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Abstract
The aim of this paper is to introduce a model in which systematic effects can be assigned according to their origin or mode of
action. The approach intends to improve the positional accuracy of a robot arm. We show the impact of unaccounted model
biases on estimated parameters when applying sequential approaches and conclude the necessity of jointly determining
all influencing variables. Therefore, we propose a simultaneous estimation of transformation parameters, robot’s kinematic
parameters and non-geometric parameters modelled by an artificial neural network (ANN) in further consequence. Thus,
the main contribution of this paper is a new approach of the simultaneous estimation of the geometric and non-geometric
components of a robot arm model. The integration of the geometric model (transformations, kinematic robot model) with
the non-geometric one (ANN) is realised in the extended Kalman filter. The functionality of the algorithm has been proven
on simulated data. The adaptive behaviour of machine learning approaches is made possible by an additional iteration of the
ANN. The initialisation of the ANN parameters must not deviate from the nominal parameters by more than 10% so that
the ANN can learn the non-geometric part. In this setup, the robot arm position corrections are reduced by 32.5%. A final
sensitivity analysis proves the estimability of most kinematic parameters in the course of a future adaptive extension of the
approach.

Keywords Artificial neural networks · Extended Kalman filter · Robot arm · Calibration

1 Introduction and RelatedWork

An increase in the pose accuracy of robot arms leads to an
increase in production in many areas e.g. the automotive or
aerospace industries as well as a broadening of the areas
of applications i.e. additive manufacturing. This applies in
particular to welding [1] and gripping [2] processes. Pose
accuracy is also important in feedback control of robot arms
[3] when employing them for i.e. assistance activities [4].
The aim of this work is to improve the positioning accu-
racy of robot arms by feedforward control [5]. This is to be
achieved by combining complementary methods. The fol-
lowing terms are important in the course of this article and
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their formulation should contribute to a better understanding.
In general, a distinction ismade between parametric and non-
parametric methods [6]. “Parametric models are described
by a few parameters, which are adequate to characterize the
accuracy of a model” [6, p. 321]. These include the classical
approaches of kinematic and dynamic calibration. In con-
trast, non-parametric models are required when the systems
properties are very complicated [6]. These systems can be
modelled using ARMA models or special variants thereof
[7], but machine learning (ML) methods [8] can also be
used. In particular, we distinguish between geometric and
non-geometric methods, with kinematic robot calibration
as a purely geometric method belonging to the former and
dynamic robot calibration taking forces into account belong-
ing to the latter. For geometric approaches or kinematic robot
arm calibration, we refer to [9] for an advanced procedure.
A representative for non-geometric approaches or dynamic
robot arm calibration is Aoyagi et al. [10]. In general, the
focus of this article is the combination of parametric and
non-parametric methods.
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Scientists from various disciplines are working on the
topic of combining parametric methods with machine learn-
ing approaches. In [11] and [12] an overview of various
combinations of parametric and non-parametric approaches
in general is given. Whereas, [13] and [14] present combina-
tions of machine learning with state estimation.

Various combinations of deep learning (non-parametric
approach) and physical processmodels (parametric approach)
are summarised in [11] and named as hybrid models. We
will follow this determination in this paper. They analyse
the linkages between physical models and machine learn-
ing that have been implemented to date and figured out five
different general approaches. The authors conclude that data-
driven approaches shall strongly complement and enrich
physical modelling in their field of ‘earth system sciences’.
The thereby reached aim of hybrid modelling is to get ‘inter-
pretable structures and to be fully data-adaptive where theory
is weak’ [11]. Schlezinger et al. distinguish between model-
aided networks and DNN-aided-networks [12]. In the first
case, the ANN architecture imitates the operation of phys-
ical methods. In the second case, the ANN is integrated
into physical methods. Jin et al. focus on data-driven state
estimation - combinations of state estimation (parametric
approach) and machine learning (non-parametric approach)
[13]. They distinguish between three different approaches:
model-observation mismatch approaches, replacing parts of
the state estimation by ML (noise, transition and measure-
ment matrix) and to directly estimate the state by ML. They
conclude that these fields are worthy of attention and in
depth understanding of these models is necessary. Bai et al.
summarise the developments of the Kalman filter driven by
machine learning [14]. They distinguish between internal and
external approaches to integrateMLwith Kalman filter (KF).
One external combination theymention, can be found in [15].
Internal combinations, where the NN participates in the iter-
ative process, are rather rare. An interesting area of research
they point to is the accurate state estimation of robots, which
conforms to the use-case of this paper.

Individual literature sources that deal with combinations
of parametric and non-parametric approaches are discussed
below. Stubberud et al. show one of the first combinations
of an extended Kalman filter (EKF) with an ANN with their
neuro-observer [16]. They integrate both the ANN itself and
the ANN parameters into the state. One EKF is used for state
estimation and a second EKF for ANN training. By coupling
these two with an EKF, a simultaneous state estimation and
ANN training is achieved. Haykin summarises various com-
bination variants of Kalman filtering and ANN [17]. Mainly
dual EKF-methods have been introduced, meaning that sep-
arate filters are connected. Abeel et al. automatically learn
the noise parameters of a Kalman filter [18]. Xu and Niu [19]
follow a similar approach as [18] and reach better results than
[18]. Daw et al. develop a physics-guided NN, considering

physical knowledge in theANN, formodelling lake tempera-
ture [20]. They use simulation results from a physical model
as inputs to an ANN and incorporate the physical incon-
sistency into the loss-function. This allows them to achieve
better results than with baseline ML approaches. They also
build a hybrid physics-data residual model, where the ANN
estimates the residual error as function of the standard inputs
and the physical model output and sums it with the phys-
ical model output. This enables a further reduction in the
average error. The authors recognise the need for a tightly
coupled combination of ANN and physical models. Willis
and Stosch model structure and parameter identification for
hybrid models [21]. Their focus is on the model selection
of such hybrid models, especially for linear ML approaches.
Fan et al. combine an ANN with ensemble KF to emulate
dynamic models [22]. Their approach consists of two stages:
First, they train their surrogatemodel, which adds to the orig-
inal physical model and together they build the hybridmodel.
In the next step this built hybrid model is used in the ensem-
ble KF. Hence, the ANN enters into the system equation
of the KF. The effectiveness of the proposed method needs
to be verified. Revach et al. specify the noise statistics and
the partially known or approximated physical model as the
main difficulty in the filtering approach [23]. Therefore, they
replace the Kalman gain computation by a recurrent neural
network in their so called ‘KalmanNet’.

There is a demand for hybrid methods, combining ANN
and physical models in a direct way [20]. It is assumed that
not only the performance and generalisation capability, but
also the consistency and credibility of hybrid methods will
be improved. This may also have a positive impact on the
sample complexity ofML tasks [11]. A deeper understanding
of these models is needed [13] and accurate state estimation
of robots is seen as a potential application area [14].

In the calibration of robot arms, Aoyagi et al. were one of
the first to use ANNs to improve kinematic calibration [10].
They model joint angle deviations as a function of residual
position errors. They compare the parametric modelling of
the non-geometric errors of gear transmission and joint com-
pliance with the non-parametric modelling of these errors by
the ANN. The results show that the ANN reduces the average
error much stronger than the parametric approaches. Nguyen
et al. use the EKF instead of the standard kinematic calibra-
tionmethodby least squares [15]. The residual position errors
are also described by an ANN, but this models the position
error as a function of the joint angles. The non-geometric
modelling reduces the geometric model error by about the
half. The effect is less pronounced than in [10]. Zhao et al.
[24] follow the approach of [15]. They increased the number
of measured poses and used a deep neural network (DNN). A
better result is achieved with DNNs than with shallow ANNs
[15]. However, the contribution of the DNN in relation to the
parametric modelling by the EKF cannot be evaluated, as the

123



Journal of Intelligent & Robotic Systems          (2024) 110:137 Page 3 of 17   137 

result was not presented split up into the two parts. Gadringer
et al. [25] build on the contribution by [24] - they extend the
measurement system for position and orientation determina-
tion. They show that the greatest improvement is achieved by
the ANN. Almost similar results are achieved by the ANN
when kinematic calibration is applied or not. Selingue et al.
[26] use the hybrid robot calibration model as suggested by
[15] and [24] and focus on the reduction of robot positioning
errors under varying payload. They derive methods to trans-
fer a previously estimated ANN to other payloads and to
interpolate between payloads by interpolating their derived
ANN parameters. The literature shows that modelling non-
geometric errors with ML approaches leads to lower model
errors ([10] and [25]).

In ref. [27], we developed a position correction model
(PCM) by an ANN. The position correction is the difference
between the transformed measured robot arm position and
the actual robot position. In comparison to the previously
mentioned literature, no kinematic calibration was carried
out. The ANN describes the robot position correction as a
function of the joint angles. Different to [15], ANN and EKF
build one model; EKF is mainly serving as an optimisation
method.A preceding step is the determination of the transfor-
mation between the robot arm and the measurement system
and the lever arm of the robot flange and the measurement
point, in order to compute position corrections. Therefore
an integrated determination of both parameter groups has
been developed [27]. Other approaches for a simultaneous
robot-world-hand-eye calibration can be found in [28] for
vision-based robot control. The shortcomings of the PCM
(discussed in Section 2.2.2) leads to the simultaneous esti-
mation of the kinematic calibration (geometric effects) and
the ANN, which models the non-geometric effects of the
robot arm (see Section 2.3.2).

Our literature research to date has not shown any transfer
of the approaches combining parametric and non-parametric
methods described above to the calibration of robot arms.We
present an approach that integrates a non-parametric method
into theEKF. The geometricmodel of the robot arm is located
in the system description of the EKF. The ANN, describ-
ing the non-geometrical part, is integrated in the observation
equation.

The proposed integrated approach can be categorised as an
“internal” approach [14], meaning that the ANN participates
in the iterative process; as a “DNN-assisted inference” [12]
meaning that the DNN (ANN) is integrated into a physical
model; or as a mixture of a “hybrid model” (which replaces
a “physical” submodel with ML) and a model-observation
mismatch approach, where the difference between the phys-
ical model output and the observations is modelled by an

ANN [11]. In ref. [22], the ANN is estimated in a first step.
In a second step, it is incorporated into the system equation
of an ensemble KF together with the physical model. This
temporal sequence distinguishes it from our approach.

The main contributions of this paper are:

• Showing the impact of unaccounted model biases on
estimated parameters and the necessity of jointly deter-
mining all influencing parameters

• Simultaneous estimationof geometric andnon-geometric
components of a robot arm system by integrating the
kinematic robot arm model in an ANN-EKF approach

• Introducing the framework for the simultaneous estima-
tion and proving the functionality on simulated data

• Achieving the adaptive behaviour of ML approaches by
an additional iteration of the ANN

The article is structured as follows: Methods and data
(Sec. 2) covers the basics of integrating parametric and non-
parametric methods. We start with the fundamentals of the
robot armand themethods used (Sec. 2.1). In the position cor-
rection model (Sec. 2.2), the simulated data is presented and
the necessity of integrating parametric and non-parametric
methods is elaborated. In addition, the framework for the inte-
gration of the kinematic model into the ANN-EKF approach
is presented in Section 2.3. Section 3 demonstrates the func-
tionality and evaluates the performance of the integrated
approach. The adaptivity of the ANN in simultaneous esti-
mation is addressed in Section 3.2, the estimability of the
kinematic parameters is demonstrated in a sensitivity anal-
ysis (Sec. 3.3). The limitations of the developed approach
and the next steps that still need to be taken are discussed in
Section 4. The article concludeswith a summary in Section 5.

2 Methods and data

The basics, the arguments and the framework for the integra-
tion of geometric and non-geometric robot armmodels is the
content of this section. The first part deals with the object and
the basics of themethods used (Sec. 2.1). Section 2.2 presents
the simulated data and the position correctionmodel,which is
the starting point for all further developments. The shortcom-
ings of the PCM (Sec. 2.2.2) and other modelling approaches
(Sec. 2.2.3) then form the basis for the simultaneous estima-
tion of the geometric and non-geometric components in the
ANN-EKF approach (Sec. 2.3). The basic concepts are pre-
sented first (Sec. 2.3.1) and the detailed elaboration of the
integration takes place in Section 2.3.2.
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2.1 Fundamentals

This section contains an introduction to the robot arm system.
The methodological fundamentals are presented - on the one
hand, the ANN and, on the other hand, the estimation of an
ANN in the course of the EKF (ANN-EKF).

2.1.1 Robot Arm

Robot arms are a serial chain of rigid bodies connected by
rotary joints.On basis of a serial chain of six rotary joints θ , as
presented in Eq. 1, any robot pose RTRF can be approached
in the working area of the robot arm. The robot pose RTRF
consists of position R tRF and orientation RRRF of the robot
flange RF with respect to the robot base frame R. Homoge-
neous transformations RTRF(4×4) are used for this purpose.
For the description of this kinematic robot arm model, we
rely on the Denavit-Hartenberg (dh) parametrisation (see
[29] or [6]). Each transformation requires four parameters:
ai , αi , di , θi , whereby only the joint positions θ vary for each
robot pose.

[RRRF
R tRF

0 1

]
=RT1 1T2 2T3 3T4 4T5 5TRF (1)

= f (a,α, d, θ)

The quality of the robot pose approached, is the result of
the description quality of all influencing variables - from the
structure and geometry of the robot arm to the properties of
the installed mechanical components. A common categori-
sation of the error influences is divided into geometric and
non-geometric errors. Geometric errors are due to inadequa-
cies of the dh parameters.Non-geometric errors occur during
movement and under load. These include the joint compli-
ance, the gear backlash, gear friction, deflection of the arms
or the heating of components [30].

2.1.2 ANN

Artificial neural networks are universal and flexible deploy-
able approximating functions. A brief description of how
ANNs work is given. For a detailed introduction see [31].
The mathematical notation of a fully connected ANN with
one processing hidden layer m is shown in Eq. 2. The func-
tion fn contains K free weights w = [wk], which must be
estimated. Based on the inputs ul(t) with l = 1, . . . , L and
the initial values of the weights w0 = [

wml,0;wnm,0
]
, the

output v̂n(t) with n = 1, . . . , N is calculated. The activation
functions ϕ are the basis functions of neural networks (see
[32]). t is the specific index for the training data sample. The
computed output fn

(
wi , u(t)

)
is compared to the observed

one vn(t) and the error en(t) is back propagated through the

network to update the weights ŵi per iteration i such that the
total error εi (3) is minimised.

en,i (t) = vn(t) − v̂n,i (t) = vn(t) − fn
(
wi , u(t)

)

= vn(t) − ϕ(n)

(∑
m

wnm,iϕ
(m)

(∑
l

wml,i ul(t)

))
(2)

εi (t) = 1

2

∑
n

e2n,i (t) (3)

2.1.3 ANN-EKF

The extended Kalman Filter is a linearised recursive data
processing algorithm that combines a physical problem
description with related observations [33]. The combination
ofEKFandANNcan be found in [34]. The approach bases on
a static system (4). TheANN is considered in the observation
(5), which relates the ANN’s function h to the observation
noise o(t) and the observations y(t). The process noise p
and the observation noise o are assumed to be Gaussian with
zero mean and the appropriate covariance �. A transition
to cofactor matrices Q is fulfilled on basis of the common
variance factor of unit weight σ 2

0 (� = σ 2
0 Q).

x̄i+1 = I x̂i + p, p ∼ N (
0,� pp

)
(4)

y(t) − o(t) = h
(
x̂i+1, u(t)

)
, o ∼ N (

0,�yy
)

(5)

The ANN expressed in a linear form is: h
(
x̄i+1, u(t)

) =
Hi+1 x̄i+1. The Jacobian matrix Hi+1 describes the lin-
ear relation between the ANN’s output and the weights w

expressed in the state vector x [27].
Due to the static system, the predicted weights x̄ corre-

spond to the preliminary estimated one (4). However, the
cofactor matrix of the predicted state Q x̄ x̄,i+1 needs to be
computed because of the consideration of the process cofac-
tor matrix Q pp (6). The state estimate is updated on the
predicted weights x̄i+1 and innovations ei+1, weighted by
Ki+1 for each t or batches of t , see Eq. 7. The innovations e
(expression in the brackets in Eq. 7) are computed on basis
of the non-linear function h of the ANN and corresponds to
the error in the ANN estimation (2). The Kalman gain Ki+1

given in Eq. 8 describes the influence of the observations on
the state estimation. If the elements of Qyy are small, i.e.
the observations are precise, the Kalman gain Ki+1 becomes
large and consequently the innovation e contributes strongly
to the state update. This is controlled by adjusting the vari-
ance factor qyy,i on the basis of a compatibility test in which
the consistency of the functional and stochastic model is ver-
ified (see [27]). The result of the variance propagation is also
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a cofactor matrix of the estimated states Q x̂ x̂,i+1 (9) [27].

Q x̄ x̄,i+1 = I Q x̂ x̂,i I
T + Q pp (6)

x̂i+1 = x̄i+1 + Ki+1

(
y(t) − h (x̄i+1, u(t))

)
(7)

Ki+1 =Q x̄ x̄,i+1HT
i+1(

qyy,i Q̃yy,i+1 + Hi+1Q x̄ x̄,i+1HT
i+1

)−1
(8)

Q x̂ x̂,i+1 = Q x̄ x̄,i+1 − Ki+1Hi+1Q x̄ x̄,i+1 (9)

2.2 Position CorrectionModel

The position correction model (PCM) first set up in [27]
consists of two components as pictured in Fig. 1: The ANN,
which is the core of the PCM, and a preceding transformation
(Trafo). It is based onmeasurementswith a laser tracker and a
probe, mounted on the robot, which enables measurement in
six degrees of freedom. On basis of the robot positions R tRF
and the laser tracker poses LT TP , the transformation of the
laser tracker with respect to the robot frame RTLT as well as
the lever arm offset P tRF are estimated simultaneously. The
transformation model is presented in Eq. 10 and pictured in
Fig. 2.

R tRF = RRLT

(
LT RP

P tRF + LT tP
)

+ R tLT (10)

Hence, the position corrections Rδ tRF can be computed
(Rδ tRF = R tRF − R tRF,LT ) as the difference between the
robot position R tRF and the one derived by the transformed
measured robot position R tRF,LT according to the right side
of Eq. 10. The position correction is the output in the ANN.
As a simple ANN model the position corrections Rδ tRF are

Fig. 1 Position correction model

Fig. 2 Relation of robot frame RTRF and laser tracker frame LT TP

determined in dependency of the joints θi (see Fig. 1). All
causes which lead to a systematic effect due to varying joints
are modelled by the parameters of the ANN.

In the first part the simulated data set is discussed. The
second part deals with the influence of an insufficient robot
model on the estimation results for the transformation and
the ANN. Finally, corrective modelling approaches are eval-
uated.

2.2.1 Data

On basis of simulated data, the effect studies (Sec. 2.2.2,
2.2.3) are performed and the integrated model (Sec. 2.3.2) is
validated. The purpose of the simulations requires different
data sets. While a good spatial distribution based on ran-
domly chosen poses in the robot working area is important
for the effect study, a continuous robot trajectory is required
for the validation of the integrated method. Both data sets
correspond to a realistic acquisition geometry - line of sights
to the laser tracker are taken into account.

For the effect studies in Sections 2.2.2 and 2.2.3, ran-
domised robot arm positions were chosen to achieve a good
distribution of robot pose deviations. The randomised robot
arm positions used (black vectors) are shown in Fig. 3.

The assessment of the results of the method development
in Section 2.3.2 requires a continuous trajectory that also
includes non-geometric effects. A trajectory was therefore
created in the ‘RoboDK’ software package and is shown in
Fig. 4. It was chosen so that systematic deviations in the
geometric or non-geometric model are clearly noticeable.
These can occur when the robot arm is in an outstretched
and very exposed position. The simulated trajectory of the
robot arm is based on the geometric model, which is realised
by the dh parameters. The non-geometric effects are sim-
ulated by an ANN, trained on real position corrections of
the robot arm. The shallow ANN has one hidden layer with
29 hidden nodes. These are tanh activated. The number of
hidden nodes were verified in a cross validation and was
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limited by Widrow’s rule of thumb [32]. The predicted posi-
tion corrections are presented in Fig. 4 and the color code
corresponds to the magnitude of the position corrections 100
times enlarged (|Rδ tRF |). The variation of all simulated posi-
tion corrections amount to 0.6mm. Considering only the test
data, the last approximately 1500 data samples (data sam-
ple 5800 to 7300), the position correction varies only about
0.4 mm.

2.2.2 Influence of Model Biases on the PCM

The aim of the PCM is to non-parametrically model the robot
arm deviations. The transformation precedes the actual mod-
elling by the ANN. The inputs of the transformation are the
robot positions R tRF , which base on the theoretical geo-
metrical robot model and the measured ‘true’ robot poses
LT TP (see Fig. 1). Consequently, the discrepancy between
the theoretical geometric robot armmodel and the ‘true’ robot
poses enter into the transformation. The required optimality
in the estimation of the transformation and lever arm param-
eters (RTLT , P tRF ) already leads to a modelling/averaging
of these discrepancies. In this subsection, the influences of
biased dh parameters on the estimation results for the trans-
formation and lever arm parameters as well as the effect on
the ANN shall be figured out.

A simulation, biasing each dh parameter separately,
serves for the following findings.

Firstly, the influences on the transformation and lever arm
parameter shall be evaluated. Therefore, the d1-parameter
is biased for example. In Fig. 3, the robot positions (black
vectors) used for this investigation are pictured. The scaled
deviations in each robot position show the effect of the bias.

Fig. 3 Robot positions (black vectors) as well as the scaled deviations
(coloured small vectors) due to a bias of 0.1 mm for the dh parameter
d1. The measured robot positions refer to the end position of the devi-
ation vectors. Consequently, the estimated transformation parameters
are shifted in the z-direction

The measured robot positions refer to the end position of the
scaled deviations. Consequently, if the d1-parameter is not
adjusted correctly, the origin of the robot frame will shift
upwards when the transformation parameters are calculated
based on these ‘identical’ points (robot positions according
to the actual robot model andmeasured ‘nominal’ robot posi-
tions).

On basis of a Monte-Carlo simulation, each measure is
biased by a specified value corresponding to measurement
noise or production tolerances one at the time. For metric
measures (a, d) a standard deviation σmetr of 0.1 mm is
assumed and the standard deviation of angles σang (α, δθ)

amounts to 0.01◦ respectively 36′′.
The mean deviation of the computed transformation and

lever arm parameters to the nominal ones is shown in Table 1.
Biases in dh parameters at the beginning of the serial chain
show more distinct effects on the transformation and lever
arm parameters than in the end. The largest mean deviations
in RTLT amounting to 0.5 mm are derived by biases in the
following dh parameters: dθ1, d2, d3, d4, dθ2, α1. The lever
arm P tRF is mainly influenced (approximatley 0.1 mm) by
biases in a6, d6, a4. Thus, biased parameters of the robots
geometric model are absorbed by the transformation param-
eters.

Secondly, we want to address the effects of the inade-
quately modelled robotic arm on the ANN. Therefore, the
nominal deviations of the robot arm Rδ tRFnom are contrasted
by the transformed ones Rδ tRF . In Fig. 5, the average devi-
ations for each biased dh parameter (mean(|Rδ tRFnom |))
for all simulated poses (see Fig. 3) are pictured. In con-
trast to this, the average deviations after the transformations
mean(|Rδ tRF |) are illustrated. We notice, that the bias of
these parameters:dθ1, d1, dθ6, d6, α6, a6 do not cause a devi-
ation after the transformation. Thus, they are absorbed into
the transformation and lever arm parameters. Therefore, we
treat them as ‘absorbed’ deviations (mean(|Rδ tRF |) = 0).
The listed dh parameters refer to the first or the last joint. The
parameters of the first joint interact with the transformation

Fig. 4 Simulated robot trajectory inclusive the position corrections pre-
dicted by theANN (100 times enlarged). Themarked data samples show
the course of the trajectory (from 1000 to 7000)
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Table 1 Mean deviations of the estimated transformation and lever arm parameters (RTLT ,P tRF ) due to biases in the kinematic robot parameters
(dh). Therefore, each parameter is biased by σmetr = 0.1 mm (a, d) or σang = 36′′ (α, δθ) correspondingly in the Monte Carlo simulation

Par. Rδ tLT ,x
Rδ tLT ,y

Rδ tLT ,z
RδRLT ,x

RδRLT ,y
RδRLT ,z

Pδ tRF,x
Pδ tRF,y

Pδ tRF,z

a1 0.1mm 0.1mm 0.1mm 4′′ 3′′ 10′′ 0mm 0mm 0mm

a2 0mm 0mm 0.1mm 3′′ 2′′ 1′′ 0mm 0mm 0mm

a3 0.1mm 0.1mm 0.1mm 5′′ 4′′ 7′′ 0mm 0mm 0mm

a4 0.1mm 0.1mm 0mm 2′′ 3′′ 10′′ 0mm 0mm 0.1mm

a5 0.1mm 0.2mm 0mm 7′′ 4′′ 12′′ 0mm 0mm 0mm

a6 0mm 0mm 0mm 0′′ 0′′ 0′′ 0.1mm 0mm 0mm

d1 0mm 0mm 0.1mm 0′′ 0′′ 0′′ 0mm 0mm 0mm

d2 0.3mm 0.4mm 0.0mm 3′′ 3′′ 33′′ 0mm 0mm 0mm

d3 0.3mm 0.4mm 0mm 3′′ 3′′ 33′′ 0mm 0mm 0mm

d4 0.3mm 0.4mm 0mm 3′′ 3′′ 33′′ 0mm 0mm 0mm

d5 0mm 0mm 0.2mm 10′′ 2′′ 2′′ 0mm 0mm 0mm

d6 0mm 0mm 0mm 0′′ 0′′ 0′′ 0mm 0mm 0.1mm

α1 0.2mm 0.3mm 0.1mm 6′′ 1′′ 23′′ 0mm 0mm 0mm

α2 0.1mm 0.2mm 0.1mm 1′′ 6′′ 13′′ 0mm 0mm 0mm

α3 0mm 0mm 0.1mm 2′′ 6′′ 2′′ 0mm 0mm 0mm

α4 0mm 0.1mm 0mm 1′′ 1′′ 5′′ 0mm 0mm 0mm

α5 0mm 0mm 0mm 1′′ 0′′ 0′′ 0mm 0mm 0mm

α6 0mm 0mm 0mm 0′′ 0′′ 0′′ 0mm 0mm 0mm

δθ1 0.3mm 0.5mm 0mm 0′′ 0′′ 36′′ 0mm 0mm 0mm

δθ2 0.1mm 0.1mm 0.4mm 10′′ 25′′ 8′′ 0mm 0mm 0mm

δθ3 0mm 0mm 0.3mm 5′′ 13′′ 3′′ 0mm 0mm 0mm

δθ4 0mm 0mm 0mm 1′′ 0′′ 2′′ 0mm 0mm 0mm

δθ5 0mm 0mm 0mm 1′′ 1′′ 2′′ 0mm 0mm 0mm

δθ6 0mm 0mm 0mm 0′′ 0′′ 0′′ 0mm 0mm 0mm

all 0.6mm 0.9mm 0.5mm 0′′ 0′′ 0′′ 0.1mm 0mm 0.1mm

parameters RRLT ,z and R tLT ,z . The parameters of the last
joint act similar to the lever arm P tRF .

Fig. 5 ‘Absorbed’ deviations of the kinematic robot parameter by the
transformation (mean(|Rδ tRF |) = 0; black circles) and ‘remaining’
deviations to be modelled by the ANN (mean(|Rδ tRF |) �= 0)

In contrast, the transformed deviations of the ‘remaining’
parameters (mean(|Rδ tRF |) �= 0) amount to approximately
60% of the nominal deviations. Consequently, in average
approximately 40% of the robot position deviations are
absorbed by the transformation. While the nominal position
deviation |Rδ tRFnom | for parameter a1 is about 0.09mm,
the transformed one |Rδ tRF | results in 0.065mm according
Fig. 5.

The aim of the PCM is to improve the system robot arm.
As we have shown so far, some of the position corrections
are completely absorbed or mitigated due to the preceding
transformation. The ‘lost’ resp. ‘absorbed’ parameters can
only be evaluated separately by specialmeasurement routines
and not in a joint evaluation with the transformation and the
lever arm. The focus of the following investigations is to keep
the complete ‘remaining’ parameters: a1-a5, d2-d5, α1-α5,
δθ2-δθ5.
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2.2.3 Reducing Model Biases

A suggestion to obtain less biased transformation and lever
arm parameters is to estimate the transformation and lever
arm parameters in the course of a kinematic robot arm cali-
bration, as done in literature ([10, 15, 25]).

The corresponding model is presented in Eq. 11. In addi-
tion to the robot parameters (dh), the transformation between
the robot base frame and the laser tracker LT TR and the trans-
lation between the probe and the robot flange RF tP (lever
arm) must be determined.

[LT tP
1

]
= LT TR · f (a,α, d, θ + δθ) ·

[RF tP
1

]
(11)

Due to a similar impact of some parameters linear
dependencies appear. These exist here for the following
parameter groups:

{
δθ1,

LT rR,z
}
,
{
d1, LT tR,z

} {d2, d3, d4},{
a6, RF tP,x

}
,
{
d6, RF tP,z

}
and

{
α6, δθ6,

RF tP,y
}
(see [35]).

The linear dependencies corresponding to the transformation
parameters LT TR originate due to a vertical alignment of the
laser tracker z-axis and the robot arm z-axis.

It can be noticed that the ‘absorbed’ dh parameters identi-
fied in Section 2.2.2 correspond to the linear dependent ones
in the kinematic robot arm calibration. Consequently, the
linear dependencies in the kinematic calibration confirm the
results of how biases in dh parameters affect the estimation
of transformation and lever arm.

As the focus lies on the estimation of the transforma-
tion and the lever arm, we select out of the parameter
groups LT rR,z,

LT tR,z,
RF tP,x ,

RF tP,z,
RF tP,y to be esti-

mated. In contrast to the kinematic calibration, where the
dh parameter are of interest, here the focus is set on
the transformation and the lever arm components. There-
fore, the following dh parameters will be set constant:
d1, d3, d4, d6, δθ1, δθ6, α6, a6, instead of the appropriate
transformation parameters. A bias of their true values to the
model shifts in the appropriate transformation and lever arm
parameter.

On the basis of the findings in Section 2.2.2, three types
of simulations in the kinematic calibration model are estab-
lished - either only the ‘remaining’ parameters, only the

‘absorbed’ ones or ‘all’ parameters are biased together.
Therefore, the metric measures are biased by σmetr = 0.1
mm and the angles by σang = 0.01◦, similar to the Monte
Carlo simulations of Section 2.2.2. Again, the mean devia-
tions of the transformation and lever arm parameters after the
kinematic calibration are analysed. The results of the kine-
matic calibration model by biasing all parameters of a group
are presented in Table 2. First, only the ‘remaining’ parame-
ters (a1-a5, d2-d5, α1-α5, δθ2-δθ5) are biased. No deviations
in the transformation and lever arm parameter occur - the
correct parameter can be figured out by the kinematic cal-
ibration. In a next step, only the ‘absorbed’ parameters
(dθ1, d1, dθ6, d6, α6, a6) are biased. This creates mean devi-
ations in the following components: Rδ tLT ,z , Pδ tRF,x and
Pδ tRF,z . The ‘absorbed’ dh parameters correspond to the
linear dependent ones in the kinematic calibration and have
been set constant. Consequently, biases in these parameters
enter in the transformation and lever arm parameters. If ‘all’
parameters are biased, the same mean deviations are reached
as in the ‘absorbed’ case. The main deviations influence
the z-translation Rδ tLT ,z as well as the lever arm x- and z-
component Pδ tRF,x ,

Pδ tRF,z . The estimated parameters are
larger than the simulated ones due to an enlargement of the
aforementioned parameters.

Comparing the result of biasing ‘all’ dh parameters in
the kinematic calibration (Table 2) to the result of biasing
‘all’ dh parameters in the PCM model (Table 1) shows less
deviations in the transformation and lever arm parameters.
Thus, less biased transformation and lever arm parameters
are obtained by the kinematic calibration approach.

Therefore, a kinematic calibration is performed first, from
which the transformation and lever arm parameters are used
to calculate the deltas for the non-parametric estimation in
theANN(see Fig. 6 our so called ‘kinCalib+’ approach). This
approach is a common method that has been used repeatedly
in literature ([10, 15, 24] and [25]). The idea is to perform
geometric modelling and apply non-parametric methods to
estimate the remaining deviations.

However, the results of our kinematic calibration of a col-
laborative robot arm showed shortcomings. The goodness-
of-fit test according to [36] could not be passed due to a

Table 2 Mean deviations in the transformation and lever arm parame-
ters (RTLT ,P tRF ) due to biases in the kinematic robot parameters (dh).
In contrast toTable 1, the kinematic calibrationmodel (Eq. 11) is applied
in the Monte Carlo simulation. Consequently, the deviations caused

by a biased dh parameter enter in the appropriate parameter except
the absorbing ones (compare to Section 2.2.2). The table shows three
variants of biased parameters: the ‘remaining’, the ‘absorbed’ or ‘all’
parameters. The estimated parameters are larger than the simulated ones

Par. Rδ tLT ,x
Rδ tLT ,y

Rδ tLT ,z
RδRLT ,x

RδRLT ,y
RδRLT ,z

Pδ tRF,x
Pδ tRF,y

Pδ tRF,z

remaining 0mm 0mm 0mm 0′′ 0′′ 0′′ 0mm 0mm 0mm

absorbed 0.3mm 0.4mm 0.1mm 0′′ 0′′ 0′′ 0mm 0mm 0mm

all 0.3mm 0.5mm 0.1mm 0′′ 0′′ 0′′ 0mm 0mm 0mm
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greatly increased test measure by an order of magnitude of
103 [35]. The reason for this can be found in an inadequate
functional model. Due to a good knowledge of the quality of
the laser trackermeasurements and outlier detection, an inad-
equate stochastic model of the observations and outliers can
be excluded as causes. Consequently, the non-geometrical
effects need to be considered jointly with the geometrical
ones. It prompts us to go one step further than the ‘kinCalb+’
model ([10, 15, 24] and [25]) and to develop the simultane-
ous estimation of the kinematic model parameters and the
ANN (‘Integrated’ model in Fig. 6).

Aim of the simultaneous estimation of geometrical and
non-geometrical model parameters for a robot arm is to
reduce the residuals and to pass the goodness-of-fit test for
the selected robot arm model. Thereby, a realistic modelling
of the robot arm is achieved - systematic effects are assigned
according to their origin or mode of action. The integration
of the geometric and non-geometric methods is introduced
in the next section.

2.3 Integration Kinematic Model in ANN-EKF

In general, the KF approach combines a dynamic system
description with measurements. So far, we have only used
the KF as an optimisation method for ANN estimation. The
idea to integrate system knowledge i.e. the robot geometric
description in the system description lends itself. Thereby,
the non-parametric ANNworld and the parametric KF world
are combined towards a hybrid modelling approach.

In Section 2.3.1 the basic concepts for integrating the
geometric and non-geometric part are discussed, before the
integrated model is presented in Section 2.3.2.

2.3.1 Basic Concepts of the Integration

The main problem of the PCM is the sequential procedure
- systematic effects of the robot arm are already masked by
the preceding transformation (see Section 2.2.2). Thus, the
basic idea is to facilitate the estimation of all parameters at

Fig. 6 Extensions of the position correction model (PCM)

once by the integration of parametric and non-parametric sys-
tem description in the framework of KF. The EKF enables
an additional estimation of a priori poorly known parame-
ters of the functional or of the stochastical model in course
of an adaptive filtering. For a future adaptive estimation
it is important that the parameters are considered already
in the appropriate way. According to that, the robot model
parameter dh, the transformation and lever arm parameters
RTLT , RF tP need to be included in the system description of
the filter.

Another basic concept results from the static measure-
ments, which were retained to be consistent with preliminary
work [27]. Consequently, the kinematic system description
was adapted to the static measurements. In the standard case
of Kalman filter theory, the states model the actual dynam-
ics of a system, while the control variables model additional
deterministic effects. Considering this, the state x consists
of the robot position expressed as the position of the probe
in the laser tracker system LT tP and the ANN parameters
w. The prediction from the actual state LT tP,i to the next
state LT tP,i+1 is enabled by the present joints θ i and the
subsequent joints θ i+1, contained in the control variable u .

The formulation of the ANN in the filter approach forms
the third basic concept. The ANN is kept in the observation
(5), so the parameters wi are determined according to the
deviation between measurement and estimated ANN output.
This adaptation is reached by the update rule of the Kalman
filter (7), if the ANN parameterswi are treated as static states
(4).

The observation refers to the superposition of the geo-
metric and non-geometric part (12). The geometric part is
parameterised in the system description. The non-geometric
part realised by the ANN must take into account all system-
atic (non-geometric) effects that cannot be explained by the
kinematic robot model.

obs = geom + non-geom (12)

Thereby, the observation equation combines the paramet-
ric KF world and the non-parametric ANN world.

Due to the geometric problem description only additive
white Gaussian noise is assumed in the following. Consider-
ing these concepts, leads to the formulation of the model in
the following subsection.

2.3.2 Integrated Model

As stated in the second basic concept, we need a relative
description of the robot arm in order to predict fromone robot
position i to the subsequent one i + 1. Eq. 13 presents a rel-
ative formulation on basis of homogeneous transformation
matrices. According to the second basic concept, the relative
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robot description is expressed as a motion of the probe in the
LT frame LT tP . Hence, the robotmodel parameter dh as well
as the transformation parameters LT TR and lever arm com-
ponents RFTP are present in the system description, which
should enable a future adaptive estimation. However, due to
the relative formulation, the transformation of the robot arm
into the laser tracker system LT TR cancels out, what contra-
dicts the second basic concept. We will leave it at that for the
time being. In the course of future adaptive estimation, the
transformation by back-substitution is to find its way back
into the system description.

One assumed simplification is that RF RP = I , which is
the result of the specially designed probe mounting. Future
work shall consider the full populated RF RP matrix in the
system description.

Further, only the position resp. translational information
of the robot is used instead of the complete pose in the filter
description, at themoment. Out of P,i�TP,i+1 in Eq. 13 only
the translational part is taken into account and it results in
Eq. 14. Thus, the robot position deviation is a function of the
dh parameter at time i and time i+1 and the lever arm RF tP .

P,i�TP,i+1 =LT TP,i
−1 LT TP,i+1 (13)

=
(
LT TR R TRF,i

RF TP

)−1

(
LT TR R TRF,i+1

RF TP

)

P,i�tP,i+1 =R RRF,i
T

(
R tRF,i+1 − R tRF,i

)
(14)

− RF tP + R RRF,i
T R RRF,i+1

RF tP

= f�t (θ i , θ i+1, a, d,α, RF tP )

Figure 7 illustrates the relative robot description as for-
mulated in Eq. 14. The relative robot position seen from the
measuring system P,i�tP,i+1 consists of three parts: First,
the difference vector RF,i�tRF,i+1 = (R tRF,i+1 − R tRF,i )

in regard to the robot frame at time i ; second, the leverarm
RF tP to transform into the probe system and third, due to

the change in robot arm orientation, the component of the
rotated leverarm needs to be considered.

Appending the relative robot arm position (14) to the ini-
tial robot pose LT TP,i enables a prediction of the subsequent
robot arm position as presented in Eq. 15. It includes the
noise of the estimated state pLT tP . Temporally variable quan-
tities in this equation are the joints θ i , θ i+1, summarised in
the control variable u, and the preceding robot pose LT TP,i ,
whereby only the position is estimated as a state x and the
rotational part LT RP,i is treated as a deterministic measure
for the time being.

LT t̄P,i+1 =LT RP,i · P,i�tP,i+1 + LT tP,i + pLT tP (15)

= ft (LT t̂P,i , θ i , θ i+1) + pLT tP

The linearised EKF system (16) consists of the functional
ft (x̂i , ui ), evaluated at the location of the state estimate x̂i
and on the nominal control ui = [θ i ], as well as of the
relative robot pose, considered in the control matrix B. The
linearised model is used for the propagation of the stochastic
model. The state prediction is accomplished by the nonlinear
model (15).

x̄i+1 = ft
(
x̂i , ui

)
︸ ︷︷ ︸

LT t̂P,i

+ ∂ f
∂θ i+1

∣∣∣
θ i

· (θ i+1 − θ i )︸ ︷︷ ︸
Bi ·�ui

+ pLT tP (16)

The third basic concept indicates to treat the ANN param-
eters wi as states in a static system. Thereby, the adaptation
of the ANN parameters is accomplished in dependence of
the deviation between the measurements and the ANN out-
puts. Equation 17 shows the static system including the ANN
parameter noise pw.

w̄i+1 = fw(x̂i ) + pw = ŵi + pw (17)

The complete linearised system is presented in Eq. 18. It
includes the linear prediction of theANNparameters (17) and
the robot arm position (16). However, the filter predicts on
basis of the non-linear function (15). The partial derivatives

Fig. 7 Scretch of the relative
robot model (in red color). The
relative robot position in the
robot flange frame at time i is
denoted by RF,i�tRF,i+1 and
the corresponding relative robot
position as seen from the
measuring system is denoted by
P,i�tP,i+1
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are necessary for the stochastic propagation, as applied in
Eq. 19.

x̄i+1 = f
(
x̂i , ui

) + Bi · �ui + p (18)[
w̄i+1

LT t̄P,i+1

]

(n+3)×1

=
[

fw
(
x̂i

)
ft

(
x̂i , ui

)
]

(n+3)×1

+
[
0n×6 0n×6
∂ ft
∂θ i

∂ ft
∂θ i+1

]

(n+3)×12

·
[

06×1

�θ i,i+1

]

12×1

+
[

pw

pLT tP

]

Q x̄ x̄,i+1 = I Q x̂ x̂,i I
T + BQuuBT + Q pp (19)

The ANN is part of the observation (20). It models the
robot position deviations Rδ tRF in dependence of its joints
θ : Rδ tRF,i+1 = g (θ i+1, w̄i+1).

The rotatedANNdescribes the non-geometrical part (non-
geom) of the robot arm and in prediction mode we call it a
‘position correction’. The geometric modelling (geom) orig-
inates out of the system description. Both parts add up to the
observation: y = LT tP,i+1,Obs , which embodies the actual
value except the observation noise oLT tP .

yi+1 =h(x̂i+1, θ i+1,
LT RR) (20)

= LT t̂P,i+1︸ ︷︷ ︸
geom

+ LT RR · Rδ tRF,i+1︸ ︷︷ ︸
non-geom

+oLT tP

Thenon-linear observation function h is used in the update
equation of the Kalman filter (7). However, for the Kalman
gain computation (8) and the computation of the updated
cofactor matrix of the state (9) the partial derivatives are
needed. Equation 21 presents the generic partial derivative
of the observation function h.

H = ∂h
∂x

∣∣∣
x̄i+1

(21)

The model established hereby is the starting point for
the simultaneous estimation of all parameters, which is only
achieved by extending the systemmodelwith the correspond-
ing parameters in the course of adaptive filtering, which will
be part of future work. Here, however, we concentrate on
checking the functioning of the model.

3 Results

The focus of this section is on proving the functionality and
evaluating the performance of the proposed algorithm. The
scenarios used to test themethod are shown in Fig. 8. The first
scenario describes the ideal case with nominal parameters
and only considers themeasurement noise. In the second sce-
nario, the functionality of the ANN is proven by some initial

Fig. 8 Scenarios of simultaneous estimation. The variables that are
varied or adapted in the course of a scenario are shown in red. (left
column: initial state values; right column: observations inclusive noise)

ANN parameters that differ from the nominal ones. Thirdly,
a preliminary stage of adaptive estimation is attempted. A
sensitivity analysis is performed to check whether the trans-
formation or robot parameter are estimable or observable.

3.1 ConsideringMeasurement Noise

This first scenario describes the ideal case of the proposed
model and serves as a proof for the functionality of the
algorithm. Therefore, transformation LT TR and lever arm
parameters RF tP and constant robot arm parameters like
a, d,α are set to their nominal values (LT T̃R, RF t̃P , d̃hc).
Measurements like the robot joint positions θ i and laser
tracker positions LT tP,i include noise on a realistic level
of robot arms presented in Table 3. The precision of the
joints σu leads to an average position deviation of 1.5×10−5

m. Moreover, the initial guess for the ANN parameters w1

are the ANN parameters of the ANN that simulates the
non-geometric component wnom (Section 2.2.1). The model
structure was also inherited from this original ANN.

Initialising a Monte Carlo simulation and averaging the
10-fold drawing from the normal distribution with the stan-
dard deviation σ u and σ t Obs leads to the mean deviations
presented in Fig. 9. The results are discussed on basis of the
components of the integrated model: the geometric part (G),
the non-geometric part (NG) and the combination of both
(All). The geometric part corresponds to the predicted state,
the non-geometric part results out of the ANN and the sum
of both components is combined in ‘All’. For better inter-
pretability of the results, deviations to their nominal values
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are considered. The deviations of the non-geometric part is
nearly zero, due to the usage of the nominalANNparameters.
The mean of the geometric (devG) and of the combined part
(devAll) is also close to zero, however, the standard devia-
tion of the joints is mainly reflected in the variation of these
two components. Due to the optimal description of the ANN,
the geometric component mainly influences the filtering pro-
cess and determines the combined position. The root mean
squared error (RMSE) of the combined position (All) corre-
sponds nearly to the level of the assumed standard deviations
according to Table 3. The smaller variation of the predicted
positions of the test data compared to the trained positions
is noticeable, which is caused by the respective position cor-
rection (see Fig. 4) and the quality of the estimation of the
geometric part. The deviations of the robot arm trajectory
(devG, devAll) are in the magnitude of the simulated robot
armposition precision. Thus, no systematics are recognisable
on this database.

3.2 Estimating ANN Parameters

Till now only nominal ANN parameters wnom have been
used. These are the ANN parameters of the simulated non-
geometric component (Sec. 2.2.1). It is questionable, if the
ANN is estimable on basis of random initialisedANNparam-
eters.

Two important screws enabling the estimation of theANN
parameters are: the stochastic model of the various filter
components and an additional ANN iteration. A first test on
adapting the stochastic model of the ANN parameter shows
that larger initial standard deviations of the ANN parame-
ters σw lead to changes in the ANN parameters. However,
these changes are much too small in magnitude. It seems to
need more processing steps in order to model the simulated
non-geometric components of the robot arm.

TheANNestimationusually requiresmany iterations until
an adaptation to the observed output is possible. Especially
if the initial guess is far away from the target solution, it
is particularly important to iterate. Consequently, an addi-
tional iteration of the ANN takes into account the adaptive
behaviour of MLmethods in the state estimation. The imple-
mentation of an additional iteration of the ANN demands
a redraft or extension of the Kalman filter, which is pre-
sented in Fig. 10. The lower part shows the implementation
of the integrated approach, whereby the ANN is included in
the observation equation h. The area in the dashed rectangle

Table 3 Standard deviations of
control measures and the
observations for scenario a

Std. Dev. Values

σ u 0.001◦

σ t Obs 2.5 × 10−5 m

extends the integrated approach by the additional iteration of
the ANN. This additional iteration process is accomplished
after each 500 update steps/data samples up to the end of the
training samples Ntr . The ANN parameters wi+1 are trained
on the position corrections Rδ tRF,i+1 on basis of the inputs
θ i+1. Therefore, the position corrections need to be derived
(22).

Rδ tRF,i+1 =LT RR
T ·

(
yi+1 − LT t̄P,i+1

)
(22)

=g(θ i+1, w̄i+1)

It corresponds to the reformulated observation (20) under
RF RP = I . The resulting ANN parameters w̄i+1,i ter are fed
back to the integrated approach as a new prediction of the
ANN parameter w̄i+1. The updating of the ANN is accom-
plished by Levenberg-Marquardt (LM). Due to the industrial
application a stochastic learning procedure is preferable to
batch learning [37]. The available data samples in each addi-
tional ANN computation step i are shuffled. The quit criteria
is the number of iterations. In the first seven additional ANN
iterations, the ANN iterates 100 times, the last seven addi-
tional ANN iterations took 200 iteration steps.

Despite the additional ANN iteration, the initial ANN
parameters w1 must not be too far away from the nominal
ANN wnom parameters. We vary the initial ANN parameters
by 5, 10 and 15% from the nominal values wnom . To do this,
we draw 10 times from a normal distribution with the respec-
tive n% deviation. The results are presented in Table 4. The
RMSE of the non-geometric (NG), geometric (G) and com-

Fig. 9 Result of scenario a. It shows the deviations of the geometric
part (devG), the non-geometric part (devNG) and the sum of both parts
(devAll). The first 5874 samples were updated in the filter, the following
1468 samples are deviations from the predictions of the test data. The
deviations of the geometric and the combined part are in the range of
the simulated robot arm position precision
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Table 4 Results of deviating nominal ANN parameters by 5, 10 and
15%. The results are mean values out of 10 different ANN parameter
initialisations

w1 wnom,5 wnom,10 wnom,15

RMSE(NG)test 0.18 mm 0.27 mm 0.52 mm

RMSE(G)test 0.34 mm 0.51 mm 0.69 mm

RMSE(All)test 0.38 mm 0.53 mm 0.86 mm

bined component (All) is computed for all three scenarios,
taking only test data into account. Thus, only the performance
in the prediction step is considered. Large non-geometric
effects have been simulated (see Fig. 4). Therefore, large
RMSE of the single components are achieved. As mentioned
in Section 2.2.1, the variation of the whole non-geometric
part amounts to 0.6mm.While considering only the test data
of the non-geometric part exhibit a variation of 0.4mm.Com-
paring this valuewith the average test error RMSE(NG)test ,
the initial ANN parameters must be better than wnom,15 in
order to learn the non-geometric part at all. If the initial ANN
parameters deviate by 10%, approximately 32.5%of the non-
geometric part is learnt. If the initial parameters deviate by
only 5%, then 55% of the non-geometric part is determined.
It appears to be a very wavy error surface. There is a strong
dependence on the initialisation of the ANN parameters to
achieve the desired minimum.

Figure 11 and 12 show the results of a realisation with
a 5% deviation from wnom . Figure 11 shows the devia-
tions of the three components from their nominal values.
During filtering (training data), the geometric state and the

Fig. 11 Result of scenario b inclusive the additionalANN iteration. The
initial ANN parameters deviate by 5% of the nominal ones (wnom,5). It
shows the deviations of the geometric part (devG), the non-geometric
(devNG) and the sum of both parts (devAll). The first 5874 samples
were updated in the filter, the following 1468 samples are deviations
from the predictions of the test data. There are interactions between the
geometric state and the non-geometric part

non-geometric part show the same order of magnitude of
deviations with different signs. These are connected by the
observation (20). Consequently, the combination of the two
components in ‘devAll’ is almost zero. In the prediction
step (test data), the geometric component is constant and

Fig. 10 Additonal iteration of the ANN (ANNiter) after each 500 updated samples up to the number of training samples Ntr
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Fig. 12 Result of scenario b inclusive the additionalANN iteration. The
initial ANN parameters deviate by 5% of the nominal ones (wnom,5). It
shows the estimated ANN in comparison to the nominal ANN. The first
5874 samples were updated in the filter, the following 1468 samples are
deviations from the predictions of the test data

the level depends on the last filtered state. The prediction of
the non-geometric component shows large deviations due to
insufficient determination of the ANN. These deviations are
visible inFig. 12 andcorrespond to thedifferencebetween the
nominal (ANNnom) and the estimated ANN (ANNest). The
predicted combined deviations (devAll, Fig. 11) are mainly
driven by the ANN prediction. There is still a need for bet-
ter ANN determination in the integrated model and a deeper
analysis of the interaction between the geometric and the
non-geometric part by the stochastic model.

3.3 Sensitivity Analysis

The aim of the sensitivity analysis is to check the influences
of the robot arm and transformation parameters, summarised
in term, on the updated states x̂. This is a preliminary step
before adaptive filtering in order to show the interactions
between the states and the parameters that are to be estimated
in the Kalman filter in the future.

The starting point is scenario a. Thus, the ANN parame-
ters are initialised by wnom and the same measurement noise
levels are considered (Table 3).We stick to the chosen param-
eter set in Section 2.2.3. Therefore, only one of the linearly
dependent parameters per group is taken into account. Each
parameter out of term is biased separately. Metric measures
are enlarged by 0.1mm and angular measures are enlarged
by 0.01◦.

The resulting deviations of the geometrical translational
part |δG | are presented in Fig. 13. There is nearly no effect
by the transformation of the robot arm in the laser tracker
frame LT TR . Due to the relative description in the system
equation the transformation LT TR cancels out (14). LT RR

only enters in the observation (20). The lever arm compo-

nent RF tP does not cancel out in Eq. 16. Biases mainly of
the x- and y-component have a direct effect on the geome-
try. The small influence of the z-component RF tP,z is due
to the specific mounting of the probe. The selected set of
dhc parameters can be estimated. The largest deviations in
robot arm geometry are caused by: d4, α4, a1, a2, δθ5. Small
deviations in robot arm geometry may be caused by too little
variation in the chosen poses or by a stronger connection to
the rotational geometric component.

4 Limitations and FutureWork

The overall aim of integrating the parametric and non-
parametric approach is to achieve an unbiased estimate of
the robot arm system by taking all influencing variables into
account. The approach presented has some shortcomings or
limitations at the present time, which are summarised in the
following.

The developed method is based on 6DOF laser tracker
measurements on a probe mounted on the robot arm flange.
Therefore, the pose of the probe in the laser tracker system
LT TP,i is contained in the method and represents the ‘true’
robot arm pose.

At the present time, only the lever arm RF tP between
probe and robot flange is considered in the algorithm. The
orientation component RF RP is neglected due to the paral-
lel mounting of the probe frame in dependence to the robot
flange frame (RF RP = I).

As required by the first basic concept, all parameters that
will be estimated adaptively in the future should be included
in the system description. The system (14) does not include
LT TR . The sensitivity analysis (Sec. 3.3) confirms this state-
ment.However, the transformation LT TR ismainly of interest
for comparison with the PCM or with other calibration meth-
ods. The main focus is on the robot arm parameter dh and
these can be estimated (see Section 3.3).

At this stage of development of the approach it is partic-
ularly important to have good initial values for the various
parameters. Themost critical group are the ANNparameters.
We have shown in Section 3.2 that we need ANN parameters
that are better than 15% for this particular simulation setup
in order to estimate ANN parameters in a meaningful way.
This is even more relevant in view of measured data. Initial
values of the transformation parameters can be calculated
from the PCM. The dh parameters of the robot arm can be
initialised by the values used by the robot arm. The ANN
parameters are problematic because they differ greatly from
those in the PCM due to the sequential determination of the
robot’s position corrections. An iterative determination of the
PCM could provide better initial values.

In order to achieve the full functionality of the pro-
posed integrated approach, some steps still need to be
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Fig. 13 Result of the sensitivity analysis for the geometrical part (G) in dependence of variations in term

taken. First of all, the interactions between the geomet-
ric and non-geometric part must be checked. Second, the
robot parameters dhc inclusive the transformation parame-
ters LT TR, RF tP are to be estimated adaptively in the filter.

The ANN iteration according to scenario b (Sec. 3.2) is
applied in addition to the adaptive filtering. Thereby the full
functionality of the approach is achieved. At present, it is not
yet possible to predict how the determination of the trans-
formation and robot parameters will affect the estimation of
the ANN parameters and vice versa. Therefore, an impor-
tant instrument for controlling this interaction in future is the
stochastic model used in the EKF.

The fourth important step is the validation of the inte-
grated approach on real data when the full functionality of
the approach is achieved. A comparison with the PCM and
other robot calibration approaches is mandatory. In that step,
a procedure to reach appropriate initial values for the ANN
parameters needs to be developed.

5 Conclusion

We introduce a framework to integrate the geometric robot
arm model with the non-geometric one realised by an ANN.
In this way, we are pursuing the goal of an unbiased descrip-
tion of the robot arm system and thus achieve amore accurate
position description. The simultaneous estimation of geo-
metric and non-geometric error sources by a combination of
parametric and non-parametric approaches has not yet been
topic of robot arm calibration research. The usual approach is
to first model parametrically and in a second sequential step
to describe the residuals using non-parametric approaches
(model-observation mismatch approach).

In a preliminary study (Sec. 2.2.2), we show that a sequen-
tial procedure can lead to biased estimates. The calculation
of transformation parameters in a transformation procedure
and in the course of kinematic calibration (Sec. 2.2) are com-
pared. Only the estimation of the transformation parameters
in the extended approach leads to amore unbiased estimation
of the transformation and lever arm parameters. The similar-

ity of the “absorbed” parameters in the transformation and
lever arm determination with the linearly dependent param-
eters in the kinematic robot calibration is recognisable. An
extensionwith the dynamicmodelling of the robot arm is nec-
essary due to a too large model-observation mismatch. This
was shown in preliminary work on kinematic calibration (see
Section 2.2.3, [35]). As the literature ([10], [25]) shows, the
use of ML is a suitable tool for modelling dynamic effects.
All these findings lead to the formulation of the simultaneous
estimation of the geometric and non-geometric parameters of
the robot arm.

The EKF offers the option of adding a geometric/physical
model to the system description. The ANN is placed in
the observation equation. The combination of both com-
ponents takes place in the observation equation. There, the
predicted state (geometric part) and the transformed ANN
(non-geometric part) add up to the observation. The func-
tionality is verified using simulated data. The adjustment of
the non-geometric part by the ANN is not achieved by ran-
domised initial ANN parameters. ANN adaptation based on
onedata sample under slightly different conditions per update
step is not sufficient. For this reason, we pursue the idea of
an additional ANN iteration. The additional ANN iteration
is considered in the prediction step. This shows that the ini-
tial ANN parameters must not deviate too much. Otherwise,
no convergence is achieved. If the initial ANN parameters
deviate by 10% from the target values, around 32.5% of the
non-geometric component is learnt.

The developed integrated approach enables a separa-
tion between the ‘knowledge-strong’ (physical/geometrical
model) and the ‘knowledge weak or very complex’ (non-
parametric model) parts [11]. This differentiation achieves a
certain degree of interpretability and is therefore considered
to be another important advantage of the developed approach
in addition to the unbiased estimation.
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