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Abstract. This paper makes a proof-theoretic contribution to resource-bounded di-
alectical argumentation. Practical deployment of argumentation-based nonmono-
tonic reasoning can benefit from integration of proof-theoretic means for construc-
tion and evaluation of arguments, while accommodating agents with bounded re-
sources. We present a nonmonotonic proof system that implements a generalization
of dialectical argumentation, adopting arguments that differentiate between com-
mitted and supposed premises, while integrating rules for constructing arguments.
The proof system adopts annotations to capture the changing status of arguments in
a derivation and employs annotation revision rules that evaluate the dialectical ac-
ceptability of these arguments, yielding rational outcomes under resource bounds.
Soundness and completeness is shown for the dialectical grounded semantics.
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1. Introduction

Dung’s seminal theory of argumentation [1] formalises nonmonotonic (nm) reasoning in
terms of the exchange of arguments. Arguments are constructed via application of a base
logic L’s inference rules to a belief base B of premises, and then related by defeats in a
Dung argumentation framework (AF). The AF’s justified arguments are evaluated under
various semantics, and their claims can then be shown to equate with various nm conse-
quence relations defined directly over B. Argument game proof theories (e.g., [2]) can
be deployed to determine whether a given argument is justified (i.e., whether the argu-
ment’s conclusion is an nm consequence from B). Indeed, these game proof theories can
be generalised to dialogical formalisations of nm reasoning in which agents exchange ar-
guments so as to evaluate whether an argument is justified (e.g., [3,4]). Common to these
developments of Dung’s theory is the assumption that all arguments are constructed and
then instantiate an AF prior to their evaluation. This assumption is unlikely to reflect the
practical demands of argumentation-based nm reasoning. Rather, one would expect an
interleaving of argument construction and evaluation. For example, given an argument
X whose status is to be evaluated, one would only then expect an agent to be motivated
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to construct possible defeaters, subject to limited (computational/cognitive/temporal) re-
sources available for constructing arguments in the base logic L. In fact, whereas rea-
soning by non-ideal, finite, resource-bounded (human or artificial) agents is well-studied
in philosophy, economics, and cognitive (neuro)science, progress on a fundamentally
logical account of bounded rationality, in the context of nonmonotonic reasoning and
argumentation more generally [5], has only recently been addressed [6,7].

Arieli et al [8,9] propose a sequent-style proof-theoretic formalism that allows inter-
leaving argument construction and evaluation. It does so by integrating a sequent calcu-
lus LC of a basic logic L, with rules that proof-theoretically establish the acceptability of
LC-derivable arguments (i.e., sequents) through annotating sequents with their (chang-
ing) status in a derivation. However, [8,9] do not stipulate that the premises of argu-
ments are checked for consistency or subset minimality (i.e., that no proper subset of
a constructed argument’s premises entails the conclusion). As shown in [6], for classi-
cal logic arguments (i.e., where L is classical logic) this may result in violation of the
non-contamination rationality postulates [10]. Also, agents are tacitly assumed to have
unbounded resources, in the sense that one assumes availability of all L-based arguments
that can be constructed from B (i.e., ‘logical omniscience’ is assumed). For a classical
base logic, this may lead to violation of the consistency rationality postulates [11].

The main contribution of this paper is to further develop the annotated sequent for-
malism of [8] to accommodate resource-bounded agents that are not logically omni-
scient, and that need not check premise consistency or subset minimality (and do not
thereby incur the additional significant computational resources needed for these checks),
while still guaranteeing satisfaction of the consistency and non-contamination postulates.

We do so by proposing a sequent system that integrates the rules for a base logic
L with rules for evaluating dialectical acceptability. That is, we integrate and generalize
d’Agostino and Modgil’s ‘dialectical’ approach to classical logic argumentation [6,12],
wherein acceptability of arguments, and hence the extensions under various semantics,
is evaluated through the deployment of dialectical classical logic arguments. Dialectical
arguments make an epistemic distinction between premises that an agent commits to,
and premises that can be supposed for the sake of argument (e.g., those committed by an
interlocutor who may be imaginary in the case of single-agent reasoning). Dialectical ar-
guments are not checked for premise consistency or subset minimality, and only minimal
assumptions are made as to the resources available for constructing arguments. Yet [6]
show that all rationality postulates are satisfied. However, unlike in Dung’s theory [1],
the defeaters of a dialectical argument x acceptable w.r.t. some extension E , may increase
in number as the set E expands. This implies that we cannot straightforwardly adapt the
proof-theoretic mechanism developed in [8,9] for evaluating acceptability. In this paper,
we outline a proof-theoretic procedure that ensures preservation of the acceptability of
dialectical arguments in an extending derivation. In particular, we show that our proof
system is sound and complete for the grounded semantics of dialectical argumentation.

Section 2 recalls Dialectical Argumentation (D-Arg), and generalises the approach
to accommodate a large class of resource-bounded base logics. In Section 3, we define
an Annotated Dialectical Argumentation Calculus (ADAC), that enables interleaving of
argument construction and evaluation of dialectical acceptability. All rationality postu-
lates remain satisfied. In Section 4, we propose an epistemic closure procedure that pre-
serves acceptability of arguments as an ADAC-derivation extends, and prove that ADAC
is sound and complete for D-Arg under grounded semantics. Section 5 concludes.
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2. Preliminaries: Dialectical Argumentation

We assume a monotonic consequence relation �L defined over a propositional or first
order language L . We use upper and lower case Greek letters as metavariables, re-
spectively ranging over individual/sets of formulas in L . We write Δ‖Γ to denote that
Δ ⊆ L is syntactically disjoint from Γ ⊆ L (see [6, p.20] for an exact definition). We
assume that L and �L satisfy the following: i) ⊥ ∈ L ; ii) {ϕ} �L ϕ; iii) if Δ∪Γ �L α
and Δ‖(Γ∪{α}) then either Δ �L ⊥ (in the case that ex falso quodilbet holds for �L)
or Γ �L α; iv) for all ϕ ∈ L \⊥, ϕ ∈ L \⊥ denotes the ‘contradictory’ of ϕ , and
{ϕ,ϕ} �L ⊥. For example, if �L is the classical consequence relation �CL, then if ϕ is of
the form ¬α , ϕ = α , else ϕ = ¬ϕ . In what follows, we say A = (Δ,α) is a (classical) ar-
gument whenever Δ �L α , using uppercase Roman letters to denote such arguments. We
write Conc(A) = α and Prem(A) = Δ to denote A’s conclusion, respectively premises.

Definition 1. A dialectical argumentation framework DFB based on B ⊆ L is a tuple
(A ,C ), where A ⊆ {(Δ,α) | Δ ⊆ B,Δ �L α} is any set of arguments satisfying:

P1 α ∈ B implies ({α},α) ∈ A .
P2 (Δ,α) and (Γ,α) ∈ A implies (Δ∪Γ,⊥) ∈ A .
P3 (Δ∪Γ,α) ∈ A and Δ‖(Γ∪{α}), implies (Δ,⊥) ∈ A or (Γ,α) ∈ A .

C = {(X ,Y ) | X = (Δ,ϕ),Y = (Π,ψ) ∈ A ,ϕ ∈ Prem(Y ) = Π} is an attack relation.
We assume a strict partial ordering ≺ over A such that for all (Δ,⊥) ∈ A : there is an
α ∈ Δ such that (Δ,⊥)⊀ ({α},α) (i.e., ≺ is ‘dialectically coherent’[6]2).

We note that for DFBs one need not incur the computational demands of check-
ing that arguments’ premises are subset minimal or consistent, and only assume that
resources suffice to satisfy P1, P2, and P3.

Remark 1. Henceforth, we assume a logic L satisfying (i)-(iv). Proof of the rationality
postulates in [6] relies only on L satisfying these properties. Note that one may assume
a resource-bounded approximation Lr of L, provided P1-P3 (and so implicitly (i)-(iv))
remain satisfied by the Lr arguments included in a DF (e.g., see the resource-bounded
approximation �r of �CL in [12]’s dialectical formalisation of Preferred Subtheories).

In real-world reasoning and decision-making, when evaluating the acceptability
of arguments one must epistemically distinguish between the committed and supposed
premises. To model this, epistemic variants of classical arguments are introduced. We
use lowercase italicised Roman letters to refer to these epistemic variants.

Definition 2. Let X = (Δ,α). We say x = (Σ,Γ,α) is an epistemic variant of X whenever
Prem(X) = Δ = Σ∪ Γ and Σ∩ Γ = /0. We also say that x is a ‘dialectical argument’.
We write Com(a) = Δ, Sup(a) = Γ, and Conc(a) = α to denote a’s committed premises,
supposed premises, and conclusion.

• Let E be any set of arguments, we write ||X || to denote the set of all epistemic
variants of X ∈ E, and let ||E|| denote

⋃
X∈E ||X ||.

• Let E be any set of dialectical arguments, Com(E ), Sup(E ), and Conc(E ) respec-
tively denote

⋃
x∈E Com(x),

⋃
x∈E Sup(x), and

⋃
x∈E Conc(x).

2For all α ∈ Δ : (Δ,⊥)≺ ({α},α) means irrationally preferring to commit to all α in the inconsistent Δ.
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When establishing whether x = (Σ,Π,α) is acceptable w.r.t. a set E of dialectical ar-
guments, it is only the committed premises Σ that can be targeted. Furthermore, an attack
by y = (Δ,Γ,α) on β ∈ Σ is contingent on the suppositions Γ of y being commitments in
x together with E , i.e., Γ ⊆ Com(E ∪{x}). The intuitive idea behind this is as follows:

“Given that I commit to Δ and supposing for the sake of argument your commitments
Γ in E and x, I can construct an argument y that challenges your premise β ∈ Σ.”

Such an attack succeeds as a defeat only if the targeted premise is not strictly preferred
over its attacker, that is, if Y = (Δ∪Γ,α)⊀ ({β},β ) (recall that ≺ is defined over A ).

An argument of the form y = (Δ,Γ,⊥) can challenge x by arguing that the premises
Γ committed in E ∪ {x}, together with Δ, are inconsistent. Here, x should only then
be targeted if at least one of x’s committed premises β is in Γ and so is ‘culpable’ in
contributing to the inconsistency. Again, y defeats x if Y ⊀ ({β},β ). However, if Δ = /0
then y dialectically demonstrates a commitment to inconsistent premises Γ in E ∪{x},
and so the attack succeeds as a defeat independently of preferences.

Finally, z ∈ E can defend x by defeating y, while supposing any of y’s commitments,
i.e., Sup(z)⊆ Com(y). If y challenges the acceptability of x w.r.t. E , it is not required that
y itself be acceptable w.r.t. some set of dialectical arguments. Hence, for z’s defeat on y
it suffices to only suppose the committed premises of y. Let us make the above precise.

Definition 3. Let DFB = (A ,C ) and let E ⊆ ||A ||, y = (Δ,Γ,ϕ) ∈ ||Y ||, x = (Π,Σ,ψ) ∈
||X ||, with X ,Y ∈ A :

1. if ϕ 
=⊥, then y defeats x w.r.t. E , denoted y �E x, iff:
a) (Y,X) ∈ C on X ′ = ({β},β ), with β = ϕ ∈ Com(x) and Y ⊀ X ′;
b) Γ ⊆ Com(E ∪{x}).

2. if ϕ =⊥, then y defeats x w.r.t. E , denoted y �E x, iff:
a) Γ∩Com(x) 
= /0 and Γ ⊆ Com(E ∪{x});
b) either Δ = /0 or ∀β ∈ Γ∩Com(x), Y ⊀ X ′ = ({β},β ).

In both cases we may say y defeats x “on x′ = ({β}, /0,β )” or “on β .”

Example 1. Consider the ‘foreign commitment’ example [13]. We assume a proposi-
tional L , with atoms as non-italicised lower case Roman letters. Let a/b/c denote “one
attends conference a/b/c” and g denote “the budget is limited.” Fig. 1 shows some of the
dialectical arguments for this scenario. Argument d expresses that attending both a and
b, precludes attending c. g4 and g5 express that the budget is insufficient to attend both a
and b. Typically, one must unintuitively commit to a or b to challenge d (on premises b or
a respectively)[13]. In D-Arg, one can suppose for the sake of argument that one attends
a or b. Hence, in Fig. 1, d �E c but g4 � /0 d on b while supposing d’s commitment to
a and g5 � /0 d on a while supposing d’s commitment to b. The intuitive outcome is that
the grounded extension E justifies attending c irrespective of attending a or b.

Note that c is also defeated by the ‘explosively contaminated’ q. But by P3, resources
suffice to construct f . Now, dialectical arguments that do not commit to any premises
cannot (by Definition 3) be defeated, and so are acceptable w.r.t. any set of dialectical
arguments. Hence f ∈ E , and f � /0 q (on p,q and q →¬p), so defending c.

To determine the acceptability of dialectical arguments, Dung semantics [1] are ad-
justed to the dialectical setting [6]. Then, in defining entailment relations, only the con-
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t = ¬s , ∅, ¬s

s = s , ∅, s

q = p, q, q → ¬p , ∅,¬c

f = ∅, p, q, q → ¬p , ⊥ c = c , ∅, c

g4 = ({g, g → ¬a ∨ ¬b }, a , ¬b)

g3 = ({g → ¬a ∨ ¬b }, ∅, g → (¬a ∨ ¬b))

g2 = ({g, g → ¬a ∨ ¬b }, ∅, (¬a ∨ ¬b))g1 =({g}, ∅, g)
Ɛ=

d = ({a, b, a ∧ b → ¬c}, ∅, ¬c)

u = ¬s, r , ∅, ¬s

g5 = ({g, g → ¬a ∨ ¬b }, b , ¬a)

Figure 1. Dialectical arguments from Ex. 1 and 2. The encircled arguments form the set E . The arrows ema-
nating from E denote � /0 defeats and those towards arguments in E denote �E defeats. The struck through
arrows denote attacks that do not succeed as defeats (given ≺).

clusions of unconditional arguments that commit to all their premises in a dialectical
extension E , identify the conclusions supported by E . Def. 4 makes this precise.

Definition 4. Let DFB = (A ,C ), and E ⊆ ||A ||, x ∈ ||A ||. Then:

• x is acceptable w.r.t. E iff for all y ∈ ||A || s.t. y �E x, there is a z ∈ E s.t. z � /0 y.
• E is conflict free iff there is no x,y ∈ E s.t. y �E x.

For sem ∈ {admissible,grounded,preferred,stable}, a dialectical sem extension is defined
similarly to Dung semantics [1] in terms of acceptability and conflict freeness above,
e.g., E is dialectical admissible iff E is conflict free and all x ∈ E are acceptable w.r.t. E .

Let E be a dialectical sem extension, then E = {(Δ,α) | (Δ, /0,α) ∈ E } is a sem

extension. We adopt the following sceptical (s) inference relation:

• DFB|∼s
semα iff there is an A ∈ A , Conc(A) = α , A is in every sem extension.

As shown in [6], for �CL, the consistency, and closure postulates [11] are satisfied by
any DFB of Def. 3 (e.g., consistency is assured by undefeatable arguments that attack the
committed inconsistent premises in an extension). Furthermore, the non-contamination
postulates [10] are satisfied provided that adding syntactically disjoint premises does not
strengthen arguments [6]. We emphasise that proofs of these postulates in [6] straight-
forwardly apply to any (resource-bounded) �L as specified in this section (Remark 1).

Example 2. If E in Fig. 1 is a subset of the DFB’s dialectical grounded extension, then
its grounded extension includes G1 = ({g},g), G2 = ({g → ¬a∨¬b},g → ¬a∨¬b),
G3= ({g,g→¬a∨¬b},¬a∨¬b), S= ({s},s), C= ({c},c). Notice that the inconsistent
q in Fig. 1 defeats c. However, the undefeatable f defeats q on its commitments, thus
ensuring grounded acceptance of the dialectical argument c, hence, DFB|∼s

grounded c.
If B does not contain r, and ({¬s},¬s)≺ ({s},s), then s ∈ E . Non-contamination is

then satisfied if adding the syntactically disjoint r to B does not lead to a stronger ‘redun-
dantly contaminated’ argument u (Fig 1) that defeats s, excluding it from E . For this, we
require ({¬s, r},¬s)≺ ({s},s)) together with P3, encoding that given U = ({¬s, r},¬s),
resources suffice to construct the ‘non-redundant counterpart’ T = ({¬s},¬s) of U.
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3. A Dialectical Proof Calculus

Agents may have limited inferential capabilities for constructing arguments and, in prac-
tice, they are not expected to construct (and evaluate) all arguments from the outset, but
rather interleave evaluation with construction. For example, when evaluating whether a
is acceptable w.r.t. some E , an agent may only then deploy proof-theoretic means to con-
struct all arguments (given their limited inferential capabilities and/or time constraints)
that defeat a. This motivates formulation of a proof theory that integrates construction of
arguments and evaluation of their dialectical acceptability.

We adopt the highly modular sequent formalism (e.g., see [14] for an introduc-
tion) and develop an Annotated Dialectical Argumentation Calculus, ADAC for short.
Sequent-style derivation rules [14] derive sequents of the form Δ ⇒ Γ, where Δ ⊆ L
logically entails one of the formulas in Γ ⊆ L . In what follows, we assume LC to be a
sequent calculus sound and complete for the base logic L (as described in Remark 1), i.e.,
�LC Δ⇒ Γ iff Δ �L

∨
Γ. A sequent Δ⇒ ϕ straightforwardly corresponds to a classical ar-

guments (Δ,ϕ) from Def. 1. Epistemic variants of these sequents can then be introduced
which, following [8], are augmented with annotations that keep track of the sequents’
(changing) status in a derivation. This approach yields annotated dialectical arguments
(adas, for short) of the form (where s is the sequent’s status in the derivation)

(Π,Σ)⇒[s] ϕ

that correspond to dialectical arguments (Π,Σ,ϕ) (from Def. 2). We use three types of
annotation [9]: [i] to denote that the sequent is introduced to the derivation, [a] to signify
that it is finally accepted, and [r] to express that it is finally rejected. We write [∗] when the
status of the ada is arbitrary. Lastly, ADAC is equipped with rules that modify annotations
and are used to proof-theoretically establish acceptability of dialectical arguments.

Notation 1. To enhance readability, we use the font ‘x’ to refer to an ada (Δ,Γ)⇒[∗] ϕ
and use the font ‘x’ to refer to its corresponding dialectical argument (Δ,Γ,ϕ). We
write x[s] to denote that x has status s ∈ {i,a, r}. For sets of adas D̂ we write D̂↓ =
{x | x ∈ D̂} ⊆ ||A || to denote the set of corresponding dialectical arguments. The func-
tions Com(·), Sup(·), and Conc(·) are defined as usual.

The rules of ADAC are given in Fig. 2. Firstly, ADAC contains all rules of the base
calculus LC, written Rules(LC), for deriving sequents of the form Δ ⇒ Γ. The rule AX
introduces epistemic variants of LC-sequents to a derivation and annotates them as intro-
duced [i]: these are adas. AX’s side-condition ensures that the introduced ada qualifies
as a dialectical argument according to Def. 3. We then posit rules that change the annota-
tion of adas depending on the status of their defeaters. When evaluating the acceptability
of an ada x, defeat is defined with respect to adas already established as acceptable in
an ADAC-derivation. Relativising defeats in this way is analogous to relativisation w.r.t.
some set of dialectical arguments E (Def. 3). We define the set of defeaters accordingly:

Definition 5. For any x we define the set of its defeaters w.r.t a set of adas D̂ as:

Def(x,D̂) = {y= (Π,Σ)⇒[∗] ψ | �LC Π∪Σ ⇒ ψ and y �D̂↓ x}

where y �D̂↓ x is as defined in Def. 3.
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Δ1 ⇒ Γ1 . . . Δn ⇒ Γn
R for each n-premise rule R ∈ Rules(LC)

Δm ⇒ Γm

Δ ⇒ ϕ
AX where Δ ⊆ B, Δ = Π∪Σ, Π∩Σ = /0, and Δ 
= /0.

(Π,Σ)⇒[i] ϕ

x= (Δ,Γ)⇒[i] ϕ ∀((Π,Σ)⇒[s] ψ ∈ Def(x,Acc(D))) (Π,Σ)⇒[r] ψ
FA

x= (Δ,Γ)⇒[a] ϕ

x= (Δ,Γ)⇒[i] ϕ ∃((Π,Σ)⇒[s] ψ ∈ Def(x, /0)) (Π,Σ)⇒[a] ψ
FR

x= (Δ,Γ)⇒[r] ϕ

(Δ,Γ)⇒[i] ϕ
EA where Δ ⊆ Com(Acc(D))

(Δ,Γ)⇒[a] ϕ

Figure 2. The rules of ADAC (Def. 6).

Observe that for Def(x,D̂), we identify the adas y whose corresponding dialectical
arguments y defeat x w.r.t. the set of dialectical arguments in D̂↓, provided that (subject
to satisfying P1-P3) resources suffice to derive the defeating arguments in question.

The rules FA and FR both refer to the set of defeaters in Def. 5. First, the final ac-
ceptance rule FA evaluates the acceptability of an ada relative to the set of adas accepted
in the derivation D preceding the application of FA, denoted by Acc(D). Then, an ap-
plication of FA extending D , licenses derivation of an accepted x[a] relative to Acc(D)
whenever its defeaters y identified by Def(x,Acc(D)), whose suppositions reference
only those commitments in x and in Acc(D), have been rejected (i.e., y[r] ∈ D).

The final rejection rule FR licenses derivation of a rejected x[r] extending D , when-
ever there exists a defeater y, whose suppositions reference only those commitments in
x, that has been accepted (i.e., y[a] ∈ D). Although FA and FR reference each other, the
rules are not circularly defined since FA also warrants derivability of x[a] when x has no
defeaters (e.g., an ada with no commitments cannot be defeated and is thus accepted).

The epistemic acceptability rule EA allows one to immediately derive the accept-
ability of an ada x = (Δ,Γ) ⇒[∗] ϕ , all of whose committed premises are amongst the
committed premises of accepted adas in the derivation D preceding the application of
EA (i.e., Δ ⊆ Com(Acc(D))). Intuitively, EA expresses that the epistemic variant is ac-
ceptable by virtue of the acceptability of its individual committed premises in the deriva-
tion D . In the next section, we show that EA is justified in light of FA and FR (Prop. 1).

Let us define ADAC and ADAC-derivations (we discuss an example further below).

Definition 6. Let LC be the sound and complete sequent calculus of L, ≺ a strict partial
ordering over {(Δ,ϕ) | �LC Δ ⇒ ϕ}. An Annotated Dialectical Argumentation Calculus
(ADAC) contains the rules of LC, written Rules(LC), together with the rules AX, FA,
FR, and EA. An ADAC-derivation D is a finite list 〈T1, . . . ,Tn〉 of tuples

Ti = 〈i,R,S, [ j, . . . ,k],Acc(Di−1)〉 (1 ≤ i ≤ n)

for 1 ≤ i ≤ n and where Di is the derivation up to Ti and D0 = /0. We define Ti as follows:
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• i is the index indicating the position of Ti in D;
• R ∈ {Rules(LC),AX,FA,FR,EA} is the rule applied in Ti;
• if R ∈ Rules(LC), S is an LC-sequent of the form Δ ⇒ Γ;
• if R ∈ {AX,FA,FR,EA}, S is an ada x= (Δ,Γ)⇒[s] ϕ with status s ∈ {i,a, r};
• j, . . . ,k refer to the tuples Tj, . . . ,Tk whose sequents serve in the conditions of the

rule R deriving S, with 1 ≤ j,k < i;
• Acc(Di−1) = {y | y[a] ∈ T and T ∈ Di−1}.

We write x∈D when x∈ Ti for some Ti ∈D and define the following entailment relation:

• B|∼[a]
ADACϕ iff there is an ADAC-derivation D such that x= (Δ, /0)⇒[a] ϕ ∈ D .

Note that |∼[a]
ADAC only refers to unconditional arguments since we are only interested

in conclusions drawn from the accepted committed premises (cf. Def. 4). Recall that ap-
plication of FA and EA refers to the accepted adas in the preceding derivation and, there-
fore, each tuple Ti includes a reference to Acc(Di−1). Moreover, we stress that an ADAC-
derivation allows for interleaving application of LC-rules that derive classical sequents,
and rules AX, FA, FR, and EA that derive adas and establish dialectical acceptability,
where the two sets of rules yield distinct sequent types as concluding sequents.

Example 3. Let B = {r, p, q, q → ¬p, c} (and assume all arguments are equally pre-
ferred). Consider the derivation D (for readability, we omit reference to tuples):

some LC-reasoning

�LC F = p, q, q →¬p ⇒⊥
AX

f= ( /0,{p, q, q →¬p})⇒[i] ⊥ Def(f,Acc(D ′) = /0) = /0
FA

f= ( /0,{p, q, q →¬p})⇒[a] ⊥

where D ′ precedes FA. Since f has no commitments, Def(f,Acc(D ′)) = /0 and we derive
f[a]. Suppose we extend D by deriving c= ({c}, /0)⇒[i] c (recall LC satisfies P1) and we
want to see whether c is acceptable. Suppose that resources suffice to derive the defeating
q = ({r,p,q,q →¬p}, /0)⇒[i] ¬c with q ∈ Def(c,Acc(D) = {f}). Since LC satisfies P3,
we also derive the non-contaminated q′ = ({p,q,q →¬p}, /0)⇒[i] ¬c ∈Def(c,Acc(D)).
Clearly, f defeats both. We apply FR twice and derive q[r] and q′[r]. Since there are no
more (uncontaminated) arguments defeating c, we extend the derivation with

c[i] q[r] q′[r]
FA

c[a]

and, thus, we have B|∼[a]
groundedc. (We may also apply EA to derive c′ = ( /0,{c})⇒[a] c.)

4. Epistemic Closure and Soundness and Completeness

Using rules akin to FA and FR, [8,9] show that through exhaustive, yet finite, rule-
application, their calculi yield a set of acceptable (classical) arguments identical to the
grounded extension. However, D-Arg does not directly warrant such an approach as
new defeats may become applicable to dialectical arguments, as the sets E containing
these arguments expands. To illustrate, suppose a = ({p}, /0,p) ∈ E and suppose we add
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({c}, /0,c) to E . We now may have to deal with the defeater ({c →¬p},{c},¬p) which
did not previously defeat a w.r.t. E . For this reason, [6] impose an ‘epistemic closure’
condition that guarantees that arguments in a dialectical admissible E remain acceptable
when the set is expanded with newly acceptable arguments. In this section, we show how
rule-based proof-theoretic reasoning with ‘epistemic closure’ likewise preserves accept-
ability status in ADAC-derivations, ultimately yielding a sound and complete characteri-
sation for the grounded semantics of D-Arg.

Definition 7. Let DFB = (A ,C ) and E ⊆ ||A ||. The set ||E ||max = {b ∈ E | Com(b) ⊆
Com(E )} contains all epistemic variants warranted by committed beliefs in E . We say
that E is epistemically maximal whenever E = ||E ||max.

We define the following epistemic closure procedure for ADAC-derivations.

Definition 8. Let D be an ADAC-derivation and let E = Acc(D)↓. We define an epis-
temic closure to be the following procedure applied to D:

Step 1 for each x ∈ ||E ||max\E , introduce x if x[∗] 
∈ D and apply EA to derive x[a].

Let the resulting derivation be D ′ with E ′ = Acc(D ′)↓, then

Step 2 for each x ∈ E ′ and y ∈ Def(x,E ′), introduce y if y[∗] 
∈ D ′ and apply FR to
derive y[r].

Let D ′′ be the derivation resulting from Step 1 and Step 2.
We say that a derivation D is epistemically coherent if the epistemic closure proce-

dure occurs directly after each FA application in D .

Example 4. For illustration, consider some D such that x = ({p} ∪Δ,{c} ∪ Γ) ⇒[a]

ϕ ∈ D , c 
∈ Com(Acc(D)), and there is a y = ({c,r∧¬r}, /0) ⇒[r] ¬p ∈ D which was
rejected by z= ( /0,{r∧¬r})⇒[a] ⊥ (cf. P2 and P3). Suppose we may apply FA to derive
w= ({c}, /0)⇒[a] c. An epistemic closure follows and, i.a., w′ = ( /0,{c})⇒[a] c and x′ =
({p,c}∪Δ,Γ)⇒[a] ϕ are derived by EA. Now y′ = ({r∧¬r},{c})⇒[i] ¬p defeats x but
since ( /0,{r∧¬r})⇒[a] ⊥, the closure applies FR, deriving y′[r]: x remains acceptable.

Prop. 1 guarantees that epistemic closure is well-defined. In particular, clause (iv)
states that after closure, all defeaters of each accepted argument can be legitimately re-
jected and, so, step 2 of the closure is well-defined. Consequently, although application
of FA may introduce new defeats on previously accepted arguments, after epistemic clo-
sure each new defeater can be rejected and accepted arguments remain acceptable.

Proposition 1. Let D be an ADAC-derivation and D ′ result after epistemic closure:
(i) Com(Acc(D)↓) = Com(Acc(D ′)↓);
(ii) D ′ is finite;
(iii) Acc(D ′)↓ = ||Acc(D)↓||max;
(iv) For x ∈ Acc(D ′) and y ∈ Def(x,Acc(D ′)), there is a z[a] ∈ D ′ s.t. z ∈ Def(y, /0);
(v) D ′ is an ADAC-derivation.

Proof. Due to space reasons we omit their proofs (see Ex. 4 for an illustration of iv).

Corollary 1. Let D be epistemically coherent: D is an ADAC-derivation, Acc(D)↓ =
||Acc(D)↓||max, and for each x ∈ Acc(D) and each y ∈ Def(x,Acc(D)), y[r] ∈ D .
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We now prove our central result: the inference relation of ADAC proof calculi cor-
responds to inference under the grounded semantics of DFs. In what follows, we assume
a base logic L satisfying P1-P3, a finite set B, such that each DFB = (A ,C ) satisfies
P1-P3 (A is not necessarily finite). We assume that ADAC and DFB reference the same
L, B, and ≺. First, Prop. 2 demonstrates that accepted ADAC-derivable arguments are
members of a DFB’s dialectical grounded extension. To prove this, we use the charac-
teristic function F for dialectical argumentation, which also uses epistemic closure [6].

Definition 9. Let DFB = (A ,C ) and E ⊆ ||A ||. Let the characteristic function be

F(E ) = {a ∈ ||A || | f or all b �E a, there is a c ∈ E s.t. c � /0 b}.

Let ||F(E )||max be the epistemic maximisation of F(E ). The least fixed-point (lfp) over
DFB is defined as E ∗ =

⋃
i≤∞ Ei, where E0 = /0 and Ei = ||F(Ei−1)||max.

Recall from [6] that the lfp is the dialectical grounded extension Eg of DFB .

Proposition 2. Let DFB = (A ,C ) and Eg ⊆ ||A || its dialectical grounded extension.
For each B-based ADAC-derivation D such that {a | a ∈ D} ⊆ ||A ||: Acc(D)↓ ⊆ Eg.

Proof. Let 〈a1[a], . . . ,an[a]〉 be the list of all Acc(D) = {a1, . . . ,an} in order of their
introduction in D . We show by induction on the length i of this list that ai ∈ Eg. In what
follows, we use Di to refer to the derivation up until the derivation of ai[a].

Base case (i=1). Straightforward since a1 has no defeaters.
Inductive step (i �→ i+1). Assume that a j ∈ Eg for each j ≤ i. We show that ai+1 ∈

Eg. Suppose towards a contradiction that ai+1 
∈ Eg. Since ai+1 ∈ ||A ||, there exists a
b ∈ ||A || such that b �Eg ai+1 and

there is no c ∈ Eg such that c � /0 b. (1)

By assumption, Sup(b)⊆ Com(Eg ∪{ai+1}). By IH, Acc(Di)
↓ ⊆ Eg. Let b= (Δ,Γ)⇒ ϕ

and define Γ2 = Γ∩ Com(Eg). Let b′ the epistemic variant b′ : (Δ∪Γ2,Γ \Γ2) ⇒[∗] ϕ .
Clearly, b′ �Acc(Di)↓ ai+1. Since ai+1 ∈ Acc(D), then by definition of FA, there exists a
c[a] ∈ Di such that c � /0 b′. By IH, c ∈ Eg. Let c= (Π,Σ)⇒[∗] ϕ with Σ ⊆ (Δ∪Γ2). Let
c′ : ( /0,Π∪Σ)⇒[∗] ψ be an epistemic variant. Trivially, c′ ∈ Eg since c′ is undefeatable.
Let Σ2 = Σ∩Com(Eg). Since ||F(Eg)||max = Eg, we have c′′ : (Π∪Σ2,Σ\Σ2)⇒[∗] ϕ with
c′′ ∈ Eg. Since Σ\Σ2 ⊆ Δ = Com(b), we have c′′ � /0 b, contradicting (1).

Lem. 1 (which follows from Prop. 1-2) expresses that epistemic closure guarantees
that a set of acceptable adas is also dialectically admissible.

Lemma 1. Let DFB = (A ,C ) with Eg ⊆ ||A || and let D be an ADAC-derivation. Let
D ′ result from the epistemic closure of D such that {a | a ∈ D ′} ⊆ ||A ||. Then Acc(D ′)↓
is a dialectical admissible extension of DFB .

Prop. 3 shows the existence of an ADAC-derivation whose accepted arguments form
the dialectical grounded extension of a given DFB . To prove this, we need Def. 10 stipu-
lating finitely exhaustive DFBs, which are finite DFBs in which all (resources-bounded)
L-derivable defeaters are present. This notion ensures applicability of the finite rules FA
and FR. To see that Def. 10 is well-defined, observe that each argument has only finitely
many premises and so only finitely many defeaters (exhausting the finite B).
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Definition 10. Let A = {A : (Δ,ϕ) | Δ �L ϕ and Δ ⊆ B} be the set of all L-derivable
arguments based on (a finite) B and let (A ,C ) be its DFB . We call DF′

B = 〈A ′,C ′〉
finitely exhaustive when A ′ ⊆A is finite, it satisfies P1-P3, C ′ = (C ∩(A ′ ×A ′)), and
for each A ∈ A ′ if (B,A) ∈ C , then B ∈ A ′.

Proposition 3. Let DFB = (A ,C ) be finitely exhaustive and Eg ⊆ ||A || its dialectical
grounded extension: There exists a B-based ADAC-derivation D with (i) Acc(D)↓ = Eg
and (ii) D is epistemically coherent.

Proof. Ad (i), we construct D in analogy to the lfp construction: Eg =
⋃

i≤∞ Ei with E0 =
/0 and Ei = ||F(Ei−1)||max. Since DFB is finite, the fixed point procedure is finite, and so
is D . We define D through a step-wise procedure, making use of the following lemma:

Lemma 2 (Follows directly from Lemma 19 in [6]). Let DFB = (A ,C ), a,b ∈ ||A ||,
and Ei ⊆ ||A || be a dialectical admissible set. For each a,b ∈ F(Ei) \ Ei, we have 1)
b ∈ F(||Ei ∪{a}||max) and 2) ||Ei ∪{a,b}||max = ||||Ei ∪{a}||max ∪{b}||max.

Lem. 2 states that 1) for any a,b acceptable to Ei, adding them consecutively does
not change their acceptability and 2) the epistemically maximal set obtained from adding
a and b simultaneously, is identical to the one obtained by adding them consecutively.

We define the following step-wise procedure:

Step 1. Let F(E0) = {a1, . . . ,an}. Take a1 ∈ F(E0). Derive and introduce a1 by means
of Rules(LC) followed by an application of AX. Since a1 ∈ F(E0) has no de-
featers, apply FA to derive a1[a]. Let D ′ be the resulting derivation. Apply epis-
temic closure to D ′ (enabled by Prop. 1) to derive a′1[a] for each a′1 ∈ ||a1||max
and b[r] for each b ∈Def(a′1,{a1}) (in this particular case there are no defeaters).
Subsequently, repeat this procedure for each ai ∈ F(E0) with 1 < i ≤ n. Let D1
be the resulting derivation. By Lem. 1 and Lem. 2, we know that Acc(D1)

↓ =
E1 = ||F(E0)||max and by Prop. 1 and the epistemic closure, we know that for each
a ∈ Acc(D1) and b ∈ Def(a,Acc(D1)), b[r] ∈ D1 (note that by assumption also
b ∈ ||A ||).

Step i+1. Consider Di for Ei and let F(Ei) \Ei = {a1, . . . ,an}. Consider a1. Extend Di
with the derivation and introduction of a1 (using Rules(LC) and AX). Note that
a1 
∈Di since only members of Ei are in D together with all its defeaters and, since
Eg is conflict-free, a1 is not in Di as a rejected sequent. Let the resulting derivation
be D ′. Apply epistemic closure to D ′ (as in step 1) and FR to all newly derived
b ∈Def(a1,Acc(D

′)), where Ei ⊆ Acc(D)↓, to derive b[r] (warranted by Prop. 1).
Repeat this procedure for all a j ∈ F(Ei) \ Ei, with 1 < j ≤ n. Let Di+1 be the
resulting derivation. Similar to Step 1, by Lem. 1 and 2 we have that Acc(Di+1)

↓ =
Ei+1 = ||F(Ei)||max and by Prop. 1 and epistemic closure, we have that for each
a ∈ Acc(Di+1) and b ∈ Def(a,Acc(Di+1)), b[r] ∈ Di+1.

The lfp construction of Eg is finite by assumption and, so, the above process halts at
some point. Let the resulting derivation be D . Clearly, by construction Acc(D)↓ = Eg.

Ad (ii), follows directly from the construction of D .

Prop. 2 and 3 imply that ADAC is a sound and complete proof-theoretic framework
for resource-bounded dialectical argumentative reasoning under grounded semantics:

Corollary 2. B|∼[a]
ADACϕ if and only if DFB|∼grdϕ , where DFB is finitely exhaustive.
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5. Related and Future Work

This paper’s primary contribution, is to proof-theoretic approaches to logical argumen-
tation. For a discussion of work related to Dialectical Argumentation we refer to [6,12].
Here, we only point out that the use of suppositions in dialectical argumentation is rem-
iniscent of hypothetical argumentation; e.g., [15]. A comparison is left for future work.
We also note that the adopted final acceptability rule references the given derivation and
does not depend on possible extensions of the derivation such as in [16]. Furthermore,
dialectical argumentation identifies minimal conditions on the base logic L (e.g., P1-P3)
that guarantee satisfaction of rationality postulates without requiring, e.g., consistency
checks and omniscience.

Last, our approach extends the formalism developed by Arieli et al [8,9], who addi-
tionally show correspondence results for credulous reasoning under stable semantics in
classical argumentation. The main difference with this paper is our inclusion of resource-
bounded dialectical argumentation, preserving the satisfaction of various rationality pos-
tulates. Furthermore, we adopted a finite epistemic closure procedure to warrant these
results. Future work will address results for dialectical stable semantics.
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