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Many stochastic continuous-state dynamical systems can be modeled as probabilistic programs with
nonlinear non-polynomial updates in non-nested loops. We present two methods, one approximate and
one exact, to automatically compute, without sampling, moment-based invariants for such probabilistic
programs as closed-form solutions parameterized by the loop iteration. The exact method applies to
probabilistic programs with trigonometric and exponential updates and is embedded in the Polar tool. The
approximate method for moment computation applies to any nonlinear random function as it exploits the
theory of polynomial chaos expansion to approximate non-polynomial updates as the sum of orthogonal
polynomials. This translates the dynamical system to a non-nested loop with polynomial updates, and thus
renders it conformable with the Polar tool that computes the moments of any order of the state variables.
We evaluate our methods on an extensive number of examples ranging from modeling monetary policy
to several physical motion systems in uncertain environments. The experimental results demonstrate the
advantages of our approach with respect to the current state-of-the-art.
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1 INTRODUCTION

Probabilistic programs (PPs) are modern tools to automate statistical modeling. They are becom-
ing ubiquitous in AI applications, security/privacy protocols, and stochastic dynamical system
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modeling. PPs translate stochastic systems into programs whose execution gives rise to sets
of random variables of unknown distributions. In the case of dynamical stochastic systems,
corresponding PPs incorporate dynamics via loops, in which case, the distributions of the
generated random quantities also vary along loop iterations. Automating statistical inference for
these stochastic systems requires knowledge of their distribution; that is, the distribution(s) of
the random variable(s) generated by executing the probabilistic program that encodes them.

Statistical moments are essential quantitative measures that characterize many probability
distributions. In Reference [3] the authors introduced the notion of Prob-solvable loops, a class of
probabilistic programs with a non-nested loop with polynomial updates and acyclic state variable
dependencies for which it is possible to automatically compute moment-based invariants of any
order over the program state variables as closed-form expressions in the loop iteration. This
approach was first implemented in the Mora [4] tool and later further improved in the Polar
tool [29] to also support multi-path probabilistic loops with if-statements, symbolic constants,
circular linear dependency among program state variables and drawing from distributions that
depend on program state variables. More recently, Reference [1] proposed a method to handle
more complex state variable dependencies that make both probabilistic and deterministic loops in
general unsolvable. Furthermore, the work in Reference [22] shows how to use a finite set of high-
order moment-based invariants to estimate the probability distribution of the program’s random
variables. The core theory underlying all these approaches combines techniques from computer
algebra such as symbolic summation and recurrence equations [23] with statistical methods.

Despite the successful application of these methods and tools in many different areas, including
the analysis of consensus/security protocols [29], inference problems in Bayesian networks [4, 38]
and automated probabilistic program termination analysis [27, 28], they fail when modeling more
complex dynamics that require non-polynomial updates. Such examples are depicted in Figure 1,
where the updates of the variables contain the logarithmic function, and in Figure 2, where mod-
eling the physical motion of a vehicle requires trigonometric functions. Thus, how to leverage the
class of Prob-solvable loops to compute moment-based invariants as closed-form expressions in
probabilistic loops with non-polynomial updates remains an open research problem.

In preliminary work presented at QEST 2022 [25], we provided a solution to this problem
leveraging the theory of general Polynomial Chaos Expansion (gPCE) [45], which consists of
decomposing a non-polynomial random function into a linear combination of orthogonal polyno-
mials. gPCE theory, upon which our approach is based, assures that the polynomial approximation
of non-polynomial square-integrable functions converges to the truth by increasing the degree
of the polynomial and guarantees the estimation of moments of random variables with complex
probability distributions. Once such a polynomial approximation is applied, we take advantage
of the work in References [3, 4] to automatically estimate the moment-based invariants of the
loop state variables as closed-form solutions. In Figure 1, we illustrate our gPCE-based approach
via the Taylor rule in monetary policy, where we estimate the expected interest rate given a
target inflation rate and the gross domestic product (GDP). In this example, we approximate the
original log function with 5th degree polynomials and obtain a Prob-solvable loop. This enables
the automatic computation of the gPCE approximation of the moments in closed-form at each
loop iteration (n) using the approach proposed in Reference [3].

Trigonometric functions are prevalent in stochastic dynamical systems of motion. The exponen-
tial function is directly related to trigonometric functions as well as to characteristic functions of
distributions. We combine the methodology proposed in Reference [19] with Prob-Solvable loops
to obtain exact moments of trigonometric and exponential functions of random variables at loop
iteration. Figure 2 presents the PP encoding of the stochastic dynamical model of a turning vehicle
that requires trigonometric updates. Our new approach incorporates results in Reference [19] and
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Fig. 1. Probabilistic loop in the top left panel encodes the Taylor rule [40], an equation that prescribes a
value for the short-term interest rate based on a target inflation rate and the gross domestic product. The
program uses a non-polynomial function (log) in the loop body to update the continuous-state variable (i).
The top right panel contains the Prob-Solvable loop (with polynomial updates) obtained by approximating
the log function using polynomial chaos expansion (up to fifth degree). In the bottom left, we compute the
expected interest rate (E[in]) as a closed-form expression in loop iteration n using the Prob-solvable loop and
evaluate it at n = 20. In the bottom right panel, we compare the true and estimated distributions for a fixed
iteration (we sample the loop 106 times at iteration n = 20).

Fig. 2. On the left is a probabilistic loop modeling the behavior of a turning vehicle [35] using non-polynomial
(cos, sin) updates in the loop body. On the top right is the exact expected position (xn ,yn ) and other exact
expected values computed automatically in closed-form in the number of loop iterations n. The plot in the
center contains 20 sampled trajectories (xn ,yn ) up to iteration n = 201 (dashdot lines with different colors)
and the approximated expected trajectory computed by averaging the sampled ones (dashed blue line). More-
over, we automatically computed the exact expected trajectory and standard deviation with our method. The
solid purple line marks the exact expected trajectory. The two solid red lines mark the boundary of the region
contained within ± two standard deviations of the expected trajectory.
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computes moments of all orders in closed form as a function of iteration number. In the QEST 2022
paper [25], we provided only gPCE-based moment estimates of trigonometric and exponential up-
dates. Figure 2 shows how our novel approach provides the exact expected trajectory (xn ,yn) as a
function of the loop iteration n. Although the expected trajectory moves from left to right, we can
see that some of the sampled trajectories in effect turn backward. This underlines the necessity for
high-order statistical moments, which our approaches are able to compute.

Article contribution. This article extends and improves our previous QEST 2022 conference [25]
manuscript with the following new contributions:

(i) Reference [19] developed a method that obtains the exact time evolution of the moments of
random states for a class of dynamical systems that depend on trigonometric updates. We
amended their approach and make it compatible with the Polar tool [29]. Specifically, we
incorporated the approach of Reference [19] into Prob-solvable loops when updates involve
trigonometric functions. This allows us to automatically compute the exact moments of any
order and at all iterations. Moreover, we extended Reference [19] to include exponential up-
dates. We present the new methodological material in Section 5.

(ii) We rewrote the abstract and the introduction to reframe our work with the new material. We
updated Related Work to reflect our new contributions and compare them with the current
state-of-the-art. We revised the text of all the other sections adding new examples.

(iii) We have considerably improved and expanded the evaluation section by adding six bench-
mark models to the previous five in Reference [25]. Moreover, we extend our original evalu-
ation by including comparisons for our newly proposed exact method.

Related Work. Taylor series models [6, 31, 33] are a well-established computational tool in reach-
ability analysis for (non-probabilistic) non-linear dynamical systems that combine the polynomial
approximation of Taylor series expansion with the error intervals to over-approximate the set
of dynamical trajectories for a finite time horizon. Reference [35] approximates non-polynomial
functions of random variables as polynomials using Taylor series expansion. Other works [37, 41]
follow a similar approach. Such approximations work well in the neighborhood of a point, requir-
ing otherwise a polynomial with a high degree to maintain a good level of accuracy. This approach
is not suitable for approximating functions with unbounded support.

Our two approaches, exact and gPCE-based, have several advantages over the method proposed
in Reference [35]. First, in contrast, to Reference [35], neither of our methods is limited to a fixed
iteration. Instead, we compute closed-form expressions in the number of loop iterations. Second,
the interval estimates in Reference [35] become larger after a few iterations. Our exact moment
calculation for the same models, involving trigonometric functions, is not affected by iteration
number and is exact (i.e., incurs no error) at all iterations.

The method of Reference [19], which we adjusted, extended, and made compatible with Polar,
concerns discrete-time stochastic nonlinear dynamical systems subjected to probabilistic uncer-
tainties. Reference [19] focused on nonlinear autonomous and robotic systems where motion
dynamics are described in terms of translational and rotational motions over the planning horizon.
The latter naturally led to the introduction of trigonometric and mixed-trigonometric-polynomial
moments to obtain an exact description of the moments of uncertain states. This method
computes exact moments but it can only handle systems encoded in PPs, where all nonlinear
transformations take standard, trigonometric, or mixed-trigonometric polynomial forms. Our
approximate gPCE-based approach instead is applicable to general non-polynomial updates (e.g.,
containing logarithms). Furthermore, the work of Reference [19] only considers the computation
of moments up to a fixed horizon. In contrast, for systems that can be modeled as Prob-solvable
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loops, both our methods provide closed-form expressions parameterized by the number of loop
iterations.

Polynomial chaos expansion-based methods have been extensively used for uncertainty quantifi-
cation in different areas, such as engineering problems of solid and fluid mechanics (e.g., References
[11, 15, 18]), computational fluid dynamics (e.g., Reference [24]), flow through porous media [13,
14], thermal problems [17], analysis of turbulent velocity fields [7, 26], differential equations (e.g.,
References [43, 45]), and, more recently, geosciences and meteorology (e.g., References [8, 12, 16]).

Outline. Section 2 provides the necessary background on Prob-solvable Loops and the theory
of gPCE. Section 3 introduces our gPCE-based approximation method presenting the conditions
that are necessary to accurately approximate general non-polynomial updates in a probabilistic
loop. Section 4 shows how to obtain a Prob-solvable loop using our approximation method and
hence how to automatically compute moment-based invariants of all orders for the program state
variables. Section 5 presents the exact method leveraging the theory in Reference [19] to compute
the exact moments of PPs with trigonometric and exponential updates. Section 6 evaluates the
accuracy and feasibility of the proposed approaches over several benchmarks comparing them
with the state-of-the-art. We conclude in Section 7.

2 PRELIMINARIES

We assume the reader to be familiar with basic probability theory. For more details, we refer to
Reference [9].

2.1 Prob-Solvable Loops

Reference [3] defined the class of Prob-solvable loops for which moments of all orders of program
variables can be computed symbolically: given a Prob-solvable loop and a program variable x , their
method computes a closed-form solution for E(xk

n ) for arbitrary k ∈ N, where n denotes the nth
loop iteration. Prob-solvable loops are restricted to polynomial variable updates.

Definition 2.1 (Prob-solvable Loops [3]). Let m ∈ N and x1, . . . xm denote real-valued program
variables. A Prob-solvable loop with program variables x1, . . . xm is a loop of the form

I ; while true: U end, such that

— I is a sequence of initial assignments over a subset of {x1, . . . ,xm}. The initial values of xi

can be drawn from a known distribution. They can also be real constants.
—U is the loop body and a sequence ofm random updates, each of the form,

xi = Dist or xi = aixi + Pi (x1, . . . xi−1),
where ai ∈ R, Pi ∈ R[x1, . . . ,xi−1] is a polynomial over program variables x1, . . . ,xi−1

and Dist is a random variable whose distribution is independent of program variables with
computable moments. ai and the coefficients in Pi can be random variables with the same
constraints as for Dist.

The syntax of Prob-solvable loops as defined in Definition 2.1 is restrictive. For instance, an
assignment for a variable xi must not reference variables x j with j > i . Hence, the structural
dependencies among program variables are acyclic. Some of these syntactical restrictions were
lifted in a later work [29] to support distributions depending on program variables, if-statements,
and linear cyclic dependencies. The latter means that polynomial assignments can be of the form
xi = Li (x1, . . . ,xn)+Pi (x1, . . . xi−1), where Pi is a polynomial, and Li is a linear function, as long as
all program variables in Li (x1, . . . ,xn) with non-zero coefficient depend only linearly on xi . In this
work, we utilize this relaxation and allow for linear cyclic dependencies in Prob-solvable loops.
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Many real-life systems exhibit non-polynomial dynamics and require more general updates,
such as, for example, trigonometric or exponential functions. In this work, we develop two
methods—one approximate, one exact—that allow the modeling of non-polynomial assignments
in probabilistic loops by polynomial assignments. Doing so allows us to use the Prob-solvable

loop-based methods in References [3, 29] to compute the moments of the stochastic components
of a much broader class of systems. Our method for exact moment derivation for probabilistic
loops with non-polynomial functions builds upon Prob-solvable loops. In contrast, our PCE-based
approach, described in the following sections, is not limited to Prob-solvable and can be used in
more general probabilistic loops. The only requirement is that the loops satisfy the conditions in
Section 3.1.

2.2 Polynomial Chaos Expansion

Polynomial chaos expansion (PCE) [10, 45] recovers a random variable in terms of a linear com-
bination of functionals whose entries are known random variables, sometimes called germs, or,
basic variables. Let (Ω, Σ,P) be a probability space, where Ω is the set of elementary events, Σ is a
σ -algebra of subsets of Ω, and P is a probability measure on Σ. Suppose X is a real-valued random
variable defined on (Ω, Σ,P), such that

E(X 2) =
ˆ

Ω
X 2(ω)dP(ω) < ∞. (1)

The space of all random variables X satisfying Equation (1) is denoted by L2(Ω, Σ,P). That
is, the elements of L2(Ω, Σ,P) are real-valued random variables defined on (Ω, Σ,P) with finite
second moments. If we define the inner product as E(XY ) = (X ,Y ) =

´
Ω X (ω)Y (ω)dP(ω) and

norm | |X | | =
√
E(X 2) =

√´
Ω X 2(ω)dP(ω), then L2(Ω, Σ,P) is a Hilbert space; i.e., an infinite

dimensional linear space of functions endowed with an inner product and a distance metric.
Elements of a Hilbert space can be uniquely identified by their coordinates with respect to an
orthonormal basis of functions, in analogy with Cartesian coordinates in the plane. Convergence
with respect to the norm | | · | | is called mean-square convergence. A particularly important feature
of a Hilbert space is that when the limit of a sequence of functions exists, it belongs to the
space.

The elements in L2(Ω, Σ,P) can be classified in two groups: basic and generic random variables,
which we want to decompose using the elements of the first set of basic variables. [10] showed that
the basic random variables that can be used in the decomposition of other functions have finite
moments of all orders with continuous probability density functions (pdfs).

The σ -algebra generated by the basic random variableZ is denoted by σ (Z ). Suppose we restrict
our attention to decompositions of a random variable X = д(Z ), where д is a function with д(Z ) ∈
L2(Ω,σ (Z ),P), and the basic random variable Z determines the class of orthogonal polynomials
{ϕi (Z ), i ∈ N},

〈
ϕi (Z ),ϕ j (Z )

〉
=

ˆ
Ω
ϕi (Z (ω))ϕ j (Z (ω))dP(ω) =

ˆ
ϕi (x)ϕ j (x)fZ (x)dx =

{
1 i = j,

0 i � j,
(2)

where fZ denotes the pdf of Z . The set {ϕi (Z ), i ∈ N} is a polynomial chaos basis.
If Z is normal with mean zero, then the Hilbert space L2(Ω,σ (Z ),P) is called Gaussian and the

related set of polynomials is represented by the family of Hermite polynomials (see, for example,
Reference [45]) defined on the whole real line. Hermite polynomials form a basis of L2(Ω,σ (Z ),P).
Therefore, every random variable X with finite second moment can be approximated by the
truncated PCE,
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X (d ) =
d∑

i=0

ciϕi (Z ), (3)

for suitable coefficients ci that depend on the random variable X . The truncation parameter d is
the highest polynomial degree in the expansion. Since the polynomials are orthogonal,

ci =
1

| |ϕi | |2
〈X ,ϕi 〉 =

1

| |ϕi | |2
〈д,ϕi 〉 =

1

| |ϕi | |2

ˆ
R

д(x)ϕi (x)fZ (x)dx . (4)

The truncated PCE of X in Equation (3) converges in mean square to X [10, Section 3.1]. The first
two moments of Equation (3) are determined by E(X (d )) = c0, and Var(X (d )) =

∑d
i=1 c

2
i | |ϕi | |2.

Representing a random variable by a series of Hermite polynomials in a countable sequence
of independent Gaussian random variables is known as Wiener–Hermite polynomial chaos ex-
pansion. In applications of Wiener—Hermite PCEs, the underlying Gaussian Hilbert space is of-
ten taken to be the space spanned by a sequence {Zi , i ∈ N} of independent standard Gaussian
basic random variables; i.e., Zi ∼ N(0, 1). For computational purposes, the countable sequence
{Zi , i ∈ N} is restricted to a finite number k ∈ N of random variables. The Wiener—Hermite PCE
converges for random variables with finite second moment. Specifically, for any random variable
X ∈ L2(Ω,σ ({Zi , i ∈ N}),P), the approximation Equation (3) satisfies

X (d )
k
=

d∑
i=0

aiϕi (Z1, . . . ,Zk ) → X as d,k → ∞ (5)

in mean-square convergence (see Reference [10]). The distribution of X can be quite general;
e.g., discrete, singularly continuous, absolutely continuous as well as of mixed type.

3 POLYNOMIAL CHAOS EXPANSION ALGORITHM

3.1 Random Function Representation

In this section, we state the conditions under which the estimated polynomial is an unbiased
and consistent estimator and has exponential convergence rate. Suppose k continuous random
variables Z1, . . . ,Zk are used to introduce stochasticity in a PP with corresponding cumulative
distribution functions (cdfs) FZi

, i = 1, . . . ,k . Also, suppose all k distributions have probability
density functions, and let Z = (Z1, . . . ,Zk ) with cdf FZ. We assume that the elements of Z satisfy
the following conditions:

— [(A)] Zi , i = 1, . . . ,k , are independent.
— [(B)] We consider functions д such that д(Z) ∈ L2(Q, FZ), where Q is the support of the joint

distribution of Z = (Z1, . . . ,Zk ).1
— [(C)] All random variables Zi have distributions that are uniquely characterized by their

moments.2

Under condition (A), the joint cdf of the components of Z is FZ =
∏k

i=1 FZi
. To ensure

the construction of unbiased estimators with optimal exponential convergence rate (see Ref-
erences [10, 45]) in the context of probabilistic loops, we further introduce the following
assumptions:

— [(D)] д is a function of a fixed number of basic variables (arguments) over all loop iterations.
— [(E)] If Z(j) = (Z1(j), . . . ,Zk (j)) is the stochastic argument of д at iteration j, then FZi (j)(x) =
FZi (l )(x) for all pairs of iterations (j, l) and x in the support of FZi

.

1Ω is dropped from the notation as the sample space is not important in our formulation.
2Conditions that ascertain this are given in Theorem 3.4 of Reference [10].
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18:8 A. Kofnov et al.

If Conditions (D) and (E) are not met, then the polynomial coefficients in the PCE need be com-
puted for each loop iteration individually to ensure optimal convergence rate. It is straightforward
to show the following proposition.

Proposition 3.1. If Z = (Z1, . . . ,Zk1 ), Y = (Y1, . . . ,Yk2 ) satisfy conditions (A), (C), and (E) and are

mutually independent, and functionsд andh satisfy conditions (B) and (D), then their sum,д(Z)+h(Y),
and product, д(Z) · h(Y), also satisfy conditions (B) and (D).

3.2 PCE Algorithm

Let Z1, . . . ,Zk be independent continuous random variables, with respective cdfs Fi , satisfying
conditions (A), (B) and (C). Then, Z = (Z1, . . . ,Zk )T has cdf FZ =

∏k
i=1 Fi . Let Q denote the

support of FZ. The functionд : Rk → R, withд ∈ L2(Q, F), can be approximated with the truncated
orthogonal polynomial expansion, as described in Figure 3,

д(Z) ≈ д̂(Z) =
∑

di ∈{0, ...,d̄i },
i=1, ...,k

c(d1, . . . ,dk )zd1
1 · · · zdk

k
=

L∑
j=1

c j

k∏
i=1

p̄
dji

i (zi ), (6)

where

— p̄
dji

i (zi ) is a polynomial of degree dji , and belongs to the set of orthogonal polynomials with
respect to FZi

that are calculated with the Gram-Schmidt orthogonalization procedure3;
— d̄i = maxj (dji ) is the highest degree of the univariate orthogonal polynomial, for i = 1, . . . ,k ;

— L =
∏k

i=1(1 + d̄i ) is the total number of multivariate orthogonal polynomials and equals the
truncation constant;

— c j are the Fourier coefficients.

The Fourier coefficients are calculated using

c j =

ˆ

Q

д(z1, . . . , zk )p
dji

i (zi )dF =

ˆ
· · ·

ˆ

Q

д(z1, . . . , zk )
(

k∏
i=1

p̄
dji

i (zi )
)
dFZk

. . .dFZ1 , (7)

by Fubini’s theorem.

Example 3.2. Returning to the Turning vehicle model in Figure 2, the non-polynomial functions
to approximate areд1 = cos andд2 = sin from the updates of program variablesy,x , respectively. In
both cases, we only need to consider a single basic random variable, Z ∼ N(0, 0.01) (ψ in Figure 2).

Using polynomials of degree up to 5, Equation (6) has the following form for the two functions,

д̂1(z) = cos(ψ ) = a0 + a1ψ + · · · + a5ψ
5 (8)

and

д̂2(z) = sin(ψ ) = b0 + b1ψ + · · · + b5ψ
5. (9)

We compute the coefficients ai ,bi in Equations (8) and (9) using Equation (7) to obtain the values
shown in Figure 2.

Example 3.3. Consider the function д(x ,y) =
√
x2 + y2, where x ∼ Uni f orm(−1, 1) and y has

pdf fy = 0.75(1 −y2) supported on [−1, 1]. Up to degree 2, the basis elements in the PC expansion

3Generalized PCE typically entails using orthogonal basis polynomials specific to the distribution of the basic variables,
according to the Askey scheme of References [44, 45]. We opted for the most general procedure that can be used for any
basic variable distribution.
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Fig. 3. Illustration of PCE algorithm.

are element-wise products of the univariate orthogonal polynomials

p0
x (x) = 1, p0

y (y) = 1,p1
x (x) =

√
3x , p1

y (y) =
√

5y,

p2
x (x) = 1.5

√
5x2 − 0.5

√
5, p2

y (y) = 1.25
√

14y2 − 0.25
√

14.

The corresponding PCE polynomial basis elements are

p00
xy (x ,y) = 1, p02

xy (x ,y) = 1.25
√

14y2 − 0.25
√

14, p20
xy (x ,y) = 1.5

√
5x2 − 0.5

√
5,

p22
xy (x ,y) = 1.875

√
70x2y2 − 0.375

√
70x2 − 0.625

√
70y2 + 0.125

√
70,

with corresponding non-zero Fourier coefficients c00 = 0.677408, c02 = 0.154109, c20 = 0.216390,
and c22 = −0.040153. The resulting estimator is

д̂(x ,y) =
(2,2)∑

(i, j)=(0,0)
ci, jp

i j
xy (x ,y) = −0.629900x2y2 + 0.851774x2 + 0.930747y2 + 0.249327.

Complexity. Assuming the expansion is carried out up to the same polynomial degree d for each
basic variable, d̄i = d , ∀i = 1, . . . ,k . This implies d = k

√
L − 1. The complexity of the scheme is

O(sd2k + skdk ), where O(s) is the complexity of computing univariate integrals.
The complexity of our approximation scheme consists of of two parts: (1) the orthogonalization

process and (2) the calculation of coefficients. Regarding (1), we orthogonalize and normalize k
sets of d basic linearly independent polynomials via the Gram-Schmidt process. For degree d=1,
we need to calculate one integral, the inner product with the previous polynomial. Additionally,

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 18. Publication date: July 2024.



18:10 A. Kofnov et al.

we need to compute one more integral, the norm of itself (for normalization). For each subsequent
degree d ′, we must calculate d ′ additional new integrals. The computation of each integral has
complexity O(s). Regarding (2), the computation of the coefficients requires calculating L=(d+1)k
integrals with k-variate functions as integrands.

We define the approximation error to be

se(д̂) =
√√√ˆ

Q

(д(z1, . . . , zk ) − д̂(z1, . . . , zk ))2 dFZ1 . . .dFZk
, (10)

since E(д̂(Z1, . . . ,Zk )) = д(Z1, · · · ,Zk ) by construction.
The implementation of this algorithm may become challenging when the random functions have

complicated forms and the number of parametric uncertainties is large. In this case, the calculation
of the PCE coefficients involves high dimensional integration, which may prove difficult and time
prohibitive for real-time applications [36].

4 PROB-SOLVABLE LOOPS FOR GENERAL NON-POLYNOMIAL FUNCTIONS

PCE4 allows incorporating non-polynomial updates into Prob-solvable loop programs and use the
algorithm in Reference [3] and exact tools, such as Polar [29], for moment (invariant) computation.
We identify two classes of programs based on how the distributions of the generated random
variables vary.

4.1 Iteration-Stable Distributions of Random Arguments

Let P be an arbitrary Prob-solvable loop and suppose that a (non-basic) state variable x ∈ P has
a non-polynomial L2-type update д(Z), where Z = (Z1, . . . ,Zk )T is a vector of (basic) continuous,
independent, and identically distributed random variables across iterations. That is, if fZ j (n) is the
pdf of the random variable Z j in iteration n, then fZ j (n) ≡ fZ j (n′), for all iterations n,n′ and j =
1, . . . ,k . The basic random variablesZ1, . . . ,Zk and the update functionд satisfy conditions (A)–(E)
in Section 3.1. For the class of Prob-solvable loops where all variables with non-polynomial updates
satisfy these conditions, the computation of the Fourier coefficients in the PCE approximation (6)
can be carried out as explained in Section 3.2. In this case, the convergence rate is optimal.

4.2 Iteration Non-stable Distribution of Random Arguments

Let P be an arbitrary Prob-solvable loop and suppose that a state variable x ∈ P has a non-
polynomial L2-type update д(Z), where Z = (Z1, . . . ,Zk )T is a vector of continuous independent
but not necessarily identically distributed random variables across iterations. For this class of
Prob-solvable loops, conditions (A)–(C) in Section 3.1 hold, but (D) and/or (E) may not be
fulfilled. In this case, we can ensure optimal exponential convergence by fixing the number of
loop iterations. For unbounded loops, we describe an approach converging in mean-square and
establish its convergence rate next.

Conditional estimator given number of iterations. Let N be an a priori fixed finite integer, repre-
senting the maximum iteration number. The set {1, . . . ,N } is a finite sequence of iterations for
the Prob-solvable loop P.

Iterations are executed sequentially for n = 1, . . . ,N , which allows the estimation of the final
functional that determines the target state variable at each iteration n ∈ {1, . . . ,N } and its set of
supports. Knowing these features, we can carry out N successive expansions. Let P(n) be a PCE

4We provide further details about PCE computation in Appendix 2 in Reference [25].
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ofд(Z) for iterationn. We introduce an additional program variable c that counts the loop iterations.
The variable c is initialized to 0 and incremented by 1 at the beginning of every loop iteration. The
final estimator of д(Z) can be represented as

д̂(Z) =
N∑

n=1

P(n)
[

N∏
j=1, j�n

(c − j)
n − j

]
. (11)

Replacing non-polynomial functions with Equation (11) results in a program with only
polynomial-type updates and constant polynomial structure; that is, polynomials with coefficients
that remain constant across iterations. Moreover, the estimator is unbiased with optimal exponen-
tial convergence on the set of iterations {1, . . . ,N } [45].

Unconditional estimator. Here the iteration number is unbounded. Without loss of generality,
we consider a single basic random variable Z ; that is, k=1. The function д(Z ) is scalar-valued
and can be represented as a polynomial of nested L2 functions, which depend on polynomials
of the argument variable. Each nested functional argument is expressed as a sum of orthogonal
polynomials yielding the final estimator, which is itself a polynomial.

Since PCE converges to the function it approximates in mean-square (see Reference [10]) on
the whole interval (argument’s support), PCE converges on any sub-interval of the support of the
argument in the same sense.

Let us consider a function д with a sufficiently large domain and a random variable Z with
known distribution and support. For example, д(Z ) = eZ , with Z ∼ N (μ,σ 2). The domain of д and
the support of Z are the real line. We can expand д into a PCE with respect to the distribution of
Z as

д(Z ) =
∞∑

i=0

cipi (Z ). (12)

The distribution of Z is reflected in the polynomials in Equation (12). Specifically, pi , for
i = 0, 1, . . ., are Hermite polynomials of special type in that they are orthogonal (orthonormal)
with respect to N (μ,σ 2). They also form an orthogonal basis of the space of L2 functions. Conse-
quently, any function in L2 can be estimated arbitrarily closely by these polynomials. In general,
any continuous distribution with finite moments of all orders and sufficiently large support can
also be used as a model for basic variables to construct a basis for L2 (see Reference [10]).

Now suppose that the distribution of the underlying variable Z is unknown with pdf fZ (z)
that is continuous on its support [a,b]. Then, there exists another basis of polynomials, {qi }∞i=0,
which are orthogonal on the support [a, ] with respect to the pdf fZ . Then, on the interval [a,b],
д(Z ) =

∑∞
i=0 kiqi (Z ), and Ef [д(Z )] = Ef [

∑M
i=0 kiqi (Z )], ∀M ≥ 0.

Since [a,b] ⊂ R, the expansion
∑∞

i=0 cipi (Z ) converges in mean-square to д(Z ) on [a,b]. In the
limit, we have д(Z ) =

∑∞
i=0 cipi (Z ) on the interval [a,b]. Also, Ef (д(Z )) = Ef (

∑∞
i=0 cipi (Z )) for

the true pdf f on [a,b]. In general, though, it is not true that Ef (д(Z )) = Ef (
∑M

i=0 cipi (Z )) for any
arbitrary M ≥ 0 and any pdf fZ (z) on [a,b], as the estimator is biased.

To capture this discrepancy, we define the approximation error as

e(M) = Ef

(
д(Z ) −

M∑
i=0

cipi (Z )
)2

= Ef

( ∞∑
i=M+1

cipi (Z )
)2

. (13)

Computation of error bound. Assume the true pdf fZ ofZ is supported on [a,b]. Also, assume the
domain of д is R. The random function д(Z ) has PCE on the whole real line based on Hermite poly-
nomials {pi (Z )}∞i=0 that are orthogonal with respect to the standard normal pdf ϕ. The truncated
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expansion estimate of Equation (12) with respect to a normal basic random variable is

д̂(Z ) =
M∑

i=0

cipi (Z ). (14)

We compute an upper bound for the approximation error for our scheme in Theorem (4.1).

Theorem 4.1. Suppose Z has density fZ supported on [a,b], д : R→ R is in L2, and ϕ denotes the

standard normal pdf. Under Equations (12) and (14),

‖д(Z ) − д̂(Z )‖2
f =

ˆ b

a

(д(z) − д̂(z))2 fZ (z)dz

≤
(

2

min (ϕ(a),ϕ(b)) + 1

)
Varϕ (д(Z )) . (15)

The upper bound in Equation (15) depends only on the support of fZ and the function д. If Z is
standard normal (fZ = ϕ), then the upper bound in Equation (15) equals Varϕ (д(Z )). We provide
the proof of Theorem 4.1 in Appendix A.

Remark. The approximation error inequality in Reference [30, Lemma 1],�����д(Z ) −
T∑

i=0

cipi (Z )

����� ≤ ‖д(Z )(k) ‖∏k−1
i=0

√
T − i + 1

, (16)

is a special case of Theorem 4.1 when Z ∼ N(0, 1) and fZ = ϕ, and the polynomials pi are Hermite.

In this case, the left-hand side of Equation (16) equals
√∑∞

i=n+1 c
2
i .

Although Theorem 4.1 is restricted to distributions with bounded support, the approximation
in Equation (14) also converges for distributions with unbounded support.

5 EXACT MOMENT DERIVATION

In Sections 3 and 4, we combined PCE with the Prob-solvable loop algorithm of References [3, 29]
to compute PCE approximations of the moments of the distributions of the random variables
generated in a probabilistic loop. In this section, we develop a method for the derivation of the
exact moments of probabilistic loops that comply with a specified loop structure and functional
assignments. [3], and later [29], introduce a technique for exact moment computation for Prob-

solvable loops without non-polynomial functions. Prob-solvable loops support common probability
distributions F with constant parameters and program variables x with specific polynomial
assignments (cf. Section 2). In Section 5.1, we first show how to compute E(h(F )k ) where h is
the exponential or a trigonometric function. In Section 5.2, we describe how to incorporate
trigonometric and exponential updates of program variables x into the Prob-solvable loop setting.

5.1 Trigonometric and Exponential Functions for Distributions

The first step in supporting trigonometric and exponential functions in Prob-solvable loops is
to understand how to compute the expected values of random variables that are trigonometric
and exponential functions of random variables with known distributions. Due to the polynomial
arithmetic supported in Prob-solvable loops, non-polynomial functions of random variables can
be mixed via multiplication in the resulting program. We adopt the results from Reference [19]
providing a formula for the expected value of mixed trigonometric polynomials of distributions,
given the distributions’ characteristic functions.
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Definition 5.1. We call p(x) a standard polynomial of order d ∈ N if

p(x) =
d∑

k=0

αkx
k ,

with coefficients αk ∈ R. Further, p(x) is defined to be a mixed trigonometric polynomial if it is a
mixture of a standard polynomial with trigonometric functions of the form

p(x) =
d∑

k=0

αkx
bk · cosck (x) · sinsk (x),

with bk , ck , sk ∈ N and coefficients αk ∈ R [19].

Following Reference [19], we define the mixed-trigonometric-polynomial moment of order α
for a random variable X as

mX α1 c
α2
X

s
α3
X
= E [Xα1 cosα2 (X ) sinα3 (X )] , (17)

where (α1,α2,α3) ∈ N3 such that α =
∑3

k=1 αk . When the characteristic function of the random
variable X is known, Lemma 4 in Reference [19], together with the linearity of the expectation
operator, provides the computation rule for Equation (17):

mX α1 c
α2
X

s
α3
X
=

1

iα1+α3 2α2+α3
×

(α2,α3)∑
(k1,k2)=(0,0)

(
α2

k1

) (
α3

k2

)
(−1)α3−k2

dα1

dtα1
ΦX (t)

����
t=2(k1+k2)−α2−α3

. (18)

Example 5.2. Let X ∼ N(0, 1). Its characteristic function is ΦX (t) = exp(−0.5t2) and Φ′
X (t) =

−t exp(−0.5t2). Then,

E [X sin(X ) cos(X )] = 1

i222

(
−Φ′

X (−2) + Φ′
X (0) − Φ′

X (0) + Φ′
X (2)

)
= exp(−2).

To support exponential functions in Prob-solvable loops, we define mixed exponential polynomi-

als as

p(x) =
d∑

k=0

αkx
bk expek (x),

with bk , ek ∈ N and coefficients αk ∈ R. Lemma 5.3 obtains a computational rule for moments of
mixed exponential polynomials, provided they exist, in terms of the moment-generating function
of the random variable X .

Lemma 5.3. Let X be a random variable with moment-generating function MX (t) = E [exp(tX )].
Suppose α1,α2 ∈ N, and let α = α1 + α2. If the mixed-exponential-polynomial moment of order α
exists, then it can be computed using the following formula:

mX α1 e
α2
X
= E [Xα1 expα2 (X )] = dα1

dtα1
MX (t)

����
t=α2

. (19)

Proof.

mX α1 e
α2
X
= E [Xα1 expα2 (X )] = E

[
dα1

dtα1
exp(tX )

����
t=α2

]
=

dα1

dtα1
E [exp(tX )]

����
t=α2

=
dα1

dtα1
MX (t)

����
t=α2

.

�
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Example 5.4. SupposeX ∼ N(0, 1) with moment generating function MX (t) = exp(0.5t2). Since
X exp2(X ) is integrable with respect to the normal pdf,

E
[
X exp2(X )

]
=

d

dt
exp(0.5t2)

����
t=2

= t · exp(0.5t2)
����
t=2

= 2 · exp(2).

5.2 Trigonometric and Exponential Functions in Variable Updates

We now examine the presence of trigonometric and exponential functions of program variables,
specifically of accumulator variables, in Prob-solvable loops.

Definition 5.5 (Accumulator). We call a program variable x an accumulator if the update of x
in the loop body has the form x = x + z, such that zi and zi+1 are independent and identically
distributed for all i ≥ 1.

Consider a loop P with an accumulator variable x , updated as x = x +z, and a trigonometric or
exponential function h(x). Further, assume that the characteristic function (if h = sin or h = cos)
or the moment-generating function (if h = exp) of z is known. Note that the distribution of
the variable x is, in general, different in every iteration. Listing 1 gives an example of such a
loop.

z = 0; x = 0; y = 0

while t r u e :

z = Normal(0, 1)
x = x + z

y = y + h(x)
end

Listing 1. PP loop prototype.

The idea now is to transform P into an equivalent Prob-solvable loop P′ such that the termh(x)
does not appear in P′. In the following, we assume, for simplicity, that first z is updated in P, then
x , and only then h is used. The following arguments are analogous if the updates are ordered
differently (only the indices change). Note that we can rewrite h(xt+1) as h(xt + zt+1).

Transforming exp(x). In the case of h = exp, we have

exp(xt+1) = exp(xt + zt+1) = exp(xt ) exp(zt+1). (20)

We utilize this property and transform the program P into a program P′ by introducing an aux-
iliary variable x̂ that models the value of exp(x). The update of x̂ in the loop body succeeds the
update of x and is

x̂ = x̂ · exp(z). (21)

The auxiliary variable is initialized as x̂0 = exp(x0). We then replace h(x) by x̂ in P to arrive at our
transformed program P′. Because z is identically distributed in every iteration and its moment-
generating function is known, we can use the results from Section 5.1 to compute any moment of
exp(z). Thus, the update in Equation (21) is supported by Prob-solvable loops.

Transforming sine and cosine. In the case of h = sin or h = cos, applying standard trigonometric
identities obtains

cos(xt+1) = cos(xt + zt+1) = cos(xt ) cos(zt+1) − sin(xt ) sin(zt+1),
sin(xt+1) = sin(xt + zt+1) = sin(xt ) cos(zt+1) + cos(xt ) sin(zt+1).

(22)
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We introduce two auxiliary variables, s and c , modeling the values of sin(x) and cos(x), simultane-
ously updated5 in the loop body as

c, s = c · cos(z) − s · sin(z), s · cos(z) + c · sin(z), (23)

with the initial values s0 = sin(x0) and c0 = cos(x0). We then replace h(x) with s or c in P′. Again,
because z is identically distributed in every iteration and its characteristic function is known, we
can use the results from Section 5.1 to compute any moment of sin(z) and cos(z). Thus, the update
in Equation (23) is supported in Prob-solvable loops.

Example 5.6. Listings 2 and 3 show the program from Listing 1 with h = exp and h = cos, re-
spectively, rewritten as equivalent Prob-solvable loops. The program in Listing 2 has linear circular
variable dependencies due to the variables c and s .

z = 0; x = 0; c = cos(z); s = sin(z); y = 0

while t r u e :

z = Normal(0, 1)
x = x + z

c, s = c · cos(z) − s · sin(z), s · cos(z) + c · sin(z)
y = y + c

end

Listing 2. PP prototype equivalent – cos.

z = 0; x = 0; x̂i = exp(z); y = 0

while t r u e :

z = Normal(0, 1)
x = x + z

x̂i = x̂i · exp(z)
y = y + x̂i

end

Listing 3. PP prototype equivalent – exp.

6 EVALUATION

We evaluate our PCE-based method for moment approximation and our exact moment derivation
approach on eleven benchmarks. The set of benchmarks consists of those in Reference [25], five
additional benchmarks from Reference [19], and a probabilistic loop modeling stochastic exponen-
tial decay. The benchmark Walking Robot in Reference [19] is the same as the Rimless wheel walker

in Reference [25].
We apply our PCE-based method to approximate non-polynomial functions. This transforms

all benchmark programs into Prob-solvable loops, which allows using the static analysis tool Po-
lar [29] to compute the moments of the program variables as a function of the loop iteration n.

We implemented the techniques for exact moment derivation for loops containing trigonomet-
ric or exponential polynomials, presented in Section 5, in the tool Polar. We evaluate the tech-
nique for exact moment derivation using Polar on all benchmarks satisfying the general program
structure of Listing 1 in Section 5. We also compare our approximate and exact methods with the
technique based on polynomial forms of Reference [35]. When appropriate, we applied our meth-
ods, as well as the polynomial form, on the eleven benchmark models. All experiments were run
on a machine with 32 GB of RAM and a 2.6 GHz Intel i7 (Gen 10) processor.

Taylor rule model. Central banks set monetary policy by raising or lowering their target for
the federal funds rate. The Taylor rule6 is an equation intended to describe the interest rate deci-
sions of central banks. The rule relates the target of the federal funds rate to the current state of
the economy through the formula

it = r
∗
t + πt + aπ (πt − π ∗

t ) + ay (yt − ȳt ), (24)

5Simultaneous updates c, s = expr1, expr2 can always be expressed as sequentially: t1 = expr1; t2 = expr2; c = t1; s = t2.
6It was proposed by the American economist John B. Taylor as a technique to stabilize economic activity by setting an
interest rate [40].
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Fig. 4. Probabilistic loops: (A) Rimless wheel walker [39] and (B) 2D Robotic arm [5] (in the figure, we use
the inner loop as syntax sugar to keep the program compact).

where it is the nominal interest rate, r ∗t is the equilibrium real interest rate, r ∗t = r , πt is inflation
rate at t , π ∗

t is the short-term target inflation rate at t , yt = log(1 + Yt ), with Yt the real GDP, and
ȳt = log(1 + Ȳt ), with Ȳt denoting the potential real output.

Highly developed economies grow exponentially with a sufficiently small rate (e.g., according
to the World Bank,7 the average growth rate of the GDP in the USA in 2001–2020 equaled 1.73%).
Accordingly, we set the growth rate of the potential output to 2%. We model inflation as a martin-
gale process; that is, Et [πt+1] = πt , following Reference [2]. The Taylor rule model is described
by the program in Figure 1.

Turning vehicle model. This model is described by the probabilistic program in Figure 2. It was
introduced in Reference [35] and depicts the position of a vehicle, as follows. The state variables
are (x ,y,v,ψ ), where (x ,y) is the vehicle’s position with velocityv and yaw angleψ . The vehicle’s
velocity is stabilized around v0 = 10 m/s. The dynamics are modelled by the equations x(t+1) =
x(t) + τv cos(ψ (t)), y(t+1) = y(t) + τv sin(ψ (t)), v(t+1) = v(t) + τ (K(v(t) − v0) + w1(t+1)), and
ψ (t+1) = ψ (t) +w2(t+1). The disturbances w1 and w2 have distributions w1 ∼ U [−0.1, 0.1], w2 ∼
N (0, 0.1). We set K = −0.5, as in Reference [35]. Initially, the state variables are distributed as
follows: x(0) ∼ U [−0.1, 0.1], y(0) ∼ U [−0.5,−0.3], v(0) ∼ U [6.5, 8.0], ψ (0) ∼ N (0, 0.01). We allow
all normally distributed parameters to take values over the entire real line, in contrast to Reference
[35], which could not accommodate distributions with infinite support and required the normal
variables to be truncated.

Rimless wheel walker. The Rimless wheel walker [35, 39] is a system that describes a walking
human. The system models a rotating wheel consisting of ns spokes, each of length L, connected
at a single point. The angle between consecutive spokes is θ = 2π/ns . We set L = 1 and θ = π/6.
This system is modeled by the program in Figure 4(A). For more details, we refer to Reference [35].

Robotic arm model. Proposed and studied in References [5, 34, 35], this system models the
position of a 2D robotic arm. The arm moves through translations and rotations. At every step,
errors in movement are modeled with probabilistic noise. The robotic arm model is described by
the program in Figure 4(B).

Uncertain underwater vehicle. This benchmark models the movement of an underwater ve-
hicle subject to external disturbances [19, 32] and is encoded by the program in Figure 5 (A). The

7https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=US
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Fig. 5. Probabilistic loops: (A) Uncertain underwater vehicle [19, 32], (B) Planar aerial vehicle [19, 39], (C) 3D
aerial vehicle [19, 32], (D) Differential-drive mobile robot [19, 42], (E) Stochastic decay, (F) 3D (Mobile)
Robotic arm [19, 20].

program variables x and y represent the position of the vehicle in a 2D plane and θ its orientation.
The external disturbances are modeled by probabilistic shocks to the velocity and the orientation
of the vehicle.

Planar aerial vehicle. This benchmark was studied in References [19, 39] and models the ver-
tical and horizontal movement of an aerial vehicle subject to wind disturbances. It can be written
as the program in Figure 5(B), where the variables x and y represent the horizontal and vertical
positions. The variable θ models the rotation around the x axis. The linear velocities are captured
by vx and vy , and vθ represents the angular velocity. The wind disturbance is modeled by the
random variable Ωθ . For more details, we refer to Reference [19].

3D aerial vehicle. This system, studied in References [19, 32], models the movement of an
aerial vehicle in three-dimensional space subject to wind disturbances. The system can be written
as a program as illustrated in Figure 5(C). The program variables x , y, and z represent the position
of the vehicle. The orientations around the y and z axis are captured by the variables θ and ψ ,
respectively. The linear and angular velocities are constant 1. Wind disturbances are modeled by
the random variables Ων , Ωψ , and Ωθ . For more details, we refer to Reference [19].

Differential-drive mobile robot. This system models the movement of a differential-drive
mobile robot with two wheels subject to external disturbances and was studied in References [19,
42]. In Figure 5(D), we express the Differential-drive mobile robot system as a program. The program
variables x and y represent the robot’s position. Its orientation is captured by the variable θ . The
velocities are constant 1 for the left wheel and constant 3 for the right wheel. The random variables
Ωr and Ωl model external disturbances. For more details, we refer to Reference [19].

Mobile robotic arm. The system, studied in References [19–21], models the uncertain posi-
tion of the end-effector of a mobile robotic arm as a function of the uncertain base position and
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Fig. 6. Approximations and their relative errors for the Taylor rule model.

uncertain joint angles. Figure 5(F) shows the system as a program. The program variables θ1, θ2,
and θ3 represent the uncertain angles of three joints. The distributions of θ1 and θ2 are uniform and
normal, respectively, while θ3 is gamma distributed with shape parameter 1 and scale parameter 2.
The position of the end-effector in 3D space is given by the variables xE , yE , and zE . The uncertain
position of the base in 3D space is modeled by three different distributions (uniform, normal, beta)
in the assignments of xE , yE , and zE . For more details, we refer to Reference [19].

Stochastic decay. The program in Figure 5(E) models exponential decay with a non-constant
stochastic decay rate. Variable m represents the total quantity subject to decay, where m0 is the
initial quantity. The decay rate λ starts off at 0 and changes according to a normal distribution at
every time step.

Figure 6 illustrates the performance of our PCE-based approach as a function of the polynomial
degree of our approximation on the Taylor rule. The approximations to the true first moment (in
red) are plotted in the left panel and the relative errors, calculated as rel .err = |est−true |/true , for
the first and second moments in the middle and right panels, respectively, over iteration number.
All plots show that the approximation error is low and deteriorates as the polynomial degree
increases from 3 to 9, across iterations. For this benchmark, the drop is sharper for the second
moment.

The Rimless wheel walker and the Robotic arm models are the only two benchmarks from Ref-
erence [35] with nonlinear non-polynomial updates. Polynomial forms of degree 2 were used to
compute bounding intervals for E(xn) (for fixed n) for these two models. The Reference [35] tool
supports neither the approximation of logarithms (required for the Taylor rule model) nor distri-
butions with unbounded support (required for all benchmarks except for the Taylor rule model on
which the tool fails). To facilitate comparison with polynomial forms, our set of benchmarks is
augmented with a version of the Turning vehicle model using truncated normal distributions (ψ
and w2 ∼ TruncNormal(0, 0.01, [−1, 1]) in Figure 2), which is called Turning vehicle model (trunc.)

in Table 1), instead of normal distributions with unbounded support.
Among the eleven benchmark models in Table 1, the polynomial form tool of Reference [35] can

be used to approximate moments only in five, namely, the Turning vehicle model (trunc.), Rimless

wheel walker, Robotic arm, Uncertain underwater vehicle, and Planar aerial vehicle. Our method
for exact moment derivation supports trigonometric functions and the exponential function but
no logarithms. Hence, it is not applicable to the Taylor rule model. Moreover, our exact method
cannot be applied to the Planar aerial vehicle benchmark, because the perturbation of its program
variable θ is not iteration-stable and θ is used as an argument to a trigonometric function. Our
PCE-based moment estimation approach applies to all.

The Robotic arm, Rimless wheel walker, and Mobile robotic arm models contain no stochastic
accumulation: each basic random variable is iteration-stable and can be estimated using the scheme
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Table 1. Evaluation of our Approach on 11 Benchmarks

Benchmark Target Poly form Sim. Exact PCE estimate

Deg. Result Runtime

Taylor rule

model

E (in)
n=20

× 0.022998 ×
3

5

9

0.02278

0.02295

0.02300

0.4s+0.5s

0.5s+5.0s

5.9s+34.6s

Turning vehicle

model

E (xn )
n=20

× 15.60666 15.60760

1.9s

3

5

9

14.44342

15.43985

15.60595

0.6s+3.6s

1.4s+9.2s

15.6s+16.1s

Turning vehicle

model (trunc.)

E (xn )
n=20

for deg. 2[
−3 · 105, 3 · 105

]
1057s

15.60818 15.60760

89.2s

3

5

9

14.44342

15.43985

15.60595

0.6s+3.6s

1.4s+9.1s

15.6s+15.8s

Rimless wheel

walker

E (xn )
n=2000

for deg. 2

[1.791, 1.792]
5.42s

1.79173 1.79159

8.0s

1

2

3

1.79159

1.79159

1.79159

0.2s+0.5s

0.3s+0.4s

0.6s+0.6s

Robotic arm

model

E (xn )
n=100

for deg. 2

[268.87, 268.88]
2.74s

268.852 268.85236

5.6s

1

2

3

268.85236

268.85236

268.85236

1.3s+0.3s

2.5s+0.6s

4.8s+0.7s

Uncertain

underwater vehicle

E
(
x2

n

)
n=10

for deg. 2

[1.9817, 2.0252]
2.9s

2.00332 2.00339

0.6s

3

5

8

2.08986

2.04514

2.00432

0.1s+0.9s

0.1s+2.8s

0.6s+8.6s

Planar aerial

vehicle

E (yn )
n=10

for deg. 2

[1.4306, 1.4315]
4.1s

1.43111 ×
6

8

10

1.42184

1.43016

1.43099

0.2s+5.9s

0.6s+13.7s

2.1s+28.0s

3D aerial

vehicle

E (xn )
n=20

× 0.67736 0.67770

4.9s

3

5

8

0.47805

0.65280

0.67245

0.1s+1.5s

0.1s+5.7s

0.6s+30.5s

Differential-drive

mobile robot

E
(
x2

n

)
n=25

× 0.29175 0.29151

12.0s

8

10

12

0.19919

0.29310

0.29215

0.6s+9.5s

2.1s+13.8s

8.3s+22.4s

Mobile Robotic

Arm

E (xn )
n=2000

× 0.38413 0.38535

0.2s

2

3

4

0.38535

0.38535

0.38535

0.8s+0.2s

1.3s+0.3s

2.0s+0.5s

Stochastic decay
E (mn )
n=10

× 5031.8404 5028.3158

0.3s

6

8

10

5035.7468

5028.0312

5028.3222

1.9s+1.0s

4.7s+1.6s

15.6s+2.0s

Poly form = the interval for the target as reported by Reference [35]; Sim = target approximated through 106

samples; Exact = the target result computed by our technique for exact moment derivation; Deg. = maximum
degrees used for the approximation of the non-linear functions; Result = result of our approximate method per
degree; Runtime = execution time of our method in seconds (time of PCE + time of Polar); × = the respective
method is not applicable. The benchmarks in grey are new relative to Reference [25].

in Section 4.1. Therefore, for these benchmarks, our estimates converge exponentially fast to the
true values. In fact, our estimates coincide with the true values for first moments, because the
estimators are unbiased. The other benchmarks contain stochasticity accumulation, which leads
to the instability of the distributions of basic random variables. For these benchmarks, we apply
the scheme in Section 4.2.
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Table 1 contains the evaluation results of our approximate and exact approaches, and of the
technique based on polynomial forms of Reference [35] on the eleven benchmarks. In consecutive
order, the table columns are: the name of the benchmark model; the target moment and iteration;
the polynomial form results (estimation interval and runtime), if applicable; the sampling-based
value of the target moment; the exact moment and the runtime of its calculation, if applicable; the
truncation parameter (polynomial degree) in PCE; the PCE estimate value; and the PCE estimate
calculation runtime.

Our results illustrate that our method based on PCE is able to accurately approximate general
non-linear dynamics for challenging programs. Specifically, for the Rimless wheel walker model,
our first moment estimate coincides with the exact result and falls in the interval estimate
of the polynomial forms technique. For the Robotic arm model, our results are equal to the
exact result and closer to the sampling one based on 106 samples. They lie outside the interval
predicted by the polynomial forms technique, pointing to the latter’s lack of accuracy in this
model.

Our method for exact moment derivation can be faster than the polynomial form technique and
our PCE-based approximation approach, for instance, for the Turning vehicle model. Nevertheless,
if all basic random variables are iteration-stable, our approximation approach will provide an
unbiased estimation and hence the exact result for the first moments. This is the case, for example,
for the Rimless wheel walker benchmark for which our approximation method provides the true
result in under 0.7 s, compared to our exact moment derivation method which needs 8s.

Our experiments also demonstrate that our PCE-based method provides accurate approxima-
tions in a fraction of the time required by the polynomial form-based technique. While polynomial
forms compute an error interval, they need to be computed on an iteration-by-iteration basis. In
contrast, our method based on PCE and Prob-solvable loops computes an expression for the target
parameterized by the loop iterationn ∈ N (cf. Figure 2). As a result, increasing the target iterationn
does not increase the runtime of our approach. To see this, consider the Uncertain underwater ve-

hicle benchmark: the runtimes of polynomial forms and of our approach using the PCE estimate
of order 5 are comparable (2.9 s). However, increasing the target iteration n from 10 to 20 escalates
the runtime of polynomial forms to 237 s, while the runtimes of both our approaches (approximate
and exact) remain the same.

7 CONCLUSION

We present two methods, one exact and one approximate, to compute the state variable moments
in closed-form in probabilistic loops with non-polynomial updates. Our approximation method
is based on polynomial chaos expansion to approximate non-polynomial general functional
assignments. The approximations produced by our technique have optimal exponential conver-
gence when the parameters of the general non-polynomial functions have distributions that are
stable across all iterations. We derive an upper bound on the approximation error for the case
of unstable parameter distributions. Our exact method is applicable to probabilistic loops with
trigonometric and exponential assignments if the random perturbations of the arguments of the
non-linear functions are independent across iterations.

Our methods can accommodate non-linear, non-polynomial updates in classes of probabilistic
loops amenable to automated moment computation, such as the class of Prob-solvable loops. We
emphasize that our PCE-based approximation is not limited to Prob-solvable loops and can be
applied to approximate non-linear dynamics in more general probabilistic loops.

Our experiments demonstrate the ability of our methods to characterize non-polynomial behav-
ior in stochastic models from various domains via their moments, with high accuracy and in a
fraction of the time required by other state-of-the-art tools. In future work, we plan to investigate
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how to use these solutions to automatically compute stability properties (e.g., Lyapunov stability
and asymptotic stability) in stochastic dynamical systems.

APPENDICES

A PROOF OF THEOREM 4.1

Theorem 4.1. Since f (z) = 0 ∀z � [a,b],�����д(z) −
T∑

i=0

cipi (z)

�����
2

f

=

b̂

a

(
д(z) −

T∑
i=0

cipi (z)
)2

f (z)dz =
∞̂

−∞

(
д(z) −

T∑
i=0

cipi (z)
)2

f (z)dz

=

aˆ

−∞

(
д(z) −

T∑
i=0

cipi (z)
)2

f (z)dz +
∞̂

b

(
д(z) −

T∑
i=0

cipi (z)
)2

f (z)dz

+

b̂

a

(
д(z) −

T∑
i=0

cipi (z)
)2

f (z)dz

≤
aˆ

−∞

(
д(z) −

T∑
i=0

cipi (z)
)2

ϕ(z)dz +
∞̂

b

(
д(z) −

T∑
i=0

cipi (z)
)2

ϕ(z)dz

+

b̂

a

(
д(z) −

T∑
i=0

cipi (z)
)2

ϕ(z)dz +
ˆ b

a

(
д(z) −

T∑
i=0

cipi (z)
)2

(f (z) − ϕ(z))dz

= A + B +C + D. (25)

Since f (z) − ϕ(z) ≤ ϕ(z) + f (z), D satisfies

b̂

a

(
д(z) −

T∑
i=0

cipi (z)
)2

(f (z) − ϕ(z))dz ≤
b̂

a

(
д(z) −

T∑
i=0

cipi (z)
)2

dz

b̂

a

(ϕ(z) + f (z))dz

= (1 + Φ(b) − Φ(a)) ×
b̂

a

(
д(z) −

T∑
i=0

cipi (z)
)2

dz,

with (1 + Φ(b) − Φ(a)) < 2. Now, ∀z ∈ [a,b] , 1 ≤ ϕ(z)/min((ϕ(a),ϕ(b))), and hence

b̂

a

(
д(z) −

T∑
i=0

cipi (z)
)2

dz ≤ min (ϕ(a),ϕ(b))−1

b̂

a

(
д(z) −

T∑
i=0

cipi (z)
)2

ϕ(x)dz

≤ min (ϕ(a),ϕ(b))−1C . (26)

By Equations (26) and (12), Equation (25) satisfies

A + B +C + D ≤
(

2

min (ϕ(a),ϕ(b)) + 1

) { aˆ

−∞

(
д(z) −

T∑
i=0

cipi (z)
)2

ϕ(z)dz

+

∞̂

b

(
д(z) −

T∑
i=0

cipi (z)
)2

ϕ(z)dz +
b̂

a

(
д(z) −

T∑
i=0

cipi (z)
)2

ϕ(z)dz
}
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=

(
2

min (ϕ(a),ϕ(b)) + 1

) ∞̂

−∞

(
д(z) −

T∑
i=0

cipi (z)
)2

ϕ(z)dz

=

(
2

min (ϕ(a),ϕ(b)) + 1

) ∞∑
i=T+1

c2
i ≤

(
2

min (ϕ(a),ϕ(b)) + 1

)
Varϕ [д(Z )] ,

since Varϕ (д(Z )) =
∑∞

i=1 c
2
i . In consequence, the error Equation (13) can be upper bounded by

Equation (15). �

B PCE OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS

Table 2 lists examples of functions of up to three random arguments approximated by PCE’s of
different degrees and, correspondingly, number of coefficients. We useTruncNormal

(
μ,σ 2, [a,b]

)
to denote the truncated normal distribution with expectation μ and standard deviation σ on the (fi-
nite or infinite) interval [a,b], andTruncGamma (θ ,k, [a,b]) for the truncated gamma distribution
on the (finite or infinite) interval [a,b], a,b > 0, with shape parameter k and scale parameter θ . The
approximation error in Equation (10) is reported in the last column. The results confirm Equation
(5) in practice: the error decreases as the degree or, equivalently, the number of components in the
approximation of the polynomial increases.

Table 2. Approximations of Five Non-linear Functions Using PCE

Function Random variables Degree/#coefficients Error

f (x1,x2) = ξe−x1 + (ξ − ξ 2

2 )ex2−x1

ξ = 0.3
x1 ∼ Normal(0, 1),
x2 ∼ Normal(2, 0.01)

1 / 4
2 / 9
3 / 16
4 / 25
5 / 36

3.076846
1.696078
0.825399
0.363869
0.270419

f (x1,x2) = 0.3ex1−x2 + 0.6e−x2
x1 ∼ TruncNormal(4, 1, [3, 5]),
x2 ∼ TruncNormal(2, 0.01, [0, 4])

1 / 4
2 / 9
3 / 16
4 / 25
5 / 36

0.343870
0.057076
0.007112
0.000709
0.000059

f (x1,x2) = ex1x2
x1 ∼ TruncNormal(4, 1, [3, 5])
x2 ∼ TruncGamma(3, 1, [0.5, 1])

1 / 4
2 / 9
3 / 16
4 / 25
5 / 36

5.745048
1.035060
0.142816
0.016118
0.001543

f (x1,x2,x3) = 0.3ex1−x2+
0.6ex2−x3 + 0.1ex3−x1

x1 ∼ TruncNormal(4, 1, [3, 5])
x2 ∼ TruncGamma(3, 1, [0.5, 1])
x3 ∼ U [4, 8]

1 / 8
2 / 27
3 / 64

1.637981
0.303096
0.066869

f (x1) = ψcos(x1) + (1 −ψ )sin(x1)
ψ = 0.3 x1 ∼ Normal(0, 1)

1 / 2
2 / 3
3 / 4
4 / 5
5 / 6

0.222627
0.181681
0.054450
0.039815
0.009115

C TRIGONOMETRIC IDENTITIES

We use the following properties of sin, cos, and exp functions.

sin(α ± β) = sin(α) cos(β) ± cos(α) sin(β),
cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β),
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sin(nα) =
∑
r=0,

2r+1≤n

(−1)r
(

n

2r + 1

)
cosn−2r−1(α) sin2r+1(α),n ∈ N,

cos(nα) =
∑
r=0,
2r ≤n

(−1)r
(
n

2r

)
cosn−2r (α) sin2r (α),n ∈ N.
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