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Kurzfassung

Existierende modellbasierte Software Fault Localization (SFL) Implementationen haben
starke Einschränkungen in ihren Fehlermodellen. Programmstellen, die als Fehlerursa-
che in Frage kommen, sind meistens auf einfache Teilmengen der Programmiersprache
ANSI-C beschränkt. Weiters sind aktuelle SFL Algorithmen nicht in der Lage minimale
Ergebnisse zu liefern, wenn mehrere Observations (z.B. Unit Tests) bearbeitet werden.
In Praxisanwendungen ist es jedoch üblich, dass eine große Anzahl an Observations
verfügbar ist, besonders durch den immer stärkeren Einsatz von Continuous Integration
Frameworks, etc.

Um die Einschränkungen von existierenden Algorithmen zu bewältigen, präsentieren wir
einen neuen SFL Ansatz für ANSI-C mit den folgenden zwei wichtigsten Verbesserungs-
merkmalen. Erstens wird ein klar definiertes Fehlermodell für ANSI-C eingeführt, welches
auch komplexe Instruktionen wie Pointers und Arrays umfasst. Zweitens ermöglicht uns
der Einsatz eines aktuellen Model Based Diagnosis (MBD) Algorithmus eine effizien-
te Verarbeitung von mehreren Observations und garantiert, dass die Ergebnismengen
minimal sind unter Berücksichtigung aller Observations.

Unsere Auswertungen anhand von konstruierten Programmen, sowie an TCAS - das am
häufigsten verwendete Benchmark Programm für SFL - zeigen wesentliche Verbesserungen
im Vergleich zu existierenden Methoden. Eine komplette Implementation unseres Ansatzes
ist verfügbar und wurde eingesetzt, um die experimentellen Ergebnisse zu erlangen.
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Abstract

State-of-the-art implementations of model-based Software Fault Localization (SFL) have
strong limitations in terms of their fault-model, with candidate locations mostly being
restricted to a simple subset of the programming language ANSI-C . Moreover, with
respect to multiple observations, recent SFL algorithms are unable to deliver minimal
result sets. However, with the emergence of continuous integration frameworks, etc., it is
common that a large number of observations are available in real world applications.

In order to tackle the limitations of existing algorithms we present a novel approach for
SFL on ANSI-C , which has the following two major contributions. First, we introduce
a well defined fault-model for ANSI-C which also addresses complex features of the
language including pointers and arrays. Second, our approach features efficient handling
of multiple observations by deploying a recent Model Based Diagnosis (MBD) algorithm
which guarantees that result sets are minimal with respect to all given observations.

We demonstrate significant improvements compared to existing methods on hand-crafted
examples as well as on TCAS - the most commonly used benchmark for SFL. A full
implementation of our approach is available and was used to derive the experimental
results.
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CHAPTER 1
Introduction

Manually finding bugs in programs with ever growing complexity is a tedious and
expensive task for developers. With the rapid advancements of automated verification
and testing in software, the discipline of fault localization has attracted a lot of research
attention in recent years. Given a bug, the goal is to automatically derive a subset of
locations in the program which are candidates for being altered in order to prevent the
bug. There is a broad spectrum of techniques tackling this task, though many popular
approaches depend on Model Based Diagnosis (MBD) [WGL+16].
State-of-the-art implementations of model-based Software Fault Localization (SFL) have
strong limitations in terms of their fault-model, with candidate locations mostly being
restricted to a simple subset of the programming language ANSI-C . For example, concepts
like pointers or arrays and the respective modeling for fault localization, i.e., their fault-
models, are not addressed in the literature. A single observation, i.e., a single configuration
of inputs or a trace leading to a bug, is processed by the majority of currently available
solutions. However, in the real world software industry it is common that a large number
of observations are available due to the deployment of continuous integration frameworks,
regression and unit testing, etc. [HKKT18]. With respect to multiple observations, recent
SFL algorithms are unable to deliver minimal result sets [IMWM19].
In order to tackle the limitations of existing algorithms, we present a novel approach for
SFL on ANSI-C which has the following two major contributions. First, we present a well
defined fault-model for ANSI-C which also addresses complex features of the language
including pointers and arrays. We demonstrate that significant result improvements are
achieved due to our enhanced fault-model both theoretically and practically. Second, our
approach features efficient handling of multiple observations by deploying the recent MBD
algorithm Hitting Set Dualization (HSD) [IMWM19]. In fact, our approach separates
the creation of the model from the process of finding diagnoses, by creating standard
instances of the MBD problem. Thus, any other MBD algorithm could also be deployed.
HSD guarantees that results are minimal with respect to multiple observations. We also
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demonstrate result improvements on SFL caused by the improved processing of multiple
observations both theoretically and practically.

A full implementation of our approach is available [Gra24] and the model creation part
builds upon the popular model-checker CBMC [CKL04]. We evaluated our tool on
hand-crafted examples, as well as on TCAS [HFGO94, DER05], which is the most fre-
quently used benchmark for SFL [WGL+16]. Our results from the latter show significant
improvements compared to related work. Due to the enhanced fault-model, our tool can
handle all TCAS versions, including those with array errors, as opposed to other existing
approaches.

This thesis is structured in the following way. We start by providing an overview of
state-of-the-art SFL - especially model-based - in Chapter 2. Then we define the required
preliminaries including notations and assumed knowledge in Chapter 3, followed by
the definition of our enhanced fault-model in Chapter 4, including theoretical examples
supporting each decision concerning the fault-model. Advantages of multiple observa-
tions in SFL are then elaborated in Chapter 5, followed by a brief presentation of our
implementation in Chapter 6. We present the final results of our evaluations in Chapter 7
and conclude the thesis in Chapter 8.
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CHAPTER 2
State-of-the-art

Since we use standard MBD algorithms for our fault localization, there are two main
branches of related work to be taken into account. First, we examine SFL literature with
the focus on model-based SFL on ANSI-C . Second, recent advances and algorithms for
MBD are considered.

2.1 SFL
A classification of SFL techniques was recently introduced in 2018 by analyzing 273
papers in the survey [ZLAA19]. It defines the following categories in descending order
by popularity: Spectrum-based, Miscellaneous, Statistical-based, Information retrieval,
Hybrid, Data-mining, Model Based Diagnosis, Mutation-based, Slice-based, Machine
learning and Program state-based. The most popular is Spectrum-based with 41% of
analyzed papers, whereas 4% of papers belong to model-based techniques. The previous
survey [WGL+16] with less focus on categorization, but more on common SFL issues,
examined 331 papers in 2016. They define similar categories, but 35% of their papers
are counted as Spectrum-based and 19% as model-based. Each category has different
advantages and disadvantages, but due to the otherwise too large scope, we solely focus
on model-based techniques in this thesis.

It was first shown in 1993 that model-based diagnosis can be applied to logic programs
by Console et al. [CFD93]. Wotowa et al. introduced a prototype in 2002 where a
model is created from Java programs (supporting a subset of the language) and the
original hitting set algorithm by Reiter [Rei87] is deployed to obtain diagnoses, i.e., fault
locations [WSM02]. Although it is Java based and we focus on ANSI-C in this thesis, we
mention it because it already implements the idea of separating the creation of the model
from the diagnosis algorithm. Alex Groce presented one of the first implementations
of model-based SFL for ANSI-C [Gro04]. It uses CBMC in its usual way to create a
model and obtain a counterexample (failed execution) to a program and its specification.
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2.1. SFL

It then computes a successful (not violating) execution trace in the model which is as
similar as possible to the failed execution, measured by an introduced distance metric.
The differences between the successful and the failed execution in the model is finally
used as explanation for the fault. The implementation is tested on 5 versions of the
TCAS benchmark. However, the process is not fully automated in the sense that the
user might have to add further constraints to improve results. For example, they add an
ASSUME constraint to the first TCAS version in order guide the tool to the real bug
location.
A popular model-based SFL approach for ANSI-C was introduced by Griesmayer et al.
[GSB06] and refined for better performance in [GSB10]. They also use CBMC to create a
model and obtain a counterexample (failed execution) to a program and its specification.
The program is then instrumented in order to create an altered model that (1) contains
the values of the counterexample (2) inverts the specification assertions that lead to the
counterexample and (3) introduces "abnormal variables" in order to havoc components,
as is common in MBD. The model checker is then run iteratively on the instrumented
program for generating assignments to the abnormal variables. These assignments then
serve as the fault locations. While decent results are obtained on the TCAS benchmark,
the runtimes are very high since it relies on multiple sequential calls to the model checker.
Most recently in 2019, a new SFL algorithm was introduced in [BFP19] which builds
upon the approach from Griesmayer et al. and tackles the performance issue. While the
underlying principle stays the same, individual tasks are created from each failed test
case which can run in parallel on multi-core CPUs. In addition, a whitelist of viable fault
locations is maintained and shared among tasks in order to reduce the runtime of new
tasks right away. The runtime is in line with state-of-the-art methods and the presented
results seem very good on the TCAS benchmarks. However, a single-fault assumption
is made which obviously does not hold in real world applications. The results are also
presented only for TCAS versions that solely have a single fault. Therefore, the approach
and its results are not comparable to related works which do not assume only single
faults.
In [JM10], Jose et al. introduce their SFL tool called BugAssist. It also uses CBMC to
create a model of a program and its specification. The model is split into components,
"healthy variables" are introduced for havocing components and a failing observation is
encoded. In fact, a direct instance of the MBD diagnosis problem is created without
referring to it as such in the paper. A MAX-SAT algorithm is then deployed to obtain
diagnoses by maximizing the healthy components such that consistency is restored. The
set of unhealthy components then serve as fault locations. BugAssist shows both good
runtime and results on the TCAS benchmarks compared to the state-of-the-art.
SNIPER is a recent model-based SFL tool for ANSI-C which supports multiple faults
by Lamraoui et al. [LN14, LN16]. It separates the creation of the model from finding
diagnoses and treats the latter as an MBD problem. They introduce a novel diagnosis
algorithm called DiagCombine (DC ) which handles the combination of results from
multiple observations (e.g. failed test cases). The result quality, as well as the runtime is
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2.2. MBD

evaluated on the TCAS benchmarks and is in line with BugAssist. While the result quality
in terms of Code Size Reduction (CSR) is slightly weaker than BugAssist, SNIPER has
far less misses, i.e., result sets where the actual fault location is not found.

The main takeaways from related SFL work concerning this thesis are the following. All
discussed existing model-based SFL approaches for ANSI-C focus on the algorithms for
finding diagnoses, but not on the fault-model and are therefore limited when it comes to
complex instructions like arrays or pointers. The behavior when such instructions are
declared faulty is unclear. Note that all mentioned papers evaluated their implementations
on the TCAS benchmark, but omit the versions containing array faults from their results
mostly without explanation. Thus, our thesis lays its focus especially on a well defined
fault-model for each instruction type. Further, SNIPER is the only existing approach
that works with multiple faults and handles multiple observations. However, it can
compute a potentially large number of redundant diagnoses, as is shown in [IMWM19].
We tackle this shortcoming in our thesis by deploying the MBD algorithm HSD which
delivers minimal result sets and shows performance improvements compared to DC . We
also conclude that SNIPER and BugAssist are the most related and relevant existing
tools and will compare their results against our tool in Chapter 7.

Note that very recently before the submission of this thesis, yet another SFL method
for ANSI-C was published, namely CFaults by Orvalho et al. [OJM24]. It handles
multiple observations and does not have a single fault assumption. They also compare
their results to BugAssist and SNIPER, which confirms that these are the most related
implementations. CFaults instruments the source code of input programs to encode
both boolean "healthy variables" (using if statements), as well as multiple observations
by creating replica blocks of the source code for each observation, sharing only the
healthy variables. Finally, a single MAX-SAT instance is obtained and used to get the
diagnoses. The results are claimed to be minimal with respect to multiple observations,
since all observations are already encoded in the single MAX-SAT instance. While the
instrumentation solely on the source code level using if statements has the advantage of
being independent from the model-checker, it has the drawback that complex instruction
fault-models (e.g. for arrays or pointers) on the modeling level are not possible. Also, the
fault-model is not addressed in detail. The implementation of CFaults is evaluated on
TCAS and C-Pack-IPAs (a new benchmark suite). However, the paper does not provide
detailed results for each TCAS version like other SFL papers, but only compares overall
performance and number of diagnoses in diagrams. This is another reason why our thesis
does not include comparisons to CFaults in the following sections, besides the fact that
we discovered it shortly before our submission.

2.2 MBD
MBD has a considerable dedicated amount of existing and ongoing research, for instance
[SKFP12, MSKC14, IMM17, IMWM19, CK20, KSL21, ZOTZ23], as well as various
applications in different domains. Some examples for practical implementations of MBD
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2.2. MBD

are listed in the introduction of [IMWM19] and include type error debugging [SSW03],
design debugging [SMV+07], debugging of web services [ACG+05], spreadsheet debugging
[JS16], axiom pinpointing in description logics [SHCvH07] and debugging of declarative
specifications [TCJ08].

Since our implementation uses the MBD algorithm as a blackbox, we elaborate only
briefly on the most related work on MBD. As mentioned in the previous Section 2.1, DC
is the MBD algorithm deployed in the SFL tool SNIPER [LN14, LN16]. To the best of
our knowledge it is the only MBD algorithm with multiple observations that also has
an implementation in SFL. DC combines results from individual observations with a
pairwise union approach so that fault locations cannot be discarded when it comes to
multiple faults. Discarding locations can happen with a naive intersection method as
we will show in Section 5.1. However, weaknesses of DC include that it can compute
a potentially large number of redundant diagnoses, as well as runtime issues, which is
shown in [IMWM19].

To tackle the issues of DC , the HSD algorithm is proposed in [IMWM19], building upon
[IMM17]. As suggested by its name - Hitting Set Dualization (HSD) - it relies on implicit
hitting set dualization, a well known principle in MBD theory already addressed in the
original seminal by Reiter [Rei87], followed by several others. The duality between an
explanation and a diagnosis - one being the minimal hitting set of the other - is used in the
algorithm to obtain diagnoses. By construction, it does not compute redundant diagnoses
and experimental results on the ISCAS85 benchmark suite show major performance
improvements compared to DC . Since HSD is the most recent MBD algorithm with
multiple observations that has an available implementation, we deploy it in our SFL tool.

Most recently, there have been further developments concerning MBD algorithms with
multiple observations. However, as no implementations of new algorithms are available,
we only mention them briefly in the following. Kalech et al. propose two algorithms for
solving MBD with multiple observations and compare them against each other using
ISCAS85 [KSL21]. However, the paper targets MBD in the medical domain and is
therefore based on different assumptions, e.g., sequential observations and intermittent
faults. Zhou et al. [ZOZT22] propose further improvements to HSD. They use the
principle of gate domination in order to compute cardinality minimal diagnoses efficiently.
If all outputs of one component A go into the inputs of another component B, then B
dominates A. Dominated and non-dominated components are grouped into hard clauses
and soft clauses, respectively. Performance improvements compared to HSD are shown
on the ISCAS85 benchmark. In the software domain, being dominated would mean that
a dominating component appears down on the control flow, for example, if a variable gets
overwritten with a new value down on one execution path. The effects of the algorithm
on software fault locations would be an interesting topic for future work. Furthermore,
Zhou et al. introduce further refinements to their approach in [ZOZZ22] and [ZOTZ23].
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CHAPTER 3
Preliminaries

It is required to define a formalism which is detailed enough to reason about the modeling
of the ANSI-C language, i.e., how different types of instructions are modeled, while
avoiding unnecessary complexity. Moreover, it should enable reasoning about fault-models,
complying with common notations for MBD [Rei87] [NPQW13] [MSKC14].

3.1 CBMC Encoding
A loop-free program P can be modeled in Static Single-Assignment (SSA) form which
we call trace formula TF (P ). The tool CBMC [CKL04] uses this approach to perform
Bounded Model Checking [BCCZ99] on ANSI-C programs. We build upon the formalism
introduced by CBMC [CKY03] and adapt it in order to enable our reasoning about
fault-models for MBD.

First a program P is preprocessed, such that it does not contain (1) Preprocessor
Directives, (2) expressions with side-effects (for example: a=b++;) or (3) any loops
except for While-Loops. Introducing a bound k > 0 allows us to unwind all While-Loops
and recursions up to k iterations such that we get a loop-free program. Function calls
can be replaced by the actual function body. The resulting simplified program can then
be transformed into SSA form - the trace formula TF (P ). The transformation to TF (P )
renames all variables by assigning them an index which is incremented at each writing
appearance of the variable, i.e., each time a new value is assigned.

In order to map each part of the trace formula to its originating program statement in
this thesis, we partition TF (P ) into fragments Fi. Each Fi corresponds to a program
statement in the original program P , where i denotes the line number as described in
Eq. (3.1).
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3.2. Instruction models

TF (P ) =
�

i∈Lines

Fi (3.1)

To give an example for generating a trace formula, let P1 be the program maxPlusOne
from Listing 3.1. Since it does not contain Preprocessor Directives, loops, etc., we can
transform it directly into TF (P1) as described in Eq. (3.2).

F3 = (g1 = a1 < b1) ∧ (g1 =⇒ result3 = result1) ∧ (¬g1 =⇒ result3 = result2)
F4 = (result1 = b1 + 1)
F6 = (result2 = a1 + 1)
F7 = (a1 < result3 ∧ b1 < result3)
TF (P1) = F3 ∧ F4 ∧ F6 ∧ F7.

(3.2)

Fragment F3 corresponds to the If-Then-Else statement of line 3. Besides the actual
condition, it contains two implications, modeling a path merge of the two branches. More
detailed, Guard Conditions g1 and ¬g1 would be assigned to lines 4 and 6, respectively.
At line 7, the paths of the If-Then-Else block would be merged, resolving the Guard
Conditions. Since this is caused by the If-Then-Else in line 3, we still assign the equations
to F3.

1 i n t maxPlusOne ( i n t a , i n t b) {
2 i n t r e s u l t ;
3 i f ( a < b)
4 r e s u l t = b+1;
5 e l s e
6 r e s u l t = a+1;
7 ASSERT( a , b < r e s u l t ) ;
8 re turn r e s u l t ;
9 }

Listing 3.1: Example: maxPlusOne

3.2 Instruction models
In order to reason about fault-models for each ANSI-C instruction type, we describe the
basic CBMC modeling into the trace-formula, i.e., the corresponding fragment Fi for an
instruction I. This enables us to argue about the necessary modifications of this basis
in Chapter 4 for the purpose of fault localization. Some details are not relevant for the
fault-model, for example, the exact pre-processing of expressions with side-effects. We
omit anything which is not relevant for our purpose, full details are available in [CKY03].

8



3.2. Instruction models

3.2.1 Assignments
Assignment are instructions, where an ANSI-C expression expr is assigned to a variable,
like in Listing 3.2. Here we assume that pointers or arrays are not contained in expr,
since we cover these cases specifically in Section 3.2.5 and Section 3.2.6. Otherwise, all
expressions within the syntax of ANSI-C are possible. Such expressions can be modeled
trivially in TF (P ) as an equality. The corresponding fragment F1 is described in Eq. (3.3),
assuming it is the kth writing appearance of variable x in TF (P ).

1 x = expr ;

Listing 3.2: General Assignment

F1 := (xk = expr) (3.3)

3.2.2 Assertions
A common way to add specification to a program is through assertions which can be
checked by test cases and are typically used when it comes to model-based verification
tools. A general assertion is listed in Listing 3.3 and the corresponding fragment F1
of TF (P ) is given in Eq. (3.4). Adding the negation of the asserted expression to
TF (P ) enables model-checkers like CBMC to verify whether a violating trace through
the program exists by checking the formula for satisfiability - for which various efficient
algorithms exist [GZ17]. If multiple assertions occur in TF (P ), say a1 . . . an, then they
would be re-arranged into a clause in order to check if one is violated (¬a1 ∨ · · · ∨ ¬an).

1 a s s e r t ( boo leanExpress ion ) ; // example : a s s e r t ( a !=1 && b>c )

Listing 3.3: General Assertion

F1 := ¬booleanExpression (3.4)

3.2.3 If-Then-Else
In a general If-Then-Else statement the condition is added as Guard Condition to
its respective block internally in CBMC to keep track of possibly nested If-Then-Else
statements. At the end of each If-Then-Else these Guard Conditions are then resolved as
we demonstrate in the following.

1 i f ( cond1 ) {
2 A; // guard : cond1
3 }
4 e l s e i f ( cond2 ) {
5 B; // guard : ( not cond1 ) and cond2
6 }
7 e l s e {
8 C; // guard : ( not cond1 ) and ( not cond2 )
9 }

Listing 3.4: General If-Then-Else

9



3.2. Instruction models

In Eq. (3.5) we describe the corresponding fragments in the trace formula for the general
If-Then-Else from Listing 3.4. The blocks A, B, C are evaluated recursively which we
explain in more detail after the general case. The fragment F1 contains the formula
Φ, which describes the path merge after the If-Then-Else block, resolving the Guard
Conditions Eq. (3.6). Informally, set V contains all variables x which appear with a
write-access in at least one fragment {F2, F5, F8} corresponding to the blocks {A, B, C}
Eq. (3.7). Depending on the Guard Conditions, we assign each variable x ∈ V with a
new index to its last indexed value xt of the respective block T ∈ {A, B, C}. If x is not
assigned in block T , then xt is the last value before the If-Then-Else Eq. (3.8).

F1 := (guard1 = cond1) ∧ Φ
F2 := TF (A)
F4 := (guard2 = cond2)
F5 := TF (B)
F8 := TF (C)

(3.5)

Φ :=
�

∀x∈V

xmax(a,b,c)+1 =

����
xa, guard1.

xb, ¬guard1 ∧ guard2.

xc, ¬guard1 ∧ ¬guard2.

(3.6)

V := {x : x gets written in one of {F2, F5, F8}} (3.7)

xt := last appearance of x in block T , T ∈ {A, B, C} (3.8)

As an example for the recursive evaluation of If-Then-Else blocks consider the program in
Listing 3.5. When encountering the nested If-Then-Else in line 2, its condition cond2 is
added as conjunction to the already existing guard1 from the outer If-Then-Else. At the
end of each If-Then-Else block, here line 4 and line 6, the respective Guard Conditions
can then be resolved analogously as described before.

1 i f ( cond1 ) {
2 i f ( cond2 ) {
3 A; // guard2 : guard1 and cond2
4 }
5 B; // guard1 : cond1
6 }

Listing 3.5: Recursive If-Then-Else

3.2.4 Loops
Since loops are unrolled, i.e., replaced by an If-Then-Else statement for every iteration,
the modeling of loops in TF (P ) is reduced to the recursive evaluation of If-Then-Else
described in Section 3.2.3. Every type of loop in ANSI-C can be re-written into an
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3.2. Instruction models

equivalent While-Loop. The code for a general While-Loop (see Listing 3.6) is unwound up
to depth k as described in Listing 3.7. The loop body A is copied k times and each copy is
guarded by the loop condition. Since the unwinding depth k must be chosen by the user,
the CBMC modeling introduces an unwinding assertion at the last iteration to check that
more iterations are impossible. If there are possible executions of the program with more
than k loop iterations the assertion would be violated when performing model-checking
and the user can increase the unwinding depth k.

1 whi le ( cond ) {
2 A;
3 }

Listing 3.6: General loop

1 i f ( cond ) {
2 A; // copy 1
3 i f ( cond ) {
4 A; // copy 2
5 . . .
6 i f ( cond ) {
7 A; // copy k
8 a s s e r t ( ! cond ) ; // Unwinding a s s e r t i o n
9 }

10 }
11 }
12 }

Listing 3.7: Loop Unwinding

3.2.5 Pointers
In order to deal with pointers, which are commonly used in ANSI-C , the CBMC modeling
introduces a function which de-references pointer occurrences in TF (P ). Since a lot of
cases have to be considered, we only show the essence by the means of an example, which
is relevant to argue about fault-models in Chapter 4. For full details we again refer to
[CKY03] .
Consider Listing 3.8 containing simple pointer operations with the according fragments
of TF (P ) in Eq. (3.9). An address is assigned to pointer p in each branch of the If-Then-
Else. Generally, a pointer variable is re-indexed (SSA index) at each assignment (write
operation to the pointer variable) like any other variable essentially recording all possible
addresses, as in F3 and F5. Every time a pointer needs to be de-referenced, each possible
address of the occurrence is encoded in TF (P ) by the de-reference function, as in F6.
Essentially, a case-split for each possible address is created and the formula always has
a default case. In this example, the pointer can have either the address of a or b. The
resulting formula checks whether (p = address(a)) or not, leaving (p = address(b)) as
the default case.
A memory model is maintained which maps each object, i.e., dynamically allocated mem-
ory and variables, to a memory segment with respective object size [CKY00]. Variables
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are introduced, describing whether memory objects are active or dead, e.g., whether
dynamic memory is (de-)allocated. Using this model, multiple assertions Π() are intro-
duced in TF (P ) at each pointer de-reference, verifying its safety, as in Eq. (3.10). These
Pointer Assertions include:

• Pointer is not null

• Pointer is not invalid (e.g. uninitialized)

• Pointer is not dead (e.g. de-allocated memory)

• Pointer in object bounds (e.g. incremented too often)

We omit the encoding of the memory model itself in TF (P ), since it cannot be assigned
to a fragment and is not required for the fault-model reasoning in Chapter 4. Further,
we do not encode the CBMC negation and re-arrangement of each single assertion in
TF (P ) as described in Section 3.2.2 for simplicity in this example.

1 i n t a , b , ∗p ;
2 i f ( a > b) {
3 p = &b ; }
4 e l s e {
5 p = &a ; }
6 ∗p = 5 ;

Listing 3.8: Pointer Example

F2 := (g1 = a1 > b1) ∧ (g1 =⇒ p3 = p1) ∧ (¬g1 =⇒ p3 = p2)
F3 := p1 = address(b1)
F5 := p2 = address(a1)
F6 := a2 = ((p3 = address(a1)) ? 5 : a1)∧
b2 = ((p3 = address(a1)) ? b1 : 5) ∧ Π(p3)

(3.9)

Π(p3) = in_bounds(p3) ∧ not_null(p3) ∧ not_dead(p3) ∧ . . . (3.10)

3.2.6 Arrays
Large or dynamic memory arrays are modeled as pointers in TF (P ) which we already
covered in Section 3.2.5. However, CBMC introduces a distinct modeling for constant
arrays up to a definable size. A general array with constant size c_size is defined in
Listing 3.9, with a write and read operation in lines 2 and 3, respectively. The array a is
re-indexed at every write in TF (P ) and a case split sets each array position k to the
assigned expression expr if the index i matches the position - or to its previous value
otherwise Eq. (3.11). When reading from an array, the value at the according position is
used in TF (P ) without modifying the array Eq. (3.12). Additionally, CBMC introduces

12



3.2. Instruction models

Bound Assertions B(array, index) in TF (P ) for every array operation, i.e., read and
write, in order to allow only valid indices inside the bounds given by the constant array size
Eq. (3.13). Again note that we do not encode the CBMC negation and re-arrangement
of each single assertion in TF (P ) as described in Section 3.2.2 for simplicity.

1 i n t i , j , a [ c_s ize ] , v ;
2 a [ i ] = exp ;
3 v = a [ j ] ;

Listing 3.9: Array Example

F2 := (
�

0≤k<c_size

a2[k] = (i1 = k ? exp : a1[k])) ∧ B(a1, i1) (3.11)

F3 := (v2 = a2[j1]) ∧ B(a2, j1) (3.12)

B(a1, i1) = i1 ≥ 0 ∧ i1 < c_size B(a2, j2) = j1 ≥ 0 ∧ j1 < c_size (3.13)
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CHAPTER 4
Fault-Model

As already mentioned in Chapter 2, existing model-based approaches for SFL on ANSI-C
mostly concentrate on the algorithms operating on the model and localizing the faults
rather than the modeling itself. However, this leaves uncertainty about the concrete
meaning of an instruction or program line that is declared faulty via the model. In order
to tackle this lack, we focus on a well defined fault-model. To derive our fault-model, we
examine the effects of different design decisions concerning the model for each ANSI-C
instruction type in Section 4.2.

Furthermore, the problem of finding faulty components in a model can be treated as an
instance of the general problem of Model Based Diagnosis (MBD) which has a considerable
dedicated amount of existing and ongoing research, as already elaborated in Chapter 2.
While some of the existing model-based ANSI-C fault localization implementations are
not direct instances of MBD (e.g. [Gro04]), some are so without referring to it as such (e.g.
[JM10]), and others explicitly treat the problem as an MBD instance (e.g. [LN14, LN16]).
We make use of the wide research and implementations of MBD for our fault localization
approach by defining our fault-model for ANSI-C such that it is exactly an instance of
the general MBD problem.

4.1 Model Based Diagnosis
The objective of MBD is to find diagnoses of a faulty system, the principal underlying
definitions are introduced in [Rei87] [dKW87]. Notations are similar but not always
identical in different MBD literature, hence we describe the notations used in this work
in the following. A system is split into n components as defined in Eq. (4.1).

COMPS := {c1, . . . cn} (4.1)

Each component can be declared healthy or unhealthy which is represented via a predicate
h(c), c ∈ COMPS. If the predicate h(c) is true, the component c it is declared healthy
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4.1. Model Based Diagnosis

[CK20]. In literature the opposite is also commonly used such that components are
declared abnormal via a predicate, for instance in the original work [Rei87]. In order to
avoid confusion we stick to healthy predicates. In Eq. (4.2) the system description SD is
formalized with fc as an encoded component c and the according healthy predicate h(c)
which enables or disables the component by the implication.

SD :=
�

c∈COMP S

(h(c) =⇒ fc) (4.2)

Typically a system has a number of observable inputs and outputs. A concrete assignment
of input and output values is described as an observation OBS. The diagnosis problem
arises when the system is faulty such that it is inconsistent with an observations when
all components are declared healthy as in Eq. (4.3).

SD ∧ OBS ∧
�

c∈COMP S

h(c) |= ⊥ (4.3)

A diagnosis is a set of components ∆, such that consistency is restored when all c ∈ ∆
are declared unhealthy as in Eq. (4.4). The task of MBD is to find such a diagnosis ∆
with minimal cardinality.

SD ∧ OBS ∧
�

c∈∆
¬h(c) ∧

�
c∈COMP S\∆

h(c) ⊭ ⊥ (4.4)

Note that we use the consistency-based diagnosis model where an unhealthy component
c can behave arbitrarily since its encoding fc is havoced by the implication in Eq. (4.2).
In MBD literature also abductive diagnosis models are described, where only defined
behavior modes are assigned to unhealthy components [CK20].
In Chapter 3 we showed how an ANSI-C program P can be modeled into a trace formula
TF (P ), which can be viewed as the system description of P . Both TF (P ) and the
system description SD from Eq. (4.2) can be encoded to conjunctive normal form (CNF).
For localizing faults in P using MBD algorithms we modify TF (P ) by arranging it in
components ci as defined in Eq. (4.1) and inserting according implications with healthy
predicates h(c), c ∈ COMPS analogously to Eq. (4.2). We call the modified trace formula
TFM (P ), corresponding to the MBD system description (SD := TFM (P )). Furthermore,
we define a component ci to refer to program line i in the original program P , thus the
granularity of our fault localization is based on source code lines. The fault-model, i.e.,
the meaning of a component ci (line i) which is declared faulty, is then defined according
to what parts of TFM (P ) are havoced with the healthy predicate h(ci). We argue about
the effects of our defined fault-model per instruction type in Section 4.2.
In software development, faults are commonly detected via failed test cases or counter-
examples provided by model checking tools. Both provide a concrete assignment of
inputs, as well as outputs that deviate from the asserted results. Such an assignment of
inputs together with expected results can trivially be encoded in TFM (P ) and used as
observation OBS. A general instance of the diagnosis problem Eq. (4.3) is then directly
described by the modified trace formula as it encodes the system description, including
healthy predicates per component, as well as observations which cause inconsistency.
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4.2 Instruction Fault-Models
As already mentioned, the fault-model for an instruction is defined based on its cor-
responding fragment in TFM (P ) and especially for which parts healthy predicates are
inserted. In our fault-model, some parts of TFM (P ) are in fact never havoced, i.e., not
affected by any healthy predicate. This applies for example to Assertions as described in
Section 4.2.2. However, the general MBD system description Eq. (4.2) is solely described
by components and every component is completely havoced by its assigned healthy
predicate. Therefore, we extend the definition by a rest part fr in Eq. (4.5) encoding all
parts of our model which must always stay valid.

SD := fr ∧
�

c∈COMP S

(h(c) =⇒ fc) (4.5)

Note that this is still a general MBD instance since fr can simply be treated as part of
OBS in the diagnosis problem Eq. (4.3). The fault-model TFM (P ) for each instruction
type is discussed in the following subsections analogously to the basic model of TF (P )
which was introduced in Section 3.2. We keep using the fragment notation also for
TFM (P ) in order to clearly map its parts to program statements in the original program
P .

4.2.1 Assignments
For a general assignment instruction (see Listing 4.1), it is again assumed that pointers
or arrays are not contained in expr, identically as in Section 3.2.1. The corresponding
fragment F1 is described in Eq. (4.6), assuming it is the kth writing appearance of variable
x in TFM (P ).

1 x = expr ;

Listing 4.1: General Assignment (copy of Listing 3.2)

F1 := h(c1) =⇒ (xk = expr) (4.6)

We use the h(c1) to havoc the complete assignment. If it is declared faulty (h(c1) = ⊥)
any value can be assigned to xk within its data type in order to restore consistency.

4.2.2 Assertions
Assertions in the program code are treated as specification and are therefore not havoced in
our fault-model. A general assertion is listed in Listing 4.2 and its corresponding fragment
F1 of TFM (P ) is given in Eq. (4.7). Since F1 is not affected by any healthy predicate, it
is part of the rest part fr in the context of our introduced system description SD from
Eq. (4.5). As opposed to the basic model from Section 3.2.2, the asserted expressions
must not be negated in TFM (P ) since the task of MBD is to restore consistency as
defined in Eq. (4.4), whereas the basic model uses the negation to find counter-examples
instead.
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1 a s s e r t ( boo leanExpress ion ) ; // example : a s s e r t ( a !=1 && b>c )
Listing 4.2: General Assertion (copy of Listing 3.3)

F1 := booleanExpression (4.7)

4.2.3 If-Then-Else
The recursive evaluation of TFM (P ) for a general If-Then-Else statement (see Listing 4.3)
is performed identically as for TF (P ) in Section 3.2.3. We extend TF (P ) from Eq. (3.5)
by inserting healthy predicates only for Guard assignments, in this case in the resulting
fragments F1 and F4 of TFM (P ) which are given in Eq. (4.8). There are no healthy
predicates added to the path merge Φ, leaving it unchanged as defined in Eq. (3.6) for
TF (P ). In our modified system description SD from Eq. (4.5), Φ is consequently added
to the rest part fr. We argue informally in Example 4.2.1 why this is a good choice.

1 i f ( cond1 ) {
2 A;
3 }
4 e l s e i f ( cond2 ) {
5 B;
6 }
7 e l s e {
8 C;
9 }

Listing 4.3: General If-Then-Else (copy of Listing 3.4)

F1 := (h(c1) =⇒ (guard1 = cond1)) ∧ Φ
F2 := TFM (A)
F4 := h(c4) =⇒ (guard2 = cond2)
F5 := TFM (B)
F8 := TFM (C)

(4.8)

Example 4.2.1. Line 1 is declared faulty h(c1) = ⊥. Then guard1 can be assigned
either ⊤ or ⊥. Since Φ must still hold as defined in Eq. (3.6) the MBD solver can only
choose between an execution path, i.e., either A or - depending on guard2 - B or C.
Now assume Φ would also be havoced. Since every variable occuring in one of {A, B, C}
is re-indexed and assigned in Φ (Eq. (3.6)), all such variables could then get any value
by the MBD solver. Therefore, the whole If-Then-Else block would simply be dropped,
losing the possibility of more detailed solutions.

Since loops are unrolled as described in Section 3.2.4 If-Then-Else is the only instruction
type left describing control flow. Hence, our fault-model generally leaves the control-flow
skeleton of the program intact, similarly as already proposed in [LN14] (Section 4.2). By
havocing only the assignment of the guards, informally an MBD solver can only change
taken paths in that skeleton for restoring consistency.
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4.2.4 Pointers
The basic modeling of pointers introduced in Section 3.2.5 is already complex as it involves
the de-reference function, as well as Pointer Assertions Π(). Thus, multiple possibilities
have to be considered for the fault-model. Since - to the best of our knowledge - pointers
are not specifically treated in existing ANSI-C fault localization literature, we elaborate
advantages and disadvantages for different approaches for the fault-model.

We distinguish between pointers appearing on the left or right hand side of an assignment
since in the first case a pointer or its referenced object is modified, while in the latter
case its value is only read. Based on the appearance, Pointer Assertions can be treated
differently in the fault-model. Furthermore, the de-reference function has to be considered
when inserting healthy variables. We summarize these possibilities in the following list
consisting of three independent design decisions (Decs. 1 to 3) and two possibilities
(a or b) for the fault-model are considered each.

1. Right hand side of assignment - Pointer Assertions

a) Havoc only expression Eq. (4.10)
b) Havoc expression and Pointer Assertions Eq. (4.11)

2. Left hand side of assignment - Pointer Assertions

a) Havoc only expression Eq. (4.12)
b) Havoc expression and Pointer Assertions Eq. (4.13)

3. Left hand side of assignment - De-reference

a) Havoc whole expression after de-reference Eq. (4.13)
b) Adapt De-reference function, havoc only resolved address Eq. (4.14)

All possibilities have a reference to an equation containing the corresponding fragment in
TFM (P ) based on the example from Listing 4.4. We use this example to describe the
construction of TFM (P ) since a general formal description would be too complex for
pointers. The pointer p gets assigned different addresses and it is de-referenced in lines
6 and 7. The corresponding fragments of TFM (P ) are described in Eqs. (4.9) to (4.14)
including different variants for lines 6 and 7. These are associated to the design decisions
(Decs. 1 to 3) through the equation references. Depending on the actual choice, the
corresponding variant is used. In the following we analyze advantages and disadvantages
for each decision.
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1 i n t a , b , c , ∗p ;
2 i f ( a > b) {
3 p = &b ; }
4 e l s e {
5 p = &a ; }
6 c = ∗p + a ;
7 ∗p = 5 ;

Listing 4.4: Fault-Model Pointer Example

F2 := (h(c2) =⇒ (g1 = a1 > b1)) ∧ (g1 =⇒ p3 = p1) ∧ (¬g1 =⇒ p3 = p2)
F3 := h(c3) =⇒ p1 = address(b1)
F5 := h(c5) =⇒ p2 = address(a1)

(4.9)

F6 := h(c6) =⇒ (c1 = (((p3 = address(a1)) ? a1 : b1) + a1)) ∧ Π(p3) (4.10)

F6 := h(c6) =⇒ (c1 = (((p3 = address(a1)) ? a1 : b1) + a1)) ∧ (h(c6) =⇒ Π(p3))
(4.11)

F7 := h(c7) =⇒ (a2 = ((p3 = address(a1)) ? 5 : a1))∧
h(c7) =⇒ (b2 = ((p3 = address(a1)) ? b1 : 5)) ∧ Π(p3)

(4.12)

F7 := h(c7) =⇒ (a2 = ((p3 = address(a1)) ? 5 : a1))∧
h(c7) =⇒ (b2 = ((p3 = address(a1)) ? b1 : 5)) ∧ h(c7) =⇒ Π(p3)

(4.13)

F7 := ((p3 = address(a1)) ? (h(c7) =⇒ a2 = 5) : (a2 = a1))∧
((p3 = address(a1)) ? (b2 = b1) : (h(c7) =⇒ b2 = 5)) ∧ h(c7) =⇒ Π(p3)

(4.14)

Dec. 1: Right hand side Pointer Assertions

If a line containing any type of assignment is declared faulty, our fault-model generally
havocs the RHS completely such that the written variable can have any value (as described
for general assignments Section 4.2.1 and Guard assignments Section 4.2.3). However,
choosing Dec. 1.a for the pointer model would keep Pointer Assertions intact, while the
pointer is not used anymore. Thus, the intuitive choice is Dec. 1.b havocing the whole
RHS including Pointer Assertions which is also the choice of our implementation (see
Table 6.1). In Example 4.2.2 a major advantage against Dec. 1.a is shown.

Example 4.2.2. Consider the program in Listing 4.5 which has an error in line 2 using
the uninitialized pointer c. Using the fault-model from Dec. 1.a we get the corresponding
fragment F2 of TFM (P ) described in Eq. (4.15). The Pointer Assertions Π(c1) for line
2 stay intact even if the line is declared faulty (h(c2) = ⊥). Further, Π(c1) = ⊥ since
the pointer c1 is always uninitialized. Even without any observation (OBS is empty),
the resulting MBD problem is unsolvable, since the conjunction with Π(c1) then always
evaluates to false. However, using the fault-model from Dec. 1.b as suggested intuitively,
the MBD problem is trivially solved by declaring line 2 unhealthy, since the Pointer
Assertions Π(c1) would also be havoced by h(c2) = ⊥ and any value could be assigned
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to variable a1 by the solver. Note that in this case there are no addresses assigned to
the pointer c, therefore the de-reference function of CBMC simply assumes it points to
some object c_object in the internal memory model of CBMC and since this internal
object is also uninitialized, the de-referenced value is unrestricted, i.e., any value could
be assigned to the target variable a1 by a solver. This is, however, not relevant for the
argument concerning the Pointer Assertions.

1 i n t a , ∗c ;
2 a = ∗c ;

Listing 4.5: Reading invalid pointer

F2 := h(c2) =⇒ (a1 = c_object1) ∧ Π(c1) (4.15)

Dec. 2: Left hand side Pointer Assertions

When a line is declared faulty where a pointer is de-referenced at a LHS assignment,
i.e., the referenced object is written, it is not intuitive whether Pointer Assertions
should be havoced (Dec. 2.b) or not (Dec. 2.a), since we generally do not modify
the variables or objects on the LHS of assignments, but the assigned value (RHS)
becomes nondeterministic. Still we can construct faulty programs where havocing Pointer
Assertions (Dec. 2.b) is superior, as shown in Example 4.2.3, by the same argument as
for Dec. 1.

Example 4.2.3. Consider the program in Listing 4.6 which has an error in line 2
writing to the de-referenced and uninitialized pointer c. Using the fault-model from
Dec. 2.a we get the corresponding fragment F2 of TFM (P ) described in Eq. (4.16).
The Pointer Assertions Π(c1) for line 2 stay intact even if the line is declared faulty
(h(c2) = ⊥). Further, Π(c1) = ⊥ since the pointer c1 is always uninitialized. Even without
any observation (OBS is empty), the resulting MBD problem is unsolvable, since the
conjunction with Π(c1) then always evaluates to false. However, using the fault-model
from Dec. 2.b, the MBD problem is trivially solved by declaring line 2 unhealthy, since
the Pointer Assertions Π(c1) would also be havoced by h(c2) = ⊥ and any value could
be assigned to the unrestricted, internal object c_object1 by the solver.

1 i n t a , ∗c ;
2 ∗c = a ;

Listing 4.6: Writing invalid pointer

F2 := h(c2) =⇒ (c_object1 = a1) ∧ Π(c1) (4.16)

Even though Example 4.2.3 shows that implementing Dec. 2.b enables localization of
invalid pointer errors on LHS assignments, it follows that such a faulty reported line
needs to be interpreted differently. In fact, it means that both the RHS or the pointer on
the LHS might be the cause of the error, as opposed to general assignments, where faults
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are only suggested in the RHS. In other words, reported solutions might abuse that by
dropping Pointer Assertions, writing to invalid or out-of-bounds addresses is "allowed",
as illustrated in Example 4.2.4.

Example 4.2.4. Consider Listing 4.7 where pointer p can either have the address of
variable a or an undefined address in line 4, due to the condition in line 2. Using
OBS1 := {a = b = c = 0} as input for a test case the condition of the If-Then-Else in
line 2 would be false so line 3 is not executed and pointer p stays uninitialized. This
could cause a segmentation fault at runtime and the test case would fail. Using the
fault-model from Dec. 2.b we get the corresponding fragments of TFM (P ) described in
Eq. (4.17). With OBS1 we clearly have Π(p3) = ⊥ since the pointer is uninitialized in
this case. Then line 4 is a valid solution to the resulting MBD problem (h(c4) = ⊥),
since (1) the Pointer Assertions Π(p3) are havoced and (2) the assertion encoded in F5
can be fulfilled since variable a would not even be modified by the assignment statement
in line 4. Instead, the CBMC -generated internal object p_object would be modified
which can be seen as an invalid memory address referenced by the uninitialized pointer p.
However, a correction of only the RHS of line 4 is not sufficient for repairing the program,
because the pointer p can still be invalid. The result has to be interpreted such that a
modification of the pointer on the LHS might also be required. On the contrary, if the
fault-model from Dec. 2.a is implemented the Pointer Assertions Π(p3) would not be
havoced by h(c4) = ⊥. Then solely line 4 is not a valid solution to the MBD problem,
since the Pointer Assertions would still be violated with p being uninitialized in obs1 and
the conjunction with Π(p3) in F4 would evaluate to false. A valid solution in this case
would be the pair of lines 2 and 4, suggesting to modify the condition in line 2 such that
p always gets initialized - in this case to the address of variable a. Also modifying the
RHS of line 4 is then necessary to ensure that the assertion encoded in F5 holds.

1 i n t ∗p , a , b , c ;
2 i f ( c ) {
3 p = &a ; }
4 ∗p = 5 ;
5 a s s e r t ( a == b) ;

Listing 4.7: MBD solution writing invalid pointer

F2 := (h(c2) =⇒ (guard1 = c1)) ∧ p3 = (guard1 ? p2 : p1)
F3 := h(c3) =⇒ (p2 = address(a1))
F4 := h(c4) =⇒ [a2 = ((p3 = address(a1)) ? 5 : a1)
∧ p_object2 = (p3 = address(a1)) ? p_object1 : 5) ∧ Π(p3)]
F5 := a2 = b1

(4.17)

Although we have elaborated how results have to be interpreted with care when it
comes to lines with LHS pointer de-references, we use Dec. 2.b in our implementation
(see Table 6.1). The fact that instances may become unsolvable with Dec. 2.a, as
demonstrated in Example 4.2.3, justifies the trade-off concerning the interpretation of
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results. It should also be noted that solely for the purpose of demonstration, Pointer
Assertions are introduced redundantly in TFM (P ) in both F6 and F7 in Eqs. (4.10)
to (4.14) corresponding to the unmodified pointer p in lines 6 and 7 in Listing 4.4. Our
implementation avoids this redundancy by generating Pointer Assertions only for the
first appearance of an unmodified pointer, which is also the default behavior of CBMC .
Therefore only the first line violating Pointer Assertions might be reported by an MBD
solver.

Furthermore, the user can choose whether Pointer Assertions are generated or not in
our implementation (see Section 6.2). If it is not the case, then all clauses with Pointer
Assertions Π() in TFM (P ) are omitted and Decs. 1 and 2 obsolete. This might be useful
if performance is an issue and thus traded off against possibly invalid pointer usages in
the results. We will show a significant difference in runtime caused by more assertions in
TFM (P ) in Section 7.3.3. Still, discarding Pointer Assertions can strongly affect results
or even cause empty results for faulty programs, as shown in Example 4.2.5.

Example 4.2.5. Consider the program in Listing 4.8, where we extended Listing 4.5
by an assertion. The uninitialized pointer c is de-referenced in line 2 and the resulting
value assigned to variable a which is then checked to have value 1 by the assertion in
line 3. A test case can trivially fail at runtime since the value of a is non-deterministic.
We assume there is no input to the program in this case, i.e., the observation OBS
is empty. The corresponding fragments of TFM (P ) are described in Eq. (4.18) with
Pointer Assertions being completely omitted in our fault-model. Then the resulting
MBD problem is immediately consistent with all components healthy, i.e., with an empty
diagnosis ∆ = ∅, since no address is assigned to pointer c so the de-reference function
of CBMC assumes it points to some object c_object in the internal memory model of
CBMC . Since this internal object is also uninitialized any value can be assigned to it
which is encoded by the unrestricted variable c_object1 in F2. Finally, the asserted value
1 can simply be assigned to variable a1 in F2 by a solver. Essentially, no lines are declared
faulty despite the obvious error in the program.

1 i n t a , ∗c ;
2 a = ∗c ;
3 a s s e r t ( a == 1) ;

Listing 4.8: Reading invalid pointer

F2 := h(c2) =⇒ (a1 = c_object1)
F3 := a1 = 1

(4.18)

Dec. 3: Left hand side De-reference

In Eq. (4.13) from Dec. 3.a a healthy variable is introduced in TFM (P ) after the de-
reference is done which simply havocs the whole expression generated by the de-reference
function. This approach might be considered the intuitive choice since it does not require
to modify the basic instruction modeling TF (P ), but only adding healthy variables on top

22



4.2. Instruction Fault-Models

of it. However, when declared unhealthy, all objects which could be referenced up to the
point of the de-reference are havoced by construction (Eq. (4.13)). We can demonstrate
that this behavior can cause misleading diagnoses as shown in Example 4.2.6. In order
to avoid this problem, we suggest the fault-model Eq. (4.14) from Dec. 3.b where the
de-reference function is modified and healthy variables are introduced such that only the
referenced object is havoced, enabling a more precise fault localization.

Example 4.2.6. Consider again Listing 4.4 where pointer p can have either the address
of variable a or b in line 7, therefore the RHS value 5 is assigned either to a or b.
Assume we add the assertion assert(a < 0) in line 8 as specification and the observation
OBS1 = {a = 1, b = −1, } as input. With OBS1, the condition in line 2 then evaluates
to true and the address of b is assigned to p in line 3. In line 7, p is de-referenced on
the LHS and the value 5 is thus assigned to variable b. The introduced assertion does
not hold, since variable a = 1 is not modified. Now assume we use the fault-model of
Dec. 3.a with the corresponding fragment F7 of TFM (P ) given in Eq. (4.13). Then line
7 is a valid solution to the resulting MBD problem since all possible variables for p -
including a - are havoced and a solver could assign a = −1 to fulfill the assertion in line
8. However, it is obvious that the error cannot be corrected by changing the RHS of line
7, given that p cannot have the address of a with OBS1. Hence, this solution might be
considered misleading or even incorrect. On the contrary, say we use the fault-model of
Dec. 3.b with the corresponding fragment F7 of TFM (P ) given in Eq. (4.14). Then line
7 is not a solution to the resulting MBD problem since the value of variable a would not
be havoced with the modified de-reference function. An example for a valid solution in
this case would be the pair of lines 2 and 7, suggesting to modify the condition in line 2
such that the address of a is assigned to pointer p in line 5. Changing the RHS of line 7
to a negative number is then enough to fulfill the assertion in line 8 in the model, as well
as in the actual program.

While we have shown that is beneficial to implement Dec. 3.b, note that our implementa-
tion currently only utilizes Dec. 3.a in general, because of the significant implementation
effort of modifying the de-reference process (see Table 6.1).

4.2.5 Arrays
When it comes to the fault-model of arrays, similar design decisions as for pointers
arise and it is intuitive to treat them analogously. As mentioned in Section 3.2.6, large
or dynamic arrays are in fact modeled as pointers, the fault-model from Section 4.2.4
therefore applies directly. But also for small arrays we show that the same arguments can
be made, even though the modeling in TFM (P ) is not identical. In fact this section is
organized similar as for pointers in Section 4.2.4, beginning with listing design decisions,
followed by describing the corresponding fault-model based on an example. Then our
choices are again supported by similar arguments to those which have been constructed for
pointers. The main differences compared to pointers are (1) the index case split instead
of the de-reference function and (2) Bound Assertions instead of Pointer Assertions.
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Again we distinguish between arrays appearing on the left or right hand side of an
assignment since in the first case an array is modified, while in the latter case only some
value of the array is read. Based on the appearance, Bound Assertions can be treated
differently in the fault-model. Furthermore, the case split of indices has to be considered
when inserting healthy variables for LHS appearances. We summarize these possibilities
in the following list consisting of three independent design decisions (Decs. 4 to 6)
and two possibilities (a or b) for the fault-model are considered each. Note that the
decisions coincide with Decs. 1 to 3 from pointers.

4. Right hand side of assignment - Bound Assertions

a) Havoc only expression Eq. (4.19)
b) Havoc expression and Bound Assertions Eq. (4.20)

5. Left hand side of assignment - Bound Assertions

a) Havoc only expression Eq. (4.21)
b) Havoc expression and Bound Assertions Eq. (4.22)

6. Left hand side of assignment - index case split

a) Havoc whole expression after index case split Eq. (4.21)
b) Adapt case splitting procedure, havoc only the actual index in array Eq. (4.22)

All possibilities have a reference to an equation containing the corresponding fragment
in TFM (P ) based on the example Listing 4.9. This example is used to describe the
construction of TFM (P ) since a general formal description would be too complex for
arrays. We assume the constant size c_size is small enough that the array modeling
applies (recall that large and dynamic arrays are in fact modeled as pointers). In line
2, a random index j is read from a and in line 3 a random index i is written. The
corresponding fragments in TFM (P ) for the whole program are described in Eqs. (4.19)
to (4.23), where the fragments F2 and F3 are defined twice. These are associated to
the design decisions (Decs. 4 to 6) through the equation references. Depending on the
actual choice, the corresponding variant of F2 and F3 is used in the fault-model. In the
following we analyze advantages and disadvantages for each decision.

1 i n t i , j , a [ c_s ize ] , v ;
2 v = a [ j ] ;
3 a [ i ] = exp ;

Listing 4.9: Array Example - Fault-Model

F2 := (h(c2) =⇒ (v2 = a1[j1])) ∧ B(a1, j1) (4.19)

F2 := (h(c2) =⇒ (v2 = a1[j1])) ∧ (h(c2) =⇒ B(a1, j1)) (4.20)
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F3 := h(c3) =⇒ (
�

0≤k<c_size

a2[k] = (i1 = k ? exp : a1[k])) ∧ B(a1, i1) (4.21)

F3 :=
�

0≤k<c_size

(i1 = k) ? (h(c3) =⇒ a2[k] = exp) : (a2[k] = a1[k])

∧ h(c3) =⇒ B(a1, i1)
(4.22)

B(a1, j1) = j1 ≥ 0 ∧ j1 < c_size B(a1, i1) = i1 ≥ 0 ∧ i1 < c_size (4.23)

Dec. 4: Right hand side Bound Assertions
If a line with a RHS array appearance, i.e., read operation on an array, is declared faulty,
it is intuitive to havoc the whole RHS including Bound Assertions, similar as for pointers.
In Example 4.2.7 we show that this is indeed also a good choice for arrays.

Example 4.2.7. Consider the program in Listing 4.10 which reads from the array a
with invalid index 3 in line 2. Using the fault-model from Dec. 4.a, the Bound Assertions
B(a1, 3) for line 2 would stay intact in TFM (P ) even if the line is declared faulty as
described in Eq. (4.24). Even if we assume there is no input to the program in this case,
i.e., the observation OBS is empty, the resulting MBD problem is unsolvable, since the
Bound Assertions are always violated. However, using the fault-model from Dec. 4.b as
suggested intuitively, the MBD problem is trivially solved by declaring line 2 unhealthy,
since then the Bound Assertions B(a1, 3) would also be havoced by h(c2) = ⊥ and any
value can then be assigned to variable x1 by the solver.

1 i n t a [ 2 ] , x ;
2 x = a [ 3 ] ;

Listing 4.10: Reading invalid index

F2 := (h(c2) =⇒ (x1 = a1[3])) ∧ B(a1, 3)
B(a1, 3) = 3 ≥ 0 ∧ 3 < 2

(4.24)

Dec. 5: Left hand side Bound Assertions
Even though it might not be as intuitive whether Bound Assertions should be havoced
or not for LHS array appearances, i.e., writing to an array, we can show advantages for
havocing them (Dec. 5.b) with the same arguments as for LHS pointer de-references.
In Example 4.2.8 we show the problem which arises if Bound Assertions would not be
havoced (Dec. 5.a).

Example 4.2.8. Consider the program in Listing 4.11 which writes to the array a with
invalid index 3 in line 2. Using the fault-model from Dec. 5.a, the Bound Assertions
B(a1, 3) for line 2 would stay intact in TFM (P ) even if the line is declared faulty as
described in Eq. (4.25). Even if we assume there is no input to the program in this case,
i.e., the observation OBS is empty, the resulting MBD problem is unsolvable, since the
Bound Assertions B(a1, 3) are always violated. However, using the fault-model from
Dec. 5.b, the MBD problem is trivially solved by declaring line 2 unhealthy, since then
the Bound Assertions B(a1, 3) would also be havoced by h(c2) = ⊥.
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1 i n t a [ 2 ]
2 a [ 3 ] = 4 ;

Listing 4.11: Writing to an invalid index

F2 := h(c2) =⇒ (
�

0≤k<2
a2[k] = (k = 3 ? 4 : a1[k])) ∧ B(a1, 3)

B(a1, 3) = 3 ≥ 0 ∧ 3 < 2
(4.25)

Note that - similar as for LHS pointer de-references - reported lines with a LHS array
access need to be interpreted such that not only the RHS but also the array access could
be the reason for the error. If a solver declares such a line faulty, the array is not modified
at all in the model, since the used index does not match any valid index. This can be
seen in Eq. (4.25), where the invalid index 3 is used for a write operation to array a.
The case split then assigns the array a2[k] at all indices k to the previous value a1[k].
However, for lines declared faulty which contain valid write operations to an array, a
solver can choose any value for the RHS, including the previous array value such that the
array would not be modified. Thus, the behavior cannot be seen as a disadvantage. Our
implementation uses Dec. 5.b in order to avoid the problem elaborated in Example 4.2.8
(see Table 6.1). Furthermore, note that our implementation generates redundant Bound
Assertions only for the first appearance, also similar to Pointer Assertions. For example,
in Listing 4.12 our implementation would create Bound Assertions B(a1, i1) only for line
2, since the array accesses in lines 2 and 3 are identical with variable i being unchanged.

1 i n t a [ 2 ] , x , y , z , i ;
2 a [ i ] = x ;
3 y = a [ i ] + z ;

Listing 4.12: Redundant Bound Checks

Like Pointer Assertions, our implementation lets users choose whether Bound Assertions
are generated at all with similar effects (see Section 6.2). If they are omitted, then all
clauses with Bound Assertions B() in TFM (P ) are dropped and Decs. 4 and 5 obsolete.
Less assertions cause better performance at the cost of result quality due to possible
invalid array accesses. In Example 4.2.9 we show how wrong results can occur when
discarding Bound Assertions.

Example 4.2.9. Consider again Listing 4.10, where the invalid index 3 is read from
array a of size 2 and the resulting value assigned to variable x. Assume we add the
assertion assert(x = 2) in line 3. Further, consider the array a as input, x as output and
the observation OBS = {a[0] = 2, a[1] = 2, x = −1}, which could be a failed test case at
runtime, since the access a[3] in line 2 is non-deterministic. The corresponding fragments
of TFM (P ) are described in Eq. (4.26) with Bound Assertions being completely omitted
in our fault-model. The resulting MBD problem is then immediately consistent with all
components healthy, i.e., with an empty diagnosis ∆ = ∅. since an array access with
an invalid index - here a1[3] - is also non-deterministic in the model and therefore the
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4.2. Instruction Fault-Models

asserted value 2 can simply be assigned to variable x1 by a solver. Essentially, no lines
are declared faulty despite the obvious error in the program.

F2 := (h(c2) =⇒ (x1 = a1[3]))
F3 := x1 = 2

(4.26)

Dec. 3: Left hand side index case-split

The index case-split of LHS array appearances (write-access) can be treated analogously
as the de-reference function for LHS pointer appearances. In Eq. (4.21) from Dec. 6.a a
healthy variable is introduced in TFM (P ) after the array index case-split is done which
simply havocs the whole generated expression. This approach might be considered the
intuitive choice since it does not require a modification of the basic instruction modeling
TF (P ), but only adds healthy variables on top of it. However, when declared unhealthy,
the whole array content (every index) is havoced by construction (Eq. (4.21)). We can
prove that this behavior can cause misleading diagnoses as shown in Example 4.2.10.
In order to avoid this problem, we suggest the fault-model Eq. (4.22) from Dec. 6.b
where the array index case-split function is modified such that healthy variables are
introduced to only havoc the array content at the current index, enabling a more precise
fault localization.

Example 4.2.10. Consider program P from Listing 4.13, where the value of variable x
is assigned to array a at index i in line 3 and an assertion checks the value of a[1] = −1
in line 4. Assume all variables declared in line 1 - except i - are observable and let the
observation OBS = {a[0] = 1, a[1] = 1, x = 0}. The array a is only modified at line 3
and since i = 0 from line 2, it is only modified at index 0 in this case. The assertion in
line 4 does not hold, since a[1] = 1 is never modified. Assuming we use the fault-model of
Dec. 6.a the resulting fragments of TFM (P ) are described in Eq. (4.27). Then declaring
line 3 faulty (h(c3) = ⊥) is a valid solution to the resulting MBD problem since the whole
array content - at all indices - is havoced in TFM (P ), including a2[1] and a solver could
assign a2[1] = −1 to fulfill the assertion in line 4. However, it is obvious that the error
cannot be corrected by changing the RHS of line 3, even though Bound Assertions are
not violated, given that with line 2 still healthy only index 0 of the array a is modified.
Thus, this solution might be considered misleading or incorrect. Now suppose on the
contrary that we use the fault-model of Dec. 6.b. Then solely line 3 would not be a valid
solution to the resulting MBD problem since a2[1] would not be havoced by h(c3) = ⊥
with the modified index case-split. A valid solution in this case would be the pair of lines
2 and 3 suggesting to assign value 1 to the index variable i1 in F2 (line 2) in addition to
modifying the RHS of line 3 so that the asserted value −1 is assigned to a2[1].
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1 i n t i , a [ 2 ] , x ;
2 i =0;
3 a [ i ] = x ;
4 a s s e r t ( a[1]==−1) ;

Listing 4.13: Example: Array index case-split

F2 := (h(c2) =⇒ (i1 = 0))
F3 := [h(c3) =⇒

�
0≤k<2

a2[k] = (k = i1 ? x1 : a1[k])] ∧ [h(c3) =⇒ B(a1, i1)]

F4 := a2[1] = −1

(4.27)

While we have shown that it is beneficial to implement Dec. 6.b, note that our implemen-
tation currently only utilizes Dec. 6.a in general, because of the significant implementation
effort of modifying the array case-splitting process, similarly as for the pointer de-reference
process (see also Table 6.1).
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CHAPTER 5
Multiple Observations

Testing and verification is crucial in the software industry and the automation of such
processes is an ever growing discipline. Various methods and tools like continuous
integration and deployment (CI/CD) or regression and unit testing are increasing in
popularity [HKKT18]. As a result, a large number of test cases (observations) are typical,
leading to possibly many failed test cases. The question arises how multiple observations
can be processed efficiently when it comes to SFL. As mentioned in Section 2.2, the MBD
algorithm Hitting Set Dualization (HSD) from [IMWM19] processes multiple observations
and its effectiveness is shown on the domain of hardware circuits, but not on software yet.
Our fault-model introduced in Chapter 4 allows us to use HSD directly as a black-box in
order to perform SFL with multiple observations, immediately leveraging all advantages
of the algorithm.

In the following, we extend the definition of the diagnosis problem from Eq. (4.3), as well as
the definition of a diagnosis from Eq. (4.4) for multiple observations {OBS1, . . . , OBSM }
step by step, similarly as in [IMWM19]. The goal is to also describe a diagnosis for multiple
observations in a single equation. Each individual observation OBSi is inconsistent with
the system description SD when all components are declared healthy. In Eq. (5.1) we
simply add index i to OBS compared to the original Eq. (4.3).

SD ∧ OBSi ∧
�

c∈COMP S

h(c) |= ⊥ (5.1)

A diagnosis ∆ can have different variable assignments in SD when it comes to different
observations. Hence, the system description SD (in our case given by TFM (P )) is copied
for each observation so that only the healthy variables h(c) are shared, but all other
variables are replicated. The replication can be achieved by simply adding an index i to all
variables in SD. The resulting equation for a diagnosis ∆ with a single observation OBSi

is described in Eq. (5.2) where only index i is added to both SD and OBS compared to
the original definition of a diagnosis Eq. (4.4).
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5.1. Multiple observations in SFL

SDi ∧ OBSi ∧
�

c∈∆
¬h(c) ∧

�
c∈COMP S\∆

h(c) ⊭ ⊥ (5.2)

The replication of SD finally allows us to describe a diagnosis ∆ with multiple
observations in a single equation - Eq. (5.3). Informally, a diagnosis ∆ has to make the
system SD consistent with all observations {OBS1, . . . , OBSm}, when all components
c ∈ ∆ are declared unhealthy. The task of MBD with multiple observations is to find
and list such diagnoses ∆ with minimal cardinality [IMWM19]. Applied to our domain
of SFL we list cardinality-minimal sets of repair-locations where each set makes a faulty
program P consistent with all given observations (e.g. test-cases).

�
1≤i≤m

(SDi ∧ OBSi) ∧
�

c∈∆
¬h(c) ∧

�
c∈COMP S\∆

h(c) ⊭ ⊥ (5.3)

5.1 Multiple observations in SFL
Existing model-based SFL tools process only single observations and then use different
methods to combine the results. BugAssist joins each individual result set simply by union
in combination with a ranking based on how often a solution appears. The ranking can be
problematic since it is strongly depending on the observations. SNIPER processes each
observation individually followed by the algorithm DC which computes pairwise unions
of the results. This approach can still lead to diagnoses which are not minimal as shown
in [IMWM19]. In [BFP19] - which is based on the Griesmayer method [GSB06, GSB10]
- the individual observation results are conjoined by intersection. However, we show in
the following that both principle combination methods - union and intersection - are
disadvantageous compared to using an MBD algorithm like HSD which processes multiple
observations directly and only computes minimal diagnoses.

Intersecting results in fact becomes futile whenever multiple faults are present on different
paths in a program. Thus, implementations which use this method only work with the
assumption of a single fault in the input program - which is also the case in [BFP19].
However, this assumption obviously cannot be made in real-world applications. In
Example 5.1.1 we show that the intersection approach can even lead to empty solutions,
since the result sets might be disjoint. Furthermore, the example shows that multiple
faults on different paths cannot even be detected if only a single observation would be
used.

Example 5.1.1. Recall the program from Listing 3.1 which has two inputs a and
b and calculates max(a, b) + 1 in the variable result. A modified version is given in
Listing 5.1 with two introduced bugs in line 4 and 6, removing the addition of value
1 in the expression on each right-hand-side. The corresponding model in TFM (P ) is
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given in Eq. (5.4). Consider the two failing observations OBS1 = {a = 1, b = 2} and
OBS2 = {a = 2, b = 1}. Suppose we use an MBD solver which processes only single
observations. Then the optimal solution is {c4} with OBS1 and {c6} with OBS2. Since
these two solutions are disjoint, the intersection would yield an empty set, whereas the
union correctly describes both introduced bugs. On the contrary, suppose we use an
MBD solver which processes multiple observations. Then the optimal solution when
processing both OBS1 and OBS2 is {c4, c6} right away.

1 i n t maxPlusOne ( i n t a , i n t b) {
2 i n t r e s u l t ;
3 i f ( a < b)
4 r e s u l t = b ; // Bug : miss ing "+ 1"
5 e l s e
6 r e s u l t = a ; // Bug : miss ing "+ 1"
7 ASSERT( a , b < r e s u l t ) ;
8 re turn r e s u l t ;
9 }

Listing 5.1: Example: Multiple bugs in maxPlusOne

On the other hand, we can at least ensure that no potential repair-location is missing when
combining results with the union approach, since by construction no repair-location from
any individual observation is dropped. However, taking the union of individual results
leads to non-minimal solutions, i.e., the precision of the results suffers. In Example 5.1.2
we show that calculating the naive union causes that a set of all 3 possible repair-locations
is obtained, whereas the minimal diagnosis - which can be obtained by an MBD algorithm
with multiple observations like HSD - consists only of the correct single repair-location.
This also shows that the intuitive guess - that more observations can enable more precise
results - is correct.

F3 = (h(c3) =⇒ (g1 = a1 < b1)) ∧ (g1 =⇒ result3 = result1) ∧ (¬g1 =⇒ result3 = result2)
F4 = h(c4) =⇒ (result1 = b1)
F6 = h(c6) =⇒ (result2 = a1)
F7 = (a1 < result3 ∧ b1 < result3)
TFM (P ) = F3 ∧ F4 ∧ F6 ∧ F7

(5.4)

Example 5.1.2. Another modified version of the program from Listing 3.1 is given
in Listing 5.2 with an introduced bug in the condition in line 3, exchanging the less-
than with a greater-than operator. The corresponding model in TFM (P ) is similar as
Eq. (5.4) only with the comparison operator in F3 exchanged and the addition of value 1
added in F4 and F6. Consider the two failing observations OBS1 = {a = 1, b = 2} and
OBS2 = {a = 2, b = 1}. Suppose we use an MBD solver which processes only single
observations. Then the optimal solutions are {{c3}, {c6}} with OBS1 and {{c3}, {c4}}
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with OBS2. Taking the union of all single solutions from both observations would result
in all possible repair locations {c3, c4, c6}. On the contrary, suppose we use an MBD
solver which processes multiple observations. Then the optimal solution when processing
both OBS1 and OBS2 is {c3}.

1 i n t maxPlusOne ( i n t a , i n t b) {
2 i n t r e s u l t ;
3 i f ( a > b) // Bug : wrong operator
4 r e s u l t = b+1;
5 e l s e
6 r e s u l t = a+1;
7 ASSERT( a , b < r e s u l t ) ;
8 re turn r e s u l t ;
9 }

Listing 5.2: Example: Precision maxPlusOne

In Example 5.1.2 we used a naive union over all repair-locations. Note that also the
pairwise-union approach from [LN14, LN16] computes non-minimal diagnoses and can
have exponential runtimes, as shown in [IMWM19]. To sum up, we argued that combining
results from individually processed observations through existing methods like (pairwise)
union and intersection is disadvantageous compared to an MBD algorithm which calculates
minimal diagnoses with multiple observations. As already mentioned in Section 2.2,
this is achieved in the algorithm HSD from [IMWM19]. It uses an "Implicit Hitting
Set Dualization" approach to generate minimal diagnoses. The paper also demonstrates
significant runtime improvements compared to the combination algorithm from [LN14,
LN16] which is demonstrated on hardware circuits with injected faults - the ISCAS85
benchmark suite.
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CHAPTER 6
Implementation details

An overview of our fault localization setup is illustrated in Figure 6.1. As already
mentioned we directly deploy the HSD algorithm from [IMWM19] as a black-box to
perform fault localization together with the fault-model introduced in Chapter 4. A
C++ implementation of HSD is available as open-source software [hsd19]. It accepts
MBD instances as described in Eq. (5.1) in an encoding based on the WCNF format for
MaxSAT [wcn19], which is similar to the well-known DIMACS CNF format often used
by SAT-Solvers. Such instances consist of (1) a list of observations, (2) a list of healthy
variables (components) and (3) the system description with already introduced healthy
variable implications.

We implemented a command-line option --wcnf for CBMC in order to generate such
instances instead of the default behavior of CBMC . It accepts ANSI-C programs as input
where observations can be specified in ANSI-C syntax with CBMC style directives as
demonstrated in Listing 6.1. The input program gets transformed into our fault-model
TFM (P ) from Chapter 4 which directly serves as the system description with healthy
variables (3).

Figure 6.1: Implementation Overview
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1 __CPROVER_observation_begin ( ) ;
2 a=3; b=4; expectedOut =5; // Observat ion 1
3 __CPROVER_observation_end ( ) ;
4 __CPROVER_observation_begin ( ) ;
5 a=−2; b=0; expectedOut =1; // Observat ion 2
6 __CPROVER_observation_end ( ) ;
7 __CPROVER_assert( func t i on InTes t ( a , b ) == expectedOut , " e r r o r " ) ;

Listing 6.1: Observation specification

During the transformation, the list of healthy variables is recorded (2) including a
mapping to line numbers in the program. Moreover, the observations (1) are parsed
and mapped to the corresponding variables in the target encoding. The generated MBD
instance is written to a .wcnf file using the standard CBMC argument --outfile
which is in turn used as input for the MBD solver.

A wrapper script handles the execution of both CBMC and HSD. It automatically
maps reported solutions - consisting of sets of unhealthy components (healthy variable
identifiers) - back to line numbers in the original program. The wrapper script is
implemented in Python and accepts programs with observations (see Listing 6.1) as input
and its output directly contains the line numbers corresponding to fault locations. Since
the transformation of a program to an MBD instance is completely separated from the
actual MBD solver, it would also be possible to use other MBD algorithms in future
works, if the WCNF format is accepted as input.

6.1 MBD result processing
The MBD solver HSD may deliver multiple result sets of different cardinality. For example,
assume we have a faulty program with 10 lines. Then HSD might report multiple solution
sets which can fix the bug, for example: {{3, 5}, {5, 7}, {1, 2, 4}, {1, 4, 8}}. Our tool uses
only the sets with minimal cardinality since we are interested in the optimal solution
and in listing as few line numbers as possible. However, we take the union of all minimal-
cardinality solution sets, such that no optimal solution is discarded. In the example, our
tool would therefore report the lines {3, 5, 7}.

6.2 Fault-Model options (CBMC)
As already mentioned, we implemented the command-line option --wcnf in order to
get CBMC into our fault-modeling mode. Since the CBMC code is available on GitHub
[cbm24b], we created a fork of the repository which is publicly available [cbm24a]. Our
code modifications and additions are encapsulated such that (1) the default behavior of
CBMC is unchanged when the --wcnf option is not used and (2) new releases of the
base code can be merged effortlessly with our implementation. In Chapter 4 we discussed
various design decisions and options for the fault-model. In the following we summarize
which choices are fixed in our implementation with CBMC and which can be chosen by
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6.2. Fault-Model options (CBMC)

Decision Implemented Description Preferred Choice
Dec. 1 Dec. 1.b Havoc RHS Pointer Assertions Y
Dec. 2 Dec. 2.b Havoc LHS Pointer Assertions Y
Dec. 3 Dec. 3.a De-reference function not modified N
Dec. 4 Dec. 4.b Havoc RHS Bound Assertions Y
Dec. 5 Dec. 5.b Havoc LHS Bound Assertions Y
Dec. 6 Dec. 6.a Index Case-Split not modified N

Table 6.1: Implemented Design Decisions

the user. Table 6.1 contains the implemented design decisions for Pointers and Arrays.
Due to the implementation effort, we did not implement the preferred choice for Decs. 3
and 6. This is left as an improvement for future works.

Additionally to the design decisions which are fixed in the implementation, there are
command-line arguments which affect the fault-model and can be chosen by the user.
Generally, all standard command-line arguments of CBMC which can be used in combi-
nation with the standard --dimacs option can also be used along with our --wcnf
option. Most notably, the effect of using or omitting the following two options has been
discussed theoretically in Sections 4.2.4 and 4.2.5 and practically tested and evaluated in
Chapter 7.

• --pointer-check

• --bounds-check

Further command-line arguments available in CBMC include - among others - options
for generating various types of assertions, e.g., --memory-leak-check or --div-by
-zero-check. Note that we neither use any of these options in our test runs, nor have
we theoretically evaluated their effect on the fault-model in detail. This would also be a
topic for future works. However, we expect similar effects as for the assertions which we
already analyzed. A sketch for arguing about the --div-by-zero-check option is
given in Example 6.2.1. Similarly to what we showed for Pointer Assertions and Bound
Assertions in Example 4.2.2 and Example 4.2.7, respectively, we expect that for the
other assertion types we could also construct examples which would be unsolvable if
the assertions are not havoced in the fault-model. Hence, our implementation generally
havocs all such CBMC assertions if (1) they are generated at all (using the according
arguments) and (2) the according line is declared faulty. Nevertheless, we do not address
the effect on the fault-model for all types of available assertions in detail.

1 i n t a ;
2 f o r ( i n t i =3; i >=0; i −−) {
3 a = 5 / i ;
4 }

Listing 6.2: Example: Division by zero
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Example 6.2.1. Consider the program from Listing 6.2 which causes a division by
zero in line 3 at the last iteration of the for-loop. The behavior of a division by zero
is undefined in ANSI-C and a Floating Point Exception can occur when running the
program. If the div-by-zero-check argument is omitted when using CBMC the
error is not detected, since the according assertions are not generated. When performing
fault localization, the resulting MBD instance would then also be immediately consistent
(since there are no assertions) and no fault location reported.

6.3 Library function handling
In general, standard library functions (e.g., functions processing Strings) are not modeled
in CBMC . Instead, possible return values, as well as possible call-by-reference variables
(which are written to) simply become non-deterministic in the model. Obviously, this
behavior can strongly limit fault localization, whenever the results of such library functions
are used in a programs logic. In theory it would be possible to implement precise models
for such functions. However, besides the significant implementation effort, the size of
generated model instances can potentially become too large to be handled by a solver.
Limitations are discussed in detail in Section 7.4. Still, we can implement models of
library functions with low complexity for specific cases, namely when their usage is
constrained in a program, as we will show for a specific example in the following.

In the benchmark program schedule - which is part of the Siemens set of benchmarks
for fault localization [DER05] - the inputs for the program are provided via command
line arguments (argv), as well as via the default input stdin during runtime, whereas
outputs are written to the default output stdout. The benchmark suite contains 2650
unit tests, each consisting of (1) the command line arguments (argv) and (2) a file which
contains the input string to stdin. Additionally, the correct result strings (stdout)
can be obtained by running each test case on the original program where no faults are
introduced.

The program uses the ANSI-C standard library (<stdio.h>) functions fscanf and
fprintf to interact with stdin and stdout, respectively. As mentioned before,
the actual behavior of such library functions is not modeled in CBMC . Instead, the
return value, as well as the call-by-reference variables (which are written to) become
non-deterministic in the model. This makes fault localization for the schedule program
impossible, since the observations are parsed via these functions and therefore any
observation would immediately be replaced by a non-deterministic value. Hence, we
implemented replacement functions (essentially defining simple models) for fscanf and
fprintf, as used in the schedule program, in order to enable specifying the given values
of stdin and stdout for each test case with our introduced observation syntax (see
Listing 6.1).

Since all calls of fprintf in the schedule program only write integers - except for
early returns of the program (see lines 3 and 4 in Listing 6.3) - these can simply be
replaced by a check (assert) against an array (expectResult) of integers containing
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the expected results (see lines 3 and 4 in Listing 6.4). This array can then be specified for
each observation (see lines 4 and 5 in Listing 6.5). Note that we define a special integer
ERROR_CODE which can be assigned to the array when specifying an observation to also
check against the mentioned early returns in a simple way in our model.

1 f s c a n f ( s td in , "%d" , &pr i o ) ; // f s c a n f Variant 1 used in schedu le
2 f s c a n f ( s td in , "%f " , &r a t i o ) ; // f s c a n f Var . 2 used in schedu le
3 f p r i n t f ( stdout , "%d " , cur_proc−>val ) ; // f p r i n t f Var . 1 in schedu le
4 f p r i n t f ( stdout , "ERROR MESSAGE\n" ) ; r e turn ; // f p r i n t f Var . 2 in schedu le

Listing 6.3: Schedule Benchmark: fscanf/fprintf calls

1 wcnf_fscanf_d(& pr i o ) ; // f s c a n f Variant 1 Replacement
2 wcnf_fscanf_f(& r a t i o ) ; // f s c a n f Var . 2 Replacement
3 ASSERT( cur_proc−>val == expectResu l t [ r e s u l t I t e r a t o r ++]) ; // f p r i n t f Var . 1
4 ASSERT(ERROR_CODE == expectResu l t [ r e s u l t I t e r a t o r ++]) ; r e turn ;

Listing 6.4: Schedule Benchmark: fscanf/fprintf Replacements

1 __CPROVER_observation_begin ( ) ; // Un i t t e s t : s t d i n ="4.2 5"
2 // Expected stdout ="2 ERROR MESSAGE\n"
3 expectResu l t [ 0 ] = 2 ;
4 expectResu l t [ 1 ] = ERROR_CODE;
5 std in_array [ 0 ] = 4 . 2 ;
6 s td in_sta te [ 0 ] = WCNF_STDIN_STATE_MID_DOT;
7 std in_array [ 1 ] = 5 ;
8 s td in_sta te [ 1 ] = WCNF_STDIN_STATE_INT;
9 __CPROVER_observation_end ( ) ;

Listing 6.5: Schedule Benchmark: Observation specification

The fscanf calls in the schedule program either read an integer (%d) or a float value
(%f) (see lines 1 and 2 in Listing 6.3). However, the calls can occur in different sequences
depending on the inputs. Still, the behavior can be simplified such that the inputs can
be specified as an array of float values for each observation (see lines 5-8 in Listing 6.5).
Our replacement function for an fscanf reading an integer is given in Listing 6.6.
Introducing a state (variable stdin_state) enables the simplification to the float array
(variable stdin_array) instead of implementing a full handling of a given input string
(stdin). This state variable basically encodes different number formats in the input
string corresponding to each array position. The replacement function for an fscanf
reading a float consists of a similar case split. This means that the stdin strings for all
unit tests (observations) must be converted beforehand to initialize both the value and
state array when specifying the observations (as in Listing 6.5). However, this can be
done in an automated fashion. Due to the constraint that only numbers are read in the
program we only need to convert stdin strings until the first text character appears. In
this context, a text character is anything except (1) numbers (2) dot (decimal separator)
(3) number separators (blanks, new lines).

Note that we performed the necessary replacement of the functions, as well as initializing
the needed helper variable (e.g. resultIterator) in the programs source code via
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a script that also inserts all observations in our observation syntax. It would also be
possible to implement our replacement function for fscanf - as well as replacements for
any library function in general - in CBMC to be directly used as a model for the according
function. Then it would not be necessary to pre-process the source code beforehand.
However, since our model of fscanf only works for the constrained case where only the
patterns %d and %f are used, we could not include it in CBMC to be used as general
model for fscanf. An interesting future work with CBMC could be to check the input
program for constraints and conditionally apply such simple models if possible.

1 i n t wcnf_fscanf_d ( i n t ∗ intValue ) {
2 switch ( s td in_sta te [ stdin_index ] ) {
3 case STDIN_STATE_INT:
4 ∗ intValue = ( i n t ) std in_array [ stdin_index ] ;
5 stdin_index++;
6 re turn 1 ;
7 case STDIN_STATE_RIGHT_DOT:
8 ∗ intValue = ( i n t ) std in_array [ stdin_index ] ;
9 s td in_sta te [ stdin_index ] = STDIN_STATE_DOT_ONLY;

10 re turn 1 ;
11 case STDIN_STATE_MID_DOT:
12 ∗ intValue = ( i n t ) std in_array [ stdin_index ] ;
13 // get decimal part only :
14 std in_array [ stdin_index ] = stdin_array [ stdin_index ] − ∗ intValue ;
15 s td in_sta te [ stdin_index ] = STDIN_STATE_LEFT_DOT;
16 re turn 1 ;
17 case STDIN_STATE_LEFT_DOT:
18 case STDIN_STATE_DOT_ONLY:
19 case STDIN_STATE_TEXT:
20 re turn 0 ;
21 case STDIN_STATE_EOF:
22 re turn EOF;
23 }
24 }

Listing 6.6: Schedule Benchmark: fscanf replacement function

To summarize, we have shown that simplified models of library functions like fscanf are
possible, if the usage is limited to certain patterns (here integer and float numbers). This
enables handling observations consisting of input streams to a program which is necessary
for the schedule benchmark program. A complete model of functions such as fscanf
which processes input strings with all possible patterns directly would require significantly
more implementation effort and would also result in a more complex model. Therefore, we
implemented the simplified version instead. Note that we also discovered our model-based
fault localization approach is not able to cope with the general complexity of the schedule
program as described in Section 7.4.1, even with this simplified handling of the fscanf
function. Thus, we can hypothesize that the complexity of a full modeling of fscanf
would exceed the limitations of model-based fault localization anyway. These general
limitations are discussed in detail in Section 7.4.
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CHAPTER 7
Experiments and Results

This chapter presents our experimental results as well as theoretical findings. First of
all, common evaluation metrics are elaborated in Section 7.1. Then, the experimental
results from our tool with hand-crafted examples and popular benchmarks are analyzed
in detail in Sections 7.2 and 7.3. The limitations of our tool and model-based SFL in
general are addressed in Section 7.4. Finally, we present a theoretical finding concerning
successful observations in Section 7.5.

7.1 Metrics
The following two aspects are primarily considered when evaluating SFL implementations.

• Runtime

• Result quality

– Is the actual fault location contained in the result set? (= Hit?)
– Code Size Reduction (or similar scores as described in [WGL+16])

7.1.1 Runtime
When it comes to model-based fault localization, we can consider the runtimes of (1) the
model creation and (2) the diagnosis algorithm separately. When only single observations
are processed, then depending on the implementation, (1) might be required for every
run (every observation), or it might be enough to create the model once and then only
run (2) for each observation. Since most existing approaches process single observations,
they usually give average runtimes for individual runs.
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A comparison of runtime between our approach and related work is difficult since (1) we
process multiple observations and (2) we have a more complex model (e.g. containing
more assertions). Both (1) and (2) can improve result quality as we demonstrated both
theoretically and practically on our hand-crafted examples summarized in Section 7.2,
but come at the cost of a higher runtime. Also, differences in hardware and operating
system lead to differences in runtimes. Therefore, we evaluate and compare runtimes for
different options within our implementation (e.g.: Multiple vs. Single observation runs,
with/without Bound Assertions, etc.) rather than against other approaches.

7.1.2 Result Quality
Fault localization tools report sets of program locations which are candidates for containing
the actual bug(s). The most important and trivial evaluation is of course whether the
actual bug location(s) are contained in the result set. If it is the case, we denote it as
a "Hit". It might even be considered as a flaw in the fault-model if there are instances
where an actual bug location is not found.

Assuming that the result sets are correct, i.e., contain the actual bug locations, the survey
[WGL+16] states: "...the effectiveness of a software fault localization technique is defined
as the percentage of code that needs to be examined before the first faulty location for a
given bug is identified." While there are multiple types of scores described in the study,
most model-based fault localization techniques stick to Code Size Reduction (CSR). It is
defined as the ratio of reported fault locations to the total number of lines in the program
[LN14] as described in Eq. (7.1).

CSR = |ResultSet|
#TotalProgramLines

(7.1)

As mentioned in [WGL+16], only lines containing executable statements are counted in
some fault localization works, which of course causes much higher CSR values, especially
if a program contains many blank or comment lines. However, in the model-based software
fault localization literature which is most related to our approach, all lines are counted
to get the total number of lines, regardless of the lines content [JM10, LN16, LN14].
Therefore, we also stick to this type of evaluation.

7.2 Hand-crafted Examples
In Chapter 4 we already argued about advantages of our fault-model with hand-crafted
examples. We ran our tool on all the introduced examples to verify the qualitative results
which we derived theoretically - based on the formulas TFM (P ) - also experimentally.
All example programs are summarized in Table 7.1. The column "Program" contains the
references to the listings in the previous chapters and the column "Experiment result"
describes the main outcome of the runs with our tool. Note that "Dec." refers to the
design decisions for pointers and arrays introduced in Sections 4.2.4 and 4.2.5.
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Program Experiment result
Listing 4.4* (*added assertion as in Example 4.2.6) Line 7 is a solution with Dec. 3.a
Listing 4.5 Unsolvable with Dec. 1.a, correct location with Dec. 1.b
Listing 4.6 Unsolvable with Dec. 2.a, correct location with Dec. 2.b
Listing 4.7 Verified behavior described in Example 4.2.4
Listing 4.8 Consistent without Pointer Assertions - no solution reported
Listing 4.9 Verified generated TFM (P )
Listing 4.10 Unsolvable with Dec. 4.a, correct location with Dec. 4.b
Listing 4.11 Unsolvable with Dec. 5.a, correct location with Dec. 5.b
Listing 4.12 Bound Assertions only generated for line 2
Listing 4.10* Verified behavior described in Example 4.2.9 (*added assertion)
Listing 4.13 Line 3 is a solution with Dec. 6.a
Listing 5.1 Verified solutions with {OBS1}, {OBS2}, {OBS1, OBS2} from Example 5.1.1
Listing 5.2 Verified solutions with {OBS1}, {OBS2}, {OBS1, OBS2} from Example 5.1.2

Table 7.1: Experiments on hand-crafted examples

7.3 TCAS
The most popular benchmark program for SFL is TCAS from the Siemens set of
benchmarks [HFGO94, DER05] with 98 papers referencing it up to 2016 [WGL+16,
Table 6]. It consists of 173 lines of code in total and does not contain any loops or
pointers, but a small array, multiple If-Then-Else statements and various assignments
with logical expressions. Note that with our fault-model, there are only 34 lines in TCAS
that can be declared faulty. The remaining 139 lines are blank lines, comments, lines
with only opening/closing brackets, variable declarations, function definitions, defines
or includes. The purpose of the program is to calculate altitude separation for aircrafts
based on multiple input values. The benchmark suite contains the original correct version
of the program, as well as 41 modified versions where different bugs are introduced in each
version. Additionally, it contains 1608 unit tests each consisting of a value assignment
for the 12 input arguments. We ran all unit tests on the original version in order to
generate the expected output for each test, which serves as a specification and completes
the observations. Note that the last observations in the benchmark do not specify all
12 arguments, resulting in an immediate exit of the program in all version. Thus, we
skipped such observations and only used the first 1578 unit tests which have the correct
number of arguments. In [LN14] only 1578 tests are mentioned in the first place and we
assume other approaches also skipped the incomplete unit tests.

We conducted experimental runs on TCAS using various combinations of observations
and options of our tool. All experiments were carried out on an Intel Core i5-11600K
3.90GHz processor, 16GB DDR4 RAM and the operating system Ubuntu 22.04. First,
we analyze a special feature of TCAS concerning array-bound violations in Section 7.3.1
which is required to explain certain results afterwards. Then we present tables containing

41



7.3. TCAS

the detailed results of each experiment and individual TCAS version in Section 7.3.2.
Finally, aggregated values for precision and runtime are summarized in Section 7.3.3 and
compared against relevant literature.

7.3.1 TCAS Array-Bound Violations
The benchmark does not have any pointers, but it does contain a small constant array of
size 4. We analyze the array-associated code parts in detail, since it is already enough to
significantly influence results depending on the array fault-model. Listing 7.1 contains
the relevant lines from the original TCAS program where no bug is introduced. In the
following, we refer to the line numbers of the listing, which do not correspond to the
real line numbers of the whole program. Line 1 shows the declaration with a constant
size of 4, making indices {0, 1, 2, 3} valid. It is then completely initialized with constant
values in lines 3 - 6. The array is only accessed by a read in the ALIM function - here at
line 11 - at the index given by the variable Alt_Layer_Value. There are 4 calls of the
ALIM function in TCAS which may be avoided by control flow. However, the value of
Alt_Layer_Value is set directly to a program input beforehand (see line 8), without
any checks or modification in between. Thus, the given test cases (observations) can
directly cause array-bound violations.

In fact, multiple of the benchmarks test cases have invalid indices. Moreover, two versions
of the program (v33 and v38) have introduced bugs exactly on lines containing array
operations. In v33, the four lines initializing the array (lines 3-6 in Listing 7.1) have
indices 1 − 4 instead of 0 − 3, respectively. Therefore, the last index is invalid, index
0 stays uninitialized and index 1-3 get wrong values assigned compared to the correct
version. In v38, the array is declared with size 3 instead of 4 (see line 1 in Listing 7.1)
which essentially makes the initialization at index 3 in line 6, as well as the read access
in line 11 faulty for all observations which have Alt_Layer_Value > 2. Since the
declaration itself cannot be a bug location in our fault-model, we treated the two lines 6
and 11 in Listing 7.1 as the correct bug locations for v38 when evaluating our results.
These insights are needed to explain certain results in the following Section 7.3.2.

1 i n t Positive_RA_Alt_Thresh [ 4 ] ; // Array d e c l a r a t i o n
2 . . . .
3 Positive_RA_Alt_Thresh [ 0 ] = 400 ; // Array i n i t i a l i z a t i o n
4 Positive_RA_Alt_Thresh [ 1 ] = 500 ; // Writing va lue s
5 Positive_RA_Alt_Thresh [ 2 ] = 640 ;
6 Positive_RA_Alt_Thresh [ 3 ] = 740 ;
7 . . . .
8 Alt_Layer_Value = a t o i ( argv [ 7 ] ) ; // index v a r i a b l e ass ignment from input
9 . . . . .

10 i n t ALIM ( ) { // Reading from array :
11 re turn Positive_RA_Alt_Thresh [ Alt_Layer_Value ] ; }

Listing 7.1: TCAS Benchmark: Array Access
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7.3.2 Detailed TCAS results
The following tables, Tables 7.3 to 7.5, list our experimental results for each TCAS
version. They share the same column descriptions, where "Ver." identifies the TCAS
program version. "#Err" is the count of bugs in the program. "#ObsF" gives the number
of failing observations, which was gathered by running each version with each observation.
An observation is failing for a version, if its output differs from the output of the original
version. In all tables we compare runs with multiple observations (top column "All fail.
obs.") against single observation runs (top column "Single obs. runs"). "#Loc" specifies
the number of reported lines, i.e., the size of the solution set. "HIT" (Y/N) describes
whether the solution set contains the actual bug location, or if there are multiple bugs, if
the set of actual bugs overlaps with the reported solution set. "#LocU" is the number
of reported lines, i.e., the size of the solution set when combining the results of single
observation runs by union. "#Miss" is the number of single observation runs where the
actual bug location is not contained in the reported solution set. "#Miss (Filt.)" is the
same as "#Miss", except that runs where the solver did not find any solution are not
counted (filtered). "IsubSet" (Intersection Sub Set) describes whether the solution set of
the run with multiple observations (set A) is a subset of the intersection of the result
sets of the single observation runs (set B). Since an MBD solver should deliver optimal
solutions, this should be the case for all versions which only have a single faulty line and
serves as a sanity check. The meaning of the "IsubSet" column entries are described in
Table 7.2, they were chosen this way so that different entries are clearly visible when
looking at the table.

Note that some single observations are failing not because of the actual introduced bug,
but due to an array-bound violation of the input as described in detail in Section 7.3.1.
As already elaborated theoretically in Example 4.2.9, such cases can cause the solver to
report no solutions, since the model is immediately consistent when Bound Assertions are
omitted. When computing the intersection for the column "IsubSet", we discarded such
single observations which have no solution since this would make the overall intersection
empty. This is basically also an example that shows that intersecting results is not safe
as soon as there are multiple bugs in the program.

Also note that when it comes to multiple observation runs, we performed experiments both
with only the failing observations, as well as with all observations (failed and successful).
However, the experiments showed that the results are the same, but come at the cost
of longer runtime when adding also successful observations. This result led us to argue
that adding successful observations in fact cannot improve result quality in Section 7.5.
Therefore, the detailed tables only contain results from failing observations, while we
also present the aggregated values of other experiments afterwards in Section 7.3.3.

Without Bound Assertions - Table 7.3

In Table 7.3 we compare the results from runs with the set of all failing observations
against the union of the result sets when running each failing observation individually,
both without Bound Assertions. Since the handling of arrays in the fault-model is not
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Table entry empty y, < y, eq. N, ⊃ N
Meaning empty set A ⊂ B A = B A ⊃ B no subset relation

Table 7.2: "IsubSet" column explanation

TCAS All fail. obs. Single obs. runs #Miss (liter.)
Ver. #Err #ObsF #Loc HIT #LocU #Miss #Miss (Filt.) IsubSet BugAss. SNIPER

v1 1 131 16 Y 22 0 0 y, eq. 0 0
v2 1 67 4 Y 27 0 0 y, eq. 0 0
v3 1 23 10 Y 27 0 0 y, eq. 10 0
v4 1 23 16 Y 22 3 0 y, eq. 0 1
v5 1 10 8 Y 27 0 0 y, eq. 0 0
v6 1 12 15 Y 21 0 0 y, eq. 0 0
v7 1 36 4 Y 23 0 0 y, eq. 0 0
v8 1 1 18 Y 18 0 0 y, eq. 0 0
v9 1 7 10 Y 10 0 0 y, eq. 0 0

v10 2 14 13 Y 24 0 0 y, eq. 0 0
v11 2 14 5 Y 21 0 0 y, eq. 0 0
v12 1 70 8 Y 28 0 0 y, eq. 22 0
v13 1 4 9 Y 27 0 0 y, eq. 0 0
v14 1 50 4 Y 4 0 0 y, eq. 0 0
v15 3 10 8 Y 27 0 0 y, eq. 0 0
v16 1 70 16 Y 18 0 0 y, eq. 0 0
v17 1 35 4 Y 23 0 0 y, eq. 0 0
v18 1 29 4 Y 23 0 0 y, eq. 0 0
v19 1 19 4 Y 23 0 0 y, eq. 0 0
v20 1 18 16 Y 21 0 0 y, eq. 0 0
v21 1 16 15 Y 21 0 0 y, eq. 0 0
v22 1 11 8 Y 8 0 0 y, eq. 0 0
v23 1 42 9 Y 9 0 0 y, eq. 1 0
v24 1 7 15 Y 19 0 0 y, eq. 0 0
v25 1 4 8 Y 10 1 0 y, eq. 0 0
v26 1 11 9 Y 28 0 0 y, eq. 0 0
v27 1 10 8 Y 27 0 0 y, eq. 0 0
v28 1 76 2 Y 31 0 0 y, eq. 18 0
v29 1 18 3 Y 26 0 0 y, eq. 4 0
v30 1 58 4 Y 27 0 0 y, eq. 0 0
v31 3 14 15 Y 17 0 0 y, eq. 0 0
v32 3 2 15 Y 16 0 0 y, eq. 0 0
v33 4 89 4 N 25 46 46 y, eq. - -
v34 1 77 8 Y 26 0 0 y, eq. 0 0
v35 1 76 2 Y 31 0 0 y, eq. 18 0
v36 1 123 2 Y 3 0 0 y, eq. 0 0
v37 1 95 5 Y 23 0 0 y, eq. 0 0
v38 2 76 0 N 0 76 0 empty - -
v39 1 4 8 Y 10 1 0 y, eq. 0 0
v40 2 123 10 Y 15 0 0 y, eq. 0 0
v41 1 23 16 Y 22 3 0 y, eq. 0 1

Table 7.3: TCAS experiments without BA
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addressed in any related work, we assume that other approaches do not use Bound
Assertions in their fault-model. Therefore, these results are the most comparable, even
though we already argued about the problems when discarding Bound Assertions in
Example 4.2.9. The column "#Miss (liter.)" displays the number of misses from the most
related works, BugAssist [JM10] and SNIPER [LN14]. Still, a comparison between these
values is difficult, since the number of failing observations ("#ObsF") is already slightly
inconsistent for some versions between our results, [JM10] and [LN14]. Test cases which
are left out in one paper but are used in another might potentially be a miss. We have
no explanation for this discrepancy as the setup for retrieving these values is the same in
all works, namely running each program version with each test case and comparing the
result to the original version.
What is clearly visible in the table is that the number of locations from the union of single
observation runs "#LocU" is significantly larger than the number of locations from the
single run with multiple observations, "#Loc", for almost all version. This confirms what
we have already shown in Example 5.1.2 - namely that processing multiple observations
with an MBD algorithm delivers more precise results compared to processing single
observations only.
The multiple observation runs all contain the exact bug location (column "HIT": "Y"),
except for versions 33 and 38. In v38 the array Positive_RA_Alt_Thresh is incor-
rectly declared, as described in Section 7.3.1, namely by size 3 instead of 4. Since we
omitted Bound Assertions in this experiment, the MBD solver can assign any value to
array accesses with invalid indices, which makes v38 consistent with all observations
and the result set empty. This again shows the problems that potentially arise when
discarding Bound Assertions. In v33 the actual bug locations are the 4 lines initializing
the same array, see also Section 7.3.1. The MBD solver calculates 4 optimal solution sets
in this case, each containing only a single location, therefore the column "#Loc" shows 4
in Table 7.3 which comes from the union of the optimal result sets that our tool reports,
as elaborated in Section 6.1. One is the only line reading from the array (see Listing 7.1)
and the other three are locations which appear after the array access in the control flow.
In related work [LN14, JM10] the versions 33 and 38 are simply omitted from their results
without any explanation. Also in [BFP19] - which generally works only for single-fault
programs - version 38 is skipped without explanation even though it has only a single fault.
We assume this is the case, since all other approaches do not consider the fault-model of
arrays.
Another interesting result is visible in the column "#Miss". With a correct fault-model
we expected every optimal solution to contain the actual bug location, i.e., "#Miss"
should always be zero, at least for all versions that have only a single bug (#Err = 1)
and except for the versions v33 and v38 as just described. However, this is not the case
for some versions, e.g., v4 or v25. Analyzing these cases reveals that all observations
leading to a miss contain a direct array-bound violation as described in Section 7.3.1.
In all these cases the solver reported that the system is consistent and no results, since
again any value can be assigned when an invalid index is read from an array when Bound
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Assertions are discarded. In order to confirm this we added the column "#Miss (Filt.)"
where we filtered out the single observations where the solver reported "consistent" and
it is indeed zero for all versions with "#Err" = 1 as can be seen in the table.

Also in related work misses are reported, which is visible in the last two columns of
Table 7.3 for [JM10] and [LN14]. However, this issue is not addresses in any of these
papers. Since array handling is generally not addressed in any related work, we can guess
that their misses might also be caused by test cases with invalid array indices. In fact,
the line reading from the array (line 11, Listing 7.1) is an additional fault location, as
the used index is unchecked. The bug becomes active as soon as an observation with an
invalid array index is encountered. This again underlines the importance of the array
fault-model, as well as that the single fault-assumption is insufficient.

The column "IsubSet" shows that the evaluation with multiple observations is at least as
good as the intersection of the single observation run results for all version. This experi-
mental result confirms that the MBD solver indeed delivers optimal results considering
all observations. While we already showed that intersection is only safe for a single-fault
assumption, in this case it was possible to build the intersection for all versions, including
those with multiple errors. However, as already mentioned, we had to discard empty
result sets when building the intersection, which is again an argument supporting that
the intersection approach is not safe in the general case.

To summarize the key takeaways from Table 7.3, we have shown that results are more
precise with a multiple observation processing MBD solver compared to the union of
single observation runs. Moreover, results with a multiple observations processing MBD
solver are even at least as precise as the intersection of single observation runs (when the
intersection is possible). Further, we explained the results of TCAS versions v33 and
v38, as well as the encountered misses, which are not addressed in any literature, and
confirmed zero misses with filtered observations.

With Bound Assertions - Table 7.4

The results for all TCAS versions with the intended configuration of our tool - namely
with Bound Assertions enabled - are listed in Table 7.4. We compare these results only
against our own results with other configurations (Tables 7.3 and 7.5) because the array
fault-model is not addressed in related word.

Again, the number of locations from the union of single observation runs "#LocU"
is significantly larger than the number of locations from the single run with multiple
observations "#Loc" for almost all version. This confirms that processing multiple
observations with an MBD algorithm delivers more precise results compared to processing
single observations only, also with Bound Assertions enabled.

The column "HIT" has some entries with "N" (e.g.: v25) that have been "Y" without
Bound Assertions (see Table 7.3), i.e., some result sets from the runs with all failing
observations do not contain the actual fault location. This is explainable by the array-
bound violations caused by several observations for almost all version. Since we use
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TCAS All fail. obs. Single obs. runs
Ver. #Err #ObsF #Loc HIT #LocU #Miss IsubSet

v1 1 131 16 Y 22 0 y, eq.
v2 1 67 4 Y 27 0 y, eq.
v3 1 23 10 Y 27 0 y, eq.
v4 1 23 5 Y 22 0 y, eq.
v5 1 10 8 Y 27 0 y, eq.
v6 1 12 15 Y 21 0 y, eq.
v7 1 36 4 Y 23 0 y, eq.
v8 1 1 18 Y 18 0 y, eq.
v9 1 7 10 Y 10 0 y, eq.

v10 2 14 13 Y 24 0 y, eq.
v11 2 14 5 Y 21 0 y, eq.
v12 1 70 8 Y 28 0 y, eq.
v13 1 4 9 Y 27 0 y, eq.
v14 1 50 4 Y 4 0 y, eq.
v15 3 10 8 Y 27 0 y, eq.
v16 1 70 16 Y 18 0 y, eq.
v17 1 35 4 Y 23 0 y, eq.
v18 1 29 4 Y 23 0 y, eq.
v19 1 19 4 Y 23 0 y, eq.
v20 1 18 16 Y 21 0 y, eq.
v21 1 16 15 Y 21 0 y, eq.
v22 1 11 8 Y 8 0 y, eq.
v23 1 42 18 Y 18 0 N, ⊃
v24 1 7 15 Y 19 0 y, eq.
v25 1 4 2 N 10 1 y, eq.
v26 1 11 9 Y 28 0 y, eq.
v27 1 10 8 Y 27 0 y, eq.
v28 1 76 1 N 31 1 y, eq.
v29 1 18 3 Y 26 0 y, eq.
v30 1 58 2 N 27 1 y, eq.
v31 3 14 15 Y 17 0 y, eq.
v32 3 2 15 Y 16 0 y, eq.
v33 4 89 5 Y 26 0 y, eq.
v34 1 77 8 Y 26 0 y, eq.
v35 1 76 1 N 31 1 y, eq.
v36 1 123 9 Y 11 0 N, ⊃
v37 1 95 5 Y 23 0 y, eq.
v38 2 76 2 Y 9 0 y, eq.
v39 1 4 2 N 10 1 y, eq.
v40 2 123 2 N 10 3 y, eq.
v41 1 23 4 Y 22 0 y, eq.

Table 7.4: TCAS experiments with BA
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Bound Assertions, line 11 in Listing 7.1 is a new viable fault location in addition to
the actual locations in every version. Thus, each version technically has at least 2 fault
locations now. When it comes to multiple bugs, it can happen that the solver finds
optimal solutions where all bugs can be prevented by havocing a single line, analogous to
what happened previously for v33 in Table 7.3. However, if we count the invalid array
access (line 11) also as a valid fault location, then "HIT" would in fact always be "Y" in
Table 7.4, i.e., the actual fault location is always found. An improvement compared to
Table 7.3 is that the correct fault location is now found also for the two array-specific
versions v33 and v38 ("HIT"="Y"), which is a clear advantage that comes from our array
fault-model. For v38 the MBD solver even returned just a single optimal result set of
size 2 which exactly contains the actual fault locations (lines 6 and 11 in Listing 7.1).

Also here, some of the single observation runs did not contain the actual fault location,
see column "#Miss", e.g., v25. Analyzing these cases again reveals that all observations
leading to a miss contain a direct array-bound violation as described in Section 7.3.1 and
the line with the array-bound violation is reported instead of the intended location from
TCAS . The column "#Miss" would therefore always be zero if we counted the invalid
array access as a valid fault location.

The column "IsubSet" shows that the evaluation with multiple observations is at least
as good as the intersection of the single observation run results for all version, except
for versions v23 and v36. Analyzing these two versions reveals that the intersection
discards the location with the invalid array access (line 11 in Listing 7.1), while the
runs processing all failing observations include it. Therefore, it is another example that
intersecting results is not safe when it comes to multiple bugs in a program, since the
invalid array access is technically a correct bug location.

With Bound Assertions and filtered observations - Table 7.5

Our explanation for the previously encountered issues concerning the "#Miss" and "HIT"
columns were all related to the observations which directly contain array-bound violations
(Alt_Layer_Value > 3) since they essentially trigger a bug which is not the actual bug
introduced by each TCAS version. In order to verify that this indeed explains all such
issues, we ran our tool again with the same configuration as for Table 7.4, except that we
filtered out all observations that contain a direct array-bound violation beforehand for
both the runs with all failing observations, as well as the single observation runs. In other
words, we got rid of the additional array-bound violating fault locations by keeping only
observations that do not trigger this additional bug. The results with only the filtered
observations are displayed in Table 7.5.

The "HIT" column shows that the actual bug location is found for all TCAS versions
with the multiple observation runs. The "#Miss" column is always zero which means
that the actual bug locations are contained in the result sets of all the single observation
runs. Also the "IsubSet" column shows that the results of the multiple observation runs
are now always a subset of the intersection of single observation run result sets, which
underlines our explanation why this was not always the case in Table 7.4. As expected,
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TCAS All fail. obs. Single obs. runs
Ver. #Err #ObsF #Loc HIT #LocU #Miss IsubSet

v1 1 131 16 Y 22 0 y, eq.
v2 1 67 4 Y 27 0 y, eq.
v3 1 23 10 Y 27 0 y, eq.
v4 1 23 16 Y 22 0 y, eq.
v5 1 10 8 Y 27 0 y, eq.
v6 1 12 15 Y 21 0 y, eq.
v7 1 36 4 Y 23 0 y, eq.
v8 1 1 18 Y 18 0 y, eq.
v9 1 7 10 Y 10 0 y, eq.

v10 2 14 13 Y 24 0 y, eq.
v11 2 14 5 Y 21 0 y, eq.
v12 1 70 8 Y 28 0 y, eq.
v13 1 4 9 Y 27 0 y, eq.
v14 1 50 4 Y 4 0 y, eq.
v15 3 10 8 Y 27 0 y, eq.
v16 1 70 16 Y 18 0 y, eq.
v17 1 35 4 Y 23 0 y, eq.
v18 1 29 4 Y 23 0 y, eq.
v19 1 19 4 Y 23 0 y, eq.
v20 1 18 16 Y 21 0 y, eq.
v21 1 16 15 Y 21 0 y, eq.
v22 1 11 8 Y 8 0 y, eq.
v23 1 42 9 Y 18 0 y, eq.
v24 1 7 15 Y 19 0 y, eq.
v25 1 4 8 Y 10 0 y, eq.
v26 1 11 9 Y 28 0 y, eq.
v27 1 10 8 Y 27 0 y, eq.
v28 1 76 2 Y 31 0 y, eq.
v29 1 18 3 Y 26 0 y, eq.
v30 1 58 4 Y 27 0 y, eq.
v31 3 14 15 Y 17 0 y, eq.
v32 3 2 15 Y 16 0 y, eq.
v33 4 89 5 Y 26 0 y, eq.
v34 1 77 8 Y 26 0 y, eq.
v35 1 76 2 Y 31 0 y, eq.
v36 1 123 2 Y 11 0 y, eq.
v37 1 95 5 Y 23 0 y, eq.
v38 2 76 2 Y 9 0 y, eq.
v39 1 4 8 Y 10 0 y, eq.
v40 2 123 10 Y 10 0 y, eq.
v41 1 23 16 Y 22 0 y, eq.

Table 7.5: TCAS experiments with BA, only valid array-index obs.
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the multiple observation runs are still much more precise than the union of the single
observation runs for almost all versions ("#Loc" < "#LocU"). In conclusion, we get
perfect results by eliminating the additional array-bound violation bugs which are not
intended by the TCAS benchmark.

7.3.3 Summarized TCAS results
Runtime

In Table 7.6 we present aggregated runtime values over all versions. The column
"Evaluation" displays the used configuration, where "All obs." means that simply all
observations (test cases) available in the TCAS benchmark were used, i.e., failing and
successful. "Failing obs." means that only failing observations are used and "BA" is
an abbreviation for Bound Assertions. Note that Nr. 2 ("Failing obs.") corresponds
to the detailed results in Table 7.3, Nr. 4 ("with BA") to Table 7.4 and Nr. 6 ("only
valid-bound-inputs") to Table 7.5. The columns CBMC and HSD describe the times
consumed by the respective tool, i.e., the time for building the model (trace formula)
and the time of the MBD solver (HSD), respectively, whereas the column "SUM" simply
contains the sum of both - the total runtime. The values are given in seconds.

The displayed values are calculated by the arithmetic mean over the individual TCAS
version results. For the single observation runs we calculated the sum of each individual
run to get the total runtime for each version, since each run is executed sequentially. For
aggregating over the TCAS versions for the single observation runs the arithmetic mean
is used as well (with the sum of single observation runs for each version as basis).

While runtime results are not available for SNIPER [LN14], BugAssist [JM10] gives the
average runtime of a single observation run within each TCAS version. We calculated
the aggregated time for BugAssist by multiplying each average runtime by the number
of failed observations (see "#ObsF" in Table 7.5) and then taking the arithmetic mean
over these totals of each version. Since BugAssist processes only single observations and

Nr. Evaluation CBMC [s] HSD [s] SUM [s]
1 All obs. 0.896 1.895 2.791
2 Failing obs. 0.053 1.349 1.401
3 All obs. with BA 0.897 101.082 101.979
4 Failing obs. with BA 0.053 10.937 10.990
5 All obs. with BA, only valid-bound-inputs 0.892 8.732 9.624
6 Failing obs. with BA, only valid-bound-inputs 0.053 1.614 1.667
7 Sum of single observation runs 1.442 0.442 1.884
8 Sum of single observation runs with BA 1.574 0.501 2.076
9 BugAssist (from paper) - - 2.747

Table 7.6: TCAS Average Runtimes over all versions
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does not implement Bound Assertions, the value is probably most comparably to our
result Nr. 7, "Sum of single observation runs", where our value is lower by 0, 907 seconds
or faster by ∼ 33%. However, the significance of this value is questionable, since we use
different hardware for our experiments, as well as another fault-model.

Figure 7.1: Boxplot: Version results

What is notable is the comparison between runs where all observations are used against
runs where only failing observations are used, i.e., Nrs. (1 vs. 2), (3 vs. 4) and (5
vs. 6). Adding the successful observations always causes a significantly larger runtime,
although it does not improve result quality, as we will show in Section 7.5. The factor
of runtime increase by adding successful observations amounts to ∼ 2.0 for the runs
without Bound Assertions (Nr. 1 and 2), ∼ 9.2 with Bound Assertions (Nr. 3 and 4) and
∼ 5.4 with Bound Assertions and filtered observations (Nr. 5 and 6). This shows that
adding assertions can significantly increase complexity of the MBD problem. Especially
without filtered observations (Nr. 3 and 4), the factor is notably large since some of the
added observations actually introduce conflicts with the Bound Assertions, i.e., they are
additional failing observations with our fault-model.

Intuitively this should not be the case with filtered observations (only valid-bound-inputs,
Nr. 5 and 6). However, the difference is still quite high with the factor ∼ 5.4. Analyzing
the results in detail shows that this is solely caused by the runtimes of v33 (∼ 60 sec)
and v38 (∼ 221 sec) for evaluation Nr. 5 which corresponds to the two visible outliers
in the boxplot Figure 7.1. These two outliers are caused by the array-bound violations
with all observations having Alt_Layer_Value > 2 of v33 and v38 as explained in
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Nr. Evaluation CSR
1 All obs. 5.2%
2 Failing obs. 5.2%
3 All obs. with BA 2.6%
4 Failing obs. with BA 4.7%
5 All obs. with BA, only valid-bound-inputs 5.1%
6 Failing obs. with BA, only valid-bound-inputs 5.1%
7 Union of single observation runs 12.0%
8 Union of single observation runs with BA 12.0%
9 SNIPER (from paper) 11.0%

10 BugAssist (from paper) 8.0%

Table 7.7: TCAS Average CSR over all versions

Section 7.3.1. Therefore, we again have additional failing observations. Calculating the
factor of runtime increase when discarding these two versions yields a similar value as for
without Bound Assertions (Nrs. 1 and 2), namely Nr5/Nr6 = 2.92/1.52 =∼ 1.9.

Result Quality - CSR

In Table 7.7 we present the aggregated Code Size Reduction (CSR) over all TCAS
versions. The column "Evaluation" again displays the used configuration and the line
Nrs. 1 to 8 have the same meaning as previously for the runtime evaluation in Table 7.6.
Additionally, the results from SNIPER [LN14] and BugAssist [JM10] are shown in line
Nrs. 9 and 10 which are copied directly from the respective papers. The CSR is calculated
as described in Section 7.1.2 for each run, i.e., the number of reported code lines divided
by the total number of code lines which amount to 173 in TCAS . The individual result
sets of single observation runs (Nrs. 7 and 8) within each TCAS version are combined
via union and the size of the resulting sets is used to calculate the CSR in this case. For
aggregating over all TCAS versions, the arithmetic mean over each versions CSR is used.
Note that with our fault-model there are 34 valid fault locations in TCAS . Thus, the
maximum possible CSR (all possible locations declared faulty) yields ∼ 19.7% and the
minimum (one fault location) ∼ 0.6%.

As expected, the results from multiple observation evaluations (Nrs. 1-6) are significantly
better than the union of single observation runs (Nrs. 7 and 8). The CSR from the union
of single observation runs without Bound Assertions (12%) is the highest in the table and
closest to SNIPER [LN14] with 11% which makes sense since they combine results with a
pairwise union approach. The second closest is BugAssist [JM10] with 8%. Note that the
comparison of CSR values with related work has to be interpreted carefully since both
BugAssist and SNIPER do not give the number of viable fault locations in TCAS within
their fault-model. Furthermore, the method of combining the results from individual
runs within a version is unclear for BugAssist, but we assume a union approach is used.
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The results from our multiple observation runs (Nrs. 1-6) are significantly stronger
compared to related work (Nrs. 9 and 10), even Nrs. 1 and 2, which have the largest CSR
among our multiple observation evaluations but have the most comparable fault-model
to related work since no Bound Assertions are used. This highlights also experimentally
the benefit of using an MBD solver that processes multiple observations.

As we will show in Section 7.5, adding successful observations cannot improve result
quality. This is experimentally confirmed as the CSR values are equal in line Nrs. 1 and
2, as well as 5 and 6. However, for the evaluation with Bound Assertions and unfiltered
observations (Nrs. 3 and 4) the CSR is significantly smaller (2.6%) when adding all
observations compared to just failing observations (4.7%). This is again explained by the
fact that failing observations are added in this case, since a lot of TCAS test cases contain
array-bound violations. Analyzing the results in detail shows that solely the line where
the array is read (see line 11 in Listing 7.1) is a valid optimal solution for many TCAS
versions. When adding all observations this line then becomes the only optimal solution
since it can fix both the actual error as well as the array-bound violation. This explains the
surprisingly low CSR of 2.6% in this case. For example, evaluating TCAS v18 with only
failing observations (Nr. 4) yields the result sets {{52}, {58}, {127}, {141}, {91, 104}, . . . }.
Since our tool reports the union of optimal result sets, the final solution size is 4. Note
that line 58 in TCAS corresponds to line 11 in Listing 7.1. Adding all observations in
this case yields the result sets {{58}, {118, 141}, . . . }, thus the final solution size is 1.

7.4 Limitations
The scalability of model-based SFL is strongly limited since the size of the model can
grow exponentially based on the complexity of the input program, e.g., when it comes to
multiple levels of nested loops. We describe the limitations of our approach based on the
example schedule in the following Section 7.4.1. Note that all existing model-based SFL
methods for ANSI-C are only evaluated on TCAS or similarly small programs [WGL+16].
If results for more complex programs are given, they are only achieved by using other
fault localization methods additionally.

For example, BugAssist [JM10] also presents results from larger programs of the Siemens
benchmarks [DER05] including schedule. However, these programs are too complex for
their model-based approach and they only state the following concerning how they ob-
tained their results: "..we combine our technique with existing trace reduction techniques
like program slicing, concolic execution, and isolating failure-inducing input using delta
debugging.". Without any details on these additional techniques the significance of such
results concerning model-based SFL is highly questionable.

In general, we conclude that the strength of model-based SFL lies in obtaining correct
and precise results for rather small programs or parts of programs, while it is not suitable
for processing large instances. For example, [BFP19] compare the results from their
model-based fault localization tool against spectrum-based techniques and confirm a
much higher precision on small instances.
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7.4.1 Schedule
The second most popular program (according to [WGL+16]) among the Siemens bench-
mark programs [DER05] is called schedule. A major difficulty for this program is that
the observations consist not only as a list of command line arguments, but also of a string
which is piped to stdin during runtime. In the program various calls of the function
fscanf read and parse this input. We already described our observation handling for
schedule (stdin) in Section 6.3. However, even with our simplified model of the fscanf
function, the instances become too large to be handled by our technique. In fact, the
creation of the model is already infeasible, even with a low loop-unwind depth of 4.
This applies also to the standard CBMC behavior - without our modifications for fault
localization - when disabling propagation (option "--no-propagation").

Propagation is usually used by CBMC to significantly decrease the size of the trace
formula TF (P ). For example, RHS expressions containing variable reads are replaced by
the actual value, if the value is unique at the current point in the program. Expressions
which do not contain variables anymore can then be immediately resolved which can
even lead to discarding paths in the control flow when the value of Guard Conditions
can be derived through the propagation. For fault localization, propagation cannot be
used, since we must be able to havoc any variable assignment. Havocing a variable would
invalidate any previously propagated value and therefore invalidate the trace formula.

Schedule has multiple levels of nested loops leading to exponential growth of the trace
formula when unrolling every iteration. Also, the Guard Conditions become larger for
each step with every additional iteration that is unrolled. The instances become so big
that even with the mentioned unwinding depth of 4, CBMC got stuck when the 16GB
memory of our machine was fully consumed.

7.5 Successful Observations
When a program contains a bug, it is usually only triggered by a subset of test cases
(observations). Thus, we can split the set of all observations OBSA into a set of failed
observations OBSF and a set of successful observations OBSS where Eqs. (7.2) and (7.3)
hold.

OBSS ∩ OBSF = ∅ (7.2)

OBSS ∪ OBSF = OBSA (7.3)

The definition of the diagnosis problem for multiple observations Eq. (5.1) only considers
observations which make the system inconsistent, i.e., only OBSF . However, the question
arises if adding successful observations OBSS can improve result quality, i.e., lead to a
smaller result set.

Proposition 7.5.1. Adding successful observations to a diagnosis problem cannot
influence the diagnosis ∆ (=result set), i.e., cannot lead to a different diagnosis.
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In the following, we show informally that Proposition 7.5.1 holds. Our argument is based
on the trivial fact that an observation can only influence a diagnosis ∆ if it causes an
inconsistency. For the sake of contradiction, suppose a solution ∆1 (set of unhealthy
components) that restores consistency for a set OBSF causes an inconsistency with some
successful observation OBSi ∈ OBSS . This would mean that Eq. (7.4) holds.�

c∈COMP S

(h(c) =⇒ fc) ∧ OBSi ∧
�

c∈∆1

¬h(c) ∧
�

c∈COMP S\∆1

h(c) |= ⊥ (7.4)

However, since OBSi is a successful observation it must be consistent with all components
declared healthy Eq. (7.5).�

c∈COMP S

(h(c) =⇒ fc) ∧ OBSi ∧
�

c∈COMP S

h(c) ⊭ ⊥ (7.5)

If Eq. (7.5) holds then Eq. (7.4) trivially cannot hold, a contradiction.

In other words, we only havoc components of SD, i.e., SD becomes only weaker, thus
observations which are already consistent with all components are also consistent if any
component is havoced. However, note that in the recently published MBD algorithm
[ZOTZ23] successful observations are used in order to increase efficiency (runtime) of the
algorithm, according to the paper. Since no implementation was available we did not
confirm or measure the improvement.
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CHAPTER 8
Conclusion

Existing SFL methods for ANSI-C have limitations when it comes to the fault-model as
well as processing multiple observations efficiently. We evaluated the effects of different
design decisions concerning the model for each ANSI-C instruction type. With these
insights a novel fault-model that also considers complex instructions like pointers and
arrays was defined. We implemented our fault-model as a feature of the open-source
model-checker CBMC . Creating a standard instance of the MBD problem allows us to
deploy the recent MBD algorithm HSD which processes multiply observations effectively
as opposed to other currently available implementations of model-based SFL tools.

We demonstrated the advantages in terms of result sets due to the new fault-model
on hand-crafted examples in theory and confirmed them with our implementation also
experimentally. The enhanced fault-model - especially for arrays - allowed us to derive
meaningful results on all versions of the TCAS benchmarks while other existing tools
skip the versions containing array faults.

Furthermore, we argued about the benefits and necessity of processing multiple ob-
servations on hand-crafted examples, especially concerning the size of result sets. The
evaluation of our full implementation on the TCAS benchmark showed significant improve-
ments of the CSR, compared against other approaches, as well as against combination
of result sets of individual observations within our fault-model.

We proposed that adding successful observations cannot cause smaller result sets and
confirmed it informally. Based on the larger benchmark program schedule we elaborated
on the limitations of model-based SFL algorithms.

Future work could be devoted to implementing and evaluating further improvements in
the fault-model, e.g., implementing Decs. 3.b and 6.b (see Sections 4.2.4 and 4.2.5) or
conditionally simplified models for functions similar to fscanf as explained in Section 6.3.
In addition, newer MBD algorithms which claim improvements to HSD (e.g.: [ZOTZ23])
could be deployed and evaluated.
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