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Abstract—Recently, a method for including target-provided
measurements within a joint integrated probabilistic data asso-
ciation (JIPDA) filter was presented and compared with a belief
propagation (BP) based multi-target tracking method. While the
JIPDA-based approach uses multiple kinematic models within
an interacting multiple models (IMM) framework, the BP-based
approach uses only a single kinematic model. Here, we present
and analyze the results of similar experiments conducted on
both simulated and real data. Our results show that the JIPDA-
based method tends to outperform the BP-based method when
the targets are well-separated and perform sharp maneuvers,
whereas the BP-based method outperforms the JIPDA-based
method when the targets are closely spaced.

Index Terms—Multi-target tracking, data fusion, automatic
identification system, sum-product algorithm, belief propagation,
JIPDA filter, IMM framework

I. INTRODUCTION

A. Background

In a recent publication [1], three methods for including
target-provided measurements in a joint integrated probabilis-
tic data association (JIPDA) framework were proposed. The
framework considered in [1], referred to as VIMMJIPDA fil-
ter, combines interacting multiple models (IMM) and a vis-
ibility state within the well-established JIPDA filter [2]. The
IMM concept, first introduced in [3], allows the use of multi-
ple kinematic models for the tracking of maneuvering targets,
while the visibility state indicates whether the tracked target is
visible to the sensor or not. A target-provided measurement is
an observation produced by a target and made available to the
tracking method. This observation usually includes kinematic
information, e.g., the target’s position and velocity, and addi-
tional information such as a unique code identifying the target.
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The target obtains its own position and velocity through an
onboard device, generally a global navigation satellite system
transponder, and transmits this information as well as any other
relevant information to neighboring targets and to a central fu-
sion node. Examples of such systems are the automatic iden-
tification system (AIS) for maritime surveillance and vessel
collision avoidance [4] and the automatic dependent surveil-
lance broadcast (ADS-B) system for air traffic control [5].

These target-dependent reporting systems differ from classi-
cal perception sensors such as radar, lidar, and camera in sev-
eral aspects. Firstly, the measurements they produce are asyn-
chronous, because they are provided by the targets themselves
and each target can transmit its messages at any time. Sec-
ondly, a target-provided measurement cannot be a false alarm,
because it is not the result of a detection process.1 Several at-
tempts have been made to fuse target-provided measurements
and observations produced by perception sensors. One com-
mon approach is to consider the reporting system and the per-
ception sensor as stand-alone assets, and accordingly estimate
two separate sets of tracks which are later fused to form a sin-
gle set of estimated tracks. This approach, which is known as
track-level fusion, has some performance limits compared to
measurement-level fusion techniques [6].

The methods proposed in [1] follow a measurement-level
fusion approach and are based on the VIMMJIPDA tracking
method. Specifically, three different methods for handling the
target-provided measurements are proposed. One of them pro-
cesses the measurements as they arrive, i.e., sequentially; the
others collect the measurements and process them at fixed
times. The validity of these approaches is demonstrated both
in a simulated maritime scenario and with real data acquired as
part of the Autosea project conducted by the Norwegian Uni-
versity of Science and Technology [7], and the performance of
the proposed methods is compared with that of the belief prop-
agation (BP) based tracking method with target-provided mea-
surement fusion capabilities presented in [8], [9]. The setup
of both the simulated scenario and the real experiment con-
sists of a single radar sensor and the AIS. It is observed that
the particle filter (PF) implementation of the BP-based track-
ing method (referred to as the BP-PF+AIS method) performs
worse than the VIMMJIPDA-based methods and, in some
cases, even worse than a radar-only method, i.e., a method
that uses only the radar measurements.

1Nevertheless, target-dependent reporting systems like the AIS can be sub-
ject to intentional reporting of false information. However, this is not taken
into account in [1] nor in the remainder of this paper.
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B. Contribution

The implementation of the BP-PF+AIS method is not pub-
licly available, which led the authors of [1] to use their own
implementation. In this paper, we study the performance of
the original implementation of the BP-PF+AIS method used
in [8], [9] for a simulated scenario similar to the one de-
scribed in [1, Sec. VIII-A], as well as on the real dataset
provided by the Autosea project [7]. Additionally, we con-
sider the simulated scenario described in [9, Sec. VI-A]. The
performance obtained with the original implementation of the
BP-PF+AIS method is compared with that obtained with the
original VIMMJIPDA method using only the radar measure-
ments [2] and with the sequential method proposed in [1]
(to be referred to as VIMMJIPDA+AIS), for which code is
available in [10]. We note that the BP-PF+AIS method de-
scribed in [8], [9] does not use multiple kinematic models.
However, a BP-based tracking method using multiple kine-
matic models that conforms to the general IMM approach
is presented in [11]. Therefore, we also evaluate and com-
pare the performance of the BP-PF+AIS method described
in [8], [9] properly extended to exploit multiple kinematic
models as proposed in [11]; we briefly refer to this version as
BP-PF+AIS+IMM method. We will demonstrate that while
the BP-PF+AIS and BP-PF+AIS+IMM methods have per-
formance advantages in the case of closely spaced targets, the
VIMMJIPDA+AIS method performs better when the targets
are well-separated and when they perform sharp maneuvers.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief description of the VIMMJIPDA, VIM-
MJIPDA+AIS, BP-PF+AIS, and BP-PF+AIS+IMM meth-
ods. Section III presents the results of an experimental com-
parison of these methods conducted on two simulated scenar-
ios, while in Section IV the performance is compared on a
real dataset. Concluding remarks are provided in Section V.

II. BRIEF DESCRIPTION OF THE COMPARED METHODS

The VIMMJIPDA method, derived in [2] as a special case of
the Poisson multi-Bernoulli filter, is a variation of the JIPDA
filter for multi-target tracking that includes multiple kinematic
models and a visibility state, and uses hypothesis enumeration
to model the target-measurement data association. Specifically,
a single-linkage clustering strategy is used to group targets
that share measurements. Then, for groups with less than four
targets or less than two measurements, brute-force hypothe-
sis enumeration is performed, whereas Murty’s algorithm [12]
with a maximum of eight hypotheses is used for all other
groups. The VIMMJIPDA+AIS method proposed in [1] builds
upon [2] and incorporates target-provided measurements. One
important technical detail that enables this is to model target
birth as a marked Poisson point process, where the marks are
constituted by the unique codes identifying the targets.

The BP-based multi-target tracking methods are described
in [13] and references therein. The principle behind these
methods is to exploit the statistical independence of certain
random variables describing the tracking problem, and to rep-
resent these independence relationships by means of a fac-
tor graph. Then, using a message passing algorithm — i.e.,

the sum-product algorithm — on this factor graph enables an
intuitive and computationally efficient approximation of the
Bayesian inference needed for target detection and estimation.
Fundamental for the derivation of these methods is to properly
model and formulate the target-measurement data association.
An iterative BP-based algorithm for data association with re-
markable performance in terms of convergence and accuracy
was proposed in [14]. A common approach to implement-
ing BP-based tracking algorithms for general nonlinear/non-
Gaussian kinematic and measurement models is to resort to a
PF as described in [15].

Building upon [13]–[15], a suite of BP-PF methods have
been recently developed. The BP-PF+AIS method proposed
in [9] extends the previous works to incorporate heterogeneous
data. This method fuses sensor measurements and target-
provided measurements, e.g., AIS data, by establishing an
appropriate likelihood for target-provided measurements and
a statistical model for data association. A self-tuning BP-PF
method that continuously adapts to time-varying system mod-
els is proposed in [11]. This method infers and adapts to an un-
known detection probability of the sensors and employs multi-
ple kinematic models in line with the IMM framework. Similar
to a construction kit system, BP-based algorithm parts can be
combined in a modular manner to achieve desired function-
alities and properties. For example, the BP-PF+AIS+IMM
method, which is used for comparison in this paper, combines
the IMM framework proposed in [11] with the ability to fuse
sensor measurements and target-provided measurements as es-
tablished in [9].

III. SIMULATION RESULTS

In this section, we present simulation results for the scenar-
ios considered in [1, Sec. VIII-A] and [9, Sec. VI-A].

A. Scenario Considered in [1]

The simulated scenario considered in [1, Sec. VIII-A] em-
ploys a single radar sensor located at [0, 0]T that surveys a
circular area of radius 500 m with a time scan duration of
2.5 s. Five targets appear at the edge of that area, three at
time t = 0 s and two at time t = 10 s, initially moving
with a velocity of 3.75 m/s. The trajectories of the targets
are generated according to a nearly constant velocity (NCV)
kinematic model [16, Sec. 6.2.2] with driving noise variance
set to 0.12 m2 s−3, and with occasional maneuvers according
to a coordinated turn (CT) kinematic model [16, Sec. 4.2.2].
The radar detects a target with probability PD and generates
range-bearing measurements; the measurement noise is a two-
dimensional (2D) zero-mean Gaussian random vector with co-
variance diag(82 m2, 12 deg2). The number of false alarms is
Poisson distributed with mean 2. All targets provide AIS mea-
surements containing their unique identifying code as well
as their 2D Cartesian position and velocity. The number of
AIS measurements provided by a target during each time scan
is Poisson distributed with mean 0.5. The AIS measurement
noise for position and velocity is a 4D zero-mean Gaussian
random vector with covariance diag(32 m2, 32 m2, 0.12 m2/s2,
0.12 m2/s2). Fig. 1 shows a realization of the scenario with the
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Fig. 1. A realization of the simulated scenario considered in [1, Sec. VIII-A],
with PD = 0.5. The black dots indicate the final positions of the trajectories.

trajectories of the five targets, the 2D position component of
the AIS measurements, and the radar measurements generated
with PD = 0.5.

In Figs. 2 and 3, we demonstrate and compare the perfor-
mance of the radar-only method (i.e., VIMMJIPDA [2]), the
sequential method proposed in [1] (i.e., VIMMJIPDA+AIS),
the original implementation of the BP-PF+AIS method [8],
[9], and the BP-PF+AIS+IMM method. The performance of
these methods is measured by the mean generalized optimal
sub-pattern assignment (GOSPA) error [17] of order 2 and
with cut-off parameter 200 m, averaged over 100 simulation
runs. The mean GOSPA error accounts for localization er-
rors for correctly confirmed targets as well as for errors due
to missed and false targets. For the VIMMJIPDA and VIM-
MJIPDA+AIS methods, we use the parameters reported in [1,
Tab. III]. Where applicable, the same parameters are also used
for the BP-PF+AIS and BP-PF+AIS+IMM methods (e.g., the
survival probability), while parameters specifically related to
the BP-based methods (e.g., the number of potential targets)
are set as in [9]. The VIMMJIPDA and VIMMJIPDA+AIS
methods use three models to characterize the kinematics of
the targets, namely, two NCV models with different driving
noise variances and one CT model. The BP-PF+AIS method
uses a single NCV model; therefore, to account for poten-
tial maneuvers, the driving noise variance of the NCV model
for the BP-PF+AIS method is set to 0.82 m2 s−3. Finally,
the BP-PF+AIS+IMM method uses two NCV models with
driving noise variance 0.052 m2 s−3 and 0.82 m2 s−3. Dif-
ferently from the NCV model, the CT model does not al-
low a simple closed-form calculation of the likelihood for the
target-provided measurements specified in the supplementary
material of [9]. Developing a tractable implementation of this
likelihood is outside the scope of this paper, and for this rea-
son the BP-PF+AIS+IMM method does not employ a CT
model.

Fig. 2 shows the time-averaged mean GOSPA error when
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Fig. 2. Time-averaged mean GOSPA error versus detection probability PD
of the radar sensor for the simulated scenario considered in [1, Sec. VIII-A].
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Fig. 3. Mean GOSPA error versus time for the simulated scenario considered
in [1, Sec. VIII-A] with PD = 0.9.

the detection probability PD of the radar sensor is varied
from 0.50 to 0.99. It can be seen that the VIMMJIPDA+AIS
method performs better than both the BP-PF+AIS and
BP-PF+AIS+IMM methods. Furthermore, the use of multi-
ple NCV models within the BP-PF+AIS method offers only
a marginal improvement. The difference in performance be-
tween the VIMMJIPDA+AIS method and the BP-PF+AIS
and BP-PF+AIS+IMM methods can be explained by the fact
that the VIMMJIPDA+AIS method uses also a CT model to
better track maneuvering targets, and also by the fact that the
BP-PF+AIS and BP-PF+AIS+IMM methods create a larger
number of false tracks. However, differently from the results
reported in [1], the time-averaged mean GOSPA error of the
BP-PF+AIS method is lower than that of the VIMMJIPDA
method.

Fig. 3 shows the mean GOSPA error versus time for
PD = 0.9. Again differently from the results reported in [1],
both the VIMMJIPDA+AIS method and the BP-PF+AIS and
BP-PF+AIS+IMM methods correctly initialize the targets, as
is demonstrated by their similar mean GOSPA errors at times
t = 0 s and t = 10 s, i.e., when the targets appear. The
slightly lower mean GOSPA error of the VIMMJIPDA+AIS
method relative to the BP-PF+AIS and BP-PF+AIS+IMM
methods can again be explained by the fact that the VIM-
MJIPDA+AIS method uses an additional CT model that al-
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TABLE I
TIME-AVERAGED INDIVIDUAL COSTS CONSTITUTING THE MEAN GOSPA
ERROR (IN METER) FOR THE SIMULATED SCENARIO CONSIDERED IN [1,
SEC. VIII-A] WITH PD = 0.9. BOLD FONT HIGHLIGHTS THE LOWEST

VALUE IN EACH COLUMN.

LOCALIZATION FALSE MISSED

VIMMJIPDA+AIS 12.3 0.3 12.7
BP-PF+AIS 12.6 0.8 16.9
BP-PF+AIS+IMM 11.2 1.6 17.5

TABLE II
AVERAGE COMPUTATION TIMES (IN SECOND) PER TIME SCAN FOR THE
SIMULATED SCENARIO CONSIDERED IN [1, SEC. VIII-A]. BOLD FONT

HIGHLIGHTS THE LOWEST VALUE IN EACH COLUMN.

PD

.50 .60 .70 .80 .90 .99

VIMMJIPDA .32 .31 .28 .28 .25 .26
VIMMJIPDA+AIS .79 .70 .58 .57 .45 .46
BP-PF+AIS .20 .19 .20 .21 .21 .21
BP-PF+AIS+IMM .55 .53 .56 .56 .56 .56

lows it to maintain track continuity when targets maneu-
ver, and by the larger number of false tracks created by the
BP-PF+AIS and BP-PF+AIS+IMM methods. This is con-
firmed by Table I, which reports the individual costs consti-
tuting the mean GOSPA error (averaged over time), i.e., the
localization cost for correctly confirmed targets and the costs
for missed and false targets. The larger number of false tracks
created by the BP-PF+AIS and BP-PF+AIS+IMM methods
is mainly due to the use of the heuristic described in [15] to
model the generation of new targets, which was later super-
seded by the fully Bayesian BP-based tracking method pro-
posed in [13].

Finally, Table II presents a comparison between the aver-
age computation times per time scan for all the methods. This
comparison shows that the BP-PF+AIS method is the fastest
method, even faster than the original VIMMJIPDA method
that does not process the target-provided measurements. How-
ever, definite conclusions cannot be drawn from this analysis,
given the different implementations, the different number of
kinematic models used, and the different programming lan-
guages employed.

B. Scenario Considered in [9]

Next, we present results for a simulated scenario that is
similar to the one considered in [9, Sec. VI-A]. Our scenario
consists of nine targets that are moving with a constant ve-
locity of 4 m/s. The starting points of the target trajectories
are equally spaced on a circle with center [0, 0]T and radius
4 km. The target trajectories and the radar sensor are depicted
in Fig. 4. Unlike the scenario considered in the previous sub-
section, here the trajectories are deterministic — thus, they
are equal for all simulation runs — and approximately cross
each other in [0, 0]T. Five targets appear at t = 0 s and do
not disappear, and the other four targets appear at t = 40 s
and disappear at about t = 32 min. Six randomly selected
targets provide AIS measurements between t = 1.5 min and
t = 31.5 min. The number of AIS measurements provided by
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Fig. 4. Simulated scenario considered in [9, Sec. VI-A]. The star marks the
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Fig. 5. Mean GOSPA-T error versus time for the simulated scenario consid-
ered in [9, Sec. VI-A].

a target during each time scan is Poisson distributed with mean
0.5 for three of the six targets and mean 1 for the other three
targets. The time scan duration is set to 10 s. The AIS mea-
surement noise is modeled as before. The radar detects a tar-
get with probability PD = 0.5, and it generates range-bearing
measurements with a 2D zero-mean Gaussian measurement
noise with covariance diag(2502 m2, 2.562 deg2). The number
of false alarms is Poisson distributed with mean 2. For this
scenario, both the BP-PF+AIS and VIMMJIPDA+AIS meth-
ods use a single NCV model with driving noise variance set
to 0.152 m2 s−3. The parameters for the BP-PF+AIS method
are set as in [9]. For the VIMMJIPDA+AIS method, we use
the parameters reported in [1, Tab. III] with the exception of
the clutter density set to 1.7×10−9 m−2, the unknown target
rate set to 10−10 m−2, and the parameters related to the radar
measurement noise, that is, the range measurement variance
set to 2502 m2 and the bearing measurement variance set to
2.562 deg2.

As previously done in [9], we compare the VIM-
MJIPDA+AIS and BP-PF+AIS methods in terms of the mean
GOSPA error for trajectories (GOSPA-T) [18] of order 2 and
with cut-off parameter 500 m, averaged over 100 simulation
runs. Compared to the GOSPA error, the GOSPA-T error ad-
ditionally accounts for track switches by adding a switch-
ing penalty of 125 m. One can see in Fig. 5 that the VIM-
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(a) VIMMJIPDA method
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Fig. 6. Trajectories estimated by (a) the VIMMJIPDA method, (b) the VIMMJIPDA+AIS method, and (c) the BP-PF+AIS method using a real dataset
acquired as part of the Autosea project [7]. The estimated trajectories are depicted in orange, yellow, purple, and green, with their final positions indicated by
large dots. The transparency of the tracks is related to their existence probability: lighter (darker) colors correspond to lower (higher) existence probabilities.
The red dashed line indicates the ground-truth trajectory of the slow-moving vessel. The gray line represents the known trajectory of the radar sensor. The
gray/black dots and crosses indicate the radar and AIS measurements, respectively; the measurements become darker as time passes by. The blue line in the
top-right corner of the rightmost panel is a false track created by the BP-PF+AIS method.

TABLE III
TIME-AVERAGED INDIVIDUAL COSTS CONSTITUTING THE MEAN
GOSPA-T ERROR (IN METER) FOR THE SIMULATED SCENARIO

CONSIDERED IN [9]. BOLD FONT HIGHLIGHTS THE LOWEST VALUE IN
EACH COLUMN.

LOCAL. FALSE MISSED SWITCH

VIMMJIPDA+AIS 249.9 138.3 532.3 9.5
BP-PF+AIS 325.0 271.7 394.8 10.5

MJIPDA+AIS method outperforms the BP-PF+AIS method
during approximately the first half of the simulation, that is,
where the targets are well-separated. As the targets get closer,
the difference between the GOSPA-T errors of the two meth-
ods becomes less significant. From minute 24, after the tar-
gets have crossed their paths, the BP-PF+AIS method out-
performs the VIMMJIPDA+AIS method. This is due to the
inability of the VIMMJIPDA+AIS method to continue track-
ing some of the targets after they crossed their paths, as
demonstrated by the higher time-averaged missed cost com-
ponent of the mean GOSPA-T error shown in Table III. On
the other hand, the time-averaged localization and false costs
of the VIMMJIPDA+AIS method are lower than those of the
BP-PF+AIS method. In terms of average computation time,
the BP-PF+AIS method is faster than the VIMMJIPDA+AIS
method: it requires 0.61 s to process each time scan, whereas
the VIMMJIPDA+AIS method requires 0.81 s.

IV. RESULTS FOR REAL DATA

Finally, we assess and compare the performance of the
VIMMJIPDA, VIMMJIPDA+AIS, and BP-PF+AIS methods
for a real dataset that was acquired as part of the Autosea

project [7]. The scenario now consists of a radar sensor
mounted onboard a semiautonomous surface craft and four un-
known targets: a 30 m long slow-moving vessel consistently
providing AIS measurements and three fast-moving rigid hull
inflatable boats (RHIBs), one of which provides a single
AIS measurement. The VIMMJIPDA and VIMMJIPDA+AIS
methods employ three kinematic models as in [1] — two NCV
models and one CT model — and use the parameters reported
in [1, Tab. III]. The BP-PF+AIS method uses a single NCV
model with driving noise variance set to 1.72 m2 s−3, which
is higher than the driving noise variances used for the VIM-
MJIPDA and VIMMJIPDA+AIS methods, and also noticeably
higher than the driving noise variance used for the BP-PF+AIS
method in [1]. Results obtained with the BP-PF+AIS+IMM
method using two NCV models are not reported because they
are equivalent to those obtained with the BP-PF+AIS method.

Fig. 6 shows the trajectories estimated by the three meth-
ods as colored solid lines. The semiautonomous surface craft
is sailing from north to south, and its trajectory, depicted as
a gray solid line, is known. The unknown targets are travel-
ing from south to north. The ground-truth trajectory of the
slow-moving vessel, obtained by connecting its AIS measure-
ments, is also depicted as a red dashed line; the ground-truth
trajectories of the three fast moving RHIBs are not avail-
able. Differently from the results reported in [1], Fig. 6 shows
that the BP-PF+AIS method performs better than the VIM-
MJIPDA method, which loses track of one of the three RHIBs
when their paths cross, and performs almost identically to the
VIMMJIPDA+AIS method. Despite using only a single NCV
model, the BP-PF+AIS method is able to estimate the trajec-
tories of all the targets with high accuracy. The drawbacks of
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using a higher driving noise variance than the driving noise
variances used for the VIMMJIPDA and VIMMJIPDA+AIS
methods and for the BP-PF+AIS method in [1], are manifested
by the facts that the estimated trajectory for the slow-moving
vessel exhibits abrupt changes of direction, and that a false
track is created in the top-right corner of the considered area.

V. CONCLUSION

Recently, an extension of the VIMMJIPDA method that is
able to include target-provided measurements was proposed
in [1]. The effectiveness of this approach was validated in [1]
through a comparison with the BP-PF+AIS method presented
in [8], [9], whose code is not publicly available. In this paper,
we presented the results of an experimental comparison using
the implementation of the BP-PF+AIS method originally used
in [8], [9] as well as the BP-PF+AIS+IMM method from [11].
Simulation results showed that the VIMMJIPDA+AIS method
outperforms the BP-PF+AIS and BP-PF+AIS+IMM methods
when the targets are well-separated, whereas the BP-PF+AIS
and BP-PF+AIS+IMM methods have performance advan-
tages in the case of closely spaced targets. The reason why the
VIMMJIPDA+AIS method performs worse in the latter case is
likely the limited performance of the data association scheme
based on Murty’s algorithm, which struggles when targets
are closely spaced. Improvements to the VIMMJIPDA+AIS
method can be obtained by resorting to the variational ap-
proximation method presented in [19]. However, due to its
use of a CT kinematic model, the VIMMJIPDA+AIS method
generally provides more accurate estimates when the targets
perform sharp maneuvers. On the other hand, the BP-based
data association algorithm used within the BP-PF+AIS and
BP-PF+AIS+IMM methods tends to produce better results
in challenging tracking environments with tighter target spac-
ings [14]. Finally, results obtained with a real dataset showed
that the BP-PF+AIS method using a single NCV kinematic
model whose driving noise parameter is sufficiently high can
track the agile RHIBs with performance comparable to that
obtained with the VIMMJIPDA+AIS method.

REFERENCES

[1] A. G. Hem and E. F. Brekke, “Variations of joint integrated data associ-
ation with radar and target-provided measurements,” J. Adv. Inf. Fusion,
vol. 17, no. 2, pp. 97–115, Dec. 2022.

[2] E. F. Brekke, A. G. Hem, and L.-C. N. Tokle, “Multitarget tracking with
multiple models and visibility: Derivation and verification on maritime
radar data,” IEEE J. Ocean. Eng., vol. 46, no. 4, pp. 1272–1287, Oct.
2021.

[3] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model algo-
rithm for systems with Markovian switching coefficients,” IEEE Trans.
Autom. Control, vol. 33, no. 8, pp. 780–783, Aug. 1988.

[4] E. Tu, G. Zhang, L. Rachmawati, E. Rajabally, and G.-B. Huang, “Ex-
ploiting AIS data for intelligent maritime navigation: A comprehensive
survey from data to methodology,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 5, pp. 1559–1582, May 2018.

[5] M. Strohmeier, M. Schafer, V. Lenders, and I. Martinovic, “Realities
and challenges of NextGen air traffic management: The case of ADS-
B,” IEEE Commun. Mag., vol. 52, no. 5, pp. 111–118, May 2014.

[6] H. Chen, T. Kirubarajan, and Y. Bar-Shalom, “Performance limits of
track-to-track fusion versus centralized estimation: Theory and applica-
tion,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 2, pp. 386–400,
Apr. 2003.

[7] E. F. Brekke, E. F. Wilthil, B.-O. H. Eriksen, D. K. M. Kufoalor, Ø. K.
Helgesen, I. B. Hagen, M. Breivik, and T. A. Johansen, “The Autosea
project: Developing closed-loop target tracking and collision avoidance
systems,” J. Phys. Conf. Ser., vol. 1357, p. 012020, Oct. 2019.

[8] D. Gaglione, P. Braca, and G. Soldi, “Belief propagation based AIS/radar
data fusion for multi–target tracking,” in Proc. FUSION-18, Cambridge,
UK, Jul. 2018.

[9] D. Gaglione, P. Braca, G. Soldi, F. Meyer, F. Hlawatsch, and M. Z.
Win, “Fusion of sensor measurements and target-provided information
in multitarget tracking,” IEEE Trans. Signal Process., vol. 70, pp. 322–
336, Dec. 2021.

[10] Online code repository: Variations of joint integrated data association
with radar and target-provided measurements. [Online]. Available:
https://doi.org/10.24433/CO.4125751.v2

[11] G. Soldi, F. Meyer, P. Braca, and F. Hlawatsch, “Self-tuning algo-
rithms for multisensor-multitarget tracking using belief propagation,”
IEEE Trans. Signal Process., vol. 67, no. 15, pp. 3922–3937, Aug. 2019.

[12] K. G. Murty, “An algorithm for ranking all the assignments in order of
increasing cost,” Oper. Res., vol. 16, no. 3, pp. 682–687, Jun. 1968.

[13] F. Meyer, T. Kropfreiter, J. L. Williams, R. Lau, F. Hlawatsch, P. Braca,
and M. Z. Win, “Message passing algorithms for scalable multitarget
tracking,” Proc. IEEE, vol. 106, no. 2, pp. 221–259, Feb. 2018.

[14] J. Williams and R. Lau, “Approximate evaluation of marginal association
probabilities with belief propagation,” IEEE Trans. Aerosp. Electron.
Syst., vol. 50, no. 4, pp. 2942–2959, Oct. 2014.

[15] F. Meyer, P. Braca, F. Hlawatsch, and P. Willett, “A scalable algorithm
for tracking an unknown number of targets using multiple sensors,” IEEE
Trans. Signal Process., vol. 65, no. 13, pp. 3478–3493, Jul. 2017.

[16] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applica-
tions to Tracking and Navigation. New York, NY, USA: Wiley, 2001.
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