
Comparing Apples to Androids: Discovery, Retrieval, and
Matching of iOS and Android Apps for Cross-Platform Analyses

Magdalena Steinböck

TU Wien

Vienna, Austria

magdalena.steinboeck@seclab.wien

Jakob Bleier

TU Wien

Vienna, Austria

jakob.bleier@seclab.wien

Mikka Rainer

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

mikka.rainer@cispa.de

Tobias Urban

Institute for Internet Security

Gelsenkirchen, Germany

urban@internet-sicherheit.de

Christine Utz

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

christine.utz@cispa.de

Martina Lindorfer

TU Wien

Vienna, Austria

martina@seclab.wien

ABSTRACT
For years, researchers have been analyzing mobile Android apps

to investigate diverse properties such as software engineering

practices, business models, security, privacy, or usability, as well

as differences between marketplaces. While similar studies on iOS

have been limited, recent work has started to analyze and compare

Android apps with those for iOS. To obtain the most representative

analysis results across platforms, the ideal approach is to compare

their characteristics and behavior for the same set of apps, e. g., to

study a set of apps for iOS and their respective counterparts for

Android. Previous work has only attempted to identify and evaluate

such cross-platform apps to a limited degree, mostly comparing sets

of apps independently drawn from app stores, manually matching

small sets of apps, or relying on brittle matches based on app and

developer names. This results in (1) comparing apps whose behavior

and properties significantly differ, (2) limited scalability, and (3) the

risk of matching only a small fraction of apps.

In this work, we propose a novel approach to create an extensive

dataset of cross-platform apps for the iOS and Android ecosystems.

We describe an analysis pipeline for discovering, retrieving, and

matching apps from the Apple App Store and Google Play Store

that we used to create a set of 3,322 cross-platform apps out of

10,000 popular apps for iOS and Android, respectively. We evaluate

existing and new approaches for cross-platform app matching

against a set of reference pairs that we obtained from Google’s

data migration service. We identify a combination of seven features

from app store metadata and the apps themselves to match iOS and

Android apps with high confidence (95.82 %). Compared to previous

attempts that identified 14 % of apps as cross-platform, we are able

to match 34% of apps in our dataset. To foster future research in

the cross-platform analysis of mobile apps, we make our pipeline

available to the community.

This work is licensed under a Creative Commons Attribution 4.0 International License.

MSR ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0587-8/24/04.

https://doi.org/10.1145/3643991.3644896

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • General and reference → Empirical studies.

KEYWORDS
iOS, Android, mobile apps, app retrieval, app matching, app stores

ACM Reference Format:
Magdalena Steinböck, Jakob Bleier, Mikka Rainer, Tobias Urban, Christine

Utz, and Martina Lindorfer. 2024. Comparing Apples to Androids: Discov-

ery, Retrieval, and Matching of iOS and Android Apps for Cross-Platform

Analyses. In 21st International Conference on Mining Software Repositories
(MSR ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3643991.3644896

1 INTRODUCTION
Since the advent of the first smartphones in the 2000s, personal

computing has been increasingly moving from desktops to mobile

devices such as smartphones and tablets. Consequently, research

has placed great focus on studying the mobile ecosystem, including

devices, their operating systems (OS), and designated applications

(apps). As of 2023, the mobile ecosystem is governed by two big

platforms with a combined market share of over 99 % [60]: Android,

an open-source OS managed by Google, and iOS, a closed-source

OS by Apple, along with their respective app stores, the Google Play

Store and the Apple App Store. While alternative app stores, also

referred to as marketplaces, for Android apps do exist, iOS users

without jailbroken phones so far have been limited to the official

store. As of March 2024, iOS users in the European Union (EU) can

also install apps from alternative marketplaces [8], diversifying this

ecosystem as well.

A rich body of work has already studied Android apps from

the Google Play Store and alternative marketplaces from differ-

ent perspectives, investigating, for example, software engineering

practices concerning releases and updates [12, 16, 54, 55], business

models [24, 45, 58], security and privacy [6, 22, 33, 37, 38, 43, 51],

and usability [10, 15, 19, 36]. Apps for iOS have been studied to a

far lesser extent [1, 14, 17, 41], and only recently have researchers

started to compare the behavior and properties of apps between

platforms, for example, comparingAndroid and iOS apps for privacy

348

2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR)

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3643991.3644896
https://doi.org/10.1145/3643991.3644896
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643991.3644896&domain=pdf&date_stamp=2024-07-02

MSR ’24, April 15–16, 2024, Lisbon, Portugal M. Steinböck, J. Bleier, M. Rainer, T. Urban, C. Utz, M. Lindorfer

issues [31, 32, 42, 48, 52, 53] or user reviews and ratings [4, 28, 29].

However, most of these cross-platform studies compared samples of

apps individually drawn from the two official stores. As a result, this

work may suffer from the “comparing apples to oranges” problem,

as the apps investigated to compare the two ecosystems, albeit

sampled using the same criteria, may widely differ, and the com-

pared datasets may only have limited comparability. Those studies

that did attempt to find an iOS app’s Android counterpart (or vice

versa) and analyzed their specific properties studied only a subset of

apps that use frameworks for cross-platform app development [4],

relied on manual app matching [16, 28, 52], or performed app

matching with limited metrics, such as string comparison of app

and developer names [3, 25, 32], without verifying the accuracy

of such an approach. Albeit limited in scale, earlier work already

noticed significant differences between the “average app” and cross-

platform apps [32], confirming the need for a robust approach to

identify apps across platforms for analysis at scale.

We address this research gap and study cross-platform apps, by
which we denote apps available for different platforms that can

be considered to be “the same,” except for being offered for other

ecosystems, such as the instant messenger Signal for iOS and Signal

for Android. Reaching this verdict, let alone automating it, is a

nontrivial problem. For example, it is not sufficient that two apps

provide the same service (e. g., web browsers) or are the same

software (e. g., Firefox and the pre-release build Firefox Nightly

serve different use cases). Our definition of cross-platform apps

is also broader than that of apps sharing the same code across

platforms, such as those built with cross-platform app development

frameworks [4] or web technologies using app building frame-

works [40]. For example, if a company hires different developers

to create an iOS and an Android app with the same requirements,

functionality, and interface, we consider the apps the same.

In this work, we collect a large dataset of popular mobile apps

for iOS and Android composed of only cross-platform apps as

defined above. We describe how we sampled, collected metadata,

downloaded, and matched around 10,000 popular apps from the

Apple App Store and the Google Play Store, respectively. We inves-

tigate various existing and new approaches for app matching, using

different types of app metadata and data from the apps themselves.

To address the lack of ground truth in this area, we present

a novel approach to collect reference pairs from Google’s data

migration service for users transitioning from iOS to Android

phones. We evaluated the performance of our matcher against these

reference pairs and manually verified a subset of app pairs that were

not included in the reference list. We find that out of 3,467 resulting

app pairs that were also among the reference pairs, our matcher

correctly identified 3,322 (95.82 %) pairs of cross-platform apps.

Compared to previous work that collected a set of cross-platform

apps to study their privacy aspects [32] and identified only 14 % of

the downloaded apps as such, we can confidently identify 34 % of

iOS and Android apps as cross-platform app pairs.

Our contributions can be summarized as follows:

• We discover, retrieve, and download around 10,000 popular

apps for each iOS and Android and identify 3,322 pairs of

cross-platform apps that can be the basis for future cross-

platform studies of the iOS and Android ecosystems.

• We evaluate different types of app store metadata and app

data in terms of how reliable they are for finding the same

app for iOS and Android. We obtain the best results using

seven matching criteria (app name, developer name, app ID,

privacy policy URL, app description, app icon, deep links).

• We describe how we leveraged Google’s API for iOS-to-

Android data migration to obtain a set of 7,671 reference

pairs, which we used to validate our matching results.

Artifacts: We provide the code of our analysis pipeline, reference

pairs, resulting matches, and other supplementary information at

https://github.com/SecPriv/cross-platform-matching. Due to the

size of the downloaded apps (roughly 2 TB), we only make them

available for research purposes upon request (also see Section 4).

2 RELATEDWORK
Our work goes beyond previous research that retrieved apps and

their metadata from app stores, compared iOS and Android apps,

or investigated methods to match apps across platforms.

App Store Mining. Related work already developed scalable

techniques for crawling the Google Play Store (and alternative

Android app stores) to collect metadata and Android app datasets.

AndroZoo [5] collects apps from the Google Play Store and al-

ternative marketplaces to provide current and historical apps to

the research community, but it only has been incorporating app

metadata since December 2023 [63]. Viennot et al. [64] proposed a

more comprehensive crawling technique that harvests both meta-

data and app-level information. The metadata available in Android

app stores has been used to understand different aspects of the

Android ecosystem, including user perceptions of apps [28, 29, 36],

popularity [34], release practices [12, 66], and developer attribution

issues [23]. Related work further characterized Android apps within

the Google Play Store [64, 70] and across markets [34, 45, 65, 67].

Cross-Platform Studies. Relying on app store metadata and with

a focus on comparing the Android and iOS ecosystems, Ali et al. [3]

characterized apps based on user ratings, versions, and prices on

a large scale. On a smaller scale but with a longitudinal aspect,

Domínguez-Álvarez and Gorla [16] performed a study on release

practices of the most popular apps on each platform. Sebastián et

al. [57] identified developer accounts and other features that can

be used to attribute malicious operations across app stores. Hu

et al. investigated how user reviews and ratings differed both for

manually matched cross-platform apps [28] and those developed

with designated cross-platform frameworks [29].

From a wider perspective, the most active field of research for

cross-platform comparisons of mobile ecosystems has focused on

security and privacy issues. Han et al. [25] performed a cross-

platform comparison of apps to understand how privacy protection

methods are implemented for the same app on different platforms.

Squires et al. [59] showed that Android apps were often over-

privileged while iOS did not suffer from such issues; until Android

6.0 (released in October 2017), only iOS used dynamic permission

control. Chen et al. [13] assessed the usage of potentially harmful

software libraries across Android and iOS apps and found that

almost 7 % of the analyzed Android apps and nearly 3 % of the iOS

apps utilized such libraries. To find personal information leaks, Ren

349

https://github.com/SecPriv/cross-platform-matching

Comparing Apples to Androids: Discovery, Retrieval, and Matching of iOS and Android Apps for Cross-Platform Analyses MSR ’24, April 15–16, 2024, Lisbon, Portugal

App Store Crawler

Play Store
Crawler

Recursive
Related App

Crawler

iOS Downloader

 Android Downloader

iOS Preprocessing

 Android Preprocessing

Cross-
Platform

App Pairs

App Discovery &
Metadata Retrieval App Download Preprocessing Cross-Platform

App Matching
Popularity

Filter Result

iO
S

An
dr

oi
d

Filter 10k
each by

number of
reviews Name

App ID

Developer

Privacy
Policy URLDeep Links

Description

Icon

Preparation (e.g., TF-IDF)

Matching Modules

54321

Figure 1: Overview of our app retrieval and analysis pipeline. After discovering apps and retrieving their metadata, we filter
apps based on their popularity and download them. We then preprocess the apps’ (meta)data and feed it into the matcher that
tries to match apps between platforms. The final output is the list of matched cross-platform apps.

et al. [52] developed anOS-agnostic approach that analyzes network

traffic and found that apps across platforms used and leaked users’

personal information. Kollnig et al. [32] further developed a static

and dynamic program analysis pipeline to perform a comparative

study to assess whether iOS apps are more privacy-friendly than

their Android counterparts. They found potential privacy viola-

tions on both platforms. Finally, Pradeep et al. [48] performed a

comparative analysis on the usage of certificate pinning between

iOS and Android apps and found inconsistent implementations of

this security feature across platforms.

Related work has already highlighted interesting directions for

cross-platform studies on iOS and Android apps. While not all of

the above approaches attempted to match apps across platforms

and instead more generally compared the ecosystems, we argue

that for a sound cross-comparison of apps available on multiple

platforms or in different app stores, it is vital to match and compare

the corresponding apps from these sources.

App Matching across Platforms. Prior research has already

partially applied methods to identify an Android app’s iOS version

(or vice versa). Work focusing on apps developed with designated

cross-platform frameworks has identified these by looking for

whether the decompiled APKs load framework-specific classes [4].

To identify cross-platform apps in the broader sense as we defined

earlier, smaller-scale studies with datasets of 50–100 apps [16, 28, 52]

relied on manual matching of popular apps. Pradeep et al. [48] built

their set of app pairs based on a website of crowdsourced software

recommendations, also including partial manual verification. On

a larger scale, Ali et al. [3] identified over 80,000 app pairs (6.7 %)

in their dataset of 2.4 million apps from the Apple App Store and

Google Play Store by combining multiple attributes of an app (i. e.,

app name, category, and developer) to build clusters and identify

matching apps in the two analyzed stores. Similarly, Han et al. [25]

relied on comparing attributes (i. e., name, description, and devel-

oper) of an app. They found 12.2 % cross-platform apps within their

dataset of 300,000 Android and 400,000 iOS apps. Kollnig et al. [32]

utilized a statistical, frequency-based approach to compute the

(cosine) similarity of two apps based on their titles and identifiers

to find sets of matching apps.

However, as we show in Section 5.3, the discussed related work

has limited accuracy in identifying matching apps, and a more ro-

bust app matching method such as ours can increase the soundness,

comprehensiveness, and completeness of cross-platform studies.

3 METHOD
In this section, we describe our approach to create a large dataset

of popular cross-platform apps from the Apple App Store and the

Google Play Store. This requires us to discover apps in these two

stores, to download them and their metadata, and to match apps in

the two datasets. As displayed in Figure 1, the architecture of our

pipeline consists of the following modules:

➊ App Discovery and Metadata Retrieval: We crawl both the Apple

App Store and the Google Play Store to discover apps (see

Section 3.1). Because the Google Play Store has no public listing

of all apps, we use the popularity charts and lists of related apps

it provides to seed a recursive crawl of related apps until we no

longer discover any new apps.

➋ Popularity Filter: We select the top 10,000 free apps per store,

ranked by their number of user ratings. This number is available

for both stores, while (approximate) download numbers are only

available on the Google Play Store (see Sections 3.1.1 and 3.1.2).

➌ App Download: For each app, we download the app itself and

the corresponding metadata from its store listing (e. g., app

IDs, price, descriptions, and rating count), which we use for

matching and can also be used for future studies requiring cross-

platform app pairs. Note that we use app ID as an umbrella term

for bundle IDs (iOS) and package names (Android).

➍ Preprocessing: After downloading the selected apps, we perform
various preprocessing steps on both apps and metadata, such as

calculating image hashes of icons and static analysis, to gather

characteristics that we use for matching. We store the results

of this step in a MongoDB database for further processing.

➎ Cross-Platform App Matching: Finally, we process the collected
data in our matcher to calculate a similarity score between any

pair of an iOS app and an Android app and find matching app

pairs (see Section 3.2.2).

To evaluate the quality of our cross-platform app matching and

to calibrate score thresholds, a ground truth of correctly matched

app pairs is necessary. In the absence of such a gold standard, we

looked for a proxy dataset. We discovered that both Google and

Apple provide their own matching mechanism for cross-platform

migration during the setup of a new device. We use Google’s previ-

ously undocumented API for iOS-to-Android migration to create a

list of reference pairs (see Section 3.3) for our empirical evaluation

of feature combinations and score thresholds (see Section 3.4).

350

MSR ’24, April 15–16, 2024, Lisbon, Portugal M. Steinböck, J. Bleier, M. Rainer, T. Urban, C. Utz, M. Lindorfer

3.1 App Discovery and Metadata Retrieval
The first step of our analysis pipeline comprises (1) the discovery of

a large set of apps in both the Apple App Store and the Google Play

Store and (2) the retrieval of app metadata, which we use to select

a sample of popular apps that are most likely in active use. This is

straightforward for the Apple App Store, as Apple provides a web

page that lists all apps available in the App Store [7]. The Google

Play Store does not provide such a comprehensive list of available

apps but features popularity charts and lists of recommended apps

that can be explored recursively. A full comparison of both stores

is out of scope for this work; as we wanted to keep our dataset

manageable for collecting, processing, and sharing, we evaluated

our approach on a subset of apps. Thus, after app discovery, we use

the number of user ratings an app has received in its store to select

the top 10,000 free apps from each store for further processing.

While this metric can be manipulated [49, 69] to make an app

appear more popular than it is, related work has found the number

of affected apps to be negligible (< 0.7 % of apps) [69]. Unlike the

approximate number of app downloads, which is not available on

the Apple App Store and has similar potential for manipulation [18],

the number of user ratings exists on both the Apple App Store and

the Google Play Store. We argue that the number of ratings is a

useful metric to select two comparable samples of apps from the two

stores and reflects apps that are actively used by users in practice

and, thus, the most interesting and significant for further studies.

We performed all our experiments from the university network

of TU Wien in Austria. Wherever possible, we used the German

locale. Both stores present localized versions of both the store pages

and the apps if the developers choose to support multiple languages.

However, not all developers provide a localized or an English

version of their app, which can have an impact on the collected

data, as, e. g., the language of descriptions can differ between apps.

In general, app store data collection is a trade-off between metadata

consistency and availability of localized apps.

3.1.1  Apple App Store.

Discovering iOS Apps and Crawling Metadata. Apple con-

veniently provides a web page (the “iTunes preview”) that lists

iOS apps available in the App Store [7]. The page is organized by

app categories and within each category by the first character of

the app name. In theory, these listings can be scraped to obtain

all available App Store IDs (not to be confused with the bundle
ID, which uniquely identifies a downloaded app) for both iOS and

iPadOS apps. However, theweb interface only provides filters to find

apps starting with uppercase letters, special characters, or numbers.

If we only relied on these filters, we would miss apps whose name

starts with, e. g., a lowercase letter or an umlaut. To circumvent this

limitation, we used an existing metadata crawler for the Apple

App Store [46] and extended it to first select an app category

(e. g., finance) and then iterate over all alphanumeric characters

(including umlauts and special characters) to obtain the app store

URLs for all apps in each category via the provided API. For example,

the request for finance apps starting with ‘A’ goes to https://apps.
apple.com/de/genre/ios-finance/id6015?letter=A).

In the next step, we scrape the available metadata (e. g., developer

name, bundle ID, or the link to the privacy policy) for each iOS app

from the store’s web listing and store it in our MongoDB database

for further processing. Using this process, we identified 795,037

iOS apps, considerably more than we would be able to obtain for

Android via the Google Play Store, which is missing a comparable

listing of all apps (see Section 3.1.2).

Popularity Filter. To create a more balanced and comparable set

of apps for both stores, as well as include apps that are both free and

widely used, we excluded all apps from the Apple App Store that

were not available for free (i. e., price > 0) and only considered apps

that had received at least one user rating. After applying both filters,

this left us with 168,573 (21.20 %) apps. To allow the download to be

conducted in a reasonable time frame, and to keep the final dataset

size manageable, we chose to use the top 10,000 apps based on the

number of user ratings.

Downloading iOS Apps. We download the selected top 10,000

apps using IPATool [2]. We linked Apple (user) IDs with an iPhone 8

running iOS 16.1.2 (released in November 2022). In order to prevent

inconsistencies between the downloaded app and its metadata,

which could happen when an app or its metadata was updated

between discovery and download, we also re-downloaded the store

metadata at the same time.

For a given Apple (user) ID, Apple’s billing server only allows

users to purchase 300 apps per day, regardless of whether they

are free or paid. To overcome this limitation, we parallelized the

download using three Apple IDs, allowing us to download 900 apps

per day. For the pipeline setup, we created three different user

accounts on a Mac Mini M1 running macOS Monterey 12.5. This

step is necessary because IPATool requires access to the macOS

keychain and currently only supports one keychain item per Mac

user. Hence, we started three terminals, logged into each user

account, and unlocked the keychain for each user for access within

the terminal session. With these account limitations in place, the

initial download of 10,000 iOS apps took roughly 12 days, but it

could be sped up with additional Apple IDs to parallelize with.

3.1.2 ð Google Play Store.

Discovering Android Apps and Crawling Metadata. Crawling
the Google Play Store is more complex because there is no (publicly

available) way to exhaustively list the most popular apps across all

categories, let alone obtain a full listing of all its apps. Previous work

often either followed “random” links that lead to additional apps in

the store [71] or crawled the top apps in each app category [6, 43].

In this work, we extended the latter approach: We first compiled

a seed list of app IDs (called package name on Android) from the

most popular apps offered for free (“Top Charts”), which comprised

7,659 seed apps. Starting from this list, we recursively explored

all apps suggested by the Google Play Store when viewing an app

listing, which includes related apps, apps by the same developer,

and recommended apps (“users also installed” in the web interface)

until no new apps were found, which happened at a recursion

depth of six. This resulted in a list of 53,232 unique package names.

We chose to use the web interface to discover apps, because the

undocumented API used by the official Google Play Store app (see

below) imposed a rate limit on searches that would have increased

the run time by several orders of magnitude.

351

Comparing Apples to Androids: Discovery, Retrieval, and Matching of iOS and Android Apps for Cross-Platform Analyses MSR ’24, April 15–16, 2024, Lisbon, Portugal

Popularity Filter. As with the Apple App Store, we extracted and

stored app metadata from the Google Play Store’s app listings. Even

though we started the metadata retrieval on the same day the app

discovery process was finished, it failed for 55 apps (< 0.1%), as

they no longer existed in the store, leading to a set of 53,177 known

Android apps. As for iOS apps, here we also selected the top 10,000

apps by the number of user ratings to download.

Downloading Android Apps. While information about apps

can also be accessed with a desktop browser, downloading apps

is intended to be only possible on an actual mobile device, but

unlike iOS apps, Android apps are not tied to a specific device.

There is an undocumented API [9] that allows the Google Play

Store app to interface with the Google Play Store and not just

search for apps, but also download all necessary files to install

them. Its usage requires a Google Play Service Identifier (GSFID)

and a corresponding device token, which is bound to a specific

device profile and requires a Google account that has accepted the

Google Play Store’s terms of service. There have been efforts in the

past to create open-source libraries that allow the use of this API,

but they require regular updates to stay compatible with changes

to the Google Play Store. Additionally, we found that using them

for app discovery is very slow, as it has a much lower rate limit

than the web interface. To download the top 10,000 apps of interest,

we extended the existing library gplaycrawler [47] to support a
more recent phone, a Google Pixel 3a running Android 13 (released

in August 2022). We ran two parallelized download processes to

achieve a rate of roughly 3,000 app downloads per day, resulting in

a download time of three days for the 10,000 Android apps. As with

the iOS apps, we re-downloaded the store metadata at the same

time for consistency.

3.2 Cross-Platform App Matching
The question whether two or more apps are identical or similar can

be approached from different perspectives and is, to some extent,

defined by the scope of the study. For example, apps with the same

or an extremely similar feature set (e. g., two calculator apps) could

be considered similar in an experiment that compares apps based on

their features (e. g., to identify the most privacy-friendly calculator).

Another, more strict approach is the one we use in this paper: to

identify cross-platform apps for iOS and Android that human expert

judgment would consider to be “the same.” This includes pairs of

apps that are designed for the same use cases, offer the same core

functionality, and can be attributed to the same provider, but are

made for different platforms and offered in different stores. For

example, TikTok is available for both iOS and Android, serves the

same use cases, offers the same core features on both platforms, and

both apps are provided by TikTok Ltd. Thus, a human tasked with

finding cross-platform apps for iOS and Android would conclude

that these are the iOS and Android versions of the “same” app.

The goal of our app-matching is to automate the identification of

cross-platform apps. Hence, throughout the rest of the paper, we use

the term same app to denote apps that either human judgment or

our human-verified reference pairs (see Section 3.3) would consider

to be equivalent on both iOS and Android. By contrast, we use the

term matching apps to refer to apps that our matching algorithm

has deemed to be equivalent on iOS and Android.

Finding the same app for both iOS andAndroid is the prerequisite

of any sound cross-platform analysis of apps available for both

ecosystems. As discussed in Section 2, previous work conducted

this step by manually identifying these apps [3, 25, 28], which is not

feasible for larger datasets. Other work relied on simple features for

app matching without systematically verifying the accuracy of the

resulting matches. For example, Kollnig et al. [32] used app names

and IDs to create cross-platform app sets to compare their privacy

properties. Han et al. [25] used app and developer names as well

as app descriptions to match over 20,000 apps but only used 1,300

manually selected app pairs for their privacy analysis, while Ali et

al. [3] used similar app names and developer names to find 80,000

app pairs, of which they manually verified 100.

Names alone can be a poor match for the same app between

the App Store and the Google Play Store, as illustrated by the

examples “Babbel – Language Learning” (app name, iOS) vs. “Babbel

– Learn Languages” (app name, Android) and “1&1 Mail & Media

GmbH” (developer name, iOS) vs. “1&1 Telecom GmbH” (developer

name, Android). In both cases the names share the same prefix,

but their normalized Levenshtein distances, a metric for measuring

differences between strings, are 0.5 and 0.48, respectively. Hence,

these two pieces of metadata are insufficient to determine an app

pair with high confidence, and more sophisticated methods are

needed to enable a robust, reliable, and comprehensive matching of

apps between ecosystems. Another limiting factor for large-scale

app matching is performance. While all types of app (meta)data

can contribute to identifying related apps across platforms, there

are features, e.g., ones extracted through static or dynamic code

analysis, that are more time-consuming and resource-intensive to

process. Scaling them to market sizes is infeasible if a one-on-one

score has to be computed for each candidate pair.

3.2.1 General Matching Approach. As input for the matching mod-

ule of our pipeline, we use some of the information scraped from the

stores, as well as extracted from the apps themselves. The decision

to include the latter is based on the assumption that downloading

the apps is required anyway for further cross-platform analysis

of app pairs. In the following, we use the term feature for a data
point that describes an app and that we either extracted from the

respective store listing or directly from the app. Table 1 lists all

features we use for matching. We selected these based on related

work and our own investigation of what types of (meta)data were

available for both iOS and Android apps and could be obtained and

evaluated via light-weight analysis. We scraped all but one of the

used features (i. e., app name, developer name, app ID, privacy

policy URL, app description, and app icon) from store listings,

whereas information about deep links needed to be extracted from

the apps themselves. We used the collected features to compute a

matching score that indicates the similarity of two given apps (see

Section 3.2.2). For this, we computed subscores for each feature and

later combined them into a single score (see Section 3.4).

Preprocessing. Some features require preprocessing or benefit

from pre-computing values, such as the TF-IDF for the description,

deep link extraction from the apps, or icon hashes. As shown in

Figure 1, some of these steps are performed in the preprocessing

module and others in the matcher. We describe these steps along

with each feature in Section 3.2.2.

352

MSR ’24, April 15–16, 2024, Lisbon, Portugal M. Steinböck, J. Bleier, M. Rainer, T. Urban, C. Utz, M. Lindorfer

Feature Type Source Comparison
App Names String Store max(SPL, LD)

Developer Names String Store max(SPL, LD)

App IDs String Store max(SPL, LD)

Privacy Policy URLs String Store max(SD, SPL, LD)

App Descriptions String Store TF-IDF

App Icons Image Store max(ahash, phash, whash)

Deep Links String App max(SD(US), SD(AL))

Table 1: Features used in our matcher. App ID is the umbrella
term for iOS bundle IDs and Android package names. We
use the shared prefix length (SPL) and Levenshtein distance
(LD) for names, as well as the “same domain” for URLs (SD).
For longer strings (i. e., the descriptions) we use the term
frequency-inverse document frequency (TF-IDF). For deep
links we use URL Schemes (US) and App Links (AL). We
compare icons using the average, perceptual, and wavelet
hash. We normalized all values to the [0, 1] range.

String Comparison. Multiple features we investigated for app

matching are composed of (rather short) strings, such as app name

or developer name. To compare these, we used two different metrics

for string comparison: (1) shared prefix length and (2) Levenshtein

distance. For an array of strings, the shared prefix length (SPL)

provides the common prefix shared by all strings in the array. This

metric is especially useful for comparing app and developer names,

because they often start with brand names followed by suffixes that

can be spelled differently and thus may diverge between platforms,

e. g., “Ltd.” and “Limited.” The Levenshtein distance (LD) measures

the difference between two strings by computing the minimal

number of operations (e. g., insertion or substitution) needed to

change one string to another. In all matching approaches that

require string comparison, we computed both metrics separately

and used the maximum for our final score.

3.2.2 Matching by Feature. We evaluate the seven features listed

in Table 1 for app matching as follows:

• App Names. We use string matching as described above to com-

pare the names of apps provided by their app store listings.

• Developer Names. In the same vein, we compare the names of app

developers provided in the app store listings.

• App IDs. We compare the strings that uniquely identify each app

on a device, i. e., bundle IDs (iOS) and package names (Android),

again using the string-matching approach.

• Privacy Policy URLs.We check if the URLs to the apps’ privacy

policies, as provided in the store listings, lead to the same policy.

For this, we check if the URL contains the same full domain and

apply the usual metrics for string matching, Levenshtein distance

and shared prefix length. We separately check the domain and

URL in case one of them is localized for a platform but not the

other. We do not consider the content of the privacy policies,

as the extraction and preprocessing of privacy policies from

websites have shown to be complex tasks in themselves [26].

• App Descriptions.We compute the similarity of the description

texts from the app store listings using term frequency-inverse

document frequency (TF-IDF). For this, the matcher first uses the

Python module scikit-learn [44] and its TfidfVectorizer
to convert the raw description texts from all iOS and Android

apps into a vectorization of TF-IDF features. We provided the

TfidfVectorizer with a combined list of stop words from the

Natural Language Toolkit [39] in English and German, which

are removed from the descriptions and thus not included in the

vectors. Then we calculate the cosine distances from the vec-

torized iOS descriptions to the vectorized Android descriptions.

The result is an 𝑁 ×𝑀 matrix of similarity values in the [0, 1]
range, where N is the number of iOS app descriptions and M is

the number of Android app descriptions. This has the benefit

that the matching only requires a lookup of the similarity score

for the corresponding app pair in the matrix of similarity values.

• App Icons. We match app icons through image hashes, which,

unlike cryptographic hashes, produce similar output hashes for

similar input images. Using the Python library ImageHash [11],

we compute, for each app icon in our dataset, its average hash,

perceptual hash, and wavelet hash. Using a comparison function

that counts howmany bits are different, we calculate the distance

between two hashes of the same kind, which indicates whether

two apps use the same or a very similar icon. We use the highest

similarity of the three hashes.

• Deep Links. The declaration of deep links in an app allows to

directly open specific URLs in this specific app, rather than in

the standard browser [20, 61]. As it is in the interest of app

developers not to differentiate between platforms in deciding

which links should redirect users to the different versions of

their app, we assume that these are unique per app but identical

across platforms. There are two types of deep links: scheme

URIs (e. g., myapp://), which are named Custom URL Schemes
on iOS and Scheme URLs on Android, and HTTPS URLs (e. g.,

https://myapp.com), which are named Universal Links on iOS

and App Links on Android. To match apps via their deep links,

we compute for two candidate apps the similarity of all declared

Custom URL Schemes (iOS) with Scheme URLs (Android) and

Universal Links (iOS) with App Links (Android). For Universal

Links and App Links, we first remove prefixes such as wildcards

(*) and “www.” to normalize them. We compare the resulting sets

of URLs via exact string matching; for each candidate pair, the

matching score is the higher percentage of identical links for

each of the two deep link types.

3.3 Reference Pairs
To determine the best approach to combine subscores and to evalu-

ate the performance of our matcher, we investigated ways to obtain

reference pairs of already matched apps and found a useful data

source: mechanisms for data migration between devices and app
ecosystems, which have not been discussed in the literature before.

Both Android and iOS support the migration of data and (some)

installed apps when a device is first set up from an existing device,

even from a different platform. In this process, the target OS takes

the list of installed apps on the user’s previous device (connected via

cable or WiFi) and tries to identify and download their counterparts

for the target platform. We use the data obtained from this process

as reference pairs to evaluate the performance of our matcher.

353

Comparing Apples to Androids: Discovery, Retrieval, and Matching of iOS and Android Apps for Cross-Platform Analyses MSR ’24, April 15–16, 2024, Lisbon, Portugal

3.3.1 Google API for iOS-to-Android Migration. The “Data Restore
Tool” [21] (package name: com.google.android.apps.restore)
is an Android app that collects the bundle IDs of all apps installed

on a connected iPhone and sends them to an API endpoint that

either returns the matching Google Play Store package names or

indicates that a match could not be found. As this service is used

to automatically install apps equivalent to those installed on an

iPhone when migrating to Android, it can be assumed that Google

is confident in the results. The API (androidbackupmigration-
services-pa.googleapis.com) requires a bearer token that is

generated with the backup migration scope set via the migration

tool and is valid for one hour. It is not the same as the GSFID

and token pair used for downloading Android apps. To obtain this

bearer token, we set up a Google Pixel 6a with Android 13 and

rooted it with magisk [68] before starting the migration. Next, we

used the Android Settings app to trigger the migration process

from an iPhone 8 running iOS 16.1.2. Using mitmproxy [35], we

intercepted the phone’s traffic and received the necessary bearer

token. With this token, we sent the 775,561 iOS app bundle IDs to

the backupmigration API and received a JSON containing matching

Google Play Store package names. An example of this is shown

in Listing 1. Possible responses are the indication that a free or

paid match was found, along with its package name; that no app

was matched; or that the app has been deny-listed. As this is an

undocumented API, we can only speculate what the latter indicates.

3.3.2 Manual Verification. Wevalidated the appmatching returned

by the Google migration API for the 300 app pairs with the high-

est number of user ratings in the Apple App Store. For this, we

manually inspected the store pages for the returned app identifiers

for whether they appeared to refer to the “same” apps on the two

platforms. Since only a bundle ID is provided as opposed to an App

Store ID, we resolved them to Apple App Store pages using URLs

of the pattern http://itunes.apple.com/lookup?bundleId=test.
bundle.id&country=de. Two of the authors each checked half of

the 300 app pairs and annotated whether the apps matched or if

the result returned by the API looked off. After discussing the

questionable pairs, a third researcher acted as a tie-breaker to

classify a pair of matched apps as the “same” or not. For three

iOS apps, we found that their store page was no longer available,

and there was one pair (bundle ID com.yk.qrcoder, package name

com.pastapizza.qrcode) that we deemed to be not a real match.

We also investigated the NO_MATCH result and found examples of

false negatives: The iOS app com.rockwellventures.woah should
have been mapped to the Android app app.woah, which we verified
by visiting the apps’ website https://woahtheapp.com/. This
hints at Google itself using heuristics for app matching. We discuss

these reference pairs in more detail in Section 6.

3.3.3 Android-to-iOS Migration. For migration from Android to

iOS, the process is similar: Android sends the package names of

the installed apps to the new iPhone. However, in this direction

the matching is performed by the OS and not by a separate app.

Intercepting this would require disabling certificate pinning at the

OS level, which in turn requires a jailbroken iPhone. Therefore, we

leave the exploration of the Android-to-iOS migration API and its

suitability for app matching to future work.

1 { "bundleId ": "app.organicmaps",
2 "packageName ": "app.organicmaps",
3 "result ": "MATCH_FREE"
4 },
5 { "bundleId ": "ch.threema.iapp",
6 "packageName ": "ch.threema.app",
7 "result ": "MATCH_PAID"
8 }
9 { "bundleId ": "com.rockwellventures.woah",
10 "result ": "NO_MATCH"
11 },

Listing 1: Excerpt from the app matching results (reference
pairs) provided by Google’s migration API. Results indicate if
a free (line 3), paid (line 7), or no app was matched (line 10).

3.4 Combination of Features and Evaluation
After we computed all subscores for the individual features, as

described in Section 3.2.2, the matching module combines them into

a final similarity score for each candidate pair of apps. To compute

this matching score, we implemented three different approaches:

(1) the average of all subscores, (2) their median, and (3) a clamped

linear function. We also re-implemented additional approaches

from related work [3, 24, 27, 32] for comparison (see Section 5.3).

We used the reference pairs (see Section 3.3) for which we had

both the iOS app and Android app in our set of downloaded apps to

evaluate how many of these expected pairs we could find with each

approach. This list contains 3,467 app pairs on which we evaluated

our three scoring approaches and found the average to perform

best (see Section 5.2.1). In case the matching result based on the

average score diverged from the reference, we manually inspected

the pairing to understand whether the result was a false positive or

if the reference pairing from Google’s migration API was flawed.

We further evaluated the accuracy of our approach by inspecting a

sample of the matched apps that were not part of the reference. We

present the results in Section 5.2.

4 RESEARCH ETHICS
For this work, we did not collect, store, or process personal data,

and we did not involve any human subjects. Thus, our study was

not required to be reviewed by an Institutional Review Board at

any of our institutions. Nevertheless, we carefully considered the

potential ethical implications of our study.

Both the Apple App Store and the Google Play Store imple-

ment protection mechanisms so that one cannot download apps

at excessive rates, or easily extract the source code of these apps

(see Section 3.1). Our crawler honors the stores’ rate limitations

for downloading apps and metadata and does not generate traffic

volumes that could jeopardize the availability or functionality of

the stores, e. g., by inadvertently performing a denial-of-service

attack by sending too many requests in a short period of time. Still,

our approach generates traffic that uses some resources of the store

providers, which otherwise would not have been needed. We argue

that all studies that involve the discovery and/or retrieval of iOS

and Android apps and/or their metadata at scale share this issue

and that our method follows commonly accepted procedures.

354

MSR ’24, April 15–16, 2024, Lisbon, Portugal M. Steinböck, J. Bleier, M. Rainer, T. Urban, C. Utz, M. Lindorfer

To foster reproducibility and to reduce the barrier of entry for

other researchers in this area, we provide the downloaded apps for

research purposes upon request. This also prevents the additional

strain on the stores that a replication of our data collection would

cause. While it could be argued that facilitating the collection

and sharing of such large datasets could violate app store policies,

this again is common practice for studies in the mobile app space.

Furthermore, our dataset contains only free apps, such that sharing

does not deprive app developers of revenue. Our pipeline is based

on already publicly available tools that tech-savvy users can use to

download a comparable set of apps.

Finally, our insights into the efficiency of different features for

app matching could inform malicious actors who aim to create

phishing or copycat apps for apps available only on iOS or Android

and publish them in the respective other store. However, both the

Apple App Store and the Google Play Store claim to have vetting

mechanisms in place to verify developers and prevent such abuse.

5 RESULTS
In this section, we provide an overview of the collected iOS and

Android app datasets, present the results of our matching approach,

and evaluate the performance of our analysis pipeline for app

discovery, download, and matching, as well as prior approaches.

5.1 Dataset
Table 2 provides an overview of the datasets that resulted from our

app discovery and download process, which we conducted from

October 15–23, 2023. Our final app corpus consists of 9,943 iOS

and 9,942 Android apps (we failed to download 57 and 58 apps,

respectively, as they were not available anymore).

To obtain the set of reference pairs, we requested a total of

775,561 out of the 795,037 discovered iOS apps to be matched by

the Google migration API and received 271,457 (35.00 %) matches

with free apps and 10,526 (1.36 %) matches with paid apps. The

remaining 493,578 (63.64 %) bundle IDs returned NO_MATCH. This
could be due to apps only being available for iOS or not covered by

Google’s (opaque) data migration API.

Out of the 9,943 iOS apps we downloaded, 7,671 (77.15 %) were

paired with an Android app by the Google Migration API. In the

remainder of this paper, we refer to this subset of the returned

reference list as the Reference Pairs. For the remaining 2,272 (22.85 %)

iOS apps we could only resort to manual validation to determine

whether our matcher worked correctly. We label this subset the No
Reference Pairs. For 3,467 (34.87 %) iOS apps our downloaded corpus
contained the matching Android app from the Reference Pairs. This
is a subset of the Reference Pairs and we label this intersection

between the Reference Pairs and our corpus of downloaded iOS

apps and Android apps Verifiable Set. For these reference pairs,

both apps exist in our downloaded dataset. We use this subset as

one indicator to automatically validate the quality of our matching

approach described in Section 3.4. We refer to the 4,204 iOS apps

present in the Reference Pairs but not in the Verifiable Set set as
Unverifiable Set, as we assume that our matcher cannot get true

positives from this set because the respective Android apps are not

in our downloaded dataset.

Discovery Filtering Download

 iOS Apps 795,037 168,573 (21.20 %) 9,943 (5.90 %)

ð Android Apps 53,177 15,509 (29.16 %) 9,942 (64.10 %)

Table 2: Number of apps in our Android and iOS app datasets
after discovery (i. e., enumerating them in the store), filtering
(for popularity and free apps), and download.

Verifiable Set Unverifiable
Set*

No Reference
Pairs*

Matches 3,322 (99.58 %) 7 (2.47 %) 82 (61.19 %)

Mismatches 14 (0.42 %) - -

App Missing - 256 (90.46 %) 50 (37.31 %)

Unknown - 20 (7.07 %) 2 (1.49 %)

Total 3,336 (33.55 %) 283 (2.85 %) 134 (1.35 %)

Table 3: Quality of our matches with a matching score ≥ 0.5

(n = 3,753). * indicates manually verified matches.

5.2 Cross-Platform App Matching
5.2.1 Scoring Approaches. To assess how to best combine feature

subscores into a final matching score for two candidate pairs, we

investigated different metrics: (1) the average of all subscores, (2)

their median, and (3) a clamped linear function. We compared the

performance of each scoring approach by its ability to match the

same app pairs as Google’s migration API for the Verifiable Set.
The average score outperformed the other approaches by correctly

identifying matches for 3,432 apps (98.99 %) in the Verifiable Set.
The second best approach, clamped linear function, only correctly

identified matches in 3,387 cases (97.69 %). The median of the fea-

ture subscores performed worst, with only 3,300 (95.18 %) correct

matches for the Verifiable Set. Thus, for the remainder of this work,

we use the feature score average for app matching. More complex

approaches might yield better results; we leave these to future work

(see Section 6). However, compared to related work, our approach

shows a notable improvement, finding cross-platform matches for

approximately 34 % of apps.

5.2.2 Matching Accuracy. We evaluated the accuracy of our match-

ing approach against the app pairs in the Reference Pairs. As de-
scribed above, we obtained the matching score for two candidate

apps by computing the average feature rating.

We correctly matched 3,432 (98.99 %) of the app pairs in the

Verifiable Set, using the highest score. Ourmatchingwas incorrect in

35 (1.01 %) cases, i. e., an app pair was matched that does not belong

together according to the reference pairs. We manually investigated

all 35 cases of mismatches with the corresponding reference pairs

and found that 21 had a matching score below 0.5. If we take the

average score of 0.5 as a threshold for matching accuracy, only 14

false positives remain. Even though this threshold also removes

141 (4.11 %) of true positive matches, the correct matching rate

stays considerably high (95.82 %). Because some apps have no pairs,

the threshold allows a matcher to return no result; without it, the

matcher would pair every app, even if it does not have a cross-

platform equivalent. The threshold also allows to tune the matcher:

By increasing it, the number of false positive matches decreases,

but the number of false negative non-matches increases.

355

Comparing Apples to Androids: Discovery, Retrieval, and Matching of iOS and Android Apps for Cross-Platform Analyses MSR ’24, April 15–16, 2024, Lisbon, Portugal

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

100

101

102

103

104

105

106

107

Nu
m

be
r o

f A
pp

 P
ai

rs

(a) App Name

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

100

101

102

103

104

105

106

107

Nu
m

be
r o

f A
pp

 P
ai

rs
(b) App ID

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

101

102

103

104

105

106

107

Nu
m

be
r o

f A
pp

 P
ai

rs

(c) Developer Name

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

100

101

102

103

104

105

106

107

Nu
m

be
r o

f A
pp

 P
ai

rs

(d) Privacy Policy URL

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

100

101

102

103

104

105

106

107

Nu
m

be
r o

f A
pp

 P
ai

rs

(e) App Description

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

100

101

102

103

104

105

106

107

Nu
m

be
r o

f A
pp

 P
ai

rs

(f) App Icon

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

100

101

102

103

104

105

106

107

Nu
m

be
r o

f A
pp

 P
ai

rs

(g) Deep Links

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Score

100

101

102

103

104

105

106

107

Nu
m

be
r o

f A
pp

 P
ai

rs

(h) Average of Scores

Figure 2: Distribution of the similarity scores for the individual features, as well as the average matching score. Using the
Verifiable Set, • shows matches according to the reference pairs, while • shows mismatches, i. e., all possible cross-combinations
of apps we downloaded that both appear in the Verifiable Set but are not matches. Note that the number of app pairs on the
𝑦-axis is plotted on a log scale since there are far more mismatches than matches.

We manually verified all matching results with an average score

above the threshold from the Unverifiable Set and the No Reference
Pairs to evaluate our matcher against these datasets. For these apps

our matcher found good matching candidates, but it is unclear

whether the identified apps are actual matches, as they are not in

the Reference Pairs. Table 3 shows the performance of our matcher

for these datasets. In the case of the Unverifiable Set, our matcher

could find 7 new matches that were not covered by the reference

pairs. In 256 cases, the matcher found matches that were wrong

according to the reference. However, these are cases in which the

matcher could not have found the correct matching app (because

it does not exist in the set of downloaded Android apps) but it

falsely identified one; hence the dash in Table 3. Therefore, a high

error rate was expected for the Unverifiable Set. Regarding the No
Reference Pairs, our matcher could successfully find 82 previously

unknown matching pairs, with a much lower mismatch rate of only

50 pairs. For these apps, the Google API did not find a matching

app but our matcher did.

Despite our manual effort, we could not classify all matches in

the sets Unverifiable Set and No Reference Pairs, as in some cases

the Android reference app was either not available in the Google

Play Store or we could not manually match the apps with certainty.

Overall, our results indicate that, as long as the corresponding apps

on both platforms exist in the dataset, our matcher identifies them

with high accuracy and a low rate of mismatches. Otherwise, the

threshold can be fine-tuned to trade off more matches with an

increased number of false positives.

5.2.3 Effectiveness of Different Features. Figure 2 visualizes the

distribution of scores of all the features we used, for both matches

and mismatches. The set of matches is composed of the matches

from the Verifiable Set. For the mismatches, we first compared all

candidate pairs of iOS and Android apps in the Verifiable Set and
then removed the reference pairs from this set. This approach gives

us comparisons between apps that we know have at least one match

in the Verifiable Set, but excluding the matches we obtained from

Google’s migration service.

A perfect feature would yield two distinct and non-overlapping

distributions formatches andmismatches. Unfortunately, no feature

by itself achieves this. While app names, app IDs, and developer

names have often been used in the past, they require a high thresh-

old that would miss a lot of genuine matches. The comparison

of descriptions is a better feature, as a threshold of 0.95 seems to

provide only matches but still misses expected pairs. The average

of scores manages to tame the noise of the feature subscores into a

less even and less overlapping distribution.

The difference between the highest score to the second highest

score for the Verifiable Set is on average 0.28, with a standard

deviation of 0.12. The smallest difference was 0.009 for the iOS

app com.avast.ios.security, which was correctly matched with

com.avast.android.mobilesecurity, with a score of 0.5211. The
next best match was com.avast.android.secure.browser. In
general, higher scores resulted in a larger difference to the second

highest score.

None of the features show strong co-linearity. The Pearson

correlation coefficient between all features is highest between the

description matching and deep link matching, with a value of 0.32.

All other feature pairs have a coefficient of 0.17 or lower. Tomeasure

the influence of each feature, we performed an additional ablation

study by removing a single feature and calculating the scores for

a fixed threshold of 0.5, presented in Table 4. To our surprise,

356

MSR ’24, April 15–16, 2024, Lisbon, Portugal M. Steinböck, J. Bleier, M. Rainer, T. Urban, C. Utz, M. Lindorfer

Feature (Sub)Set TP (%) FP (%) FN (%)
All seven features 3,322 (95.82 %) 14 (0.40 %) 131 (3.78 %)

w/o Deep Links 3,391 (97.81 %) 27 (0.78 %) 49 (1.41 %)

w/o Developer Name 3,341 (96.37 %) 18 (0.52 %) 108 (3.12 %)

w/o Description 3,279 (94.58 %) 36 (1.04 %) 152 (4.38 %)

w/o App Name 3,258 (93.97 %) 35 (1.01 %) 174 (5.02 %)

w/o App ID 3,250 (93.74 %) 19 (0.55 %) 198 (5.71 %)

w/o Privacy URL 3,206 (92.47 %) 7 (0.20 %) 254 (7.33 %)

w/o App Icon 3,173 (91.52 %) 20 (0.58 %) 274 (7.90 %)

Table 4: Impact of different subsets of features on matching
rates, with a matching threshold of 0.5, for the Verifiable
Set. w/o indicates that the specific feature was omitted. True
positives (TP) increase without some features, but at the cost
of false positives (FP) and false negatives (FN).

Approach TP (%) FP (%) FN (%)
Our Approach 3,322 (95.82 %) 14 (0.40 %) 131 (3.78 %)

Hu et al. [27] 2,908 (83.88 %) 303 (8.74 %) 256 (7.38 %)

Kollnig et al. [32] 1,781 (51.37 %) 403 (11.62 %) 1,283 (37.01 %)

Ali et al. [3] 588 (16.96 %) 0 (0.00 %) 2,079 (59.97 %)

Han et al. [24] 514 (14.83 %) 0 (0.00 %) 2,953 (85.17 %)

Table 5: Comparison of our approach with previous matching
strategies; based on the true positives (TP), false positives
(FP) and false negatives (FN) for the Verifiable Set.

removing the deep link or developer name features increased the

number of true positives, but also of false positives. There appears

to be a three-way trade-off between the number of true positives,

false positives, and false negatives. We consider the inclusion of all

features a suitable default for an overall highmatching rate with low

numbers of false positives and false negatives. Our implementation

allows to change the features that are included in the matching

score to suit the requirements of different applications.

5.3 Comparison With Existing Approaches
We evaluated our matcher’s performance against four different

existing approaches for cross-platform app matching [3, 24, 27, 32].

The code by Ali et al. [3] is publicly available, and Kollnig et al. [32]

kindly provided us with their code. We re-implemented the other

two approaches [24, 27] based on their respective papers; however,

as not all details were given, we had to make assumptions at times.

Ali et al. [3] used an exact string match of both app name and

developer name as a matching metric. Han et al. [24] also used

exact string matching of app and developer names, but additionally

included a Vector Space Model to match the descriptions of apps

with a similarity threshold of 0.45. As they did not provide imple-

mentation details, we used our TF-IDF implementation as the Vector

Space Model. Hu et al. [27] detected pairs of cross-platform games

on Steam and consoles by calculating their similarity based on

the games’ names, developers and publishers. Since our approach

concerns a different domain (mobile apps) and the apps in our

dataset do not contain publisher information, we omitted this

feature and calculated the similarity based on app names and

developers only. For preprocessing we followed the paper but used

a German stop word list, as we had downloaded our app dataset

from German stores. Kollnig et al. [32] individually calculated the

similarity of app IDs and app names using TF-IDF with a similarity

threshold of 0.95. As their goal was to create sets of cross-platform
apps instead of pairwise app matches, they included all candidate

apps above the threshold into their datasets. Hence, we adapted

their approach and chose only the candidate with the highest

average score across both features.

We ran all four approaches on the Verifiable Set and always

selected the candidate with the highest score to make the results

comparable to our approach. Table 5 shows the results. The two

approaches using exactmatches yield less than 17 % of true positives,

but also no false positives. Kollnig et al.’s [32] approach performed

better than the exact string matching approaches and was able to

find around 51% of correct matches. The method by Hu et al. [27]

performs well on our dataset but has approximately 21 times more

false positives than our approach and finds 424 fewer app pairs.

However, this approach was originally designed for a different

domain, Steam and console games.

5.4 Performance
The full sets of 9,943 iOS and 9,942 Android apps took 12 and three

days, respectively, to download for the first time. Re-downloading

iOS apps (e.g., to fetch new versions) is faster if an app has been

downloaded before. The downloaded apps, including all metadata,

have a size of approximately 2 TB (roughly 100MB per app).

To find the best match for an app, we needed to compare each

iOS app with each Android app, which resulted in 9,942 × 9,943 =

98,853,306 comparisons. We parallelized the matching process to

compare the apps in a reasonable time. On a 16-core machine with

32GB RAM and 14 worker threads, the matching process of all pairs

took less than 30 minutes. Comparing all iOS and Android apps (see

Section 5.2) resulted in a MongoDB collection of 98,853,306 pairs of

app IDs (iOS, Android) with their respective matching score and

all corresponding feature scores, that required roughly 10GB of

storage capacity (6 GB if compressed).

Besides sufficient storage capacities for downloading apps and

metadata, the amount of required RAM for the app matching pro-

cess scales with the number of worker processes. Each worker

process requires roughly 1.2 GB of RAM, as the processed data

needs to be held in memory by each process. Additionally, the

MongoDB database used to store the resulting app pairs will occupy

up to 12GB of cache in RAM during matching.

6 LIMITATIONS & FUTUREWORK
Our work aims to find the “same app” across platforms. However,

there is no clear definition of what “same”means in this context, and

it partly depends on human judgment, which is difficult to automate.

In our case, the paper’s authors manually verified a subset of the

matches. One direction for future work is to perform a user study on

how end users perceive and identify cross-platform apps. However,

in this context human judgment can also be exploited by poten-

tially unwanted apps, as evidenced by copycat or counterfeit apps

that attempt to closely resemble popular apps to trick users into

downloading them, which could have been automatically detected

through icon similarity [50, 62].

357

Comparing Apples to Androids: Discovery, Retrieval, and Matching of iOS and Android Apps for Cross-Platform Analyses MSR ’24, April 15–16, 2024, Lisbon, Portugal

Dataset Coverage and Filtering. We were able to enumerate

all listed apps from the iTunes preview of the Apple App Store,

but a similarly complete listing for the Google Play Store does not

exist. Hence, we were limited to the apps we discovered using other

methods, which include bestseller lists, popular apps per category,

related apps, and apps from the same developer. We evaluated our

pipeline for popular Android and iOS apps, as they are the most

likely to have actual matches. As an indicator for popularity we

used the number of user ratings, as this metric exists in both stores.

We believe that ratings sufficiently reflect popularity, as crawlers

and incentivized installs can easily influence download counts [18],

whereas ratings, while they can be manipulated as well [49, 69], are

representative of actual app usage. Future work could extend the

filtering criteria or expand the dataset to include the long tail of less

popular apps from both stores. However, as mentioned above, the

collection and analysis of less popular Android apps are hindered

by the inability to fully enumerate apps in the Google Play Store.

App Store Localization. We used the German versions of the

Apple App Store and Google Play Store and accessed them from

TU Wien in Austria, resulting in a set of apps that are supposed

to comply with the General Data Protection Regulation (GDPR).

Our pipeline can easily be set up and run from other jurisdictions

to create datasets for the comparison of apps with a focus on

different privacy laws. However, store localization, e. g., different

local languages for the metadata, can pose issues (see Section 3.1).

Alternative Marketplaces. Beyond the Google Play Store, other

stores provide apps for Android devices, such as the Huawei App-

Gallery, Amazon Appstore, Samsung App Store, or the F-Droid

Store for open-source apps. Our work considers only the Google

Play Store as a source of Android apps, as it is the largest and most

popular source of apps for Android devices. Future work could

investigate the cross-platform matching of apps in and between

these additional app stores, including ones for iOS, since Apple has

to open up the app distribution at least for users in the EU [8].

Matching Ground Truth. We used pre-matched app pairs ob-

tained from a Google API for data migration from iOS to Android to

validate our results. We also found Huawei [30] and Samsung [56]

to provide similar migration apps, even with hard-coded lists of app

pairs, but on a very limited scale (662 and 47 pairs, respectively).

In the opposite direction, Android to iOS, such a mechanism exists

on the iOS level. We leave it to future work to reverse engineer

Apple’s matching functionality. However, neither the Google nor

the Apple migration tools provide any documentation on how these

matchings are created or vetted, making the quality of the used

reference set unclear. Yet, our manual analysis of 300 reference

pairs showed that the Google API was only incorrect or incomplete

in 1 % of the cases (see Section 3.3.2). One direction to enhance the

robustness of this process might be to use additional sources to

create and maintain a list of vetted cross-platform app matchings

that could serve as the ground truth for future work.

Features and Feature Combinations. Our approach follows a

rather straightforward, yet effective and efficient method to finding

matching apps. However, as shown by Hageman et al. [23], some of

the features we used in our study, such as an app name or developer

name, can be (1) spoofed by a malicious actor and (2) inconsistent

even between apps from the same developer within a given store.

By using (1) the most popular and thus likely vetted apps and (2) a

more fuzzy string matching instead of exact matches on app store

metadata, we limit the potential effects of this on our study.

It is worth noting that calculating pairwise similarity needs to be

efficient because finding the best matches of apps requires O(𝑛2)
comparisons. Future work can explore other approaches for cross-

platform app matching by utilizing different feature sets and more

sophisticated feature combination andmatchingmethods that profit

from, e. g., machine learning or probabilistic models.

7 CONCLUSIONS
In this work, we created a dataset of 3,322 cross-platform pairs of

popular apps from the Apple App Store and their counterparts in the

Google Play Store. We provide the analysis pipeline we developed

for the app discovery, retrieval, and matching to the community

to enable future studies and comparisons of apps between the iOS

and Android ecosystems.

We evaluated existing as well as new approaches for cross-

platform app matching based on seven features from app store

metadata and the apps themselves. We evaluated the quality of our

matches against reference pairs we obtained from Google’s data mi-

gration service. We determined that we can correctly match 95.82 %

apps using features that allow for fast large-scale comparisons.

The challenges that we identified during our study include that

even within the 10,000 most popular apps for iOS and Android

we found a lower number of apps to have a counterpart on the

respective other platform (34 %) than expected. On the other hand,

we found developers that are publishing a large number of apps,

especially games and gambling apps, that look and are named

similarly for the same platform, which makes it challenging even

for a human to determine the correct match. Furthermore, dif-

ferences in apps’ localization in app stores pose challenges to

automated matching using app descriptions. Finally, there is a lack

of a sufficiently large ground truth, but the reference pairs from

Google’s data migration can act as a proxy – with the caveat that it

is undocumented how Google determined them.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments

and input for improving the paper. We also would like to thank

the students whose theses served as the foundation of our analysis

pipeline: Thomas Jirout, Leon Weiß, Anna Hartig, Marcel Pfefferle,

Julian Knorr, andMehmet Kurt. Additional thanks to David Schmidt

for his help in obtaining the full list of reference pairs and Simon

Hayden for engineering support.

This work is based on research supported by the Vienna Science

and Technology Fund (WWTF) and the City of Vienna [Grant

ID: 10.47379/ICT22060 and Grant ID: 10.47379/ICT19056], the Aus-

trian Science Fund (FWF) [Grant ID: 10.55776/F8515-N] and SBA

Research (SBA-K1), a COMET Centre within the framework of

COMET – Competence Centers for Excellent Technologies Pro-

gramme and funded by BMK, BMDW, and the federal state of

Vienna. The COMET Programme is managed by FFG. The authors

further gratefully acknowledge funding from the German Federal

Ministry of Education and Research [Grant ID: 16KIS1629/UbiTrans

and Grant ID: 16KISR002/HealthNet].

358

MSR ’24, April 15–16, 2024, Lisbon, Portugal M. Steinböck, J. Bleier, M. Rainer, T. Urban, C. Utz, M. Lindorfer

REFERENCES
[1] Y. Agarwal and M. Hall. “ProtectMyPrivacy: Detecting and Mitigat-

ing Privacy Leaks on iOS Devices Using Crowdsourcing”. In: Proc. of
the Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys). 2013. doi: 10.1145/2462456.2464460.

[2] M. Alfhaily. IPATool. 2023. url: https://github.com/majd/ipatool.

[3] M. Ali, M. E. Joorabchi, and A. Mesbah. “Same App, Different App

Stores: A Comparative Study”. In: Proc. of the IEEE/ACM International
Conference on Mobile Software Engineering and Systems (MOBILESoft).
2017. doi: 10.1109/MOBILESoft.2017.3.

[4] M. Ali and A. Mesbah. “Mining and Characterizing Hybrid Apps”. In:

Proc. of the International Workshop on App Market Analytics (WAMA).
2016. doi: 10.1145/2993259.2993263.

[5] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. “AndroZoo: Col-

lecting Millions of Android Apps for the Research Community”. In:

Proc. of the International Conference on Mining Software Repositories
(MSR). Available at: https://androzoo.uni.lu. 2016. doi: 10.1145/

2901739.2903508.

[6] B. Andow, S. Y.Mahmud,W.Wang, J.Whitaker,W. Enck, B. Reaves, K.

Singh, and T. Xie. “PolicyLint: Investigating Internal Privacy Policy

Contradictions on Google Play”. In: Proc. of the USENIX Security
Symposium. 2019.

[7] Apple Inc. App Store Downloads on iTunes. 2023. url: https://apps.
apple.com/us/genre/ios/id36.

[8] Apple Inc. Update on apps distributed in the European Union: Alterna-
tive distribution on iOS in the EU. 2024. url: https://developer.apple.
com/support/dma-and-apps-in-the-eu/#ios-app-eu.

[9] Aurora OSS. GPlayAPI. 2023. url: https://gitlab.com/AuroraOSS/

gplayapi.

[10] B. Bonné, S. T. Peddinti, I. Bilogrevic, and N. Taft. “Exploring Decision

Makingwith Android’s Runtime PermissionDialogs using In-context

Surveys”. In: Proc. of the USENIX Symposium on Usable Privacy and
Security (SOUPS). 2017.

[11] J. Buchner. ImageHash. 2023. url: https://github.com/JohannesBuch

ner/imagehash.

[12] P. Calciati, K. Kuznetsov, X. Bai, and A. Gorla. “What did Really

Change with the new Release of the App?” In: Proc. of the Interna-
tional Conference on Mining Software Repositories (MSR). 2018. doi:
10.1145/3196398.3196449.

[13] K. Chen, X.Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A.Wang,

Y. Zhang, and W. Zou. “Following Devil’s Footprints: Cross-Platform

Analysis of Potentially Harmful Libraries on Android and iOS”. In:

Proc. of the IEEE Symposium on Security and Privacy (S&P). 2016. doi:
10.1109/SP.2016.29.

[14] L. Chen, C. Shi, Y. Ma, and Z. Shao. “Research on iOS Application

of Internal Privacy Leakage Detection Technology”. In: Proc. of the
International Conference on Intelligent Computation Technology and
Automation (ICICTA). 2018. doi: 10.1109/ICICTA.2018.00046.

[15] Q. Chen, C. Chen, S. Hassan, Z. Xing, X. Xia, and A. E. Hassan. “How

Should I Improve the UI of My App? A Study of User Reviews of

Popular Apps in the Google Play”. In: ACM Transactions on Software
Engineering and Methodology 30.3 (2021). doi: 10.1145/3447808.

[16] D. Domínguez-Álvarez and A. Gorla. “Release Practices for iOS and

Android Apps”. In: Proc. of the International Workshop on App Market
Analytics (WAMA). 2019. doi: 10.1145/3340496.3342762.

[17] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. “PiOS: Detecting Privacy

Leaks in iOS Applications”. In: Proc. of the Annual Network and
Distributed System Security Symposium (NDSS). 2011.

[18] S. Farooqi, Á. Feal, T. Lauinger, D. McCoy, Z. Shafiq, and N. Vallina-

Rodriguez. “Understanding IncentivizedMobile App Installs onGoogle

Play Store”. In: Proc. of the ACM Internet Measurement Conference
(IMC). 2020. doi: 10.1145/3419394.3423662.

[19] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh. “Why People

Hate Your App: Making Sense of User Feedback in a Mobile App

Store”. In: Proc. of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD). 2013. doi: 10.1145/
2487575.2488202.

[20] A. Geitgey. Everything you need to know about implementing iOS
and Android Mobile Deep Linking. 2016. url: https://medium.com/

@ageitgey/everything-you-need-to-know-about-implementing-

ios-and-android-mobile-deep-linking-f4348b265b49.

[21] Google LLC. Data Restore Tool. 2023. url: https://play.google.com/

store/apps/details?id=com.google.android.apps.restore.

[22] M. Gruber, C. Höfig, M. Golla, T. Urban, and M. Große-Kampmann.

“‘We may share the number of diaper changes’: A Privacy and Secu-

rity Analysis of Mobile Child Care Applications”. In: Proc. on Privacy
Enhancing Technologies (PETS) 2022.3 (2022). doi: 10.56553/popets-
2022-0078.

[23] K. Hageman, Á. Feal, J. Gamba, A. Girish, J. Bleier, M. Lindorfer,

J. Tapiador, and N. Vallina-Rodriguez. “Mixed Signals: Analyzing

Software Attribution Challenges in the Android Ecosystem”. In: IEEE
Transactions on Software Engineering 49.4 (2023). doi: 10.1109/TSE.

2023.3236582.

[24] C. Han, I. Reyes, A. Elazari Bar On, J. Reardon, Á. Feal, K. A. Bam-

berger, S. Egelman, and N. Vallina-Rodriguez. “Do You Get What You

Pay For? Comparing the Privacy Behaviors of Free vs. Paid Apps”.

In: Proc. of the Workshop on Technology and Consumer Protection
(ConPro). 2019.

[25] J. Han, Q. Yan, D. Gao, J. Zhou, and R. Deng. “Comparing Mobile

Privacy Protection through Cross-Platform Applications”. In: Proc.
of the Annual Network and Distributed System Security Symposium
(NDSS). 2013.

[26] H. Hosseini, M. Degeling, C. Utz, and T. Hupperich. “Unifying Privacy

Policy Detection”. In: Proc. on Privacy Enhancing Technologies (PETS)
2021.4 (2021). doi: 10.2478/popets-2021-0081.

[27] H. Hu, Y. Tian, S. Hassan, and D. Lin. “Analyzing Gamer Complaints

in Reviews of Cross-Platform Video Games on Steam”. In: Proc. of
the IEEE Conference on Games (CoG). 2023. doi: 10.1109/CoG57401.
2023.10333139.

[28] H. Hu, C.-P. Bezemer, and A. E. Hassan. “Studying the Consistency of

Star Ratings and the Complaints in 1 & 2-Star User Reviews for Top

Free Cross-Platform Android and iOS Apps”. In: Empirical Software
Engineering 23 (2018). doi: 10.1007/s10664-018-9604-y.

[29] H. Hu, S. Wang, C.-P. Bezemer, and A. E. Hassan. “Studying the

Consistency of Star Ratings and Reviews of Popular Free Hybrid

Android and iOS Apps”. In: Empirical Software Engineering 24 (2019).

doi: 10.1007/s10664-018-9617-6.

[30] Huawei Internet Services. Phone Clone. 2023. url: https://play.google.
com/store/apps/details?id=com.hicloud.android.clone.

[31] S. Koch, B. Altpeter, and M. Johns. “The OK Is Not Enough: A Large

Scale Study of Consent Dialogs in Smartphone Applications”. In:

Proc. of the USENIX Security Symposium. 2023.

[32] K. Kollnig, A. Shuba, R. Binns, M. Van Kleek, and N. Shadbolt. “Are

iPhones Really Better for Privacy? A Comparative Study of iOS and

Android Apps”. In: Proc. on Privacy Enhancing Technologies (PETS)
2022.2 (2022). doi: 10.2478/popets-2022-0033.

[33] M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner, E. Athana-

sopoulos, F. Maggi, C. Platzer, S. Zanero, and S. Ioannidis. “AndRadar:

Fast Discovery of Android Applications in Alternative Markets”. In:

Proc. of the International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA). 2014. doi: 10.1007/
978-3-319-08509-8_4.

[34] W. Liu, G. Zhang, J. Chen, Y. Zou, and W. Ding. “A Measurement-

based Study on Application Popularity in Android and iOS App

Stores”. In: Proc. of the Workshop on Mobile Big Data (Mobidata). 2015.
doi: 10.1145/2757384.2757392.

[35] Mitmproxy Project. mitmproxy – an interactive HTTPS proxy. 2022.
url: https://mitmproxy.org/.

[36] P. Nema, P. Anthonysamy, N. Taft, and S. T. Peddinti. “Analyzing

User Perspectives on Mobile App Privacy at Scale”. In: Proc. of the
International Conference on Software Engineering (ICSE). 2022. doi:
10.1145/3510003.3510079.

359

https://doi.org/10.1145/2462456.2464460
https://github.com/majd/ipatool
https://doi.org/10.1109/MOBILESoft.2017.3
https://doi.org/10.1145/2993259.2993263
https://androzoo.uni.lu
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://apps.apple.com/us/genre/ios/id36
https://apps.apple.com/us/genre/ios/id36
https://developer.apple.com/support/dma-and-apps-in-the-eu/#ios-app-eu
https://developer.apple.com/support/dma-and-apps-in-the-eu/#ios-app-eu
https://gitlab.com/AuroraOSS/gplayapi
https://gitlab.com/AuroraOSS/gplayapi
https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash
https://doi.org/10.1145/3196398.3196449
https://doi.org/10.1109/SP.2016.29
https://doi.org/10.1109/ICICTA.2018.00046
https://doi.org/10.1145/3447808
https://doi.org/10.1145/3340496.3342762
https://doi.org/10.1145/3419394.3423662
https://doi.org/10.1145/2487575.2488202
https://doi.org/10.1145/2487575.2488202
https://medium.com/@ageitgey/everything-you-need-to-know-about-implementing-ios-and-android-mobile-deep-linking-f4348b265b49
https://medium.com/@ageitgey/everything-you-need-to-know-about-implementing-ios-and-android-mobile-deep-linking-f4348b265b49
https://medium.com/@ageitgey/everything-you-need-to-know-about-implementing-ios-and-android-mobile-deep-linking-f4348b265b49
https://play.google.com/store/apps/details?id=com.google.android.apps.restore
https://play.google.com/store/apps/details?id=com.google.android.apps.restore
https://doi.org/10.56553/popets-2022-0078
https://doi.org/10.56553/popets-2022-0078
https://doi.org/10.1109/TSE.2023.3236582
https://doi.org/10.1109/TSE.2023.3236582
https://doi.org/10.2478/popets-2021-0081
https://doi.org/10.1109/CoG57401.2023.10333139
https://doi.org/10.1109/CoG57401.2023.10333139
https://doi.org/10.1007/s10664-018-9604-y
https://doi.org/10.1007/s10664-018-9617-6
https://play.google.com/store/apps/details?id=com.hicloud.android.clone
https://play.google.com/store/apps/details?id=com.hicloud.android.clone
https://doi.org/10.2478/popets-2022-0033
https://doi.org/10.1007/978-3-319-08509-8_4
https://doi.org/10.1007/978-3-319-08509-8_4
https://doi.org/10.1145/2757384.2757392
https://mitmproxy.org/
https://doi.org/10.1145/3510003.3510079

Comparing Apples to Androids: Discovery, Retrieval, and Matching of iOS and Android Apps for Cross-Platform Analyses MSR ’24, April 15–16, 2024, Lisbon, Portugal

[37] T. T. Nguyen, M. Backes, N. Marnau, and B. Stock. “Share First, Ask

Later (or Never?) Studying Violations of GDPR’s Explicit Consent in

Android Apps”. In: Proc. of the USENIX Security Symposium. 2021.

[38] T. T. Nguyen, M. Backes, and B. Stock. “Freely Given Consent?

Studying Consent Notice of Third-Party Tracking and Its Violations

of GDPR in Android Apps”. In: Proc. of the ACM SIGSAC Conference
on Computer and Communications Security (CCS). 2022. doi: 10.1145/
3548606.3560564.

[39] NLTK Project. Natural Language Toolkit (NLTK). 2023. url: https:
//github.com/nltk/nltk.

[40] M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow, G.

Pellegrino, S. Bugiel, and M. Backes. “The Rise of the Citizen Devel-

oper: Assessing the Security Impact of Online App Generators”. In:

Proc. of the IEEE Symposium on Security and Privacy (S&P). 2018. doi:
10.1109/SP.2018.00005.

[41] D. Orikogbo, M. Büchler, and M. Egele. “CRiOS: Toward Large-Scale

iOS Application Analysis”. In: Proc. of the Workshop on Security
and Privacy in Smartphones and Mobile Devices (SPSM). 2016. doi:
10.1145/2994459.2994473.

[42] F. Paci, J. Pizzoli, and N. Zannone. “A Comprehensive Study on Third-

Party User Tracking in Mobile Applications”. In: Proc. of the Inter-
national Conference on Availability, Reliability and Security (ARES).
2023. doi: 10.1145/3600160.3605079.

[43] E. Pan, J. Ren, M. Lindorfer, C. Wilson, and D. Choffnes. “Panoptispy:

Characterizing Audio and Video Exfiltration from Android Appli-

cations”. In: Proc. on Privacy Enhancing Technologies (PETS) 2018.4
(2018). doi: 10.1515/popets-2018-0030.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É.

Duchesnay. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011). Available at: https://scikit-

learn.org.

[45] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos,

and T. Karagiannis. “Rise of the Planet of the Apps: A Systematic

Study of the Mobile App Ecosystem”. In: Proc. of the ACM Internet
Measurement Conference (IMC). 2013. doi: 10.1145/2504730.2504749.

[46] M. Pfefferle. Apple App Store Crawler. 2021. url: https://gitlab.com/

marzzzello/appstore_crawler.

[47] M. Pfefferle. gplaycrawler. 2021. url: https://gitlab.com/marzzzello/

gplaycrawler.

[48] A. Pradeep, M. T. Paracha, P. Bhowmick, A. Davanian, A. Razagh-

panah, T. Chung, M. Lindorfer, N. Vallina-Rodriguez, D. Levin, and D.

Choffnes. “A Comparative Analysis of Certificate Pinning in Android

& iOS”. In: Proc. of the ACM Internet Measurement Conference (IMC).
2022. doi: 10.1145/3517745.3561439.

[49] M. Rahman, N. Hernandez, R. Recabarren, S. I. Ahmed, and B. Car-

bunar. “The Art and Craft of Fraudulent App Promotion in Google

Play”. In: Proc. of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2019. doi: 10.1145/3319535.3345658.

[50] J. Rajasegaran, N. Karunanayake, A. Gunathillake, S. Seneviratne,

and G. Jourjon. “A Multi-Modal Neural Embeddings Approach for

Detecting Mobile Counterfeit Apps”. In: Proc. of the World Wide Web
Conference (WWW). 2019. doi: 10.1145/3308558.3313427.

[51] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-

Rodriguez. “Bug Fixes, Improvements, ... and Privacy Leaks - A

Longitudinal Study of PII Leaks Across Android App Versions”. In:

Proc. of the Network and Distributed System Security Symposium
(NDSS). 2018. doi: 10.14722/ndss.2018.23143.

[52] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes. “ReCon:

Revealing and Controlling PII Leaks in Mobile Network Traffic”.

In: Proc. of the Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys). 2016. doi: 10 .1145/2906388.
2906392.

[53] D. Rodriguez, A. Jain, J. M. D. Alamo, and N. Sadeh. “Comparing

Privacy Label Disclosures of Apps Published in both the App Store

and Google Play Stores”. In: Proc. of the International Workshop on

Privacy Engineering (IWPE). 2023. doi: 10.1109/EuroSPW59978.2023.

00022.

[54] P. Salza, F. Palomba, D. Di Nucci, C. D’Uva, A. De Lucia, and F.

Ferrucci. “Do Developers Update Third-Party Libraries in Mobile

Apps?” In: Proc. of the IEEE/ACM International Conference on Program
Comprehension (ICPC). 2018. doi: 10.1145/3196321.3196341.

[55] P. Salza, F. Palomba, D. Di Nucci, A. De Lucia, and F. Ferrucci. “Third-

Party Libraries in Mobile Apps: When, How, and Why Developers

Update Them”. In: Empirical Software Engineering 25.3 (2020). doi:

10.1007/s10664-019-09754-1.

[56] Samsung Electronics Co., Ltd. Samsung Smart Switch Mobile. 2023.
url: https://play.google.com/store/apps/details?id=com.sec.android.

easyMover.

[57] S. Sebastian and J. Caballero. “Towards Attribution in Mobile Mar-

kets: Identifying Developer Account Polymorphism”. In: Proc. of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2020. doi: 10.1145/3372297.3417281.

[58] S. Seneviratne, H. Kolamunna, and A. Seneviratne. “A Measurement

Study of Tracking in Paid Mobile Applications”. In: Proc. of the ACM
Conference on Security & Privacy in Wireless and Mobile Networks
(WiSec). 2015. doi: https://doi.org/10.1145/2766498.2766523.

[59] W. Squires and P. Centonze. “Cross-Platform Access-Rights Analysis

of Mobile Applications”. In: Proc. of the International Conference on
Mobile Software Engineering and Systems (MOBILESoft). 2016. doi:
10.1145/2897073.2897717.

[60] StatCounter. Mobile Operating System Market Share Worldwide, Oct
2022 – Oct 2023. 2023. url: https://gs.statcounter.com/os-market-

share/mobile/worldwide.

[61] M. Steinböck. Android vs. iOS: Security of Mobile Deep Links. Master

Thesis, TU Wien, 2022. doi: 10.34726/hss.2022.93327.

[62] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou. “A

Large-Scale Empirical Study on Industrial Fake Apps”. In: Proc. of the
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP). 2019. doi: 10.1109/ICSE-SEIP.2019.00028.

[63] University of Luxembourg. Androzoo: Google Play Metadata. 2023.
url: https://androzoo.uni.lu/gp-metadata.

[64] N. Viennot, E. Garcia, and J. Nieh. “A Measurement Study of Google

Play”. In: Proc. of the ACM International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS). 2014. doi: 10.1145/
2591971.2592003.

[65] H. Wang, H. Li, and Y. Guo. “Understanding the Evolution of Mobile

App Ecosystems: A Longitudinal Measurement Study of Google

Play”. In: Proc. of the World Wide Web Conference (WWW). 2019. doi:
10.1145/3308558.3313611.

[66] H. Wang, Z. Liu, Y. Guo, X. Chen, M. Zhang, G. Xu, and J. Hong.

“An Explorative Study of the Mobile App Ecosystem from App

Developers’ Perspective”. In: Proc. of the International Conference on
World Wide Web (WWW). 2017. doi: 10.1145/3038912.3052712.

[67] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li, J.

Tapiador, J. Cao, and G. Xu. “Beyond Google Play: A Large-scale

Comparative Study of Chinese Android App Markets”. In: Proc. of
the ACM Internet Measurement Conference (IMC). 2018. doi: 10.1145/
3278532.3278558.

[68] J. Wu. Magisk. 2023. url: https://github.com/topjohnwu/Magisk.

[69] Z. Xie, S. Zhu, Q. Li, and W. Wang. “You Can Promote, but You Can’t

Hide: Large-Scale Abused App Detection in Mobile App Stores”. In:

Proc. of the Annual Conference on Computer Security Applications
(ACSAC). 2016. doi: 10.1145/2991079.2991099.

[70] N. Zhong and F. Michahelles. “Google Play Is Not A Long Tail

Market: An Empirical Analysis of App Adoption on the Google Play

App Market”. In: Proc. of the Annual ACM Symposium on Applied
Computing (SAC). 2013. doi: 10.1145/2480362.2480460.

[71] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S. Wilson,

N. Sadeh, S. M. Bellovin, and J. Reidenberg. “Automated Analysis of

Privacy Requirements for Mobile Apps”. In: Proc. of the Network and
Distributed System Security Symposium (NDSS). 2017. doi: 10.14722/
ndss.2017.23034.

360

https://doi.org/10.1145/3548606.3560564
https://doi.org/10.1145/3548606.3560564
https://github.com/nltk/nltk
https://github.com/nltk/nltk
https://doi.org/10.1109/SP.2018.00005
https://doi.org/10.1145/2994459.2994473
https://doi.org/10.1145/3600160.3605079
https://doi.org/10.1515/popets-2018-0030
https://scikit-learn.org
https://scikit-learn.org
https://doi.org/10.1145/2504730.2504749
https://gitlab.com/marzzzello/appstore_crawler
https://gitlab.com/marzzzello/appstore_crawler
https://gitlab.com/marzzzello/gplaycrawler
https://gitlab.com/marzzzello/gplaycrawler
https://doi.org/10.1145/3517745.3561439
https://doi.org/10.1145/3319535.3345658
https://doi.org/10.1145/3308558.3313427
https://doi.org/10.14722/ndss.2018.23143
https://doi.org/10.1145/2906388.2906392
https://doi.org/10.1145/2906388.2906392
https://doi.org/10.1109/EuroSPW59978.2023.00022
https://doi.org/10.1109/EuroSPW59978.2023.00022
https://doi.org/10.1145/3196321.3196341
https://doi.org/10.1007/s10664-019-09754-1
https://play.google.com/store/apps/details?id=com.sec.android.easyMover
https://play.google.com/store/apps/details?id=com.sec.android.easyMover
https://doi.org/10.1145/3372297.3417281
https://doi.org/https://doi.org/10.1145/2766498.2766523
https://doi.org/10.1145/2897073.2897717
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.34726/hss.2022.93327
https://doi.org/10.1109/ICSE-SEIP.2019.00028
https://androzoo.uni.lu/gp-metadata
https://doi.org/10.1145/2591971.2592003
https://doi.org/10.1145/2591971.2592003
https://doi.org/10.1145/3308558.3313611
https://doi.org/10.1145/3038912.3052712
https://doi.org/10.1145/3278532.3278558
https://doi.org/10.1145/3278532.3278558
https://github.com/topjohnwu/Magisk
https://doi.org/10.1145/2991079.2991099
https://doi.org/10.1145/2480362.2480460
https://doi.org/10.14722/ndss.2017.23034
https://doi.org/10.14722/ndss.2017.23034

