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Effective Material Modeling for Laminated Iron Cores
With a T , 8-8 Formulation

Valentin Hanser , Markus Schöbinger , and Karl Hollaus

Institute of Analysis and Scientific Computing, TU Wien, 1040 Vienna, Austria

In the effective medium theory, a material parameter of a heterogeneous structure is replaced by an effective material (EM). EMs
are based on physical observable values, such as eddy current losses (ECLs) and reactive powers (RPs), and are calculated a priori
using a meaningful part of the heterogeneous structure. An EM is derived from this cell problem using the physical variables, which
is then used in a simulation with a homogenized core, i.e., without taking the periodic structure into account. The results of this
simulation can then be used to determine the ECLs and RP of the machine or transformer with a laminated core. Furthermore,
the averaged ECL and RP density distributions can also be determined. For this work, a nonlinear magnetic material is used for
the simulation of a single-phase transformer. Compared with the reference simulations of the numerical example with a laminated
core, the novel approach with the homogenized core and the EM can dramatically reduce the demands on the computer structure,
whereby the ECLs as well as the RP and the corresponding averaged distributions are very well approximated.

Index Terms— Eddy currents, effective material, finite-element method, homogenization method, iron sheets, nonlinear material,
time-domain simulation.

I. INTRODUCTION

THIS work deals with the homogenization of nonlinear
magnetic materials in the context of an eddy current

problem (ECP) in electrical machines or transformers with
laminated cores by an effective material (EM). Laminated
cores are composed of insulated iron sheets in order to
minimize the eddy current losses (ECLs).

The theoretical background for non-oriented electrical steel
sheets modeled by the parametric magnetodynamic model for
hysteresis is discussed in [1]. The EM theory is a well-known
homogenization technique [2] for heterogeneous structures,
such as laminated iron cores [3].

Most homogenization techniques preserve the physical
nature of the problem [2]. For instance, an early study of the
ECLs in a single nonlinear sheet in one and two dimensions
is shown in [4]. A time-domain homogenization method of a
nonlinear laminated iron core is derived in [5] and applied
in a time-domain simulation. A homogenization technique
with an anisotropic material tensor for low frequencies is
derived in [6]. A rate-dependent finite-difference homogeniza-
tion approach, including hysteretic losses, is presented in [7]
for a 1-D example. Investigations of losses, using the Bertotti
model [8], in amorphous core transformers with an anisotropic
permeability are shown in [9]. A homogenization approach
for laminated ferromagnetic cores based on the heteroge-
neous multiscale method for nonlinear reversible and nonlinear
irreversible materials, in which upscaling and downscaling
steps are necessary to compute the material relation between
mesoscale and macroscale, is given in [10]. An investigation
of an equivalent circuit approach to model laminated cores
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Fig. 1. Single sheet for the reference CP (top) and the homogenized CP
(bottom) of total width d = d0 + dc .

is presented in [11]. Comparisons of different approximation
formulas to compute ECL and equivalent conductivities are
shown in [12].

In this work, an EM in the form of a complex-valued non-
linear permeability µeff(|H|) is used in a static magnetic field
problem (SMFP) instead of an ECP, while retaining the ECL
and the reactive power (RP) of the original ECP. Using an EM,
it is neither necessary to use a time-stepping scheme [4], [5],
[6], [7], [9], [10], [11], [12], [13], [14], [15], nor is it necessary
to use a harmonic balance method [15], [16]. Furthermore, the
novel method using the EM allows the laminated core in the
3-D problem to be considered as a bulk domain. These two
advantages enable an enormous reduction in computational
costs, especially in non-linear 3-D cases, while maintaining
the accuracy.

In Section II, the formulation of an ECP is derived using
the finite-element method (FEM) and applied to the 1-D cell
problem (CP). In comparison with [3], the solution is based not
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only on the fundamental frequency of the occurring fields, but
also takes into account harmonics of the fields using a time-
stepping method. Using the calculated ECL and RP of the
reference and the homogenized CP, an effective permeability
µeff(|H|), which is complex valued, is defined. In comparison
with a 3-D reference simulation with a laminated core, shown
in Section III, the EM is used in an SMFP, see Section IV.
In the simulation using the EM, the same quantities, namely,
the ECL and the RP in the steady state, can be approximated
accurately while reducing the computational costs enormously.
In Section V, the local distributions of the ECL and the
RP are determined and compared with the corresponding
distributions in the reference problem. Numerical examples
in Section VI, with sinusoidal and triangular excitation, for a
variety of geometry settings demonstrate the high accuracy and
the enormous reduction of computational costs of the novel
approach. Finally, the conclusions are given in Section VII.

II. CELL PROBLEM

The boundary value problem (BVP) of the 1-D CP, see
Fig. 1, is formulated to calculate the effective permeability
µeff(|H|). A single sheet of total width d = dc + d0, with
the width dc of the conducting sheet and the total width d0
of the insulating layer, is considered, which is excited by
H0 in tangential ez-direction. The resulting eddy currents J
are oriented in the ey-direction.

A. Eddy Current Problem

The BVP of the ECP is based on Maxwell’s equations

∇ × H = J, ∇ · B = 0 and ∇ × E = −∂t B (1)

where H is the magnetic field strength, B the magnetic flux
density, E the electric field, and J the eddy current density.
With the electric resistivity ρ and the magnetic permeability µ,
the constitutive relations are E = ρ J and B = µH . On this
base, the BVP

∇ × ρ∇ × H + ∂t (µH) = 0 in � (2a)
H × n = K 0 on 0H (2b)

where the excitation of the problem is given by Dirichlet
boundary values on the boundaries 0H ⊂ ∂�, is derived.

B. Weak Form

For the nonlinear 1-D reference CP, see Fig. 1 (top),
a single-component magnetic field strength H = H(x)ez with
the corresponding eddy current density J = −∂x H(x)ey is
applied. With an implicit Euler time-stepping scheme ∂t H ≈

(1/1t)(H − Ĥ), where the hat symbol denotes the values of
the previous time instant and 1t denotes the time step, the
BVP reads as follows:

Find H ∈ VD := {H ∈ U :H = H0(t) on ∂I}, such that∫
Ic

(
1tρc∂x H∂x H ′

+ µ(|H |)H H ′
)

dx

=

∫
Ic

µ̂
(
|Ĥ |

)
Ĥ H ′ dx in Ic (3a)

and ∫
I0

(
1tρ0∂x H∂x H ′

+ µ0 H H ′
)

dx

=

∫
I0

µ0 Ĥ H ′ dx in I0 (3b)

for all H ′
∈ V0, where I = [−d/2, d/2], Ic = [−dc/2, dc/2],

I0 = I\Ic, U ⊂ H 1(I), and ρ0 is a sufficiently large electric
resistivity in air. The test functions are denoted by the prime
symbol, and the excitation is given by the time-dependent
Dirichlet boundary values H0. The nonlinear permeability
µ(|H |) is treated according to [13].

C. ECLs and RP

For the calculation of the effective permeability µeff, the
ECLs P and the RP Q are required.

1) Reference Model: In the reference CP, the instantaneous
values of the ECL and the RP

p(t) =
1
d

∫
Ic

E J dx (4a)

q(t) =
1
d

∫
I

1
2T

H B dx (4b)

respectively, where the time period T = 1/ f is the inverse of
the frequency f , are calculated in every time instant. A set of
instantaneous ECLs and RPs is shown in Fig. 2. The curves
are based on the measured BH curve in Fig. 3 (blue) and are
obtained by sinusoidal excitation of different amplitudes Hp.
The twin peaks in the instantaneous ECL are a consequence
of the convex–concave nature of the nonlinear BH curve. The
nonlinear behavior is also visible in the non-sinusoidal curves
of the RP. In the steady state, i.e., H(t ′) = H(t ′

+ T ), the
average ECL and average RP

P =
1
T

∫ t ′
+T

t ′

p(t) dt (5a)

Q =
1
T

∫ t ′
+T

t ′

q(t) dt (5b)

are considered, respectively. Consequently, the apparent power
(AP)

Sref = P + j Q (6)

where j denotes the imaginary unit and the underline denotes
complex valued, is determined.

2) Homogenized Model: In the homogenized problem, an
SMFP is considered. In the specific case of the homogenized
1-D CP, see Fig. 1 (bottom), the magnetic field strength
H(x) = H0 is constant. With the constitutive relation B =

µeff H , the AP

Seff =
j

2T d
µ∗

eff

∫
I

H H∗ dx = j
H 2

0

2T
µ∗

eff (7)

where the superscript ∗ indicates the complex conjugate,
is determined analytically.
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Fig. 2. Instantaneous values of the ECLs p(t) (top) and the RP q(t) (bottom)
over time for a nonlinear material with H0 = Hp sin(ωt), Hp ∈ (0, 1624]

A/m, and f = 50 Hz.

Fig. 3. BH curves of an effective permeability µeff with an f = 50 Hz
sinusoidal excitation.

D. Calculation of the EM

The purpose of introducing the EM in an equivalent problem
with a homogenized core is to reproduce the ECL and the RP,
i.e.,

Sref = Seff or P + j Q = j
H 2

0

2T
µ∗

eff (8)

without the requirement of modeling the individual sheets.
Therefore, the effective permeability

µeff(H0) =
2T
H 2

0
( j P + Q) (9)

is derived. A resulting effective permeability based on a
measured BH curve (blue) for the reference problem with
sinusoidal excitation and a frequency f = 50 Hz is shown
as BH curves in Fig. 3.

III. THREE-DIMENSIONAL REFERENCE PROBLEM

In the 3-D reference problem, each sheet of the laminated
core is modeled in the mesh, see Fig. 4 (top). Using the T ,
8-8 formulation, the nonlinear BVP

∇ × (ρc∇ × T ) + ∂t (µ(T − ∇8))

= −∂t (µHBS) in �c (10a)
∇ · (µT − µ∇8) = −∇ · (µHBS) in �c (10b)

−∇ · (µ0∇8) = −∇ · (µ0 HBS) in �0 (10c)
T × n = 0 on 00c ∪ 0Hc (10d)

8 = 0 on 0H (10e)

with the current vector potential T , the magnetic scalar
potential 8, and a known Biot–Savart field HBS, is applied.
The interface between conducting domain and non-conducting
domain is denoted by 00c, and the far boundary and the
boundaries in the x = 0 plane and the y = 0 plane are denoted
by 0H = 0H0 ∪0Hc ⊂ ∂�. The solution of the BVP yields the
magnetic field strength H = T − ∇8 + HBS and the current
density J = ∇ × T + JBS, where JBS denotes the known
current density in the exciting coils [17].

A. Weak Form

Using the notation of (3) for the implicit Euler time-stepping
scheme and the test functions, the weak formulation reads as
follows.

Find (T , 8) ∈ VD := {(T , 8):T ∈ U , 8 ∈ V and T × n =

0 on 00c ∪ 0Hc , 8 = 0 on 0H }, such that

1t
∫

�c

ρ∇ × T · ∇ × T ′ d�

+

∫
�c

µ(|H|)(T − ∇8) ·
(
T ′

− ∇8′
)

d�

= −

∫
�c

(
µ(|H|)HBS − µ̂

(
|Ĥ|

)
ĤBS

)
·
(
T ′

− ∇8′
)

d�

+

∫
�c

µ̂
(
|Ĥ|

)(
T̂ − ∇8̂

)
·
(
T ′

− ∇8′
)

d� in �c (11a)

and∫
�0

µ0∇8 · ∇8′ d� =

∫
�0

µ0
(
HBS − ĤBS

)
· ∇8′ d�

+

∫
�0

µ0∇8̂ · ∇8′ d� in �0 (11b)

for all (T ′, 8′) ∈ V0, where U and V are finite-element
subspaces of H(curl, �c) and H 1(�), respectively [18].

B. Calculation of ECLs and RP

Analogously to (6), the ECLs and the RP in the steady state
are combined to the AP. Therefore, the instantaneous values
of the ECL and the RP

p(t) =
1

|�m |

∫
�c

E · J d� (12a)

q(t) =
1

|�m |

∫
�m

1
2T

H · B d� (12b)
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where �m denotes the domain of the laminated core, i.e., the
sheets including the insulating layers and |�m | its volume, are
used to calculate the averaged ECL P and the averaged RP
Q, see [5].

IV. PROBLEM WITH A HOMOGENIZED CORE AND EM

In order to approximate the averaged ECLs and the averaged
RP of the reference problem in Section III, the complex valued
equivalent SMFP

−∇ ·
(
µeff∇8

)
= −∇ · (µeff HBS) in �m (13a)

−∇ ·
(
µ0∇8

)
= −∇ · (µ0 HBS) in �0 (13b)

8 = 0 on 0H (13c)

with the nonlinear EM µeff is solved; see Fig. 4 (bottom).

A. Weak Form

The weak form of the equivalent BVP reads as follows.
Find 8 ∈ VD(�):{8 ∈ U :8 = 0 on 0H }, such that∫

�m

µeff
(∣∣H

∣∣)∇8 · ∇8′ d�

=

∫
�m

µeff
(∣∣H

∣∣)HBS · ∇8′ d� in �m (14a)

and ∫
�0

µ0∇8 · ∇8′ d� =

∫
�0

µ0 HBS · ∇8′ d� in �0

(14b)

for all 8′
∈ V0 and U ⊂ H1(�).

B. Reconstruction of ECL and RP

With the magnetic field strength H = −∇8 + HBS and
the magnetic flux density B = µeff H , the effective AP of the
homogenized core �m

Seff =
j

|�m |

∫
�m

1
2T

H · B∗ d� (15)

is calculated. To reconstruct the ECL and the RP, the AP is
separated by

Seff = P̃ + j Q̃ (16)

into the approximated ECL P̃ = Re(Seff) and the approx-
imated RP Q̃ = Im(Seff), where the tilde symbol indicates
values based on the EM.

V. COMPARISON OF THE LOSS DISTRIBUTIONS

The ECLs and the RP in the reference problem (6) and the
approximated ECL and RP in the homogenized problem (16)
are equivalent. Hence, the local ECL and RP distributions of
the reference problem averaged over one period in time and
averaged over every i th sheet in normal direction of the sheet,
here the z-direction,

pi (x, y) =
1
d

∫
dc,i

1
T

∫ t ′
+T

t ′

E · J dtdz (17a)

q i (x, y) =
1
d

∫
di

1
T

∫ t ′
+T

t ′

1
2T

H · B dtdz (17b)

Fig. 4. Geometry with exciting coils (blue) for the reference problem (top)
with individual sheets (red) and homogenized problem (bottom) with a bulk
medium (green); symmetries are utilized.

are equivalent to the corresponding fields in the homogenized
problem, respectively.

Based on the solution of the homogenized problem, the
averaged AP distribution in the i th sheet

s̃i (x, y) =
j
d

∫
di

1
2T

H · B∗ dz (18)

is determined, which can be separated into the ECL and RP
distribution

p̃i (x, y) = Re
(
s̃i (x, y)

)
(19a)

q̃i (x, y) = Im
(
s̃i (x, y)

)
(19b)

respectively.

VI. NUMERICAL EXAMPLE

A single-phase transformer is used as a numerical example.
The geometry of the laminated iron core is shown in Fig. 4
(top), where all symmetries are utilized. The dimensions x0 =

156 mm, x1 = 94 mm, x2 = 334.5 mm, y0 = 250 mm, y1 =

94 mm, y2 = 334.5 mm, and z2 = 334.5 mm are used. The
thickness of one conducting sheet is dc = 0.5 mm, the filling
factor kF = dc/(dc + d0) = 0.95, and the core is composed of
20 or 184 sheets. In order to emphasize the additional increase
in efficiency and to enable a comparison with the results
in [14] and [19], the reference simulations with 184 sheets
were carried out. The excitation of the problem is considered
by the Biot–Savart field of four symmetric cylindrical coils
with 60 turns each. The inner and outer radii of the coils
are, respectively, selected as ri,1 = 81 mm, ro,1 = 84 mm,
ri,2 = 88 mm, and ro,2 = 91 mm, and the length of the
coil as l = 192 mm. The electric conductivity of iron is
selected as σc = ρ−1

c = 2.08 · 106 S/m, and the frequency as
f = 50 Hz. The arrangement of the core with the coils exhibits
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TABLE I
ECLS AND RP (SINUSOIDAL EXCITATION)

TABLE II
COMPUTATIONAL COSTS (SINUSOIDAL EXCITATION)

three planes of symmetry. Handmade structured hexahedral
finite-element meshes are used. The same discretization by
finite elements in the xy plane are used for the reference model
and the model with the homogenized core to ensure a fair
comparison. One period of time is discretized in 200 instants.
The reference solution is computed to verify the results
obtained by the approach using the EM and is verified against
simulations with an A-formulation [15]. All simulations are
implemented using Netgen/NGSolve [20].

A. Sinusoidal Excitation

Simulations with different peak values of the sinusoidal
impressed current I0 are carried out. A comparison of the
ECLs and the RP between the reference problem and the
approach using the EM is summarized in Table I, where
a relative error εG = (GEM − GFEM)/(GFEM) · 100% for
G ∈ {P, Q} is calculated. The results show errors of the
novel homogenization method with the EM of around 3% for
all setups. The computational costs, given by the calculation
time tsim and the number of unknowns Ndof, and the speedup

Fig. 5. ECLs (top) and RP (bottom) scaled by I 2
0 over time for the 3-D

problem, excited with I0 ∈ {0.5, 1, 2, 3} A. Solid lines for the reference
problem, and dashed lines for the homogenized problem.

Fig. 6. Distribution of the ECLs p20(x, y) (17a) in the reference problem
(left) and p̃20(x, y) (19a) with the EM (right) model in the top most sheet
with 20 sheets and I0 = 1 A.

tsim,FEM/tsim,EM of all simulations are shown in Table II. The
speedup of the approach using the EM is around 10 000 for
20 sheets and around 70 000 for 184 sheets while retaining
a high accuracy of the ECL and the RP. In comparison, the
mixed-multiscale FEM presented in [14] and [19] achieves
only a speedup of around 10 for the given setups and is,
therefore, much slower. The instantaneous value of the ECL
and the RP (solid lines) and the corresponding approximated
ECL and the approximated RP (dashed lines) for 20 sheets and
different peak values of the exciting currents I0 are shown in
Fig. 5. Since the same BH curve is used as in the CP, twin
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Fig. 7. Distribution of the RP q20(x, y) (17b) in the reference problem (left)
and q̃20(x, y) (19b) with the EM (right) model in the top most sheet with
20 sheets and I0 = 1 A.

TABLE III
ECLS AND RP (DIFFERENT FILLING FACTORS)

peaks can also be recognized in the instantaneous ECL, and
non-sinusoidal curves can be seen in the instantaneous RP.

The distributions of the time and sheet averaged ECL (17a)
and (19a) and RP (17b) and (19b) are shown in Figs. 6 and 7,
respectively.

B. Influence of the Filling Factor

Simulations with different filling factors kF ∈

{0.5, 0.8, 0.9}, 20 sheets, and a peak value of the exciting
current of I0 = 1 A are carried out. As shown in Table III,
the simulations result in the errors εp = 2.2% and εQ = 3.1%
for the ECL and the RP, respectively, which are the same as
with the filling factor of kF = 0.95.

C. Non-Sinusoidal Excitation

In the previous examples, a sinusoidal excitation H0 was
selected. In real scenarios, higher harmonics also occur in
addition to the fundamental frequency. For simulations with
higher harmonics, the CP has to be excited by the correspond-
ing time-dependent excitation H0. The obtained EM is then
used according to Section IV to solve the 3-D approximation
problem. As an example, the triangular excitation H0 =

Hptriag(ωt), shown in Fig. 8, was selected as a non-sinusoidal
one. The resulting EM is shown as BH curves in Fig. 9. The
ECL and the RP of the 3-D problem with 20 sheets under
triangular excitation are compared in Table IV.

Fig. 8. Triangular excitation H0(t) = triag(ωt) as an example of a non-
sinusoidal one.

Fig. 9. BH curves of an effective permeability µeff with an f = 50 Hz
triangular excitation.

TABLE IV
ECLS AND RP (NON-SINUSOIDAL EXCITATION)

VII. CONCLUSION

A novel method for accurately calculating the ECLs and RP
in laminated magnetic cores through the use of an EM was
introduced. This method significantly reduces computational
costs while maintaining high accuracy. A complex-valued
SMFP for the homogenized core was formulated, which elimi-
nates, on the one hand, the need for time-stepping or harmonic
balance methods and, on the other hand, the need to model
each individual sheet separately.

Simulations of 3-D cores demonstrated that the EM
approach yields robust results with errors around 3% for
both ECL and RP across various setups, including different
saturation levels of the material with sinusoidal and triangu-
lar excitation currents, different filling factors and different
numbers of sheets. The method also shows exceptional compu-
tational efficiency, with a speedup of approximately 10 000 for
20 sheets and around 70 000 for 184 sheets when compared
with conventional FEM simulations.

The local distributions of ECL and RP were found to be
in excellent agreement with the corresponding distributions in
the reference problems, confirming the method’s accuracy and
applicability.
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In conclusion, the proposed EM-based homogenization
technique offers a powerful and efficient tool for analyz-
ing magnetic cores in electrical machines and transformers.
It enables substantial reductions in computational costs while
delivering precise estimations of the ECL and the RP,
making it highly beneficial to both research and industrial
applications.
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