
C2Miner: Tricking IoT Malware into Revealing Live
Command & Control Servers

Ali Davanian
UC Riverside | NVIDIA

Riverside, USA
adava003@ucr.edu

Michalis Faloutsos
UC Riverside
Riverside, USA

michalis@cs.ucr.edu

Martina Lindorfer
TU Wien

Vienna, Austria
martina@seclab.wien

ABSTRACT

How can we identify live Command & Control (C2) servers for a given
IoT malware binary? An effective solution to this problem con-
stitutes a significant capability towards detecting and containing
botnets. This task is not trivial because C2 servers are short-lived,
and they use sophisticated and proprietary communication proto-
cols. We propose C2Miner, a novel approach to trick IoT malware
binaries into revealing their currently live C2 servers. Our approach
weaponizes old disposable IoT malware binaries and uses them to
probe active servers. We provide novel solutions to overcome the
following challenges: (a) disambiguating the C2-bound traffic gen-
erated by the malware and (b) determining if a target IP:port is
indeed a C2 server as opposed to a benign server.

In our evaluation, based on 3M distinct exploration attempts
over 150K distinct IP addresses, we show that we can identify C2
servers within a given IP:port space with an F1 score of 86%. In
addition, we show how our approach can be used in practice and
at scale. Conducting a large-scale probing campaign has scalability
issues given that the number of probes is proportional to the IP
addresses, the number of ports, and the number of binaries from dis-
tinct families which we want to explore. To address this challenge,
we propose a grammar-based method to fingerprint and cluster
C2 communications which, among other applications, allows us to
select malware binaries for weaponization efficiently. Additionally,
we use spatio-temporal features of C2 servers to narrow down our
search in the entire IP space. An optimistic observation from our
study is that using only 2 (more than 6 months) old IoT malware
binaries, we scan 18K IP:port pairs daily for 6 days and find 6 new
live C2 servers.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation.

KEYWORDS
IoT, malware, network security, command & control servers

ACM Reference Format:
Ali Davanian, Michalis Faloutsos, and Martina Lindorfer. 2024. C2Miner:
Tricking IoT Malware into Revealing Live Command & Control Servers.
In Proceedings of ASIA CCS 2024 (AsiaCCS’24). ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3634737.3644992

This work is licensed under a Creative Commons Attribution 4.0 International License.
AsiaCCS’24, July 01–05, 2024, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0482-6/24/07.
https://doi.org/10.1145/3634737.3644992

1 INTRODUCTION
Identifying Command and Control (C2) servers is critical in the
battle against botnets, and in particular against botnets targeting
Internet of Things (IoT) devices. As their name suggests, C2 servers
control their bots and orchestrate malicious activities, such as De-
nial of Service (DoS) attacks. Once the C2 servers of malware are
known, we can mount a defense to contain its proliferation and
damage, e.g., by monitoring or blocking traffic to these destination
addresses. This is an especially effective defense in the case of IoT
devices, because they do not have enough computation power to
have sophisticated on-device defenses like anti-virus (AV) software.
In addition, we can identify infected devices within a network once
we know the C2 addresses they communicate with. Finally, Internet
Service Providers (ISPs) and law enforcement can block and take
down these C2 servers to disrupt the botnet [35, 41].

Given their crucial role in the operation of botnets, C2 domain
names and IPs have long been used as indicators of compromise
(IoCs), and are part of different (commercial) threat intelligence
feeds. Nevertheless, the effectiveness of these feeds in terms of
coverage, accuracy and timeliness has come under scrutiny [9, 38].
Furthermore, the issue of coverage of domain-based feeds has been
known for quite some time: a study in 2014 found that “the union of
15 public blacklists includes less than 20% of malware domains” [34].

The problem of identifying C2 server is challenging especially if
liveliness is of interest. The difficulty lies in the fact that C2 servers
(a) use proprietary and increasingly sophisticated protocols [21],
(b) are short lived [52], and (c) use domain generation algorithms
(DGAs) to dynamically generated addresses [51]. So far the C2
mechanisms of IoTmalware have been found to be less sophisticated
than malware on other platforms: malware binaries typically hard-
code IP addresses [3], and do not include fallback mechanisms [52].
However, this also means that IoT malware does not yet employ C2
discovery mechanisms that could be reverse engineered and used
to discover new server locations [42, 45].

The current best practice is based on manual effort and domain
knowledge [60], as well as of sharing of information, such as IoCs.
Analyzing and activating malware binaries is one method to extract
IoCs, including C2 servers, but this effort has its own challenges as
we detail later in this paper. Most importantly, by the time analysts
find malicious binaries and analyze them, botmasters have most
likely moved their servers to new locations — essentially abandon-
ing any existing binaries. This is because reviving an IoT botnet is
relatively easy, and botmasters avoid maintaining them [52].
Problem definition: How can we identify live C2 servers for a given
IoT malware binary? This is the question that lies at the heart of
our work. Our input is an IoT malware binary and a target IP:port
space of interest (target for short). This target space is provided by

112

https://doi.org/10.1145/3634737.3644992
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3634737.3644992
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3634737.3644992&domain=pdf&date_stamp=2024-07-01

AsiaCCS’24, July 01–05, 2024, Singapore Ali Davanian, Michalis Faloutsos, and Martina Lindorfer

the user and it could be an enterprise network or a space of interest
for a research study. Our desired output is: (a) live C2 servers for
that binary in the given IP:port space, and (b) “fingerprints” of the
C2 communication, which can be used to identify C2 servers in a
network trace. We assume nearly zero a priori knowledge, which
makes the problem harder but more relevant in practice. Specifically,
we assume that we are not given any a priori knowledge about:
(a) the binary (e.g., its family), (b) the target space or reputation
information per IP address, and (c) actual bot traffic patterns, i.e.,
we do not require access to existing traffic traces.
State of the art: There has been limited work addressing the prob-
lem in the waywe have framed it here. Most related work falls in the
following broad categories: (a) dynamic analysis and profiling ap-
proaches, (b) network traffic fingerprinting methods, and (c) active
probing methods and studies. The most relevant technique to this
work is the use of “milkers” to find C2 servers [5]. The idea behind
milkers is to reverse engineer the application layer protocol used
by the malware and, then, implement an imitation of it to find live
C2 servers. There are two main limitations with this approach that
may impede its wider adoption, especially as IoT malware becomes
more sophisticated in the future. First, any manual effort to reverse
engineer a malware communication protocol has scalability issues
due to the need for human effort. Second, automated reverse engi-
neering of traffic have its own limitations, especially if the malware
deploys sophisticated techniques such as encryption [19, 36].
Contributions: We propose C2Miner, a systematic probing ap-
proach for discovering live C2 server for a given malware binary
with zero a priori knowledge. The novelty of our approach is that
we weaponize malware binaries by turning them into spies. We
accomplish this by developing novel algorithmic solutions to (a)
disambiguate the C2-bound traffic initiated by the binary, (b) de-
termine if a target IP is indeed a C2 server, and (c) fingerprint
and cluster C2 communication, which is necessary for exploration
at scale and intrusion detection. Our fingerprinting approach is
a significantly more powerful approach to existing approaches,
which we discuss in §8: our method (a) defines a formal grammar
to model the entire communication as a string, and (b) introduces a
customizable way of representing a packet as we elaborate in §4.
Our approach allows the traffic to be modeled at different levels of
granularity and is among the first approaches to create an abstract
representation of a network traffic flow using a formal language
without the need for payload decryption. As we discuss in §7, our
fingerprinting can also generalize to other applications.

In summary, we make the following contributions:
• We disambiguate C2-bound traffic accurately. We pro-
pose an algorithm that can distinguish C2-bound traffic from
other traffic (i.e., other malware activity, such as scanning
and exploitation) with 92% precision.
• We determine C2 servers accurately. We develop an
approach that can identify C2 servers among benign Inter-
net servers with an F1 score of 86%. To achieve this, we
introduce a grammar-based approach for characterizing the
communication between bots and C2 servers.
• We show that we can utilize old binaries to discover
current live servers. We find that 84% of pairs of malware
in our dataset can interchangeably talk to the same C2 server.

We show the promise of our approach in practice with a
small-scale study. Using two six-month-old binaries, we
identify six live servers during a six day probing campaign
targeting 1,536 IP addresses on 12 ports.

Availability: We provide our source code at https://github.com/
adava/CnCHunter as an extension of our work presented at Black
Hat [17], and release our ground truth and datasets (Appendix F).
Ethical considerations: We discuss the implications of execut-
ing malware samples and interacting with live servers and our
safeguards in §5.1 and Appendix A.

2 SCOPE, ASSUMPTIONS AND LIMITATIONS
Threat model: The threat is posed by a deployed and active botnet
and our goal is to defend against the attacker by detecting the live
C2 servers, which will help us mitigate and contain the malware.
Conversely, the attacker wants to avoid revealing its servers to our
probes. We have a binary of the malware that we activate in order
to communicate with a target IP in an effort to see if it is a C2 server.
We redirect the C2 traffic from the malware to candidate addresses.
For instance, if we were to scan a single port within a subnet of
256 nodes, we need to redirect malware traffic to all these nodes (at
the given port) and output which one(s) are a C2 servers. Naturally,
the goal of the detection is to balance coverage (finding all the live
servers) and accuracy (avoiding misclassification of benign IPs).

We discuss the key assumptions of our problem framing below:
a. Activation.We assume that the malware instance that we try to
exploit can be activated in our sandbox environment. This means
the malware would unpack itself (if packed) and start the communi-
cationwith the C2. Thus, we need to provide a sandbox environment
that sufficiently mimics an IoT device for the malware to start the
execution. In addition, we do not need to activate all the binaries,
as long as as we activate instances that uses a sufficiently-similar
communication protocol.
b. Encryption.We assume that the malware is not using a layer
III/IV encryption like IPSec. This is different from the use of en-
cryption at the application layer which does not affect our solution,
e.g., the use of TLS does not break our approach, although it might
impact its accuracy. We revisit this issue in §7.
b. Communication type. We assume that the botnet uses a tradi-
tional hierarchical server-bot communication and common com-
munication channels without the use of covert channels.
c. Network protocols.We assume that the malware uses the IP
protocol at layer III and the TCP protocol at layer four. Extending
our techniques to UDP is mostly an engineering effort.
d. Connection persistence.We assume that the malware attempts
to connect to a non-responsive C2 server multiple times, which is
a reasonable assumption as we discuss in §3.4.

Although we argue that the above assumptions are sufficiently rep-
resentative of the current IoT malware landscape, they may not be
true in the future. In particular, if we can not activate any malware
sample of a particular family, our solution will not work. However,
this is an issue for any method that relies on dynamic analysis.
Naturally, one can expect that malware authors that become aware
of C2Miner may actively develop methods to defeat our system. We
discuss this and potential countermeasures in §7.

113

https://github.com/adava/CnCHunter
https://github.com/adava/CnCHunter

C2Miner: Tricking IoT Malware into Revealing Live Command & Control Servers AsiaCCS’24, July 01–05, 2024, Singapore

Feasibility assessment.We conducted a small-scale manual study
to assess the feasibility of our approach, which we describe in Ap-
pendix B. We manually analyzed well-known IoT malware families
and we found (a) bad news: communication protocols vary signif-
icantly between families; and (b) good news: The protocol tends
to remain nearly identical for binary samples of a family. These
observations are corroborated by our experiments in §5 and §6.
Target space selection and prioritization. Selecting the target
IP for scanning presents two distinct but related questions: (a) what
is the initial space of exploration, and (b) how should we prioritize
its exploration. We consider these questions to extend beyond the
scope of this work. First, we consider the overarching space for
exploration as part of the problem input. In practice this could be
driven by the goal of the study. For example, a company may want
to scan its own space for the existence of C2 servers. Another ap-
proach is to identify “Internet Neighborhoods” with bad reputation
using historical behavior. Second, prioritizing the exploration of
the desired space is a deployment optimization problem, especially
if we assume there is a limited “budget” for the exploration. By
contrast, this is not a concern in the case of a small target space or
abundant resources. We further discuss prioritization in §6.

3 DESIGN AND IMPLEMENTATION
In a nutshell, C2Miner takes as input one or more IoT malware
binaries and a target IP:port space to explore. C2Miner probes the
given target space by redirecting the C2 traffic of themalware to find
live C2 servers. To achieve this, we first need to execute the malware
to a point where it generates C2 traffic (binary activation §3.1). Then,
we need to detect the malware C2 traffic (traffic disambiguation
§3.2). Next, we need to redirect the C2 bound traffic to the targets
within the given IP:port space (MitM-enabled probing §3.3). Finally,
we need to determine whether a target is indeed a C2 by analyzing
the communication (C2 determination §3.4).

Figure 1 shows an overview of the architecture of C2Miner. The
sandbox is in charge of the binary activation. The profiler oversees
the disambiguation and the C2 determination. The MitM module
implements the redirection of the traffic to the target IP address.

A significant contribution of our work is our grammar-based
fingerprinting capability (see §4). In our context, fingerprinting
refers to the detection of a remote network service based on its
network footprint. We use this capability in two ways. First, we
use it in the profiler for determining the existence of a C2 server.
Second, we use it to cluster binaries based on their communication
patterns to prioritize a proof-of-concept deployment (see §6).

3.1 Binary Activation
Here, we briefly explain how we activate a malware binary in our
sandbox, although the sandbox component of C2Miner is not the
focus of this study (see Appendix C for more details on the under-
lying virtualization environment). On a high level, we overcome
three challenges for activating an IoT malware binary, i.e., drive
the the execution to a point where it generates network traffic:

First, the binary must be executed on the corresponding CPU
architecture. To do so, we statically analyze the binary to find the
right architecture for execution. If the binary is packed, we unpack
it using well-known packers (such as UPX). If we can not determine

Initial C2
(likely dead)

Target Space

IoT Malware

Sandbox

MitM

Profiler

List of
Live C2s

1
2
3

3

2.58.149.31:5555

212.193.30.8:666

45.95.169.119:666

Targets
IP:Port

Figure 1: Overview of C2Miner and how it tricks malware
binaries into revealing live C2 servers by activating them,
and then redirecting the traffic to scan IP spaces of interest.

the CPU architecture after unpacking, we iteratively execute the
binary on every CPU architecture that the sandbox supports until
the binary is activated, or we exhaust all options.

Second, we need to bootstrap a virtual environment for execu-
tion. Executing a malware on actual IoT devices is not feasible in
practice: there are many IoT devices and given our zero knowledge
assumption, we do not know which device it targets. Furthermore,
a virtualized environment allows us to instrument the execution,
and efficiently analyze the malware. Our 𝑠𝑎𝑛𝑑𝑏𝑜𝑥 emulates the mal-
ware execution using QEMU [6], and as we report in §5.3, QEMU
performs very well despite occasional failures due to instructions
not being supported by the virtualization engine.

Third, the execution platform, in terms of operating system and
the file system, should be configured properly for the malware to
activate. For instance, if the malware looks for a specific file, the
absence of that file would result in the early termination of the
execution. We use RiotMan [15] for this purpose, which enables us
to provide the appropriate configuration.

During the binary activation process C2Miner automatically
copies themalware executable to the filesystem in the start-up script
directory, and starts the input malware emulation. The profiler
module stores the logs for later analysis by other modules. It logs
network traffic and system call traces. The former provides us with
the data for C2 communication analysis, while the latter allow us
to verify the correctness of the emulation. Our emulator executes
the malware with the strace logging enabled. For network traffic
collection, we enable the QEMUnetwork bridging functionality, and
record the traffic in pcap format. Finally, to communicate with the
candidate addresses, the guest (the virtual machine that themalware
runs on) needs an active Internet connection, so we activate IP
forwarding on the Linux host. We also activate the ARP proxy
configuration and NAT the traffic to the outside world.

3.2 Traffic Disambiguation
Traffic disambiguation aims to distinguish between the C2 and
non-C2 traffic that the malware generates. The C2 traffic is only a
small percentage of all the traffic that the malware generates. IoT
malware, like other worm-like malware, tries to infect other devices,
and hence, it generates scanning and exploitation traffic [2, 3]. In
addition, there might be random traffic, for instance, for checking
Internet connectivity on the infected device. Our profiler module
finds the C2 address (IP:port or DNS name) that the malware tries to
communicate with from a large amount of traffic that the malware
generates (and contains all the aforementioned types of traffic).

114

AsiaCCS’24, July 01–05, 2024, Singapore Ali Davanian, Michalis Faloutsos, and Martina Lindorfer

Algorithm 1 Disambiguate-C2-Traffic
Input: Packets

Output: Scores ⊲ for IP:ports
1: 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑠 ← {} ⊲ A hashtable tracking the number of connections to each

target (ip:port or DNS).
2: 𝑃𝑜𝑟𝑡𝑠 ← {} ⊲ A hashtable tracking the number of times a destination port is

seen.
3: 𝑆𝑐𝑜𝑟𝑒𝑠 ← [] ⊲ A list of targets with their C2 likelihood score.
4: for each 𝑝𝑘𝑡 ∈ 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 do
5: if 𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 (𝑝𝑘𝑡) == 𝑇𝑅𝑈𝐸 then
6: 𝑡𝑎𝑟𝑔𝑒𝑡 ← Get_Target(𝑝𝑘𝑡)
7: 𝑈𝑝𝑑𝑎𝑡𝑒_𝑇𝑎𝑟𝑔𝑒𝑡 (𝑡𝑎𝑟𝑔𝑒𝑡,𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑠)
8: 𝑈𝑝𝑑𝑎𝑡𝑒_𝑃𝑜𝑟𝑡𝑠 (𝑡𝑎𝑟𝑔𝑒𝑡, 𝑃𝑜𝑟𝑡𝑠)
9: for each 𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑠 do
10: if 𝑖𝑠_𝐷𝑁𝑆 (𝑡𝑎𝑟𝑔𝑒𝑡) and not𝑊ℎ𝑖𝑡𝑒_𝑙𝑖𝑠𝑡 (𝑡𝑎𝑟𝑔𝑒𝑡) then
11: 𝑆𝑐𝑜𝑟𝑒𝑠 [𝑡𝑎𝑟𝑔𝑒𝑡] ← 𝐶𝑎𝑙𝑐_𝐷𝑁𝑆_𝑆𝑐𝑜𝑟𝑒 (𝑡𝑎𝑟𝑔𝑒𝑡)
12: if 𝑖𝑠_𝐼𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡) then
13: 𝑆𝑐𝑜𝑟𝑒𝑠 [𝑡𝑎𝑟𝑔𝑒𝑡] ← Calc_IP_Score(𝑡𝑎𝑟𝑔𝑒𝑡, 𝑃𝑜𝑟𝑡𝑠)
14: 𝑆𝑜𝑟𝑡_𝐷𝑒𝑠𝑐 (𝑆𝑐𝑜𝑟𝑒𝑠)
15: return 𝑆𝑐𝑜𝑟𝑒𝑠

We developed the Disambiguate-C2-Traffic algorithm illustrated
in Algorithm 1 to identify C2 traffic. It analyzes each target in the
traffic generated by the IoT malware and assigns a score that shows
the likelihood of a target being a C2 server. We use the term “target”
to refer to either an IP:port tuple or a DNS address. We take the
top 𝑁 (configurable but 𝑁 = 1 by default) most likely targets as the
malware’s C2 servers. We implemented Algorithm 1 using Python’s
pyshark library [31]. The algorithm consists of the following steps:

Part 1: Quantifying activity. As a first step (lines 4-8), we analyze
each packet and count the number of times the targets (IP:port or
DNS name) are contacted. At line 5, we filter out the traffic from
unrelated protocols: ICMP, DHCP, ARP and NTP. We assume that
the malware uses TCP for C2 communication, which seems to be
the preferred protocol [42]. Note that extending our approach to
UDP and other protocols is a matter of engineering. In addition,
although ICMP and NTP are sometimes used as covert channels,
we did not find such instances in IoT malware.

Next, at line 6 and 7, we quantify the number of times a target is
contacted.Wemake a distinction between the IP and DNS addresses.
For IP:port targets, we count the number of packets to those targets.
Our insight here is that a binary will exchange a large number of
packets with its C2 server. In fact, we anticipate that even if the
C2 is not alive, the malware will most likely attempt to connect
multiple times. For DNS-based targets, we consider two cases. If
the DNS resolution succeeds, then, we focus on the resolved IP:port
tuple which we explained above. If DNS resolution fails, we count
the number of times that the DNS queries fail. This is based on the
observation that a blocked C2 DNS address would not resolve, and
hence there will not be a connection to an IP address.

Part 2: Calculating the C2 likelihood score. Having completed
the first step, we can perform the second step and calculate the
likelihood score for each target (lines 9 to 13). First, for DNS-based
addresses, we check the reputation of the domain and filter out the
reputable domains from further analysis. To do so, we associate
the reputation of a domain to its popularity ranking measured by
Alexa and eliminate the top 𝑋 (configurable but 𝑋 = 1, 000 by
default) well-known domains based on their Alexa ranking. Note
that we check the ranking of the entire DNS address, and not only
the second level domain (e.g., Microsoft’s reputation and ranking

is different from its subdomains). This means that a cloud-based
C2 address (e.g., hosted on Microsoft or Amazon) would not have
necessarily equally high reputation. If the DNS address passes the
reputation check, the score is the number of times it was queried.

Second, for IP:port-based targets, we assign a score that consid-
ers the activity for both the target and the port by relying on two
insights. The first insight is that a bot will have regular commu-
nication with the C2 server, so the higher the number of packets
sent to an IP:port pair, the higher the likelihood it is a C2 server.
Note that this insight does not refer to the percentage of the C2
traffic compared to the overall traffic, but rather the frequency of
communication to a particular target compared to other targets the
malware tries to communicate with. The second insight is that a
port number used for the C2 server is different from ones used for
other bot traffic, such as proliferation (scanning and attacking other
devices), in which case the same port will be used across many
different IP addresses. The higher the number of IP addresses that
are being contacted at a specific port is, the lower is the likelihood
that a communication at that port is towards a C2 server. These
two insights can be quantified in different ways. We chose the most
straightforward way that does not require any additional parame-
ters such as weights: We calculate the score of an IP:port pair as the
number of packets to that IP:port divided by the number of times
the port was used. This works well in practice as we show in §5.3.

3.3 MitM-enabled Probing
The task of the machine-in-the-middle (MitM) module is to redirect
the malware C2 traffic to the input targets. We use the term “candi-
date” to refer to these targets that may be C2 servers. The traffic
redirection results in traffic exchange between the malware and
the target that later can be used to determine whether the target is
a C2 server. Note that this module assumes that Algorithm 1 has
already identified the C2-bound traffic. The MitM module handles
IP:port-based and DNS-based targets in the following ways:
a. IP:port-based targets. Here, we want to replace the IP and port
of the C2 server that the malware wants to reach with that of the
target of interest. Implementing this functionality is non-trivial as
using the readily available NAT functions at the network perimeter
would not be sufficient. For ethical reasons, we can not let the
traffic leave the infected machine. Hence, we move the address
manipulation to the guest level. We used the Linux iptables, which
we adapted to work in our case, as following. In the NAT mode,
iptables allows altering the packets as soon as they come in and/or
as they go out from the network proxy if the traffic originates
from the proxy itself. Since we rely on the guest’s (i.e., the infected
machine’s) iptables to provide the redirection, we can alter the
packets and redirect them before the traffic leaves the guest.
b. DNS-based targets. Operating systems use different DNS res-
olution methods. Linux starts by looking up the DNS address in
a host file that maps DNS names to IP addresses and uses other
methods only if this method fails (although the order can be modi-
fied). We take advantage of this process, and modify the host file
(/etc/hosts) of the guest machine that maps DNS addresses to IPs.
We add an entry that maps the C2 DNS address to the candidate
address, similar to the IP case, which we look up. Doing so, the
traffic is redirected to the candidate address.

115

C2Miner: Tricking IoT Malware into Revealing Live Command & Control Servers AsiaCCS’24, July 01–05, 2024, Singapore

3.4 C2 Determination
One of the profiler module’s tasks is to determine whether a target
is a C2 server based on its traffic exchange with the malware. This
problem can be solved if we have a priori knowledge about the
application protocol used by the malware, however, we assume such
knowledge is not available. If traffic samples of communication with
the C2 server are available, some knowledge can be drawn through
the analysis of the traffic and the problem can be solved differently.
Here, we only focus on the transport layer (IV layer of the OSI
model) headers and payload. We make no effort to understand the
malware’s application layer protocol, which often is encrypted.

We propose two methods: (a) a SYN-DATA-aware (see below),
and (b) a Fingerprinting-aware method (see §4). The latter can have
wider applications and we compare the two methods in §5.4.
The SYN-DATA-aware method. The solution that we present
here is independent of the application layer protocol used by the
malware and should work even in the case of encryption at the
application layer. Our solution is based on the insight that if a target
is a C2 server, it should engage with the malware in a “meaningful”
way. A meaningful or successful connection could imply differ-
ent behaviors for different application layer protocols. Assessing
success based on the network-level features derived from the trans-
portation layer satisfies the assumption that no a priori knowledge
about the application layer protocol is available.

Determining meaningful communication at the transport layer
is challenging. On the TCP transport layer, a successful connection
completes the handshake. However, a successful handshake does
not always indicate a successful connection (at the application
level). After the handshake, endpoints might immediately close the
connection by sending RST/FIN flags or silently not respond back.
Alternatively, an endpoint might respond with a packet informing
the target about an error at the application level. For instance, in
response to an invalid HTTP request, the server might respond
with a “400 Bad Request” error code. It should be noted that these
are all possible scenarios since we redirect a malware sample’s C2
traffic to a candidate that might or might not be a C2 server.

We reduce the problem of determining whether the target is a C2
server to whether the communication succeeds or fails by assessing
transport layer features. If the communication fails, regardless of
the reason for the failure, we find that malware insists on retrying
to connect to the server. To illustrate this, consider an analogy to
the human communication. If two individuals do not understand
each other’s language, they restart the conversation and repeat
themselves. Similarly, if a candidate address listens to our contacted
port, but it does not speak our malware application layer protocol, it
will most likely restart the connection.We can identify this behavior
by looking at the number of times the SYN flag is set for a particular
candidate. This approach is error prone in case malware constantly
closes the connection to a port and re-opens it. However, such cases
are rare, as we discuss in §5.4.

If the communication is successful based on the number of
SYN flags, we check for exchange of data to further assess the
communication success. In general, after completing the handshake,
malware sends data to the C2 server, which is a payload at the TCP
layer. This could be a simple “PING” command. In response, the
server typically acknowledges the packet and might choose to

respond with a TCP payload. The TCP segment from the server
contains control flags and zero or more bytes of data. We find that
factoring in the exchange of data increases the precision, because
false positives are rare (see §5.4). In summary, for C2 determination,
we check whether: (a) the number of times the SYN flag has been
set is lower than a threshold 𝑡 (configurable but 𝑡 = 1 by default),
and (b) if there is an exchange of data packets between the malware
and the target.

4 GRAMMAR-BASED FINGERPRINTING
How can we profile the bot-to-C2 server interaction at the network
level? This is the question that we are trying to answer in this
section. We want to find communication patterns that are uniquely
indicative of C2 communications, and at the same time robust to
variations and noise. By comparing these fingerprints with captured
traffic, we can identify the presence of a C2 server. To do so, we
propose to model the network flow as a dialogue and model it using
a grammar. At the network level, if we look at the dialogue, we can
see the following features that depend on the applications (vs. the
operating system):
a. Number of send/receive pairs. As in a dialogue, the communica-
tion consists of request/response pairs. For instance, just like “Hi”
answers to a “Hi,” a “PING” or a “PONG” is a response to a “PING.”
b. Order within the send/receive pairs. Is it the client who initiated the
exchanged pair or the server? Please note that this is independent of
who first initiated the flow. The order within each pair can change
at any time. A dialogue can go quiet, and each of the participants
can start a new send/receive pair.
c. Termination control flags (if any). This helps us understand how
the connection terminated, for example a network failure.
At a high level, we summarize the flow by capturing: (a) its begin-
ning and end, (b) its adherence to TCP flow rules, and (c) select
properties of its packets. We design a grammar 𝐺 that models the
raw traffic to a “phrase in this language” based on the above obser-
vations. Formally, we define 𝐺 = (𝑁, Σ, 𝑃, 𝐹𝑙𝑜𝑤), where

𝑁 = {𝐹𝑙𝑜𝑤, 𝐹𝑙𝑜𝑤𝐵𝑜𝑑𝑦, 𝐷𝑎𝑡𝑎𝑃𝑎𝑐𝑘𝑒𝑡,𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑎𝑐𝑘𝑒𝑡, 𝐹𝑙𝑎𝑔𝑠,
𝑆𝑒𝑛𝑑𝑒𝑟, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}

are the non-terminals symbols, and
Σ = {ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒, 𝑐𝑙𝑖𝑒𝑛𝑡, 𝑠𝑒𝑟𝑣𝑒𝑟, 𝐴𝐶𝐾, 𝑆𝑌𝑁, 𝐹𝐼𝑁 , 𝑅𝑆𝑇 , 𝑎𝑡𝑡𝑟∗}

are the terminals symbols (we explain 𝑎𝑡𝑡𝑟∗ below). Note that 𝐹𝑙𝑜𝑤
is the start symbol. We list the production rules set 𝑃 in Algorithm 2.
Please note that for readability (and to save space), we use the
symbol “|” (corresponding to logical or) to present two rules in one
line in some cases.
a. Summarizing a flow. Every flow starts with the start symbol
𝐹𝑙𝑜𝑤 and expects to “see” a TCP handshake captured by our termi-
nal symbol ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒 . This symbol corresponds to the three TCP
packets: the client sends a packet with the 𝑆𝑌𝑁 flag, the server
responds with 𝑆𝑌𝑁 and 𝐴𝐶𝐾 flags and finally client sending an
𝐴𝐶𝐾 . The rest of the flow consists of control or data packets from
the endpoints denoted by the 𝑆𝑒𝑛𝑑𝑒𝑟 non-terminal and the 𝑐𝑙𝑖𝑒𝑛𝑡
and 𝑠𝑒𝑟𝑣𝑒𝑟 terminals. In our malware analysis, 𝑐𝑙𝑖𝑒𝑛𝑡 is the malware
and the 𝑠𝑒𝑟𝑣𝑒𝑟 is the C2 server.
b. Summarizing each packet. Our grammar provides the ability
to profile each packet in the flow using 𝑎𝑡𝑡𝑟∗. Defining what are

116

AsiaCCS’24, July 01–05, 2024, Singapore Ali Davanian, Michalis Faloutsos, and Martina Lindorfer

Algorithm 2 The Production Rules 𝑃

𝐹𝑙𝑜𝑤 −→ ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒 𝐹𝑙𝑜𝑤𝐵𝑜𝑑𝑦 (1)
𝐹𝑙𝑜𝑤𝐵𝑜𝑑𝑦 −→ 𝐷𝑎𝑡𝑎𝑃𝑎𝑐𝑘𝑒𝑡 𝐹𝑙𝑜𝑤𝐵𝑜𝑑𝑦 (2)
𝐹𝑙𝑜𝑤𝐵𝑜𝑑𝑦 −→ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑎𝑐𝑘𝑒𝑡 𝐹𝑙𝑜𝑤𝐵𝑜𝑑𝑦 (3)
𝐹𝑙𝑜𝑤𝐵𝑜𝑑𝑦 −→ 𝜖 (4)

𝐷𝑎𝑡𝑎𝑃𝑎𝑐𝑘𝑒𝑡 −→ 𝑆𝑒𝑛𝑑𝑒𝑟 ”_”𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (5)
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑎𝑐𝑘𝑒𝑡 −→ 𝑆𝑒𝑛𝑑𝑒𝑟 ”_”𝐹𝑙𝑎𝑔𝑠 (6)

𝑆𝑒𝑛𝑑𝑒𝑟 −→ 𝑐𝑙𝑖𝑒𝑛𝑡 |𝑠𝑒𝑟𝑣𝑒𝑟 (7)
𝐹𝑙𝑎𝑔𝑠 −→ 𝐹𝑙𝑎𝑔 𝐹𝑙𝑎𝑔𝑠 |𝐹𝑙𝑎𝑔 (8)
𝐹𝑙𝑎𝑔 −→ 𝐴𝐶𝐾 |𝑆𝑌𝑁 |𝑅𝑆𝑇 |𝐹𝐼𝑁 (9)
𝐹𝑙𝑎𝑔 −→ 𝜖 (10)

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 −→ 𝑎𝑡𝑡𝑟∗ (11)

H . CLIENT_2 SERVER_13 SERVER_FIN_ACK. . CLIENT_FIN_ACK.

H . CLIENT_11 SERVER_4 CLIENT_1. .Example 1:

Example 2:

Figure 2: Two real short phrases in our language: H repre-
sents the TCP handshake abbreviated, followed by the yellow
CLIENT_𝑋 and green SERVER_𝑋 packets of size 𝑋 .

the right properties of packets can adapt to the sophistication of
the malware. For example, the attributes can be a vector of values
that could include packet size, byte entropy, or the appearance of a
string in the payload. The latter requires deep packet inspection.

Our selection of attributes was driven by two considerations,
we wanted to: (a) avoid deep packet inspection to increase its prac-
ticality, and (b) show the promise of the method. The former con-
sideration suggests that only network headers are available. From
a deployment point of view, this allows network devices to quickly
process the packets, and also allows data sharing because of allevi-
ated privacy issues. Another advantage is that packet headers are
not affected by encryption at the application layer.

Given the above considerations, we define 𝑎𝑡𝑡𝑟∗ in rule (11)
to be simply the length of the packet. In §5, we show that this
attribute works sufficiently well with our dataset and the current
sophistication level (or lack thereof) of the malware. Naturally, we
will consider additional attributes in the future.

The best way to understand the grammar is through the ex-
amples illustrated in Figure 2. We use orange for control packets,
yellow for data packets from the client and green for the server
data packets. In these examples, "H" stands for the TCP handshake.
The first example shows that after the handshake, the client (the
malware) sends 11 bytes of data to which the server responds with
4 bytes. At the end, the communication terminates with 1 byte of
data from the client. In the second example, the sever sends a packet
with the FIN flag set at the end, and the client acknowledges this
and also sends a packet with the FIN flag set.
c. Transforming flows into a “string” of the grammar. We
take as input a traffic pcap file, and our goal is to transform each
network flow between the malware and a destination into a string
in our grammar. Note that the malware is always one of the com-
municating entities.

The process still hides several subtleties that we discuss here
briefly. First, the traffic does not need to be restricted to a single
flow, and it might contain multiple flows to the C2 server. This is

because the traffic might be captured as the result of executing the
malware several times, or because the malware opens and closes
its connection to the C2 periodically. Second, we remove erroneous
packets from our trace, i.e., packets that are not “part of the dialogue.”
In practice, these are packets that are not acknowledged by the
other endpoint or re-transmissions of the same packet. This could
be in the handshake process, or after the connection establishment.
Finally, based on the features we mentioned earlier, we generate
a string in our grammar from the remaining packets. At the end
of our transformation phase, we have one string per flow between
the malware and each destination of interest.
d. Comparing strings of the grammar. Given two strings in our
grammar, we can quantify how similar they are using a distance
function. We use clusters of strings to increase the robustness of
our approach, which we discuss below. A cluster of similar strings
based on a distance function indicates recurring patterns.
e. Clustering communication patterns. Clustering the trans-
formed traffic in form of strings in our language can help us find
common patterns, which we refer to as 𝑓 𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡𝑠 . These finger-
prints can be used in several applications beyond the scope of this
work. Here we use it to (a) determine if a target is a C2 server, and
(b) optimize the deployment of C2Miner, as discussed in §6. Our
goal is to select a representative subset of binaries for probing a
target space, such that we discover the same C2 servers as if we
had used all the binaries. In essence, we can find malware clusters
based on the similarity of their communication patterns.

For a given set of binaries 𝑁 , we want to compare the similarity
of their flows to their respective C2 servers. Formally, the input
to the clustering algorithm is a set 𝑆 = {𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑁 } where
each 𝑆𝑖 is the set of network flows for binary 𝑖 to its C2 server
represented by strings 𝑓𝑖 in our grammar, 𝑆𝑖 = {𝑓1, 𝑓2, 𝑓3, ..., 𝑓𝑃 }.

We use hierarchical clustering which gives us the ability to
study the clusters at different levels of granularity. Here, we use
the hierarchical k-means algorithm, which seems to work well for
our applications. For the distance function, we use the Jaccard dis-
tance based on the output of the Longest Common Sequence (LCS)
algorithm of two flows 𝑓𝑖 and 𝑓𝑗 . We use 𝐿𝐶𝑆 (𝑓𝑖 , 𝑓𝑗) to calculate the
intersection length. In order to calculate the union size, we define
𝐿𝑒𝑛𝑔𝑡ℎ(𝑓𝑖) as the total number of sender chunks in our grammar.
Since a sample’s communication with the C2 could extend to multi-
ple flows, the formula below accounts for these cases:

𝐼 (𝑆1, 𝑆2) =
|𝑆1 |∑︁
𝑖=1

|𝑆2 |∑︁
𝑗=1

𝐿𝐶𝑆 (𝑓𝑖 , 𝑓𝑗) (12)

𝐿 (𝑆𝑟) =
|𝑆𝑟 |∑︁
𝑖=1

𝐿𝑒𝑛𝑔𝑡ℎ (𝑓𝑖), 𝑟 = 1, ..., 𝑁 (13)

𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 (𝑆1, 𝑆2) =
𝐼 (𝑆1, 𝑆2)

𝐿 (𝑆1) + 𝐿 (𝑆2) − 𝐼 (𝑆1, 𝑆2)
(14)

Usage and practical considerations.We use our grammar-based
method to fingerprint the communication between the malware
and likely C2 servers. We report a fingerprint match under the
condition that LCS returns a string that contains exchange of data
from both endpoints. In §5.5, we evaluate this approach and discuss
the choice of parameter 𝑘 and the seeds for the 𝑘-means algorithm.

117

C2Miner: Tricking IoT Malware into Revealing Live Command & Control Servers AsiaCCS’24, July 01–05, 2024, Singapore

5 EVALUATION
We evaluate our approach by answering the following questions:
Q1: How accurately can we disambiguate C2-bound traffic from
other malware traffic? (see §5.3)
Q2:How accurately can we determine that a probed target is indeed
an active C2 server? (see §5.4)
Q3: Can our grammar-based fingerprinting help distinguish differ-
ent families of malware? (see §5.5)
Q4: Do binaries exhibit "cross-talk"? Namely, if it is likely that two
different binaries talk to the same C2 server? (see §5.6)

This area of research is notorious for having limited to non-existent
benchmarks and ground truth despite several studies in this di-
rection [52, 55]. Thus, we needed to create our own ground truth,
which we provide to the community as detailed in Appendix F.
Implementation and experimental setup. We implemented
C2Miner in roughly 3,500 lines of code (LOC) in Python and Linux
shell scripts. For the evaluation, we use an x86-64 virtual server.
Our machine has 4 Intel(R) Xeon(R) CPU E5-2686 v4 at 2.30GHz,
and 16GB of RAM. It runs an Ubuntu bionic 18.04 AMD64 OS.

5.1 Ethical Considerations
We adhere to an ethical code of conduct and best practices for ex-
ecuting malware and interacting with live servers [49]. First, we
do not violate anyone’s privacy, as we never deal with any per-
sonally identifiable information. We only measure properties of
devices (publicly accessible servers) and the services that run on
them. Second, our measurement study is light-weight and it does
not increase the load on servers or the traffic on the network signif-
icantly. Third, we take all possible measures to limit any potential
harm. We only let C2 traffic communicate with real servers, and
we filter out traffic that goes to any destination other than the C2
server with the exception of our limited controlled attempts for
experiments we explain in §5.4; for those exceptions, we monitored
the communication as it was happening. In addition, C2 traffic ini-
tiated by the bot towards the server is focused on establishing a
communication, so it is not harmful. Fourth, even as the malware
running in our sandbox temporarily joins a botnet, we are vigilant
and have filters in place to recognize (a) C2 commands that could
instigate an attack, and (b) outgoing filters to block any suspicious
or potentially harmful traffic. In particular, through reverse engi-
neering, we identify all the exploits the malware may run and have
a filter in place to block them. We also limit the amount of ongoing
traffic in terms of bandwidth and number of connections to miti-
gate DDoS attacks. We use SNORT IDS and iptables to detect and
prevent malicious traffic from leaving our network. Furthermore,
we have additional techniques in place to contain malicious traffic
in each of our experiments as further detailed in Appendix A.

5.2 Malware Dataset
We collect malware binaries from MalwareBazaar [1] and VirusTo-
tal [56] on a daily basis. We focus on the MIPS architecture, since it
is a common platform for IoT devices and a less explored architec-
ture by the community [15]. MalwareBazaar tags binaries as MIPS,
while for VirusTotal, we query elf samples and filter for “mips”
keyword. Later, in our static analysis stage, we only analyze MIPS

Dataset Description Section
DAll 1,447 binaries collected in total Base
Ground1 241 malware binaries used as ground truth §5.3
Ground2 1,083 binaries and their IP:port C2 address cross

verified by VirusTotal
§5.3

Ground3 202 binaries of Ground1 with a live C2 used as
ground truth

§5.4

Trace-1 317MB traffic of 80 binaries from Ground3 redi-
rected to 34 C2 servers and 39 benign servers

§5.4

DFinger 202 traffic fingerprints in our formal grammar of
the 202 binaries from Ground3

§5.5

Trace-2 230MB traffic of 49 binaries from Ground3 redi-
rected to “talk” to 32 C2 servers in January 2022

§5.6

Table 1: Our datasets of a total of 1,447 MIPS 32BE IoT mal-
ware samples from MalwareBazaar and VirusTotal.

32B Big Endian samples that have C2-based communications, and
not peer-to-peer (P2P) malware. To further validate that the binary
is malware, we expect at least 5 engines to identify the sample
as malicious (using the query fs:1d+ type:elf positives:5+
mips), which is aligned with established best practices [62].

To improve coverage, we collected binaries during four phases
over the span of one year: (P1) March 29, 2021 to April 5, 2021; (P2)
June 6, 2021 to August 11, 2021; (P3) October 25, 2021 to November
1, 2021; and (P4) November 10, 2021 to March 16, 2022. On average,
we collect roughly 4 new unique malicious MIPS binaries a day. We
refer to the union of all the samples as DAll. A summary of all our
datasets is listed in Table 1. We initiated 3M exploration requests to
150K IP:port addresses over the course of our 24 weeks study period
to augment and build these datasets. We identify 20K live services
(IP:port) and trick 149 malware binaries into connecting to these
addresses to prepare our ground truth. We manually checked the
safety of our probes, i.e., that they are only “Call-Home” requests
and do not modify the server state.
Activation of live malware-specified C2 servers. Due to the
short-lived nature of C2 servers, we conduct the dynamic analysis
on the same day we obtain the binary to maximize our chances of
finding the malware-specified C2 servers. C2Miner successfully ac-
tivates 90% of the binaries, which is on par with earlier studies [15].
We focus on activated binaries in the remainder of this work. The
failures to activate were mainly due to “illegal instruction error”
within QEMU, and in one instance, the malware self-terminated
once it sensed the emulation environment.
Obtaining C2 traffic for ground truth. Activating the binary is
just the beginning: we still need to collect its C2 traffic, which is not
straightforward. First, we need a live C2 server, but they are rare
and ephemeral. In fact, the malware-specified C2 servers (which
the malware attempts to contact initially on its own) are usually
inactive: only 49% of the binaries had a live C2 server by the time
they appear in our two sources. Making things worse, many of the
live servers became inactive before we finished our experiments.
In total, we managed to connect 202 binaries with live C2 servers,
which we refer to as Ground3. These binaries generate 230MB of
traffic that includes C2 communication and scanning activity.
Observation: C2 traffic is a small percentage of the overall malware-
generated traffic. In our ground-truth dataset, we find that C2 traffic
is only 14.8KB or 0.06% of the total traffic. This might initially

118

AsiaCCS’24, July 01–05, 2024, Singapore Ali Davanian, Michalis Faloutsos, and Martina Lindorfer

appear counter intuitive and in contrast to our initial insight that
a higher frequency of packets to a particular IP:port indicates C2
activity; however, our initial insight correctly applies here because
the other non-C2 traffic (99.94%) are to a variety of different targets
but mostly with single (or a few) packets to each one. As a reminder,
our insight compares the number of all packets to a particular target
compared to the same number for all other targets in the traffic.
A note on malware family coverage: Across our datasets, we
find binaries of 11 different malware families (see Table 2). Clas-
sifying a binary according to family accurately is non-trivial. We
used AVClass2 [50] for labeling, but we found the AV engine la-
bels for MIPS samples to be highly inaccurate. For example, all
the instances of the Mozi family, a peer-to-peer (P2P) malware for
which we observed the corresponding traffic in our analysis, are
wrongly classified as Mirai. Thus, we used crowd-sourced YARA
rules (provided by VirusTotal results) in addition to AVClass2 to
identify the malware family labels. In particular, we used the YARA
rules for P2P, XORed (variants of Mirai that use encryption, such as
Fbot, Apep and Sora), Daddyl33t and VPNFilter. We do not analyze
P2P binaries (mainly Mozi) further in this work, as we focus on C2
communication, which are typically absent in P2P malware.

5.3 Q1: Traffic Disambiguation Precision
In order to answer Q1, we evaluate the precision of our traffic
disambiguation, namely our ability to differentiate between C2-
bound to other traffic generated by the malware. Among all the
traffic generated by the binary, only a subset of it is sent to its C2
server. Other traffic could be towards, say a benign victim IP, as
part of its proliferation attempt of the malware. In fact, the malware
can even contact a random IP address to mislead detection attempts.
For example, some Mirai binaries contact 65.222.202.53 when the
appropriate activation key is not provided at run time. Interestingly,
the IP address obtained "notoriety," as it was arguably owned by the
NSA [25], and featured in an xkcd comic (https://xkcd.com/1247).
Ground truth: In the absence of a benchmark, we created the
Ground1 dataset that has IoT malware samples paired with their C2
server address (IP or DNS name) and port. We created this dataset
by manually analyzing IoT malware samples and the traffic they
generate to find their C2 servers. We followed a three step process.
First, we create network-level signatures based on the source code
of IoTmalware. Second, we find those signatures via manual reverse
engineering in the Ground1 binaries (see Appendix D). Third, we
analyze the destination receiving the signature communication,
and we consider target addresses (either IP:port or a DNS name) as
a C2 server. We find that only 13% of the binaries in the Ground1
dataset use DNS-based C2 addresses, and the rest are IP:port-based.
Result: We disambiguate C2-bound traffic with 90% precision.
We evaluate our algorithm using a fine-grained and a coarse-grained
method. In our fine-grained evaluation, for every binary in the
Ground1 dataset, the algorithm returns the target that is most likely
the C2 server. We compare this result with the manually found C2s
(explained above) and found that C2Miner has a precision of 90% in
correctly finding the C2-bound traffic on the Ground1 dataset. In our
coarse-grained evaluation, we find the C2s of binaries in Ground2
using C2Miner and then query VirusTotal. If VirusTotal reports the
C2 address as malicious, we count the finding as accurate. It turns

Family Not Packed UPX Modified UPX Total
Mirai 449 (59.63%) 273 (36.25%) 31 (4.12%) 753
Gafgyt 227 (82.55%) 22 (8.00%) 26 (9.45%) 275
Xored 224 (98.25%) 4 (1.75%) 0 (0.00%) 228
P2P 0 (0.00%) 70 (100.00%) 0 (0.00%) 70
Bash 3 (100.00%) 0 (0.00%) 0 (0.00%) 3
Dakkatoni 0 (0.00%) 28 (100.00%) 0 (0.00%) 28
Tsunami 9 (75.00%) 0 (0.00%) 3 (25.00%) 12
Lightaidra 53 (100.00%) 0 (0.00%) 0 (0.00%) 53
Daddyl33t 10 (100.00%) 0 (0.00%) 0 (0.00%) 10
VPNFilter 2 (100.00%) 0 (0.00%) 0 (0.00%) 2
Hajime 13 (100.00%) 0 (0.00%) 0 (0.00%) 13
Total 990 (68.42%) 397 (27.44%) 60 (4.15%) 1,447

Table 2: The 11 malware families and the number of binaries
with different packing techniques in our DAll dataset.

out that the precision based on this method is the same as the one
with the fine-grained method in our dataset.

We looked into why our traffic disambiguation failed for some
samples and identified two reasons: (a) some samples employ eva-
sion techniques that require a command line argument for activa-
tion, and in absence of the command, they mislead us by regularly
communicating with a benign address, and (b) some samples do not
start C2 communication within our 3 minutes analysis timespan.

Would static analysis of the binary reveal the C2 server? We
answer this question to gauge the value of our dynamic analysis. It
turns out that static analysis would provide the C2 server IP address
only for 30% of the binaries in Ground1. Note that we first unpack
the binaries using UPX and then we use Balbuzard [20] for string
analysis as it cracks obfuscation such as XOR and ROL.
Bonus: Some of the malware-specified C2 servers were not
known. C2Miner is able to find malware-specified C2 servers that
were not known by threat intelligence platforms. VirusTotal is a
widely-used aggregator of threat intelligence combining the intel-
ligence feeds of 91 vendors. For IP:port-based C2 targets, out of
the live C2 servers that C2Miner finds, 17% are reported as not
malicious by VirusTotal. Intrigued, we kept querying VirusTotal
and we found that this number drops to 3% after 4 weeks. This drop
shows that we identified C2 servers (a) correctly, and (b) earlier
than the threat intelligence feeds provided by VirusTotal.

5.4 Q2: Server Determination Accuracy
Here, we evaluate our ability to determine correctly whether a
probed target is an active C2 server. Note that targets are an input
to the problem and they do not have to be C2 servers.
Ground truth: The required ground truth here is uncommon. We
need a data-trace of malware binary interactions with (a) real C2
servers, and (b) benign web and application servers. The goal of
the algorithm is to tell the two apart.

As far as we know, such ground truth does not exist, therefore,
we created our own Trace-1 dataset. First, we started from samples
with live C2 server from the Ground3 dataset. These samples are
from 8 of the 11 families listed on Table 2. Second, we selected /23
subnets from the C2 server of these samples; this was to simulate the
real application of C2Miner in practice. Third, we performed a light-
weight SYN stealth scanning to find the live services within those
subnets. Fourth, we redirected the C2 traffic (only safe “Call-Home”

119

https://xkcd.com/1247

C2Miner: Tricking IoT Malware into Revealing Live Command & Control Servers AsiaCCS’24, July 01–05, 2024, Singapore

requests) to all live services in those subnets. Finally, we manually
analyzed the contents of the traffic and decide what service the
targets host. We communicated with 200 live services and receive
responses containing a data payload from roughly 37% of these live
services. The live services mainly hosted HTTP servers (Apache,
Nginx, OrgaMon), but we also found OpenSSH, MySQL, ESMTP
and IMAP servers. The rest were communications with live C2
servers. In total, we collected malware-redirected traffic to 34 C2
and 39 benign servers. The C2 servers and their paired binaries are
from the Gafgyt, Mirai and Xor families. Although the diversity
may seem low, as we mentioned earlier, the types of C2 servers that
are live at the time of experimentation is out of our control.
We determine C2 servers with 86% F1 score.We evaluate the
effectiveness based on the precision, recall and the F1 score. We
evaluate two C2 determination approaches: (a) SYN-DATA-aware
(§3.4), and (b) Fingerprinting-aware (§4). As a reference, we use a
simple baseline, which assumes that a target is a C2 server, if it
responds with any data packet. Figure 3 summarizes our results.
a. Not everything that is “alive” is a C2 server. The baseline approach
is overly "aggressive" but it shows an interesting phenomenon. It
finds all C2 server, but at the cost of poor precision (44%): it also
identifies benign servers as C2 servers. The 100% recall is expected
because C2 servers respond with data packets to malware requests.
b. Achieving 100% precision with moderately reduced recall. Our SYN-
DATA-aware method has 100% precision but only 62% recall. The
fingerprinting method, that is assessing the target based on an
expected communicated pattern, has the same precision with an
improved recall of 79%. Overall, our C2 determination based on
fingerprinting has a 86% F1 score.
Troubleshooting: We analyze the errors (FNs and FPs) of the two
approaches. With SYN-DATA-aware, there are cases where the ap-
plication does not close the socket even in the case of error leading
to a false positive. With fingerprinting, there are cases where a
legitimate service communication looks similar to a malware com-
munication. An example is a benign IRC server, as this protocol is
also used by some malware families (as shown in Appendix B).

5.5 Q3: Clustering and Fingerprinting
Evaluating the quality of our proposed clustering approach, and the
clusters, ultimately depends on the application scenario. Here, we
answer Q3 and evaluate the clustering quality based on how well
we can distinguish between different malware families. The idea is
to first cluster the samples based on their communication patterns,
and then see if the clusters correspond to malware families.
Ground truth: We require a traffic dataset of labeled malware
samples’ communications with their C2 servers. Aswe stated before,
this dataset does not exist, and hence, we created DFinger. Note
that an already existing labeled malware dataset (with family labels)
would not be useful because the malware should have a live C2
server so we can collect the communicated traffic. The challenge is
obtaining traffic with C2 server communications for IoT malware.

We created the DFinger dataset containing 202 binaries and
their fingerprints starting from the binaries in Ground3; binaries in
Ground3 have a C2 live server andwewere able to engage with their
malware-specified C2 during the data collection. In the DFinger
dataset, each binary is associated with (a) the family label, as we

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline (DATA) SYN-DATA-aware Fingerprinting-aware

Precision Recal l F1

Figure 3: C2 determination accuracy on the Trace-1 dataset.

Mirai Gafgyt Daddyl33t Xored Light/ra Hajime Tsunami
#1 25% 68% 20% 34% 0% 50% 0%
#2 46% 0% 40% 66% 14% 0% 0%
#3 18% 26% 40% 0% 86% 0% 0%
#4 11% 6% 0% 0% 0% 50% 100%

Table 3: Clustering effectiveness: the clusters are reasonably
aligned with malware family labels in the DFinger dataset.

explain below, and (b) a series of our grammar-based fingerprints of
the communicationwith its C2 server that we captured by collecting
samples on a daily basis, and storing the raw traffic that contains
communication with live C2 servers. We then transformed the
traffic to strings in our grammar as shown in §4. To determine
the malware family, we combined AVClass2 [50] and YARA, as
discussed in §5.2 and summarized in Table 2.
Result: We cluster binaries into malware families based on
their communication patterns. We hierarchically cluster the C2
traffic based on the method that we explain in §4. We choose the
seeds randomly, and we observe that the choice of 𝑘 (in the k-means
algorithm) has minimal effect for 𝑘 ≥ 5; they always converge to
the same four clusters; thus we select 𝑘 = 5. The malware family
labels of the four clusters is shown in Table 3. The clustering seems
to capture the behavior of malware families reasonably well, but not
perfectly. For example, the majority of Gafgyt, XORed, Lightaidra
and Tsunami fall into clusters #1–#4, respectively. At the same time,
Mirai is spread among all four clusters. Roughly half of the Mirai
samples fall into #2 that is also the dominant cluster for XORed. This
makes sense as XORed consists of variants of Mirai with encryption.
Our clustering result has an important implication which is: using
a weaponized sample of one malware family, we can probably find
the C2 server of multiple malware families.

What do the results suggest? The majority of the samples of
the same malware family use the same communication protocol
although there are exceptions, which we reviewed in more detail:
The three patterns of Daddyl33t: We observe three distinct
communication patterns (corresponding to clusters #1, #2 and #3)
when studying their fingerprints. Interestingly, we find one C2
server that responds to patterns 1 and 3, which further indicates
that these are communication patterns of the same malware.
Pattern in cluster #1: The malware connects to the server and sends
18 bytes in plaintext with the message “VER:3:unknown.” The server

120

AsiaCCS’24, July 01–05, 2024, Singapore Ali Davanian, Michalis Faloutsos, and Martina Lindorfer

responds with a single byte followed by another 4 bytes. The binary
closes the connection, and repeats the same thing again and again.
Pattern in cluster #2: The malware connects to the server and send
in plaintext “VER:0:/malware.” The server responds with 516 bytes
of data. The binary does not close the connection.
Pattern in cluster #3: The malware connects to the server and sends
information about the compromised device (e.g., architecture and
endianness). The binary then keeps the connection open.
The two patterns of Hajime: We observe two distinct commu-
nication patterns (corresponding to clusters #1 and #4). Note that
Hajime is a P2P malware that also seems to have C2 communica-
tion, which is not uncommon: new variants of Mozi appear to have
dedicated C2 servers for DDoS commands in addition to the P2P
infrastructure [54]. We identify two patterns of C2 communication
in Hajime. In the first pattern, the client connects to the server, and
receives 1314 bytes of data and then closes the connection with
a FIN flag. These 1314 bytes are the same for different sessions
and different malware samples. In the second pattern, the malware
connects to the server and receives 1448 bytes of data.
Summary: Our hierarchical clustering results in 215 clusters. One
interesting observation is the common patterns that appear in com-
munications: Most Mirai samples share the CLIENT_4.CLIENT_1
.CLIENT_2.SERVER_2 pattern, while most Gafgyt samples share
SERVER_4.SERVER_1.SERVER_4. SERVER_1.With just two patterns,
we can detect 68% of C2 communication.

5.6 Q4: Quantifying Cross-Talk
Here, we want to quantify the cross-talk, namely the ability of
a binary to talk to a plurality of servers. Our initial analysis of
publicly available IoT malware source code suggests this is true (see
Appendix B), nevertheless, we empirically assess this hypothesis.
Our assessment has two goals. First, we want to see whether the
MitM module functions in practice. For example, reasons for failure
could involve encryption at the IP layer, or active efforts to bypass
the kernel-level networking. Second, we want to see whether old
binaries can talk to current C2 servers.
Ground truth: For this evaluation, we need a dataset of live C2
servers and the samples with which they can communicate. In ab-
sence of such a dataset, we created the Trace-2 dataset from our
collected binaries as follows. In more detail, we started with the
list of malware with live C2 addresses in Ground3 as they are col-
lected on a daily basis. We first find the malware-specified C2 target
of the malware. Second, we want to find other binaries that can
communicate with these new servers. To do this, we find binaries
with similar C2 communication behavior using our fingerprinting
which we described earlier. Third, we checked if the binaries of the
previous step communicate with the server successfully, which we
validated with manual inspection. Our manual evaluation method
was similar to what we described in §5.3 for the creation of ground
truth. The number of binaries in Trace-2 was limited since many
C2 servers were short-lived, and it was not always possible to find
compatible binaries to engage with them in time.
Result: Our MitM capability works for 84% of sample pairs.
To measure the success our MitM approach in practice we count the
number of sample pairs that can successfully talk to the designated
candidate live C2 server for the malware cluster. A high rate of

success indicates that one sample from a cluster is good enough to
findmost C2 servers for the entire cluster.We use the fingerprinting-
based C2 determination. We find that 84% of sample pairs can
successfully cross-communicate with the C2 of the cluster.

6 CASE STUDY: FINDING LIVE C2 SERVERS
How can we use C2Miner in practice to find live C2 servers? This
is the what we answer in this section. Finding C2 servers in the
entire IP:port space using malware weaponization even with a fully
working solution is challenging. This problem is two fold. First, the
IP port space is 248 bits large, and we can not send probes to the
entire space. Second, we do not know what malware binary sample
should be chosen for a given space. Bruteforcing over the space and
malware binaries requires massive computation power and may
disrupt the Internet. Instead, we showcase the value of C2Miner
with a proof-of-concept deployment that addresses the problems
described above by carefully selecting binaries and IP:port space.
We efficiently select malware for probing based on our finger-
printing approach.We select two old malware binaries: (a) one
from the Mirai family, and (b) one from the Gafgyt family as shown
in Table 4. We chose these two samples because their communi-
cation fingerprint, based on our grammar-based clustering (see
§5.5), is “close” to 68% of the samples. These samples are at least six
months old at the time of our experiments. We would like to point
out that adding more samples will linearly increase the complexity
of deployment. Due to the computation resource constraints and
ethical reasons, we intentionally keep the case study size small.
We efficiently select IP port space for probing.We made the
following choices for the target IP:port space. We identified six /24
subnets and 12 “popular” ports as we explain in Appendix E based
on the increased likelihood of observing malicious activity from
past C2 hosts [11, 16]. We conduct roughly 331K probes across 18K
IP:port combinations for 1,536 IP addresses and 12 ports with three
probes per day for six days. For efficiency, we perform our probing
in two phases. First, we use a light-weight SYN stealth scan using
MASSCAN [26] to establish liveness. Once this is established, we
deploy the more resource-consuming C2Miner probing.
Wefind active C2 servers on a daily basis.We employ C2Miner’s
probing mode in practice for six days. The results are very promis-
ing: we find a total of six active C2 servers for our binaries (see
last row of Table 4): five using Gafgyt and one using Mirai. We can
not say much about the identity features (including their malware
family) of the found C2 servers because we do not have access to
those servers, and we only have the communicated traffic between
them and our weaponized malware binaries. We can only say that
their C2 communication protocols resemble that of Gafgyt and
Mirai. This was expected given the similarity of communications
across different malware families that we show in §5.5.

We plot the number of active servers each day and the new
distinct servers discovered that day In Figure 4. We argue that the
performance to cost ratio is high. Despite the limited scope of our
study, we identified one live server a day. We consider this fairly
remarkable given that we used only two malware binaries, and the
heuristic approach in finding IP space with likely C2 servers.

Intrigued by the seemingly high temporal variability of the C2
servers, we further investigate the temporal characteristics of C2

121

C2Miner: Tricking IoT Malware into Revealing Live Command & Control Servers AsiaCCS’24, July 01–05, 2024, Singapore

Parameter Values
Subnets 136.144.41/24, 195.133.40/24, 2.58.149/24,

212.193.30/24, 107.173.176/24, 45.95.169/24
Ports 1312, 666, 1791, 9506, 606, 6738, 5555, 1014, 3074, 6969,

42516, 81
Sample(s) Gafgyt 46501d723f368c22e5401f7c95d928ab
Sample(s) Mirai 800af659256f0232a27f955a4430aed0
Live C2 Servers 2._._.34:5555, 212._._.91:666, 45._._.119:666,

136._._.240:666, 212._._.123:5555, 107._._.144:42516

Table 4: Parameters of our probing study conducted in Janu-
ary 2022: (a) 6 /24 subnets, (b) 12 ports in order of “popularity,”
and (c) 2 malware samples. The last row lists the 6 live C2
IP:ports (obfuscated for privacy reasons) we found.

servers during our probing. More specifically, we focus on the daily
liveliness of the found C2 servers, which we show in Figure 5. Our
key observation here is that that live C2 servers response rate is
low even for bots of their family. Our results suggest that even
a live server will not respond consistently to a bot request. We
count the percentage of successful responses under two different
assumptions. First, the success rate of a probe is 15% if we assume
that the servers are alive for all six days. Second, the success rate is
31%, if we assume that a server is alive only during the days of its
first and last response to our probes.

In summary, we found C2 servers that without a MitM approach
would not have been discovered even if one had activated these
two malware in a sandbox, as the malware-specified C2 servers
(i.e., the ones embedded in these particular binaries without any
fallback mechanism) are no longer active.

7 DISCUSSION
a. Will the use of encryption neutralize C2Miner?We consider
two cases: encryption at the application layer (VII), and encryption
at the III/IV layer(s). First, the use of commonly used TLS protocol
does not break our solution because the server does not authenticate
the clients (the malware binaries). Nevertheless, there are ways to
defend against C2Miner if the malware authors knowingly try
to do so. A more sophisticated attacker can extend the two-way
authentication or mutual authentication schemes, such as mTLS,
to only allow a one-to-one communication which would create
problems for our approach. However, such an extreme measure will
increase the complexity of implementation for malware authors,
because eachmalware binary will only work with one C2 server and
vice versa. Second, if the malware uses encryption at the TCP/IP
layer, our solution will not work. However, the use of encryption
at this layer is computationally expensive and because of that it is
not commonly used. In fact, many related security solutions will
not work in the presence of such an encryption.
b. Will the use of obfuscation neutralize C2Miner? We dis-
cuss two potential ways of obfuscation that malware authors can
consider. First, malware authors can try to detect the MitM at the
application layer. A possible solution is the inclusion of the original
C2 address (before it is changed by us) in the payload so that the C2
server can detect the layer III/IV addresses are modified. However,
such a defense also affects the use of DNS addresses by the malware
and limits the C2 server mobility. In addition, any countermeasure

0

1

2

3

4

5

6

Tuesday Wednesday Thursday Friday Saturday Sunday

Daily Activel C2s New C2s

Figure 4: Number of responsive C2 servers per day and num-
ber of distinct new C2 servers during our six day probing
over 1,536 IP addresses across six subnets and 12 ports.

Time Tuesday Wednesday Thursday Friday Saturday SundayC
2

se
rv

er
s

Figure 5: The responsiveness of the six responsive C2 servers
over time to our three daily probes which is 15% per probe
assuming they are alive for the full duration (six days).

like this which is only applied to the malware binary is prone to yet
another counter-countermeasure by us because we have full access
to the binary and the sandbox. Second, there is a risk that malware
authors knowingly try to defeat our C2 determination technique.
For instance, they might try to connect (at the III/IV layer) to the
C2 server only once. Or, they might try to chunk the traffic and
send it to multiple addresses in separate connections. We argue
that any attempt to disguise the current behaviors we rely on, such
as repeated trials for re-connection, will lead to an anomaly which
is different from how benign servers behave. Henceforth, a counter
solution is likely to exist as long as the malware behavior is different
from the benign servers, which is true because malware authors
can not change the behavior of benign servers. Overall, security
is an arms race, and a security approach is successful, if it forces
attackers to modify their behavior, especially, if the modification is
non-trivial, as is the case here.
c. Can we generalize our fingerprinting approach to other
applications? We believe we use generic properties of network
systems to design our SYN-DATA aware and grammar-based fin-
gerprinting. Specifically, our SYN-DATA aware solution relies on
the low level implementation of the transport protocol rather than
the application-level peculiarities of the C2 servers. In addition, our
grammar-based solution can provide a valuable embedding of the
network traffic between any client and server. Again, our grammar
does not depend on C2 implementations at the application layer.

122

AsiaCCS’24, July 01–05, 2024, Singapore Ali Davanian, Michalis Faloutsos, and Martina Lindorfer

d. Can the C2Miner output be used in Intrusion Detection
Systems? The fingerprinting strings that represent C2 clusters can
also be used in Intrusion Detection Systems (IDS) like Snort and
Surricata. For converting these strings into IDS rules, the flowbits
functionality of these systems can be used to tag individual packets
following our grammar rules. Then, the isset operator can be used
to compare fingerprints of flows. The Jaccard distance function can
be used to identify C2 traffic.
e. Are the evaluation results representative? We believe our
evaluation reflects the general performance of our approach, and
the intrinsic nature of the problem. The size of our evaluation
datasets is constrained by (a) the scarcity of live C2 servers in our
collection, (b) the lack of benchmark datasets, and (c) the manual
effort required for establishing the ground truth. That said, our
datasets are comparable or larger than the datasets used for similar
studies [23, 42]. We continue to collect data and we will share the
results with the community (see Appendix F).
f. What if the malware does not activate? This is a concern for
any work that relies on dynamic analysis [39]. Our intention is to
use the latest sandboxing technology, as this is not the focus of our
work. Recent studies [15] suggests that IoT malware is not yet as
sophisticated as malware targeting other platforms. Although this
may change, we hope that sandbox techniques will also evolve. In
addition, note that we do not need to activate all binaries, as long as
we activate enough binaries that “talk” to most types of C2 servers.

8 RELATED WORK
So far, no related work has focused on the problem as framed here:
finding live C2 servers for an unknown binary and within a given
target IP:port space. To the best of our knowledge, we are the first
to redirect the communication of a binary using a MitM approach
to “reconnect” old samples with currently live C2 servers.
a. IoT malware analysis. Studying IoT malware has become a hot
topic both for academia and industry. First, many efforts focus on
characterizing the behavior of a single malware family [5, 27, 30].
These works characterize infected IoT devices, infection vectors,
and the life-cycle of the malware. While these studies provide a
deep insight into a single malware family, they are less likely to
lead to generalizable methods for detecting C2 servers dynamically.
Another line of related work characterizes the behaviors of several
malware families at the same time [2, 3, 13–15, 18, 40]. Some recent
studies summarize the landscape of DDoS activity and highlight
the contributions of IoT-based attacks and provide countermea-
sures [4, 24, 32], while honeypot efforts collect attack data [33].
Finally, several studies analyze C2 server communication from a
networking point of view [3, 52, 55]. These studies focus on under-
standing the infrastructure that supports its operation, and profiling
aspects of malware behavior, but do not engage in active probing.
b. Active probing of malware. The most relevant studies to our
work focus on active probing. Such efforts require an understanding
of malware communication protocols and encryption algorithms, if
any. Assuming that this can be accomplished effectively, searching
for C2 servers of a single malware family becomes easier [5, 22].
Prior work also took first steps in automating the active probing for
a more widespread group of malware families [43, 59]. The main
problem with these approaches is that they cannot work well in

the presence of encryption. By contrast, we sidestep this issue as
we let the activated binary “speak” to the server directly.
c. Engaging with malware. Prior work has attempted to engage
with malware to understand different aspects of its behavior and
mitigate its impact [8, 23, 42, 45]. GZA [42] and Squeeze [45] try
to reveal desktop malware’s alternative methods of communicating
with C2 servers. In contrast, IoT botnets are disposable and hence
alternative addresses are not a broad phenomena [52]. Botacin et
al. [8] find the domains contacted by the malware by analyzing the
sample in a sandbox using a technique that we will consider in our
future work. C3PO [23] develops techniques to detect and spoof
bot-to-C2 communications, but is only applicable to malware with
over-permissioned protocols and does not include active probing.
d. Network traffic modeling and analysis.Modeling network
traffic enables the identification of particular protocols or activities.
First, several works try to infer the application layer protocol [10,
12, 57]. However, this is not effective in the presence of encryption,
computational intensive, and error prone due to the complexity
of the task. Second, other efforts [19, 28, 29, 37] study captured
traffic in order to extract the behavioral patterns. Thus, they need
a network trace, and they can only find server behaviors whose
flows are in that trace, which is a different problem formulation.
e. SignatureGeneration and Fingerprinting. This group of work
is closely related to our proposed fingerprinting approach. Several
related efforts focus on malware network traffic [7, 21, 46–48, 53,
58, 61] and employ clustering by using features that include IP, port,
timestamps, number of bytes, connection duration, direction of the
connection etc., which aremore difficult to generalize. Some of these
approaches also use application layer protocol features [46, 47]. For
most of these approaches, the payload content plays an import role
and the presence of strong encryption weakens the effectiveness
of these solutions. ProVeX [48] tries to probabilistically compile
the fingerprint, instead of using strings or regular expressions, but
it also requires access to the decrypted training traffic. The most
relevant work to ours is CoCoSpot [21] where for, arguably, the first
time, the communication is treated as a “dialogue.” The approach
uses a fixed vector of the first eight messages with features. In
contrast, we explained the novelty our method in §1 and §3.

9 CONCLUSION
We propose C2Miner, a novel approach to trick arbitrary malware
binaries to reveal their currently live C2 servers. The novelty of
our approach is that we use the malware as a spy to reveal its
whole family live C2 servers within a selected IP:port space. To
substantiate this vision, we develop techniques to: (a) disambiguate
the C2-bound traffic with 92% precision, (b) determine if a target
IP:port is indeed a C2 server with an F1 score of 86%, and (c) finger-
print and cluster C2 communications effectively. We showcase a
proof-of-concept deployment of this approach to show its promise.

Our approach is a fundamental step towards identifying live
C2 servers on demand given a binary. This capability is even more
critical for IoT malware that is an emerging battleground for cy-
bercrime. A large-scale deployment of our approach using a large
number of binaries and scanning substantial swaths of the Internet
can arguably become a game-changing capability in identifying C2
servers and containing the scourge of botnets.

123

C2Miner: Tricking IoT Malware into Revealing Live Command & Control Servers AsiaCCS’24, July 01–05, 2024, Singapore

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable comments
and input for improving the paper. The work was supported partly
by the NSF SaTC 2132642 grant, the Vienna Science and Technol-
ogy Fund (WWTF) and the City of Vienna [10.47379/ICT19056],
and SBA Research (SBA-K1), a COMET Centre within the frame-
work of COMET – Competence Centers for Excellent Technologies
Programme and funded by BMK, BMDW, and the federal state of
Vienna. The COMET Programme is managed by FFG.

REFERENCES
[1] Abuse.ch. 2024. MalwareBazaar. https://bazaar.abuse.ch/.
[2] Arwa Abdulkarim Al Alsadi, Kaichi Sameshima, Jakob Bleier, Katsunari Yoshioka,

Martina Lindorfer, Michel van Eeten, and Carlos H Gañán. 2022. No Spring
Chicken: Quantifying the Lifespan of Exploits in IoT Malware Using Static and
Dynamic Analysis. In Proceedings of the ACM ASIA Conference on Computer and
Communications Security (ASIACCS).

[3] Omar Alrawi, Charles Lever, Kevin Valakuzhy, Ryan Court, Kevin Snow, Fabian
Monrose, and Manos Antonakakis. 2021. The Circle Of Life: A Large-Scale Study
of The IoT Malware Lifecycle. In Proceedings of the USENIX Security Symposium.

[4] Radu Anghel, Swaathi Vetrivel, Elsa Turcios Rodriguez, Kaichi Sameshima,
Daisuke Makita, Katsunari Yoshioka, Carlos H. Gañán, and Yury Zhauniarovich.
2023. Peering into the Darkness: The Use of UTRS in Combating DDoS Attacks.
In Proceedings of the European Symposium on Research in Computer Security
(ESORICS).

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding
the Mirai Botnet. In Proceedings of the USENIX Security Symposium.

[6] Fabrice Bellard. 2005. QEMU, A Fast and Portable Dynamic Translator. In Pro-
ceedings of the USENIX Annual Technical Conference (ATC, FREENIX Track).

[7] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher
Kruegel. 2012. Disclosure: Detecting Botnet Command and Control Servers
Through Large-Scale NetFlow Analysis. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC).

[8] Marcus Botacin, Paulo de Geus, and André Grégio. 2020. An Empirical Study
on the Blocking of HTTP and DNS Requests at Providers Level to Counter In-
The-Wild Malware Infections. In Anais do XX Simpósio Brasileiro em Segurança
da Informação e de Sistemas Computacionais.

[9] Xander Bouwman, Harm Griffioen, Jelle Egbers, Christian Doerr, Bram Klievink,
and Michel van Eeten. 2020. A Different Cup of TI? The Added Value of Com-
mercial Threat Intelligence. In Proceedings of the USENIX Security Symposium.

[10] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. 2009.
Dispatcher: Enabling Active Botnet Infiltration using Automatic Protocol Reverse-
Engineering. In Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS).

[11] M. Patrick Collins, Timothy J. Shimeall, Sidney Faber, Jeff Janies, Rhiannon
Weaver, Markus De Shon, and Joseph Kadane. 2007. Using Uncleanliness to
Predict Future Botnet Addresses. In Proceedings of the ACM SIGCOMM Conference
on Internet Measurement (IMC).

[12] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin
Kirda. 2009. Prospex: Protocol Specification Extraction. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P).

[13] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
2018. Understanding Linux Malware. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P).

[14] Emanuele Cozzi, Pierre-Antoine Vervier, Matteo Dell’Amico, Yun Shen, Leyla
Bilge, and Davide Balzarotti. 2020. The Tangled Genealogy of IoT Malware. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC).

[15] Ahmad Darki and Michalis Faloutsos. 2020. RIoTMAN: A Systematic Analysis of
IoT Malware Behavior. In Proceedings of International Conference on emerging
Networking EXperiments and Technologies (CoNEXT).

[16] Ali Davanian. 2017. Effective Granularity in Internet Badhood Detection: Detection
Rate, Precision and Implementation Performance. Master’s thesis. University of
Twente.

[17] Ali Davanian, Ahmad Darki, and Michalis Faloutsos. 2021. CnCHunter: An
Mitm-Approach To Identify Live CnC Servers. In Black Hat USA.

[18] Ali Davanian and Michalis Faloutsos. 2022. MalNet: A Binary-Centric Network-
Level Profiling of IoT Malware. In Proceedings of the ACM Internet Measurement
Conference (IMC).

[19] Lorenzo De Carli, Ruben Torres, Gaspar Modelo-Howard, Alok Tongaonkar, and
Somesh Jha. 2017. Botnet Protocol Inference in the Presence of Encrypted Traffic.

In Proceedings of the IEEE Conference on Computer Communications (INFOCOM).
[20] decalage2. 2019. Balbuzard - Malware analysis tools to extract patterns of interest

and crack obfuscation such as XOR. https://github.com/decalage2/balbuzard.
[21] Christian J. Dietrich, Christian Rossow, and Norbert Pohlmann. 2013. CoCoSpot:

Clustering and Recognizing Botnet Command and Control Channels using Traffic
Analysis. Computer Networks 57, 2 (2013).

[22] Brown Farinholt, Mohammad Rezaeirad, Paul Pearce, Hitesh Dharmdasani,
Haikuo Yin, Stevens Le Blond, Damon McCoy, and Kirill Levchenko. 2017. To
Catch a Ratter: Monitoring the Behavior of Amateur DarkComet RAT Operators
in the Wild. In Proceedings of the IEEE Symposium on Security and Privacy (S&P).

[23] Jonathan Fuller, Ranjita Pai Kasturi, Amit Sikder, Haichuan Xu, Berat Arik, Vivek
Verma, Ehsan Asdar, and Brendan Saltaformaggio. 2021. C3PO: Large-Scale Study
Of CovertMonitoring of C&C Servers via Over-Permissioned Protocol Infiltration.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[24] Carlos H. Gañán. 2023. Unravelling the Changing Landscape of DDoS Attacks:
The Role of IoT Botnets. In ICANN DNS Symposium.

[25] Sean Ghallager. 2013. In face of scrutiny, researchers back off NSA “Torsploit”
claim. https://arstechnica.com/tech-policy/2013/08/in-face-of-scrutiny-resear
chers-back-off-nsa-torsploit-claim/.

[26] Robert David Graham. 2021. MASSCAN: Mass IP port scanner. https://github.
com/robertdavidgraham/masscan.

[27] Harm Griffioen and Christian Doerr. 2020. Examining Mirai’s Battle over the
Internet of Things. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[28] Guofei Gu, Vinod Yegneswaran, Phillip Porras, Jennifer Stoll, and Wenke Lee.
2009. Active Botnet Probing to Identify Obscure Command and Control Channels.
In Proceedings of the Annual Computer Security Applications Conference (ACSAC).

[29] Guofei Gu, Junjie Zhang, and Wenke Lee. 2008. BotSniffer: Detecting Botnet
Command and Control Channels in Network Traffic. In Proceedings of the Network
and Distributed System Security Symposium (NDSS).

[30] Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts, and Dave
Levin. 2019. Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet. In
Proceedings of the Network and Distributed Systems Security Symposium (NDSS).

[31] KimiNewt. 2023. pyshark - Python wrapper for tshark. https://github.com/Kimi
Newt/pyshark/.

[32] Mizuki Kondo, Rui Tanabe, Natsuo Shintani, Daisuke Makita, Katsunari Yoshioka,
and Tsutomu Matsumoto. 2022. Amplification Chamber: Dissecting the Attack
Infrastructure of Memcached DRDoS Attacks. In Proceedings of the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA).

[33] Lukas Krämer, Johannes Krupp, Daisuke Makita, Tomomi Nishizoe, Takashi
Koide, Katsunari Yoshioka, and Christian Rossow. 2015. AmpPot: Monitoring
and Defending Against Amplification DDoS Attacks. In Proceedings of the Inter-
national Symposium on Research in Attacks, Intrusions and Defenses (RAID).

[34] Marc Kührer, Christian Rossow, and Thorsten Holz. 2014. Paint it Black: Evaluat-
ing the Effectiveness of Malware Blacklists. In Proceedings of the International
Symposium on Research in Attacks, Intrusions and Defenses (RAID).

[35] Victor Le Pochat, Tim Van hamme, Sourena Maroofi, Tom Van Goethem, Davy
Preuveneers, Andrzej Duda, Wouter Joosen, and Maciej Korczyński. 2020. A
Practical Approach for Taking Down Avalanche Botnets Under Real-World Con-
straints. In Proceedings of the Annual Network and Distributed System Security
Symposium (NDSS).

[36] Chao Lei, Zhibin Zhang, and Cecilia Hu. 2023. Mirai IZ1H9 - Mirai Variant
Targets Multiple IoT Devices. https://unit42.paloaltonetworks.com/mirai-vari
ant-iz1h9/.

[37] Chaz Lever, Platon Kotzias, Davide Balzarotti, Juan Caballero, and Manos Anton-
akakis. 2017. A Lustrum of Malware Network Communication: Evolution and
Insights. In Proceedings of the IEEE Symposium on Security and Privacy (S&P).

[38] Vector Guo Li, Matthew Dunn, Paul Pearce, Damon McCoy, Geoffrey M. Voelker,
and Stefan Savage. 2019. Reading the Tea Leaves: A Comparative Analysis of
Threat Intelligence. In Proceedings of the USENIX Security Symposium.

[39] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. 2011. De-
tecting Environment-Sensitive Malware. In Proceedings of the International Sym-
posium on Recent Advances in Intrusion Detection (RAID).

[40] Tongbo Luo, Zhaoyan Xu, Xing Jin, Yanhui Jia, and Xin Ouyang. 2017. IoTCan-
dyJar: Towards an Intelligent-Interaction Honeypot for IoT Devices. In Black Hat
USA.

[41] Yacin Nadji, Manos Antonakakis, Roberto Perdisci, David Dagon, and Wenke Lee.
2013. Beheading Hydras: Performing Effective Botnet Takedowns. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security (CCS).

[42] Yacin Nadji, Manos Antonakakis, Roberto Perdisci, and Wenke Lee. 2011. Under-
standing the Prevalence and Use of Alternative Plans in Malware with Network
Games. In Proceedings of the Annual Computer Security Applications Conference
(ACSAC).

[43] Antonio Nappa, Zhaoyan Xu, M. Zubair Rafique, Juan Caballero, and Guofei Gu.
2014. CyberProbe: Towards Internet-Scale Active Detection of Malicious Servers.
In Proceedings of the Network and Distributed System Security Symposium (NDSS).

124

https://bazaar.abuse.ch/
https://github.com/decalage2/balbuzard
https://arstechnica.com/tech-policy/2013/08/in-face-of-scrutiny-researchers-back-off-nsa-torsploit-claim/
https://arstechnica.com/tech-policy/2013/08/in-face-of-scrutiny-researchers-back-off-nsa-torsploit-claim/
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://github.com/KimiNewt/pyshark/
https://github.com/KimiNewt/pyshark/
https://unit42.paloaltonetworks.com/mirai-variant-iz1h9/
https://unit42.paloaltonetworks.com/mirai-variant-iz1h9/

AsiaCCS’24, July 01–05, 2024, Singapore Ali Davanian, Michalis Faloutsos, and Martina Lindorfer

[44] National Security Agency. 2023. Ghidra - Software Reverse Engineering Frame-
work. https://www.nsa.gov/resources/everyone/ghidra/.

[45] Matthias Neugschwandtner, Paolo Milani Comparetti, and Christian Platzer. 2011.
Detecting Malware’s Failover C&C Strategies with Squeeze. In Proceedings of the
Annual Computer Security Applications Conference (ACSAC).

[46] Roberto Perdisci, Wenke Lee, and Nick Feamster. 2010. Behavioral Clustering
of HTTP-Based Malware and Signature Generation Using Malicious Network
Traces. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI).

[47] M. Zubair Rafique and Juan Caballero. 2013. Firma: Malware Clustering and
Network Signature Generation with Mixed Network Behaviors. In Proceedings
of the International Symposium on Research in Attacks, Intrusions and Defenses
(RAID).

[48] Christian Rossow and Christian J. Dietrich. 2013. ProVeX: Detecting Botnets with
Encrypted Command and Control Channels. In Proceedings of the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA).

[49] Christian Rossow, Christian J. Dietrich, Chris Grier, Christian Kreibich, Vern
Paxson, Norbert Pohlmann, Herbert Bos, and Maarten van Steen. 2012. Pru-
dent Practices for Designing Malware Experiments: Status Quo and Outlook. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P).

[50] Silvia Sebastián and Juan Caballero. 2020. AVClass2: Massive Malware Tag Extrac-
tion from AV Labels. In Procedings of the Annual Computer Security Applications
Conference (ACSAC).

[51] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szyd-
lowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. 2009. Your
Botnet is My Botnet: Analysis of a Botnet Takeover. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS).

[52] Rui Tanabe, Tatsuya Tamai, Akira Fujita, Ryoichi Isawa, Katsunari Yoshioka,
Tsutomu Matsumoto, Carlos Gañán, and Michel Van Eeten. 2020. Disposable
Botnets: Examining the Anatomy of IoT Botnet Infrastructure. In Proceedings of
the International Conference on Availability, Reliability and Security (ARES).

[53] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher Kruegel. 2012.
BotFinder: Finding Bots in Network Traffic Without Deep Packet Inspection. In
Proceedings of International Conference on emerging Networking EXperiments and
Technologies (CoNEXT).

[54] Alex Turing, Hui Wang, and Genshen Ye. 2021. The Mostly Dead Mozi and Its’
Lingering Bots. https://blog.netlab.360.com/the-mostly-dead-mozi-and-its-li
ngering-bots/.

[55] Pierre-Antoine Vervier and Yun Shen. 2018. Before Toasters Rise Up: A View
into the Emerging IoT Threat Landscape. In Proceedings of the International
Symposium on Research in Attacks, Intrusions and Defenses (RAID).

[56] VirusTotal. 2024. VirusTotal. https://www.virustotal.com.
[57] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace. 2009.

ReFormat: Automatic Reverse Engineering of Encrypted Messages. In Proceedings
of the European Symposium on Research in Computer Security (ESORICS).

[58] Peter Wurzinger, Leyla Bilge, Thorsten Holz, Jan Goebel, Christopher Kruegel,
and Engin Kirda. 2009. Automatically Generating Models for Botnet Detection.
In Proceedings of the European Symposium on Research in Computer Security
(ESORICS).

[59] Zhaoyan Xu, Antonio Nappa, Robert Baykov, Guangliang Yang, Juan Caballero,
and Guofei Gu. 2014. Autoprobe: Towards Automatic Active Malicious Server
Probing Using Dynamic Binary Analysis. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[60] Miuyin Yong Wong, Matthew Landen, Manos Antonakakis, Douglas M. Blough,
Elissa M. Redmiles, andMustaque Ahamad. 2021. An Inside Look into the Practice
of Malware Analysis. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[61] Ali Zand, Giovanni Vigna, Xifeng Yan, and Christopher Kruegel. 2014. Extracting
Probable Command and Control Signatures for Detecting Botnets. In Proceedings
of the Annual ACM Symposium on Applied Computing (SAC).

[62] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. 2020. Measuring and Modeling the Label Dynamics of Online
Anti-Malware Engines. In Proceedings of the USENIX Security Symposium.

A ADDITIONAL ETHICAL CONSIDERATIONS
In addition to the steps discussed in §5.1, we employ the following
additional measures to contain the malware in our experiments:

a. Detection of C2s: Algorithm 1 (used to detect C2s) is done
in isolation. Thus, it does not interact with the Internet, as we
“fake” connections to the malware in the sandbox. For sophisticated
binaries that check for Internet connectivity, we deploy InetSim to
simulate services like DNS and HTTP.

b. Observing C2 traffic: Having identified the signatures of C2
communication in step (a), we filter out any communication of the
malware with the outside except connections to the C2 server. We
record the C2 traffic, reverse engineer it, and do not allow malware
to talk to any other target (except the C2).
c. Probing IP subnets:We only allow harmless C2 communica-
tions like “Call-Home” requests to interact with potential C2 servers.
We manually analyzed sample traffic traces and we have not found
any cases of non-C2 communications. Our target subnets were
small /24 subnets with a history of malicious activity. We do not
send additional probes if the host does not listen on a port. On live
ports, we filter out hosts that present a well-known banner (such
as Apache or Nginx).

B IOT MALWARE C2 PROTOCOLS
We conducted a small-scale manual study to motivate our work
and gain a basic understanding of IoT malware communication
protocols, i.e., the interaction between a bot and its C2 server. In
this exploratory study, we analyzed the communication protocols
of well-known IoT malware families based on their source code
found on GitHub. Table 5 shows a summary of the application layer
protocols for each family.
a. The bad news. Communication protocols vary significantly
between families. A binary of one family will most certainly fail to
interact with a C2 server of another family.
b. The good news. The protocol tends to remain nearly identical
for binary samples of the malware family. This implies that old
malware samples could potentially be used to scan the Internet
for new live C2 servers of the same family, which we we also
corroborated in §6.
These insights suggest that C2Miner could work reasonably well in
practice as long as we have access to arbitrary binaries of a specific
family of interest, even if these binaries are not the latest versions.
Our clustering efforts also support this (see §5.5).

Malware Communication Details
Gafgyt Custom PONG command is communicated

via IRC, others are text commands.
Mirai Custom All C2 commands are custom binary

based.
Lightaidra IRC All C2 commands are wrapped inside

IRC PRIVMSG (private) messages.
Remaiten IRC Similar to Lightaidra but commands

are different.
Lizkebab Custom Similar to Gafgyt but commands are

different.

LuaBot Encrypted
Payload Uses MatrixSSL lib for encryption.

Tsunami IRC All C2 commands are wrapped inside
IRC NOTICE messages.

BASHLIFE Custom Similar to Gafgyt but commands are
different.

Table 5: Application layer communication protocol of eight
well-known IoTmalware families based on their source code.

125

https://www.nsa.gov/resources/everyone/ghidra/
https://blog.netlab.360.com/the-mostly-dead-mozi-and-its-lingering-bots/
https://blog.netlab.360.com/the-mostly-dead-mozi-and-its-lingering-bots/
https://www.virustotal.com

C2Miner: Tricking IoT Malware into Revealing Live Command & Control Servers AsiaCCS’24, July 01–05, 2024, Singapore

C VIRTUALIZATION ENVIRONMENT
As discussed in §3.1, for themalware executionwe rely onQEMU [6]
and RiotMan [15] for which we provide details below. Table 6 pro-
vides the breakdown of the additional engineering effort to imple-
ment C2Miner on top of QEMU and RiotMan.

Type Breakdown Lines of Code (LOC)

Programming Language Shell
Python

636
2,897

C2Miner Module

Sandbox
MitM/Probing
Profiler
Other

1,239
553

1,231
510

Table 6: LOC breakdown of the C2Miner implementation.

QEMU emulates the execution of an input executable on a host
machine. The emulated executable can be a user program or an
entire virtual machine image. In the latter case, the running vir-
tual machine on the host is called the guest VM. We emulate the
execution of a guest virtual image (playing the role of an infected
victim) on QEMU. QEMU emulates the execution of a guest VM
in an architecture agnostic way. This means that the guest might
need a different CPU architecture from what the host is running
on e.g. a MIPS 32 guest running on a host x86 CPU. In our case,
we run a customized virtual image based on Busybox prepared by
RiotMan on a x86 host.
RiotMan finds the right virtual environment configuration for an
IoT malware executable. To do so, it performs iterative learning in
order to configure the environment for the malware execution. It
starts with a clean Linux operating system (OS) image that will host
the IoTmalware. RiotMan executes themalwaremultiple times until
it succeeds without any error during the execution. If there is an
error, RiotMan looks up the last system call and finds the file name
(if any) that resulted in the error. The file is looked up in a database
of common IoT firmware files, and missing files (requested by the
malware) are copied to the OS. If the malware needs a file and it is
not found in this database, RiotMn creates a file with the expected
name in the path that the system call requested. RiotMan iteratively
fixes the errors until the malware can successfully run. We use an
image prepared by RiotMan for our IoT malware activation.

D MANUAL REVERSE ENGINEERING
For building the ground truth to evaluate the precision of our traf-
fic disambiguation in §5.3 we manually reverse engineered IoT
malware binary samples to extract their C2 servers. We started by
analyzing the source code of the IoT malware listed on Table 5.
We found C2 communication pattern signatures by analyzing the
source code. Next, we extracted traffic signatures from reverse en-
gineered malware binaries using Ghidra [44]. If the samples were
packed (we only found UPX packing), we unpacked them first.
Then, we examined the reversed source code of the malware (when
Ghidra successfully processed them) or the disassembly code of the
malware to find the communications malware would do with the
outside. Then, we compared the malware sample binaries signa-
tures (found through reverse engineering) with those found during

source code analysis. The matches are the signatures of communica-
tions with the C2 server. Finally, we found the destination addresses
the malware tries to send to those signatures. These destinations
are the C2 server addresses.

E SELECTION OF PROBING TARGETS
For our case study in §6 we utilize the spatial properties of C2
servers to identify our own promising target space for probing to
showcase the potential of our approach. We study the IP-space
spatial properties of 367 malware-specified C2 addresses cross-
verified by VirusTotal in order to identify locality patterns. These
are a subset of Ground1 that we identified before January 2022.
a. Selecting ports: First, we observe that 12 ports are used by half
of the C2 servers. Figure 6 shows the distribution of ports. Using
this insight, we focus our probing to these frequently-used ports.

Figure 6: Cumulative distribution of C2 servers across port
numbers ranked by popularity.

b. Selecting IP spaces: Second, to identify IP spaces with a higher
likelihood of C2 hosting. We plot the distribution of the C2 servers
across ASes in Figure 7. We find that the seven most “popular” ASes
host roughly 65% of the malware-specified C2 servers.

Figure 7: Cumulative distribution of C2 servers across Au-
tonomous System Numbers (ASNs) ranked by popularity.

Based on these two observations, we create our target list of
IP:port tuples as follows. From these seven ASes servers, we select
subnets with more than ten reported C2s, and the top 12 popular
ports as reported in Table 4 in §6.

126

AsiaCCS’24, July 01–05, 2024, Singapore Ali Davanian, Michalis Faloutsos, and Martina Lindorfer

F RELEASED DATASETS AS GROUND TRUTH
To facilitate further research in the area of IoT malware’s C2 com-
munication and to enable comparisons against C2Miner we are
committed to releasing the ground truth we prepared as part of this
work. We publicly release the following datasets:

• Ground1 as described in Table 1 in §5.2 that includes the
SHA56 of the binaries, and their C2 address. We also release

the related info that we queried from VirusTotal whenever
they existed. The related information includes the ASN,
Country and timestamp.
• DFinger as described in Table 1 in §5.2 that includes all the
fingerprints that we extracted.

We do not publicly release the other datasets due to ethical concerns.
This includes the malware binaries and the traffic traces. We do
provide these datasets upon request for research purposes only.

127

	Abstract
	1 Introduction
	2 Scope, Assumptions and Limitations
	3 Design and Implementation
	3.1 Binary Activation
	3.2 Traffic Disambiguation
	3.3 MitM-enabled Probing
	3.4 C2 Determination

	4 Grammar-based Fingerprinting
	5 Evaluation
	5.1 Ethical Considerations
	5.2 Malware Dataset
	5.3 Q1: Traffic Disambiguation Precision
	5.4 Q2: Server Determination Accuracy
	5.5 Q3: Clustering and Fingerprinting
	5.6 Q4: Quantifying Cross-Talk

	6 Case Study: Finding Live C2 Servers
	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Additional Ethical Considerations
	B IoT Malware C2 Protocols
	C Virtualization Environment
	D Manual Reverse Engineering
	E Selection of Probing Targets
	F Released Datasets as Ground Truth

