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Abstract. We consider selfadjoint operators obtained by pasting a finite
number of boundary relations with one-dimensional boundary space.
A typical example of such an operator is the Schrödinger operator on a
star-graph with a finite number of finite or infinite edges and an interface
condition at the common vertex. A wide class of “selfadjoint” interface
conditions, subject to an assumption which is generically satisfied, is
considered. We determine the spectral multiplicity function on the sin-
gular spectrum (continuous as well as point) in terms of the spectral
data of decoupled operators.
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1. Introduction

In this paper we analyze the singular spectrum of a selfadjoint operator built
by gluing together a finite number of selfadjoint operators with simple spec-
trum by means of interface conditions. We realize the operators with help
of boundary triplets, and understand interface conditions as linear depen-
dencies among boundary values. An archetypical example for such a glued
together operator is a Schrödinger operator on a star-graph with an interface
condition at the inner vertex.

The reader who is not familiar with the language of boundary triplets
and couplings of such (e.g. [2,4]), is advised to pause for a moment, and before
proceeding here read through Section 1.1 below in order to get an intuition;
there we elaborate in detail the above mentioned example. We also point
out that all necessary notions and results from the literature are recalled in
Sect. 2.
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Assume we have selfadjoint operators Ll, l = 1, . . . , n, in Hilbert spaces
Hl, l = 1, . . . , n, that emerge from boundary relations with one-dimensional
boundary value space (cf. Sect. 2.3). Denote by L0 the orthogonal coupling,
i.e., the diagonal operator, L0 :=

∏n
l=1 Ll acting in H :=

∏n
l=1 Hl. The

spectrum of L0 and its multiplicity is easily understood: letting Nl and N0

be the respective spectral multiplicity functions of Ll and L0, it holds that
N0 =
∑n

l=1 Nl. Here—and always—we tacitly understand that any relation
between spectral multiplicity functions should be valid only after making an
appropriate choice of representants for each of them.

The orthogonal coupling can be seen as gluing together the single opera-
tors without allowing any interaction between them. Much more interesting is
what happens when the single operators do influence each other after gluing.
Assume we have an interface condition, formulated as a linear dependence
among boundary values and described by matrices A,B (cf. Sect. 2.4), such
that the corresponding operator LA,B is selfadjoint, and let NA,B be the
spectral multiplicity function of LA,B . The basic question is:

How to compute NA,B from Nl, l = 1, . . . , n ?
By a simple dimension argument, it always holds that NA,B(x) ≤ n. Further,
the Kato-Rosenblum theorem fully settles the question on the absolutely con-
tinuous part of the spectrum: there we have NA,B(x) = N0(x) since LA,B and
L0 are finite rank perturbations of each other in the resolvent sense. Con-
trasting this, the singular spectrum (eigenvalues as well as singular continuous
part) may behave wildly, and much less is known.

A classical result for the case that n = 2 is Kac’s Theorem [11,12], which
says in the present language that for a particular interface condition, namely
the standard condition, the multiplicity of the singular spectrum does not
exceed 1. His proof proceeds via an analysis of the Cauchy transforms of the
involved spectral measures and the Titchmarsh-Kodaira formula. Different
proofs are given in [7] (by using subordinacy theory) and in [21] (by reducing
to the Aronszajn-Donoghue Theorem). Generalizations of the theorem of Kac
are given in [22] and in [16]. In the first reference, we allow arbitrary n but
still prescribe the standard interface condition. The second reference goes
into another direction. There still n = 2 but the boundary value spaces are
allowed to have higher dimensions and a certain class of interface conditions
is permitted.

In the present paper we allow arbitrary n and consider a fairly rich class
of interface conditions defined by an algebraic property (cf. Sect. 3). This
property expresses, at least in some sense, that all single operators influence
each other and no splitting into independent blocks happens, though one
has to be careful with this intuition, it is only very rough. The previously
considered standard condition belongs to that class. A striking difference
is that interface conditions of the presently considered class can give rise to
perturbations of any rank up to n, while the standard condition always yields
a rank one perturbation. Our main result says that, letting r be the rank of



IEOT Local Spectral Multiplicity of Selfadjoint Couplings Page 3 of 35 18

the perturbation, on the singular spectrum the relation

NA,B(x)

{
= N0(x) − r if N0(x) ≥ r,

≤ r − N0(x) if N0(x) < r,
(1.1)

holds. A formulation in terms of spectral measures, and without reference
to a particular choice of representants of multiplicity functions, is given in
Theorem 4.3. The proof of the theorem is carried out by an in depth analy-
sis of Cauchy integrals and the matrix measure in the Titchmarsh-Kodaira
formula. We exploit algebraic properties of the considered class of interface
conditions to obtain the rank of the derivative of that matrix measure w.r.t.
its trace measure, and this leads to (1.1).

Other approaches to the above emphasised basic question might proceed
via the already mentioned work of M.Malamud [16], or via a generalization
of Aronzsajn-Donoghue’s theorem given by C.Liaw and S.Treil in [15]. To the
best of our knowledge, no such results have been obtained so far using these
approaches.

The present paper is organized as follows. In Sect. 2 we introduce ob-
jects and tools needed to formulate and prove our result. In particular, these
include boundary relations, pasting of such with selfadjoint interface condi-
tions, matrix-valued Weyl functions and corresponding measures. In Sect. 3
we discuss in detail the class of selfadjoint interface conditions that we con-
sider, namely, their description in terms of matrices A, B and the additional
assumption that we make about them. In Sect. 4 we give the statement of
the main result, Theorem 4.3. Before that we formulate the result separately
for the case of point spectrum, Theorem 4.1, since this can be shown under
slightly weaker assumptions. In Sect. 5 we prove Theorem 4.1. In Sect. 6 we
prove the part of Theorem 4.3 concerning the case where many layers of the
spectrum “overlap”. In Sect. 7 we prove the remaining part of Theorem 4.3.

1.1. The Schrödinger Operator on a Star-Graph

Let us discuss, as an example, the Schrödinger operator on a metric star-
graph. In fact, this example can serve as a model for the general case. We
denote the edges of the graph by E1, . . . , En and associate them with intervals
[0, el), where the endpoint 0 corresponds to the inner vertex and el can be
finite or infinite. Assume we are given data:
(1) Real-valued potentials ql ∈ L1,loc([0, el)) for l = 1, . . . , n.
(2) Boundary conditions at el for those l = 1, . . . , n, for which ql is regular

or is in the limit point case at el.
For l = 1, . . . , n let Hl be the Hilbert space L2(0, el), and let Ll be the
selfadjoint Schrödinger operator with Dirichlet boundary conditions:

Llu := −u′′ + qlu,
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dom Ll :=

{

u ∈ L2(0, el) : u, u′ are absolutely continuous,

− u′′ + qlu ∈ L2(0, el), u(0) = 0,

u satisfies the boundary condition atel(if present)

}

.

Now assume we have an interface condition at the inner vertex written in the
form

A

⎛

⎜
⎝

u1(0)
...

un(0)

⎞

⎟
⎠+ B

⎛

⎜
⎝

u′
1(0)
...

u′
n(0)

⎞

⎟
⎠ = 0, (1.2)

where A and B are n × n matrices such that

AB∗ = BA∗, rank (A,B) = n. (1.3)

Here (A,B) denotes the n×2n matrix which has A as its first n columns and
B as its last n columns. The operator LA,B is defined in the Hilbert space
H :=
∏n

l=1 L2(0, el) and acts by the rule

LA,B

⎛

⎜
⎝

u1

...
un

⎞

⎟
⎠ :=

⎛

⎜
⎝

−u′′
1

...
−u′′

n

⎞

⎟
⎠+

⎛

⎜
⎝

q1u1

...
qnun

⎞

⎟
⎠ (1.4)

on the domain

dom LA,B :=

{

(u1, . . . , un) ∈
n∏

l=1

L2(0, el) : ∀l ∈ {1, . . . , n}

ul, u
′
l are absolutely continuous, −u′′

l + qlul ∈ L2(0, el),

ul satisfies the boundary condition at el (if present),

u1, . . . , un satisfy the interface condition (1.2)

}

.

(1.5)

Since the matrices A and B satisfy (1.3), the operator LA,B is selfadjoint
[14]. Obviously, this correspondence between matrices and operators is not
one-to-one: one can multiply A and B simultaneously from the left by any
invertible matrix, and this defines the same interface condition and the same
operator.

The orthogonal coupling L0 :=
∏n

l=1 Ll corresponds to the matrices
A0 = I, B0 = 0: in the above notation L0 = LI,0. The standard interface
condition corresponds to the matrices

Ast =

⎛

⎜
⎜
⎜
⎝

1 . . . 0 −1
...

. . .
...

...
0 . . . 1 −1
0 . . . 0 0

⎞

⎟
⎟
⎟
⎠

, Bst =

⎛

⎜
⎜
⎜
⎝

0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
1 . . . 1 1

⎞

⎟
⎟
⎟
⎠

(1.6)
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where the first n−1 lines express continuity of the solution at the vertex, and
the last line corresponds to the Kirchhoff condition that the sum of derivatives
vanishes. The class of interface conditions we consider in the present paper
is given by those matrices A,B subject to (1.3) which satisfy in addition
the following assumption: each set of rankB many different columns of B
is lineary independent. Under this assumption the rank of the difference of
resolvents of LA,B and L0 equals rankB, and (1.1) holds.

2. Preliminaries

2.1. Boundary Behavior of Herglotz Functions

Recall the notion of matrix valued Herglotz functions (often also called Nevan-
linna functions).

2.1 Definition. An analytic function M : C \ R → C
n×n is called a (n × n-

matrix valued) Herglotz function, if
(H1) M(z) = M(z)∗, z ∈ C \ R.
(H2) For each z ∈ C

+, the matrix ImM(z) := 1
2i (M(z)−M(z)∗) is positive

semidefinite.

Any Herglotz function M admits an integral representation. Namely, there
exists a finite positive n×n-matrix valued Borel measure Ω (which means that
Ω(Δ) is a positive semidefinite matrix for every Borel set Δ), a selfadjoint
matrix a, and a positive semidefinite matrix b, such that

M(z) = a + bz +
∫

R

1 + xz

x − z
dΩ(x), z ∈ C \ R. (2.1)

For the scalar case, this goes back to [10], for the matrix valued case see, e.g.,
[8, Theorem 5.4].

We use several known facts about the boundary behavior of Herglotz
functions which relate normal or nontangential boundary limits to the mea-
sure Ω in (2.1). The key notion in this context is the symmetric derivative
of one measure relative to another. If σ is a positive Borel measure and ν is
a positive Borel measure or a complex Borel measure absolutely continuous
w.r.t. σ, then we define the symmetric derivative dν

dσ (x) at a point x ∈ R as
the limit

dν

dσ
(x) := lim

ε→0+

ν([x − ε, x + ε])
σ([x − ε, x + ε])

,

whenever it exists in [0,∞], or in C, respectively.

2.2 Proposition. ([5]) There exists a Borel set X ⊆ R with σ(R \ X) = 0,
such that the symmetric derivative exists for all x ∈ X and the function dν

dσ
is measurable on X.

By the de la Valleé–Poussin theorem [5,20] the function dν
dσ is a Radon–

Nikodym derivative of ν with respect to σ. We formulate two corollaries of
the de la Valleé–Poussin theorem which will be of particular convenience to
us in what follows. An explicit proof can be found in [22].



18 Page 6 of 35 S. Simonov, H. Woracek IEOT

The first corollary concerns properties of sets. A set X ⊆ R is called
ν-zero, if there exists a Borel set X ′ ⊇ X such that ν(X ′) = 0; a set is called
ν-full, if its complement is ν-zero. For a Borel set X the measure 1X · ν is
defined as (1X · ν)(Δ) = ν(X ∩ Δ) on Borel sets Δ.

2.3 Corollary. Let ν and σ be positive Borel measures, and let X ⊆ R.

(1) If dν
dσ (x) = 0 for all x ∈ X, then X is ν-zero.

(2) If the set X is ν-zero, then dν
dσ (x) = 0 for σ-a.a. x ∈ X.

(3) If X is a Borel set and dν
dσ (x) ∈ [0,∞) for all x ∈ X, then 1X · ν 
 σ.

(4) If X is a Borel set and dν
dσ (x) ∈ (0,∞) for all x ∈ X, then 1X ·ν ∼ 1X ·σ.

The second corollary concerns properties of the symmetric derivative.

2.4 Corollary. Let ν and σ be positive Borel measures on R. Let ν = νac + νs

and σ = σac + σs be the Lebesgue decompositions of ν with respect to σ and
of σ with respect to ν, respectively. Then

(1) dν
dσ (x) ∈ [0,∞), σ-a.e.

(2) dν
dσ (x) ∈ (0,∞], ν-a.e.

(3) dν
dσ (x) ∈ (0,∞), νac-a.e. and σac-a.e.

(4) dν
dσ (x) = ∞, νs-a.e.

(5) dν
dσ (x) = 0, σs-a.e.

The following statements concern the relationship between boundary
behavior of Herglotz functions and symmetric derivatives of the measures
associated with them.

2.5 Proposition. ([11,17–19])

(1) Let ν and σ be finite positive Borel measures and x ∈ R. Assume that
dν
dσ (x) exists in [0,∞) and dσ

dλ (x) exists in (0,∞]. Let mν and mσ be
two Herglotz functions with the measures ν and σ, respectively, in their
integral representations (2.1). Then

lim
z↓x

Im mν(z)
Im mσ(z)

=
dν

dσ
(x).

(2) Let ν be a finite positive Borel measure, let mν be a Herglotz function
with the measure ν in its integral representation, and let x ∈ R. If
dν
dλ (x) = ∞, then

lim
z↓x

Im mν(z) = ∞.

(3) Let ν and σ be finite positive Borel measures with ν 
 σ, and let σs

be the singular part of σ w.r.t. λ. Again let mν and mσ be two Her-
glotz functions with ν or σ, respectively, in their integral representations.
Then

lim
z↓x

mν(z)
mσ(z)

=
dν

dσ
(x) for σs-a.a. x ∈ R.
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Note that in (1) we can use dσ := dλ
1+x2 , which implies

lim
z↓x

Im mν(z) = π(1 + x2)
dν

dλ
(x)

whenever dν
dλ (x) exists and is finite.

For a more detailed compilation and references about symmetric deriva-
tives and boundary values we refer the reader to [22, §2.3 and §2.4].

Item (1) of the above theorem has an obvious extension to matrix valued
functions and measures.

2.6 Lemma. Let M be a n × n-matrix valued Herglotz function and let Ω be
the measure in its integral representation (2.1). Denote by ρ the trace measure
of Ω, i.e., ρ(Δ) := tr Ω(Δ) for every Borel set Δ. Then Ω 
 ρ, and for ρ-a.a.
x ∈ R the symmetric derivative dΩ

dρ (x) exists and is related to M by

lim
z↓x

Im M(z)
Im tr M(z)

=
dΩ
dρ

(x). (2.2)

Proof. Let x ∈ R, and assume that all symmetric derivatives at x of positive
and negative parts of the real and the imaginary parts of entries of Ω w.r.t.
ρ exist and are finite. This is fulfilled for ρ-a.a. x ∈ R.

We have M(z̄) = M(z)∗ and hence

Im M(z) =
1
2i

(
M(z) − M(z)∗) =

1
2i

(
M(z) − M(z̄)

)

= b Im z +
∫

R

Im
(1 + xz

x − z

)
dΩ(x).

Hence, using linearity of the integral in the measure, Proposition 2.5, (1),
and Corollary 2.4, (1),(2), we obtain

lim
z↓x

Im Mkl(z)
Im tr M(z)

=
dΩkl

dρ
(x) for ρ-a.a. x ∈ R, k, l = 1, . . . n.

�

2.2. Spectral Multiplicity

Let L be a selfadjoint operator in a Hilbert space H and EL be its projection
valued spectral measure. A subspace G of H is called generating, if

cls
(⋃

{EL(Δ)G : Δ Borel set}
)

= H.

The minimum of dimensions of generating subspaces is called the (global)
spectral multiplicity of operator L and is denoted by multL.

The operators that we deal with always have finite spectral multiplicity,
hence we shall assume from now on that mult L < ∞. There exist elements
g1, . . . , gmult L ∈ H, such that their linear span is a generating subspace and
the positive measures

νl(Δ) := (EL(Δ)gl, gl), l = 1, . . . ,mult L, (2.3)

are ordered in the sense of absolute continuity as

νmult L 
 · · · 
 ν1 ∼ EL.
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An element g1 occuring in a collection of elements with these properties is
called an element of maximal type.

Fix a choice of such elements g1, . . . , gmult L. Then the operator L is
unitarily equivalent to the operator of multiplication by the independent
variable in the space

∏mult L
l=1 L2(R, νl). We choose Borel sets Y1, . . . , Ymult L

such that

Ymult L ⊆ . . . ⊆ Y1, νl(R \ Yl) = 0, 1Yl
· νl ∼ 1Yl

· ν1,

and define the (local) spectral multiplicity function of L as the equivalence
class (i.e., functions which are EL-a.e. equal) of the function

NL(x) := #
{
l : x ∈ Yl

}
. (2.4)

The need of considering an equivalence class of functions arises since the
sets Yl are defined non-uniquely up to ν1-zero sets and thus the function
#{l : x ∈ Yl} can be changed on ν1-zero sets.

Intuitively, the sets Yl correspond to the “layers” of the spectrum, and
hence indeed NL expresses spectral multiplicity in a natural way. If x is an
eigenvalue of L, then NL(x) = dimker (L − xI) is the usual multiplicity of
an eigenvalue.

The spectral multiplicity function is a unitary invariant of the operator
and does not depend on a choice of generating basis.

2.7 Remark. We will also speak of the spectral multiplicity function of a
selfadjoint linear relation L in a Hilbert space H. This notion is defined by
simply ignoring the multivalued part (and doing so is natural, since one can
think of the multivalued part as an eigenspace for the eigenvalue ∞). To be
precise, let mul L := {g ∈ H : (0; g) ∈ L}. Then

Lop := L ∩ ((mul L)⊥ × (mul L)⊥)

is a selfadjoint operator (recall that we identify operators with their graphs)
in the Hilbert space (mul L)⊥, and L = Lop ⊕ ({0} × mul L). Now we define
NL := NLop

.

The following classical fact will be used below.

2.8 Lemma. Let L1 and L2 be selfadjoint relations in Hilbert spaces H1 and
H2, respectively, with finite multiplicities. Set H := H1⊕H2 and L := L1⊕L2.
Let μ = (EL1f, f) ∼ EL1 , ν = (EL2g, g) ∼ EL2 be scalar measures defined by
elements of maximal type f for L1 and g for L2 via (2.3). Let

μ = μac + μs, ν = νac + νs

be the Lebesgue decompositions of the measures μ, ν with respect to each
other: μac 
 ν, μs ⊥ ν; νac 
 μ, νs ⊥ μ, μac ∼ νac. Then

NL = NL1 , μs-a.e.,
NL = NL1 + NL2 , μac-a.e. and νac-a.e.,
NL = NL2 , νs-a.e.
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Consider the measure μ + ν and the sets

X1 :=
{

x ∈ R :
dμ

d(μ + ν)
(x) > 0

}

, X2 :=
{

x ∈ R :
dν

d(μ + ν)
(x) > 0

}

,

Then the sets X1 \X2, X1 ∩X2 and X2 \X1 carry the measures μs, μac ∼ νac

and νs, respectively. We can see that caution is needed when dealing with
local spectral multiplicities: the values of function NL2 have no meaning on
the set X1 \ X2 and can be changed arbitrarily there, the same for NL1 on
X2 \X1. So the statement NL = NL1 +NL2 , looking natural, is in fact wrong:
the functions NL1 and NL2 are defined non-uniquely, each in its own sense.

The next lemma is a general and folklore-type result for the behavior
of local spectral multiplicity of an operator under finite-dimensional pertur-
bation generalized to the linear relations case. We do not know an explicit
reference for it, and for the reader’s convenience we provide its proof.

2.9 Lemma. Let L1 and L2 be selfadjoint relations in the Hilbert space H
such that for (some ⇔ every) λ ∈ C \ R

rank
[
(L1 − λI)−1 − (L2 − λI)−1

]
= k.

Let E1, E2 be projection valued spectral measures of their operator parts, μ =
(EL1f, f) ∼ EL1 , ν = (EL2g, g) ∼ EL2 be scalar measures defined by elements
of maximal type f for L1 and g for L2 via (2.3) and N1, N2 be their local
spectral multiplicity functions. Let

μ = μac + μs, ν = νac + νs

be Lebesgue decompositions of the measures μ, ν with respect to each other:
μac 
 ν, μs ⊥ ν; νac 
 μ, νs ⊥ μ, μac ∼ νac. Then
(1) N1 � k, μs-a.e.,
(2) |N1 − N2| � k, μac-a.e. and νac-a.e.,
(3) N2 � k, νs-a.e.

Proof. Consider the symmetric linear relation S := L1 ∩L2 (recall once more
that we identify operators with their graphs). It has an orthogonal decomposi-
tion into a selfadjoint and a simple (i.e., completely nonselfadjoint) symmetric
part. The first, a selfadjoint linear relation L, acts in the subspace

HL :=
⋂

λ∈C\R
ran(S − λI).

The second, a simple symmetric operator S̃, acts in the subspace

H̃S := cls
( ⋃

λ∈C\R
ker(S∗ − λI)

)
.

The subspaces HL and H̃S reduce the relations S, L1, L2, and S∗, see [2,
Lemma 3.4.2], and S = L ⊕ S̃. Thus L1 and L2 have orthogonal decomposi-
tions

L1 = L ⊕ L̃1, L2 = L ⊕ L̃2,

where the linear relations L̃1 and L̃2 are selfadjoint extensions of S̃.
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Consider λ ∈ C \ R and the subspace

Hλ := ker
[
(L1 − λI)−1 − (L2 − λI)−1

]
.

We have: for every v ∈ Hλ

u := (L1 − λI)−1v = (L2 − λI)−1v,

hence (u; v) ∈ (L1 − λI) ∩ (L2 − λI) = S − λI and v ∈ ran(S − λI). The
converse is also true, and therefore

Hλ = ran(S − λI).

By assumption the subspace Hλ has codimension k, hence the deficiency
index of S is (k, k). The deficiency index of S̃ coincides with that of S and
hence is (k, k). Then spectral multiplicities of both relations L̃1 and L̃2 do
not exceed k, because defect subspaces of simple symmetric operators are
generating subspaces for the operator parts of their selfadjoint extensions.

The rest follows from Lemma 2.8. One should write out the “triple”
Lebesgue decomposition for scalar spectral measures of maximal type of L,
L̃1 and L̃2 w.r.t. each other and count the differences of multiplicities a.e
with respect to each part according to Lemma 2.8; we skip the details. �

2.3. Boundary Relations and the Titchmarsh–Kodaira Formula

Using the abstract setting of boundary relations leads to a unified approach to
the spectral theory of many concrete operators. A recent standard reference
for this theory is [2]; we shall sometimes also refer to [3]. Let us now recall
some basic facts used in the present paper.

2.10 Definition. Let H and B be Hilbert spaces, S be a closed symmetric
linear relation in H and Γ be a linear relation from H2 to B2 (i.e., Γ ⊆
H2 ×B2). Then Γ is called a boundary relation for S∗, if the following holds.
(BR1) The domain of Γ is contained in S∗ and is dense there.
(BR2) For all ((f ; g); (a; b)), ((f ′; g′); (a′; b′)) ∈ Γ the abstract Green’s iden-

tity holds:

(g, f ′)H − (f, g′)H = (b, a′)B − (a, b′)B .

(BR3) The relation Γ is maximal with respect to the properties (BR1) and
(BR2).

If mul Γ∩ ({0}×B
)

= {0}, then we say that Γ is of function type. If mul Γ =
{(0; 0)}, then Γ is called a boundary function.

In what follows we consider only boundary relations with B = C
n. In

this case it is known that deficiency indices of S are equal and the domain of Γ
is equal to S∗. If additionally mul Γ = {(0; 0)}, then Γ is a bounded operator
from S∗ to C

2n which can be written in the form Γ = (Γ1,Γ2), Γi : S∗ → C
n,

i = 1, 2, and then the collection (Cn; Γ1,Γ2) is called an (ordinary) boundary
triplet for S∗.

For the case of a boundary triplet (Cn; Γ1,Γ2) for S∗ symmetric and
selfadjoint extensions of S can be described in a neat way. To this end in-
troduce the indefinite scalar product [·, ·] on C

n × C
n defined by the Gram
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operator

JCn := i

(
0 ICn

−ICn 0

)

.

Explicitly, this is
[
(a; b), (a′; b′)

]
:= i
(
(b, a′)Cn − (a, b′)Cn

)
.

Then symmetric extensions A ⊆ H × H of S correspond bijectively to [·, ·]—
neutral subspaces θ ⊆ C

n×C
n by means of the inverse image map Γ−1. In this

correspondence A is selfadjoint if and only if θ is a maximal neutral subspace
(equivalently, θ is neutral and dim θ = n). Such subspaces are sometimes also
called Lagrange planes, e.g., [9]. One has S = ker Γ and the induced linear
operator Γ̃ on the quotient linear space S∗/S is its linear isomorphism with
C

2n. In the general case of a boundary relation Γ there is a linear isomorphism
between the quotient spaces S∗/S = dom Γ/ ker Γ and ran Γ/mul Γ.

2.11 Definition. Let Γ be a boundary relation. The map M which assigns to
a point z ∈ C \ R the linear relation

M(z) :=
{
(a; b) ∈ C

n × C
n : ∃ f ∈ H with

(
(f ; zf); (a; b)

) ∈ Γ
}

is called the Weyl family of Γ.

The Weyl family M of a boundary relation of function type (where B = C
n) is

a n×n-matrix-valued Herglotz function, and is also called the Weyl function.
The Weyl family of a boundary relation is intimitely related to the

spectral theory of selfadjoint extensions of S, specifically, to the spectrum of
the selfadjoint (see [3, Proposition 4.22]) relation

L := ker
[
π1 ◦ Γ
]
, (2.5)

where π1 : C
n × C

n → C
n is the projection onto the first component

π1((a; b)) := a. In the case of a boundary triplet (Cn; Γ1,Γ2) we have L =
ker Γ1. Since the Weyl family comprises the information given by defect el-
ements, naturally, a selfadjoint part of S (including its multivalued part)
cannot be accessed using M(z). For this reason a statement about spectrum
can only be expected for boundary relations of simple symmetric linear rela-
tions (which therefore are operators, but may be nondensely defined, so that
their adjoint may be a multivalued linear relation). A cornerstone in Weyl
theory is the Titchmarsh–Kodaira formula. We give a formulation which is in
fact a generalization of the Titchmarsh–Weyl–Kodaira theory [13,23,24] for
one-dimensional Schrödinger operators to the abstract setting of boundary
relations.

2.12 Theorem. (Titchmarsh–Kodaira formula) Let S be a closed simple sym-
metric linear relation in a Hilbert space H and Γ ⊆ H2 × C

2n be a bound-
ary relation of function type for S∗. Consider the selfadjoint extension L :=
ker[π1 ◦ Γ] of S. Moreover, let M be the Weyl function associated with Γ, let
Ω be the measure in the Herglotz integral representation of M , and let ρ be
its trace measure ρ := tr Ω.
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Then the operator part of L is unitarily equivalent to the operator of
multiplication by independent variable in the space L2(R,Ω). The spectral
multiplicity function NL of L is given as

NL(x) = rank
dΩ
dρ

(x) for ρ-a.a. x ∈ R. (2.6)

2.4. Pasting of Boundary Relations

In this subsection we describe what we understand by a pasting of boundary
relations by means of interface conditions. For more details on operations with
boundary relations we refer the reader to [2] or [22, §3]. We restrict ourselves
to pastings of relations from a particular simple class (B = C), however the
construction that we use would also make sense in a more general case.

We use the word pasting in two meanings: for boundary relations Γl and
for selfadjoint linear relations Ll = ker[π1 ◦ Γl]. For the former a pasting is
obtained from a fractional linear transform w of Γ0 =

∏n
l=1 Γl, where the

matrix w is J-unitary and is constructed in a non-unique way from matrices
A and B which determine the interface condition. For the latter the pasting
is uniquely determined by A and B.

We consider the following setting.

(D1) Let n ≥ 2 and for l ∈ {1, . . . , n} let either Hl be a Hilbert space, Sl

a simple closed symmetric linear relation in Hl with deficiency index
(1, 1) (which is hence an operator, possibly not densely defined), Γl ⊆
H2

l ×C
2 a boundary relation of function type for S∗

l and Ll = ker[π1 ◦
Γl] a selfadjoint linear relation, or (an artificial edge) Hl = {0}, Sl =
Ll = S∗

l = {(0; 0)}, and Γl = {0}2 × mul Γl ⊆ {0}2 × C
2. We assume

that for at least one l we do not have an artificial edge.
(D2) Denote H :=

∏n
l=1 Hl, S :=

∏n
l=1 Sl, Γ0 :=

∏n
l=1 Γl and L0 :=∏n

l=1 Ll.
(D3) Let A,B ∈ C

n×n be such that AB∗ = BA∗ and rank(A,B) = n.

Note that our assumptions in (D1) imply that boundary relations Γl

which are not boundary functions must be artificial. Namely, if mul Γl �= {0}2,
then by a dimension argument we must have Hl = {0} and Γl = {0}2 ×
{(a;mla), a ∈ C} with some constant ml ∈ R serving as Weyl function.
Allowing such degenerate cases has meaningful applications: in [22] using
a construction with an artificial edge we showed that Aronszajn–Donoghue
result [1,6] can be deduced from the result of that work (these results actually
imply each other).

We see that S is a simple closed symmetric linear relation in H with
deficiency index at most (n, n), and

Γ0 =
{(

(f ; g); (a; b)
) ∈ H2×(Cn×C

n) :
(
(fl; gl); (al; bl)

) ∈ Γl, l = 1, . . . , n
}

is a boundary relation for S∗. The Weyl family of Γ0 is given as the diagonal
relation M0 = diag(m1, . . . ,mn), where ml are Weyl functions of boundary
relations Γl or the real constants associated with artificial edges, respectively.
Since Γl are of function type, so is Γ0, and M0 is a diagonal matrix function.
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Obviously

L0 = ker[π1 ◦ Γ0],

and we think of L0 as the uncoupled selfadjoint relation.
In order to model interaction between the boundary relations Γ1, . . . ,Γn,

one can use fractional linear transforms defined by JCn-unitary matrices w.
Recall here that a matrix w ∈ C

2n×2n is called JCn-unitary, if w∗JCnw = JCn .
Also note that w is JCn-unitary if and only if w∗ is:

w∗JCnw = JCn ⇔ w∗(iJCn) · w(iJCn) = ICn

⇔ w(iJCn) · w∗(iJCn) = ICn ⇔ wJCnw∗ = JCn .

Given matrices A,B which satisfy (D3) we can construct a JCn-unitary ma-
trix w ∈ C

2n×2n with A and B used as upper blocks. The following result is
of a folklore kind, however, for completeness we provide its proof.

2.13 Lemma. Let A,B ∈ C
n×n be given. There exist C,D ∈ C

n×n such that
the matrix

w :=
(

A B
C D

)

(2.7)

is JCn-unitary, if and only if AB∗ = BA∗ and rank(A,B) = n.

Proof. Multiplying out the product wJCnw∗, shows that w is JCn-unitary if
and only if the four equations

BA∗ − AB∗ = 0, DA∗ − CB∗ = ICn , BC∗ − AD∗ = −ICn ,

DC∗ − CD∗ = 0, (2.8)

hold.
The backwards implication readily follows: if we find C and D such

that (2.7) is JCn-unitary, then BA∗ = AB∗ and ker[(A,B)∗] = {0}. In order
to show the forward implication, assume that A and B satisfy these two
conditions. Then the matrix

X := AA∗ + BB∗ = (A,B)
(

A∗

B∗

)

is positive definite. Set C := −X−1B and D := X−1A. Then all four relations
in (2.8) are fulfilled. �

Given w of the form (2.7), consider the relation

Γw := w ◦ Γ0 =
{(

(f ; g); (Aa + Bb;Ca + Db)
)

:
(
(f ; g); (a; b)

) ∈ Γ0

}
.

One can show that Γw is a boundary relation for S∗ and that the Weyl family
of Γw is

Mw(z) =
{

(Aa + Bb;Ca + Db) : (a; b) ∈ M0(z)
}

=
{(

(A + BM0(z))a; (C + DM0(z))a
)

: a ∈ C
n
}

, z ∈ C \ R.

If A + BM0(z) is invertible for every z ∈ C \ R, then

Mw(z) = (C + DM0(z))(A + BM0(z))−1, z ∈ C \ R, (2.9)
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is a matrix valued function and Γw is of function type.
The selfadjoint relation (2.5) for Γw is given as

LA,B := ker(π1 ◦ Γw)

=
{

(f ; g) ∈ H2 : ∃(a; b) ∈ C
2n :
(
(f ; g); (a; b)

) ∈ Γ0, Aa + Bb = 0
}

.

(2.10)

It depends only on the first row of w, i.e., on the matrices A and B, and hence
we may legitimately call LA,B the pasting of the relations Ll = ker(π1 ◦ Γl)
by means of the interface conditions (A,B). We think of LA,B as the coupled
selfadjoint relation.

The relation LA,B is a finite-rank perturbation of L0 in the resolvent
sense with the actual rank of the perturbation not exceeding n. This holds
simply because both are extensions of the symmetry S which has deficiency
index at most (n, n). The following lemma helps to estimate this rank.

Denote for A,B ∈ C
n×n

θA,B := {(a, b) ∈ C
n × C

n : Aa + Bb = 0}. (2.11)

2.14 Lemma. Let A,B ∈ C
n×n and A′, B′ ∈ C

n×n satisfy assumption (D3).
Then

rank
[
(LA,B − zI)−1 − (LA′,B′ − zI)−1

] ≤ dim
(
θA,B

/
θA,B ∩ θA′,B′

)
,

z ∈ C \ R.

Proof. Under (D3), θA,B and θA′,B′ are Lagrange planes in C
n × C

n which
correspond to the relations LA,B and LA′,B′ in the sense that Γ−1

0 (θA,B) =
LA,B and Γ−1

0 (θA′,B′) = LA′,B′ . For each z ∈ C \R the rank of the resolvent
difference is

rank
[
(LA,B − zI)−1 − (LA′,B′ − zI)−1

]
= dim

(
LA,B

/
LA,B ∩ LA′,B′

)
.

We have:

dim
(
LA,B

/
LA,B ∩ LA′,B′

)

= dim
(
LA,B

/
S
)

− dim
(
LA,B ∩ LA′,B′

/
S
)

≤ dim
(
Γ−1

0 (θA,B)
/

ker Γ0

)
− dim
(
Γ−1

0 (θA,B ∩ θA′,B′)
/

ker Γ0

)

= dim
(
θA,B ∩ ran Γ0

/
θA,B ∩ mul Γ0

)

−dim
(
θA,B ∩ θA′,B′ ∩ ran Γ0

/
θA,B ∩ θA′,B′ ∩ mul Γ0

)

≤ dim
(
θA,B ∩ ran Γ0

/
θA,B ∩ θA′,B′ ∩ mul Γ0

)

−dim
(
θA,B ∩ θA′,B′ ∩ ran Γ0

/
θA,B ∩ θA′,B′ ∩ mul Γ0

)

= dim
(
θA,B ∩ ran Γ0

/
θA,B ∩ θA′,B′ ∩ ran Γ0

)
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≤ dim
(
θA,B

/
θA,B ∩ θA′,B′

)
.

�

2.15 Corollary. Let A,B ∈ C
n×n satisfy (D3). Then

rank
[
(LA,B − zI)−1 − (L0 − zI)−1

] ≤ rankB, z ∈ C \ R.

Proof. We have θ0 := θI,0 = {(a, b) ∈ C
n × C

n : a = 0}. By the lemma for
z ∈ C \ R

rank
[
(LA,B − zI)−1 − (L0 − zI)−1

] ≤ dim
(
θA,B

/
θA,B ∩ θ0

)
,

and this dimension is computed as

dim
(
θA,B

/
θA,B ∩ θ0

)
= n − dim(θA,B ∩ θ0) = n − dim kerB = rankB.

�

3. Discussion of Interface Conditions

In our present work we investigate spectral properties of coupled operators
LA,B whose interface conditions (A,B) are subject to an additional mixing
condition. Namely, besides the general condition
(D3) AB∗ = BA∗ and rank(A,B) = n

we are going to assume the condition
(D4) each set of rankB many different columns of B is linearly independent.

Note that this is a condition on B only.
We have no fully precise intuition for (D4). However, in some sense it is

related to how different edges are mixed. To illustrate the situation, observe
that the matrix Bst from the standard interface conditions in (1.6) satisfies
(D4), and apparently the Kirchhoff condition

∑n
l=1 u′

l(0) = 0 for a star-graph
combines all edges. On the other hand consider for instance the matrices

A1 :=

⎛

⎝
1 −1 0
0 0 0
0 0 1

⎞

⎠ , A2 =

⎛

⎝
1 −1 0
0 0 1
0 1 0

⎞

⎠ , B :=

⎛

⎝
0 0 0
1 1 0
0 0 1

⎞

⎠ .

Obviously, B does not satisfy (D4). Thinking of a situation as in (1.4)–(1.5),
we see that interface conditions with this matrix B fail to mix all edges in
the second component of their boundary values. For example, the operator
corresponding to the interface conditions (A1, B) splits in two uncoupled
parts, one corresponding to the first two edges and another to the third edge.
At the same time, the operator corresponding to (A2, B) will mix all edges.

The condition (D4) can be characterized in different ways. Here we call
a linear subspace L of Cn a coordinate plane, if L = span{ei1 , . . . , eil} with
some 1 ≤ i1 < i2 < . . . < il ≤ n, and where ei denotes the i-th canonical
basis vector in C

n.

3.1 Lemma. For a matrix B ∈ C
n×n the following statements are equivalent.

(1) B satisfies (D4).
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(2) For every coordinate plane L in C
n with dim L ≤ rankB, the restriction

of B to L is injective.
(3) For every positive semidefinite diagonal matrix X it holds that

rank(BXB∗) = min{rankX, rank B}. (3.1)

Proof. Assume (1), i.e., that B satisfies (D4), and let L = span{ei1 , . . . , eil}
be a coordinate plane with dimension l ≤ rankB. The range of B|L is the
linear span of the corresponding columns of B, and hence has dimension l.
Thus B|L is injective, and we have (2).

Assume (2) and let X be a positive semidefinite diagonal matrix. Since
X ≥ 0, we have

ker(BXB∗) = ker(X
1
2 B∗),

and hence

rank(BXB∗) = rank(X
1
2 B∗) = rank(BX

1
2 ). (3.2)

Denote r := rankB and r′ := rankX. Clearly, rank(BX
1
2 ) ≤ min{r, r′}. Let

1 ≤ i1 < . . . < ir′ ≤ n be those indices for which the corresponding diagonal
entry of X is nonzero. Then ranX

1
2 = span{ei1 , . . . , eir′ } =: L. If r′ ≤ r, then

B acts injectively on L, and hence rank(BX
1
2 ) = r′. If r′ > r, then B acts

injectively on span{ei1 , . . . , eir}, and hence rank(BX
1
2 ) = r. Put together,

we arrive at the asserted formula (3.1), i.e., we have (3).
Finally, assume (3) and let 1 ≤ i1 < . . . < ir ≤ n. Let X be the

diagonal matrix having diagonal entry 1 in the il-th columns, l = 1, . . . , r,
and 0 otherwise. Then the linear span K of the i1, . . . , ir-th columns of B
is nothing but the range of BX

1
2 . Remembering (3.2), we obtain from (3.1)

that

dim K = rank(BXB∗) = r.

This means that the i1, . . . , ir-th columns of B are linearly independent and
we have (1).

Thus items (1), (2) and (3) are equivalent. �

The selfadjoint relation LA,B defined as pasting by means of the interface
conditions (A,B), cf. (2.10), does not uniquely correspond to (A,B). Clearly,
if Q ∈ C

n×n is invertible, then LA,B = LQA,QB . Another way to modify A
and B without essentially changing the corresponding operator is to simulta-
neously permute columns of A and B; this corresponds to “renumerating the
edges”: Let π be a permutation of {1, . . . , n}, and let P be the corresponding
permutation matrix. Then the operator LA,B defined as pasting of Γ1, . . . ,Γn

with interface conditions (A,B) is unitarily equivalent to the operator built
from Γπ(1), . . . ,Γπ(n) with (AP,BP ), and hence these two operators share all
their spectral properties.

We are going to use the above two operations to reduce interface con-
ditions to a suitable normal form. For matrices A,B, Ã, B̃ ∈ C

n×n let us
write (A,B) ∼ (Ã, B̃), if there exist Q,P ∈ C

n×n with Q invertible and P a
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permutation matrix, such that

(Ã, B̃) = Q(A,B)
(

P 0
0 P

)

.

Clearly, ∼ is an equivalence relation. Two equivalent pairs (A,B) and (Ã, B̃)
together do or do not satisfy (D3). Further, for any matrices B,Q,P ∈ C

n×n

with Q invertible and P a permutation matrix, the matrices B and QBP
together do or do not satisfy (D4).

3.2 Lemma. Let A,B ∈ C
n×n and assume that (D3) and (D4) hold. Denote

r := rankB. Then there exist A1 ∈ C
(n−r)×r and A2 ∈ C

r×r with A2 = A∗
2,

such that (ICk denotes the identity matrix of size k × k, and block matrices
are understood with respect to the decomposition C

n = C
n−r × C

r)

(A,B) ∼
((

ICn−r A1

0 A2

)

,

(
0 0

−A∗
1 ICr

))

.

Proof. By the definition of r we find an invertible Q1 ∈ C
n×n such that

Q1 · B =
(

0 0
B21 B22

)

with some blocks B21 ∈ C
r×(n−r) and B22 ∈ C

r×r. Since rank(Q1A,Q1B) =
rank(A,B) = n, the first n − r rows of Q1A are linearly independent. Hence,
we find an invertible Q2 ∈ C

(n−r)×(n−r) and a permutation matrix P ∈ C
n×n

such that
(

Q2 0
0 ICr

)

· Q1A · P =
(

ICn−r A12

0 A22

)

with some blocks A12 ∈ C
(n−r)×r and A22 ∈ C

r×r. By (D4), the last r
columns of Q1BP are linearly independent. Equivalently, the right lower
r × r-block B′

22 of Q1BP is invertible. Setting Q3 := (B′
22)

−1, we obtain
(

ICn−r 0
0 Q3

)

· Q1B · P =
(

0 0
B′

21 ICr

)

with some block B′
21 ∈ C

r×(n−r).
Putting together, we have
(

Q2 0
0 Q3

)

Q1 · (A,B) ·
(

P 0
0 P

)

=
((

ICn−r A12

0 Q3A22

)

,

(
0 0

B′
21 ICr

))

From AB∗ = BA∗, we obtain that Q3A22 = (Q3A22)∗ and B′
21 = −A∗

12. �

Conclusion: When investigating spectral properties of pastings of boundary
relations with interface conditions given by matrices A and B subject to (D3)
and (D4), we may restrict attention without loss of generality to pairs (A,B)
of the form

A =
(

ICn−r A1

0 A2

)

, B =
(

0 0
−A∗

1 ICr

)

, (3.3)

with some A1 ∈ C
(n−r)×r and A2 ∈ C

r×r, A2 = A∗
2.
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3.3 Remark. Two pairs of the form (3.3) can be equivalent modulo ∼. For
example,
((

ICn−r A1

0 A2

)

,

(
0 0

−A∗
1 ICr

))

∼
((

ICn−r Ã1

0 Ã2

)

,

(
0 0

−Ã∗
1 ICr

))

if there exist permutation matrices P1 ∈ C
(n−r)×(n−r) and P2 ∈ C

r×r such
that

Ã1 = P ∗
1 A1P2, Ã2 = P ∗

2 A2P2.

Validity of (D4) for a matrix B of form (3.3) can also be characterized in
different ways.

3.4 Lemma. Let B1 ∈ C
r×(n−r), and set

B :=
(

0 0
B1 ICr

)

.

Then the following statements are equivalent.
(1) B satisfies (D4).
(2) All minors of size r of the matrix (B1, ICr ) are nonzero.
(3) All minors of size n − r of the matrix (ICn−r ,−B∗

1) are nonzero.
(4) All minors of B1 are nonzero.

Proof. Since the upper n−r rows of B contain only zeros, a set of columns of
B is linearly independent if and only if the set consisting of the same columns
of (B1, ICr ) is linearly independent. This shows the equivalence of (1) and (2).

Let k ≤ min{n − r, r}, and let 1 ≤ j1 < . . . < jk ≤ n − r and n −
r < i1 < . . . < ik ≤ n. Denote by d the minor of size k of the matrix B1

obtained by selecting the columns j1, . . . , jk and the rows i1, . . . , ik of B. Let
1 ≤ j′

1 < . . . < j′
n−r−k ≤ n − r and n − r < i′1 < . . . < i′r−k ≤ n be the

complementary index sets, i.e.,

{j1, . . . , jk} ∩ {j′
1, . . . , j

′
n−r−k} = {i1, . . . , ik} ∩ {i′1, . . . , i′r−k} = ∅.

Then the minor d is up to a sign equal to the minor of size r of (B1, ICr )
made from the j1, . . . , jk, n−r+i′1, . . . , n−r+i′r−k-th columns of this matrix.
Further, it is up to a sign and complex conjugation equal to the minor of size
n−r of (ICn−r ,−B∗

1) made from the j′
1, . . . , j

′
n−r−k, n−r+i1, . . . , n−r+ik-th

columns of this matrix. This shows the equivalence of (2), (3), and (4). �

4. Formulation of the Main Result

In this section we formulate the main result of the present paper, the be-
low Theorem 4.3. It is preceded by a corresponding theorem about the point
spectrum, Theorem 4.1, which we state independently for several reasons:
behavior of multiplicity of eigenvalues may serve as a simple and elemen-
tary model for the behavior of spectral multiplicity of singular spectrum,
it allows an independent proof by linear algebra, and one assumption from
Theorem 4.3, (D5), can be dropped.

The result about the point spectrum now reads as follows.
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4.1 Theorem. Let data be given according to (D1)–(D4) above. Let LA,B be
the selfadjoint relation constructed by pasting L1, . . . , Ln by means of the
interface conditions (A,B), cf. (2.10). Let r := rankB. For x ∈ R denote
by Np

A,B(x) the multiplicity of x as an eigenvalue of LA,B, and by Np
0 (x) the

multiplicity of x as an eigenvalue of L0, i.e.,

Np
A,B(x) := dim ker(LA,B − xI),

Np
0 (x) := dim ker(L0 − xI) = #{l ∈ {1, . . . , n} : x ∈ σp(Ll)}.

Then the following statements hold.
(P1) If Np

0 (x) ≥ r, then Np
A,B(x) = Np

0 (x) − r.
(P2) If Np

0 (x) < r, then Np
A,B(x) ≤ r − Np

0 (x).

4.2 Remark. Recall that for any choice of a representative of the multiplicity
function N0 we have N0(x) = Np

0 (x) if Np
0 (x) > 0 (the same for NA,B). It is

possible that Np
0 (x) = 0 while N0(x) > 0.

The formulation of the result for singular spectrum is quite more elabo-
rate compared to point spectrum, but only because of the measure theoretic
nature of the involved quantities. The basic message is quite the same. Again
there occurs a distinction into two cases, many layers of spectrum vs. few
layers of spectrum. If locally at a point the uncoupled operator L0 has many
layers of spectrum compared to the rank of matrix B, then after performing
the perturbation the multiplicity will have decreased by rankB. In particular,
if we had exactly rankB many layers, the point will not anymore contribute
to the spectral measure. If L0 has few layers of spectrum, then the multiplic-
ity will not become too large after performing the perturbation. Depending
on the ratio of r and N0(x) it may increase or must decrease.

We use the simplified notation 1{N0=l} ·ν for the part 1Yl
·ν of a measure

ν 
 μ (and their sums such as 1{N0>r} · ν), cf. the definition of Yl and N0 in
Sect. 2.2. This definition does not depend on the choice of a representative
of the equivalence class of sets {N0 = l} owing to absolute continuity of ν
w.r.t. μ.

4.3 Theorem. Let data be given according to (D1)–(D4) above. Let w be a J-
unitary matrix provided by Lemma 2.13, cf. (2.7), Γw = w ◦Γ0 be the pasting
of Γ1,. . . ,Γn, and LA,B = ker[π1 ◦ Γw] be the pasting of L1,. . . ,Ln by means
of the interface condition (A,B), cf. (2.10). Let ml be the (scalar) Weyl
functions for Γl, M0 and Mw be the matrix valued Weyl functions for Γ0 and
Γw, and μl, Ω0, Ωw be the measures in their Herglotz integral representations
(if the “l-th edge” is “artificial”, we assume μl = 0). Let μ :=

∑n
l=1 μl = tr Ω0

and ρ := tr Ωw be scalar spectral measures of the linear selfadjoint relations
L0, LA,B, and N0, NA,B be their spectral multiplicity functions.

Let μ = μac + μs and ρ = ρac + ρs be Lebesgue decompositions of μ
and ρ w.r.t. the Lebesgue measure λ, and ρs = ρs,ac + ρs,s the Lebesgue
decomposition of ρs w.r.t. μ. Let r := rankB.

Assume in addition that we do not have too many artificial edges in the
sense that
(D5) #{l : mul Γl = {(0; 0)}} ≥ r.
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Then the following statements hold.

(S1) ρac ∼ μac and NA,B = N0 holds ρac-a.e.
(S2) 1{N0=r} ·ρs,ac = 0 or, equivalently, ρs,ac ∼ 1{N0>r} ·ρs,ac +1{0<N0<r} ·

ρs,ac.
(S3) 1{N0>r} ·ρs,ac ∼ 1{N0>r} ·μs and NA,B = N0 − r holds 1{N0>r} ·ρs,ac-

a.e.
(S4) NA,B ≤ r − N0 holds 1{0<N0<r} · ρs,ac-a.e.
(S5) NA,B ≤ r holds ρs,s-a.e.

4.4 Remark. 1. Item (S1) follows from [8] and is included here only for
completeness. Item (S5) follows from Lemma 2.9 and (S1) since ρ =
(ρac + ρs,ac) + ρs,s is the Lebesgue decomposition of ρ w.r.t. μ.

2. Note that spectral multiplicity functions N0 and NA,B are not defined
uniquely and can be changed on μ- and ρ-zero sets, respectively. How-
ever, these sets of non-uniqueness are ρs,ac-zero, because ρs,ac 
 ρ and
ρs,ac 
 μ, thus we can compare NA,B and N0 in (S3) and (S4).

3. Items (S2) and (S3) correspond to the “many layers case”, while item
(S4) is the “few layers case”.

The proof of Theorem 4.1 is by linear algebra and is given in Sect. 5. The
proof of Theorem 4.3 is given in Sects. 6 and 7. For the many layers case
we proceed via the Titchmarsh–Kodaira formula and the boundary behavior
of the Weyl function, while the few layers case is settled by a geometric
reduction.

5. The Point Spectrum

In this section we prove Theorem 4.1. Throughout the section let data be
given as in this theorem, where A,B are assumed to be in block form as in
(3.3). Moreover, fix x ∈ R.

As a first step we study the eigenspaces ker(S∗
l − xI) for each l ∈

{1, . . . , n} separately. Recall that dim ker(S∗
l − xI) ≤ 1 and dim mul Γl ≤ 1.

If mul Γl �= {(0; 0)} then Hl = {0} and in particular σp(S∗
l ) = ∅. Since Γl is

of function type, mul Γl cannot contain (0; 1).
We have x ∈ σp(S∗

l ) if and only if there exist fl ∈ Hl \{0} and al, bl ∈ C

with
(
(fl;xfl); (al; bl)

) ∈ Γl.

Assume that x ∈ σp(S∗
l ). Then the boundary values al, bl are uniquely deter-

mined by the element fl, and fl itself is unique up to a scalar multiple. Fix
a choice of fl. Since Sl is simple, we have for the corresponding boundary
values (al; bl) �= 0. Moreover, x ∈ σp(Ll) if and only if al = 0.

We fix the following notation throughout:

(1) If x ∈ σp(Ll), let f̃l ∈ Hl \ {0} be the unique element with
(
(f̃l;xf̃l); (0; 1)

) ∈ Γl.
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(2) If x ∈ σp(S∗
l ) \ σp(Ll), let f̃l ∈ Hl \ {0} and ml ∈ C be the unique

elements with
(
(f̃l;xf̃l); (1;ml)

) ∈ Γl.

(3) If mul Γl �= {(0; 0)}, let ml ∈ C be the unique element such that

((0; 0); (1;ml)) ∈ Γl.

Note that, by the abstract Green’s identity, we have ml ∈ R in this case.
Moreover, we denote:

(4) If x /∈ σp(S∗
l ), set f̃l := 0 (including the case mul Γl �= {(0; 0)}).

(5) If x ∈ σp(Ll), or mul Γl = {(0; 0)} and x /∈ σp(S∗
l ), set ml := 0.

In the second step we identify ker(LA,B − xI). Set

Jp :=
{
l ∈ {1, . . . , n} : x ∈ σp(Ll)

}
,

J∗
p :=
{
l ∈ {1, . . . , n} : x ∈ σp(S∗

l )
}
,

Jm :=
{
l ∈ {1, . . . , n} : mul Γl �= {(0; 0)}},

and let f̂l ∈ H be the element whose l-th coordinate is f̃l and all other coordi-
nates are 0. For a subset J of {1, . . . , n} let DJ be the diagonal matrix whose
diagonal entry in the i-th column is 1 if i ∈ J and 0 otherwise. Moreover, let
M be the diagonal matrix with diagonal entries m1, . . . ,mn.

5.1 Lemma. Set

γ := AD(J∗
p\Jp)∪Jm

+ B(DJp
+ MD(J∗

p\Jp)∪Jm
)

and let Ξ : Cn → H be the map (we write c = (cl)n
l=1)

Ξ(c) :=
n∑

l=1

clf̂l.

Then ker(LA,B − xI) = Ξ(ker γ), and in particular

dim ker(LA,B − xI) = dim ker γ − dim
(
ker γ ∩ ker Ξ

)
.

Proof. We have

ker(S∗ − xI) =
n∏

l=1

ker(S∗
l − xI) =

{
n∑

l=1

clf̂l : c ∈ C
n

}

= ran Ξ.

In this representation of ker(S∗−xI) the constants cl for l /∈ J∗
p are irrelevant,

since f̂l = 0 for l /∈ J∗
p . This changes when we turn to ker(LA,B − xI) ⊆

ker(S∗ − xI), since the values of cl for l ∈ Jm influence boundary values.
For every f̂ =

∑n
l=1 clf̂l ∈ ker(S∗ − xI) there exists (possibly not unique)

(a; b) ∈ C
2n such that

(
(f̂ ;xf̂); (a; b)

)
∈ Γ0 (5.1)

and f̂ ∈ ker(LA,B − xI), if and only if there exists (a; b) ∈ C
2n such that

Aa + Bb = 0 additionally to (5.1). According to (1)–(3) it should be that

(a; b) =
∑

l∈Jp

cl(0; el) +
∑

l∈J∗
p\Jp

cl(el;mlel) +
∑

l∈Jm

cl(el;mlel),
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which means that

a =
∑

l∈(J∗
p\Jp)∪Jm

clel, b =
∑

l∈Jp

clel +
∑

l∈(J∗
p\Jp)∪Jm

clmlel.

Then Aa + Bb = 0 is equivalent to
[
AD(J∗

p\Jp)∪Jm
+ B(DJp

+ MD(J∗
p\Jp)∪Jm

)
]
c = 0.

We conclude that

ker(LA,B − xI)

=

{
n∑

l=1

clf̂l : c ∈ C
n ∧ [AD(J∗

p\Jp)∪Jm
+ B(DJp

+ MD(J∗
p\Jp)∪Jm

)
]
c = 0

}

=

{
n∑

l=1

clf̂l : c ∈ ker γ

}

= Ξ(ker γ).

�

In the third step we compute or estimate, respectively, the dimensions of
ker γ and ker γ ∩ ker Ξ.

5.2 Lemma. (1) If #(J∗
p \ Jp) ∪ Jm ≤ n − r, then

dim ker γ = max
{
#Jp − r, 0

}
+ n − #J∗

p − #Jm,

dim
(
ker γ ∩ ker Ξ

)
= n − #J∗

p − #Jm.

(2) If #(J∗
p \ Jp) ∪ Jm > n − r, then

dim ker γ ≤ r − #Jp,

dim
(
ker γ ∩ ker Ξ

) ≥ n − #J∗
p − #Jm.

Proof. Consider the case that #(J∗
p \ Jp) ∪ Jm ≤ n − r. We show that

ker γ =
{
c ∈ C

n : DJ∗
p\Jp

c = DJm
c = BDJp

c = 0
}
. (5.2)

The inclusion “⊇” holds since ml = 0 for l /∈ (J∗
p \ Jp) ∪ Jm. Let c ∈ ker γ.

Since D1,...,n−rB = 0, it follows that

D1,...,n−rAD(J∗
p\Jp)∪Jm

c = 0.

The left side is a linear combination of at most n − r columns of the matrix
(ICn−r , A1), and Lemma 3.4 implies that D(J∗

p\Jp)∪Jm
c = 0 and hence Mc =

0. From this we obtain

BDJp
c = 0.

Thus the inclusion “⊆” also holds and the proof of (5.2) is complete.
The sets J∗

p \ Jp, Jm, and Jp, are pairwise disjoint, and each r columns
of B are linearly independent. Thus (5.2) implies

dim ker γ = n − (#J∗
p − #Jp) − #Jm − min{#Jp, r}

= max
{
#Jp − r, 0

}
+
(
n − #J∗

p − #Jm

)
.
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We have

ker Ξ = {c ∈ C
n : DJ∗

p
c = 0},

and see that

ker γ ∩ ker Ξ =
{
c ∈ C

n : DJ∗
p
c = DJm

c = 0
}
.

Thus dim(ker γ ∩ ker Ξ) = n − #J∗
p − #Jm.

Consider now the case that #(J∗
p \ Jp) ∪ Jm > n − r. We show that

dim ran γ ≥ (n − r) + #Jp. (5.3)

Choose n − r indices in (J∗
p \ Jp) ∪ Jm, and let R be the linear span of the

corresponding columns of γ. Denote by π+ the projection in C
n onto the first

n − r coordinates (π+ = D{1,...,n−r}). The image π+(R) is the span of n − r
columns of the matrix (ICn−r , A1), and hence has dimension n − r. It follows
that

dim R = n − r, R ∩ ker π+ = {0}.

Let R′ be the linear span of the columns of γ corresponding to indices in Jp.
For those indices columns of γ are actually columns of B, and it follows that

dim R′ = #Jp, R′ ⊆ ker π+.

Note here that #Jp < r. Since R + R′ ⊆ ran γ, we obtain

dim ran γ ≥ dim R + dimR′ = (n − r) + #Jp.

From this, clearly, dim ker γ ≤ r − #Jp. Next, we have ker DJ∗
p∪Jm

⊆ ker γ ∩
ker Ξ, and hence

dim
(
ker γ ∩ ker Ξ

) ≥ n − #J∗
p − #Jm.

�

It is easy to deduce Theorem 4.1 from the above lemma.

Proof of Theorem 4.1. Assume that Np
0 (x) ≥ r, and note that Np

0 (x) = #Jp.
Then case (1) in Lemma 5.2 takes place, and it follows that

Np
A,B(x) = dim ker(LA,B − xI) = #Jp − r.

Assume now that Np
0 (x) < r. If in Lemma 5.2 case (1) takes place, then

Np
A,B(x) = 0. If case (2) takes place, we obtain the bound

Np
A,B(x) ≤ r − #Jp − n + #J∗

p + #Jm ≤ r − #Jp.

�
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6. The Many Layers Case

In the present section we prove assertions (S2) and (S3) from Theorem 4.3.
The argument rests on boundary limit formula for matrix valued Nevanlinna
functions: provided that the boundary relation Γw is of function type, we
employ Titchmarsh–Kodaira formula and Lemma 2.6 to obtain that

NA,B(x) = rank
dΩw

dρ
(x) = rank lim

z↓x

Im Mw(z)
Im tr Mw(z)

for ρ-a.a. x ∈ R. (6.1)

Throughout this section let data and notation be as in Theorem 4.3.
In addition assume that the matrices A,B describing the interface condition
are of the form

A =
(

ICn−r A1

0 A2

)

, B =
(

0 0
−A∗

1 ICr

)

,

with some A1 ∈ C
(n−r)×r and A2 ∈ C

r×r such that all minors of A1 are
nonzero and A2 = A∗

2. Recall that, by the discussion in Sect. 3, this assump-
tion is no loss in generality.

The algebraic core of the proof is the following auxiliary proposition.

6.1 Proposition. Let r < n, B1 ∈ C
r×(n−r) be such that all minors of B1

are nonzero, and let X1 ∈ C
(n−r)×(n−r) and X2 ∈ C

r×r be two positive
semidefinite diagonal matrices such that rankX1 + rankX2 ≥ r. Then
(1) the matrix B1X1B

∗
1 + X2 is invertible, and

(2) rank
(
X1 − X1B

∗
1(B1X1B

∗
1 + X2)−1B1X1

)
= rankX1 + rankX2 − r.

Proof. To show (1) set

B :=
(

0 0
B1 ICr

)

, X :=
(

X1 0
0 X2

)

.

Then

BXB∗ =
(

0 0
0 B1X1B

∗
1 + X2

)

.

Clearly, rankX = rankX1 +rankX2. By Lemma 3.4 matrix B satisfies (D4),
and by Lemma 3.1 we have

rank
(
B1X1B

∗
1 + X2

)
= rank(BXB∗) = min{rankX, rank B} = r.

This means that the r × r matrix B1X1B
∗
1 + X2 is invertible.

The assertion in (2) requires a slightly more elaborate argument. Set

H := B1X1B
∗
1 + X2, G := ICn−r − X1B

∗
1H−1B1.

To avoid confusion with dimensions let us here make explicit that

X1, G : Cn−r → C
n−r, X2,H,H−1 : Cr → C

r,

B1 : Cn−r → C
r, B∗

1 : Cr → C
n−r.

The essence of the argument are the following four relations:

X2 · H−1B1 = B1 · G, G · X1B
∗
1 = X1B

∗
1H−1 · X2, (6.2)

X1B
∗
1 · H−1B1 = ICn−r − G, H−1B1 · X1B

∗
1 = ICr − H−1X2. (6.3)
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The equalities in (6.2) follow by plugging X2 = H−B1X1B
∗
1 , the first relation

in (6.3) is just the definition of G and the second is H−1H = ICr .
Together (6.2) and (6.3) show that H−1B1|ker G and X1B

∗
1 |ker X2 are mu-

tually inverse bijections between ker G and kerX2. In particular, this implies
that

dim ker G = dim kerX2.

The assertion in (2) is now easily deduced. We have ker(GX1) = X−1
1 (ker G)

(the preimage of ker G). The definition of G shows that ker G ⊆ ran X1, and
hence

X1|X−1
1 (ker G) : X−1

1 (ker G) → ker G

is surjective. Clearly, kerX1 ⊆ X−1
1 (ker G), and hence

ker
(
X1|X−1

1 (ker G)

)
= ker X1.

Together this implies that

dim ker(GX1) = dimX−1
1 (ker G)

= dim ker
(
X1|X−1

1 (ker G)

)
+ dim kerG = dim ker X1 + dim kerX2,

and hence that

rank(GX1) = (n − r) − dim ker(GX1)
= (n − r) − dim kerX1 − dim ker X2 = rankX1 + rankX2 − r.

�

We return to the setting of the theorem. Denote for z ∈ C \ R

M0(z) =:
(

M11(z) 0
0 M22(z)

)

.

Writing out the block form of A + BM0(z) gives

A + BM0(z) =
(

ICn−r A1

−A∗
1M11(z) A2 + M22(z)

)

.

Denote also

D(z) := A2 + M22(z) + A∗
1M11(z)A1. (6.4)

We see that D(z) is the Schur complement of the upper-left block of A +
BM0(z).

6.2 Lemma. Let (D1)–(D5) hold with r < n. Then Γw is of function type and
for every z ∈ C \ R

(1) D(z) is invertible,
(2) A + BM0(z) is invertible,

(A + BM0(z))−1 =
(

ICn−r − A1D(z)−1A∗
1M11(z) −A1D(z)−1

D(z)−1A∗
1M11(z) D(z)−1

)

(6.5)

and

Im Mw(z) = ((A + BM0(z))−1)∗ Im M0(z)(A + BM0(z))−1. (6.6)
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Proof. The imaginary part of D(z) is

Im D(z) = Im M22(z) + A∗
1 Im M11(z)A1.

By assumption (D5) at least r many of the functions ml are not equal to a
real constant. Thus

rank ImM11(z) + rank ImM22(z) = rank ImM0(z) ≥ r,

and Proposition 6.1, (1), implies that Im D is invertible. Since ImD(z) ≥ 0,
it follows that D(z) is also invertible: if D(z)u = 0, then

‖(Im D)
1
2 u‖2 =

(
(Im D)u, u

)
=

1
2i

(
(Du, u) − (u,Du)

)
= 0,

and hence u = 0. Since the Schur complement D(z) is invertible, we conclude
that A + BM0(z) is invertible and the formula (6.5) holds.

As we have noted in Sect. 2.4, invertibility of A + BM0(z) implies that
Mw(z) is a matrix for every z ∈ C\R and that Γw is of function type. Formula
(6.6) holds by [8, Lemma 6.3, (i)]. �

6.3 Remark. The case r = n needs separate attention (note that then all
functions ml are not real constants). In this case there is no block structure
and we can write

A = A22, B = I, M0(z) = M22(z), A + BM0(z) = A22 + M0(z)

and

Im(A + BM0(z)) = Im M0(z)

is invertible, hence A + BM0(z) is also invertible and Γw is of function type,
(6.5) becomes (A + BM0(z))−1 = (A22 + M0(z))−1(z) and (6.6) continues to
hold.

For points x ∈ R with sufficiently nice properties formulae (6.5)–(6.6) can be
used to compute (6.1). Here, and in the following, we denote m :=

∑n
l=1 ml.

6.4 Lemma. Let (D1)–(D5) hold with r < n and let x ∈ R. Assume that

(1) the symmetric derivative dΩ0
dμ (x) exists,

(2) the symmetric derivative dμ
dλ (x) exists and is equal ∞,

(3) lim
z↓x

M0(z)
m(z) exists and equals to dΩ0

dμ (x).

Set

α(x) :=
dΩ0

dμ
(x),

let as usual α11(x) and α22(x) denote the diagonal blocks of α(x) of size n−r
and r, respectively, and let

H(x) := α22(x) + A∗
1α11(x)A1.

If rankα(x) > r, then H(x) is invertible, and the following limit exists, equals

lim
z↓x

Im Mw(z)
Im m(z)

=
(

α11(x)−α11(x)A1H(x)−1A∗
1α11(x) 0

0 0

)
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and its rank equals rankα(x)− r. Assume that in addition to (1)–(3) it holds
that
(4) the symmetric derivative dρ

dμ (x) exists and is finite.

Then dρ
dμ (x) = 0 if and only if rankα(x) = r; if rankα(x) > r, then the limit

limz↓x
Im Mw(z)

Im tr Mw(z) exists and

rank lim
z↓x

Im Mw(z)
Im tr Mw(z)

= rankα(x) − r. (6.7)

Proof. Let (1)–(3) hold. Set H(x) := α22(x)+A∗
1α11(x)A1. From (2) it follows

by Proposition 2.5, (2), that m(z) → ∞ as z ↓ x. From (3) and (6.4) we have
limz↓x

D(z)
m(z) = H(x). Proposition 6.1, (1), tells us that if rankα(x) > r, then

H(x) is invertible. Hence, in this case we may conclude that

lim
z↓x

m(z)D(z)−1 = H(x)−1.

Now the representation (6.5) yields

lim
z↓x

(
A + BM0(z)

)−1

= lim
z↓x

(
ICn−r − A1 · m(z)D(z)−1 · A∗

1 · M11(z)
m(z) −A1 · m(z)D(z)−1 · 1

m(z)

m(z)D(z)−1 · A∗
1 · M11(z)

m(z) m(z)D(z)−1 · 1
m(z)

)

=
(

ICn−r − A1H(x)−1A∗
1α11(x) 0

H(x)−1A∗
1α11(x) 0

)

.

Since the symmetric derivative dΩ0
dμ (x) = α(x) exists and dμ

dλ (x) = ∞, we get
by Proposition 2.5, (1), together with Lemma 2.6 that

lim
z↓x

Im M0(z)
Im m(z)

= α(x).

Using (6.6) we see that the limit exists

lim
z↓x

Im Mw(z)
Im m(z)

=
(

ICn−r − A1H(x)−1A∗
1α11(x) 0

H(x)−1A∗
1α11(x) 0

)∗
·

·
(

α11(x) 0
0 α22(x)

)

·
(

ICn−r − A1H(x)−1A∗
1α11(x) 0

H(x)−1A∗
1α11(x) 0

)

=
(

α11(x)−α11(x)A1

(
α22(x)+A∗

1α11(x)A1

)−1
A∗

1α11(x) 0
0 0

)

.

Applying Proposition 6.1, (2), we obtain that

rank lim
z↓x

Im Mw(z)
Im m(z)

= rankα(x) − r.

Now assume that also (4) holds. Then, since dμ
dλ (x) = ∞, by Proposition 2.5,

(1), it follows that

lim
z↓x

Im tr Mw(z)
Im m(z)

=
dρ

dμ
(x).
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Since the matrix limz↓x
Im Mw(z)
Im m(z) is positive semidefinite, we have

dρ

dμ
(x) = 0 ⇔ tr

(
lim
z↓x

Im Mw(z)
Im m(z)

)
= 0 ⇔ lim

z↓x

Im Mw(z)
Im m(z)

= 0

⇔ rank
(

lim
z↓x

Im Mw(z)
Im m(z)

)
= 0 ⇔ rankα(x) = r.

If rankα(x) > r, then dρ
dμ (x) > 0 and it follows that the limit exists

lim
z↓x

Im Mw(z)
Im tr Mw(z)

= lim
z↓x

(
Im Mw(z)
Im m(z)

· Im m(z)
Im tr Mw(z)

)

=
(

α11(x)−α11(x)A1

(
α22(x)+A∗

1α11(x)A1

)−1
A∗

1α11(x) 0
0 0

)

·
( dρ

dμ
(x)
)−1

and hence rank limz↓x
Im Mw(z)

Im tr Mw(z) = α(x) − r. �

6.5 Remark. Again consider the case r = n separately. In this case α(x) =
α22(x). If rankα(x) = r = n, then under conditions (1)–(3)

(A + BM0(z))−1 =
1

m(z)

(
A22

m(z)
+

M0(z)
m(z)

)−1

→ 0, z ↓ x,

and owing to (6.6) Im Mw(z)
Im m(z) → 0 as z ↓ x. If also (4) holds, then dρ

dμ (x) =

limz↓x
Im tr Mw(z)

Im m(z) = 0.

The proof of the many layers case of Theorem 4.3, (S2)–(S3), is now com-
pleted by observing that sufficiently many points x ∈ R satisfy conditions
(1)–(4) of Lemma 6.4.

6.6 Lemma. There exists a Borel set W ⊆ R with

λ(W ) = μs(R \ W ) = 0

such that for every x ∈ W

(1) dΩ0
dμ (x) exists,

(2) dμ
dλ (x) = ∞,

(3) lim
z↓x

M0(z)
m(z) exists and equals dΩ0

dμ (x),

(4) dρ
dμ (x) exists and is finite,

and such that the functions dμl

dμ , l = 1, . . . , n, are measureable on W .

Proof. By Proposition 2.2 there exists a Borel set X such that μ(R \ X) = 0
and symmetric derivatives dμl

dμ (x) exist for every x ∈ X, l = 1, . . . , n, and are
measurable functions from X to [0, 1] (X is the intersection of such sets for
each of the measures μl). Then (1) holds for all x ∈ X.

By Corollary 2.4, (1), items (1) and (4) hold μ-a.e. and hence μs-a.e. By
Corollary 2.4, (4), (1), item (2) holds μs-a.e. and on a set of zero Lebesgue
measure. By Proposition 2.5, (3), item (3) holds μs-a.e. Since the intersec-
tion of μs-full sets is a μs-full set, all of (1)–(4) hold μs-a.e. and on a set of
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Lebesgue measure zero. There exists a Borel set W contained in this inter-
section (including X) such that λ(W ) = 0 and μs(R \W ) = 0. The functions
dμl

dμ , l = 1, . . . , n, remain measurable on W . �

Proof of Theorem 4.3, (S2)–(S3). Consider the set W from the above lemma.
Define for l = 1, . . . , n Borel sets

W (k) :=
{

x ∈ W : rankα(x) = k
}

, (6.8)

W (>k) :=
n⋃

l=k+1

W (l),

which are Borel owing to measurability of dμl

dμ on W for each l.
Since {x ∈ R : ∃dΩ0

dμ (x), rank dΩ0
dμ (x) = k} \ W (k) are μs-zero sets, we

have 1{N0=k} · ν = 1W (k) · ν for every measure ν 
 μs (in particular, for
ρs,ac).

By Lemma 6.4 ( and Remark 6.5) we have dρ
dμ (x) = 0 for all x ∈ W (r),

hence by Corollary 2.3, (1), ρ(W (r)) = 0. Therefore ρs,ac(W (r)) = 0, which
means that 1{N0=r} · ρs,ac = 0, and that is (S2).

Further, by Lemma 6.4 we have dρ
dμ (x) ∈ (0,∞) for all x ∈ W (>r), and

hence by Corollary 2.3, (4), 1W (>r) · μ ∼ 1W (>r) · ρ. Since λ(W (>r)) = 0,
it follows that 1W (>r) · μs = 1W (>r) · μ ∼ 1W (>r) · ρ = 1W (>r) · ρs. As
dρ
dμ (x) ∈ [0,∞) for all x ∈ W , taking into account (S1) which means that
ρs,s is the singular part in the Lebesgue decomposition of ρ w.r.t. μ, by
Corollary 2.4, (4), we have ρs,s(W ) = 0. Then, in particular, 1W (>r) ·ρs,s = 0.
Therefore we have

1{N0>r} · μs = 1W (>r) · μs ∼ 1W (>r) · ρs

= 1W (>r) · ρs,ac + 1W (>r) · ρs,s = 1W (>r) · ρs,ac = 1{N0>r} · ρs,ac,

which is the first part of (S3).
For all x ∈ W (>r) (and therefore 1{N0>r} · ρs,ac-a.e.) by Lemma 6.4 it

holds that

rank lim
z↓x

Im Mw(z)
tr ImMw(z)

= rankα(x) − r = N0(x) − r.

By (6.1) this means that

NA,B = N0 − r, 1{N0>r} · ρs,ac-a.e.,

which completes the proof of (S3). �

7. The Few Layers Case

In this section we prove assertions (S4) and (S5) from Theorem 4.3. This will
be done by reducing to the already established many layers case (S2)–(S3),
and referring to the perturbation Lemma 2.9.
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The reduction is achieved by means of the following theorem, which is
purely geometric. Recall that we denote for a pair (A,B) of matrices which
satisfies (D3) the corresponding Lagrange plane as θA,B , cf. (2.11).

7.1 Theorem. Let A,B ∈ C
n×n such that (A,B) satisfies (D3) and (D4).

Then for each k ∈ {1, . . . , rank B} there exist Ak, Bk ∈ C
n×n such that

(1) (Ak, Bk) satisfies (D3) and (D4),
(2) rankBk = k and dim

(
θA,B

/
θA,B ∩ θAk,Bk

)
= rankB − k.

The proof of this theorem relies on two lemmata.

7.2 Lemma. Let θ and θ0 be Lagrange planes in C
n × C

n, and let Π be a
linear subspace of Cn × C

n with

θ ∩ θ0 ⊆ Π ⊆ θ0.

Then there exists a Lagrange plane θ′ in C
n × C

n such that

θ′ ∩ θ0 = Π, dim
(
θ
/
θ ∩ θ′) = dim Π − dim(θ ∩ θ0).

Proof. We have

θ ∩ θ0 = θ[⊥] ∩ θ
[⊥]
0 = (θ + θ0)[⊥] ⊆ (θ + Π)[⊥].

Choose a linear subspace Π′ with (θ + Π)[⊥] = (θ ∩ θ0)+̇Π′. Observe that

Π′ ⊆ θ[⊥] = θ, Π′ ∩ θ0 ⊆ Π′ ∩ θ ∩ θ0 = {0}. (7.1)

In particular, we have Π′ ∩ Π = {0}. Now set θ′ := Π′+̇Π. Since Π′ and Π
are neutral subspaces with Π′[⊥]Π, the subspace θ′ is neutral. We have

θ ∩ Π = θ ∩ θ0, (7.2)

and hence can compute

dim(θ ∩ θ0) + dim Π′ = dim(θ + Π)[⊥] = 2n − dim(θ + Π)
= 2n − [dim θ + dim Π − dim(θ ∩ Π)

]
= n − dim Π + dim(θ ∩ θ0).

Thus dim θ′ = dim Π + Π′ = n, and we see that θ′ is a Lagrange plane.
Using (7.1) and(7.2) we find

θ′ ∩ θ0 = (Π′+̇Π) ∩ θ0 = (Π′ ∩ θ0)+̇Π = Π,

θ′ ∩ θ = (Π′+̇Π) ∩ θ = Π′+̇(θ0 ∩ θ),

and from the latter

dim
(
θ
/
θ ∩ θ′) = n − [dim Π′ + dim(θ0 ∩ θ)

]
= dim Π − dim(θ0 ∩ θ).

�

7.3 Lemma. Let L be a linear subspace of Cn with dim L < n, and let C1, . . . ,
CN be a finite number of linear subspaces of Cn with

∀j ∈ {1, . . . , N} : dim Cj ≤ n − dim L − 1 and L ∩ Cj = {0}
Then there exists a linear subspace L′ with

L ⊆ L′, dim L′ = dimL + 1, ∀j ∈ {1, . . . , N} : L′ ∩ Cj = {0}
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Proof. Choose a linear subspace K with C
n = L+̇K, and let π : Cn → K be

the corresponding projection onto the second summand.
We first observe that for every subspace C with L ∩ C = {0} it holds

that
{
z ∈ K : (L + span{z}) ∩ C �= {0}} ⊆ π(C).

Indeed, assume that x ∈ L, λ ∈ C, and x + λz ∈ C \ {0}. Since L ∩ C = {0},
we must have λ �= 0, and hence z = 1

λπ(x + λz) ∈ π(C).
Now let C1, . . . , CN be as in the statement of the lemma. Then

{
z ∈ K ∣∣ ∃j ∈ {1, . . . , N} : (L + span{z}) ∩ Cj �= {0}

}
⊆

N⋃

j=1

π(Cj).

Each π(Cj) is a linear subspace of K with

dim π(Cj) ≤ dim Cj ≤ n − dim L − 1 = dimK − 1,

and hence is a closed subset of K with empty interior. Thus also the finite
union
⋃N

j=1 π(Cj) is a subset of K with empty interior, in particular,

N⋃

j=1

π(Cj) �= K.

For each element z ∈ K \ ⋃N
j=1 π(Cj), the space L′ := L + span{z} has the

required properties. �

Proof of Theorem 7.1. We use induction on k. For k = rankB there is noth-
ing to prove: just set A0 := A and B0 := B. Assume we have k ∈ {1, . . . , rank
B} and (Ak, Bk) with (1) and (2). The aim is to construct (Ak−1, Bk−1).

We work with Lagrange planes rather than matrices: denote

θ := θA,B , θk := θAk,Bk
, θ0 = {0} × C

n.

Further, set L := ker Bk, so that θk ∩ θ0 = {0}×L. Then dimL = n−k < n,
and by (D4) we have L∩C = {0} for every coordinate plane C with dimension
k − 1. According to Lemma 7.3 we find L′ ⊇ L with dim L′ = n − k + 1 such
that still L′ ∩ C = {0} for all coordinate planes C with dimension k − 1.

Now set Π := {0} × L′. According to Lemma 7.2 we find a Lagrange
plane θ′ with

θ′ ∩ θ0 = {0} × L′, dim
(
θk

/
θk ∩ θ′) = dim Π − dim(θk ∩ θ0) = 1. (7.3)

We need to compute the dimension of the factor space θ/(θ∩θ′). The canonical
map

θ′ ∩ θ0

/
(θ′ ∩ θ) ∩ θ0 −→ θ′/θ′ ∩ θ

is injective, and dim θ = dim θ′. Hence,

dim
(
θ
/
θ ∩ θ′) = dim

(
θ′/θ ∩ θ′) ≥ dim

(
θ′ ∩ θ0

/
θ ∩ θ′ ∩ θ0

)

= dim(θ′ ∩ θ0) − dim(θ ∩ θ′ ∩ θ0) ≥ dim(θ′ ∩ θ0) − dim(θ ∩ θ0)

= dim L′ − (n − rank B) = rank B − k + 1.
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On the other hand, using (7.3), dim θk = dim θ′, and the respective canonical
injections, yields

dim
(
θk ∩ θ
/
θ′ ∩ θk ∩ θ

) ≤ 1, dim
(
θ′ ∩ θ
/
θ′ ∩ θk ∩ θ

) ≤ 1.

From
(
θ
/
θ ∩ θk

)× (θ ∩ θk

/
θ ∩ θk ∩ θ′)

∼= (θ/θ ∩ θk ∩ θ′)

∼= (θ/θ ∩ θ′)× (θ ∩ θ′/θ ∩ θk ∩ θ′)

we now obtain
∣
∣
∣ dim
(
θ
/
θ ∩ θk

)− dim
(
θ
/
θ ∩ θ′)

∣
∣
∣ ≤ 1,

and hence

dim
(
θ
/
θ ∩ θ′) ≤ dim

(
θ
/
θ ∩ θk

)
+ 1 ≤ rankB − k + 1.

It remains to choose (Ak−1, Bk−1) with θ′ = θAk−1,Bk−1 . Then (Ak−1, Bk−1)
satisfies (1) and (2). �

It is now easy to deduce the few layers case in Theorem 4.3.

Proof of Theorem 4.3, (S1), (S4)–(S5). First note that (S1) follows from [8],
as we mentioned above, and (S5) is obtained by application of Lemma 2.9.

Let us prove (S1). Consider k ∈ {1, . . . , r − 1}. Choose (Ak, Bk) ac-
cording to Theorem 7.1. Denote by ρk the scalar spectral measure of LAk,Bk

(i.e., ρk = tr ΩAk,Bk
), let Wk ⊆ R be a set as constructed in Lemma 6.6 for

(Ak, Bk), and let W
(k)
k be the corresponding set from (6.8). Then we know,

from the already proven part (S2) that ρk(W (k)
k ) = 0.

Let ρ = ρac,k + ρs,k be the Lebesgue decomposition of ρ w.r.t. ρk. Since
ρk(W (k)

k ) = 0, it follows that ρac,k(W (k)
k ) = 0 or, equivalently, 1

W
(k)
k

· ρac,k =
0, hence

1
W

(k)
k

· ρs,ac 
 1
W

(k)
k

· ρ = 1
W

(k)
k

· ρac,k + 1
W

(k)
k

· ρs,k = 1
W

(k)
k

· ρs,k 
 ρs,k.(7.4)

Lemma 2.14 applied to A,B and Ak, Bk gives

rank[(LA,B − λI)−1 − (LAk,Bk
− λI)−1] ≤ dim

(
θA,B

/
θA,B ∩ θAk,Bk

)
= r − k

and Lemma 2.9 applied to LA,B and LAk,Bk
gives

NA,B ≤ r − k, ρs,k -a.e.

and, owing to (7.4), 1
W

(k)
k

· ρs,ac-a.e. On the other hand, from the definitions

of sets W
(k)
k we have

N0 = k, 1
W

(k)
k

· μ-a.e. and hence1
W

(k)
k

· ρs,ac -a.e.,

therefore

NA,B ≤ r − N0, 1
(∪r−1

k=1W
(k)
k )

· ρs,ac -a.e. (7.5)
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Consider the intersection

W̃ :=
r−1⋂

k=1

Wk

which is also a λ-zero and μs-full set, and analogously to (6.8) define W̃ (k) :=
{x ∈ W̃ : rankα(x) = k} for k = 1, . . . , n. Then we have 1

(∪r−1
k=1W̃ (k))

· μs =

1{0<N0<r} · μs. Since for every k = 1, . . . , n one has μs(W
(k)
k \ W̃ (k)) = 0,

it is true that 1
(∪r−1

k=1W
(k)
k )

· μs = 1{0<N0<r} · μs as well, and therefore also
1

(∪r−1
k=1W

(k)
k )

· ρs,ac = 1{0<N0<r} · ρs,ac. Thus (7.5) in fact coincides with the
assertion of (S5), which completes the proof. �
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