the expected 𝜉 in (32a) and using an initial heuristic
solution estimated from the minimum and maximum allowable input
torque

𝜽i =
(
𝝋̂T
𝑘 𝝋̂𝑘

)−1 𝝋̂T
𝑘

(
𝑇max
ice (𝑘𝛥𝑡) + 𝑇min

ice (𝑘𝛥𝑡)
2

)
. (31)

Finally, the corresponding state of charge trajectory is computed with
the resulting parametric input approximation, i.e., 𝜓 in (32b) is defined
from (26), (3), (5) and (4).

Based on the current deviation of the final state of charge, the
boundary constraint 𝜉 is artificially updated to define a virtual target for
the final state of charge 𝜉∗ (32c). Iteratively updating the QP solution
with the new 𝜉∗, this algorithm should converge to the expected
boundary condition 𝜉, up to a tolerance 𝜉tol. To further reduce the
computational time, the previous QP solution is reused as a guess for
the current iteration (32d).

3.4. Indirect approach

A second approach is considered in this section to solve the OCP
(22) using the parametric input approximation (26). This indirect ap-
proach is derived from the PMP, and contrary to the direct approach,
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Algorithm 1 Iterative QP optimization for state of charge boundary
satisfaction.

𝜉∗ ← 𝜉

𝜽𝑘=0 ← QP (
𝜉∗,𝜽i

) (32a)
𝜉𝑘=0 ← 𝜓

(
𝜽𝑘=0

) (32b)
𝑘 ← 1
While ‖𝜉𝑘−1 (𝑡1) − 𝜉‖ ≥ 𝜉tol

𝜉∗ ← 𝜉∗ −
(
𝜉𝑘−1

(
𝑡1
)
− 𝜉

) (32c)
𝜽𝑘 ← QP (

𝜉∗,𝜽𝑘−1
) (32d)

𝜉𝑘 ← 𝜓
(
𝜽𝑘

) (32e)
𝑘 ← 𝑘 + 1

End While

it directly considers a second-order polynomial model for the state of
charge (7) to satisfy (18).

The PMP consists of a set of necessary conditions for optimality.
Fulfilling these conditions is usually enough to provide the optimal
solution for vehicle energy management under the assumption that
strong duality holds, e.g., when the Hamiltonian is a convex function
of the input [21].

The parametric input approximation (26) is used again to ensure a
smooth engine torque and to get an accurate estimate of its derivative.
The objective function is discretized as in (28) and the linear input
constraints (19) is written in the form
𝐀2𝜽 ≤ 𝐁2. (33)
A so-called costate 𝜆 (𝑡) ∈ R and the scalar-valued Hamiltonian 𝐻 are
introduced as follows
𝐻 (𝜽, 𝑡) = 𝑙 (𝜽) + 𝜆 (𝑡) 𝑓 (𝜽) . (34)
The costate dynamics is directly given as the partial differentiation of
the Hamiltonian with respect to the state 𝜉,
𝜆̇ = −∇𝜉𝐻. (35)
Also, because the state 𝜉 does not appear in the Hamiltonian, the costate
is constant 𝜆 (𝑡) ∶= 𝜆, hence 𝐻 defined in (34) becomes a function of 𝜽
and 𝜆 only.

A solution to the OCP (22) needs to fulfill the PMP conditions,
corresponding to the minimization of the Hamiltonian with a final
boundary constraint on the state 𝜉,

OCP2 ∶

⎧⎪⎪⎨⎪⎪⎩
min
(𝜽,𝜆)

𝐻 (𝜽, 𝜆)

𝐀2𝜽 ≤ 𝐁2,
𝜉
(
𝑡1
)
= 𝜉.

(36)

To find a candidate solution, i.e., meeting the PMP necessary condi-
tions (36), a shooting method is employed as shown in Algorithm 2. The
while loop is used to find a value of 𝜆 such that the final state of charge
is equal to 𝜉, up to a tolerance 𝜉tol. Within this loop, the secant method
is used to update 𝜆 based on the state of charge difference between the
end and the beginning of the cycle, refer to f𝜆 in (37d).

Thanks to the functional representation of the input (26), the min-
imization of the Hamiltonian is done for the entire trajectory with a
QP algorithm (37e) corresponding to the minimization of (34) under
the linear constraints (33). Furthermore, using an active-set method to
solve the QP (37e), the parameters 𝜽 and the active constraints from the
previous iteration 𝛺𝑘−1 are reused to speed up the computation [32].

Indeed, for a small modification of the costate initial value, the QP
optimal solution has almost the same set of active constraints and
nearly identical optimal variables 𝜽.

The initialization of the algorithm is of great importance for its fast
convergence. The initial costate value 𝜆0 in (37a) is defined based on
previous knowledge of the system and is therefore calibrated manually.
The initial parametric input approximation 𝜽i in (37b) is estimated as
for the direct approach, that is using the heuristic initial candidate
solution (31). Also, initially, the set of active constraints is defined
as empty in (37c), based on the assumption that 𝜽0 defines a feasible
solution.

Algorithm 2 Shooting method for the PMP with basis functions.

𝜆𝑘=0 ← 𝜆0 (37a)
𝜽𝑘=0 ← 𝜽i (37b)
𝛺𝑘=0 ←

{
∅
} (37c)

𝑘 ← 1
While ‖𝜉𝑘−1 (𝑡1) − 𝜉‖ ≥ 𝜉tol

𝜆𝑘 ← f𝜆
(
𝜉{0,…,𝑘−1}

(
𝑡1
)
, 𝜆{0,…,𝑘−1}, 𝜉

) (37d){
𝜽𝑘, 𝛺𝑘

}
= QP (

𝜉,𝜽𝑘−1, 𝛺𝑘−1
) (37e)

𝑘 ← 𝑘 + 1
End While

4. Simulation results

This section provides a detailed numerical analysis of the pre-
sented method, relying on a smooth engine torque parametrization, to
minimize the fuel consumption and pollutant emissions of the consid-
ered HEV. The direct and indirect approaches detailed in Sections 3.3
and 3.4 are used to find the optimal input parametrization and are
compared to the following classical methods to solve the OCP (22):

1. A standard PMP method, i.e., without considering transient
emissions;

2. A filtered version of the PMP method referred to as PMP smooth,
where the engine torque is filtered so that the engine torque
transients are dampened;

3. A DP method with a second state added to estimate the engine
torque derivative using a backward finite difference scheme
(38a). Also, the transient emissions are evaluated with a dis-
cretized version of (10), where the current engine torque is eval-
uated from the current and past control variable (38b) to avoid
unpenalized torque transient when the current input 𝑇ice (𝑘) is
set to zero in (38c). And with 𝜓̂emi being whether the nonlinear
(10) or the polynomial (12) emissions model.

𝛥𝑇ice (𝑘) =
1
𝛥𝑡

(
𝑇ice (𝑘) − 𝑇ice (𝑘 − 1)

) (38a)
𝑇ice (𝑘) =0.5

(
𝑇ice (𝑘 − 1) + 𝑇ice (𝑘)

) (38b)
𝑚̇emi,DP (𝑘) =𝜓̂emi

(
𝑁ice (𝑘) , 𝑇ice (𝑘) , 𝛥𝑇ice (𝑘)

)
(38c)

For the numerical study, a cycle recorded on a passenger vehicle and
corresponding to urban and extra-urban driving conditions is chosen,
where transient emissions are usually high compared to a cycle with
stabilized speed. The corresponding reference speed and altitude profile
are shown in Fig. 4. Also, the emissions weighting coefficients defined
in (21) are arbitrarily set to 𝛽1 = 0.6 and 𝛽2 = 0.6 to penalize the
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Fig. 4. Reference velocity and altitude profile of the considered cycle.

Fig. 5. Basis functions and their derivative, centered every 4 s, used for the first 20 s
of the cycle Fig. 4.

fuel consumption, the NOx, and the soot emissions concurrently. In
Section 4.3, the weighting coefficients 𝛽1 and 𝛽2 are varying from 0 to 1
to emphasize the proposed method’s consistency over various emissions
weighting.

The method using a parameterized input approximation introduced
in Section 3 is implemented with the direct and indirect approaches
and compared to DP in Section 4.1 using the polynomial engine model
described in Section 2. Then all the control methods are compared in
Section 4.2 using the nonlinear engine model introduced in Section 2.
The high-fidelity simulation platform is adapted in Section 4.4 to follow
the reference of the different control methods. The results using this
platform are presented and compared for all the control methods in
Section 4.5.

4.1. Optimality analysis with the polynomial engine model

The practical implementation of the direct and indirect approaches
proposed in Section 3 necessitates a choice of basis functions to rep-
resent the input, i.e., the engine torque. Integrated Gaussian functions,
referred to as radial basis functions, are used in this study and shown in
Fig. 5 along with their first derivative. The width of each basis function
is manually defined to capture the highest engine torque dynamic,
while the spacing between consecutive basis functions is manually
calibrated to achieve a trade-off between optimality and complexity.

The DP and the direct and indirect approaches are compared in
Fig. 6 using the polynomial engine model. The optimality of both
proposed approaches is less than two percent higher than the DP
optimality for a wide range of basis functions spacing, see 𝛥𝐽 in Fig. 6.
Nevertheless, the spacing between basis functions should not be too
small to avoid numerical difficulties nor too large to prevent a lack of
optimality. The basis functions will be spaced by 4 s for the rest of this
study. The DP used in the comparison is sampled at 0.5 s, hence needs
eight times more decision variables, resulting in a computational time
around 100 times larger.

Fig. 6. Direct and indirect approach optimality and computational time compared to
dynamic programming.

Fig. 7. Input derivative and emissions estimates; signals with subscript r represented
with a solid line refer to re-sampled solutions, while the solvers estimate, with subscript
s, are plotted at each iteration with a ◦. The dash line with a zero-order hold represents
the solver estimated emissions.

The main advantage of the direct or indirect approach is the accu-
rate estimation of the input derivative. Indeed, by comparison, when
the DP sampling time is set to 1 s, the final objective increases by 2.5%.
Especially when the reference trajectory is re-sampled with a spline
interpolation method to deliver a smooth trajectory, the DP estimated
input derivative and the predicted emissions are no longer accurate.
Fig. 7 emphasizes the DP inaccuracy, with a sampling time of 1 s,
compared to the robust estimation of the input derivative when using
the indirect approach.

The methods using basis functions to parameterize the input eval-
uate the exact input derivative at any evaluation point because the
re-sampling is not done with an interpolation method but directly
from the re-sampled basis functions. As shown in Fig. 7, even with a
basis function centered every four sampling points, i.e., 4 s, the indirect
approach provides a more accurate estimate of the emissions than the
DP for the same sampling time of 1 s.

4.2. Results using the nonlinear engine model

In this section, the direct and indirect approaches are compared to
the PMP, PMP smooth, and DP methods using the nonlinear engine
model, i.e., the fuel (9) and the emissions (10) model. The engine
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torque from each method is re-sampled at 0.1 s using spline interpo-
lation or using the re-sampled basis functions when applicable. The
goal of this comparison is the analysis of the behavior of each method,
especially with respect to DP that provides an optimal solution.

The results of the comparison of the different methods are synthet-
ically given in Table 2; all the values are expressed relative to the
PMP method. For example, smoothing the PMP reference contributes
to reducing the emissions by a factor of almost two while keeping the
same fuel consumption. This result is to be expected with the simple
nonlinear engine model, as the PMP solution exhibits large torque
transients.

Also, the nonlinear emissions model (10) is calibrated for realistic
engine torque signal, i.e., the engine torque derivative is physically
limited for a real engine. This study emphasizes the importance of
generating a smooth engine torque trajectory, yet as discussed in
Section 4.5, the engine torque from PMP will in any case be smoothed
due to the engine inertia and its actuators dynamics. However, a more
complex rule-based filtering of the PMP engine torque trajectory needs
to be employed to always ensure that the expected final state of charge
is reached. The filter parameters of the PMP smooth method are set
for this example to achieve a trade-off between optimality and state of
charge deviation from the expected final value.

The DP method is employed with a sampling time of 0.5 s to ensure
an accurate estimate of the engine torque derivative, hence providing
the optimal solution for this nonlinear engine model. Compared to
the PMP smooth algorithm, the DP solution brings an additional 13%
improvement, with fewer emissions for slightly more fuel consumption.
The main drawback of using a DP method is the significantly higher
computational time compared to the PMP method, i.e., DP is more than
70 times slower than PMP.

Even though the polynomial engine model is slightly less accurate
that the nonlinear engine model, the direct and indirect approaches
exhibits the same objective function reduction as the DP method.
Moreover, the main advantage of the direct or indirect approach is the
reduced required computational effort compared to DP, still delivering
results very close to the DP optimality. A reduced number of decision
variables is possible thanks to the smooth representation of the input
in (23). The DP needs a very fine sampling time to achieve the same
smoothness of the engine operations, that is required for low pollutant
emissions.

The proposed direct and indirect approaches both rely on an itera-
tive QP algorithm; they are consequently very fast at approximating the
optimal engine torque trajectory. The direct approach is already almost
twice as fast as the PMP method. Indeed this approach converges within
four QP iterations of around 0.3 s each, refer to Table 3. Adding the
time to correct the nonlinear state of charge between each iteration,
i.e., with Eq. (32e), the overall time is of 3.8 s. In comparison the PMP
method needs around 9.5 s to meet the final conditions with the same
tolerance. The PMP is slower mainly because it considers the nonlinear
engine model, and it requires almost 20 iterations because a small
modification of the costate initial value can engender a non-negligible
modification of the state of charge at the end of the cycle due to the
lack of smoothness of the solution.

The indirect approach is even faster, only requiring 1.5 s, because
it relies only on the polynomial engine model and the second-order
polynomial approximation of the state of charge. Additionally, the
indirect approach requires only five QP iterations, as shown in Table 3,
each iteration lasting 0.3 s initially but then only 0.02 s when the costate
value is already close to the optimal one. These very fast QP iterations
are made possible by providing the QP solver with the solution and
the active set of constraints from the previous iteration, and because
a small change in the costate only creates a small modification of the
solution thanks to the smooth representation of the input.

Multiple model nonlinearities are not considered in the controller
model, such as engine restart or the driver dynamic. Also, the controller
model tends to exaggerate the transient engine torque influence on the

Table 2
Methods comparison evaluated with the nonlinear engine model, all values are given
relative to the PMP method.
Method Δfuel % ΔNOx % Δsoot % Δ𝐽 % Δtime %

PMP smooth 0.27 −41.55 −54.15 −40.91 10.7
DP 0.82 −54.19 −69.77 −53.07 7266.8
Indirect 1.40 −53.60 −68.90 −52.40 −84.2
Direct 1.09 −53.34 −69.01 −52.31 −60.0

Table 3
Timing in seconds of each iteration of Algorithms 1 and 2.
Iteration 1 2 3 4 5
Direct 0.31 0.33 0.31 0.32
Indirect 0.29 0.37 0.24 0.02 0.02

emissions, as a real engine will always naturally produce a smoother
torque than the one requested during strong transients. For these
reasons, the different methods are tested on the high-fidelity simulation
platform in the following sections.

4.3. Emissions weighting variations

The same simulation study as in Section 4.4 is conducted in this sec-
tion, but with varying emissions’ weighting. The weighting coefficients
𝛽1 and 𝛽2 are varied between 0 and 1 to respectively add more emphasis
on the NOx and the soot emissions. Fig. 8 shows the objective function
improvement relative to the smooth PMP approach for the indirect and
DP strategies.

The proposed indirect approach gives results very close to the DP
optimality and, in most cases, much better than the PMP smooth
strategy. The indirect approach fails to achieve the optimal strategy
for small values of both 𝛽1 and 𝛽2. This specific case corresponds to
almost no emissions weighting but only fuel consumption. In such a
scenario, the optimal engine torque provided by PMP or DP is not
continuous and exhibits large jumps. The proposed indirect approach
works as expected whenever the emissions are considered; a standard
PMP approach should be used instead for fuel-only optimization.

4.4. Reference following using the high-fidelity simulation platform

In the following sections, the same comparison as in Section 4.2
is realized but using the high-fidelity simulation platform. First, each
method, i.e., PMP, PMP with smoothing, DP, direct and indirect ap-
proach from Section 3, is employed to create a reference engine torque
𝑇 ref
ice and a battery state of charge 𝜉ref trajectory. Then these trajectories

are followed in the high-fidelity simulation platform to evaluate the fuel
consumption and pollutant emissions realistically.

A two-degree-of-freedom controller is employed to apply the refer-
ence engine torque while staying close to the reference battery state
of charge. A slow feedback loop is used so that the engine torque and
its derivative are only slightly modified to track the reference state of
charge,
𝑇ice = 𝑇 ref

ice
(
1 −𝐾

(
𝜉 − 𝜉ref

))
, (39)

with the manually calibrated parameter 𝐾 = 30.
Additionally, the electric load is saturated to meet the electric

motor’s physical constraints, and the engine torque is consequently
modified so that the total load request from the driver is always
fulfilled. This controller is intentionally left simple to emphasize the
robustness of the reference trajectory against the chosen modeling as-
sumptions and allow additional rule-based controllers to locally modify
this control law, e.g., coupling with the braking system.

The PMP reference defines the baseline as most current optimization
methods only consider a quasi-static engine model. To penalize a state
of charge difference with the prescribed boundary condition 𝜉 = 0.5, the
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Fig. 8. Objective function improvement in % compared to PMP smooth method for various emissions weighting.

costate from the PMP method is used to correct the fuel consumption
heuristically,
𝑚̇fuel,corrected = 𝑚̇fuel + 𝜆PMP

(
𝜉
(
𝑡1
)
− 𝜉

)
. (40)

4.5. Controller comparison using the high-fidelity simulation platform

Compared to the controller model with the nonlinear engine model,
using the high-fidelity simulation platform, large variations of the ref-
erence engine torque cannot be followed. Indeed, the reference engine
torque cannot always be immediately fulfilled because of the engine
inertia and the physical limitations of the actuators. The simulation
platform exhibits a low-pass filtering behavior, smoothing the reference
torque input during strong transients. As a result, the PMP method
is less impacted by transient emissions compared to the results using
the nonlinear engine model (9) and (10), yet PMP is still far from
optimality.

The performances of each controller on the cycle shown in Fig. 4
are provided in terms of deviation from the PMP results in Table 4. The
most widely encountered method in literature corresponds to the PMP
smooth method, which already achieves respectively 2.5% and 4.6%
less NOx and soot emissions for only 0.58% fuel increase. The resulting
objective, i.e., 𝐽 , of the PMP method is decreased by 2.57% only by
using a low-pass filter on the reference trajectory. This result confirms
the influence of the engine torque transients on pollutant emissions
formation. The disadvantages of this method are, first the limiting
smoothing possibilities because of input constraints and, second the
lack of optimality.

Indeed, the DP solution reduces the objective by 7% compared to
the PMP method, which is more than twice as much as the smoothing
method. Also, the DP has a large fuel over-consumption of 3.4% but
even larger NOx and soot reduction of 9.8% and 6.5% respectively.
The PMP method is indeed focusing too much effort on fuel reduction
only. Without considering the engine torque derivative directly, the
PMP smooth method lacks optimality due to excessive soot and NOx
formation during large engine torque fluctuations.

The proposed direct and indirect approaches, relying on a paramet-
ric input approximation with smooth basis functions, lead to nearly
identical results. The same fuel consumption is reached, with slightly
more NOx and less soot for the direct approach compared to the
indirect approach. Interestingly, the direct and indirect approaches
achieve almost the same objective value as the DP but with more
reduction of the soot emissions and less NOx. These differences can
be explained by the fact that the DP uses the nonlinear engine model,
whereas the direct and indirect approaches are using the polynomial
engine model. Therefore, the DP is able to take advantage of more
precise engine operating points to reach local minima in the NOx engine
map. However, the DP reference torque trajectory, re-sampled with
spline interpolation, is slightly less smooth than the direct and indirect
approaches, leading to slightly higher soot emissions during transient
operations.

Table 4
Methods comparison using the high-fidelity simulation platform, all values are given
relative to the PMP method.
Method Δfuel % ΔNOx % Δsoot % Δ𝐽 %

PMP smooth 0.58 −2.57 −4.60 −2.57
DP (0.5 s) 3.40 −9.77 −6.46 −7.03
Indirect 3.68 −7.48 −10.71 −6.56
Direct 3.68 −6.48 −13.44 −6.57

The transient emissions are particularly high when the engine is
restarted and under transient torque in a high torque region. As shown
in Fig. 9, the NOx emissions are much higher for the PMP and PMP
smooth methods after each engine restart, e.g., around 825m or 880m.
The soot emissions are not significantly impacted by the restart of the
engine but are more pronounced when the engine torque is high and
exhibits large fluctuations. This phenomenon is visible around 850m
and 900m, where the soot emissions using the PMP reference are large
and where the PMP smooth cannot efficiently reduce the engine torque
variations.

Additionally, the reference trajectories have to be sufficiently
smooth to be followed accurately in the high-fidelity simulation plat-
form. In Fig. 9 the direct and indirect approaches, and the DP method,
lead to a lower state of charge deviation than the PMP or the PMP
smooth methods. Indeed, a non-smooth torque reference cannot be
followed accurately due to engine time delay and inertia, resulting in
a higher deviation from the reference battery state of charge.

The main advantage of the proposed method, based on a paramet-
ric input approximation, is the smoothness of the engine torque and
battery state of charge trajectories. Also, the two proposed approaches
relying on this smooth parametrization are computationally effective as
they rely on simple polynomial fuel and emissions models. In the end,
the fuel consumption and the pollutant emissions are shown to be very
close to the DP results, yet using only a fraction of the time used by the
DP algorithm.

5. Conclusion and outlook

In this paper, the engine torque is parameterized as a sum of radial
basis functions such that its derivative is intrinsically considered to
capture the transient emissions accurately. On the first hand, such a
representation guarantees the input signal to be smooth. On the other
hand, the input derivative is known analytically using the basis func-
tions derivatives, and the input can be re-sampled without changing its
derivative.

This paper proposes to find the optimal input parametrization with
two different approaches to achieve minimal fuel consumption while
reducing pollutant emissions. The proposed direct and indirect ap-
proaches benefit from iterative QP algorithms that are shown to be
computationally efficient compared to more complex methods such as
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Fig. 9. Controller comparison using the high-fidelity simulation platform.

dynamic programming. Relying on a polynomial engine model, these
methods are shown to achieve almost the same optimality as a dynamic
programming algorithm, yet are much faster to compute as the number
of decision variables is greatly reduced.

Further work is currently considered to combine the proposed
methodology with the component controllers operating at a faster
sampling rate. Indeed, the proposed controller creates reference signals
that need to be followed by the electric machine and the engine. A hier-
archical strategy could therefore be considered, where the component
controllers could send feedback to the proposed strategy to account for
system constraints and nonlinearities. The second point of future inves-
tigation is the beneficial synergy of the proposed method with ADAS
systems and vehicle networking possibilities, as already demonstrated
in [33,34]. Indeed, the proposed direct and indirect methods need
an accurate prediction of future vehicle speed. In that sense, onboard
sensors and vehicle-to-vehicle or vehicle-to-infrastructure communica-
tion will be highly beneficial to update predictive information. The
proposed method has the further advantage of being very fast to update
the optimal strategy whenever new predictive information is available.
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Appendix. Integration of filtered emissions

This appendix shows that the cumulative modeled emissions 𝑚emi
from either (10) or (12), are unchanged when the modeled emissions
are filtered with (13). For the simplicity of notation, the modeled
emissions are renamed 𝑓 ∶= 𝑚̇emi.

Given that the modeled emissions are zero when the engine is
stopped after some time 𝑇 > 0,
𝑓 (𝑡 >= 𝑇 ) = 0, (A.1)
the integration of 𝑓 (𝑡) over the interval 𝐼 = [0, 𝑇 ] consequently verifies

∫
𝑇

0
𝑓 (𝑡) d𝑡 = ∫

∞

0
𝑓 (𝑡) d𝑡. (A.2)

The integration of the emissions over an infinite time is given in the
Laplace domain using the final value theorem,

∫
∞

0
𝑓 (𝑡) d𝑡 = lim

𝑠→0

{
𝑠 1
𝑠
𝐹 (𝑠)

}
. (A.3)

Using relation (A.2), the cumulative emissions are given as

∫
𝑇

0
𝑓 (𝑡) d𝑡 = 𝐹 (𝑠 = 0) . (A.4)

A first-order linear filter with a static gain of one and a delay 𝜏 ≥ 0
as expressed in (13) with 𝜔 > 0, is used to filter the modeled emissions
and is noted 𝛾 (𝑓 (𝑡)) in the time domain.

Considering a time 𝑇 ∗ such that 𝑇 ∗ ≥ 𝑇 + 𝜏, the integral of the
filtered modeled emissions can be decomposed into

∫
∞

0
𝛾 (𝑓 (𝑡)) d𝑡 = ∫

𝑇 ∗

0
𝛾 (𝑓 (𝑡)) d𝑡 + ∫

∞

𝑇 ∗
𝛾 (𝑓 (𝑡)) d𝑡. (A.5)

Also, the integral on the left-hand side of (A.5) can be expressed in the
s-domain, and using the final value theorem

∫
∞

0
𝛾 (𝑓 (𝑡)) d𝑡 = lim

𝑠→0

{
𝑠1
𝑠
𝛤 (𝑠)𝐹 (𝑠)

}
. (A.6)

Using the property that the filter 𝛾 has a static gain of one, the integral
(A.6) becomes,

∫
∞

0
𝛾 (𝑓 (𝑡)) d𝑡 = 𝐹 (𝑠 = 0) . (A.7)

The initial claim can consequently be formulated for any 𝑇 ∗ ≥ 𝑇 +𝜏,

∫
𝑇

0
𝑓 (𝑡) d𝑡 = ∫

𝑇 ∗

0
𝛾 (𝑓 (𝑡)) d𝑡 + 𝜖, (A.8)
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with
𝜖 = ∫

∞

𝑇 ∗
𝛾 (𝑓 (𝑡)) d𝑡. (A.9)

Also, from the filter definition (13) with 𝜔 > 0, the filter is
exponentially stable and the term 𝜖 in (A.8) can be expressed as a
function of 𝑇 ∗

𝜖 = 1
𝜔
𝛾 (𝑓 (𝑇 + 𝜏)) exp−𝜔(𝑇 ∗−𝑇−𝜏). (A.10)

As a conclusion, integrating the filtered modeled emissions 𝛾 (𝑓 (𝑇 ))
over an interval [0, 𝑇 ∗] is equal to the integral of the modeled emissions
𝑓 (𝑡) over the interval 𝐼 for high enough value 𝑇 ∗. Also, the difference
between these two integrals, i.e., 𝜖, is exponentially decaying with
respect to 𝑇 ∗ as shown in (A.10). It is therefore sufficient to set 𝑇 ∗

to a few seconds after the engine is shut down.
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ABSTRACT
This paper introduces a feedforward control method for physical systems that can be described with linear
parameter-varying (LPV) models. The proposed feedforward controller structure is consequently derived
from a generic LPV representation and is shown to be identifiable directly from noisy measurement data.
The identified structure is advantageous for feedforward control, as using a simple least squares algorithm
allows to parameterise basis functions representing the required input trajectory to follow a given output
trajectory. Also, with the proposed regularisation, the input trajectory remains bounded even when the
physical system exhibits non-minimum phase behaviour. Additionally, the proposed controller structure
does not possess states but only considers the inputs and outputs signals and their derivatives, leading
to a unique physical interpretation of each controller’s parameter. Multiple feedforward controllers identi-
fied at various operating points can therefore be directly merged to create a parameter-varying controller.
A nonlinear and locally non-minimum phase system is considered in this study, i.e. an engine air path, to
evaluate the performances of the proposed feedforward strategy. The controller parameters are first iden-
tified from noisy measurement data, and then the proposed feedforward controller is implemented with
a feedback controller to track the exhaust pressure and NOx concentration. Using a detailed physical sim-
ulation of the engine air path, the proposed feedforward strategy showed encouraging output tracking
performances compared to state-of-the-art control methods. The presented feedforward method is shown
to be straightforward to identify and calibrate while guaranteeing a contained computational complexity
and being applicable to many physical systems thanks to its modularity.
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1. Introduction

Feedforward control is a classical and efficient method to
enhance the performances of a feedback controller (Jean-
Francois et al., 2009; Poe &Mokhatab, 2017; Zhang et al., 2022).
However, no general method exists to identify a feedforward
controller of an arbitrary nonlinear physical system. This paper
proposes a controller structure that can be easily identified
frommeasurement data and applied to any physical system that
can be modelled as a linear parameter-varying (LPV) multi-
input multi-output (MIMO) model. A diesel engine air path is
taken as an example throughout this paper as multiple studies
already successfully identified LPVMIMOmodels to capture its
dynamics (Euler-Rolle et al., 2021; Kang & Shen, 2017; Ortner
& Re, 2007; Zhang et al., 2022).

Physical systems potentially exhibit, without loss of general-
ity, nonlinear dynamics, coupling behaviour and non-minimum
phase behaviours (John Hauser & Sastry, 1992; Qiu & Davi-
son, 1993). For many fields of applications, simple rule-based
and map-based controllers are still predominantly employed.
The necessary calibration efforts and the determination of an
appropriate control structure nevertheless limit the resulting
performance of such controllers. Different systems or systems
configurations usually necessitate distinct control strategies,

CONTACT Alexis Benaitier alexis.benaitier@tuwien.ac.at

leading to high development costs and efforts. A modular con-
troller structure with an automated identification from mea-
surement data would therefore be highly beneficial in terms of
calibration effort and modularity.

Numerous advanced control methods are currently using
a hierarchical control framework. It consists of a first control
layer defining setpoints for measured signals to achieve opti-
mality with respect to a given metric, e.g. cost, time, reference
tracking, etc. These setpoints, or desired trajectories, are usu-
ally map-based as in Plianos and Stobart (2011) or result from
a static optimisation using a simplified model of the system
(Jiang & Shen, 2019). Hierarchical control frameworks typically
comprise a second control layer responsible for controlling the
actuators to achieve accurate output setpoints or trajectories
tracking.

This second control layer has already been investigated to
realise an accurate output tracking of the reference. Initially
consisting of a single adaptive feedback controller as in Plianos
and Stobart (2011), a recent study emphasises the importance
of a feedforward control for accurate transient output track-
ing (Zhang et al., 2022). Indeed, predictive control methods, i.e.
when the output trajectory from the first layer is known before-
hand for a given horizon, considerably increase the tracking

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is anOpenAccess article distributedunder the termsof the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/4.0/), whichpermits unrestricted use, distribution,
and reproduction in anymedium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by
the author(s) or with their consent.
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accuracy if the horizon is long enough (Euler-Rolle et al., 2021;
Kang & Shen, 2017). The main bottleneck of model predictive
controllers is their inherent computational complexity, given
the limited capabilities of control hardware devices especially
for mobile applications. Even considering simplified algorithms
such as an explicit model predictive controller as in Ortner
and Re (2007) or a parametrisation of the input for a reduced
dimensionality of a nonlinear predictive controller as proposed
inMurilo et al. (2014),more straightforwardmethods are highly
desired regarding a forthcoming hardware implementation.

Feedforward control is an interesting candidate to realise
accurate output tracking with computationally limited require-
ments. Indeed, for a specific simplified model of the system, a
nonlinear feedforward controller may be developed based on
the inverse characteristics of the model (Hirata et al., 2019).
Such controllers benefit from reduced computational complex-
ity but still suffer from calibration efforts and a lack of modu-
larity. To achieve a modular feedforward controller, i.e. reusable
for different systems or systems configurations, a black-box local
model network (LMN) can be of great interest. Especially if each
local model is a linear time-invariant (LTI) model, linear con-
trol theory can be used to derive a control law for perfect output
tracking.

Necessary conditions for the inversion of an LTI model to
achieve perfect output tracking have been formulated by Silver-
man (1969) at the beginning of the seventies. However, since
then, no such conditions for the inversion of a multi-input
multi-output (MIMO) nonlinear model have been formulated.
As a result, various feedforwardmethods rely on the differential
flatness property introduced by Fliess et al. (1995). Flatness-
based control designs are of great interest, especially with the
concept of flat input (Waldherr & Zeitz, 2008, 2010). Indeed, a
flat input can always be found when the system is observable,
and the trajectory of the flat input can be directly known from
the desired output trajectory. The physical input can thereafter
be recovered from the flat input using a differential parametri-
sation referred to as a dynamic compensator (Jean-Francois
et al., 2009).

The main difficulty when using the concept of flat input with
a dynamic compensator is the potential non-minimum phase
behaviour of the considered system, i.e. unstable zero dynamics.
Indeed, non-minimum phase behaviour can appear in numer-
ous physical systems (JohnHauser & Sastry, 1992; Sira-Ramírez
& Agrawal, 2004). For a system exhibiting a non-minimum
phase behaviour, a dynamic compensator method may create
an unbounded control input to realise a perfect output tracking
(Isidori, 1995). Nevertheless, perfect output tracking of a non-
minimum phase system is still possible with a bounded control
input if the controller knows the trajectory beforehand, i.e. with
a non-causal controller (Chen & Paden, 1996).

A decomposition-based algorithm can also be employed to
identify a feedforward controller (Harris McClamroch & Al-
Hiddabi, 1998; Spirito & Marconi, 2022). Splitting the system
into a minimum phase system and a non-minimum phase sys-
tem, the idea is to trivially invert the minimum phase part of
the original system while compensating in steady-state con-
ditions for the non-minimum phase part. This method can
provide acceptable results, but requires knowledge of control

Figure 1. Indirect and direct approach for inverse model parameters
identification.

engineering, and cannot be applied in full generality for an
arbitrary nonlinear system.

In order to avoid difficulties when inverting a model to iden-
tify a feedforward controller, a direct identification method can
be employed. Schenkendorf and Mangold (2014) indeed pro-
posed two methods to identify the parameters θ of an inverse
model �−1. Classically, an indirect method is used, inverting
a model previously identified by fitting a reconstructed out-
put ŷ to the measured output y given the measured input u,
as depicted in Figure 1. Alternatively, a direct method can be
considered, where the inverse model is directly identified by fit-
ting the reconstructed input û to themeasured input u given the
measured output y, also illustrated in Figure 1. Themain advan-
tage of the direct method is that no inversion is necessary, hence
no numerical difficulties.

This paper proposes a feedforward controller structure
directly identified from measurement data, i.e. direct identifi-
cation as shown in Figure 1, to ensure robustness against model
order selection and applicability to non-minimum phase sys-
tems. Additionally, the proposed feedforward controller struc-
ture offers the possibility to merge local controllers identified
at various operating points to create a single parameter-varying
controller. The proposed feedforward method can be applied to
a large class of physical systems which can be modelled with
an LPV model. The system must be open-loop stable, and the
output reference trajectory known and smooth, i.e.sufficiently
many times differentiable. Also, the input saturation is not
explicitly considered by this method but can be indirectly con-
sidered by modifying the output reference, usually limiting the
output rate of change. Finally, measurement data have to be
available and fulfil persistency of excitation, i.e. all frequencies
in the operating range of interest have to be excited.

In this paper, a nonlinear and locally non-minimum phase
system is taken as an example; the control of an engine air path.
The control inputs are the exhaust gas recirculation valve (EGR)
and the variable geometry turbocharger (VGT), controlled to
follow a prescribed exhaust manifold pressure Pexh and exhaust
nitrogen oxides mass flow NOx (Murilo et al., 2014; Plianos
& Stobart, 2011; Shi & Shen, 2021). Engine air paths are nonlin-
ear systems that are open-loop stable and exhibit strong output
coupling (Kang & Shen, 2017; Murilo et al., 2014). This paper
mainly focuses on reference output trajectories followable with-
out input saturation. The case where the input is saturated is
presented at the end of Section 5, where the output is not per-
fectly followed, to emphasise the robustness of the proposed
method.
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The remainder of this paper describes an automated feedfor-
ward controller identification method implemented to realise
the output tracking of any stable non-linear system. Section 2
details the implementation of the feedforward controller within
a classical hierarchical strategy. The proposed control algorithm
to generate an input trajectory to track a prescribed output
trajectory is presented in Section 3. The identification of the
feedforward controller parameters is discussed in Section 4.
Finally, the proposed feedforward controller is implemented in
combination with a simple feedback controller to track the NOx
andPexh of a diesel engine.Using a detailed simulation platform,
the proposed feedforward controller is compared to different
classical controllers in Section 5 for fixed and variable engine
operating points.

2. Control concept

A new feedforward method is proposed in this paper, with a
straightforward identification of its parameters and low compu-
tational requirements. The controller structure is derived from
a generic LPV model; hence it can be used for many physi-
cal systems. This section first provides background informa-
tion regarding feedforward control within a hierarchical con-
trol strategy. Then the controller structure is introduced as a
transformation of a generic LPV model.

2.1 Hierarchichal control strategy

The proposed feedforward control strategy necessitates out-
put reference to be followed and is therefore proposed to be
employed in a hierarchical control framework as depicted in
Figure 2. The high-level controller generates the desired out-
put trajectory based on the known operating point trajectory
of the system. Then a low-level controller designs the required
input trajectory to follow the reference output trajectory from
the high-level controller. Additionally, the low-level controller
can consider feedback from the plant, i.e. the measured physical
output, to compensate formodel inaccuracies and disturbances.

The reference output trajectory is expected to be smooth in
the sense that the reference can be differentiated. Indeed, for
many physical systems, the output trajectory essentially consists
of smooth transitions between predefined output setpoints and
is generated anytime a transition to a new output setpoint is nec-
essary. Additionally, a non-differentiable trajectory, i.e. step, can
always be approximated by a smooth trajectory using some fil-
tering techniques. This requirement comes from the fact that
most physical systems cannot follow a non-differentiable out-
put reference without an unbounded input unless they exhibit

Figure 2. Diagram of the low-level controller implementation within the hierar-
chical control strategy.

a direct feedthrough. To keep the feedforward method gen-
eral enough, differentiability of the output reference is therefore
required.

This paper focuses only on the design of the low-level con-
troller. More specifically, an automated method for feedforward
controller identification is proposed and tested. Eventually, a
feedback controller is added to the feedforward controller to
further study the accuracy and advantages of the proposed feed-
forward controller. The high-level controller is not considered
in this paper, i.e. the desired output trajectory, written with
the star superscript •∗, is considered perfectly known for the
remainder of this paper.

The main assumption of this paper for the design of a feed-
forward controller is that the physical system can be accu-
rately modelled as an LPV MIMO model for control purposes.
The scheduling vector ρ, defining the operating point at each
instant, is usually taken as the engine speed Nice and the engine
torque Tice for an engine air path (Euler-Rolle et al., 2021; Kang
& Shen, 2017; Ortner & Re, 2007; Zhang et al., 2022). With-
out loss of generality, an LPV model can be built as a nonlinear
aggregation of LTImodels�j identified at fixed operating points
ρj

�j :

�
ẋj = Ajxj + Bju
y = Cjxj + Dju

, (1)

with xj ∈ Rn, y ∈ Rm,u ∈ Rm and the matrices Aj,Bj,Cj and
Dj for each local model. The states xj have no physical mean-
ing when the system is identified from black-box identification
methods, i.e. when no a-priori knowledge of the system dynam-
ics is known. The states have therefore a different physicalmean-
ing at different operating points ρ j and so different state space
parameters cannot be directly merged, i.e. it is not possible to
directly interpolate between the matrices Aj,Bj,Cj and Dj. The
following section proposes a feedforward controller structure
where the controllers’ parameters at different operating points
can be merged directly.

2.2 Feedforward controller structure

A generic feedforward controller structure is proposed in this
section, assuming that the physical system can be modelled as
an LPV MIMO system. Local controllers are identified at var-
ious operating points, with the particularity of all sharing the
same parameters’ physical interpretation making the design of
a parameter-varying controller straightforward.

First, the proposed feedforward structure is introduced at a
fixed operating point ρj, where it is inherited from the linear
time-invariant model �j defined by the matricesA,B,C andD,
the index j being omitted for the ease of notation. Without loss
of generality,�j is assumed to be state observable, with the states
noted x. The observability matrix can therefore be built block-
wise with a relative degree ri ≥ 1 associated with each output
and fulfilling

�m
i=1 ri = n (Brunovský, 1970)

Q =

⎡⎢⎢⎣
Q1
Q2
· · ·
Qm

⎤⎥⎥⎦ , Qi =

⎡⎢⎢⎢⎣
ci
ciA
...

ciAri−1

⎤⎥⎥⎥⎦ , ∀i ∈ {1, . . . ,m} , (2a)
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where ci represents the ith row of the matrix C.
A linear state transformation using the observability matrix

is possible and can be expressed as x̂ = Qx leading to the new
state space representation

�̂j :

� ˙̂x = Âx̂ + B̂u
y = Ĉx̂ + Du

, (3a)

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â1 0 0 · · · 0�
�x

1
�

0 Â2 0 · · · 0�
�x

2
�

...
0 0 0 · · · Âm�

�x
m

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3b)

with �x
j ∈ R1×n,∀j ∈ {1, . . . ,m}. Each �x

j is a row vector cor-
responding to the highest output derivative dynamics of each
physical output j. The obtained model �̂j consists of m chains
of integrators Âi, one associated with each output. Yet, for an
arbitrary system �j, the inputs can still have a direct impact on
all the states x̂, because B̂ and D have no particular structure.
For example, the first r1 states correspond to the first output and
verify

x̂k = y(k−1)
1 − d1u(k−1) −

k−1�
l=1

b̂lu(k−l−1), ∀k ∈ {1, . . . , r1} ,
(4a)

with the last state dynamics

d
dt

x̂r1 = �x
1x̂ + b̂r1u. (4b)

The states associated with each output can be transformed so
that the new states become the outputs and their derivatives. For
example, for the first output, using relation (4a), new states z are
defined as

zk = x̂k + d1u(k−1) +
k−1�
l=1

b̂lu(k−l−1), ∀k ∈ {1, . . . , r1} , (5)

such that zk = y(k−1)
1 holds.

The highest output dynamics can be found by derivating zr1
using (5) and the derivative of xk given in (4b)

d
dt

ẑr1 = �x
1x̂ + b̂r1u + d1u(r1) +

r1−1�
l=1

b̂lu(r1−l). (6)

Finally, x̂ can be expressed as a function of z and the input and
its derivatives in (5) and then replaced in (6) to find

d
dt

ẑr1 = �x
1z +

r1�
l=0

�u
1,lu

(l), (7)

with �u
1,l ∈ R1×m.

Figure 3. Representation of �̃j withm chains of integrators.

This transformation can be done for each output and leads to
the new representation presented in Figure 3, where each state
corresponds to an output or one of its derivatives

z =
�
y1 y(1)

1 · · · y(r1−1)
1 y2 · · · y(rm−1)

m

�T
. (8)

Collecting all the equations representing the highest derivative
of each output, i.e. Equation (7) for each output, the following
m ordinary differential equations are found⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎣
y1
y(1)
1
...

y(r1)
1

⎤⎥⎥⎥⎦
T

, . . . ,

⎡⎢⎢⎢⎣
ym
y(1)
m
...

y(rm)
m

⎤⎥⎥⎥⎦
T⎤⎥⎥⎥⎥⎦ θ

j
y

=

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

u1

u(1)
1
...

u(r
∗)

1

⎤⎥⎥⎥⎥⎦
T

, . . . ,

⎡⎢⎢⎢⎢⎣
um
u(1)
m
...

u(r
∗)

m

⎤⎥⎥⎥⎥⎦
T⎤⎥⎥⎥⎥⎦ θ

j
u, (9)

where r∗ ≤ max ri
i

,∀i ∈ {1, · · · ,m} and the feedforward con-

troller parameter matrices θ
j
y ∈ R

�
(ri+1)×m and θ

j
u ∈

Rm(r∗+1)×m. Each column k ∈ {1, . . . ,m} of thematrices θ
j
y and

θ
j
u are directly built reordering the terms of �x

k and �u
k,·. For

the well-conditioned of the feedforward controller, each out-
put’s highest dynamics is a weighted sum of the outputs, the
inputs and their derivatives and is linearly independent of the

other highest output derivatives, i.e. the matrix
�

θ
j
y

θ
j
u

	
must be

full column rank.
This paper proposes to use the input-output relation (9) as

the structure of a feedforward controller. This representation is
advantageous as it prevents classical numerical difficulties asso-
ciated with matrix inversion during parameter identification
or integration of unstable dynamics for feedforward control of
non-minimumphase systems. Also, this structure does not pos-
sess any states; hence no observability problem can appear. The
output and input must be smooth enough in the sense that their
time derivatives are well defined; this assumption is usually ver-
ified for arbitrary physical systems where the input and output
cannot physically jump but always change smoothly within a
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small enough timewindow. Finally,merging controllers’ param-
eters is straightforward, as each parameter has a unique physical
interpretation, independent of the operating point.

In the following of this paper, an efficient method to iden-
tify the controller parameters from noisy measurement data is
proposed. It is shown to be robust against model order selection
and benefits from a numerically efficient total least squares for-
mulation. Also, a simple method only requiring to solve a linear
least squares problem to design the necessary inputs to follow
a prescribed output trajectory is presented. The proposed feed-
forward controller is consequently straightforward to calibrate,
only consisting of physically interpretable parameters. Further-
more, its computational load is low enough to consider a future
hardware implementation.

Section 3 describes the proposed method to use (9) as a
feedforward controller, assuming already identified θ y(ρ) and
θu(ρ). The identification of the controller parameters θ y(ρ) and
θu(ρ) is discussed in Section 4 where first a controller is identi-
fied at each operating point, and then a nonlinear aggregation of
all the feedforward controllers is built from transient measure-
ments. The performances of the proposedmethod are evaluated
and compared to classical control methods in Section 5 using a
high-fidelity simulation platform of a diesel engine air path.

3. Input trajectory design

The feedforward controller should provide a trajectory of the
inputs u so that the system outputs y follow a trajectory pre-
scribed by the high-level controller. This section proposes a
robust method to realise such an output tracking using the rela-
tion (9) and a parametrisation of the input with basis functions.
Regularisation is added to the resulting least squares algorithm
to ensure bounded inputs even when the system exhibits non-
minimum phase behaviour.

3.1 Input parametrisation with basis functions

The output trajectory tracking task can be seen as finding the
input trajectory such that the Equation (9) is fulfilled at each
time. Assuming that the output reference trajectory and its
derivatives are known, and the parameters θ y(ρ) and θu(ρ)

identified as in Section 4, a linear system of ordinary differen-
tial equations has to be solved to estimate the required input
trajectory.

A collocation method is proposed in this paper, as it has
already shown successful results for solving ordinary differen-
tial equations that are usually difficult to solve with integration
methods (Mai-Duy, 2005). Indeed, when the zero dynamics of
the system is unstable, i.e. non-minimum phase system, the
right-hand side of (9) has at least one unstable eigenmode.

The underlying idea of using a collocation method is to
approximate the input infinite-dimensional function space with
a finite set of functions

ui = ϕγ ui , ∀i ∈ {1, . . . ,m} , (10)

with each parameter vector γ ui ∈ RL and a set of L linearly
independent functions

ϕ = [ϕ1, . . . ,ϕL] ∈ R1×L (11a)

ϕk : R → R, ∀k ∈ {1, . . . , L} . (11b)

Gaussian functions are chosen to create a radial basis function
network that has been proven to be a universal function approx-
imator (Liao et al., 2003). Also, these functions are infinitely
differentiable, straightforward to parameterise and are non-zero
only in a small region, impacting the modelled signal only
locally.

To create a radial basis function network, Gaussian functions

ϕk(t) = e−�k(t−τk)
2
, (12)

are concentrated around regularly spaced time locations τk.
The parameter �k is chosen in a way that neighbouring

functions overlap and are sufficiently large to capture local
behaviours. By simply plotting the basis functions and the
designed inputs, it is straightforward to calibrate �k to achieve
the desired trade-off between smoothness and accurate track-
ing. Regarding the number of functions, as regularisation is
added in the next section, a large value of L will only increase
the computational requirements, while a smaller L will, at one
point, deteriorate the tracking accuracy. Choosing L large and
decreasing its value until the accuracy is negatively impacted
constitutes a simple and efficient calibration method.

For a practical implementation of relation (10), the functions
ϕk are discretised in Nt samples. The linear system of ordinary
differential Equation (9) can be reformulated as

Φuγ u = Φy, (13)

with the extended parameter vector γ u ∈ RLm defined in (A4),
thematrixΦu ∈ RNtm×Lm and the vectorΦy ∈ RNtm as defined
in detail in Appendix.

A classical least squares method can be employed to estimate
γ u in (13). Nevertheless, a dedicated regularisation is proposed
in the following section to keep the inputs bounded.

3.2 Bounded input trajectory with regularisation

Some physical systems are challenging to control with feedfor-
ward because they exhibit non-minimumphase behaviours. For
example, diesel engine air paths usually exhibit non-minimal
phase behaviour because of the turbocharger dynamics (Stürze-
becher et al., 2015). For any physical system with unstable
zero dynamics, a perfect output trajectory tracking can lead
to an unbounded control input when the control horizon is
bounded in the negative or positive time direction (Chen
& Paden, 1996). In that sense, finding a bounded input trajec-
tory so that Equation (9) perfectly holds at each time is usually
not possible. Instead, a bounded input trajectory thatminimises
the error between both sides of Equation (9) at each point in
time is proposed. The resulting output tracking will be shown
to be close to the expected trajectory, especially when pre-
actuation time is available, and the inputs will remain bounded,
i.e. feasible.

This paper proposes to use a modified ridge regression to
ensure boundedness of the input trajectory (Ramsay & Silver-
man, 2005). Taking advantage of the structure of Φu in (13), a
penalty directly applied to a specific input and its derivatives is
possible.
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The coefficients describing the optimal smooth input trajec-
tory γ ∗

u are directly given as a modified version of the initial
Moore–Penrose inverse

γ ∗
u =



ΦT

uΦu + CT
regCreg

�−1
ΦT

uΦy, (14a)

with Creg ∈ RNtm×Lm.
The matrix Creg is built as a block diagonal matrix to weight

the input and its derivatives independently

Creg = diag
�
Creg,i

�
, ∀i ∈ {1, . . . ,m} , (14b)

where each matrix Creg,i weights a specific input and its deriva-
tives

Creg,i =
r∗�
k=0

υi,kϕ
(k)T , (14c)

with υi,k ≥ 0 the regularisation parameter for the kth derivative
of the ith input and ϕ(k) ∈ RNt×L corresponding to the sampled
kth derivatives of the functions defined in (11a). The proposed
regularisation plays an essential role in numerical stability to
ensure that the least squares problem (13) is well-posed. Also,
when the system exhibits non-minimum phase behaviour, reg-
ularisation ensures that the inputs remain bounded. In such a
case, perfect output tracking is, in theory, only possible with an
infinite pre-actuation time (Chen & Paden, 1996; Isidori, 1995).
Nevertheless, with enough pre-actuation time, e.g. a few sec-
onds for a diesel engine air path, perfect output tracking can
still be realised up to numerical precision. The proposed feed-
forward controller takes advantage of this possibility; it is, there-
fore, non-causal, in the sense that the EGR andVGT trajectories
are designed in advance for a prescribed horizon.

4. Controller parameter identification

The controller parameters θy(ρ) and θu(ρ) are function of the
scheduling variable ρ introduced in Section 2.1. A local learn-
ing approach is used to reduce the identification complexity
and gain meaningful information from the model structure
(Hametner & Jakubek, 2013). First, the local controllers are
identified in Section 4.1, and then a nonlinear aggregation of
the local controllers is parameterised in Section 4.2 to create a
parameter-varying controller.

4.1 Local controller parameter identification

The identification of the controller parameters θ
j
y and θ

j
u at a

fixed operating point ρj in (9) corresponds to the identification
of the parameters of a system of ordinary differential equa-
tions (ODE). Also, because the physical system may exhibit a
non-minimumphase behaviour locally, integrationmethods for
the parameter identification may be difficult (Mai-Duy, 2005).
A method based on principal differential analysis is therefore
chosen to ensure numerical stability and accuracy (Ramsay
& Silverman, 2005).

The measured signals during identification, i.e. input and
output, are individually modelled with a weighted sum of basis
functions, similarly as in (10). The weighted coefficients are
calibrated with the available measurements. Consequently, all

the necessary time derivatives of the inputs and outputs can be
estimated from the basis functions derivatives. The system of
ODE (9), for a constant scheduling vector ρ j, can be written as

βθ j = 0, (15)

with θ jT = �
θ
j
u
T

θ
j
y
T �

the controller parameters to be identi-
fied and β a matrix being the concatenation of all the required
inputs, outputs, and their derivatives as shown in (9).

Because the measured outputs contain noise, and because all
the signals are modelled with basis functions, the signals in β

are only approximations of reality. A total least squares (TLS)
method is used to consider these perturbations during the con-
troller parameter identification. The TLSmethod is used to find
the parameters matrix θ j that exactly fulfils (15) for a theo-
retical signals matrix β̄ , assumed with no measurement error
and no smoothing approximation. Therefore, the matrix β is
decomposed into a theoretical true signals β̄ and additive noise
β̃

β = β̄ + β̃ . (16)

Applying theTLS approach, the signals noisematrix is estimated
as the matrix with the minimum Frobenius norm that makes β̄

m-rank deficient

β̄ = arg min
β̄

���β − β̄
��
F
�
, (17a)

rank
�
β̄
� = rank(β) − m. (17b)

A solution to this constrained minimisation (17a)–(17b) can be
found using the singular value decomposition of the matrix β

β = U



�1 0
0 �2

� �
VT

1 VT
2
�T , (18)

where the m smallest singular values are collected in �2 with
the corresponding right singular vectorsVT

2 . Removing only the
smallestm eigenvalues ofβ would lead to thematrix β̄ minimis-
ing the Frobenius norm (17a) while fulfilling (17b) according
to the Eckart–Young–Mirsky theorem (Eckart & Young, 1936).
The estimated nullspace of β can be directly identified as the
remaining part of the singular value decomposition (18), and
will be the subspace where each ith column of the estimated
parameters matrix lies

θ
j
i ∈ �VT

2 �, ∀i ∈ {1, . . . ,m} , (19)

and with all columns of θ j being linearly independent.
Given that thematrix (VT

1 VT
2 )T is orthonormal, them col-

umn vectors ofVT
2 are all orthogonal unit vectors. In that sense,

and without loss of generality, taking θ j = VT
2 is a reasonable

choice and does not need any specific re-scaling.
The proposed TLS method is only optimal within the

assumption of Gaussian noise (Eckart & Young, 1936), yet
gives sensibly better results than standard least-squaresmethods
as experienced by the authors. Also, the collected measure-
ment data must persistently excite the system within the whole
operating frequency range to accordingly capture the system
dynamics.
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4.2 Local controller network

To create a parameter-varying feedforward controller (9), the
parameters of multiple controllers identified at various oper-
ating points must be merged. A substantial advantage of the
proposed method is that all the local controllers share the same
structure. It is, therefore, possible to interpolate between each
feedforward model set of parameters to create a local controller
network, equivalent to a local model network of controllers
(Hunt & Johansen, 1997). Additionally, local controller models
with different output relative degrees can also bemerged, adding
a zero coefficient to all the missing input and output derivatives.

To capture the nonlinearities of the air path with respect to
the engine speed and load, the feedforward controller parame-
ters are defined as a nonlinear aggregation of the parameters of
the N local controllers

θu (ρ) =
N�
j=1

φ̃j (ρ) θ
j
u, (20a)

θy (ρ) =
N�
j=1

φ̃j (ρ) θ
j
y, (20b)

with φ̃j : R2 → R the validity function associated with the jth
local model whose parameters are θ

j
u and θ

j
y. Furthermore,

at any operating point, the weighted sum of all the controller
parameters is constrained to be unitary to guarantee model
consistency and interpretability

N�
j=1

φ̃j(ρ) = 1. (21)

Gaussian radial basis functions are employed to provide a simple
identificationwhile ensuring amodular and interpretable LMN.
The validity functions are parameterised as

φj (ρ) = e



−τT

j



ρ−ρj

�2
�
. (22)

The parameters τ j are configurable and define the activation
range in each scheduling vector dimension. The Gaussian func-
tions (22) could be normalised to meet the requirement (21)
without complexifying the optimisation of τ j. Also, such a nor-
malisation usually suffers from the so-called reactivation issue
(Anzar & Azeem, 2004); a validity function can be not close to
zero in a region far away from its centre ρj.

To avoid reactivation, the validity function of each local
model is forced to reach zero asymptotically outside of a pre-
defined activation region. These activation regions are defined
using sigmoid functions in all ñ directions of the scheduling
vector

φactj (ρ) =
ñ�

k=1

⎡⎢⎣ 1

1 + e



τ k
act



ρk−ρk

j −σ k
�2

�

+ 1

1 + e



τ k
act



−ρk+ρk

j −σ k
�2

�
⎤⎥⎦ , (23)

with σ k a predefined characteristic length scale in the kth-
direction of the scheduling vector and τ k

act the associated tran-
sition smoothness parameter in that direction.

For each local model, its validity function used in (20a)
and (20b) results from the normalisation of the product of its
raw activation function φj and the corresponding activation
region function φactj

φ̃j (ρ) = φj (ρ) φactj (ρ)�N
k=1

�
φk (ρ) φactk (ρ)

� . (24)

The validity function parameters τ j are directly identified with
measurement data for a variable engine operating point. For that
purpose, an interior point method is employed to minimise the
square difference between the input computed using the cur-
rent parameter-varying controller and the measured input. The
weighting of each localmodel parameter results in the activation
of the jth local model only in the surroundings of its identifica-
tion region, i.e. for ρj close to ρ in the sense of the Euclidean
norm.

5. Simulation results

This section demonstrates the effectiveness of the proposed
automated feedforward controller identification method using
an experimentally validated simulation platform of a heavy-
duty diesel engine (Stefan et al., 2013). All controllers in this
section track a randomly generated output trajectory that mim-
ics Pexh and NOx concentration under real scenarios. The ref-
erence output trajectory is known in advance, and the output
measurements are corrupted with realistic noise during param-
eter identification. The EGR and VGT are considered as input
variables and except in the end of Section 5.4, the input is never
saturated.

First, the robustness of the local controller identification is
discussed in Section 5.1, especially regardingmodel order selec-
tion. Then, Section 5.2 shows the performances of the proposed
feedforward method when applied to an operating point where
the system exhibits non-minimum phase behaviour. A PI con-
troller is then added to remove steady-state output tracking
error in Section 5.3. Finally, in Section 5.4 a parameter-varying
feedforward controller is identified and compared to classical
controlmethods to realise accurate output tracking on the entire
engine operating region.

5.1 Local controller identification

This section emphasises the advantage of directly identifying a
feedforward controller, as proposed in Section 4, compared to
the inversion of a forward model (1) as detailed in Section 2.2,
i.e. indirect identification. For the direct identification, the basis
functions (12) are sampled at 50ms, and spaced every 0.6 s with
�k = 0.7 to balance accuracy and complexity.

When identifying a feedforward controller from the inver-
sion of a forward model, the model order selection greatly
influences the feedforward controller accuracy and stability as
depicted in Figure 4. For a small model order, the accuracy is
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Figure 4. Open loop output tracking using different model orders n to identify
a feedforward controller from model inversion, for a fixed engine operating point
Nice = 1200 rpm, Tice = 1000 Nm.

not enough to achieve accurate control. In contrast, some insta-
bilities occur for a high model order because the observability
matrix (2a) defined in Section 2.2 is close to being singular.

Directly identifying a feedforward controller from measure-
ment data is more robust to high model order selection, as
shown in Figure 5. All the proposed parametrisations in Figure 5
show almost identical results for a sufficiently highmodel order.
When adding additional model parameters, i.e. higher model
order, some of these parameters are kept to nearly zero. Another
advantage is the ability to independently choose themodel order
for each output and input. In that sense finding the minimum
number of model parameters can be possible, mainly thanks to
the TLS method introduced in Section 4.1.

Indeed, with the TLS method and a large number of out-
put and input derivatives, the optimal SVD truncation of (18)
can be found as given in Gavish and Donoho (2014). The
experimentally computed singular values and the optimal trun-
cation are depicted in Figure 6 using 5th order derivatives for
both the output and the input. Ten signals should be kept, as
the optimal truncation leads to eight meaningful singular val-
ues, and the system has two inputs/outputs according to (17b).
A fourth-order model can be chosen, with r1 = r2 = 2 and

Figure 5. Open loop output tracking using different numbers of input/output
derivatives to identify a feedforward controller with the TLS method, for a fixed
engine operating point Nice = 1200 rpm, Tice =1000 Nm. (C1 : r1 = r2 =1, r∗ =1;
C2 : r1 = r2 = 2, r∗ = 1; C3 : r1 = r2 = 2, r∗ = 2; C4 : r1 = r2 = 3, r∗ = 1).

Figure 6. Singular values σi of β using up to the 5-th derivative of each input and
output. The estimated optimal truncation threshold σ̂ ∗ is also represented.

r∗ = 1. This analysis coincides with the discussed results shown
in Figure 5.

5.2 Feedforward control at a non-minimum phase
operating point

A diesel engine air path can exhibit non-minimum phase
behaviour when operated at specific operating points, for exam-
ple, at a high rotational speed of 2000 rpm and a low load of
100Nm, when the VGT is actuated to modify the NOx mass
flow.At this operating point, when theVGT is set proportionally
to the desired NOx concentration, a typical non-minimum-
phase behaviour occurs as shown in Figure 7; the output goes
in the opposite direction at the beginning of each step.

At this operating point, and for this reduced SISO case, an
identified forward model usually has an unstable zero. As a
result, when an identified model is inverted to create a feedfor-
ward controller, the trajectory designed as proposed in Section 3
necessitates some regularisation to keep the input bounded.
Two different levels of regularisation are depicted in Figure 7.
Output oscillations and overshoots are reduced with a strong
regularisation, but the tracking is still not accurate.

When a feedforward controller is directly identified from
measurement data, the input relative degree can be set to a small
value to achieve better output tracking accuracy with fewer

Figure 7. Open loop feedforward control of VGT for a fixed operating pointNice =
2000 rpm, Tice = 100 Nm, EGR = 50%, where the system shows non-minimum
phase behaviour. (R1: light regularisation, R2: strong regularisation)
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oscillations. Indeed, in Figure 7, this latter method, referred
to as direct identification, shows fewer oscillations and a more
accurate output tracking, taking advantage of predictive knowl-
edge regarding the desired output trajectory. With the direct
method, regularisation is also needed but is much less sensitive
than for the indirect case. Indeed, the regularisation parameters
υi,k in (14c) have been set to 0.1 for each input and each input
derivative. Still, noticeably identical results are found whenever
the regularisation coefficients are taken in the range [0.01, 0.5].

A static controller is also employed in Figure 7 to empha-
sise the non-minimum phase behaviour of the system at this
specific operating point. This controller solely corresponds to
a static gain applied to the desired output. At the beginning of
each step, the output, i.e. NOx, starts to change in the wrong
direction before reaching the desired setpoint. This behaviour
occurs because of the non-minimum phase property of the sys-
temand is responsible for the numerical difficulties encountered
when using a feedforward controller with the indirect method.

5.3 Two-degree-of-freedom control

The proposed feedforward controller based on Equation (9)
only constitutes an open-loop controller. As a result, steady-
state errors are not compensated. Therefore, a PI controller is
added to work along with the feedforward controller C2 pre-
sented in Figure 5. The PI gains are manually calibrated to
asymptotically reach the reference during steady states, with a
unique parametrisation for the entire engine operating region.
The PI calibration is kept very simplistic, as the PI feedback
controller only aims at slowly removing steady-state error.

A schematic representation of this two-degree-of-freedom
controller (2DoF) is presented in Figure 8. For this study, the
output measurements are considered without noise to empha-
sise only the feedforward performances. The resulting output
tracking of this 2DoF strategy is depicted in Figure 9. The
results using only the feedforward controller are also displayed
to emphasise the importance of the feedforward part compared
to the PI contribution.

5.4 Varying engine operating point

In this section, multiple local controllers identified at various
engine operating points aremerged to create a single parameter-
varying controller. After adding a PI feedback loop to this
parameter-varying controller, the resulting 2DoF controller is
compared to classical controllers for a varying engine operating
point.

After identifying local controllers, the validity functions
parameters of the parameter-varying controller are optimised

Figure 8. Diagram of the two-degree-of-freedom controller (2DoF).

Figure 9. Comparison between a feedforward and a 2DoF controller, for a fixed
engine operating point Nice = 1200 rpm, Tice = 1000 Nm.

Figure 10. Region of highest activation for each local model (OPj) around its
identification centre.

with an interior-point method using transient operating point
measurement data. Each local model has the highest validity
function of them all around its operating point of identification,
as shown in Figure 10. The use of regularisation and region of
activation, as defined in (24), impedes reactivation and ensures
that each local model has a validity function near unity around
its corresponding operating point.

The parameter-varying feedforward controller is imple-
mented with a PI controller calibrated with constant gains. This
resulting 2DoF controller performances are shown in Figure 11
for a varying engine operating point and compared to:

• Only the PI controller from the 2DoF strategy. This strat-
egy is neither adaptive nor predictive but is highly conve-
nient regarding calibration effort and computational require-
ments;

• A network of full-state feedback controllers with integration
of the control error. It is composed of multiple state feedback
controllers identified at various operating points (Gregor-
cic & Lightbody, 2010). This control method is adaptive but
not predictive, as it only uses the current desired output and
system measurements;

• A flatness-based MPC as proposed in Euler-Rolle
et al. (2021) so that the local model parameters can be
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Figure 11. Closed-loop results using different controllers, without input satura-
tion and for a varying engine operating point.

directly merged, creating a time-varying controller at each
iteration. This adaptive and predictive strategy requires a sig-
nificant computational effort, making its implementation on
current hardware impractical.

The reference tracking regarding the first output, the exhaust
pressure Pexh, is almost identical for all controllers. Only
the non-predictive controllers, i.e. PI and state feedback con-
trollers, are slightly less accurate before large pressure variations.
Regarding the second output, the NOx mass flow, output track-
ing is inaccurate for the PI controller during transient phases.
The state feedback controller is faster than the PI controller but
fails to accurately follow the desired referenceNOx signal during
large transients. These observations are confirmed by a lower
coefficient of determination detailed in Table 1 for the non-
predictive controllers, especially regarding the second output
NOx.

The proposed 2DoF controller is more precise for both out-
puts during transient phases as it inherently considers predictive
information. The 2DoF method is almost as accurate as the
MPC and can still be improved with a more sophisticated feed-
back loop. Indeed, the MPC is primarily relying on its feedback
information to control the outputs during transient engine oper-
ating points. The 2DoF, with its simple PI feedback loop, cannot
perfectly follow the outputs during transient operating points,

Table 1. Coefficients of determination for
different controllers proposed in Figure 11.

Controller R2-Pexh R2-NOx

PI 0.984 0.613
Feedback 0.963 0.857
2DoF 0.991 0.947
MPC 0.992 0.987

Figure 12. Closed-loop results using different controllers, with input saturation
and for a varying engine operating point.

Table 2. Coefficients of determination for
different controllers proposed in Figure 12.

Controller R2-Pexh R2-NOx

PI 0.837 0.600
Feedback 0.676 0.709
2DoF 0.946 0.922
MPC 0.965 0.984

but the control error is immediately corrected after the engine
operating point returns to a steady state.

Another reference output trajectory tracking is presented in
Figure 12 for the same controllers. Nevertheless, this time, the
input is saturated for all the controllers as the reference is not
reachable between 475 and 480 seconds. Especially the exhaust
pressure cannot be accurately followed, even with the adaptive
MPC, resulting in lower coefficients of determination given in
Table 2 compared to the previous case summarised in Table 1.

The same observation as in the previous case still holds, with
non-predictive methods being slower and, therefore, less accu-
rate. During and shortly after an input saturation, the 2DoF
method is almost as precise as the adaptive MPC but with sig-
nificantly smaller computation requirements. Also, compared
to the PI or the state feedback controllers, the 2DoF method
is much faster at removing a steady-state error after an input
saturation phase.

6. Conclusion and outlook

This paper proposes an automated method for identifying a
feedforward controller for output tracking of a nonlinear phys-
ical system. The proposed structure benefits from its modu-
larity, making it applicable to any physical system modelled
with an LPV model. Additionally, the controller parameters
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can be directly identified from measurement data, guaran-
teeing robustness against model order selection and ensuring
numerical stability. Also, with the suggested TLS identifica-
tion approach, the model order can be estimated without prior
knowledge regarding the physical system.

A significant advantage of the proposed feedforward identi-
ficationmethod is that multiple local controllers can bemerged.
Because they share an identical structure, their parameters can
be combined to create a local controller network. Using a single
least squares algorithm, the resulting parameter-varying con-
troller can design an entire input trajectory given a desired
output trajectory. Moreover, the input trajectory is guaranteed
to be smooth and bounded thanks to regularisation, even if the
system exhibits non-minimum phase behaviour.

The proposed feedforward controller, implemented with a
simple PI feedback loop, i.e. two-degree-of-freedom controller,
is compared to classical controllers using a detailed physical
simulation of an engine air path. The accuracy during tran-
sient output tracking is improved using the proposed strategy
compared to non-predictivemethods. The 2DoF controller per-
forms almost as well as an adaptive MPC, even with input
constraints, but uses only a fraction of its complexity. The input
trajectory can therefore be easily recomputed anytime a new and
more accurate operating point trajectory or output reference
trajectory is available.

Future work is focusing on communicating the generated
input trajectory to the high-level controller to improve the set-
points definition and assess input constraints. Additionally, the
practical implementation of the proposed controller, e.g. on a
diesel engine testbed, is the next step to validate the proposed
feedforward strategy. Finally, a theoretical study regarding the
optimality of the proposed feedforward controller is also under
consideration.
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Appendix. Matrices for the feedforward least squares
formulation
This appendix provides details for re-writing (9) into the form (13) where
the input parametrization γ u appears linearly. First, the desired outputs
signals are discretised in Nt samples, and so are the basis functions given
in (11a), i.e. ϕk ∈ RNt leading to yi ∈ RNt ,∀i ∈ {1, . . . ,m}. Additionally,
the parameters of the controller structure (9) are also discretised

θ̄y = θy (ρ (t)) , (A1)

with ρ(t) the discretised operating trajectory provided by the high-level
controller. The model parameters are ordered in a three dimensional
matrix, i.e. θ̄y ∈ Rn×m×Nt .

With the discretised expected outputs and their derivatives, the left-
hand side of (9) is trivially computed. Also, the resulting m columns of Nt

samples are stored in a column vector Φy of Ntm elements

Φy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m�
k=1

� rk�
l=0

�
ylk � θ̄y

�
l + 1 +

k−1�
i=1

ri + 1, 1, ·
���

...
m�
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� rk�
l=0

�
ylk � θ̄y

�
l + 1 +

k−1�
i=1

ri + 1,m, ·
���

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A2)

with θ̄y(l + 1 + �k−1
i=1 ri + 1, k, ·) ∈ RNt ,∀l ∈ {0, . . . , rk},∀k ∈ {1, . . . ,m}.

The notation � refers to the standard Hadamard product, resulting in the
column vector Φy ∈ RNtm.

The right-hand side of (9) is discretised in Nt samples, with θ̄u ∈
Rm(r∗+1)×m×Nt created identically as θ̄y. The inputs are parameterised with
basis functions as shown in (10). It follows that in the right-hand side of (9)
all the inputs and their derivatives can be written�

ū1, ū(1)
1 , . . . , ū(r∗)

m

�
=

�
ϕγ u1 , ϕ(1)γ u1 , . . . , ϕ(r∗)γ um

�
.

(A3)
In Equation (9), the right-hand side can be expressed as done for the left-
hand side (A2), just changing the output signals with the inputs and θ̄ y by
θ̄u. Using the relation (A3), and collecting all the unknown variables,

γ u = �
γ T
u1 , γ T

u2 , . . . , γ T
um

�T , (A4)

the right-hand side of (9) becomes

Φu =
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.

(A5)
From (A5), all contributions γuk ,∀k ∈ {1, . . . ,m} can be collected to
become a linear operation with respect to γ u

Φuγ u =
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with Φu ∈ RNtm×Lm.
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