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We consider divergence-based high order discretizations of an 𝐿2-based first order system least squares 
formulation of a second order elliptic equation with Robin boundary conditions. For smooth geometries, we 
show optimal convergence rates in the 𝐿2(Ω)-norm for the scalar variable. Convergence rates for the 𝐿2(Ω)-norm 
error of the gradient of the scalar variable as well as the vectorial variable are also derived. Numerical examples 
illustrate the analysis.

1. Introduction

Least Squares Methods and related techniques are an established tool for the numerical treatment of partial differential equations as witnessed by 
the monographs [5,25], which provide both mathematical analysis and examples of applications in fluid and solid mechanics. Least Squares Methods

are successfully used in computational fluid mechanics (see, e.g., [13,25]), solid mechanics (see, e.g., [4,15,23]), electromagnetics (see, e.g., [6,7]), 
and eigenvalue problems (see, e.g., [1,2,7]). Reasons for the popularity of these methods include their flexibility to deal with a variety of equations 
and the ease of coupling different equations, the fact that they lead to symmetric positive definite systems by construction, and that they naturally 
come with error estimators.

For scalar second order problems, an important approach in Least Squares methodologies is to reformulate it as a first order system based on a 
scalar variable and a vectorial variable and to subsequently minimize the residuum in the 𝐿2 -norm. This method, called First Order System Least 
Squares Method (FOSLS), is computationally attractive and leads to quasi-optimality in a residual norm, [5,12]. Obtaining optimal error estimates 
in norms other than the natural residual norm, say, 𝐿2 for the scalar variable is the purpose of the present work. Here, optimality refers not only to 
the optimal achievable convergence rate under the assumption of sufficient smoothness of the solution but relates to the fact that the regularity of 
both the scalar variable and vectorial variable are dictated by the regularity of the data. For example, for data 𝑓 ∈ 𝐿2, the vectorial variable (later 
denoted 𝜑𝜑𝜑) is merely in 𝐻𝐻𝐻(div, Ω); this implies that no rate of convergence is available for the convergence in the residual norm, which measures 
the error of the vectorial variable in 𝐻𝐻𝐻 (div, Ω). The tools to overcome this obstacle are duality arguments and approximation operators with suitable 
orthogonality properties as previously done in [26] and [9]. Under regularity assumptions for the appropriate dual problems, optimal convergence 
rates can then be established.

In the first part [9] of this series of papers, we analyzed high order finite element discretizations of a first order system least squares (FOSLS) 
formulation of a Poisson-type second order elliptic problem with homogeneous boundary conditions and obtained optimal error estimates for the 
𝐿2-error of the scalar variable. Here, we generalize the approach of [9] to Poisson-type problems with inhomogeneous Robin boundary conditions. 
Compared to [9] and [26] the presence of the boundary terms, which are 𝐿2-terms, requires additional duality arguments and corresponding 
approximation results for the operator 𝐼𝐼𝐼Γ

ℎ
that effects the required orthogonalities. As an aside, we mention that elliptic problems with Robin 

boundary conditions arise in applications, for example, in wave propagation problems with impedance boundary conditions. The analysis of the 
Helmholtz equation with impedance conditions is, however, beyond the scope of the present work as one leaves the realm of strong ellipticity; we 
refer, however, to [8,14] for analyses of FOSLS discretizations of the Helmholtz equation and also to [21,24,32] for Discontinuous Petrov Galerkin 
(DPG) discretizations.

The need for rather elaborate duality arguments in the analysis of the FOSLS may be understood as a consequence of the choice of norms in the 
method, in particular the choice of the computationally convenient 𝐿2-norm. For example, for right-hand sides that are not in 𝐿2, the methodology 
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requires some regularization of the right-hand side. We refer to [22] for a method that features a regularization of the input data to make minimal 
residual methods applicable to problems with low-regularity input data.

The regularity assumptions on the data imposed by the least squares approach in 𝐿2-based spaces can also be relaxed by changing the norms and 
performing a minimization in a weaker one. This approach also has a substantial history. We refer to the recent [33] for such an approach, where 
the relevant dual norms are realized computationally.

An important class of minimum residual methods that appeared after the monograph [5] are DPG methods, [11,17–19], which may be understood 
as minimizing the residual in a norm other than 𝐿2 , [20].

Contribution of the present work

Our primary contribution is optimal 𝐿2(Ω) based convergence results for the least squares approximation of the scalar variable 𝑢, the gradient of 
the scalar variable 𝑢 and the traces of the scalar and the vector variable. Furthermore, we derive improved 𝐿2(Ω) estimates for the vector variable 
𝜑𝜑𝜑. These estimates are explicit in the mesh size ℎ of the quasi-uniform meshes employed and the polynomial degree 𝑝 utilized, which extends the 
results of [26].

Outline

In Section 2 we introduce the model problem, its FOSLS formulation and prove a norm equivalence that ensures unique solvability of both the 
continuous and the discrete least squares formulation. Section 3 provides regularity assertions for the representations in terms of a dual formulation 
of the scalar variable, its gradient, the vector variable, and the traces. These duality results are given without assuming full elliptic regularity so 
as to provide the tools for a possible extension to situations without full elliptic shift such as non-convex geometries. In Section 4 we present 
several error estimates for different quantities of interest, namely, the 𝐿2 and 𝐻1-error of the scalar variable and the 𝐿2 and 𝐻(div)-error of the 
vectorial variable. This is obtained in a bootstrapping fashion by systematically improving estimates for these quantities of interest by repeated 
duality arguments. As a tool for our error analysis, we develop in Lemma 4.4 the constrained approximation operator 𝐼𝐼𝐼Γ

ℎ
with certain orthogonality 

properties that is instrumental for our error analysis. This operator generalizes the corresponding operators 𝐼𝐼𝐼ℎ, 𝐼𝐼𝐼0
ℎ

for problems with homogeneous 
boundary conditions in [9]. Compared to [9], the bootstrapping argument is more involved since the presence of the boundary terms in the bilinear 
forms lowers the regularity of some components of dual solutions compared to [9] (see Remark 2.1 for more details). We close the paper in Section 5

with numerical results that showcase the proved convergence rates for the case of solutions with finite (low) Sobolev regularity.

Notation

Throughout this work, Ω denotes a bounded simply connected domain in ℝ𝑑 , 𝑑 = 2, 3, with (piecewise) smooth boundary; the boundary Γ ∶= 𝜕Ω
is assumed connected and 𝑛𝑛𝑛 denotes the outward unit normal vector. We flag that the convergence analysis will be performed under the assumption 
of a full elliptic regularity shift, i.e., Ω is convex or has a smooth boundary Γ. Throughout, we will use rather established notation and refer to Part I 
of this series, [9] for details. Specifically, we employ Sobolev spaces 𝐻𝑠(Ω), 𝐻𝐻𝐻(curl, Ω), 𝐻𝐻𝐻(div, Ω) as well as the spaces with Dirichlet type boundary 
conditions 𝐻𝑠

0(Ω), 𝐻𝐻𝐻0(curl, Ω), 𝐻𝐻𝐻0(div, Ω). On Γ, we use Sobolev spaces 𝐻𝑡(Γ), 𝑡 ∈ [−1, 1], defined by local charts (see, e.g., [27]); for 𝑡 > 1, the 
space 𝐻𝑡(Γ) is understood as the trace of 𝐻𝑡+1∕2(Ω) endowed with the trace norm. We write (⋅, ⋅)Ω for the 𝐿2(Ω) inner product and ⟨⋅, ⋅⟩Γ for the 
duality pairing that extends the 𝐿2(Γ) inner product. We consider regular (i.e., no hanging nodes), shape-regular triangulations ℎ of Ω that satisfy 
the following additional assumptions on the element maps of the triangulation  :

Assumption 1.1 (Quasi-uniform regular meshes, [30]). Let 𝐾 be the reference simplex. Each element map 𝐹𝐾 ∶ 𝐾 →𝐾 can be written as 𝐹𝐾 =𝑅𝐾◦𝐴𝐾 , 
where 𝐴𝐾 is an affine map and the maps 𝑅𝐾 and 𝐴𝐾 satisfy, for constants 𝐶aff ine, 𝐶metric, 𝜌 > 0 independent of 𝐾 :‖‖‖𝐴′

𝐾
‖‖‖𝐿∞(𝐾)

≤ 𝐶aff ineℎ𝐾,
‖‖‖(𝐴′

𝐾 )
−1‖‖‖𝐿∞(𝐾)

≤ 𝐶aff ineℎ
−1
𝐾 ,‖‖‖(𝑅′

𝐾 )
−1‖‖‖𝐿∞(�̃�)

≤ 𝐶metric, ‖‖∇𝑛𝑅𝐾
‖‖𝐿∞(�̃�) ≤ 𝐶metric𝜌

𝑛𝑛! ∀𝑛 ∈ ℕ0.

Here, �̃� =𝐴𝐾 (𝐾) and ℎ𝐾 > 0 denotes the element diameter.

Remark 1.2. The element maps 𝐹𝐾 in Assumption 1.1 are required to be analytic, which is stronger than needed for the ensuing analysis. The 
structure of the element maps 𝐹𝐾 , namely, the fact that 𝐹𝐾 is the concatenation of an affine map and a smooth map, provides a simple mechanism 
for scaling arguments familiar from affine triangulations. The specific form of Assumption 1.1 is taken from [30], where the analyticity of the maps 
𝑅𝐾 is exploited. □

On the reference simplex 𝐾 we introduce the scalar polynomial space 𝑝(𝐾), the Raviart-Thomas RTRTRT𝑝−1(𝐾) spaces, the Brezzi-Douglas-Marini 
spaces BDMBDMBDM𝑝(𝐾), and the type I and II Nédélec spaces NNN𝐼

𝑝−1(𝐾), NNN𝐼𝐼
𝑝−1(𝐾) in the standard way (see [9, Sec. 1.1.2]); correspondingly, we have on the 

triangulation  the following 𝐻1(Ω)-, 𝐻𝐻𝐻(div, Ω)-, and 𝐻𝐻𝐻(curl, Ω)-conforming discrete spaces:

𝑆𝑝(ℎ) ∶=
{
𝑢 ∈𝐻1(Ω)∶ 𝑢|𝐾 ◦𝐹𝐾 ∈ 𝑝(𝐾) for all 𝐾 ∈ ℎ

}
,

BDMBDMBDM𝑝(ℎ) ∶=
{
𝜑𝜑𝜑 ∈𝐻𝐻𝐻(div,Ω)∶ (det 𝐹 ′

𝐾 )(𝐹
′
𝐾 )

−1 𝜑𝜑𝜑|𝐾 ◦𝐹𝐾 ∈BDMBDMBDM𝑝(𝐾) for all 𝐾 ∈ ℎ

}
,

RTRTRT𝑝−1(ℎ) ∶=
{
𝜑𝜑𝜑 ∈𝐻𝐻𝐻(div,Ω)∶ (det 𝐹 ′

𝐾 )(𝐹
′
𝐾 )

−1 𝜑𝜑𝜑|𝐾 ◦𝐹𝐾 ∈RTRTRT𝑝−1(𝐾) for all 𝐾 ∈ ℎ

}
,

NNN𝐼∕𝐼𝐼
𝑝−1 (ℎ) ∶=

{
𝜑𝜑𝜑 ∈𝐻𝐻𝐻(curl,Ω)∶ (𝐹 ′

𝐾 )
⊤ 𝜑𝜑𝜑|𝐾 ◦𝐹𝐾 ∈NNN𝐼∕𝐼𝐼

𝑝−1 (𝐾) for all 𝐾 ∈ ℎ

}
.

The first order system formulation of a second order equation requires us to choose two finite element spaces, one for the scalar variable 𝑢, i.e., the 
solution of the second order equation, and one for the vector variable 𝜑𝜑𝜑, which we select as 𝜙𝜙𝜙 = −∇𝑢. Hence, for the numerical discretization of the 
first order system we consider the following finite element spaces:
2
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𝑆𝑝𝑠
(ℎ) ⊆𝐻1(Ω), 𝑆0

𝑝𝑠
(ℎ) ⊆𝐻1

0 (Ω),

VVV𝑝𝑣
(ℎ) ⊆𝐻𝐻𝐻(div,Ω), VVV0

𝑝𝑣
(ℎ) ⊆𝐻𝐻𝐻0(div,Ω),

where the polynomial approximation of the scalar and vector variable is denoted by 𝑝𝑠 ≥ 1 and 𝑝𝑣 ≥ 1. We set

𝑝 ∶= min{𝑝𝑠, 𝑝𝑣}.

For brevity of notation, we denote by VVV𝑝𝑣
(ℎ) either the Raviart-Thomas space RTRTRT𝑝𝑣−1(ℎ) or the Brezzi-Douglas-Marini space BDMBDMBDM𝑝𝑣

(ℎ). The space 
VVV0

𝑝𝑣
(ℎ), which includes the boundary conditions, is understood analogously. Furthermore, depending on the choice of the space VVV𝑝𝑣

(ℎ), the Nédélec 
space NNN𝑝𝑣

(ℎ) is either of type I (if VVV𝑝𝑣
(ℎ) =RTRTRT𝑝𝑣−1(ℎ)) or II (if VVV𝑝𝑣

(ℎ) =BDMBDMBDM𝑝𝑣
(ℎ)). We apply the same convention to spaces incorporating 

homogeneous boundary conditions. We refer to [3,16,28,31] for further details.

As in [9], further notational conventions are:

(i) lower case roman letters such as 𝑢 and 𝑣 are employed to indicate scalar valued functions;

(ii) lower case boldface greek letters such as 𝜑𝜑𝜑 and 𝜓𝜓𝜓 are used for vector valued functions;

(iii) a subscript ℎ as in 𝑢ℎ and 𝜑𝜑𝜑ℎ indicates membership in a finite element space;

(iv) if not otherwise stated finite element functions without a ⋅̃ are in some sense fixed, e.g., they are Galerkin approximations whereas functions 
with a ̃⋅ are arbitrary and arise, e.g., in quasi-optimality results;

(v) generic constants are either denoted by 𝐶 > 0 or are hidden inside the symbol ≲; they are independent of the mesh size ℎ and the polynomial 
degree 𝑝 unless otherwise stated. We will not track the parameters 𝛾 and 𝛼 appearing in the model problem (2.1).

2. Model problem with Robin boundary conditions

We assume 𝑓 ∈𝐿2(Ω) and 𝑔 ∈𝐿2(Γ). For fixed 𝛾 , 𝛼 > 0 we consider the following model problem:

−Δ𝑢+ 𝛾𝑢 = 𝑓 in Ω, 𝜕𝑛𝑢+ 𝛼𝑢 = 𝑔 on Γ. (2.1)

As in [9] by setting 𝜑𝜑𝜑 = −∇𝑢 we arrive at the system

∇ ⋅𝜑𝜑𝜑+ 𝛾𝑢 = 𝑓 in Ω, ∇𝑢+𝜑𝜑𝜑 = 0 in Ω, 𝜑𝜑𝜑 ⋅𝑛𝑛𝑛− 𝛼𝑢 = −𝑔 on Γ. (2.2)

Furthermore, we introduce the Hilbert spaces

𝑉𝑉𝑉 ∶= {𝜑𝜑𝜑 ∈𝐻𝐻𝐻(div,Ω)∶ 𝜑𝜑𝜑 ⋅𝑛𝑛𝑛 ∈𝐿2(Γ)} and 𝑊 ∶=𝐻1(Ω),

and equip 𝑉𝑉𝑉 with the graph norm. The bilinear form 𝑏 and the linear functional 𝐹 are given by

𝑏((𝜑𝜑𝜑,𝑢), (𝜓𝜓𝜓,𝑣)) ∶= (∇ ⋅𝜑𝜑𝜑+ 𝛾𝑢,∇ ⋅𝜓𝜓𝜓 + 𝛾𝑣)Ω + (∇𝑢+𝜑𝜑𝜑,∇𝑣+𝜓𝜓𝜓)Ω + ⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛− 𝛼𝑢,𝜓𝜓𝜓 ⋅𝑛𝑛𝑛− 𝛼𝑣⟩Γ,
𝐹 ((𝜑𝜑𝜑,𝑣)) ∶= (𝑓,∇ ⋅𝜓𝜓𝜓 + 𝛾𝑣)Ω + ⟨−𝑔,𝜓𝜓𝜓 ⋅𝑛𝑛𝑛− 𝛼𝑣⟩Γ.

Remark 2.1. The boundary terms in the bilinear form 𝑏 reflect the fact that the Robin boundary conditions, which reduce to Neumann condition in the 
case 𝛼 = 0, are realized as “natural boundary conditions” in the 𝐿2-minimization process. In comparison, the bilinear form of [9] for the Neumann 
problem lacks the boundary terms since the Neumann conditions are enforced as “essential boundary conditions” on the vectorial variable. This 
difference in bilinear form leads to slightly different regularity assertions for the dual problems in Section 3 ahead: e.g., Theorem 3.3 ensures up to 
𝐻𝐻𝐻2-regularity for 𝜓𝜓𝜓 whereas the corresponding [9, Thm. 3.3] even asserts up to 𝐻𝐻𝐻3-regularity. □

We start our analysis with a norm equivalence theorem.

Theorem 2.2 (Norm equivalence - Robin version of [9, Thm. 2.1]). For all (𝜑𝜑𝜑, 𝑢) ∈𝑉𝑉𝑉 ×𝑊 there holds

‖𝑢‖2
𝐻1(Ω) + ‖𝜑𝜑𝜑‖2𝐻𝐻𝐻(div,Ω) + ‖𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖2

𝐿2(Γ) ≲ 𝑏((𝜑𝜑𝜑,𝑢), (𝜑𝜑𝜑,𝑢)) ≲ ‖𝑢‖2
𝐻1(Ω) + ‖𝜑𝜑𝜑‖2𝐻𝐻𝐻(div,Ω) + ‖𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖2

𝐿2(Γ) .

Proof. The upper bound follows directly from the Cauchy-Schwarz inequality. For the lower bound, we proceed similarly to [9, Thm. 2.1]. By 
definition we have

𝑏((𝜑𝜑𝜑,𝑢), (𝜑𝜑𝜑,𝑢)) = ‖∇ ⋅𝜑𝜑𝜑+ 𝛾𝑢
⏟⏞⏞⏟⏞⏞⏟

=∶𝑤

‖2
𝐿2(Ω) + ‖∇𝑢+𝜑𝜑𝜑

⏟⏟⏟
=∶𝜂𝜂𝜂

‖2
𝐿2(Ω) + ‖𝜑𝜑𝜑 ⋅𝑛𝑛𝑛− 𝛼𝑢

⏟⏞⏞⏟⏞⏞⏟
=∶𝜇

‖2
𝐿2(Γ).

We write 𝜑𝜑𝜑 =𝜑𝜑𝜑1 +𝜑𝜑𝜑2 and 𝑢 = 𝑢1 + 𝑢2, where

∇ ⋅𝜑𝜑𝜑1 + 𝛾𝑢1 =𝑤 in Ω,

∇𝑢1 +𝜑𝜑𝜑1 = 0 in Ω,

𝜑𝜑𝜑 ⋅𝑛𝑛𝑛− 𝛼𝑢 = 0 on Γ,

∇ ⋅𝜑𝜑𝜑2 + 𝛾𝑢2 = 0 in Ω,

∇𝑢2 +𝜑𝜑𝜑2 = 𝜂𝜂𝜂 in Ω,

𝜑𝜑𝜑 ⋅𝑛𝑛𝑛− 𝛼𝑢 = 𝜇 on Γ.
1 1 2 2

3
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Eliminating 𝜑𝜑𝜑1, 𝜑𝜑𝜑2 leads, in strong form, to

−Δ𝑢1 + 𝛾𝑢1 =𝑤 in Ω,

𝜕𝑛𝑢1 + 𝛼𝑢1 = 0 on Γ,

−Δ𝑢2 + 𝛾𝑢2 = −∇ ⋅ 𝜂𝜂𝜂 in Ω,

𝜕𝑛𝑢2 + 𝛼𝑢2 = −𝜇 + 𝜂𝜂𝜂 ⋅𝑛𝑛𝑛 on Γ.

Lax-Milgram provides ‖𝑢1‖𝐻1(Ω) ≲ ‖𝑤‖𝐿2(Ω) and ‖𝑢2‖𝐻1(Ω) ≲ ‖𝜂𝜂𝜂‖𝐿2(Ω) + ‖𝜇‖𝐻−1∕2(Γ). We set 𝜑𝜑𝜑1 = −∇𝑢1 and 𝜑𝜑𝜑2 = 𝜂𝜂𝜂 − ∇𝑢2 and check that the 
pairs (𝜑𝜑𝜑1, 𝑢1) and (𝜑𝜑𝜑2, 𝑢2) satisfy the above two systems and ‖𝜑𝜑𝜑1‖𝐻𝐻𝐻(div,Ω) ≲ ‖𝑤‖𝐿2(Ω) as well as ‖𝜑𝜑𝜑2‖𝐻𝐻𝐻(div,Ω) ≲ ‖𝜂𝜂𝜂‖𝐿2(Ω) + ‖𝜇‖𝐻−1∕2(Γ). We note ‖𝜑𝜑𝜑1 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲ ‖𝑢1‖𝐿2(Γ) and ‖𝜑𝜑𝜑2 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲ ‖𝜇‖𝐿2(Γ) + ‖𝑢2‖𝐿2(Γ). We conclude the proof by observing that 𝜑𝜑𝜑 =𝜑1𝜑1𝜑1 +𝜑𝜑𝜑2 and 𝑢 = 𝑢1 + 𝑢2. □

3. Duality argument

Our error analysis in the following sections relies on several duality arguments for a range of quantities. The following Assumption 3.1 charac-

terizes the range in which the elliptic shift theorem is valid:

Assumption 3.1 (ŝ shift property). Let �̂�≥ −1. Then for every 𝑓 ∈𝐻𝑠(Ω), 𝑔 ∈𝐻𝑠+1∕2(Γ) and 𝑠 ∈ [−1, ̂𝑠], the problem

−Δ𝑢+ 𝛾𝑢 = 𝑓 in Ω, 𝜕𝑛𝑢+ 𝛼𝑢 = 𝑔 on Γ

admits the regularity shift 𝑢 ∈𝐻𝑠+2(Ω) with ‖𝑢‖𝐻𝑠+2(Ω) ≲ ‖𝑓‖𝐻𝑠(Ω)+‖𝑔‖𝐻𝑠+1∕2(Γ) if 𝑠 ≥ 0 and, if 𝑠 < 0, ‖𝑢‖𝐻𝑠+2(Ω) ≲ ‖𝑓‖�̃�𝑠(Ω)+‖𝑔‖𝐻𝑠+1∕2(Γ). Here, for 
𝑠 ∈ (−1, 0), we set 𝐻𝑠(Ω) = (�̃�−𝑠(Ω))′, �̃�𝑠(Ω) = (𝐻−𝑠(Ω))′ with the Sobolev spaces 𝐻−𝑠(Ω) = (𝐿2(Ω), 𝐻1(Ω))−𝑠,2 and �̃�−𝑠(Ω) = (𝐿2(Ω), 𝐻1

0 (Ω))−𝑠,2
defined by the real method of interpolation (see [27] for details).

Remark 3.2. The parameter �̂� encodes properties of Γ. For example, by standard elliptic regularity Assumption 3.1 holds for any �̂� ≥ 0 for smooth 
boundaries Γ. For polygonal/polyhedral domains, �̂� is determined by the minimal angle at corners in 2D or corners and edges in 3D. For convex 
domains Ω, one has �̂� ≥ 0. While �̂� is a function of the geometry only, the implied constant in the norm bounds depends additionally on 𝛾 and 𝛼. □

The proof of the following four duality arguments follows similar patterns. We will therefore present the arguments only for Theorems 3.3 and 
3.6 in some detail and refer to [9] for the other cases. We point out that, as mentioned in Remark 2.1, the change in the bilinear form from [9] to 
the present setting reduces the (provably) achievable regularity of the variable 𝜓𝜓𝜓 from 𝐻𝐻𝐻3(Ω) to 𝐻𝐻𝐻2(Ω).

Theorem 3.3 (Duality argument for the scalar variable — Robin version of [9, Thm. 3.3]). Let Assumption 3.1 be valid for some �̂� ≥ −1. Then, given 
(𝜑𝜑𝜑, 𝑤) ∈ 𝑉𝑉𝑉 × 𝑊 there is a pair (𝜓𝜓𝜓, 𝑣) ∈ 𝑉𝑉𝑉 × 𝑊 with ‖𝑤‖2

𝐿2(Ω) = 𝑏((𝜑𝜑𝜑, 𝑤), (𝜓𝜓𝜓, 𝑣)). Furthermore, 𝜓𝜓𝜓 ∈𝐻𝐻𝐻min(�̂�+1,2)(Ω), ∇ ⋅ 𝜓𝜓𝜓 ∈ 𝐻min(�̂�+2,2)(Ω), 𝜓𝜓𝜓 ⋅ 𝑛𝑛𝑛 ∈
𝐻min(�̂�+3∕2,3∕2)(Γ), and 𝑣 ∈𝐻min(�̂�+2,2)(Ω) with

‖𝑣‖𝐻min(�̂�+2,2)(Ω) + ‖𝜓𝜓𝜓‖𝐻min(�̂�+1,2)(Ω) + ‖∇ ⋅𝜓𝜓𝜓‖𝐻min(�̂�+2,2)(Ω) + ‖𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐻min(�̂�+3∕2,3∕2)(Γ) ≲ ‖𝑤‖𝐿2(Ω) .

Proof. By the coercivity result of Theorem 2.2 and Lax-Milgram, there is a unique solution (𝜓𝜓𝜓, 𝑣) ∈𝑉𝑉𝑉 ×𝑊 to the following variational problem:

(𝑢,𝑤)Ω = 𝑏((𝜑𝜑𝜑,𝑢), (𝜓𝜓𝜓,𝑣)) ∀ (𝜑𝜑𝜑,𝑢) ∈𝑉𝑉𝑉 ×𝑊 . (3.1)

In order to show the regularity assertions about (𝜓𝜓𝜓, 𝑣), we introduce the new quantities 𝑧, 𝜇𝜇𝜇, and 𝜎 by

∇ ⋅𝜓𝜓𝜓 + 𝛾𝑣 = 𝑧 in Ω, ∇𝑣+𝜓𝜓𝜓 =𝜇𝜇𝜇 in Ω, 𝜓𝜓𝜓 ⋅𝑛𝑛𝑛− 𝛼𝑣 = 𝜎 on Γ. (3.2)

In terms of these quantities, (3.1) reads

(𝑢,𝑤)Ω = (∇𝑢+𝜑𝜑𝜑,𝜇𝜇𝜇)Ω + (∇ ⋅𝜑𝜑𝜑+ 𝛾𝑢, 𝑧)Ω + ⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛− 𝛼𝑢, 𝜎⟩Γ ∀ (𝜑𝜑𝜑,𝑢) ∈𝑉𝑉𝑉 ×𝑊 . (3.3)

Selecting 𝑢 = 0, we find with an integration by parts

0 = (𝜑𝜑𝜑,𝜇𝜇𝜇)Ω + (∇ ⋅𝜑𝜑𝜑,𝑧)Ω + ⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛, 𝜎⟩Γ = (𝜑𝜑𝜑,𝜇𝜇𝜇 −∇𝑧)Ω + ⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛, 𝜎 + 𝑧⟩Γ,
which gives 𝜇𝜇𝜇 =∇𝑧 as well as 𝜎 = −𝑧|Γ. Therefore we find by taking 𝜑𝜑𝜑 = 0 in (3.3)

(𝑢,𝑤)Ω = (∇𝑢,∇𝑧)Ω + (𝛾𝑢, 𝑧)Ω + ⟨𝛼𝑢, 𝑧⟩Γ ∀𝑢 ∈𝐻1(Ω).

That is, 𝑧 satisfies, in strong form,

−Δ𝑧+ 𝛾𝑧 =𝑤 in Ω, 𝜕𝑛𝑧+ 𝛼𝑧 = 0 on Γ. (3.4)

Assumption 3.1 provides 𝑧 ∈𝐻min(�̂�+2,2)(Ω) together with the estimate ‖𝑧‖𝐻min(�̂�+2,2)(Ω) ≲ ‖𝑤‖𝐿2(Ω). We next proceed as in the proof of [9, Thm. 3.3]. 
To highlight the fact that 𝜓𝜓𝜓 is only in 𝐻𝐻𝐻min(�̂�+1,2)(Ω) compared to [9, Thm. 3.3] we write down the equations for 𝑣 and 𝑧 − 𝑣:

−Δ𝑣+ 𝛾𝑣 =𝑤+ (1 − 𝛾)𝑧 in Ω, 𝜕𝑛𝑣+ 𝛼𝑣 = (1 − 𝛼)𝑧 on Γ,

−Δ(𝑧− 𝑣) + 𝛾(𝑧− 𝑣) = (𝛾 − 1)𝑧 in Ω, 𝜕𝑛(𝑧− 𝑣) + 𝛼(𝑧− 𝑣) = (𝛼 − 1)𝑧 on Γ.

Assumption 3.1 gives 𝑣 ∈𝐻min(�̂�+2,2)(Ω) since the volume right-hand side is only in 𝐿2(Ω). The regularity of 𝑧 −𝑣 is limited by the exploitable regular-

ity of the boundary data (𝛼−1)𝑧 ∈𝐻min(�̂�+2,2)−1∕2(Γ) =𝐻min(�̂�+1,1)+1∕2(Γ) ⊂𝐻min(min(�̂�+1,1),�̂�)+1∕2(Γ) =𝐻min(�̂�,1)+1∕2(Γ). Therefore, by Assumption 3.1, 
we have 𝑧 − 𝑣 ∈𝐻min(�̂�+2,3)(Ω) together with the estimate
4
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‖𝑧− 𝑣‖𝐻min(�̂�+2,3)(Ω) ≲ ‖𝑤‖𝐿2(Ω) ,

and consequently 𝜓𝜓𝜓 = ∇(𝑧 − 𝑣) ∈𝐻𝐻𝐻min(�̂�+1,2)(Ω). The regularity of ∇ ⋅𝜓𝜓𝜓 now follows from the representation (3.2)1 and that of 𝜓𝜓𝜓 ⋅ 𝑛𝑛𝑛 from (3.2)3
and 𝜎 = −𝑧|Γ. For this last regularity assertion, we recall that Sobolev spaces 𝐻𝑠(Γ) with 𝑠 > 1 are defined in terms of traces of Sobolev functions of 
𝐻𝑠+1∕2(Ω). □

Theorem 3.4 (Duality argument for the gradient of the scalar variable - Robin version of [9, Thm. 3.4]). Let Assumption 3.1 be valid for some �̂�≥ −1. Then, 
given (𝜑𝜑𝜑, 𝑤) ∈𝑉𝑉𝑉 ×𝑊 there is a pair (𝜓𝜓𝜓, 𝑣) ∈𝑉𝑉𝑉 ×𝑊 with ‖∇𝑤‖2

𝐿2(Ω) = 𝑏((𝜑𝜑𝜑, 𝑤), (𝜓𝜓𝜓, 𝑣)). Furthermore, 𝜓𝜓𝜓 ∈𝐻𝐻𝐻min(�̂�+1,1)(Ω), ∇ ⋅𝜓𝜓𝜓 ∈𝐻1(Ω), 𝜓𝜓𝜓 ⋅𝑛𝑛𝑛 ∈𝐻1∕2(Γ), 
and 𝑣 ∈𝐻1(Ω) with

‖𝑣‖𝐻1(Ω) + ‖𝜓𝜓𝜓‖𝐻min(�̂�+1,1)(Ω) + ‖∇ ⋅𝜓𝜓𝜓‖𝐻1(Ω) + ‖𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐻1∕2(Γ) ≲ ‖∇𝑤‖𝐿2(Ω) .

Proof. Structurally, the proof follows that of Theorem 3.3; details can be found in [10, Thm. 3.4] and the analogous result [9, Thm. 3.4]. We 
highlight that as in the proof of Theorem 3.3 it is the exploitable regularity of the boundary data that limits the regularity of 𝜓𝜓𝜓 . □

Theorem 3.5 (Duality argument for the vector valued variable — Robin version of [9, Thm. 3.5]). Let Assumption 3.1 be valid for some �̂� ≥ −1. Then, 
given (𝜂𝜂𝜂, 𝑢) ∈ 𝑉𝑉𝑉 ×𝑊 there is a pair (𝜓𝜓𝜓, 𝑣) ∈ 𝑉𝑉𝑉 ×𝑊 with ‖𝜂𝜂𝜂‖2

𝐿2(Ω) = 𝑏((𝜂𝜂𝜂, 𝑢), (𝜓𝜓𝜓, 𝑣)). Furthermore, 𝜓𝜓𝜓 ∈𝐿𝐿𝐿2(Ω), ∇ ⋅𝜓𝜓𝜓 ∈ 𝐻1(Ω), 𝜓𝜓𝜓 ⋅ 𝑛𝑛𝑛 ∈ 𝐻1∕2(Γ), and 
𝑣 ∈𝐻min(�̂�+2,2)(Ω) with

‖𝑣‖𝐻min(�̂�+2,2)(Ω) + ‖𝜓𝜓𝜓‖𝐿2(Ω) + ‖∇ ⋅𝜓𝜓𝜓‖𝐻1(Ω) + ‖𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐻1∕2(Γ) ≲ ‖𝜂𝜂𝜂‖𝐿2(Ω) .

Proof. The proof is structurally similar to that of [9, Thm. 3.5]; details can be found in [10, Thm. 3.5]. □

Theorem 3.6 (Duality argument for the normal trace of the vector valued variable). Let Assumption 3.1 be valid for some �̂� ≥ −1. Then, given (𝜂𝜂𝜂, 𝑢) ∈𝑉𝑉𝑉 ×𝑊
there is a pair (𝜓𝜓𝜓, 𝑣) ∈ 𝑉𝑉𝑉 × 𝑊 with ‖𝜂𝜂𝜂 ⋅𝑛𝑛𝑛‖2

𝐿2(Γ) = 𝑏((𝜂𝜂𝜂, 𝑢), (𝜓𝜓𝜓, 𝑣)). Furthermore, 𝜓𝜓𝜓 ∈𝐻𝐻𝐻min(�̂�+1,1∕2)(Ω), ∇ ⋅ 𝜓𝜓𝜓 ∈ 𝐻min(�̂�+2,3∕2)(Ω), 𝜓𝜓𝜓 ⋅ 𝑛𝑛𝑛 ∈ 𝐿2(Γ), and 
𝑣 ∈𝐻min(�̂�+2,3∕2)(Ω) with

‖𝑣‖𝐻min(�̂�+2,3∕2)(Ω) + ‖𝜓𝜓𝜓‖min(�̂�+1,1∕2)(Ω) + ‖∇ ⋅𝜓𝜓𝜓‖𝐻min(�̂�+2,3∕2)(Ω) + ‖𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲ ‖𝜂𝜂𝜂 ⋅𝑛𝑛𝑛‖𝐿2(Γ) .

Proof. By the coercivity result of Theorem 2.2 and Lax-Milgram, there is a unique (𝜓𝜓𝜓, 𝑣) ∈𝑉𝑉𝑉 ×𝑊 satisfying

⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛,𝜂𝜂𝜂 ⋅𝑛𝑛𝑛⟩Γ = 𝑏((𝜑𝜑𝜑,𝑢), (𝜓𝜓𝜓,𝑣)) ∀ (𝜑𝜑𝜑,𝑢) ∈𝑉𝑉𝑉 ×𝑊 . (3.5)

To show the regularity assertions, we introduce the new quantities 𝑧, 𝜇𝜇𝜇, and 𝜎 by (3.2) In terms of these quantities, (3.5) reads

⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛,𝜂𝜂𝜂 ⋅𝑛𝑛𝑛⟩Γ = (∇𝑢+𝜑𝜑𝜑,𝜇𝜇𝜇)Ω + (∇ ⋅𝜑𝜑𝜑+ 𝛾𝑢, 𝑧)Ω + ⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛− 𝛼𝑢, 𝜎⟩Γ ∀ (𝜑𝜑𝜑,𝑢) ∈𝑉𝑉𝑉 ×𝑊 . (3.6)

Selecting 𝑢 = 0, we find after an integration by parts

⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛,𝜂𝜂𝜂 ⋅𝑛𝑛𝑛⟩Γ = (𝜑𝜑𝜑,𝜇𝜇𝜇)Ω + (∇ ⋅𝜑𝜑𝜑,𝑧)Ω + ⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛, 𝜎⟩Γ = (𝜑𝜑𝜑,𝜇𝜇𝜇 −∇𝑧)Ω + ⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛, 𝜎 + 𝑧⟩Γ ∀𝜑𝜑𝜑 ∈𝑉𝑉𝑉 ,

which gives 𝜇𝜇𝜇 =∇𝑧 as well as 𝜎 = 𝜂𝜂𝜂 ⋅𝑛𝑛𝑛− 𝑧. Therefore we find with 𝜑𝜑𝜑 = 0 in (3.6)

0 = (∇𝑢,∇𝑧)Ω + (𝛾𝑢, 𝑧)Ω + ⟨𝛼𝑢, 𝑧⟩Γ − ⟨𝛼𝑢,𝜂𝜂𝜂 ⋅𝑛𝑛𝑛⟩Γ ∀𝑢 ∈𝐻1(Ω).

That is, 𝑧 satisfies, in strong form,

−Δ𝑧+ 𝛾𝑧 = 0 in Ω, 𝜕𝑛𝑧+ 𝛼𝑧 = 𝛼𝜂𝜂𝜂 ⋅𝑛𝑛𝑛 on Γ.

Assumption 3.1 provides 𝑧 ∈𝐻min(�̂�+2,3∕2)(Ω) with the estimate ‖𝑧‖𝐻min(�̂�+2,3∕2)(Ω) ≲ ‖𝜂𝜂𝜂 ⋅𝑛𝑛𝑛‖𝐿2(Γ). The equations satisfied by 𝑣 are easily seen to be:

−Δ𝑣+ 𝛾𝑣 = (1 − 𝛾)𝑧 in Ω, 𝜕𝑛𝑣+ 𝛼𝑣 = (1 − 𝛼)(𝑧− 𝜂𝜂𝜂 ⋅𝑛𝑛𝑛) on Γ.

Assumption 3.1 gives 𝑣 ∈𝐻min(�̂�+2,3∕2)(Ω) with the estimate ‖𝑣‖𝐻min(�̂�+2,3∕2)(Ω) ≲ ‖𝜂𝜂𝜂 ⋅𝑛𝑛𝑛‖𝐿2(Γ). Finally, we have 𝜓𝜓𝜓 = ∇(𝑧 − 𝑣) ∈𝐻𝐻𝐻min(�̂�+1,1∕2)(Ω). The 
regularity of ∇ ⋅𝜓𝜓𝜓 follows from (3.2)1 and that of 𝜓𝜓𝜓 ⋅𝑛𝑛𝑛 from (3.2)3. □

Remark 3.7. Usually a duality argument results in a dual solution with higher order Sobolev regularity. This is not the case in Theorem 3.6, where the 
regularity is not improved, since 𝜓𝜓𝜓 ⋅𝑛𝑛𝑛 is still only in 𝐿2(Γ). The sole purpose of this duality argument is to introduce another Galerkin orthogonality 
that can be utilized in the error analysis. □

4. Error analysis

From here on we will only consider domains Ω satisfying Assumption 3.1 for some �̂� ≥ 0 such as domains with smooth boundary Γ or convex 
domains. Non-convex polygonal/polyhedral domains would require a more careful analysis.

After recalling results about a commuting diagram operator in Subsection 4.1 we proceed in Subsection 4.2 with introducing and analyzing the 
operator 𝐼𝐼𝐼Γ

ℎ
, which features an orthogonality necessary for our analysis. Finally, we prove different error estimates in Subsection 4.4 via a bootstrap 

argument. We first prove suboptimal estimates for the errors ‖𝑒𝑢‖𝐿2(Ω), ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω), and ‖∇𝑒𝑢‖𝐿2(Ω) in Lemma 4.5, Theorem 4.6, and Lemma 4.9, 
respectively, where 𝑒𝑢 = 𝑢 − 𝑢ℎ and 𝑒𝑒𝑒𝜑𝜑𝜑 = 𝜑𝜑𝜑 − 𝜑𝜑𝜑ℎ are the FOSLS errors of the scalar and vectorial variable. We then prove optimal estimates for 
5
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‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐿2(Γ) and ‖∇𝑒𝑢‖𝐿2(Ω) in Theorems 4.11 and 4.13. Next, we derive in Theorem 4.15 improved estimates for ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) that are numerically 
seen to be still suboptimal. Finally, we conclude with an optimal estimate for ‖𝑒𝑢‖𝐿2(Ω) in Theorem 4.17.

4.1. A commuting diagram operator

In the analysis it is crucial to understand the approximation properties of the vector-valued finite element space in the classical 𝐻𝐻𝐻 (div, Ω) norm 
as well as the 𝐿2(Γ) norm of the normal trace simultaneously. We are therefore interested in quantifying

inf
�̃�𝜓𝜓ℎ∈VVV𝑝𝑣

(ℎ)
‖𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ‖𝐻𝐻𝐻(div,Ω) + ‖(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ)

for 𝜓𝜓𝜓 ∈ 𝑉𝑉𝑉 . This infimum can be estimated by specific approximants. For the reader’s convenience we briefly summarize some results of [29]

concerning the 𝐻𝐻𝐻(div, Ω)-conforming elementwise defined approximation operator Πdiv
𝑝𝑣

∶𝐻𝐻𝐻1∕2(div, Ω) →VVV𝑝𝑣
(ℎ) constructed therein. This operator 

is defined on the reference element with error estimates that are explicit in the polynomial degree 𝑝𝑣 . A simple scaling argument gives the desired 
ℎ estimates of the global operator:

Proposition 4.1 (Defs. 2.3, 2.6, Thms. 2.10, 2.13, & Rem. 2.9 in [29]). The global operator Πdiv
𝑝𝑣

satisfies for every 𝜑𝜑𝜑∈𝐻𝐻𝐻1∕2(div, Ω) and �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣
(ℎ),

(i) (∇ ⋅ (𝜑𝜑𝜑−Πdiv
𝑝𝑣
𝜑𝜑𝜑), ∇ ⋅ �̃�𝜑𝜑ℎ)Ω = 0 and consequently ‖∇ ⋅ (𝜑𝜑𝜑−Πdiv

𝑝𝑣
𝜑𝜑𝜑)‖𝐿2(Ω) ≤ ‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖𝐿2(Ω),

(ii) ⟨(𝜑𝜑𝜑−Πdiv
𝑝𝑣
𝜑𝜑𝜑) ⋅𝑛𝑛𝑛, �̃�𝜑𝜑ℎ ⋅𝑛𝑛𝑛⟩Γ = 0 and consequently ‖(𝜓𝜓𝜓 −Πdiv

𝑝𝑣
𝜑𝜑𝜑) ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≤ ‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ),

(iii) ‖𝜑𝜑𝜑−Πdiv
𝑝𝑣
𝜑𝜑𝜑‖𝐻𝐻𝐻(div,Ω) ≲

(
ℎ
𝑝𝑣

)1∕2 ‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ‖𝐻𝐻𝐻1∕2(div,Ω).

Proof. The operator Πdiv
𝑝𝑣

is constructed in [29] and [34]. However, while [29] covered in detail the case of VVV𝑝𝑣
(ℎ) = RTRTRT𝑝𝑣−1, the fact that the 

approximation properties and the commuting diagram properties are also valid for the choice VVV𝑝𝑣
(ℎ) =BDMBDMBDM𝑝𝑣

is discussed in [34, Sec. 4.8].

For the 2D case, [29] consider the operator curl instead of div. However, since in 2D, the vector-valued curl is just a rotated gradient and the 
scalar-valued curl a divergence operator applied to the rotated vector, the results of [29] can be reformulated in terms of the operator div.

Property (ii) and (iii) can be found in [29] for the case VVV𝑝𝑣
(ℎ) =RTRTRT𝑝𝑣−1. Property (i) follows from the commuting diagram property of Πdiv

𝑝𝑉
: for 

�̃�𝜑𝜑ℎ ∈VVV𝑝𝑣
(ℎ) we calculate with the 𝐿2-projection Π𝐿2

𝑝𝑣
∶𝐿2(Ω) → 𝑆−1

𝑝𝑣
∶= {𝑣 ∈𝐿2(Ω) | 𝑣|𝐾◦𝐹𝐾 ∈ 𝑝𝑣

(𝐾) ∀𝐾 ∈  }

(∇ ⋅ (𝜑𝜑𝜑−Πdiv
𝑝𝑣
𝜑𝜑𝜑),∇ ⋅ �̃�𝜑𝜑ℎ)Ω = (∇ ⋅𝜑𝜑𝜑−Π𝐿2

𝑝𝑣
∇ ⋅𝜑𝜑𝜑),∇ ⋅ �̃�𝜑𝜑ℎ)Ω = 0,

where we used ∇ ⋅ �̃�𝜑𝜑ℎ ∈ 𝑆−1
ℎ

. □

4.2. The operator 𝐼𝐼𝐼Γ
ℎ

We will require an approximation operator with certain orthogonality properties, i.e., an operator similar to 𝐼𝐼𝐼 0
ℎ

and 𝐼𝐼𝐼ℎ constructed in [9, Sec. 4]. 
Although the operator 𝐼𝐼𝐼ℎ of [9] is applicable to derive improved convergence results for the present case of Robin boundary conditions, they are 
only optimal in a pure ℎ-version of the FOSLS method and suboptimal in a 𝑝-version context. This is due to the fact that the analysis requires 
approximation properties of 𝐼𝐼𝐼ℎ in the 𝐿2(Γ) norm for the normal trace, which can only be effected by relying on inverse estimates. Even though, per 
se, these inverse estimates are sharp one loses an order of 𝑝 when doing so. For optimal 𝑝-estimate, it is therefore necessary to define the operator 
𝐼𝐼𝐼Γ
ℎ

such that the normal trace is appropriately involved.

We introduce the scalar product ⟨⟨⋅, ⋅⟩⟩ and the induced norm ||| ⋅ ||| by

⟨⟨𝜑𝜑𝜑,𝜓𝜓𝜓⟩⟩ ∶= (𝜑𝜑𝜑,𝜓𝜓𝜓)Ω + ⟨𝜑𝜑𝜑 ⋅𝑛𝑛𝑛,𝜓𝜓𝜓 ⋅𝑛𝑛𝑛⟩Γ, |||𝜑𝜑𝜑||| ∶=√⟨⟨𝜑𝜑𝜑,𝜑𝜑𝜑⟩⟩. (4.1)

Construction of 𝐼𝐼𝐼Γ
ℎ
: We define 𝐼𝐼𝐼Γ

ℎ
by a constrained minimization problem:

𝐼𝐼𝐼Γℎ𝜑𝜑𝜑 = argmin
𝜑𝜑𝜑ℎ∈VVV𝑝𝑣

(ℎ)

1
2
|||𝜑𝜑𝜑−𝜑𝜑𝜑ℎ|||2 s.t. (∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑),∇ ⋅𝜒𝜒𝜒ℎ)Ω = 0 ∀𝜒𝜒𝜒ℎ ∈VVV𝑝𝑣

(ℎ).

This constrained optimization problem is equivalent to a saddle problem: Find (𝜑𝜑𝜑ℎ, 𝜆ℎ) ∈VVV𝑝𝑣
(ℎ) ×∇ ⋅VVV𝑝𝑣

(ℎ) such that

⟨⟨𝜑𝜑𝜑ℎ,𝜇𝜇𝜇ℎ⟩⟩+ (∇ ⋅𝜇𝜇𝜇ℎ,𝜆ℎ)Ω = ⟨⟨𝜑𝜑𝜑,𝜇𝜇𝜇ℎ⟩⟩ ∀𝜇𝜇𝜇ℎ ∈VVV𝑝𝑣
(ℎ), (4.2)

(∇ ⋅𝜑𝜑𝜑ℎ, 𝜂ℎ)Ω = (∇ ⋅𝜑𝜑𝜑, 𝜂ℎ)Ω ∀𝜂ℎ ∈∇ ⋅VVV𝑝𝑣
(ℎ). (4.3)

Solvability follows in the standard way by asserting an inf-sup condition for the bilinear form ̃𝑏(𝜇𝜇𝜇, 𝜆) ∶= (∇ ⋅𝜇𝜇𝜇, 𝜆)Ω and coercivity of ⟨⟨⋅, ⋅⟩⟩ on the 
kernel of ̃𝑏 both on the continuous and the discrete level; the inf-sup condition on the discrete level is inferred from the one on the continuous level 
using that ΠΠΠdiv

𝑝𝑣
can be leveraged as a Fortin operator. See [9] or [10, Sec. 4.2] for details. We thus have:

Lemma 4.2. The operator 𝐼𝐼𝐼Γ
ℎ

is well-defined.

4.3. Helmholtz decompositions

As a tool in the 𝐿2(Ω) analysis of the operator 𝐼𝐼𝐼Γ
ℎ

we need the following decomposition. Compared to [9, Sec. 4] we need a Helmholtz-like 
decomposition accounting for the regularity of the normal trace:
6
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Lemma 4.3 (Continuous and discrete Helmholtz-like decomposition - 𝐿2(Γ) normal trace). Let Ω satisfy Assumption 3.1 for some �̂� ≥ 0. Let 𝑌𝑌𝑌 ⊂𝐻𝐻𝐻(curl, Ω)
be given by

𝑌𝑌𝑌 ∶=
{
𝜇𝜇𝜇 ∈𝐻𝐻𝐻(curl,Ω)∶ (∇ ×𝜇𝜇𝜇) ⋅𝑛𝑛𝑛 ∈𝐿2(Γ)

}
.

The operators ΠΠΠcurl,Γ ∶ 𝑉𝑉𝑉 →∇ ×𝑌𝑌𝑌 and ΠΠΠcurl,Γ
ℎ

∶ 𝑉𝑉𝑉 →∇ ×NNN𝑝𝑣
(ℎ) given by

⟨⟨ΠΠΠcurl,Γ𝜑𝜑𝜑,∇×𝜇𝜇𝜇⟩⟩ = ⟨⟨𝜑𝜑𝜑,∇×𝜇𝜇𝜇⟩⟩ ∀𝜇𝜇𝜇 ∈ 𝑌𝑌𝑌 , (4.4)⟨⟨ΠΠΠcurl,Γ
ℎ

𝜑𝜑𝜑,∇×𝜇𝜇𝜇ℎ⟩⟩ = ⟨⟨𝜑𝜑𝜑,∇×𝜇𝜇𝜇ℎ⟩⟩ ∀𝜇𝜇𝜇ℎ ∈NNN𝑝𝑣
(ℎ), (4.5)

are well-defined. The remainder 𝑟𝑟𝑟 in the continuous decomposition 𝜑𝜑𝜑 = ΠΠΠcurl,Γ𝜑𝜑𝜑 + 𝑟𝑟𝑟 satisfies 𝑟𝑟𝑟 ∈𝐻𝐻𝐻1(Ω) with ‖𝑟𝑟𝑟‖𝐻1(Ω) ≲ ‖∇ ⋅𝜑𝜑𝜑‖𝐿2(Ω). Additionally the 
solution 𝑅 ∈𝐻2(Ω) of

−Δ𝑅 = −∇ ⋅𝜑𝜑𝜑 in Ω, 𝜕𝑛𝑅+𝑅 = 0 on Γ,

satisfies 𝑟𝑟𝑟 =∇𝑅 together with ‖𝑅‖𝐻2(Ω) ≲ ‖𝑟𝑟𝑟‖𝐻1(Ω) ≲ ‖∇ ⋅𝜑𝜑𝜑‖𝐿2(Ω). Furthermore 𝑟𝑟𝑟 satisfies

∇ ⋅ 𝑟𝑟𝑟 =∇ ⋅𝜑𝜑𝜑 in Ω, ∇× 𝑟𝑟𝑟 = 0 in Ω, 𝑟𝑟𝑟 ⋅𝑛𝑛𝑛 = −𝑅 on Γ. (4.6)

Proof. The unique solvability of (4.4), (4.5) on the discrete and the continuous level follows immediately from the fact that the variational formu-

lations are just the definition of the orthogonal projections onto ∇ ×𝑌𝑌𝑌 and ∇ ×NNN𝑝𝑣
(ℎ), respectively. For any 𝜇𝜇𝜇 ∈𝐶𝐶𝐶∞

0 (Ω) we find

⟨⟨𝑟𝑟𝑟,∇×𝜇𝜇𝜇⟩⟩ = (𝑟𝑟𝑟,∇×𝜇𝜇𝜇)Ω = 0,

which gives ∇ × 𝑟𝑟𝑟 = 0. Since ΠΠΠcurl,Γ𝜑𝜑𝜑 ∈∇ ×𝑌𝑌𝑌 we conclude ∇ ⋅ 𝑟𝑟𝑟 =∇ ⋅𝜑𝜑𝜑. The observation ∇ × 𝑟𝑟𝑟 = 0 gives via the exact sequence property

ℝ
id
⟶𝐻1(Ω)

∇
⟶𝐻𝐻𝐻(curl,Ω)

∇×
⟶𝐻𝐻𝐻(div,Ω)

∇⋅
⟶𝐿2(Ω)

0
⟶ {0}

the existence of a potential 𝑅 ∈ 𝐻1(Ω) with 𝑟𝑟𝑟 = ∇𝑅. The function 𝑅 is determined up to a constant that we will fix shortly. 𝑟𝑟𝑟 = ∇𝑅 implies 
−Δ𝑅 = −∇ ⋅∇𝑅 = −∇ ⋅𝑟𝑟𝑟 = −∇ ⋅𝜑𝜑𝜑. To analyze the boundary conditions satisfied by 𝑅 we insert 𝑟𝑟𝑟 =∇𝑅 into the variational formulation and integrate 
by parts to get

0 = ⟨⟨∇𝑅,∇×𝜇𝜇𝜇⟩⟩ = (∇𝑅,∇×𝜇𝜇𝜇)Ω + ⟨𝜕𝑛𝑅, (∇ ×𝜇𝜇𝜇) ⋅𝑛𝑛𝑛⟩Γ = ⟨𝑅+ 𝜕𝑛𝑅, (∇ ×𝜇𝜇𝜇) ⋅𝑛𝑛𝑛⟩Γ.
Since (∇ × 𝜇𝜇𝜇) ⋅ 𝑛𝑛𝑛 = ∇Γ ⋅ (𝜇𝜇𝜇 × 𝑛𝑛𝑛) and Γ is connected, we conclude 𝜕𝑛𝑅 + 𝑅 = 𝑐 for some 𝑐 ∈ ℝ. Since 𝑅 is fixed up to a constant, we select it such 
that 𝑐 = 0. Hence, the function 𝑅 satisfies the boundary value problem of the statement of the lemma. By Assumption 3.1 and Remark 3.2 we have ‖𝑅‖𝐻2(Ω) ≲ ‖∇ ⋅𝜑𝜑𝜑‖𝐿2(Ω). This concludes the proof. □

Lemma 4.4. Let Ω satisfy Assumption 3.1 for some �̂� ≥ 0. The operator 𝐼𝐼𝐼Γ
ℎ

satisfies the following estimates for any �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣
(ℎ):

|||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑||| ≲ |||𝜑𝜑𝜑− �̃�𝜑𝜑ℎ|||+ ℎ
𝑝𝑣

‖‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖‖𝐿2(Ω) , (4.7)

‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω) ≤
‖‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖‖𝐿2(Ω) (4.8)

Proof. The proof parallels the one of [9, Lem. 4.6] by replacing ‖⋅‖𝐿2(Ω) with ||| ⋅ |||; we will therefore merely point out the differences; details can 
be found in [10, Lem. 4.4]. Let �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣

(ℎ) be arbitrary. The orthogonality relations enforced in the construction of the operator 𝐼𝐼𝐼Γ
ℎ

readily imply 
the estimate (4.8). We have with 𝑒𝑒𝑒 =𝜑𝜑𝜑− 𝐼𝐼𝐼Γ

ℎ
𝜑𝜑𝜑

|||𝑒𝑒𝑒|||2 = ⟨⟨𝑒𝑒𝑒,𝜑𝜑𝜑− �̃�𝜑𝜑ℎ⟩⟩+ ⟨⟨𝑒𝑒𝑒,�̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑⟩⟩.
Lemma 4.3 allows us to decompose the discrete object �̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γ

ℎ
𝜑𝜑𝜑 ∈VVV𝑝𝑣

(ℎ) on a discrete as well as a continuous level:

�̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑 =∇×𝜇𝜇𝜇 + 𝑟𝑟𝑟, �̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑 =∇×𝜇𝜇𝜇ℎ + 𝑟𝑟𝑟ℎ

for certain 𝜇𝜇𝜇 ∈ 𝑌𝑌𝑌 , 𝑟𝑟𝑟 ∈𝑉𝑉𝑉 , 𝜇𝜇𝜇ℎ ∈NNN𝑝𝑣
(ℎ), and 𝑟𝑟𝑟ℎ ∈VVV𝑝𝑣

(ℎ). Since ∇ ⋅∇× = 0, property (4.2) of 𝐼𝐼𝐼Γ
ℎ

immediately gives

⟨⟨𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑,∇×𝜇𝜇𝜇ℎ⟩⟩ = 0.

We therefore have

⟨⟨𝑒𝑒𝑒,�̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑⟩⟩ = ⟨⟨𝑒𝑒𝑒,∇×𝜇𝜇𝜇ℎ + 𝑟𝑟𝑟ℎ⟩⟩ = ⟨⟨𝑒𝑒𝑒,𝑟𝑟𝑟ℎ⟩⟩ = ⟨⟨𝑒𝑒𝑒,𝑟𝑟𝑟ℎ − 𝑟𝑟𝑟⟩⟩+ ⟨⟨𝑒𝑒𝑒,𝑟𝑟𝑟⟩⟩ ∶= 𝑇1 + 𝑇2.

Before continuing with the treatment of the terms 𝑇1 and 𝑇2, we collect that Lemma 4.3 states that 𝑟𝑟𝑟 =∇𝑅 with

‖𝑅‖𝐻2(Ω) ≲ ‖∇ ⋅ (𝜑𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω), (4.9)

−Δ𝑅 = −∇ ⋅ (𝜑𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) in Ω, 𝜕𝑛𝑅+𝑅 = 0 on Γ, (4.10)

∇𝑅 = 𝑟𝑟𝑟, 𝑟𝑟𝑟 ⋅𝑛𝑛𝑛 = −𝑅 on Γ. (4.11)

Treatment of 𝑇1: See [9, Lem. 4.6] for analogous arguments and more details. Proceeding as in [9, Lem. 4.6], one arrives at

|||𝑟𝑟𝑟− 𝑟𝑟𝑟ℎ||| ≤ |||𝑟𝑟𝑟−ΠΠΠdiv
𝑝 𝑟𝑟𝑟||| ≲ ‖𝑟𝑟𝑟−ΠΠΠdiv

𝑝 𝑟𝑟𝑟‖𝐿2(Ω) + ‖(𝑟𝑟𝑟−ΠΠΠdiv
𝑝 𝑟𝑟𝑟) ⋅𝑛𝑛𝑛‖𝐿2(Γ).
𝑣 𝑣 𝑣

7
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The volume term is estimated as in [9, Lem. 4.6] using [29, Thm. 2.10 (vi)/Thm. 2.13 (iv)]. To estimate the boundary term we apply Proposition 4.1

to conclude with the face-wise 𝐿2-projection Π𝐿2(Γ)
𝑝𝑣

‖(𝑟𝑟𝑟−ΠΠΠdiv
𝑝𝑣
𝑟𝑟𝑟) ⋅𝑛𝑛𝑛‖𝐿2(Γ) = ‖𝑟𝑟𝑟 ⋅𝑛𝑛𝑛−ΠΠΠ𝐿2(Γ)

𝑝𝑣
𝑟𝑟𝑟 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲

ℎ
𝑝𝑣

‖𝑟𝑟𝑟 ⋅𝑛𝑛𝑛‖𝐻1(Γ)
(4.11)

≲
ℎ
𝑝𝑣

‖𝑅‖𝐻1(Γ) ≲
ℎ
𝑝𝑣

‖𝑅‖𝐻2(Ω)
(4.9)

≲
ℎ
𝑝𝑣

‖∇ ⋅ (�̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω).

Summarizing the above development, we have

|||𝑟𝑟𝑟− 𝑟𝑟𝑟ℎ||| ≲ ℎ
𝑝𝑣

‖∇ ⋅ (�̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω). (4.12)

Adding and subtracting 𝜑𝜑𝜑 and using (4.8) we get

𝑇1 ≤ |||𝑒𝑒𝑒||| ⋅ |||𝑟𝑟𝑟− 𝑟𝑟𝑟ℎ||| ≲ ℎ
𝑝𝑣

|||𝑒𝑒𝑒||| ⋅ ‖∇ ⋅ (�̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω) ≲
ℎ
𝑝𝑣

|||𝑒𝑒𝑒||| ⋅ ‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖𝐿2(Ω).

Treatment of 𝑇2: The term 𝑇2 is estimated with a duality argument. Proceeding as in the proof of [9, Lem. 4.6], we get

𝑇2 ≲
ℎ
𝑝𝑣

‖∇ ⋅ 𝑒𝑒𝑒‖𝐿2(Ω)|||�̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑|||.
Finally we have for any �̃�𝜑𝜑ℎ

|||𝑒𝑒𝑒|||2 = ⟨⟨𝑒𝑒𝑒,𝜑𝜑𝜑− �̃�𝜑𝜑ℎ⟩⟩+ ⟨⟨𝑒𝑒𝑒,�̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑⟩⟩ = ⟨⟨𝑒𝑒𝑒,𝜑𝜑𝜑− �̃�𝜑𝜑ℎ⟩⟩+ 𝑇1 + 𝑇2

≲ |||𝑒𝑒𝑒||| ⋅ |||𝜑𝜑𝜑− �̃�𝜑𝜑ℎ|||𝐿2(Ω) +
ℎ
𝑝𝑣

|||𝑒𝑒𝑒||| ⋅ ‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖𝐿2(Ω) +
ℎ
𝑝𝑣

‖∇ ⋅ 𝑒𝑒𝑒‖𝐿2(Ω) ⋅ |||�̃�𝜑𝜑ℎ − 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑|||.
Adding and subtracting 𝜑𝜑𝜑 in the last term and applying estimate (4.8) together with the Young inequality yields the result. □

4.4. Error estimates

Lemma 4.5 (Suboptimal estimate for ‖𝑒𝑢‖𝐿2(Ω) - Robin version of [9, Lem. 4.1]). Let Assumption 3.1 be valid for some �̂� ≥ 0. Let (𝜑𝜑𝜑ℎ, 𝑢ℎ) be the FOSLS 
approximation of (𝜑𝜑𝜑, 𝑢). Set 𝑒𝑢 = 𝑢 − 𝑢ℎ and 𝑒𝑒𝑒𝜑𝜑𝜑 =𝜑𝜑𝜑−𝜑𝜑𝜑ℎ. Then, for any �̃�ℎ ∈ 𝑆𝑝𝑠

(ℎ), �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣
(ℎ), there holds

‖𝑒𝑢‖𝐿2(Ω) ≲
ℎ
𝑝
‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏 ≲ ℎ

𝑝
‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) +

ℎ
𝑝
‖‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ

‖‖𝐿2(Ω) +
ℎ
𝑝
‖(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) +

ℎ
𝑝
‖‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖‖𝐿2(Ω) .

Proof. We employ the duality argument of Theorem 3.3 with 𝑤 = 𝑒𝑢. As in [9, Lem. 4.1] we find by Galerkin orthogonality and the Cauchy-Schwarz 
inequality for any �̃�𝜓𝜓ℎ ∈VVV𝑝𝑣

(ℎ) and �̃�ℎ ∈ 𝑆𝑝𝑠
(ℎ)

‖𝑒𝑢‖2
𝐿2(Ω) ≤ ‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏‖(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ, 𝑣− �̃�ℎ)‖𝑏.

The norm equivalence in Theorem 2.2 gives

‖(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ, 𝑣− �̃�ℎ)‖𝑏 ≲ ‖𝑣− �̃�ℎ‖𝐻1(Ω) + ‖𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ‖𝐻𝐻𝐻(div,Ω) + ‖(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ).

Proposition 4.1 and the regularity estimates given by Theorem 3.3 yield the result. □

Theorem 4.6 (Suboptimal estimate for ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) — suboptimal Robin version of [9, Thm. 4.8]). Let Assumption 3.1 be valid for some �̂� ≥ 0. Let (𝜑𝜑𝜑ℎ, 𝑢ℎ)
be the FOSLS approximation of (𝜑𝜑𝜑, 𝑢). Set 𝑒𝑢 = 𝑢 − 𝑢ℎ and 𝑒𝑒𝑒𝜑𝜑𝜑 =𝜑𝜑𝜑−𝜑𝜑𝜑ℎ. Then, for any �̃�ℎ ∈ 𝑆𝑝𝑠

(ℎ), �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣
(ℎ),

‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ≲

(
ℎ
𝑝

)1∕2 ‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) + ‖‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ
‖‖𝐿2(Ω) + ‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) +

(
ℎ
𝑝

)1∕2 ‖‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖‖𝐿2(Ω) .

Proof. This a somewhat weaker version of [9, Thm. 4.8] that will be improved in Theorem 4.15 below. Let (𝜓𝜓𝜓, 𝑣) ∈𝑉𝑉𝑉 ×𝑊 denote the dual solution 
given by Theorem 3.5 applied to 𝜂𝜂𝜂 = 𝑒𝑒𝑒𝜑𝜑𝜑. Theorem 3.5 gives 𝜓𝜓𝜓 ∈𝐿𝐿𝐿2(Ω), ∇ ⋅𝜓𝜓𝜓 ∈𝐻1(Ω), 𝜓𝜓𝜓 ⋅ 𝑛𝑛𝑛 ∈𝐻1∕2(Γ), and 𝑣 ∈𝐻2(Ω), which are controlled by ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω). By the Galerkin orthogonality we have for any (�̃�𝜓𝜓ℎ, �̃�ℎ)‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖2𝐿2(Ω) = 𝑏((𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢), (𝜓𝜓𝜓,𝑣)) = 𝑏((𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢), (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ, 𝑣− �̃�ℎ)). (4.13)

All volume terms of the right-hand side of (4.13) with the exception of ⟨⟨𝑒𝑒𝑒𝜑𝜑𝜑, 𝜓𝜓𝜓 −�̃�𝜓𝜓ℎ⟩⟩ can be estimated as in [9, Proof of Thm. 4.6] (see [10, Thm. 4.6]

for details); boundary terms involving 𝑒𝑢 are treated with multiplicative trace estimates and the preceding Lemma 4.5 to give

‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖2𝐿2(Ω) ≲ ‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏 [‖∇ ⋅ (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))‖𝐿2(Ω) + (ℎ∕𝑝)1∕2‖(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) + ‖‖𝑣− �̃�ℎ‖‖𝐻1(Ω)

]
+ ⟨⟨𝑒𝑒𝑒𝜑𝜑𝜑,𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ⟩⟩. (4.14)

To analyze the term ⟨⟨𝑒𝑒𝑒𝜑𝜑𝜑, 𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ⟩⟩ we follow a similar procedure as in [9, Thm. 4.8] and first perform a Helmholtz decomposition of the vector field 
𝜓𝜓𝜓 . Since 𝜓𝜓𝜓 ∈𝐻𝐻𝐻(div, Ω) with ∇ ⋅𝜓𝜓𝜓 ∈𝐻1(Ω) and 𝜓𝜓𝜓 ⋅ 𝑛𝑛𝑛 ∈𝐻1∕2(Γ) we find 𝜌𝜌𝜌 ∈𝐻𝐻𝐻0(curl, Ω) and 𝑧 ∈𝐻2(Ω) such that 𝜓𝜓𝜓 = ∇ × 𝜌𝜌𝜌+∇𝑧 in the following 
way: let 𝑧 ∈𝐻1(Ω) with zero average solve

−Δ𝑧 = −∇ ⋅𝜓𝜓𝜓 in Ω, 𝜕𝑛𝑧 =𝜓𝜓𝜓 ⋅𝑛𝑛𝑛 on Γ. (4.15)

As ∇ ⋅ (𝜓𝜓𝜓 −∇𝑧) = 0 and (𝜓𝜓𝜓−∇𝑧) ⋅𝑛𝑛𝑛 = 0 by construction, the exact sequence property ensures the existence of 𝜌𝜌𝜌 ∈𝐻𝐻𝐻0(curl, Ω) such that 𝜓𝜓𝜓 −∇𝑧 =∇ ×𝜌𝜌𝜌. 
By elliptic regularity (Assumption 3.1) we have 𝑧 ∈𝐻2(Ω) together with the estimate
8
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‖𝑧‖𝐻2(Ω) ≲ ‖∇ ⋅𝜓𝜓𝜓‖𝐿2(Ω) + ‖𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐻1∕2(Γ) .

From the weak formulation of (4.15),

∀𝑤 ∈𝐻1(Ω) ∶ (∇𝑧,∇𝑤)Ω = (−∇ ⋅𝜓𝜓𝜓,𝑤)Ω + ⟨𝜓𝜓𝜓 ⋅𝑛𝑛𝑛,𝑤⟩Γ = (𝜓𝜓𝜓,∇𝑤)Ω,

we infer with Lax-Milgram ‖𝑧‖𝐻1(Ω) ≲ ‖𝜓𝜓𝜓‖𝐿2(Ω). Since 𝜌𝜌𝜌 ∈𝐻𝐻𝐻0(curl, Ω) and consequently ∇ ×𝜌𝜌𝜌 ∈𝐻𝐻𝐻0(div, Ω), we can estimate

|||∇×𝜌𝜌𝜌||| = ‖∇×𝜌𝜌𝜌‖𝐿2(Ω) ≤ ‖𝜓𝜓𝜓‖𝐿2(Ω) + ‖∇𝑧‖𝐿2(Ω) ≲ ‖𝜓𝜓𝜓‖𝐿2(Ω) ≲
‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) , (4.16)

where we used the estimates of the Helmholtz decomposition as well as the regularity estimates of Lemma 3.5. We now continue estimating (4.14)

by applying the Helmholtz decomposition. In essence this is again the procedure of [9, Thm. 4.8] after replacing ‖⋅‖𝐿2(Ω) with ||| ⋅ |||. For any 
�̃�𝜓𝜓𝑐

ℎ
, �̃�𝜓𝜓𝑔

ℎ
∈VVV𝑝𝑣

(ℎ) we have with �̃�𝜓𝜓ℎ = �̃�𝜓𝜓𝑐
ℎ
+ �̃�𝜓𝜓𝑔

ℎ⟨⟨𝑒𝑒𝑒𝜑𝜑𝜑,𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ⟩⟩ = ⟨⟨𝑒𝑒𝑒𝜑𝜑𝜑,∇×𝜌𝜌𝜌− �̃�𝜓𝜓𝑐
ℎ⟩⟩+ ⟨⟨𝑒𝑒𝑒𝜑𝜑𝜑,∇𝑧− �̃�𝜓𝜓𝑔

ℎ
⟩⟩ =∶ 𝑇 𝑐 + 𝑇 𝑔.

We select �̃�𝜓𝜓𝑐
ℎ
=ΠΠΠcurl,Γ

ℎ
∇ × 𝜌𝜌𝜌 and proceed with the terms 𝑇 𝑐 , 𝑇 𝑔 as in the proof of [9, Thm. 4.8] (see [10, Thm. 4.6] for details), to arrive at the 

analog of [9, (4.22)], which reads

⟨⟨𝑒𝑒𝑒𝜑𝜑𝜑,𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ⟩⟩ ≲ |||∇𝑧− �̃�𝜓𝜓𝑔
ℎ
||| ⋅ |||𝑒𝑒𝑒𝜑𝜑𝜑|||+ [|||𝜑𝜑𝜑− �̃�𝜑𝜑ℎ|||+ ℎ

𝑝𝑣
‖‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖‖𝐿2(Ω) +

ℎ
𝑝𝑣

‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏]‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) . (4.17)

To conclude the proof we estimate the quantities arising in the estimates (4.14) and (4.17). To that end note that ∇𝑧 ∈𝐻𝐻𝐻1(div, Ω). Using the estimates 
of the Helmholtz decomposition, the equation satisfied by 𝑧, and the regularity estimates given by Theorem 3.5, we find

‖∇𝑧‖𝐻𝐻𝐻1(div,Ω) ≲ ‖𝑧‖𝐻2(Ω) + ‖Δ𝑧‖𝐻1(Ω) ≲
‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,‖∇𝑧 ⋅𝑛𝑛𝑛‖𝐻1∕2(Γ) = ‖𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐻1∕2(Γ) ≲

‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) .

Exploiting these regularity estimates and employing the operator of Proposition 4.1 we may find �̃�𝜓𝜓𝑔
ℎ
∈VVV𝑝𝑣

(ℎ) with

‖∇𝑧− �̃�𝜓𝜓𝑔
ℎ
‖𝐻𝐻𝐻(div,Ω) ≲ ℎ∕𝑝𝑣 ‖∇𝑧‖𝐻𝐻𝐻1(div,Ω) ≲ ℎ∕𝑝𝑣 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,

‖(∇𝑧− �̃�𝜓𝜓𝑔
ℎ
) ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲ (ℎ∕𝑝𝑣)1∕2 ‖∇𝑧 ⋅𝑛𝑛𝑛‖𝐻1∕2(Γ)

Prop. 4.1(ii)

≲ (ℎ∕𝑝𝑣)1∕2 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,|||∇𝑧− �̃�𝜓𝜓𝑔
ℎ
||| ≲ (ℎ∕𝑝𝑣)1∕2 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,

where the last one is just a combination of the previous ones. These estimates in turn give (note that ∇ ⋅ �̃�𝜓𝜓𝑐
ℎ
=∇ ⋅ΠΠΠcurl,Γ

ℎ
∇ ×𝜌𝜌𝜌 = 0)

‖∇ ⋅ (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))‖𝐿2(Ω) = ‖∇ ⋅ (∇𝑧− �̃�𝜓𝜓𝑔
ℎ
)‖𝐿2(Ω) ≲ ℎ∕𝑝𝑣 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,

‖(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≤ ‖(∇ ×𝜌𝜌𝜌−ΠΠΠcurl,Γ
ℎ

∇×𝜌𝜌𝜌) ⋅𝑛𝑛𝑛‖𝐿2(Γ) + ‖(∇𝑧− �̃�𝜓𝜓𝑔
ℎ
) ⋅𝑛𝑛𝑛‖𝐿2(Γ)

(4.16)

≲ ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) .

Furthermore there exists �̃�ℎ ∈ 𝑆𝑝𝑠
(ℎ) with ‖‖𝑣− �̃�ℎ‖‖𝐻1(Ω) ≲ ℎ∕𝑝𝑠 ‖𝑣‖𝐻2(Ω) ≲ ℎ∕𝑝𝑠 ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω). We then combine (4.14) and (4.17) to find

‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖2𝐿2(Ω) ≲ (ℎ∕𝑝)1∕2‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) + (ℎ∕𝑝)1∕2 ⋅ |||𝑒𝑒𝑒𝜑𝜑𝜑||| ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) +
[|||𝜑𝜑𝜑− �̃�𝜑𝜑ℎ|||+ ℎ∕𝑝‖‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖‖𝐿2(Ω) + ℎ∕𝑝‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏]‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) .

Canceling one power of ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) on both sides, estimating |||𝑒𝑒𝑒𝜑𝜑𝜑||| by ‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏, and collecting the terms, we find

‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ≲ (ℎ∕𝑝)1∕2‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏 + |||𝜑𝜑𝜑− �̃�𝜑𝜑ℎ|||+ ℎ∕𝑝‖‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖‖𝐿2(Ω) .

The result follows from the observation that the FOSLS approximation is the orthogonal projection with respect to the 𝑏 scalar product, the norm 
equivalence of Theorem 2.2, and collecting terms. □

Remark 4.7. Theorem 4.6 seems suboptimal in the following sense: Given 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐻1∕2(Γ), the shift theorem gives 𝑢 ∈ 𝐻2(Ω) and 
consequently 𝜑𝜑𝜑 ∈𝐻𝐻𝐻1(Ω). Theorem 4.6 gives

‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ≲ ℎ3∕2 ‖𝑢‖𝐻2(Ω) + ℎ‖𝜑𝜑𝜑‖𝐻1(Ω) + ℎ1∕2‖𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐻1∕2(Γ) + ℎ1∕2 ‖∇ ⋅𝜑𝜑𝜑‖𝐿2(Ω) ≲ ℎ1∕2(‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐻1∕2(Γ)),

whereas from a best approximation viewpoint we could hope for (ℎ). □

Lemma 4.8 (Convergence of dual solution for ∇𝑒𝑢 - Robin version of [9, Lem. 4.9]). Let Assumption 3.1 be valid for some �̂�≥ 0. Let (𝜑𝜑𝜑ℎ, 𝑢ℎ) be the FOSLS 
approximation of (𝜑𝜑𝜑, 𝑢). Set 𝑒𝑢 = 𝑢 − 𝑢ℎ and 𝑒𝑒𝑒𝜑𝜑𝜑 =𝜑𝜑𝜑 −𝜑𝜑𝜑ℎ. Let (𝜓𝜓𝜓, 𝑣) ∈ 𝑉𝑉𝑉 ×𝑊 be the dual solution given by Theorem 3.4 with 𝑤 = 𝑒𝑢. Let (𝜓𝜓𝜓ℎ, 𝑣ℎ) be the 
FOSLS approximation of (𝜓𝜓𝜓, 𝑣) and abbreviate 𝑒𝑣 = 𝑣 − 𝑣ℎ and 𝑒𝑒𝑒𝜓𝜓𝜓 =𝜓𝜓𝜓 −𝜓𝜓𝜓ℎ. Then,

‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ‖∇𝑒𝑢‖𝐿2(Ω) , ‖𝑒𝑣‖𝐿2(Ω) ≲
ℎ
𝑝
‖∇𝑒𝑢‖𝐿2(Ω) ,

‖𝑒𝑣‖𝐿2(Γ) ≲

(
ℎ
𝑝

)1∕2 ‖∇𝑒𝑢‖𝐿2(Ω) , ‖𝑒𝑒𝑒𝜓𝜓𝜓‖𝐿2(Ω) ≲

(
ℎ
𝑝

)1∕2 ‖∇𝑒𝑢‖𝐿2(Ω) .

Proof. Theorem 3.4 gives 𝜓𝜓𝜓 ∈𝐻𝐻𝐻1(Ω), ∇ ⋅𝜓𝜓𝜓 ∈𝐻1(Ω), and 𝑣 ∈𝐻1(Ω) which are controlled by ‖∇𝑒𝑢‖𝐿2(Ω). Stability gives

‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≤ ‖(𝜓𝜓𝜓,𝑣)‖𝑏 ≲ ‖∇𝑒𝑢‖𝐿2(Ω) .
9
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Lemma 4.5 gives

‖𝑒𝑣‖𝐿2(Ω) ≲ ℎ∕𝑝‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏,
which together with the above stability result proves the second estimate. The third one follows by a multiplicative trace inequality together with 
the second estimate and the norm equivalence theorem in conjunction with the first estimate of the present lemma:

‖𝑒𝑣‖𝐿2(Γ) ≲ ‖𝑒𝑣‖1∕2
𝐿2(Ω)

‖𝑒𝑣‖1∕2
𝐻1(Ω)

≲ (ℎ∕𝑝)1∕2‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ (ℎ∕𝑝)1∕2 ‖∇𝑒𝑢‖𝐿2(Ω) .

By Theorem 4.6 we have, for any �̃�ℎ ∈ 𝑆𝑝𝑠
(ℎ), �̃�𝜓𝜓ℎ ∈VVV𝑝𝑣

(ℎ),

‖𝑒𝑒𝑒𝜓𝜓𝜓‖𝐿2(Ω) ≲

(
ℎ
𝑝

)1∕2 ‖‖𝑣− �̃�ℎ‖‖𝐻1(Ω) + ‖𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ‖𝐿2(Ω) + ‖(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) +
(
ℎ
𝑝

)1∕2 ‖∇ ⋅ (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)‖𝐿2(Ω).

The regularity of the dual solution together the approximation properties of the pertinent spaces then implies the result. □

Theorem 4.9 (Suboptimal estimate for ‖∇𝑒𝑢‖𝐿2(Ω) — suboptimal Robin version of [9, Thm. 4.10]). Let Assumption 3.1 be valid for some �̂� ≥ 0. Let (𝜑𝜑𝜑ℎ, 𝑢ℎ)
be the FOSLS approximation of (𝜑𝜑𝜑, 𝑢). Set 𝑒𝑢 = 𝑢 − 𝑢ℎ. Then, for any �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣

(ℎ), �̃�ℎ ∈ 𝑆𝑝𝑠
(ℎ) there holds

‖∇𝑒𝑢‖𝐿2(Ω) ≲
‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) + ‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ‖𝐿2(Ω) + ‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) +

ℎ
𝑝
‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖𝐿2(Ω).

Proof. We proceed as in [9, Thm. 4.10] and denote by (𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣) the FOSLS approximation of the dual solution given by Theorem 3.4 (duality argument 
for the gradient of the scalar variable) applied to the right-hand side 𝑤 = 𝑒𝑢. We note that ‖𝑣‖𝐻1(Ω), ‖𝜓𝜓𝜓‖𝐻𝐻𝐻1(Ω), and ‖∇ ⋅𝜓𝜓𝜓‖𝐻1(Ω) are controlled by ‖∇𝑒𝑢‖𝐿2(Ω). By Galerkin orthogonality, we have for any �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣

(ℎ), �̃�ℎ ∈ 𝑆𝑝𝑠
(ℎ)

‖𝑒𝑢‖2
𝐿2(Ω) = 𝑏((𝜑𝜑𝜑− �̃�𝜑𝜑ℎ, 𝑢− �̃�ℎ), (𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)). (4.18)

We specifically choose �̃�𝜑𝜑ℎ = 𝐼𝐼𝐼Γ
ℎ
𝜑𝜑𝜑. In what follows, we repeatedly use properties of the operator 𝐼𝐼𝐼Γ

ℎ
collected in Lemma 4.4. Making use of the 

regularity properties of the dual solution spelled out in Theorem 3.4 and using Lemma 4.8 we get:

(𝛾(𝑢− �̃�ℎ),∇ ⋅ 𝑒𝑒𝑒𝜓𝜓𝜓 + 𝛾𝑒𝑣)Ω ≲ ‖‖𝑢− �̃�ℎ‖‖𝐿2(Ω) ‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) ‖∇𝑒𝑢‖𝐿2(Ω) ,

(∇(𝑢− �̃�ℎ),∇𝑒𝑣 + 𝑒𝑒𝑒𝜓𝜓𝜓 )Ω ≲ ‖‖∇(𝑢− �̃�ℎ)‖‖𝐿2(Ω) ‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) ‖∇𝑒𝑢‖𝐿2(Ω) ,⟨−𝛼(𝑢− �̃�ℎ),𝑒𝑒𝑒𝜓𝜓𝜓 ⋅𝑛𝑛𝑛− 𝛼𝑒𝑣⟩Γ ≲ ‖‖𝑢− �̃�ℎ‖‖𝐿2(Γ) ‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) ‖∇𝑒𝑢‖𝐿2(Ω) ,

(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑,∇𝑒
𝑣)Ω = −(∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑), 𝑒

𝑣)Ω + ⟨(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛, 𝑒
𝑣⟩Γ ≲ [

ℎ∕𝑝‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω) + (ℎ∕𝑝)1∕2|||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑|||] ‖∇𝑒𝑢‖𝐿2(Ω) ,

(∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑), 𝛾𝑒
𝑣)Ω ≤ ‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω) ‖𝑒𝑣‖𝐿2(Ω) ≲ ℎ∕𝑝‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω) ‖∇𝑒𝑢‖𝐿2(Ω) ,⟨(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛,−𝛼𝑒
𝑣⟩Γ ≤ ‖(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛‖𝐿2(Γ) ‖𝑒𝑣‖𝐿2(Γ) ≲ (ℎ∕𝑝)1∕2|||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑||| ‖∇𝑒𝑢‖𝐿2(Ω) ,

(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑,𝑒𝑒𝑒
𝜓𝜓𝜓 )Ω ≲ ‖𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑‖𝐿2(Ω)‖𝑒𝑒𝑒𝜓𝜓𝜓‖𝐿2(Ω) ≲ (ℎ∕𝑝)1∕2|||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑||| ‖∇𝑒𝑢‖𝐿2(Ω) ,

(∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑),∇ ⋅ 𝑒𝑒𝑒𝜓𝜓𝜓 )Ω = (∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑),∇ ⋅ (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))Ω ≲ ℎ∕𝑝‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω) ‖∇𝑒𝑢‖𝐿2(Ω) ,⟨(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛,𝑒𝑒𝑒
𝜓𝜓𝜓 ⋅𝑛𝑛𝑛⟩Γ ≤ ‖(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛‖𝐿2(Γ)‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ |||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑||| ‖‖∇𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) . (4.19)

Inserting these bounds in (4.18), canceling one power of ‖∇𝑒𝑢‖𝐿2(Ω) on both sides, and collecting the terms yields

‖∇𝑒𝑢‖𝐿2(Ω) ≲
‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) + |||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑|||+ ℎ

𝑝
‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω).

Finally exploiting the estimates of the operator 𝐼𝐼𝐼Γ
ℎ

we obtain at the asserted estimate. □

Remark 4.10. Theorem 4.9 seems again suboptimal: Given 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐻1∕2(Γ), the shift theorem gives 𝑢 ∈ 𝐻2(Ω) and consequently 
𝜑𝜑𝜑 ∈𝐻𝐻𝐻1(Ω). Theorem 4.9 gives

‖∇𝑒𝑢‖𝐿2(Ω) ≲ ℎ‖𝑢‖𝐻2(Ω) + ℎ‖𝜑𝜑𝜑‖𝐻1(Ω) + ℎ1∕2‖𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐻1∕2(Γ) + ℎ‖∇ ⋅𝜑𝜑𝜑‖𝐿2(Ω) ≲ ℎ1∕2(‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐻1∕2(Γ)),

whereas from a best approximation viewpoint we could hope for (ℎ). □

Theorem 4.11 (Optimal estimate for ‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐿2(Γ)). Let Assumption 3.1 be valid for some �̂� ≥ 0. Let (𝜑𝜑𝜑ℎ, 𝑢ℎ) be the FOSLS approximation of (𝜑𝜑𝜑, 𝑢). Set 
𝑒𝑢 = 𝑢 − 𝑢ℎ and 𝑒𝑒𝑒𝜑𝜑𝜑 =𝜑𝜑𝜑−𝜑𝜑𝜑ℎ. Then, for any �̃�ℎ ∈ 𝑆𝑝𝑠

(ℎ), �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣
(ℎ), there holds

‖‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖‖𝐿2(Γ) ≲

(
ℎ
𝑝

)1∕2 ‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) +
(
ℎ
𝑝

)1∕2 ‖‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ
‖‖𝐿2(Ω) + ‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) +

ℎ
𝑝
‖‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖‖𝐿2(Ω) .

Proof. Let (𝜓𝜓𝜓, 𝑣) ∈𝑉𝑉𝑉 ×𝑊 denote the dual solution given by Theorem 3.6 with 𝜂𝜂𝜂 = 𝑒𝑒𝑒𝜑𝜑𝜑. Theorem 3.6 asserts 𝜓𝜓𝜓 ∈𝐻𝐻𝐻1∕2(Ω), ∇ ⋅𝜓𝜓𝜓 ∈𝐻3∕2(Ω), 𝜓𝜓𝜓 ⋅𝑛𝑛𝑛 ∈
𝐿2(Γ), and 𝑣 ∈𝐻3∕2(Ω), which are controlled by ‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐿2(Γ). For the analysis we employ the operator Πdiv

𝑝𝑣
from [29] discussed in Proposition 4.1. 

The main features exploited in the proof are that Πdiv
𝑝𝑣

realizes the 𝐿2 orthogonal projections of the divergence as well as the normal trace. By Galerkin 
orthogonality we have for any (�̃�𝜓𝜓ℎ, �̃�ℎ)
10
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‖‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖‖2𝐿2(Γ) = 𝑏((𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢), (𝜓𝜓𝜓,𝑣)) = 𝑏((𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢), (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ, 𝑣− �̃�ℎ)).

Choosing �̃�𝜓𝜓ℎ =Πdiv
𝑝𝑣
𝜓𝜓𝜓 , we estimate

(∇ ⋅ 𝑒𝑒𝑒𝜑𝜑𝜑 + 𝛾𝑒𝑢,∇ ⋅ (𝜓𝜓𝜓 −Πdiv
𝑝𝑣
𝜓𝜓𝜓) + 𝛾(𝑣− �̃�ℎ))Ω ≲ ‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏 [‖∇ ⋅ (𝜓𝜓𝜓 −Πdiv

𝑝𝑣
𝜓𝜓𝜓)‖𝐿2(Ω) + ‖‖𝑣− �̃�ℎ‖‖𝐿2(Ω)

]
,

(∇𝑒𝑢 + 𝑒𝑒𝑒𝜑𝜑𝜑,∇(𝑣− �̃�ℎ) +𝜓𝜓𝜓 −Πdiv
𝑝𝑣
𝜓𝜓𝜓)Ω ≲

[‖∇𝑒𝑢‖𝐿2(Ω) + ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω)
] [‖𝑣− �̃�ℎ‖𝐻1(Ω) + ‖𝜓𝜓𝜓 −Πdiv

𝑝𝑣
𝜓𝜓𝜓‖𝐿2(Ω)

]
,⟨−𝛼𝑒𝑢,−𝛼(𝑣− �̃�ℎ)⟩Γ ≲ ‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏‖𝑣− �̃�ℎ‖𝐿2(Γ),

⟨𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛, (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) ⋅𝑛𝑛𝑛⟩Γ orth. of Πdiv
𝑝𝑣= ⟨(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛, (𝜓𝜓𝜓 −Πdiv

𝑝𝑣
𝜓𝜓𝜓) ⋅𝑛𝑛𝑛⟩Γ ≲ ‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ)‖(𝜓𝜓𝜓 −Πdiv

𝑝𝑣
𝜓𝜓𝜓) ⋅𝑛𝑛𝑛‖𝐿2(Γ).

The two missing boundary terms, i.e., ⟨𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛, −𝛼(𝑣 − �̃�ℎ)⟩Γ and ⟨−𝛼𝑒𝑢, (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) ⋅𝑛𝑛𝑛⟩Γ, can be written as volume terms by means of partial integration

⟨𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛,−𝛼(𝑣− �̃�ℎ)⟩Γ = (∇ ⋅ 𝑒𝑒𝑒𝜑𝜑𝜑,−𝛼(𝑣− �̃�ℎ))Ω + (𝑒𝑒𝑒𝜑𝜑𝜑,−𝛼∇(𝑣− �̃�ℎ))Ω,⟨−𝛼𝑒𝑢, (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) ⋅𝑛𝑛𝑛⟩Γ = (−𝛼∇𝑒𝑢, (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))Ω + (−𝛼𝑒𝑢,∇ ⋅ (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))Ω
and can therefore be controlled by the right-hand sides of the first two estimates. We now exploit the regularity estimates given in Theorem 3.6, the 
properties of Πdiv

𝑝𝑣
given in Proposition 4.1 as well as the approximation properties of the employed spaces to find �̃�ℎ such that

‖∇ ⋅ (𝜓𝜓𝜓 −Πdiv
𝑝𝑣
𝜓𝜓𝜓)‖𝐿2(Ω) ≲ ℎ∕𝑝𝑣‖∇ ⋅𝜓𝜓𝜓‖𝐻1(Ω) ≲ ℎ∕𝑝𝑣 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖‖𝐿2(Γ) ,‖𝜓𝜓𝜓 −Πdiv

𝑝𝑣
𝜓𝜓𝜓‖𝐿2(Ω) ≲ (ℎ∕𝑝𝑣)1∕2‖𝜓𝜓𝜓‖𝐻𝐻𝐻1∕2(div,Ω) ≲ (ℎ∕𝑝𝑣)1∕2 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖‖𝐿2(Γ) ,‖(𝜓𝜓𝜓 −Πdiv

𝑝𝑣
𝜓𝜓𝜓) ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲ ‖𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲

‖‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖‖𝐿2(Γ) ,‖‖𝑣− �̃�ℎ‖‖𝐿2(Ω) ≲ (ℎ∕𝑝𝑠)3∕2 ‖𝑣‖𝐻3∕2(Ω) ≲ (ℎ∕𝑝𝑠)3∕2 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖‖𝐿2(Γ) ,‖‖𝑣− �̃�ℎ‖‖𝐻1(Ω) ≲ (ℎ∕𝑝𝑠)1∕2 ‖𝑣‖𝐻3∕2(Ω) ≲ (ℎ∕𝑝𝑠)1∕2 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖‖𝐿2(Γ) ,‖‖𝑣− �̃�ℎ‖‖𝐿2(Γ) ≲ ℎ∕𝑝𝑠 ‖𝑣‖𝐻3∕2(Ω) ≲ ℎ∕𝑝𝑠 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖‖𝐿2(Γ) ,

which in turn gives after collecting terms and canceling one power of ‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐿2(Γ) on both sides of the estimate

‖‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖‖𝐿2(Γ) ≲ ℎ∕𝑝‖(𝑒𝑒𝑒𝜑𝜑𝜑, 𝑒𝑢)‖𝑏 + (ℎ∕𝑝)1∕2
[‖∇𝑒𝑢‖𝐿2(Ω) + ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω)

]
+ ‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ).

Applying Theorems 4.6 and 4.9 to estimate ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) and ‖∇𝑒𝑢‖𝐿2(Ω) yields the result. □

Remark 4.12. Theorem 4.11 seems optimal in the following sense: Given 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐻1∕2(Γ), the shift theorem gives 𝑢 ∈ 𝐻2(Ω) and 
consequently 𝜑𝜑𝜑 ∈𝐻𝐻𝐻1(Ω). Theorem 4.11 gives

‖‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖‖𝐿2(Γ) ≲ ℎ3∕2 ‖𝑢‖𝐻2(Ω) + ℎ3∕2 ‖𝜑𝜑𝜑‖𝐻1(Ω) + ℎ1∕2‖𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐻1∕2(Γ) + ℎ‖∇ ⋅𝜑𝜑𝜑‖𝐿2(Ω) ≲ ℎ1∕2(‖𝑓‖𝐿2(Ω) + ‖𝑔‖𝐻1∕2(Γ)),

which is the rate expected from a best approximation argument. □

We are in position to derive an optimal estimate for ‖∇𝑒𝑢‖𝐿2(Ω) using the estimate given in Theorem 4.11.

Theorem 4.13 (Optimal estimate for ‖∇𝑒𝑢‖𝐿2(Ω) — Robin version of [9, Theorem 4.10]). Let Assumption 3.1 be valid for some �̂� ≥ 0. Let (𝜑𝜑𝜑ℎ, 𝑢ℎ) be the 
FOSLS approximation of (𝜑𝜑𝜑, 𝑢). Set 𝑒𝑢 = 𝑢 − 𝑢ℎ. Then, for any �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣

(ℎ), �̃�ℎ ∈ 𝑆𝑝𝑠
(ℎ), there holds

‖∇𝑒𝑢‖𝐿2(Ω) ≲
‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) +

(
ℎ
𝑝

)1∕2 ‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ‖𝐿2(Ω) +
(
ℎ
𝑝

)1∕2 ‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) +
ℎ
𝑝
‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖𝐿2(Ω).

Proof. We refine the proof of Theorem 4.9 making use of Theorem 4.11. To that end, we recall (4.19), which stated

⟨(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛,𝑒𝑒𝑒
𝜓𝜓𝜓 ⋅𝑛𝑛𝑛⟩Γ ≤ ‖(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛‖𝐿2(Γ)‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 (∗)

≲ |||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑||| ‖∇𝑒𝑢‖𝐿2(Ω) . (4.20)

This estimate can now be improved by refining ‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 with the aid of Theorem 4.11, which, together with the available regularity assertions 
for the dual solution asserted in Theorem 3.4, gives the bound

‖𝑒𝑒𝑒𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲

(
ℎ
𝑝

)1∕2 ‖‖𝑣− �̃�ℎ‖‖𝐻1(Ω) +
(
ℎ
𝑝

)1∕2 ‖𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ‖𝐿2(Ω) + ‖(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) +
ℎ
𝑝
‖∇ ⋅ (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)‖𝐿2(Ω) ≲

(
ℎ
𝑝

)1∕2 ‖∇𝑒𝑢‖𝐿2(Ω) ;

in turn this enables us to sharpen the bound for ‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 and improve 
(∗)
≲ in (4.20) to get

⟨(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛,𝑒𝑒𝑒
𝜓𝜓𝜓 ⋅𝑛𝑛𝑛⟩Γ ≲ (ℎ∕𝑝)1∕2|||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑||| ‖∇𝑒𝑢‖𝐿2(Ω) .

All other estimates in the proof of Theorem 4.9 stay the same. Canceling one power of ‖∇𝑒𝑢‖𝐿2(Ω) on both sides and collecting the terms yields

‖∇𝑒𝑢‖𝐿2(Ω) ≲
‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) +

(
ℎ
𝑝

)1∕2 |||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑|||+ ℎ
𝑝
‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω).

Finally exploiting the estimates of the operator 𝐼𝐼𝐼Γ in Lemma 4.4 we arrive at the asserted estimate. □

ℎ

11
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Before turning to the estimate for ‖𝑒𝑢‖𝐿2(Ω) we first derive a slightly better version of Theorem 4.6. To that end we first analyze the convergence 
of the corresponding dual solution:

Lemma 4.14 (Convergence of dual solution for 𝑒𝑒𝑒𝜑𝜑𝜑). Let Assumption 3.1 be valid for some �̂� ≥ 0. Let (𝜑𝜑𝜑ℎ, 𝑢ℎ) be the FOSLS approximation of (𝜑𝜑𝜑, 𝑢). Set 
𝑒𝑢 = 𝑢 − 𝑢ℎ and 𝑒𝑒𝑒𝜑𝜑𝜑 =𝜑𝜑𝜑−𝜑𝜑𝜑ℎ. Let (𝜓𝜓𝜓, 𝑣) ∈𝑉𝑉𝑉 ×𝑊 be the dual solution given by Theorem 3.5 with 𝜂𝜂𝜂 = 𝑒𝑒𝑒𝜑𝜑𝜑. Let (𝜓𝜓𝜓ℎ, 𝑣ℎ) be the FOSLS approximation of (𝜓𝜓𝜓, 𝑣). 
Denote 𝑒𝑣 = 𝑣 − 𝑣ℎ and 𝑒𝑒𝑒𝜓𝜓𝜓 =𝜓𝜓𝜓 −𝜓𝜓𝜓ℎ. Then,

‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) , ‖𝑒𝑣‖𝐿2(Ω) ≲
ℎ
𝑝
‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) , ‖𝑒𝑣‖𝐿2(Γ) ≲

(
ℎ
𝑝

)1∕2 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,

‖∇𝑒𝑣‖𝐿2(Ω) ≲

(
ℎ
𝑝

)1∕2 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) , ‖𝑒𝑒𝑒𝜓𝜓𝜓‖𝐿2(Ω) ≲
‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) , ‖𝑒𝑒𝑒𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲

(
ℎ
𝑝

)1∕2 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) .

Proof. Theorem 3.5 gives 𝜓𝜓𝜓 ∈𝐿𝐿𝐿2(Ω), ∇ ⋅𝜓𝜓𝜓 ∈𝐻1(Ω), 𝜓𝜓𝜓 ⋅𝑛𝑛𝑛 ∈𝐻1∕2(Ω), and 𝑣 ∈𝐻2(Ω), which are controlled by ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω). Stability of FOSLS gives

‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≤ ‖(𝜓𝜓𝜓,𝑣)‖𝑏 ≲ ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) . (4.21)

Lemma 4.5 provides

‖𝑒𝑣‖𝐿2(Ω) ≲ ℎ∕𝑝‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏,
and together with (4.21) we arrive at the second estimate. The third one follows by a multiplicative trace inequality together with the second estimate 
and the norm equivalence theorem in conjunction with the first estimate of the present lemma:

‖𝑒𝑣‖𝐿2(Γ) ≲ ‖𝑒𝑣‖1∕2
𝐿2(Ω)

‖𝑒𝑣‖1∕2
𝐻1(Ω)

≲ (ℎ∕𝑝)1∕2‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ (ℎ∕𝑝)1∕2 ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) .

Theorems 4.13, 4.6 and 4.11 then yield the remaining three estimates by combining the regularity assertions for the dual solution with the approx-

imation properties of the finite element spaces. □

Theorem 4.15 (Suboptimal but improved estimate for ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) — Robin version of [9, Thm. 4.8]). Let Assumption 3.1 be valid for some �̂�≥ 0. Let (𝜑𝜑𝜑ℎ, 𝑢ℎ)
be the FOSLS approximation of (𝜑𝜑𝜑, 𝑢). Set 𝑒𝑢 = 𝑢 − 𝑢ℎ and 𝑒𝑒𝑒𝜑𝜑𝜑 =𝜑𝜑𝜑−𝜑𝜑𝜑ℎ. Then, for any �̃�ℎ ∈ 𝑆𝑝𝑠

(ℎ), �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣
(ℎ), there holds

‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ≲
‖‖𝑢− �̃�ℎ‖‖𝐿2(Ω) +

(
ℎ
𝑝

)1∕2 ‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) + ‖‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ
‖‖𝐿2(Ω) + ‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) +

ℎ
𝑝
‖‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖‖𝐿2(Ω) .

Proof. We proceed as in the proof of Theorem 4.9. Let (𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣) be the FOSLS approximation error of the dual solution (𝜓𝜓𝜓, 𝑣) given by Theorem 3.5

(duality argument for the vector variable) corresponding to the right-hand side 𝜂𝜂𝜂 = 𝑒𝑒𝑒𝜑𝜑𝜑. We have that ‖𝑣‖𝐻2(Ω), ‖𝜓𝜓𝜓‖𝐿2(Ω), ‖∇ ⋅𝜓𝜓𝜓‖𝐻1(Ω), ‖𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐻1∕2(Γ)
are controlled by ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω). As before for any �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣

(ℎ), �̃�ℎ ∈ 𝑆𝑝𝑠
(ℎ)‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖2𝐿2(Ω) = 𝑏((𝜑𝜑𝜑− �̃�𝜑𝜑ℎ, 𝑢− �̃�ℎ), (𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)).

We again choose �̃�𝜑𝜑ℎ = 𝐼𝐼𝐼Γ
ℎ
𝜑𝜑𝜑, repeatedly use properties of the operator 𝐼𝐼𝐼Γ

ℎ
collected in Lemma 4.4, utilize the regularity properties of the dual solution 

given in Theorem 3.5, and apply Lemma 4.14 to get:

(𝛾(𝑢− �̃�ℎ),∇ ⋅ 𝑒𝑒𝑒𝜓𝜓𝜓 )Ω ≲ ‖‖𝑢− �̃�ℎ‖‖𝐿2(Ω) ‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ‖‖𝑢− �̃�ℎ‖‖𝐿2(Ω)
‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,⟨−𝛼(𝑢− �̃�ℎ),𝑒𝑒𝑒𝜓𝜓𝜓 ⋅𝑛𝑛𝑛− 𝛼𝑒𝑣⟩Γ ≲ ‖‖𝑢− �̃�ℎ‖‖𝐿2(Γ)

[‖𝑒𝑒𝑒𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐿2(Γ) + ‖𝑒𝑣‖𝐿2(Γ)
]
≲ (ℎ∕𝑝)1∕2 ‖‖𝑢− �̃�ℎ‖‖𝐿2(Γ)

‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,

(∇(𝑢− �̃�ℎ),𝑒𝑒𝑒𝜓𝜓𝜓 )Ω = −(𝑢− �̃�ℎ,∇ ⋅ 𝑒𝑒𝑒𝜓𝜓𝜓 )Ω + ⟨𝑢− �̃�ℎ,𝑒𝑒𝑒
𝜓𝜓𝜓 ⋅𝑛𝑛𝑛⟩Γ ≲ [‖‖𝑢− �̃�ℎ‖‖𝐿2(Ω) + (ℎ∕𝑝)1∕2 ‖‖𝑢− �̃�ℎ‖‖𝐿2(Γ)

]‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,

(𝛾(𝑢− �̃�ℎ), 𝛾𝑒𝑣)Ω ≲ ‖‖𝑢− �̃�ℎ‖‖𝐿2(Ω) ‖𝑒𝑣‖𝐿2(Ω) ≲ ℎ∕𝑝‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω)
‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,

(∇(𝑢− �̃�ℎ),∇𝑒𝑣)Ω ≲ ‖‖∇(𝑢− �̃�ℎ)‖‖𝐿2(Ω) ‖∇𝑒𝑣‖𝐿2(Ω) ≲ (ℎ∕𝑝)1∕2 ‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω)
‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,

(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑,∇𝑒
𝑣 + 𝑒𝑒𝑒𝜓𝜓𝜓 )Ω ≤ ‖𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑‖𝐿2(Ω)‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ |||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑||| ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,⟨(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛,𝑒𝑒𝑒

𝜓𝜓𝜓 ⋅𝑛𝑛𝑛− 𝛼𝑒𝑣⟩Γ ≤ ‖(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛‖𝐿2(Γ)‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ |||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑||| ‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ,

(∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑),∇ ⋅ 𝑒𝑒𝑒𝜓𝜓𝜓 )Ω = (∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑),∇ ⋅ (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))Ω ≲ ℎ∕𝑝‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω)
‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) .

Canceling one power of ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) on both sides and summarizing we find

‖‖𝑒𝑒𝑒𝜑𝜑𝜑‖‖𝐿2(Ω) ≲
‖‖𝑢− �̃�ℎ‖‖𝐿2(Ω) + (ℎ∕𝑝)1∕2 ‖‖𝑢− �̃�ℎ‖‖𝐿2(Γ) + (ℎ∕𝑝)1∕2 ‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) + |||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑|||+ ℎ∕𝑝‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω).

A trace estimate, using the estimates of the operator 𝐼𝐼𝐼Γ
ℎ

in Lemma 4.4, and collecting the terms yields the result. □

Lemma 4.16 (Convergence of dual solution for 𝑒𝑢 — Robin version of [9, Lem. 4.11]). Let Assumption 3.1 be valid for some �̂� ≥ 0. Let (𝜑𝜑𝜑ℎ, 𝑢ℎ) be the 
FOSLS approximation of (𝜑𝜑𝜑, 𝑢). Set 𝑒𝑢 = 𝑢 − 𝑢ℎ and 𝑒𝑒𝑒𝜑𝜑𝜑 =𝜑𝜑𝜑−𝜑𝜑𝜑ℎ. Let (𝜓𝜓𝜓, 𝑣) ∈𝑉𝑉𝑉 ×𝑊 be the dual solution given by Theorem 3.3 with 𝑤 = 𝑒𝑢. Furthermore, 
let (𝜓𝜓𝜓ℎ, 𝑣ℎ) be the FOSLS approximation of (𝜓𝜓𝜓, 𝑣) and denote 𝑒𝑣 = 𝑣 − 𝑣ℎ and 𝑒𝑒𝑒𝜓𝜓𝜓 =𝜓𝜓𝜓 −𝜓𝜓𝜓ℎ. Then,

‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ℎ
𝑝
‖𝑒𝑢‖𝐿2(Ω) , ‖𝑒𝑣‖𝐿2(Ω) ≲

(
ℎ
𝑝

)2 ‖𝑒𝑢‖𝐿2(Ω) , ‖𝑒𝑣‖𝐿2(Γ) ≲

(
ℎ
𝑝

)3∕2 ‖𝑒𝑢‖𝐿2(Ω) ,
12



M. Bernkopf and J.M. Melenk Computers and Mathematics with Applications 173 (2024) 1–18
‖𝑒𝑒𝑒𝜓𝜓𝜓‖𝐿2(Ω) ≲

⎧⎪⎨⎪⎩
ℎ‖𝑒𝑢‖𝐿2(Ω) if VVV𝑝𝑣

(ℎ) =RTRTRT0(ℎ),(
ℎ
𝑝

)min(�̂�+1,3∕2) ‖𝑒𝑢‖𝐿2(Ω) else,

‖𝑒𝑒𝑒𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲

⎧⎪⎨⎪⎩
ℎ‖𝑒𝑢‖𝐿2(Ω) if VVV𝑝𝑣

(ℎ) =RTRTRT0(ℎ),(
ℎ
𝑝

)min(�̂�+1,3∕2) ‖𝑒𝑢‖𝐿2(Ω) else.

Proof. Theorem 3.3 gives 𝜓𝜓𝜓 ∈𝐻𝐻𝐻min(�̂�+1,2)(Ω), ∇ ⋅𝜓𝜓𝜓 ∈𝐻2(Ω), 𝜓𝜓𝜓 ⋅ 𝑛𝑛𝑛 ∈𝐻3∕2(Γ), and 𝑣 ∈𝐻2(Ω), which are controlled by ‖𝑒𝑢‖𝐿2(Ω). In view of the 
optimality of the 𝑏-norm we have:

‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ℎ
𝑝
‖𝑒𝑢‖𝐿2(Ω) . (4.22)

By Lemma 4.5 we have

‖𝑒𝑣‖𝐿2(Ω) ≲
ℎ
𝑝
‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏,

which together with (4.22) gives the second estimate of the lemma. The third estimate of the lemma follows by a multiplicative trace inequality 
together with the second estimate and the norm equivalence theorem in conjunction with the first estimate of the present lemma:

‖𝑒𝑣‖𝐿2(Γ) ≲ ‖𝑒𝑣‖1∕2
𝐿2(Ω)

‖𝑒𝑣‖1∕2
𝐻1(Ω)

≲ (ℎ∕𝑝)3∕2‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ (ℎ∕𝑝)3∕2 ‖𝑒𝑢‖𝐿2(Ω) .

Theorems 4.6 and 4.11 then yield the remaining estimates by exploiting the regularity of the dual solution and the approximation properties of the 
employed spaces. □

Theorem 4.17 (Optimal estimate for ‖𝑒𝑢‖𝐿2(Ω) — Robin version of [9, Theorem 4.12]). Let Assumption 3.1 be valid for some �̂� ≥ 0. Let (𝜑𝜑𝜑ℎ, 𝑢ℎ) be the 
FOSLS approximation of (𝜑𝜑𝜑, 𝑢). Furthermore, let 𝑒𝑢 = 𝑢 − 𝑢ℎ. Then, for any �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣

(ℎ), �̃�ℎ ∈ 𝑆𝑝𝑠
(ℎ), there holds:

If VVV0
𝑝𝑣
(ℎ) =RTRTRT0(ℎ), then

‖𝑒𝑢‖𝐿2(Ω) ≲ ℎ‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) + ℎ‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ‖𝐿2(Ω) + ℎ‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) + ℎ‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖𝐿2(Ω);

if VVV0
𝑝𝑣
(ℎ) =BDMBDMBDM1(ℎ), then

‖𝑒𝑢‖𝐿2(Ω) ≲ ℎ‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) + ℎmin(�̂�+1,3∕2)‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ‖𝐿2(Ω) + ℎmin(�̂�+1,3∕2)‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) + ℎ‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖𝐿2(Ω);

if VVV0
𝑝𝑣
(ℎ) ∉ {RTRTRT0(ℎ) , BDMBDMBDM1(ℎ)}, then

‖𝑒𝑢‖𝐿2(Ω) ≲
ℎ
𝑝
‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) +

(
ℎ
𝑝

)min(�̂�+1,3∕2) ‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ‖𝐿2(Ω) +
(
ℎ
𝑝

)min(�̂�+1,3∕2) ‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) +
(
ℎ
𝑝

)2 ‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖𝐿2(Ω).

Proof. We proceed as in the proof of Theorem 4.9 with (𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣) denoting the FOSLS approximation of the dual solution given by Theorem 3.3

(duality argument for the scalar variable) applied to 𝑤 = 𝑒𝑢 As before for any �̃�𝜑𝜑ℎ ∈VVV𝑝𝑣
(ℎ), �̃�ℎ ∈ 𝑆𝑝𝑠

(ℎ)

‖𝑒𝑢‖2
𝐿2(Ω) = 𝑏((𝜑𝜑𝜑− �̃�𝜑𝜑ℎ, 𝑢− �̃�ℎ), (𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)).

We again choose �̃�𝜑𝜑ℎ = 𝐼𝐼𝐼Γ
ℎ
𝜑𝜑𝜑, utilize properties of the operator 𝐼𝐼𝐼Γ

ℎ
collected in Lemma 4.4, make use of the regularity assertions for the dual solution 

of Theorem 3.3, and apply Lemma 4.16:

(𝛾(𝑢− �̃�ℎ),∇ ⋅ 𝑒𝑒𝑒𝜓𝜓𝜓 + 𝛾𝑒𝑣)Ω ≲ ‖‖𝑢− �̃�ℎ‖‖𝐿2(Ω) ‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ℎ∕𝑝‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) ‖𝑒𝑢‖𝐿2(Ω) ,

(∇(𝑢− �̃�ℎ),∇𝑒𝑣 + 𝑒𝑒𝑒𝜓𝜓𝜓 )Ω ≲ ‖‖∇(𝑢− �̃�ℎ)‖‖𝐿2(Ω) ‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ℎ∕𝑝‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) ‖𝑒𝑢‖𝐿2(Ω) ,⟨−𝛼(𝑢− �̃�ℎ),𝑒𝑒𝑒𝜓𝜓𝜓 ⋅𝑛𝑛𝑛− 𝛼𝑒𝑣⟩Γ ≲ ‖‖𝑢− �̃�ℎ‖‖𝐿2(Γ) ‖(𝑒𝑒𝑒𝜓𝜓𝜓 , 𝑒𝑣)‖𝑏 ≲ ℎ∕𝑝‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) ‖𝑒𝑢‖𝐿2(Ω) ,

(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑,∇𝑒
𝑣)Ω = −(∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑), 𝑒

𝑣)Ω + ⟨(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛, 𝑒
𝑣⟩Γ ≲ [

(ℎ∕𝑝)2‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω) + (ℎ∕𝑝)3∕2|||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑|||] ‖𝑒𝑢‖𝐿2(Ω) ,

(∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑), 𝛾𝑒
𝑣)Ω ≤ ‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω) ‖𝑒𝑣‖𝐿2(Ω) ≲ (ℎ∕𝑝)2‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑)‖𝐿2(Ω) ‖𝑒𝑢‖𝐿2(Ω) ,⟨(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛,−𝛼𝑒
𝑣⟩Γ ≤ ‖(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛‖𝐿2(Γ) ‖𝑒𝑣‖𝐿2(Γ) ≲ (ℎ∕𝑝)3∕2|||𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑||| ‖𝑒𝑢‖𝐿2(Ω) ,

(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑,𝑒𝑒𝑒
𝜓𝜓𝜓 )Ω ≲ ‖𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑‖𝐿2(Ω)‖𝑒𝑒𝑒𝜓𝜓𝜓‖𝐿2(Ω) ≲

⎧⎪⎨⎪⎩
ℎ|||𝜑𝜑𝜑− 𝐼𝐼𝐼Γ

ℎ
𝜑𝜑𝜑||| ‖𝑒𝑢‖𝐿2(Ω) if VVV𝑝𝑣

(ℎ) =RTRTRT0(ℎ),(
ℎ
𝑝

)min(�̂�+1,3∕2) |||𝜑𝜑𝜑− 𝐼𝐼𝐼Γ
ℎ
𝜑𝜑𝜑||| ‖𝑒𝑢‖𝐿2(Ω) else,

(∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑),∇ ⋅ 𝑒𝑒𝑒𝜓𝜓𝜓 )Ω = (∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑),∇ ⋅ (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))Ω ≲

⎧⎪⎨⎪
ℎ‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γ

ℎ
𝜑𝜑𝜑)‖𝐿2(Ω) ‖𝑒𝑢‖𝐿2(Ω) if 𝑝𝑣 = 1,(

ℎ
𝑝

)2 ‖∇ ⋅ (𝜑𝜑𝜑− 𝐼𝐼𝐼Γ
ℎ
𝜑𝜑𝜑)‖𝐿2(Ω) ‖𝑒𝑢‖𝐿2(Ω) else,
⎩
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⟨(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛,𝑒𝑒𝑒
𝜓𝜓𝜓 ⋅𝑛𝑛𝑛⟩Γ ≤ ‖(𝜑𝜑𝜑− 𝐼𝐼𝐼Γℎ𝜑𝜑𝜑) ⋅𝑛𝑛𝑛‖𝐿2(Γ)‖𝑒𝑒𝑒𝜓𝜓𝜓 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲

⎧⎪⎨⎪⎩
ℎ|||𝜑𝜑𝜑− 𝐼𝐼𝐼Γ

ℎ
𝜑𝜑𝜑||| ‖𝑒𝑢‖𝐿2(Ω) if VVV𝑝𝑣

(ℎ) =RTRTRT0(ℎ),(
ℎ
𝑝

)min(�̂�+1,3∕2) |||𝜑𝜑𝜑− 𝐼𝐼𝐼Γ
ℎ
𝜑𝜑𝜑||| ‖𝑒𝑢‖𝐿2(Ω) else.

Canceling one power of ‖𝑒𝑢‖𝐿2(Ω) on both sides, using the estimates of the operator 𝐼𝐼𝐼Γ
ℎ

and collecting the terms yields the result. □

Corollary 4.18. Let Γ be smooth, 𝑓 ∈𝐻𝑠(Ω) and 𝑔 ∈𝐻𝑠+1∕2(Γ) for some 𝑠 ≥ 0, and denote 𝐶𝑓,𝑔 ∶= ‖𝑓‖𝐻𝑠(Ω) + ‖𝑔‖𝐻𝑠+1∕2(Γ). Then the solution to (2.2)

satisfies 𝑢 ∈ 𝐻𝑠+2(Ω), 𝜑𝜑𝜑 ∈𝐻𝐻𝐻𝑠+1(Ω), 𝜑𝜑𝜑 ⋅ 𝑛𝑛𝑛 ∈𝐻𝐻𝐻𝑠+1∕2(Γ), and ∇ ⋅ 𝜑𝜑𝜑 ∈ 𝐻𝑠(Ω). Let (𝜑𝜑𝜑ℎ, 𝑢ℎ) be the FOSLS approximation of (𝜑𝜑𝜑, 𝑢). Let 𝑒𝑢 = 𝑢 − 𝑢ℎ and 
𝑒𝑒𝑒𝜙𝜙𝜙 =𝜑𝜑𝜑−𝜑𝜑𝜑ℎ. Then, for the lowest order case 𝑝𝑣 = 1,

‖𝑒𝑢‖𝐿2(Ω) ≲ ℎmin(𝑠+1,2) ‖𝑓‖𝐻𝑠(Ω) .

For 𝑝𝑣 > 1 there holds

VVV𝑝𝑣
(ℎ) =RTRTRT𝑝𝑣−1(ℎ) VVV𝑝𝑣

(ℎ) =BDMBDMBDM𝑝𝑣
(ℎ)

‖𝑒𝑢‖𝐿2(Ω) ≲
(
ℎ
𝑝

)min(𝑠+1,𝑝𝑠,𝑝𝑣+1∕2)+1
𝐶𝑓,𝑔 ‖𝑒𝑢‖𝐿2(Ω) ≲

(
ℎ
𝑝

)min(𝑠+1,𝑝𝑠,𝑝𝑣+1)+1
𝐶𝑓,𝑔‖∇𝑒𝑢‖𝐿2(Ω) ≲

(
ℎ
𝑝

)min(𝑠+1,𝑝𝑠,𝑝𝑣+1∕2)
𝐶𝑓,𝑔 ‖∇𝑒𝑢‖𝐿2(Ω) ≲

(
ℎ
𝑝

)min(𝑠+1,𝑝𝑠,𝑝𝑣+1)
𝐶𝑓,𝑔‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) ≲

(
ℎ
𝑝

)min(𝑠+1∕2,𝑝𝑠+1∕2,𝑝𝑣)
𝐶𝑓,𝑔 ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) ≲

(
ℎ
𝑝

)min(𝑠+1∕2,𝑝𝑠+1∕2,𝑝𝑣+1)
𝐶𝑓,𝑔 .

‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲
(
ℎ
𝑝

)min(𝑠+1∕2,𝑝𝑠+1∕2,𝑝𝑣)
𝐶𝑓,𝑔 ‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲

(
ℎ
𝑝

)min(𝑠+1∕2,𝑝𝑠+1∕2,𝑝𝑣+1)
𝐶𝑓,𝑔 .

Proof. By the smoothness of Γ, Assumption 3.1 holds for any �̂�. The regularity of 𝜑𝜑𝜑 follows from 𝜑𝜑𝜑 = −∇𝑢. We next inspect the quantities in the 
estimates of Theorems 4.11, 4.13, 4.15, and 4.17:

‖‖𝑢− �̃�ℎ‖‖𝐿2(Ω) ≲ (ℎ∕𝑝)min(𝑠+1,𝑝𝑠)+1 ‖𝑢‖𝐻𝑠+2(Ω) ≲ (ℎ∕𝑝)min(𝑠+1,𝑝𝑠)+1𝐶𝑓,𝑔,‖‖𝑢− �̃�ℎ‖‖𝐻1(Ω) ≲ (ℎ∕𝑝)min(𝑠+1,𝑝𝑠) ‖𝑢‖𝐻𝑠+2(Ω) ≲ (ℎ∕𝑝)min(𝑠+1,𝑝𝑠)𝐶𝑓,𝑔,‖‖𝑢− �̃�ℎ‖‖𝐿2(Γ) ≲ (ℎ∕𝑝)min(𝑠+1,𝑝𝑠)+1∕2 ‖𝑢‖𝐻𝑠+2(Ω) ≲ (ℎ∕𝑝)min(𝑠+1,𝑝𝑠)+1∕2𝐶𝑓,𝑔,

‖𝜑𝜑𝜑− �̃�𝜑𝜑ℎ‖𝐿2(Ω) ≲

{
(ℎ∕𝑝)min(𝑠+1,𝑝𝑣) ‖𝜑𝜑𝜑‖𝐻𝑠+1(Ω) ≲ (ℎ∕𝑝)min(𝑠+1,𝑝𝑣)𝐶𝑓,𝑔 VVV𝑝𝑣

(ℎ) =RTRTRT𝑝𝑣−1(ℎ),
(ℎ∕𝑝)min(𝑠+1,𝑝𝑣+1) ‖𝜑𝜑𝜑‖𝐻𝑠+1(Ω) ≲ (ℎ∕𝑝)min(𝑠+1,𝑝𝑣+1)𝐶𝑓,𝑔 VVV𝑝𝑣

(ℎ) =BDMBDMBDM𝑝𝑣
(ℎ),

‖(𝜑𝜑𝜑− �̃�𝜑𝜑ℎ) ⋅𝑛𝑛𝑛‖𝐿2(Γ) ≲

{
(ℎ∕𝑝)min(𝑠+1∕2,𝑝𝑣) ‖𝜑𝜑𝜑‖𝐻𝑠+1(Ω) ≲ (ℎ∕𝑝)min(𝑠+1∕2,𝑝𝑣)𝐶𝑓,𝑔 VVV𝑝𝑣

(ℎ) =RTRTRT𝑝𝑣−1(ℎ),
(ℎ∕𝑝)min(𝑠+1∕2,𝑝𝑣+1) ‖𝜑𝜑𝜑‖𝐻𝑠+1(Ω) ≲ (ℎ∕𝑝)min(𝑠+1∕2,𝑝𝑣+1)𝐶𝑓,𝑔 VVV𝑝𝑣

(ℎ) =BDMBDMBDM𝑝𝑣
(ℎ),‖∇ ⋅ (𝜑𝜑𝜑− �̃�𝜑𝜑ℎ)‖𝐿2(Ω) ≲ (ℎ∕𝑝)min(𝑠,𝑝𝑣) ‖∇ ⋅𝜑𝜑𝜑‖𝐻𝑠(Ω) ≲ ℎmin(𝑠,𝑝𝑣)𝐶𝑓,𝑔.

The bounds in Theorems 4.11, 4.13, 4.15 and 4.17 together with the above estimates give the asserted rates. □

Remark 4.19. Note that Corollary 4.18 predicts the same rates for ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) and ‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐿2(Γ). This again suggests the suboptimality of the estimate 
for ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω). □

5. Numerical examples

Our numerical examples are obtained with ℎ𝑝-FEM code NETGEN/NGSOLVE by J. Schöberl, [35,36]. In Example 5.1 we consider a right-hand 
side 𝑓 ∈ ∩𝜀>0

(
𝐻1∕2−𝜀(Ω)

)
⧵𝐻1∕2(Ω) so that 𝑢 ∈ ∩𝜀>0𝐻

5∕2−𝜀(Ω) and 𝜑𝜑𝜑 ∈ ∩𝜀>0𝐻𝐻𝐻
3∕2−𝜀(Ω). In all graphs presented, we plot the actual numerical 

results (red dots), the rate that is guaranteed by Corollary 4.18 (in black with the number written out near the bottom right), and a reference line 
for the best rate possible with the employed space 𝑆𝑝𝑠

(ℎ) or VVV𝑝𝑣
(ℎ) given the Sobolev regularity of the solution 𝑢 (in blue with the number written 

out near the top left).

Example 5.1. Our computational domain Ω is the unit sphere in ℝ2, and we take 𝑓 (𝑥, 𝑦) = 1[0,1∕2](
√
𝑥2 + 𝑦2), which is a step function supported by 

a disk of radius 1∕2. In (2.1) we set 𝛾 = 2 and 𝛼 = 1. The exact solution 𝑢 is determined by the condition 𝜕𝑛𝑢 = 0 on Γ. The right-hand side boundary 
data 𝑔 is calculated according to the choice 𝛼 = 1. The solution has finite regularity 𝑢 ∈𝐻5∕2−𝜀(Ω) for all 𝜀 > 0. We perform both the ℎ-version and 
the 𝑝-version of the FOSLS method. The solution 𝑢 is in fact piecewise smooth, but the meshes employed for both the ℎ-version and the 𝑝-version 
are not aligned with the regions of smoothness of 𝑢, but rather such that the meshes do not resolve the circle of radius 1∕2, where the solution 𝑢
has limited regularity. Regarding the ℎ-version, we employ every combination of VVV𝑝𝑣

(ℎ) and 𝑆𝑝𝑠
(ℎ) for 𝑝𝑣, 𝑝𝑠 ∈ {1, 2, 3, 4, 5}. For the 𝑝-version, we 

select a fixed mesh with mesh size ℎ ≈ 0.6, chose VVV𝑝𝑣
(ℎ) =RTRTRT𝑝𝑣−1(ℎ) and 𝑝𝑣 = 𝑝𝑠 = 𝑝, for 𝑝 = 1, … , 27. The numerical results for the ℎ-version are 

plotted in Figs. 1 and 2 for ‖𝑒𝑢‖𝐿2(Ω), in Figs. 3 and 4 for ‖∇𝑒𝑢‖𝐿2(Ω), and in Figs. 5 and 6 for ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω). The numerical results for the 𝑝-version are 
plotted in Fig. 7. We make the following observations:

• In Figs. 1 and 2 for ‖𝑒𝑢‖𝐿2(Ω), we observe that the convergence rates asserted in Corollary 4.18 are attained. However, for the lowest order case 
𝑝𝑣 = 1, the theoretical results seem suboptimal.
14
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Fig. 1. ℎ-convergence of ‖𝑒𝑢‖𝐿2(Ω) using VVV𝑝𝑣
(ℎ) =RTRTRT𝑝𝑣−1(ℎ), see Example 5.1.

Fig. 2. ℎ-convergence of ‖𝑒𝑢‖𝐿2(Ω) using VVV𝑝𝑣
(ℎ) =BDMBDMBDM𝑝𝑣

(ℎ), see Example 5.1.

• In Figs. 3 and 4 for ‖∇𝑒𝑢‖𝐿2(Ω), the convergence rates guaranteed by Corollary 4.18 are achieved and are optimal in terms of the regularity of 
the data.

• In Figs. 5 and 6 for ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω), we observe better convergence than ensured by Corollary 4.18, which is in agreement with our comments in 
Remarks 4.7 and 4.19.

• In Fig. 7 for the 𝑝-version of the FOSLS method, we observe the convergence rate predicted by Corollary 4.18 and that it is optimal for ‖𝑒𝑢‖𝐿2(Ω)
and ‖∇𝑒𝑢‖𝐿2(Ω). We again note the suboptimality of our estimates for ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω). Finally, for ‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅𝑛𝑛𝑛‖𝐿2(Γ) we remark convergence (𝑝−2.5) (with 
a green reference line), whereas Corollary 4.18 merely guarantees convergence (𝑝−1). Since the solution (𝜑𝜑𝜑, 𝑢) is smooth near Γ a local error 
analysis near Γ could possibly explain this super-convergence behavior.

Data availability

Data will be made available on request.
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Fig. 3. ℎ-convergence of ‖∇𝑒𝑢‖𝐿2(Ω) using VVV𝑝𝑣
(ℎ) =RTRTRT𝑝𝑣−1(ℎ), see Example 5.1.

Fig. 4. ℎ-convergence of ‖∇𝑒𝑢‖𝐿2(Ω) using VVV𝑝𝑣
(ℎ) =BDMBDMBDM𝑝𝑣

(ℎ), see Example 5.1.

Acknowledgements

We gladly acknowledge financial support by Austrian Science Fund (FWF) through the doctoral school Dissipation and dispersion in nonlinear PDEs

(grant W1245; MB) and the special research program Taming complexity in PDE systems (grant SFB F65, DOI:10.55776/F65; JMM).

References

[1] Fleurianne Bertrand, Daniele Boffi, Least-squares formulations for eigenvalue problems associated with linear elasticity, Comput. Math. Appl. 95 (2021) 19–27.

[2] Fleurianne Bertrand, Daniele Boffi, First order least-squares formulations for eigenvalue problems, IMA J. Numer. Anal. 42 (2) (2022) 1339–1363.

[3] Daniele Boffi, Franco Brezzi, Michel Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013.

[4] Fleurianne Bertrand, Zhiqiang Cai, Eun Young Park, Least-squares methods for elasticity and Stokes equations with weakly imposed symmetry, Comput. Methods Appl. Math. 19 (3) 
(2019) 415–430.

[5] Pavel B. Bochev, Max D. Gunzburger, Least-Squares Finite Element Methods, Applied Mathematical Sciences., vol. 166, Springer, New York, 2009.

[6] J.H. Bramble, T.V. Kolev, J.E. Pasciak, A least-squares approximation method for the time-harmonic Maxwell equations, J. Numer. Math. 13 (4) (2005) 237–263.

[7] James H. Bramble, Tzanio V. Kolev, Joseph E. Pasciak, The approximation of the Maxwell eigenvalue problem using a least-squares method, Math. Compet. 74 (252) (2005) 
1575–1598.
16

https://doi.org/10.55776/F65
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib0C033FF6C290DC3BFBBD42AD818534C9s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibF851294617CDD8795AD91501406B1489s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibCB00B35EA0F49A37FD52AAF37665745Es1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib7643A772CDF218C7131E90B78A9CBD90s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib7643A772CDF218C7131E90B78A9CBD90s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib21956C75385656B176B6C7CCDFB22B15s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib98F8001985AC9C9C85869D04B1E83A91s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib43047A7CB02F7F4C868278B91A2D16CDs1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib43047A7CB02F7F4C868278B91A2D16CDs1


M. Bernkopf and J.M. Melenk Computers and Mathematics with Applications 173 (2024) 1–18
Fig. 5. ℎ-convergence of ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) using VVV𝑝𝑣
(ℎ) =RTRTRT𝑝𝑣−1(ℎ), see Example 5.1.

Fig. 6. ℎ-convergence of ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) using VVV𝑝𝑣
(ℎ) =BDMBDMBDM𝑝𝑣

(ℎ), see Example 5.1.

[8] Maximilian Bernkopf, Jens Markus Melenk, Analysis of the ℎ𝑝-Version of a first order system least squares method for the Helmholtz equation, in: Thomas Apel, Ulrich Langer, Arnd 
Meyer, Olaf Steinbach (Eds.), Advanced Finite Element Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element Symposium 2017, Springer International 
Publishing, Cham, 2019, pp. 57–84.

[9] Maximilian Bernkopf, Jens Markus Melenk, Optimal convergence rates in 𝐿2 for a first order system least squares finite element method, part I: homogeneous boundary conditions, 
ESAIM: M2AN 57 (1) (2023) 107–141.

[10] Maximilian Bernkopf, Jens Markus Melenk, Optimal convergence rates in 𝐿2 for a first order system least squares finite element method – part II: inhomogeneous Robin boundary 
conditions, arXiv :2407 .14424, 2024.

[11] C. Carstensen, L. Demkowicz, J. Gopalakrishnan, Breaking spaces and forms for the DPG method and applications including Maxwell equations, Comput. Math. Appl. 72 (3) (2016) 
494–522.

[12] Z. Cai, R. Lazarov, T.A. Manteuffel, S.F. McCormick, First-order system least squares for second-order partial differential equations. I, SIAM J. Numer. Anal. 31 (6) (1994) 1785–1799.

[13] Zhiqiang Cai, Barry Lee, Ping Wang, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems, SIAM J. Numer. Anal. 42 (2) (2004) 843–859.

[14] Huangxin Chen, Weifeng Qiu, A first order system least squares method for the Helmholtz equation, J. Comput. Appl. Math. 309 (2017) 145–162.

[15] Zhiqiang Cai, Gerhard Starke, Least-squares methods for linear elasticity, SIAM J. Numer. Anal. 42 (2) (2004) 826–842.

[16] L. Demkowicz, I. Babuška, 𝑝 interpolation error estimates for edge finite elements of variable order in two dimensions, SIAM J. Numer. Anal. 41 (4) (2003) 1195–1208.

[17] L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. Part I: the transport equation, Comput. Methods Appl. Mech. Eng. 199 (23–24) (2010) 
1558–1572.

[18] L. Demkowicz, J. Gopalakrishnan, Analysis of the DPG method for the Poisson equation, SIAM J. Numer. Anal. 49 (5) (2011) 1788–1809.

[19] L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions, Numer. Methods Partial Differ. Equ. 27 (1) (2011) 70–105.
17

http://refhub.elsevier.com/S0898-1221(24)00341-9/bibDDACB71FB97FDBFCBB97197DF9065F31s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibDDACB71FB97FDBFCBB97197DF9065F31s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibDDACB71FB97FDBFCBB97197DF9065F31s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibAB553145C878E612547DD8E6342ADE95s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibAB553145C878E612547DD8E6342ADE95s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib3519D167826BE2544097AD4E5D460176s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib3519D167826BE2544097AD4E5D460176s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib3DAA86000D3728A2F8A4761DFF9D5476s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib3DAA86000D3728A2F8A4761DFF9D5476s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib5B3F3883F62852297E2CC6FF63FB4E30s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib6078234F10F680A01558B88122B685FBs1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib1B4644A1FB5DA731E9FCCAEA5AEE80C2s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibB17A4FB684C2CA866EB5E145F2C8A11As1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib191EE6D451F5C42283CBB915B49CB68Cs1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib5E8CA17873F525D309022B0B1A1E1214s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib5E8CA17873F525D309022B0B1A1E1214s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibB916989FD751CEF11EA4DFFE41867948s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibC4363A9EEFEBCB6BFD690E6871C3F642s1


M. Bernkopf and J.M. Melenk Computers and Mathematics with Applications 173 (2024) 1–18
Fig. 7. 𝑝-convergence of ‖𝑒𝑢‖𝐿2(Ω) (top left), ‖∇𝑒𝑢‖𝐿2(Ω) (bottom left), ‖𝑒𝑒𝑒𝜑𝜑𝜑‖𝐿2(Ω) (top right), ‖𝑒𝑒𝑒𝜑𝜑𝜑 ⋅ 𝑛𝑛𝑛‖𝐿2(Γ) (bottom right) using VVV𝑝𝑣
(ℎ) =RTRTRT𝑝𝑣−1(ℎ) and 𝑆𝑝𝑠

(ℎ) with 
𝑝𝑣 = 𝑝𝑠, see Example 5.1.

[20] Leszek F. Demkowicz, Jay Gopalakrishnan, An overview of the discontinuous Petrov Galerkin method, in: Recent Developments in Discontinuous Galerkin Finite Element Methods 
for Partial Differential Equations, in: IMA vol. Math. Appl., vol. 157, Springer, Cham, 2014, pp. 149–180.

[21] L. Demkowicz, J. Gopalakrishnan, I. Muga, J. Zitelli, Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation, Comput. Methods Appl. Mech. 
Eng. 213 (216) (2012) 126–138.

[22] Thomas Führer, Norbert Heuer, Michael Karkulik, MINRES for second-order PDEs with singular data, SIAM J. Numer. Anal. 60 (3) (2022) 1111–1135.

[23] Thomas Führer, Norbert Heuer, Antti H. Niemi, A DPG method for shallow shells, Numer. Math. 152 (1) (2022) 67–99.

[24] J. Gopalakrishnan, I. Muga, N. Olivares, Dispersive and dissipative errors in the DPG method with scaled norms for Helmholtz equation, SIAM J. Sci. Comput. 36 (1) (2014) 
A20–A39.

[25] Bo-nan Jiang, The Least-Squares Finite Element Method. Scientific Computation, Theory and Applications in Computational Fluid Dynamics and Electromagnetics, Springer-Verlag, 
Berlin, 1998.

[26] JaEun Ku, Sharp 𝐿2-norm error estimates for first-order div least-squares methods, SIAM J. Numer. Anal. 49 (2) (2011) 755–769.

[27] William McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

[28] Peter Monk, Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003.

[29] J.M. Melenk, C. Rojik, On commuting 𝑝-version projection-based interpolation on tetrahedra, Math. Compet. 89 (321) (2020) 45–87.

[30] J.M. Melenk, S. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Compet. 79 (272) 
(2010) 1871–1914.

[31] Jens M. Melenk, Stefan A. Sauter, Wavenumber-explicit ℎ𝑝-FEM analysis for Maxwell’s equations with transparent boundary conditions, Found. Comput. Math. 21 (1) (2021) 
125–241.

[32] Harald Monsuur, Rob Stevenson, A pollution-free ultra-weak FOSLS discretization of the Helmholtz equation, Comput. Math. Appl. 148 (2023) 241–255.

[33] Harald Monsuur, Rob Stevenson, Johannes Storn, Minimal residual methods in negative or fractional Sobolev norms, Math. Compet. 93 (347) (2024) 1027–1052.

[34] C. Rojik, 𝑝-version projection-based interpolation, PhD thesis, Technische Universität Wien, 2020.

[35] Joachim Schöberl, Finite element software NETGEN/NGSolve version 6.2, https://ngsolve .org/.

[36] Joachim Schöberl, NETGEN - an advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci. 1 (1) (Jul 1997) 41–52.
18

http://refhub.elsevier.com/S0898-1221(24)00341-9/bib52837F8409578289223A3A845539CEF4s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib52837F8409578289223A3A845539CEF4s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibB7F91E40E8658E9CB696CA707C0F9725s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibB7F91E40E8658E9CB696CA707C0F9725s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib3F6EC4C2825929DA812351A37F5E9E19s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibF86DF3190A1BD1C154DEDAA94EC1CBD1s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibD79A1FAAA216F9D3137CB7F1E2B97611s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibD79A1FAAA216F9D3137CB7F1E2B97611s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib767DD695A589D54DEFA0893153309501s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib767DD695A589D54DEFA0893153309501s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibB40F474E7F07D503B44C978EA21C36DEs1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibB51EDF3F51BD69526C52815E53CC7913s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibCD2972396B07C6C973E1F646754EF954s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib9C329A112825D46A0C999CF258632F28s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib785BCD610B3B225F6463B3DEF6BA15A8s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib785BCD610B3B225F6463B3DEF6BA15A8s1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib6D5DE02C038858D2F4F2BDA45C7C3E4Bs1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib6D5DE02C038858D2F4F2BDA45C7C3E4Bs1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib13E8BCB98B4BE643949A08871AD2722Es1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib7CFA19107253706BDB9591E53444D00Bs1
http://refhub.elsevier.com/S0898-1221(24)00341-9/bib45FAE2147D74C116E37B6D2EFFB4B272s1
https://ngsolve.org/
http://refhub.elsevier.com/S0898-1221(24)00341-9/bibC1181ADD08EBD7C0605D076C80309C5Es1

	Optimal convergence rates in L2 for a first order system least squares finite element method - part II: Inhomogeneous Robin...
	1 Introduction
	2 Model problem with Robin boundary conditions
	3 Duality argument
	4 Error analysis
	4.1 A commuting diagram operator
	4.2 The operator IIIΓh
	4.3 Helmholtz decompositions
	4.4 Error estimates

	5 Numerical examples
	Data availability
	Acknowledgements
	References


