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Investigation of the Suitability of a Static Driving
Simulator for the Characterization of Lane

Departure Avoidance Systems
Sijie Wei, Matthias Becker, Peter E. Pfeffer, Johannes Edelmann

Abstract—Simulation-based development is the general trend
in the automotive industry, especially for the development of
Advanced Driver Assistance Systems (ADAS) and Autonomous
Driving (AD) functions. Driving simulators play an essential role
in this by providing a reproducible, safe yet realistic environment
for research and development, with the ability to rapidly generate
almost infinite system and scenario variants. In this paper, a study
has been designed to investigate the suitability of a static driving
simulator for characterizing a safety-oriented Lane Departure
Avoidance (LDA) system through both subjective and objective
assessment. The study comprises two components: a subjective
assessment conducted with participants and a standardized
driver-in-the-loop test drive to objectively assess the system on
the simulator. The research endeavors to determine the most
suitable test maneuvers for objectively characterizing the system
while also identifying target ranges for relevant objective metrics
for an optimal subjective assessment. The results show that
the professional drivers give a more reproducible subjective
rating than the normal drivers. Notably, both groups consistently
evaluate subjective criteria that are based on the perception of
the steering wheel movement as well as the change in ego position
and heading angle. However, the perception of the absolute ego
position does not lead to a consistent subjective assessment.
This study suggests that the characterization of LDA systems
on a static driving simulator is generally feasible, with potential
for improvement of characterizing aspects based on absolute
positions such as maximum lane overshoot.

Index Terms—static driving simulator, ADAS, lane keeping
assistance system, subjective assessment, objective metrics, cor-
relation analysis.

ACRONYMS
ADAS Advanced Driver Assistance Systems.
CF Curve Follow.
CI Confidence Interval.
D2CL Distance to Center Line.
ECF Extended Curve Follow.
LC Lane Change.
LDA Lane Departure Avoidance.
OM objective metrics.
SA subjective assessment.
SLR simple linear regression.
SWT steering wheel torque.
SWV steering wheel velocity.
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I. INTRODUCTION

AS the automotive industry progresses towards safer, more
efficient, and autonomous transportation solutions, the

need for reliable testing environments has intensified. One
crucial tool that has emerged to meet this demand is the driving
simulator, a sophisticated platform designed to replicate real-
world driving scenarios with a high degree of fidelity.

Driving simulators play a pivotal role in vehicle develop-
ment, providing a controlled yet realistic environment for test-
ing and refining cutting-edge technologies. These simulators
have become integral for researchers to assess the perfor-
mance, safety, and human-machine interactions of emerging
automotive systems.

Moreover, the evolution and validation of ADAS are pro-
gressively transitioning into the virtual domain. This paper
aims to concentrate on the characterization of the most com-
mon and also relevant ADAS, a safety-oriented Lane Depar-
ture Avoidance (LDA) System, categorized as Lane Keeping
Assistance System (LKAS) Type I according to [1]. The LDA
system intervenes only near the lane markings, preserving a
relatively wide space around the lane center for the driver’s
unrestricted maneuvering. The main purpose of this system is
to prevent the vehicle from leaving the lane unintentionally,
rather than to help the driver stay in the center of the lane
(as with LKAS Type II) or to relieve the driver of the task of
keeping the lane (as with LKAS with SAE Automation Level
3 [2] or higher).

The characterization of vehicle dynamics with and without
ADAS can be divided into various categories, i.e. subjective
and objective characterization, objectivization process and
further methods such as Naturalistic Driving Data etc. For a
thorough literature review on this topic see [3]. However, the
subjective assessment of the professional test drivers in the
road test can still not be replaced in the series development in
the industry to date. One of the reasons is that the relationship
between the subjective assessment of the driver and the
objective metrics of the vehicle and/or the ADAS is not clear.
It is not yet possible to fully represent the driver’s subjective
opinion with merely objective metrics in the simulation or
road test. This is also the reason why the objectivization
of driver’s subjective assessment is an important research
field for the further digitalization of ADAS development. The
objectivization of assessments refers to finding a connection
in order to link different characteristics of a system and its
assessments with human judgement [4]. Although the real

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2024.3433369

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TRANSACTIONS OF INTELLIGENT VEHICLES, VOL. X, NO. Y, AUGUST ZZZZ 2

road test offers the advantage of customer-oriented real traffic
scenarios, virtual tests could also offer several advantages
such as reproducibility and efficiency. Especially when we
still know little about the mechanism of driver perception
of ADAS, it is beneficial to eliminate as many influencing
factors as possible, such as traffic, varying road conditions and
weather, and focus on the driver’s impression of the function
itself. The research objective of this paper is to investigate
the suitability of a compact static driving simulator for the
objective and subjective characterization of an LDA system.

The idea of the driving simulator originally came from the
field of pilot training [5]. It provides a safer yet realistic
environment and reproducible scenarios for vehicle develop-
ment, testing and training (e.g. Formula 1 drivers). The basic
task of a driving simulator is to reproduce the stimuli of
the simulated vehicle acting on the driver as naturally as
possible [6]. The structure of a driving simulator contains
the underlying vehicle and environment simulation and the
simulator hardware components, which consists of a visual-
ization, an audio and a motion system. The driver transmits
steering wheel and pedal inputs as control signals to the
simulation computer. A vehicle dynamics model calculates the
resulting behavior of the vehicle in the simulation based on
the environmental simulation with road models. The output
signals for image and sound reproduction are also generated
in the process. Furthermore, there are diverse possibilities to
convey somatosensory information to the driver. These include
not only the generation of force feedback on the steering
wheel and pedals but also systems that can reproduce vehicle
vibrations [7].

[8] classified the driving simulators into 4 categories based
on the different levels of technical realization of motion,
visual, sound system etc. High fidelity driving simulators in
category C and D have the advantage of providing an accurate
representation of driving scenarios and a higher degree of
immersion. However, they are very costly to purchase and
maintain and often take up a relatively large amount of space.
Category A and B driving simulators, on the other hand, do
not have a motion platform and often have a smaller field of
view. However, they are less expensive and easier to set up,
sometimes even portable, offering greater flexibility.

However, it is important to be aware of the research
purposes for which these static simulators are sufficient and
more effective. [9] mentions that static driving simulators
are typically suitable for human-machine interaction studies
and/or scenarios with constant velocity and large curve radii.
The simulation of highly dynamic movements will increase
the risk of simulator sickness due to the large deviation
between the visual and vestibular channels. An example of the
utilization of a static driving simulator in the research Human-
Machine-Interface (HMI) is [10].

Since the static driving simulators often have an actuated
real steering wheel, they are very suitable for studies which
focus on the steering system or the driver’s steering/lane-
keeping behavior and their interaction with the steering. For
example, [11] used the steering characteristic data collected on
a static driving simulator to develop a steer-by-wire system to
meet individual preference. [12] developed a dynamic control

strategy for the steering ratio based on drivers’ path-following
characteristics using a static driving simulator. Driver’s inter-
action with the vehicle via the steering wheel is also a major
objective of research using static simulators. Examples are
[13] in the investigation of LKAS with haptic shared control
and [14] in the investigation of driver’s preferred haptic lane
departure warning. [15] studied driver gaze behavior and its
relationship to driver steering performance in natural driving.
Static driving simulators are also an efficient tool for driver
modeling. Because it is efficient to collect driver information
and driving measurements in a reproduciable environment
without uncontrollable external factors. [16] modeled driver
speed tracking behavior, [17] modeled driver’s steering be-
havior, [18] modeled driver visual perception which can help
driver assistance systems reduce unnecessary warnings. Driver
preferred autonomous driving styles are also investigated in
static driving simulators, e.g. [19] and [20].

The transferability of the results on static driving simulators
is also discussed. [21] did a validation study on the evaluation
of Autonomous Emergency Braking System (AEBS) on a
static driving simulator. The authors compared the objective
measures of driver behavior and the subjective assessment of
the system on the simulator and on a test track and found
out that the participants are able to give an evaluation of the
system similar to when they are experiencing the AEBS in
a real vehicle. In addition, they evaluated the suitability of
each objective and subjective measures to assess longitudinal
intervening ADAS in a static driving simulator.

Furthermore, researchers have conducted experiments for
the purpose of correlation analysis between objective and
subjective assessment on a static driving simulator in various
fields. [22] investigated the relationship between time headway
and a set of subjective ratings for Adaptive Cruise Control
(ACC) on a static driving simulator. [23] did a correlation
analysis between objective indicators and subjective evaluation
in the situation of loss of adherence (LOA) on both a static
and a dynamic driving simulator. The authors could explain 2
out of 4 subjective criteria with the objective indicators. The
results showed that in general, the regression models obtained
with the static simulator explained more variability than those
obtained in the dynamic condition. A plausible explanation is
that the static simulator gave fewer cues to subjectively assess
LOA events and that a simple multiple linear regression model
is sufficient to fit the data.

According to the above literature, a static driving simulator
has the potential to sufficiently characterize an LDA system
due to the low dynamics of the system and its main interaction
with the driver through the steering wheel. The objectives of
this paper is to investigate the feasability of testing, tuning and
optimizing a safety-oriented LDA system on a static driving
simulator, taking into account the subjective evaluation of the
drivers. For this purpose, it is important to find out which
attributes can be perceived subjectively and consistently eval-
uated, and if the professional and normal drivers evaluate LDA
differently. It also has to be identified which test maneuvers
and objective metrics are suitable for characterizing LDA.
Additionally, this paper attempts to explore the relationship
between driver’s subjective assessment and the objective met-
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Fig. 1. Experiment design

rics of the system, with the goal of identifying the optimal
ranges of the objective metrics.

The remainder of this present paper is organized as follows.
Section II presents the study design of a comprehensive
investigation of LDA characterization on a medium-fidelity
driving simulator. It is demonstrated how data is collected
and processed to extract the subjective and objective sys-
tem assessment and how the relationships between them are
investigated. Section III shows the experimental results of
the subjective and objective characterization as well as the
linear regression analysis of each test maneuver. Section IV
provides a detailed discussion of factors such as driver type,
subjective and objective criteria in terms of their suitability for
characterizing an LDA system on a static driving simulator.
Finally, conclusions are made and research questions are
answered in Section V.

II. METHODS AND DATA

A. Study design

For this experiment, a fully validated model of a BMW 5-
Series vehicle was used in the HiL simulation environment of
CarMaker. A generic structure of lateral guidance system of
SAE level 2 was designed and then 4 variants of this system
were generated by adapting several parameters of the generic
model, e.g. parameters of the controller and the intervention
strategies. These 4 variants were implemented on the static
driving simulator at Munich University of Applied Sciences
(MUAS) [24]. They were evaluated both subjectively and
objectively with the goal to characterize each variant and to
explore their relationship to driver perception. The experiment
design is visualized in Figure 1.

Static Driving Simulator at MUAS: The static driving
simulator used in this study is illustrated in Figure 2. The input
elements of the simulator include a multifunction steering
wheel, accelerator and brake pedals. The output elements
include a curved widescreen display visualizing the current
driving scenario, a second display as an instrument cluster,
loudspeakers for driving sound output and a force feedback
actuator. A real-time PC pre-processes the input signals and

Fig. 2. Static Driving Simulator at MUAS

runs a two-degree-of-freedom model of the steering system.
It passes inputs such as tie rod displacement to the second
processing unit, which runs the vehicle dynamics simulation
and sends back the tie rod force. A schematic topology of the
setup components and interfaces is shown in Figure 3.

Subjects: 36 drivers were recruited to take part in the
subjective evaluation survey. Only one participant could not
finish the whole test process because of motion sickness,
whose incomplete ratings were omitted in the data analysis.
The evaluation of 2 other participants were not complete and
were therefore also excluded from the further analysis. 16 of
the rest 33 drivers were professionals from related fields of this
study and the rest were normal drivers. There were 5 female
and 28 male participants ranging in age from 18 to 53 years
(mean 29.6 years, standard deviation 7.4 years). The subjects
drive on average 3.4 days per week with a standard deviation
of 2.2 days.

8 out of the 33 participants have LDA equipped in their
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Fig. 3. Static Driving Simulator setup topology

private vehicle. 26 participants never turn the LDA on while
driving, 4 use LDA regularly on the highway, 3 regularly on
all kinds of road, regardless of whether they have LDA in their
private vehicle or not.

Subjective test drive procedure: The participants were
asked to virtually test drive the vehicle equipped with an LDA
system in the simulator and evaluate each variant by answering
a questionnaire. Each participant drove each variant on two
different type of roads without traffic - German highway A7
and federal road B19, which were both measured with highly
precise Ground Truth technology and implemented in the
simulation environment. Thus, each participant undertook 8
test drives in total. They evaluated each variant on different
roads after each test drive respectively.

During the test drives, the participants were advised to test
the variants by performing several predefined maneuvers at the
suitable locations. For example, the participants were asked to
perform lane changes without setting the indicator on a straight
section in order to test the effort of overriding the system.
By pre-defining the test maneuvers, it helps the participants,
especially normal drivers who are unfamiliar with driving tests
and the road sections, to focus on the relevant characteristics of
the system other than reactions caused by other factors, such as
different road curvatures. This strategy also helps to minimize
the influence of inconsistent execution of the test maneuvers
on the subjective evaluation. These predefined maneuvers were
however only suggestions for the participants and were not
strictly controlled. The participants could also test freely if
needed. The predefined test maneuvers are as follows:

Lane Change (LC)
The driver shall conduct a lane change with activated LDA

without setting the indicator. During the process, the heading
angle and the velocity should be held constant. This test
maneuver is defined to test the driver interaction with the
steering wheel, for example, if the assisted torque and its
build-up and reduction are comfortable and controllable. The
maneuver is illustrated in Figure 4a.

Curve Follow (CF)
This maneuver shall be performed on a straight road leading

into a curve with constant radius. The driver shall lead the
vehicle into the center of the straight with the vehicle parallel
to the lane marking before entering the curve. Once the vehicle

enters the curve, the driver shall remove the hands from
the steering wheel and allow the LDA system to intervene
without driver intervention. The maneuver finishes when the
first intervention is complete. The maneuver is illustrated in
Figure 4b.

Extended Curve Follow (ECF)
This maneuver is similar to Curve Following but conducted

on longer curves with larger radius. The preparation of the
maneuver is the same as Curve Following. Unlike Curve
Following, this maneuver mainly focuses on the continuous
intervention behavior of LDA. This means that the maneuver
is completed when the system fails to keep the vehicle in its
ego lane or when the curve road comes to an end, regardless
of the number of interventions.

Subjective evaluation of the system: The evaluation ques-
tionnaire was designed in a previous project for a road test with
a similar purpose and was adjusted for this simulator study.
The subjects were asked to evaluate the system under test
(SUT) according to their perception as a driver. The evaluation
criteria are subdivided into three main categories - Driver
Interaction, Perceived Safety and Functional Performance.
Each main criterion is then broken down into several more
detailed sub-criteria - the so-called professional criteria, which
require higher competence of the driver to sense the fine
differences among variants. The subjective assessment criteria
used in this study, abbreviated as SA in the remainder of the
paper, are described as follows:

• Driver interaction:
SA1 Co-Steering: when the LDA intervenes, if it is easy and
harmonious for the driver to steer in the same direction as the
system.
SA2 Counter-Steering: when the LDA intervenes, if it is easy
and harmonious for the driver to steer in the opposite direction
as the system.
SA3 General Intervention Strength: the overall strength of the
steering intervention when the function is engaged.
SA4 Override Capability at Lane Boundary: if it is easy
or difficult to override the function during intervention, for
example when changing lanes without indicator.
SA5 Harmony of Steering Wheel Movement: how well the
steering wheel movement aligns with the driving scenario
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(a) (b)
Fig. 4. Test maneuvers. (a) Lane Change. (b) Curve Following.

during an intervention. This criterion assesses if the steering
wheel movement is harmonious and appropriately matched to
the driving conditions or it is unstable and jerky.

• Perceived safety:
SA6 Approach towards Lane Boundary: if the vehicle ap-
proaches the lane boundary in a controlled manner after the
intervention has started.
SA7 Maximum Lane Overshoot: how far the vehicle exceeds
the lane boundary at maximum and if this correspond to the
driver’s expectation.
SA8 Reliability and Reproducibility: the general reliability
and reproducibility of the LDA. It assesses if the response
of the system is predictable and reproducible under similar
conditions.

• Functional performance:
SA9 Control-Free Corridor: the lateral distance of the vehicle
from the center of the lane at which the function allows the
driver to steer without intervening and if this corresponds to
the driver’s expectation.
SA10 Returning Behavior: the intensity of the vehicle’s lat-
eral response when being guided back to the intended lane,
considering the visual cues perceived by the driver, and if this
corresponds to the driver’s expectation.
SA11 Disengagement Position: refers to the final position of
the vehicle in the lane at the end of an intervention. It assesses
if the vehicle is positioned at the outer or middle part of the
lane, and if it is in line with the driver’s wishes.
SA12 Disengagement Angle: refers to the final heading angle
of the vehicle with respect to the lane at the end of an
intervention. It assesses if the vehicle is positioned parallel
to the lane or tilted within the lane, and if it is in line with
the driver’s wishes.

After rating each sub-criterion SA, the subject gives an
overall rating of the main criteria for the category.

The rating scale used in this study is an ATZ 10-point
rating scale with uni-polar and bi-polar variants, where a
score of 1 indicates unacceptable deficiency and 10 indicates
perfection. The bi-polar scale indicates, in addition to the
score given to the respective criterion, the direction of the
deficiency according to the driver’s expectations, where per-
sonal preference cannot be universally assumed. For example,
uni-polar scale is suitable for evaluating the criterion SA8
Reliability and Reproducibility on the scale of 1 (low) to 10
(high). Meanwhile bi-polar scale is suitable for evaluating SA9
Control-Free Corridor with the additional option to specify

TABLE I
SUBJECTIVE ASSESSMENT CONVERSION

General Intervention Strength
too light optimal too heavy

original score 1 10 -1
converted score 1 10 19

whether the free corridor is “too narrow” or “too wide” for
the individual driver.

Driver-in-the-Loop measurement: In order to characterize
the system variants objectively, driver-in-the-loop simulation
was carried out in the same simulation environment. The
tests were conducted on both measured roads A7 and B19,
where the participants evaluated the system subjectively, and
synthetic roads such as straight sections and curves with
constant radius. The 3 pre-defined test maneuvers described in
the previous subjective test drive, which were suggested to the
participants, were carried out in the measurement with strictly
defined velocity, heading angle etc. The relevant channels are
logged for later evaluation, such as ego vehicle state data,
relative position and orientation of the vehicle with respect to
the lane, steering wheel movement and torque, LDA state and
controller data etc.

B. Data Processing

Subjective assessment analysis: The original subjective
assessment data with sign were converted into data with a
linear scale ranging from 1 to 19 for the further processing.
An example is shown in Table I.

After the conversion, the data set needed to be statistically
tested. As can be seen from Appendix A, the subjective
assessment was not normally distributed. It was then tested
if the professional and normal drivers evaluated the system
variants in a similar way on a static driving simulator. This was
done using the Mann-Whitney U test with the null hypothesis
that there is no difference between the distribution of SAs from
the two groups. The effect size Cohen’s d was also calculated
according to

d =
x̄1 − x̄2

spooled
, (1)

where x̄1 and x̄2 represent the mean value of each group
and spooled the pooled standard deviation for two independent
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Fig. 5. Comparison of MQI LatAcc RMS among all the measurements

samples. spooled is defined as

spooled =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, (2)

where s1, s2 are the variances and n1, n2 the sample sizes of
the two groups. |d| < 0.2 means a small and |d| > 0.8 a large
effect [25].

The next step was to investigate whether the drivers could
assess LDA consistently on a static driving simulator in
general and which factors potentially influenced the drivers’
assessment. To answer this question, subjects’ driving habit
and preferences of the LDA were analyzed. The following
factors were included in the n-way ANOVA to analyze their
influence on the subjective assessments of the drivers: system
variants, road types, driver types and driver styles.

It was found that the professional and normal drivers
assessed the system significantly differently (see Section III).
Based on this information and the research on previous studies,
the SAs were divided into two groups - professional and
normal driver. It was also examined if other features of the
subjects differ significantly between the two groups, such as
driving style, private LDA usage etc., which might bring in
more unstable factors if not checked carefully.

Afterwards, a Kruskal-Wallis test was performed in both
subject groups to check if the subjects could differentiate the
system variants. The significance level was set to p < 0.1
according to [26].

Objective metrics of system variants: The simulation data
were pre-processed before objective metrics were extracted.
First of all, a list of Measurement Quality Indices (MQI) were
defined to examine the quality of the measurements. These
indices mainly focus on whether all test runs were performed
under similar conditions within a reasonable tolerance. For the
test maneuver Lane Change, the characteristic values of lateral
acceleration, yaw rate, drifting velocity and longitudinal veloc-
ity were defined as MQIs. The characteristic values included
absolute maximum, standard deviation, root mean square and
mean of each signal. Figure 5 shows an example of the MQI
LatAcc RMS (root mean square of lateral acceleration during
the whole maneuver conduction). Different colors indicate the
system variants and each data point represents the MQI value
of one test run. The data points outside of the green area
are the outliers, the measurement of which are eliminated for
further analysis for the lack of comparability.

For each test maneuver, a list of objective metrics, abbre-
viated as OM in the remainder of the paper, were defined
to describe the system characteristic behavior. When defining

the OMs, several factors were taken into consideration. First
of all, only the signals that are perceivable for the drivers on
a static driving simulator were selected. Here, the information
about the lateral vehicle motion is perceived solely through the
optic sensory channel. According to [27], the eyes can perceive
absolute and relative positions (e.g. lateral position in the lane),
angles (e.g. yaw angle) and their time derivatives (e.g. yaw
rate). However, second and higher order time derivatives such
as lateral acceleration and jerk cannot be perceived by the
optical channel and were therefore excluded from the OMs.
The information about the controlled system in the lateral
direction, including the setpoints and state variables, consists
of the steering wheel angle and steering wheel torque. These
are primarily perceived through the optical, tactile and pro-
prioceptive channels on a static driving simulator and relevant
OMs could be derived from them. Secondly, redundant metrics
were avoided. For example, during the test maneuver Extended
Curve Following, heading angle and drifting velocity of the
vehicle are interchangeable at a constant velocity. Therefore,
only heading angle was selected for being more dominant
in the visual perception. The general rules one should pay
attention while defining the objective metrics are discussed in
[28].

In the following, the OMs describing the Lane Change
maneuver are defined. The abbreviation LC here represents
the maneuver name “Lane Change” and LC OM1 for example
the first objective metric of the maneuver Lane Change, i.e.
SWT overpress. In the Lane Change maneuver, which is a
closed-loop maneuver, the vehicle shall cross the lane marking
with constant speed and heading angle. Here, the system
intervention torque and the steering wheel torque as well as
movement are in focus. Various characteristic values of these
signals were investigated, which are categorized into 3 groups
as followed.

Category 1: Torque
This category focuses on the characteristic values of steering

wheel torque and the assisting torque generated by LDA.
LC OM1 SWT overpress [Nm]: Steering wheel torque

while the vehicle’s Center of Gravity (CoG) is crossing the
lane marking.

LC OM2 SWT abs max [Nm]: Maximal absolute steering
wheel torque throughout the intervention process.

LC OM3 mean intervention torque [Nm]: Mean value of
the absolute system assisting torque throughout the interven-
tion process.

Category 2: Distance to Center Line (D2CL)
This category focuses on the characteristic values of the

Distance to Center Line (D2CL) of the ego vehicle, i.e. the
distance from the CoG to the center line of the ego lane.

LC OM4 intervetion pos [m]: D2CL at the time point of
system intervention start.

Category 3: Time to Line Crossing (TLC)
This category focuses the characteristic values of the Time-

to-Line-Crossing (TLC) of the ego vehicle.
LC OM5 intervetion TLC [s]: Time-to-Line-Crossing at the

time point of system intervention start.
Category 4: SWT-D2CL
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Fig. 6. An example of SWT-D2CL-Curve: steering wheel torque over D2CL
while crossing the lane marking

This category includes the characteristic values of the fitted
curve of the steering wheel torque over D2CL while crossing
the lane marking with LDA intervention. The objective metrics
in this category are depicted in Figure 6.

LC OM6 deadband width [m]: The deadband width around
the lane center, where the system does not intervene and the
driver can steer freely (calculated based on the fitted SWT-
D2CL-Curve).

LC OM7 rising gradient max [Nm/m]: The steering wheel
torque build-up with respect to the distance to lane marking
(calculated based on the fitted SWT-D2CL-Curve).

LC OM8 plateau start [m]: The relative position of the
vehicle to the lane center when the steering wheel torque starts
to saturate (calculated based on the fitted SWT-D2CL-Curve).

LC OM9 plateau height [Nm]: The saturated steering
wheel torque when crossing the lane marking (calculated based
on the fitted SWT-D2CL-Curve).

LC OM10 plateau width [m]: The traveled distance where
the saturated steering wheel torque is being kept (calculated
based on the fitted SWT-D2CL-Curve).

LC OM11 falling gradient [Nm/m]: The steering wheel
torque reduction after the saturated torque has been reached
with respect to the distance to lane marking (calculated based
on the fitted SWT-D2CL-Curve).

The OM list of the other maneuvers are attached in Ap-
pendix B.

The defined OMs were then tested to determine whether
they are actually suitable for characterizing the LDA variants
on the static driving simulator. Similarly to the SAs, ANOVA
test was conducted to examine whether the calculated OMs
differed significantly among the variants. The significance
level was set to p < 0.01.

C. Linear Regression

Once the SAs and OMs were extracted, the relationship
between the two needed to be examined. Given the limited

number of observations (4 system variants), simple linear
regression (SLR) was considered first. Here, SAs were cho-
sen as dependent and OMs as independent variables, whose
relationship was modeled by the following equation,

y = α+ β · x, (3)

where y represents the array of all the SAs, α and β
the regression coefficients, and x the OMs. Thus, Eq. 3
represents the model function of the LDA system, whose SAs
are dependent on their OMs.

However, before the actual modeling, it was necessary to
review each possible combination of SA and OM carefully and
make predictions about their relationships based on a priori
knowledge of the vehicle dynamics and ADAS experts. The
aim of this step was to select all the meaningful combinations,
as not all possible combinations necessarily make sense. For
example, the SA3 General Intervention Strength should not be
dependent on the CF OM5 final pos by sym from maneuver
Curve Following. This is because the vehicle position where
LDA finishes the intervention when following a curve should
not influence subject’s perception of intervention strength.
Table II shows all the possible combinations of SA-OM from
maneuver Lane Change, where the 1’s mark the meaningful
ones.

The SAs and OMs which are not significantly differ-
ent among system variants according to Kruskal-Wallis and
ANOVA test in Section II-B, were excluded for the further
analysis. This decision was made because there was not
enough evidence showing that these SAs and OMs are suitable
for characterizing the 4 LDA variants.

To identify potential redundant OMs, the linear correla-
tion between each OM-pair was investigated. This examined
whether the OMs were linearly dependent of each other, which
means that the two OMs could contain redundant information.
A correlation coefficient |r| > 0.75 was selected as the
threshold for highly linearly correlated OMs. However, the
highly correlated OMs were not directly eliminated for the
SLR analysis. This step was more seen as a reference for
data reduction. As mentioned in [28], some linearly correlated
variables still need to be treated separately in the regression
analysis, since the driver might subjectively perceive the
signals differently, e.g. lateral acceleration and lateral jerk.

Mean values were calculated for the pre-selected SAs and
OMs, based on which SLR is performed. A p-value smaller
than 0.1 was defined for a significant regression model. In
addition, it was tested if the effect size of the regression model
according to Cohen was greater than 2. The effect size Cohen’s
f [25] can range from 0 to ∞ and is calculated by

f =

√
R2

1−R2
, (4)

where R2 is the Goodness of Fit of the regression model.
The effect size shows how much of the total variance of
the dependent variable is accounted for by the independent
variable. Cohen defined f = 0.1, 0.25, 0.4 as small, medium
and large effect respectively [25].
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TABLE II
SA-OM COMBINATIONS FROM TEST MANEUVER LANE CHANGE
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OM

Torque
1 SWT overpress 1 1 1 1 1 1 1 1 1 1 1
2 SWT abs max 1 1 1 1 1 1 1 1 1 1 1
3 mean intervention torque 1 1 1 1 1 1 1 1 1 1 1

D2CL 4 Intervention pos 1 1 1 1 1 1 1
TLC 5 Intervention TLC 1 1 1 1 1 1 1

SWT-D2CL

6 deadband width 1 1 1 1 1 1 1 1 1 1
7 rising gradient max 1 1 1 1 1 1
8 plateau start 1 1 1 1 1 1
9 plateau height 1 1 1 1 1 1 1 1 1 1 1
10 plateau width 1 1 1
11 falling gradient 1 1 1 1 1 1 1 1 1

Due to the nature of the study, the number of observations
for the regression analysis was limited. To test the robustness
of the regression models found, the method suggested by [26]
was applied in the next step. Besides the mean value of the
SAs, the upper and lower boundary of the 90% Confidence
Interval (CI) of the SAs were also used for the regression
analysis. This means each variant had 3 characteristic values in
each SA (lower boundary of 90%-CI, mean, upper boundary of
90%-CI), which made it up to 34 = 81 possible combinations
of the dependent variables. An SLR model was calculated for
each possible combination, where only the significant models
(p < 0.1) were saved and the rest were discarded. This
resulted in a bundle of regression lines for each SA-OM, which
could assist identifying if the found SLR models are robust.
For example, the SLR model was not considered robust if
the regression line bundle is sparse or does not even have a
uniform trend (different signs of coefficient β), which means
that the linear regression model found based on SA mean
values does not necessarily hold within the 90%-CI of the
SA.

The method described in this section is illustrated in Figure
7.

III. RESULTS

A. Analysis of Subjective Assessment

Subjects were asked about their own driving style and their
preferred driving style as a passenger. While the driving styles
of the subjects are relatively evenly distributed, the preferred
styles from a passenger’s perspective show a clear trend. 23
out of the 33 subjects prefer a comfortable driving style as
passenger and only 3 prefer a sportive style. In addition,
subjects also ranked the 3 criteria for LDA, safety, comfort
and driving pleasure, from the most to the least important.

Fig. 7. Flowchart of the applied method for data analysis

27 subjects rate safety as the most important criterion, the
remaining 6 rate comfort, and none rates driving pleasure as
the most important. The results are demonstrated in Figure 8.

The SAs are divided into two groups, namely professional
and normal drivers, to investigate their potential differences.
The comparison of the SAs of the two groups is shown in
Figure 9 and Table III. The difference between the two groups
is tested using Mann-Whitney U test, a non-parametric variant
of t-test. The null hypothesis that the distributions of both
groups are identical can be rejected with p < 0.01. This
indicates a significant difference between the shape of the two
distributions. It can be seen from Figure 9 that the normal
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(a)
(b)

Fig. 8. (a) Preferred driving style from driver’s and passenger’s perspective
respectively. (b) Highest ranked criterion for LDA.

Fig. 9. Distributions of SAs by professional and normal drivers

drivers are more likely to rate higher than 8 in both positive
and negative directions (corresponds to the range [8,12] in
Figure 9 for the converted scale according to Section II-B).
This reflects that the professional and normal drivers use the
rating scale differently. However, the two groups have the same
median. Furthermore, the effect size Cohen’s d is too small
to indicate a relevant difference between the mean of the two
groups.

TABLE III
COMPARISON OF SAS BY PROFESSIONAL AND NORMAL DRIVERS (p**

< 0.01)

Driver type median mean std Mann-Whitney U
test p-value Cohen’s d

Professional 8.00 8.00 2.21
1.20e− 7** -0.09Normal 8.00 8.20 2.10

TABLE IV
RESULTS OF N-WAY ANOVA FOR SAS (p** < 0.01)

Factors p-value
LDA variant 0.0052**
Road type 0.7373
Driver type 0.0079**
Driver style 0.0000**

In the next step, n-way ANOVA test is applied to test
how the drivers’ SAs are influenced by different factors. Four
factors being investigated and their p-values are shown in
Table IV.

The results show that the subjects evaluated the 4 LDA
variants significantly differently. Driver types and their own
driving style both have a significant influence on the SAs.
On the other hand, the road types where the test drives
were conducted, i.e. highway or federal road, do not have an
influence on subjects’ assessment.

The SAs are divided into two groups, professional and nor-
mal drivers, for the further analysis. It is then tested whether
the main categotical characteristics of the two groups are
significantly different, which could introduce other influencing
factors other than driver type. As can be seen from the results
in Table V, the listed factors do not have a significant influence
on the SAs evaluated by different driver types, including the
preference of the system variants. It can be concluded that the
difference between the SAs of professional and normal drivers
in this study is mainly due to their different level of system
understanding and experience in driving tests.

In the following, the SAs are examined individually with
the aim of identifying those suitable for characterizing LDA
on a static driving simulator. Kruskal-Wallis test is applied for
both driver groups on both road types respectively with the
null hypothesis that the SA of the 4 variants originate from
the same population. The test results of the SAs introduced
in Section II-A, evaluated by professional and normal drivers
on highways (HW) and federal roads (FR) respectively, are
shown in Table VI. 21 out of the 60 null hypotheses can be
rejected with a significance level of p < 0.1. For 3 sub-criteria,
the null hypotheses can be rejected in all test groups, i.e. for
both professional and normal drivers on both road types. This
means these 3 sub-criteria can be distinguished among 4 sys-
tem variants consistently independent of driver or road types,
which are SA3 General Intervention Strength, SA4 Override
Capability at Lane Boundary and SA10 Returning Behavior.
Other SAs did not consistently show significant difference
among the system variants. A further n-way ANOVA test for
these 3 SAs shows that the road types, driver types as well as
the driver styles do not have a significant influence on the SAs,
but only the system variants. It can be concluded that these
3 SAs are robust criteria that are suitable for characterizing
the LDA systems on a static driving simulator, since they can
be consistently evaluated independent of road conditions or
driver experience and preference.

Regarding the main criteria, only professional drivers can
distinguish the variants on highways, i.e. SA-I Driver Inter-
action, SA-II Perceived Safety and SA-III Functional Perfor-
mance.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2024.3433369

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TRANSACTIONS OF INTELLIGENT VEHICLES, VOL. X, NO. Y, AUGUST ZZZZ 10

TABLE V
RESULTS OF MANN-WHITNEY U TEST ON THE CHARACTERISTICS BETWEEN PROFESSIONAL AND NORMAL DRIVERS (p** < 0.01)

Categorical Variables Mann-Whitney U Test p-Value
General LDA usage (regularly on highways/regularly on all road types/never) 0.5960
Driving style as driver (comfortable/efficient/sportive) 0.7004
Preferred driving style as passenger (comfortable/efficient/sportive) 1.0000
Highest ranked criterion for LDA (comfort/driving pleasure/safety) 0.9570
Best system variant on highway (V1/V2/V3/V4) 0.1887
Best system variant on federal road (V1/V2/V3/V4) 1.0000

TABLE VI
RESULTS OF KRUSKAL-WALLIS TEST ON THE SAS OF THE SYSTEM VARIANTS (p* < 0.1, p** < 0.01)

Sub-criteria Main criteria
1 2 3 4 5 6 7 8 9 10 11 12 I II III
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HW Professional Driver 0.63 0.29 0.06* 0.01** 0.40 0.34 0.30 0.09* 0.46 0.00** 0.01** 0.42 0.10* 0.02* 0.05*
Normal Driver 0.62 0.31 0.07* 0.00** 0.55 0.10* 0.68 0.71 0.05* 0.02* 0.99 0.35 0.70 0.80 0.40

FR Professional Driver 0.58 0.86 0.02* 0.01** 0.57 0.83 0.40 0.24 0.04* 0.00** 0.07* 0.40 0.60 0.20 0.50
Normal Driver 0.65 0.10 0.00** 0.06* 0.96 0.47 0.59 0.49 0.25 0.05* 0.50 0.78 0.50 0.30 0.20

TABLE VII
ANOVA RESULTS FOR OMS OF TEST MANEUVER LANE CHANGE (p**

< 0.01)

Group # Objective Metric p-Value
1 SWT overpress 0.0000**
2 SWT abs max 0.0000**Torque
3 mean intervention torque 0.0000**

D2CL 4 intervention pos 0.4102
TLC 5 intervention TLC 0.6379

6 deadband width 0.0018**
7 rising gradient max 0.1541
8 plateau start 0.7406
9 plateau height 0.0000**
10 plateau width 0.7668

SWT-D2CL

11 falling gradient 0.0061**

B. Analysis of Objective Metrics

The OMs defined in Section II-B are calculated for each
measurement and the mean value is extracted for each system
variant. The suitability of the OMs to characterize the LDA
variants is tested by ANOVA test. The null hypothesis for each
OM to be tested here is that the OM values of the 4 variants
originate from the same population. The results for the test
maneuver Lane Change is demonstrated in Table VII.

The null hypothesis for LC OM4, LC OM5, LC OM7,
LC OM8 and LC OM10 cannot be rejected, which are grayed
out in Table VII. This means that these metrics do not differ
significantly between the 4 system variants, making them
unsuitable for objective characterization of the SUT. These
OMs are excluded from the further regression analysis for a
better robustness of the results.

C. Analysis of Regression Models
After examining the SAs and OMs, the remaining combina-

tions of relevant SA-OM are further analyzed in terms of their
relationship. The goal of the regression analysis is to answer
the question of how the subjective assessment correlates with
the objective metrics and to identify the optimal range of
objective metrics preferred by the driver.

1) Results of Lane Change Maneuver: As shown in Table
II, there are 17 relevant combinations of SA-OM. For each
SA-OM pair, a simple linear regression model is fitted and
model quality tested. As described in Section II-C, the SLR
model is built based on the mean values of SAs and OMs of
each variants. The regression models with a p-value smaller
than 0.1 are considered significant.

There are 3 significant SLR models found for the test
maneuver Lane Change, which are SA3-LC OM11, SA4-
LC OM11 and SA10-LC OM1. The measured data points and
the fitted regression lines are shown in Figure 10. The abscissa
axis shows the OM and the ordinate axis the corresponding
SA as well as the direction of the evaluation scores, where
10 means the optimum. The filled red dots represent the
mean value of the SAs of each system variants and the black
continuous line represents the fitted regression line based
on the mean values. The effect size Cohen’s f , Pearson’s
correlation coefficient r and the p-value of the SLR model
are listed under each graph.

As mentioned in Section II-C, due to the limited number
of data points, the robustness of the SLR models is further
tested utilizing the method by [26]. The red circles above and
under the red filled points in Figure 10 represent the upper and
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Fig. 10. Simple linear regression results for test maneuver Lane Change and Extended Curve Follow. (a) SA3-LC OM11: General Intervention Strength -
falling gradient. (b) SA4-LC OM11: Overpress Capability - falling gradient. (c) SA10-LC OM1: Returning Behavior - SWT overpress. (d) SA3-ECF OM21:
General Intervention Strength - HeadingAngle rms. (e) SA4-ECF OM21: Overpress Capability - HeadingAngle rms. (f) SA10-ECF OM6: Returning Behavior
- D2CL var. (g) SA10-ECF OM13: Returning Behavior - SWV gradient max. (h) SA10-ECF OM14: Returning Behavior - SWV rms. (i) SA10-ECF OM15:
Returning Behavior - D2CL SWV max abs. (j) SA10-ECF OM17: Returning Behavior - Diff YawRate rms.
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Fig. 11. Examples of non-robust simple linear regression results for test
maneuver Extended Curve Follow. (a) Sparse regression lines. (b) Non-
uniformed trends of the regression lines.

lower boundaries of the 90%-CI of the SA respectively. The
blue lines are the regression lines based on all the possible
combinations of the 3 characteristic values (upper boundary
of 90%-CI, mean value, lower boundary of 90%-CI) of SAs
with a p-value smaller than 0.1. The “regression-bundles”
now could visualize the robustness of the SLR models found.
The SLR model is not considered robust if the number of
significant regressions is small (depicted in Figure 11a: 11
significant regression lines out of 81 possible ones) or the
significant regression lines do not have a uniform trend, i.e.
the correlation coefficient r of the regressions do not have the
same sign (depicted in Figure 11b). These would mean that
the SLR model does not necessarily hold within the 90%-CI
of the SAs or the significance is not guaranteed.

The results shown in Figure 10 can therefore be all con-
sidered robust, as the regression-bundles are dense and the
regression lines have a uniform trend with similar correlation
coefficients (standard deviation of r smaller than 0.033). The
linear regression models for Lane Change are as follows:

ySA3 = 3.09− 1.21 · xLC OM11, (5)
ySA4 = 2.72− 1.43 · xLC OM11, (6)
ySA10 = 22.08− 4.61 · xLC OM1. (7)

Eq. 5 and Eq. 6 show a negative correlation between the
LC OM11 falling gradient and the SA3 General Intervention
Strength and SA4 Overpress Capability respectively. This
means the faster the steering wheel torque descends after

TABLE VIII
OPTIMAL VALUES OF THE OMS IDENTIFIED FROM THE SLR MODELS

Subjektive Assessment Objektive Metric Optimal value

LC
Gen. Intervention Strength Falling gradient -5.69 Nm/m
Overpress Capability Falling gradient -5.10 Nm/m
Returning Behavior SWT overpress 2.62 Nm

ECF

Gen. Intervention Strength HeadingAngle rms 1.32 deg
Overpress Capability HeadingAngle rms 1.14 deg

Returning Behavior

D2CL var 0.37 m2

SWV gradient max 294.93 deg/s2
SWV RMS 10.73 deg/s
D2CL SWV max 1.11 m
Diff YawRate RMS 1.77 deg/s

pressing over the lane marking, the stronger the driver per-
ceives the intervention strength and the heavier the overpress
capability. Eq. 7 shows that a higher steering wheel torque at
the lane marking correlates with a stronger returning behavior.

The optimal value of the OMs is identified by finding the
intercept of SA = 10 (green dashed horizontal line) and the
regression line (black solid line), marked with a green filled
dot in Figure 10. The identified optimal values are listed in
Table VIII.

2) Results of Extended Curve Follow Maneuver: The
SA-OM combination matrix of the maneuver Extended
Curve Follow in a similar manner of Table II is attached
in Appendix C. After the ANOVA test of the OMs,
3 OMs are identified as unsuitable for characterizing
the LDA system, which are ECF OM4 D2BL mean,
ECF OM20 TLC start of intervention std, ECF OM22
D2CL HeadingAngle max abs. 41 remaining potential SA-
OM combinations are analyzed for their correlation. 7 strong
correlations are found and are illustrated in Figure 10d - 10j.
All of the correlations are robust within the 90%-CI. The
equation of the linear regression models for Extended Curve
Follow are listed as follows:

ySA3 = 4.21 + 4.40 · xECF OM21, (8)
ySA4 = 3.77 + 5.44 · xECF OM21, (9)
ySA10 = 8.23 + 4.77 · xECF OM6, (10)
ySA10 = 16.9− 0.02 · xECF OM13, (11)
ySA10 = 14.12− 0.38 · xECF OM14, (12)
ySA10 = −4.90 + 13.41 · xECF OM15, (13)
ySA10 = 14.48− 2.53 · xECF OM17. (14)

SA3 General Intervention Strength and SA4 Overpress Ca-
pability show a positive correlation with ECF OM21 Headin-
gAngle rms. This means the more the heading angle of the
vehicle oscillates when following a curve, the stronger the
perceived intervention strength and the heavier it is, to override
the function.

SA10 Returning Behavior shows a positive
correlation with ECF OM6 D2CL var and ECF OM15
D2CL SWV max abs. The former correlation indicates that
the more the D2CL varies from its mean, which could be
caused by the less dominant position controller, the weaker
and less agile the perceived returning behavior. The positive
correlation SA10-ECF OM15 indicates that the further away
the vehicle is from the lane center at the point of time,
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where the steering wheel velocity reaches its maximum, the
weaker and less agile the perceived returning behavior. This is
because a larger value of ECF OM15 D2CL SWV max abs
could mean a later and/or weaker intervention of LDA.

SA10 Returning Behavior shows a negative correlation
with ECF OM13 SWV gradient max, ECF OM14 SWV rms
and ECF OM17 Diff YawRate rms. The correlation SA10-
ECF OM13 indicates that the faster the steering wheel ve-
locity increases/decreases, the stronger the perceived return-
ing behavior. The correlation SA10-ECF OM14 and SA10-
ECF OM17 means that a largely varying steering wheel
velocity and a largely varying differential yaw rate indicates
a strong perceived returning behavior.

The identified optimal values of the OMs are listed in Table
VIII.

3) Results of Curve Follow Maneuver: According to the
results of the ANOVA test for the OMs of Curve Follow, 11
OMs are significantly different between the system variants
and are therefore potentially suitable for characterizing the
LDA system. However, only 4 of the 19 SA-OM combinations
show a weak linear correlation and the rest do not show
any linear correlation at all. This could be caused by several
reasons. One possible reason is that the maneuver Curve
Follow is not suitable for characterizing the 4 LDA variants,
since only one system intervention does not provoke enough
variance in the system response of the 4 variants. Another
possible reason could be that the potential correlations are not
linear. However, the database with limited system observations
is not robust enough to allow the inspection of the non-linear
relationships.

IV. DISCUSSION

The results of this study show that the maneuver Lane
Change and Extended Curve Follow are suitable for the LDA
characterization, whereas the maneuver Curve Follow is not.
The reason for this could be that one single intervention in
the curve did not produce sufficiently significant differences
in the system response of the 4 variants. It is more pronounced
in the case of an LDA system than in the case of an LKAS
Type II system, as the system only intervenes close to the
lane markings and the intervention is particularly short. On
the other hand, the maneuver Extended Curve Follow allowed
the system to intervene as many times as necessary/possible,
provoking different system behaviors.

For the subjective characterization, it is important to find
out whether the professional and the normal driver perceive
the system attributes in a similar way. The results show that the
professional drivers and the normal drivers use the rating scale
differently. While the normal drivers tend to give more extreme
scores, especially high scores (higher than 8), the professional
drivers rarely do. This shows that professional drivers are
better able to map the different system characteristics onto the
rating scale. It confirms that the professional drivers have a
more stable internal reference model due to more experience
in test driving and a better understanding of the system in
general. A score above 9 would indicate a near-perfect system
under test, for which no improvement would be desirable.

TABLE IX
CATEGORIZATION OF SAS

SA Main Criteria # SA Sub-Criteria Category

Driver Interaction

1 Co-Steering preference
2 Counter-Steering preference
3 General Intervention Strength sensory
4 Override Capability at Lane Boundary sensory
5 Harmony of Steering Wheel Movement preference

Perceived Safety
6 Approaching towards Lane Boundary sensory
7 Maximum Lane Overshoot sensory
8 Reliability and Reproducibility sensory

Functional Performance

9 Control-Free Corridor sensory
10 Returning Behavior sensory
11 Disengagement Position sensory
12 Disengagement Angle sensory

This is rarely the case in vehicle development and professional
drivers tend to be very cautious about it. However, the central
tendencies and spreads of the two groups are not significantly
different. This shows that the difference between professional
and normal drivers is basically only in the use of the rating
scale in the high score range. In addition to driver type, driver
style also has a significant impact on subjective evaluation,
while road type does not.

To go one step further, the authors try to answer which
attributes these two driver groups evaluate consistently. The
SAs can be divided into “sensory” and “preference” category
as in Table IX. The “sensory” category means that the driver
functions as a “sensor” and evaluates the perceived magnitude
of the respective signals, e.g. high-low. Conversely, the “pref-
erence” category includes SAs that are based on the driver’s
subjective preference, e.g. good-bad. According to the results,
both groups can differentiate the 4 system variants in the
aspects of 3 sub-criteria on both road types, namely SA3
General Intervention Strength, SA4 Override Capability at
Lane Boundary (sub-criteria in the group of Driver Interaction)
and SA10 Returning behavior (sub-criterion in the group of
Functional Performance). First of all, these 3 sub-criteria
belong to the “sensory” category of the SA. The “sensory”
category SAs could be more straightforward for the subjects
to evaluate, especially for the normal drivers with less ex-
perience, and might be less influenced by subjects’ individual
differences. Secondly, these 3 sub-criteria are perceived mainly
based on the steering wheel torque as well as movement,
heading angle and the change of heading angle. A plausible
reason for the consistent evaluation is that these signals can
be perceived more dominantly and processed more accurately
by the subjects on a static driving simulator.

Subjects from both groups could not consistently evalu-
ate the sub-criteria from the category “preference”, namely
SA1 Co-Steering, SA2 Counter-Steering or SA5 Harmony of
Steering Wheel Movement. One reason for this result could
be that the difference between the system variants does not
outweigh the difference between the subjective opinions of the
drivers. In addition, unlike the other criteria, there is no defined
maneuver for the evaluation of Co-Steering and Counter-
Steering, but it is left to the individual driver. This could
have introduced more individual influences in the maneuver
execution. Furthermore, the relatively short intervention time
compared to an LKAS Type II, which aims to keep the vehicle
near the center of the lane, makes the evaluation of these two
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attributes more difficult.
The rest of the “sensory” sub-criteria SA6, SA7, SA8,

SA9, SA11 and SA12 could not be consistently evaluated
by both groups of drivers on both types of road, provid-
ing insufficient evidence to support the suitability of these
sub-criteria in the test setup. The “sensory” criteria can
all theoretically be “translated” into one or more objective
parameters. SA7, SA9, SA11 and SA12 are rather straight-
forward and can be “translated” as follows: SA7 Maximum
Lane Overshoot ∼ ECF OM3 D2BL min, SA9 Control-Free
Corridor ∼ LC OM6 deadband width, SA11 Disengage-
ment Position ∼ ECF OM8 final pos mean and CF OM5 fi-
nal pos by sym, SA12 Disengagement Angle ∼ ECF OM24
final HeadingAngle mean. These OMs are all significantly
different between the 4 system variants, indicating that these
SAs should also be perceived differently from an objective
point of view. The contradictory results indicate that the drivers
could not subjectively perceive the objective difference. When
an LDA intervention is completed and deactivated, the LDA
system icon on the dashboard changes from green to gray
without any audible or haptic indication. This could lead to
an inaccurate estimation of the intervention end point, and
thus the vehicle’s position and heading angle at that time, if
the LDA intervention fades out smoothly and the driver is
not paying close attention. Note that SA7, SA9 and SA11 are
highly dependent on the perception of the position of the ego
vehicle in the lane. Therefore, the authors suggest that the
drivers’ distance estimation in the simulation animation may
be inaccurate, which could be improved to some extent by
intensive perspective tuning.

SA6 Approaching towards Lane Boundary and SA8 Relia-
bility and Reproducibility have more corresponding OMs. The
OMs for SA6 are from the maneuver Curve Follow and are
mainly the characteristic values of each signal in the approach-
ing process, e.g. CF OM12 SWV gradient max approach and
CF OM22 Diff YawRate max abs approach. The OMs for
SA8 are mainly standard deviation of each signal in the
maneuver Extended Curve Follow, e.g. ECF OM9 interven-
tion pos std and ECF OM20 TLC start of intervention std.
The majority of these OMs are not significantly different
between the 4 system variants, it could be assumed that the
difference between the variants are not great enough to be
subjectively perceived in the first place. It is therefore not
necessary to further discuss whether SA6 and SA8 are suitable
for the characterization.

In the next step, this paper further analyzed the relationship
between the objective and subjective evaluation of the LDA
variants, attempting to explain driver’s subjective assessment
with OM. This examined the potential of predicting driver’s
subjective evaluation of the system using merely objective
metrics in future research. First of all, it is investigated which
objective metrics are relevant for driver’s subjective perception
on a static driving simulator. Considering the found strong
correlations between SA and OM, it can be concluded that
the most important parameters are characteristic values of the
steering wheel torque and steering wheel movement, e.g. steer-
ing wheel velocity, steering wheel velocity gradient. However,
the absolute values of the ego vehicle position and of the

heading angle at characteristic time point, e.g. at intervention
start, intervention end, or at the furthest point from lane center,
do not show strong linear correlation or any linear correlation
with the SAs. The only two from category D2L and Heading
Angle that have a strong correlation with SAs are ECF OM6
D2CL var and ECF OM21 HeadingAngle rms. This indicates
that the changing rate of the ego position and heading angle are
more relevant for the subjective evaluation than the absolute
value on a static driving simulator.

SA3 General Intervention Strength and SA4 Override Capa-
bility at Lane Boundary can be described by Falling gradient
from Lane Change and HeadingAngle rms from Extended
Curve Follow. This means that the faster the steering wheel
torque drops, and the more the heading angle varies around
the mean value, the stronger the subjects perceive the general
intervention strength and the more difficult it is to over-
ride the system. However, SA3 and SA4 do not show a
strong enough linear correlation with steering wheel torque
directly. On the other hand, a higher steering wheel torque
(LC OM1, LC OM2, LC OM3) is a strong indicator for
a stronger returning behavior (SA10). SA10 Returning Be-
havior also show a strong linear correlation with the OMs
related with steering wheel velocity and the spread of the
steering wheel velocity as well as the spread of ego vehicle
position and heading angle. The optimal value of the 8
OMs Falling gradient, SWT overpress, HeadingAngle rms,
D2CL var, SWV gradient max, SWV rms, D2CL SWV max
and Diff YawRate rms are identified. For an optimal interven-
tion strength (SA3), the 4 variants in this study are all too
weak.

As for the main criteria, it is found out that only professional
drivers can differentiate the 4 system variants in these aspects
on highway, namely SA-I Driver Interaction, SA-II Perceived
Safety and SA-III Functional Performance. In order to gain
an insight into which OMs are relevant to the subjective
perception of these main criteria, SLR is also carried out in
the same way as for the sub-criteria, although the SAs for the
main criteria are not consistent for both drivers and both road
types. The found strong correlations are attached in Appendix
D.

V. CONCLUSIONS AND OUTLOOK

The results of this paper indicate that, despite limited
motion cues, a static driving simulator is generally suitable for
characterizing an LDA system, since the Operational Design
Domain (ODD) of the system is mostly in the low dynamic
range. However, the following aspects should be taken into
consideration. i) It is recommended to use professional drivers
or engineers from related fields as test drivers for LDA
evaluation. This is because they can map the range of system
characteristics onto the rating scale more consistently than
normal drivers. In this way the variance of personal experience
and preferences can be eliminated as far as possible, resulting
in a more stable quality of subjective assesment. ii) The SAs
of the sub-criteria should be from the “sensory” instead of the
“preference” category to reduce interpersonal differences and
focus on the system differences. Especially when the sample
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size of subjects is small, it is recommended to focus on the
robust SA criteria. As for the main criteria, Driver Interaction,
Perceived Safety and Functional Performance, are anticipated
to exhibit nonlinear multivariate relationships with the OMs.
While this paper provides initial insights into the relevant
OMs that influence these SAs using SLR, further exploration
requires a larger database with more system variants for robust
model training and testing. iii) The focus of the objective
characterization and objectivization should be laid on the
main information channels, i.e. steering wheel movement and
driver’s interaction with it, as well as the ego vehicle change
of position and heading angle.

Further research will focus on optimizing the LDA charac-
terization process on a static driving simulator based on the
findings of this study. Expanding the database to include a
broader range of system variants will allow the transferability
of the results to be tested. Concurrently, it will enable more
complex algorithms for modeling potential nonlinear MIMO
relationships between SAs and OMs. Additionally, future
investigations will focus on the validation of the subjective
evaluation on the simulator by comparing the results from
other domains such as road tests.
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Fig. 12. Distribution of all subjective assessments. (a) Histogram of SA. (b)
QQ-plot of SA.
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APPENDIX C
SA-OM COMBINATION MATRIX OF TEST MANEUVER EXTENDED CURVE FOLLOW AND CURVE FOLLOW
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ECF

D2L

1 D2LL min 1 1 1
2 D2RL min 1 1 1
3 D2BL min 1 1 1
5 D2BL std
6 D2CL var 1 1 1
7 intervention pos mean
8 final pos mean 1
9 intervention pos std

10 final pos std

Time 11 intervention duration 1 1
12 intervention duration per 1 1 1

SWV gradient 13 SWV gradient max 1 1 1

SWV 14 SWV RMS 1 1 1
15 D2CL SWV max 1 1 1

DiffYawRate
16 Diff YawRate max abs 1 1
17 Diff YawRate RMS 1 1 1
18 D2CL Diff YawRate max 1 1 1

TLC 19 TLC start of intervention

HeadingAngle

21 HeadingAngle rms 1 1 1
23 intervention HeadingAngle mean 1 1
24 final HeadingAngle mean 1
25 intervention HeadingAngle std
26 final HeadingAngle std

CF

D2L

1 D2BLi min 1 1 1
4 intervention pos by sym
5 final pos by sym 1
6 D2BL mean 1 1 1
7 D2BL std

Time
8 intervention duration 1 1
9 intervention duration approach 1 1
10 intervention duration return 1 1 1

DiffYawRate 21 Diff YawRate RMS

Heading Angle 26 HeadingAngle abs max 1 1
28 HeadingAngle max return 1 1 1
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APPENDIX D
SLR RESULTS OF SA MAIN CRITERIA AND OM

SA main criteria OM SLR function

Driver Interaction

LC mean intervention trq y = 5.77 + 0.44 · x
ECF D2CL var y = 7.87− 0.92 · x
ECF intervention duration mean y = 6.74 + 0.06 · x
ECF final pos std y = 8.34− 1.33 · x
ECF D2CL SWV max abs y = 10.47− 2.64 · x

Perceived Safety

LC mean intervention trq y = 4.06 + 0.84 · x
LC Falling gradient y = 3.79− 0.74 · x
ECF SWV rms y = 5.95 + 0.14 · x
ECF final pos std y = 9.06− 2.59 · x
ECF SWV gradient max y = 4.87 + 0.01 · x
ECF Diff YawRate rms y = 5.79 + 0.95 · x
ECF D2CL var y = 8.10− 1.74 · x
ECF intervention duration per y = 1.14 + 6.83 · x

Functional Performance

LC mean intervention trq y = 4.91 + 0.65 · x
LC Falling gradient y = 4.65− 0.59 · x
ECF TLC start of intervention std y = 5.49 + 0.85 · x
ECF SWV rms y = 6.37 + 0.11 · x
ECF SWV gradient max y = 5.52 + 0.01 · x
ECF Diff YawRate rms y = 6.24 + 0.74 · x
ECF D2BL std y = 9.69− 4.80 · x
ECF D2CL var y = 8.03− 1.34 · x
ECF intervention duration per y = 2.64 + 5.30 · x
ECF final pos std y = 8.75− 1.96 · x
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