
Logical Distillation of Graph Neural Networks

Alexander Pluska 1 Pascal Welke 1 Thomas Gärtner 1 Sagar Malhotra 1

Abstract
We present a logic based interpretable model for
learning on graphs and an algorithm to distill this
model from a Graph Neural Network (GNN). Re-
cent results have shown connections between the
expressivity of GNNs and the two-variable frag-
ment of first-order logic with counting quantifiers
(C2). We introduce a decision-tree based model
which leverages an extension of C2 to distill inter-
pretable logical classifiers from GNNs. We test
our approach on multiple GNN architectures. The
distilled models are interpretable, succinct, and
attain similar accuracy to the underlying GNN.
Furthermore, when the ground truth is expressible
in C2, our approach outperforms the GNN.

1. Introduction
We present and evaluate an algorithm for distilling Graph
Neural Networks (GNNs) into a symbolic model. Our dis-
tillation algorithm relies on a novel model called Iterated
Decision Tree (IDT), which is tailored to represent logical
formulas represented by GNNs. GNNs play a crucial role
in safety-critical applications like drug discovery and in
cost-critical applications like large-scale transport routing.
However, most GNN models are black-box in nature and
their internal representations are opaque to any human or
computer-aided formal scrutiny. Hence, interpreting and
explaining GNN predictions is a fundamental problem of
significant research interest. Although many results have
analyzed the expressivity of GNNs in terms of formal lan-
guages like first-order logic, extracting the logical classifiers
expressed by GNNs remains largely unexplored. We aim
to fill this gap by developing a distillation model aimed at
extracting logical classifiers expressed by GNNs.

The key motivation for our model is the close relationship
between GNNs and first-order logic with only two variables
and counting quantifiers C2 (Barceló et al., 2020; Grohe,
2021; 2023). Hence our model, the IDT, is designed to
express any C2 formula. An IDT consists of a sequence
of decision trees. Each decision tree expresses a number

1TU Wien, Austria. Correspondence to: Alexan-
der Pluska <alexander.pluska@tuwien.ac.at>, Sagar Malhotra
<sagar.malhotra@tuwien.ac.at>.

of unary C2 formulas of quantifier depth one. Combining
multiple such decision trees enables us to express formu-
las of larger quantifier depth. Additionally, we propose an
extension of C2 that can capture operations like mean aggre-
gation, which are common in GNNs, and incorporate it into
IDTs. Our distillation algorithm is able to exploit intermedi-
ate node representations from each message-passing layer
of a GNN to iteratively learn decision trees of an IDT. Al-
though the learning process for IDTs is guided by the GNN,
our empirical results show that the logic-based inductive
bias incentivizes succinct and interpretable models.

We test IDTs on multiple synthetic and real-world datasets,
performing distillation on two prominent GNN architec-
tures, Graph Isomorphism Networks (GIN) (Xu et al., 2019)
and Graph Convolution Networks (GCN) (Kipf & Welling,
2017). Our algorithm consistently distills IDTs that are suc-
cinct and have comparable predictive performance to the
underlying GNN. Furthermore, when the ground truth is a
C2 formula, the distilled IDT exhibits better generalization,
outperforming the GNN on the test data. Qualitatively, we
find that our method can provide new insights. For instance,
on the AIDS dataset (Riesen & Bunke, 2008), IDTs infer
a very simple high-performing rule that achieves over 99%
classification accuracy. This rule classifies graphs based on
their number of nodes being smaller or larger than 12. To
the best of our knowledge, none of the existing GNNs or
explanation methods have been able to infer this rule.

In the next section we discuss the relevant related work. In
Section 3 we discuss the necessary background on graphs,
logic and GNNs. We present IDTs in Section 4 and show
how IDTs can be learned from GNNs in Section 5. In
Section 6, we introduce an extension of C2, which allows
us to learn more expressive IDTs. Finally, we empirically
evaluate IDTs in Section 7. We analyze some of the obtained
logical explanations in Section B.4. We summarize our work
and discuss future research directions in Section 8.

2. Related Work
Our work is related to explanation methods of GNNs (Longa
et al., 2022) and to logical approaches (Barceló et al., 2020;
Grohe, 2021; 2023) for analyzing their expressivity. Ex-
planation methods aim to derive insights about the process
underlying the model predictions. Although IDTs may aid

1

Logical Distillation of Graph Neural Networks

such understanding, our goal is different. We aim to dis-
till an interpretable classification model for the data, while
using trained GNN model as guidance for the learning pro-
cess. Hence, we want our model to not only be interpretable,
but also to generalize well. In the literature, methods that
provide a global explainer, i.e., an interpretable surrogate
model (Azzolin et al., 2023), can be adapted to yield clas-
sification models for the underlying data. However, such
models come at a significant cost to the accuracy.

Our work is also loosely connected to the general problem
of learning desision trees from neural networks. This prob-
lem has already been extensively investigated for tabular
data (Craven & Shavlik, 1995; Krishnan et al., 1999; Boz,
2002; Dancey et al., 2004; Setzu et al., 2021). Furthermore,
recent works have also investigated the tweaking of learning
process or the neural architecture itself for learning decision
trees (Schaaf et al., 2019; Wu et al., 2018; Yang et al., 2018;
Kontschieder et al., 2016). Although these results are re-
lated to our approach in spirit, our work is fundamentally
different in its theoretical motivation and the learning pro-
cedure. GNNs expressivity is deeply connected to that of
first-order logic (Barceló et al., 2020; Grohe, 2021; 2023).
Hence, using logic-based decision trees is a natural choice
for learning decision trees from GNNs.

Explanation methods that distill surrogate models from
GNNs come closest to our approach. Azzolin et al. (2023)
first derive instance-level local subgraphs as explanations
and then cluster them to extrapolate a model-level Boolean
formula using the subgraphs as concepts. Yuan et al. (2020)
base their approach on input-optimization, i.e. globally re-
ducing graphs to a number of instances for which the expla-
nation is then given. Their approach requires prior domain
knowledge. Most recently, Müller et al. (2024) first com-
pute (almost) categorical layer wise node representations
using GNN layers with Gumbel-Softmax update functions.
Subsequently, they replace the neural networks by decision
trees trained on the categorical node representations. Their
approach results in an interpretable message passing scheme
based on intermediate categorical node states, but requires
to train a specific GNN architecture. All three approaches
use graphs, sub-graphs or their combinations as the expla-
nation model. This restricts these methods, as many simple
and important constraints, e.g. a graph has more than 12
nodes, can not easily be expressed in terms of subgraphs.

3. Background
We use [n] to denote the set {0, . . . , n− 1}. For a matrix A
we write Aij for the entry in the i-th row and j-th column.
AT is the transpose of A and A−1 its inverse. We write I
for the identity matrix, i.e., a matrix with all diagonal entries
equal to one and all non-diagonal entries equal to zero. We
write 1 to denote the matrix with all entries equal to one.

A simple undirected graph G consists of a set of nodes V
and a set of edges E. Without loss of generality, a finite
set of nodes V is given as V = {vi}i∈[|V |]. The adjacency
matrix A of a graph is a symmetric matrix, where Aij = 1
if there is an edge connecting vi and vj , otherwise Aij =
0. We use N(v) to denote the neighbors of a node v and
dv to denote its degree. In this paper, graphs are always
simple and undirected. We discuss possible generalizations
in Section 8.

A tree is a connected acyclic graph. A rooted tree is a tree
with a designated root node. The depth of a node v in a
rooted tree is the length of the unique path from the root to v.
The depth of a rooted tree is defined as the maximum depth
of its nodes. Each node in a rooted tree, except the root
node, has a unique parent node, which is the only adjacent
node with a smaller depth. The children of a node are the
nodes adjacent to it with a larger depth. A leaf node is a
node without children. A binary tree is a rooted tree in
which each node has at most two children. A binary tree of
a given depth h is perfect if it has 2h leaves of depth h.

3.1. Graph Neural Networks

Graph neural networks (GNNs) are a class of deep learning
models that operate on graphs. We will consider message
passing GNNs consisting of a sequence of layers that iter-
atively combine the feature vector of every node with the
multiset of feature vectors of its neighbors. Formally, let
aggk and combk for k ∈ [l] be aggregation and combina-
tion functions. We assume that each node has an associated
initial Boolean feature vector xv = x

(0)
v . A GNN computes

a vector x(k)v for every node v via the following recursive
formula

x(k+1)
v = combk+1(x

(k)
v , aggk+1({{x(k)w : w ∈ N(v)}})),

(1)
where k ∈ [l]. The vectors x(l)v are then pooled

ŷ = pool({{x(l)v : v ∈ V }}) (2)

to give a single graph vector ŷ, the output of the GNN.
Note that in our theoretical framework, pool is not limited
to common pooling operations such as mean but can also
include more complicated operations, e.g., a neural network.

Example 3.1. A special case of the above architecture pat-
tern is the GCN (Kipf & Welling, 2017), in which

agg({{x(k)w : w ∈ N(v)}}) =
∑

w∈N(v)

x
(k)
w√
dw

comb(x(k)v , a) = σ

(
W (k)

(
x
(k)
v

dv
+

a√
dv

))

pool({{x(l)v }}) = MLP

(
σ′

(
1

|V |
∑
v∈V

x(l)v

))

2

Logical Distillation of Graph Neural Networks

where: W (k) are learned weight matrices; σ and σ′ are non-
linear activation functions and MLP is a function computed
by a Multilayer Perceptron.

3.2. Graphs and Logic

C2 is the fragment of first-order logic with only two vari-
ables v, w. Besides the usual existential (∃) and universal
(∀) quantifiers, C2 also admits counting quantifiers of the
form ∃≥n,∃≤n and ∃=n, which stand for exist at least n,
exist at most n and exist exactly n (Cai et al., 1989). All
C2 sentences can be expressed in first-order logic without
counting quantifiers albeit using more than two variables
(Grohe, 2023). In this paper, we assume a first-order lan-
guage on graphs consisting of exactly one binary predicate
E and m unary predicates {Uj}j∈[m]. E(v, w) denotes that
there is an edge between nodes v and w. Uj(v) denotes that
the j-th node-attribute is true for the node v in the graph.
We use U to represent a binary matrix with |V | rows and m
columns. An entry Uij in U is 1 if Uj(vi) holds in a given
graph. Hence, the matrix U completely represents the inter-
pretation of the atoms {Uj} on a given graph. With a slight
abuse of notation, we use Uj also to denote the j-th column
of U . Note that for a given graph G, its adjacency matrix A
completely encodes the interpretation of the predicate E.

Example 3.2. Consider the graph G (shown below) with
unary predicates U0, U1 where U0(v) is true if v ∈ {v1, v3}
and U1(v) holds if v ∈ {v0, v3}. Then we have

G

v0 v1

v2 v3

A =

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 U =

0 1
1 0
0 0
1 1

Here, U0 = (0101)T and U1 = (1001)T . The matrix prod-
uct AUj gives us the number of neighbors of each node
satisfying Uj . Similarly, (1 − A)Uj gives us all the non-
neighbors of each node satisfying Uj , where 1 is a matrix
with all entries equal to 1.

We will consider node and graph classifiers. For instance,
the C2 formula ∃=2y E(x, y) is a logical node classifier
which characterizes nodes of a given graph with degree
exactly 2. The formula has exactly one free variable x and
can, therefore, be evaluated on the nodes of a given graph.
On the other hand, ∀x∃=2y E(x, y) does not have any free
variables. Therefore, it constitutes a graph classifier. It
characterizes 2-regular graphs. Barceló et al. (2020) and
Grohe (2021) have shown multiple connections between C2

and expressivity of GNNs. A key result is the following:

Theorem 3.3 (Barceló et al. (2020), Theorem 5.2). Any
classifier expressible in C2 can be computed by a GNN.

Note that GNNs can also compute classifiers that are in-
expressible in first-order logic. Whether every first-order
classifier computed by a GNN is expressible in C2 is an
open question. However, for GNNs without pool operation,
first-order logic expressivity is completely characterized by
the guarded fragment of C2 (Barceló et al., 2020, Theorem
4.2). The proof of Theorem 3.3 builds on the equivalence
between C2 and the modal logic EMLC (Lutz et al., 2001).
EMLC allows us to define a convenient grammar and serves
as the motivation for our proposed model. We follow Bar-
celó et al. (2020, Appendix D) and introduce a language
similar to their Lemma D.4.

Definition 3.4. A modal parameter S is one of the follow-
ing

0, 1, I, A, 1− I, 1−A, I +A, 1− I −A.

Given a graph G and vertex v, the interpretation εS(v) of S
on v is defined as

ε0(v) := ∅ ε1−I(v) := V \ {v}
ε1(v) := V ε1−A(v) := V \N(v)

εI(v) := {v} εI+A(v) := {v} ∪N(v)

εA(v) := N(v) ε1−I−A(v) := V \ ({v} ∪N(v))

An EMLC formula is then built by the following grammar:

φ ::= Uj | ⊤ | φ ∧ φ | φ ∨ φ | ¬φ | Sφ > n

where Uj ranges over all the unary predicates, ⊤ represents
the predicate which is always true, S ranges over modal
parameters, and n ranges over N. The semantics of the
logical connectives (⊤, ∧,∨, and ¬) are defined as usual.
We say that (G, v) |= Sφ > n if there are more than n
vertices w ∈ εS(v) with (G,w) |= φ. We say G |= φ if
(G, v) |= φ for all nodes v ∈ G. The depth of a formula is
the maximal number of nested modal parameters.

Definition 3.4 can be used to express other comparison sym-
bols, for instance one can define Sφ < n as ¬(Sφ > n−1)
and Sφ = n as ¬(Sφ < n)∧¬(Sφ > n). Computationally,
EMLC formulas can be interpreted as matrix operations.
The modal parameters are naturally interpreted as matrices,
i.e., 0 and 1 as the square matrices with numerical entries
zero and one everywhere, I as the identity matrix, and A as
the adjacency matrix. Suppose φ is given as a binary vector,
i.e., the i-th entry of φ is 1 if and only of (G, vi) |= φ. Then
the i-th entry of the matrix-vector product Sφ is the number
of w ∈ εS(vi) such that (G,w) |= φ. Vectorizing ∧,∨,¬
and > gives a convenient method for determining which
nodes satisfy a given EMLC formula.

Example 3.5. We have the following C2 formula φ with a
free variable v

φ := ∃>1w(E(v, w) ∧ ¬∃=1v(E(w, v) ∧ U1(v))). (3)

3

Logical Distillation of Graph Neural Networks

Hence, φ is true for a node if it has more than one neighbor
w satisfying

¬∃=1v(E(w, v) ∧ U1(v)),

that is, w must not have exactly one neighbor satisfying
U1. Here, we have re-used the variable v. The inner-
quantification is bound to the quantifier ∃=1. Whereas the
first occurance of v is free. Note that φ can be equivalently
written as the following EMLC formula

A(¬(AU1 = 1)) > 1. (4)

When evaluating the formula (4) on the graph given in Ex-
ample 3.2, we have

A(¬(AU1 = 1)) > 1 = A(¬(A(1001)T = 1)) > 1

= A(¬((0210)T = 1))) > 1

= A(¬((0010)T)) > 1

= A(1101)T > 1

= (1221)T > 1

= (0110)
T

The second entry of AU1 = A(1001)T = (0210)T rep-
resents that v1 has two neighbors w for which U1(w) is
true. Similarly, the third entry represents that v2 has exactly
one such neighbor and the zero entries reflect that both v0
and v3 have no neighbors satisfying U1. The subsequent
computation shows that v1 and v2 satisfy φ while v0 and v3
don’t.

The following result makes the connection between EMLC
and C2 explicit. A unary C2 formula is one in which, at
most, one variable occurs freely.

Theorem 3.6 (Barceló et al. (2020), Theorem D.3,
Lemma D.4). For every EMLC formula there is an equiv-
alent unary C2 formula. Conversely, for every unary C2

formula there is an equivalent EMLC formula.

3.3. Decision Trees

A decision tree is a hierarchical, binary-tree structured, deci-
sion model. It assigns labels to samples through a sequence
of binary decisions. Each leaf of a decision tree can be inter-
preted as a logical formula consisting of the conjunction of
decisions from the root of the tree to the leaf. All samples
satisfying this formula are assigned the label of the leaf.
For example, the leaf labeled v2 in Figure 1 can be inter-
preted as ¬U1∧¬U0, the leaf labeled v1 as ¬U1∧U0. Note
that since paths to a leaf of the decision tree correspond to
a conjunction of decisions, sets of leaf nodes can express
disjunctions of conjunctions, e.g. the set of red leaves in
Figure 1 express the following disjunction of conjunctions

(¬U1 ∧ ¬U0) ∨ (¬U1 ∧ U0) ∨ (U1 ∧ U0).

U1

U0

v2

False

v1

True

False

U0

v0

False

v3

True

True

Figure 1. A simple decision tree. Each set of leaves can be inter-
preted as a formula, e.g. set of red leaves can be interpreted as
(¬U1 ∧ ¬U0) ∨ (¬U1 ∧ U0) ∨ (U1 ∧ U0).

Since two leaves in the set have the same parent node, we
can simplify the formula to

¬U1 ∨ (U1 ∧ U0)

in the above example. Formally, we have the following:
Definition 3.7. A decision tree is a binary rooted tree T in
which each inner node (i.e. not a leaf) u is labeled with a
splitting decision φu. For each leaf v we then define

χv :=
∧
{φu : u ∈ path(v)}

where path(v) is the path from the root to v and for each
leaf set M we define

χM :=
∨
{χv : v ∈M}.

When learning from data, we can obtain a decision tree by
iteratively partitioning the sample space. Given a feature
matrix U we choose a feature j such that each of the par-
titions {vi : Uij = 1} and {vi : Uij = 0} have maximal
homogeneity according to some measure, e.g. partitions
that minimize the variance of the numerical labels. If U
does not only contain binary but also numerical features, in
addition to the feature j we determine a threshold t such
that the homogeneity of {vi : Uij ≤ t} and {vi : Uij > t}
is maximal. This process is then recursively repeated for
each partition until a stopping criterion is met.
Example 3.8. Let us forget for a moment the graph struc-
ture from Example 3.2 and consider just the feature matrix
U , consisting of four samples v0, v1, v2, v3, as well as the
following target values Y :

U =

0 1
1 0
0 0
1 1

 Y =

0.2
0.8
0.9
0.1

Given our features U0 and U1, there are two possible splits,
splitting on U0 gives us the partition containing the sets
{v0, v2} and {v1, v3}, corresponding to U0 being true and
false respectively. While splitting on U1 gives us a partition
containing the sets {v1, v2} and {v0, v3}, corresponding to
U1 being true and false respectively. Note that when split-
ting to minimize the variance of the Y values within each
partition, U1 constitutes the preferable splitting criterion.

4

Logical Distillation of Graph Neural Networks

4. Iterated Decision Trees
In this section, we introduce the formal structure of our
distillation model – the Iterated Decision Tree (IDT). IDTs
consist of a sequence of decision trees. Each leaf set of a
decision tree layer in an IDT represents an EMLC formula
with a free variable. Each subsequent decision tree layer
adds a modal parameter or a new Boolean combination of
leaf sets of the previous layer. Hence, a k layer IDT can
represent an EMLC formula with up to k nested model
parameters. In the following we formally define a single
IDT layer.

Definition 4.1. An iterated decision tree layer L consists of

• a decision tree T with splitting decisions of the form
Sφ > n where S is a modal parameter, and n ∈ N,

• and a set of leaf sets {Mj}j∈[l] of T .

Example 4.2. Consider the following iterated decision tree
layer

AU1 > 0

M0,M2

False

AU1 > 1

M3

False

M1,M2

True

True

where at each leaf the respective sets that contain it are
indicated. That is, the left leaf appears in the leaf set M0

and M2, the middle leaf in only the leaf set M3, and the
right leaf in the leaf setsM1 andM2. The resulting formulas
according to Definition 3.7 are then as follows:

χM0
⇐⇒¬(AU1 > 0)

χM1
⇐⇒ (AU1 > 0) ∧ (AU1 > 1)

χM2
⇐⇒¬(AU1 > 0) ∨ ((AU1 > 0) ∧ (AU1 > 1))

χM3
⇐⇒¬(AU1 > 0) ∧ ¬(AU1 > 1)

They simplify as follows:

χM0 ⇐⇒ (AU1 = 0)

χM1 ⇐⇒ (AU1 > 1)

χM2 ⇐⇒¬(AU1 = 1)

χM3 ⇐⇒ (AU1 = 1)

Definition 4.3. A sequence of k iterated decision tree layers
{Li}i∈[k] is an iterated decision tree if for every i ∈ [k] and
splitting decision Sφ > n occurring in Li, φ is of depth 0
or φ⇔ χM for some leaf set M of Ll for l < i. We write
M i

j for the j-th leaf set of Li and χi
j for χMi

j
.

Hence, the lth IDT-layer represents EMLC formulas with
one free variable and depth of up to l. Every subsequent
layer can add one additional modal parameter to the formu-
las represented by previous IDT layers and can also create
Boolean combinations of these new formulas.

Example 4.4. Consider an iterated decision tree consisting
of two layers, the first layer as in Example 4.2. Now we
can add a second layer that checks if there is more than one
neighbor for which χM2

= χM0
2

is true.

AχM0
2
> 1

False

M1
0

True

It has a single leaf set M1
0 containing only the right leaf.

Then

χ1
0 ⇐⇒A(¬(AU1 = 1)) > 1

Hence the combined formula labels any node one that has
more than one neighbor w such that w does not have exactly
one neighbor satisfying the node attribute U1.

We now show that any EMLC formula can be expressed as
an iterated decision trees.

Lemma 4.5. Given a finite set of EMLC formulas {ψi}i∈[l]

of depth at most k > 0 there is an iterated decision tree with
k layers such that χk−1

i is equivalent to ψi.

A proof can be found in appendix A. The converse of
Lemma 4.5 holds by definition. Hence, we have the follow-
ing theorem.

Theorem 4.6. For every EMLC formula ψ of depth k > 0
there is an iterated decision tree with k layers such that χk

0

is equivalent to ψ. Conversely, for every iterated decision
tree with k > 0 layers and associated formula χk−1

j , there
is an equivalent EMLC formula ψ of depth k.

5. Learning Iterated Decision Trees
We now show how an iterated decision tree (IDT) can be
learned from a given GNN. We are given a set of attributed
graphs G and a l layer GNN learned on G, using the true la-
bels of G. We useX (k) to denote the set of all node represen-
tations, for all the graphs in G, computed after k iterations
of the GNN (see Equation (1)). Note that X (0) are simply
the original node attribute matrices of all the graphs in G.
We define X (l+1) as the graph labels returned by the GNN.
Finally, let XGNN = {X (k) | k ∈ [l + 1]}. Algorithm 1 as-
sumes that a function LearnIDTLayer(G,U ,X (k+1)) is able
to learn an iterated decision tree layer given a set of graphs
G, a set U containing node attribute matrices for each graph

5

Logical Distillation of Graph Neural Networks

in G, and the labels X (l+1). The function LeafSets accepts
an IDT layer and returns its set of leaf sets {Mj}j∈[l] (see
Definition 4.1). We discuss the subroutine LearnIDTLayer
in Section 5.1.

Algorithm 1 Learning Procedure for Iterated Decision Trees
1: procedure LEARNIDT(G,XGNN)
2: IDT← ∅
3: U ← X (0)

4: for k ∈ [l + 1] do
5: L← LearnIDTLayer(G,U ,X (k+1))
6: for M ∈ LeafSets(L) do
7: U ← Append(U ,FeatureVector(G, χM))
8: end for
9: IDT← Append(IDT, L)

10: end for
11: return IDT
12: end procedure

In Algorithm 1, we initialize an empty IDT and the set U
with the original node attribute matrices. Each iteration of
the main loop (Line 4–10) computes a new IDT layer L (
Line 5), using the graphs G with updated node-attribute ma-
trices U , and target labels X (k+1) obtained from the GNN.
Each leaf setM identified by LeafSets (Line 6) corresponds
to a disjunction of conjunctions χM (cf. Definition 3.7). We
evaluate χM for every node in G and add an explicit feature
vector to the node attribute matrices in U (Line 7). The new
set of node-attribute matrices U is then used as the node
attributes matrix in the subsequent loop iteration.
Example 5.1. Recall the graph from Example 3.2. Assume
that G consists of only this graph and graph label. Sup-
pose that LearnIDTLayer(G,U ,X0) yields the IDT layer
shown in Example 4.2. Then we extend the node at-
tributes with binary vectors representing χM for each leaf
set M ∈ {M0,M1,M2,M3}. For M0 we add

(AU1 = 0) = (A(1 0 0 1)T = 0)

= ((0 2 1 0)T = 0)

= (1 0 0 1)T

For M1,M2,M3 we add

(AU1 > 1) = (0 1 0 0)T

¬(AU1 = 1) = (1 1 0 1)T

(AU1 = 1) = (0 0 1 0)T

respectively. The result is an extended node attribute matrix

U =

0 1 1 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
1 1 1 0 1 0

which is then used for learning the next IDT layer.

5.1. Learning Iterated Decision Tree Layers

We will now describe the procedure LearnIDTLayer. It con-
sists of two subprocedures, learning the underlying decision
tree and choosing the leaf sets.

5.1.1. OBTAINING THE DECISION TREE

Given a set of graphs G, a set of node attribute matrices U
and node representations X (k+1), we organize them into a
table as illustrated in Figure 2:

• There is a row for each node in the dataset.

• For each modal parameter S and considered feature Uj ,
there is one column labeled SUj . Additionally, there
is a final column for the GNN node representations
X (k+1).

• The entry at the intersection of the row associated with
a vertex v and the column labelled with SUj contains
the number of nodes w ∈ εS(v) such that Uj(w) holds.

• The entries in the final column are the node representa-
tions X (k+1) which are prediction targets for learning
the decision tree.

We can learn a decision tree from this data using conven-
tional decision tree learning algorithms such as Pedregosa
et al. (2011). Note that splitting on the first column associ-
ated with modal parameter S and feature Uj with threshold
n corresponds to splitting on the EMLC formula SUj > n.

5.1.2. OBTAINING THE LEAF SETS

Finally, to obtain an IDT layer, we need to determine the leaf
sets. If we consider all 2k possible sets of leaves, this leads
to an explosion of the number of node attributes. We have
observed that most formulas obtained in this manner are
also not used in the subsequent layers. Hence, we propose a
heuristic:

Since the decision tree was learned with numeric prediction
targets, each leaf of the decision tree is associated with a nu-
meric prediction. We group leaves with similar predictions
since they are represented similarly by the GNN. To this
end, we perform agglomerative, hierarchical clustering (Gan
et al., 2007). We start with all leaf sets containing a single
leaf. Then we iteratively merge the pair of leaf sets with
the closest numerical values until one set remains. This
approach yields 2k − 1 instead of 2k leaf sets.

Our approach allows us to go from the formulas associated
with singleton leaf sets to formulas associated with larger
leaf sets, and finally the formula associated with the set
of all leaves, i.e. ⊤ which is always true. Adding ⊤ as a
feature allows representing the degree of a node in the next
layer, since (G, v) |= A⊤ > n if and only if dv > n.

6

Logical Distillation of Graph Neural Networks

IU0 AU0 · · · X (k+1)

v0 · · · 0 4 · · · (0.32, . . . , 0.82)T

v1 · · · 1 1 · · · (0.92, . . . , 0.12)T

...
...

...
...

vn · · · 0 2 · · · (0.24, . . . , 0.55)T

Figure 2. Schematic representation of the data table.

5.2. Practical Considerations

We have made a number of choices to arrive at a practical
implementation of our proposed algorithm.

1. For all but the final iterated decision tree layer, we
consider only the modal parameters I, A, I+A, which
correspond to modal parameters quantifying only on
the local neighborhood. As the aggregation opera-
tion of the GNN does not have access to features of
non-neighbors, local quantification captures operations
performed by real-world GNNs. Limiting ourselves
to these modal parameters did not make a notable dif-
ference in the model performance and significantly
reduced the computational cost.

2. For the final iterated decision tree layer, we only con-
sider the modal parameter 1, corresponding to sum
pooling.

3. We limit the depth of all but the final iterated decision
tree layers to two to enhance interpretability. How-
ever, for the final IDT layer, we don’t limit the depth
but instead perform minimal cost complexity prun-
ing (Breiman et al., 1984).

4. Instead of a single decision tree, we train multiple
decision trees with a randomized subset of the features
at each layer and add the formulas corresponding to
each of their leaf sets. Empirically, this leads to better
generalization.

6. Relative Modal Parameters
In GNN architectures, such as the GCN, the aggregation
is normalized by the degree of the node. However, this
normalization is not expressible in EMLC and can, as such,
not be captured by the defined iterated decision tree. We
argue that a property like “more than half of the neighbors of
v satisfy U0” should be expressible in our model. Therefore,
we propose the following extension of EMLC:
Definition 6.1. An EMLC% formula is defined by the
following grammar:

φ ::= Uj | ⊤ | φ ∧ φ | φ ∨ φ | ¬φ | Sφ > n | Sφ > p

where S ranges over modal parameters (cf. Definition 3.4),
n over N and p over the open interval (0, 1). The se-

mantics of the first six cases agree with EMLC, while
(G, v) |= Sφ > p holds if and only if there are more than
p · |εS(v)| vertices w ∈ εS(v) such that (G,w) |= Sφ.
Note that we can always distinguish between Sφ > n and
Sφ > p , since n and p range over disjoint sets.

Example 6.2. Using the semantics defined in Definition 6.1,
the formula

1U0 > 0.5

holds if more than half the nodes in G satisfy U0.

Theorem 6.3. EMLC% is more expressive than EMLC.

Proof. Using Theorem 3.6 we have that every EMLC for-
mula is equivalent to a C2 formula. Furthermore, every C2

formula can be captured in first-order logic (Grohe, 2021).
We will now show that there is an EMLC% formula that
can not be expressed in first-order logic. Our proof relies on
zero-one laws on images as proved in Coupier et al. (2004).

Consider graphs with only one unary node attribute U0.
Assume for each node v that U(v) is true with a probability
0.5. Define φ := IU0 > 0.5. The probability of φ holding
in a graph converges to exactly 0.5 as the graph cardinality
grows. Hence, φ does not obey a zero-one law. Therefore,
φ is not definable in first-order logic.

The following result transfers from Barceló et al. (2020,
Theorem 5.2) by adapting case 4 of their proof to relative
modal parameters, which can be easily done by adding
comparisons of the form Sφ > p:

Theorem 6.4. EMLC% formulas can be computed by
GNNs.

However, the property of a node having more red than blue
neighbors is still not expressible in EMLC%. Whereas,
this property can be computed by a GNN (Grohe, 2023).
This puts the expressivity of EMLC% strictly between the
expressivity of C2 and GNNs.

It is straightforward to extend IDTs to EMCL% since the
computational difference is a single division operation.

7. Experiments
We have implemented IDTs and briefly highlight our empir-
ical results. A detailed analysis of the experiments can be
found in Appendix B. Our code is available online.

We measure accuracy, F1-score, and fidelity of Graph Con-
volutional Networks (GCNs), Graph Isomorphism Networks
(GINs), and Iterative Decision Tree (IDT) variants on sev-
eral real world and synthetic datasets. IDTs achieve high
accuracy and F1-scores, outperforming both GCN and GIN
models in many cases. Further analysis of fidelity indicates
that the outputs of different GNNs are closer to each other

7

https://github.com/lexpk/LogicalDistillationOfGNNs

Logical Distillation of Graph Neural Networks

M0
0

1χ0
0 > 12

Class 1

False

Class 0

True

Layer 0

Layer 1

Figure 3. Distilled IDT for AIDS. At layer 0, we have just one leaf
set M0

0 containing only the tree root. Hence, the formula χ0
0 is

equivalent to ⊤. The rule derived for class 0 is thus 1⊤ > 12. It
expresses that the graph has more than 12 nodes.

AU0 > 2

AU0 > 1

M0
0

False

M1
0

True

False

M1
0

True
AU0 > 3

AU0 > 2

M1
0

False

M1
0

True

False

AU0 > 11

M1
0

False

M1
0

True

True

1χ1
0 > 0.312

Class 1

False

1χ0
0 > 14

Class 1

False

Class 0

True

True

Layer 0

Layer 1

Figure 4. Distilled IDT for BAMultiShapes. χ0
0 ⇔ AU0 < 2 and

χ1
0 ⇔ (AU0 > 2) ∧ (AU0 < 12). The rule derived for class 0 is

(1((AU0 > 2)∧ (AU0 < 12)) > 0.312)∧ (1(AU0 < 2) > 14).
It expresses that for more than 31.2% of nodes their degree dv
satisfies 2 < dv < 12 and for more than 14 nodes dv < 2.

than the outputs of a GNN and its corresponding IDT, in-
dicating that IDTs function differently from GNNs. This
is further supported by the superior performance of IDTs
on synthetic datasets where the ground truth is an EMLC%
formula.

A qualitative evaluation of the IDTs demonstrates their in-
terpretability. The IDT for the AIDS dataset, shown in
Figure 3, simplifies the decision-making process to a rule
based on the number of nodes in a graph. If a graph has
more than twelve nodes, it is assigned to Class 0. Similarly,
the IDT for the BAMultiShapes dataset, shown in Figure 4
effectively uses degree-based features to classify graphs. If
at least 31.2% of all nodes in a graph have degree between
three and eleven and at least fifteen nodes have degree zero
or one, a graph is assigned to Class 0. This showcases the
model’s ability to derive meaningful, simple decision rules.

8. Conclusion
We have presented Iterated Decision Trees (IDTs), a novel
model tailored towards distilling interpretable logical formu-
las from Graph Neural Networks (GNNs). IDTs can express
any logical formula expressible in first order logic with two
variables and counting quantifiers (C2) — a fragment of
first-order logic that is closely connected to the logical ex-
pressivity of GNNs. We have also introduced an extension
of C2 that captures operations commonly used in GNNs.
This extension was easily incorporated into IDTs without
any significant computational overhead. The distilled IDTs
often surpass the accuracy of the underlying GNN while
providing insight into the decision process. They also out-
perform the considered GNNs when the ground truth is
itself a logical formula. The classification decisions of the
IDT are interpretable and enable us to extract insights on
multiple datasets.

In this work, we have applied IDTs only to simple undi-
rected graphs. Loops and multi-edges, however, can be
incorporated into our model by allowing entries on the diag-
onal of the adjacency matrix A and allowing integer entries
respectively. Generalizing to directed graphs is also possible.
In this case the adjacency matrix is no longer symmetric, so
the modal parameter A only represents out-neighbors. Thus,
we need to introduce a new modal parameterAT to represent
in-neighbors and its combinations with the other modal pa-
rameters. Extending the proposed method to multi-relational
graphs and edge labels would require further changes, which
we will consider in future work.

While our approach has allowed us insights into the AIDS
and BAMultiShapes datasets, we found it more difficult
to extract meaningful explanations for other datasets. We
plan to further analyze the obtained explanations and apply
regularization techniques in order to obtain more human-
readable explanations. As IDTs perform reasonably even
without GNNs, we also look forward to further assessing
the merit of IDTs as an independent architecture.

Acknowledgments
This work was funded in part by the Vienna Science and
Technology Fund (WWTF), project StruDL (ICT22-059);
by the Austrian Science Fund (FWF), project NanOX-ML
(6728); and by the by the European Unions Horizon Europe
Doctoral Network programme under the Marie-Skłodowska-
Curie grant, project Training Alliance for Computational
systems chemistry (101072930).

References
Azzolin, S., Longa, A., Barbiero, P., Liò, P., and Passerini,

A. Global explainability of gnns via logic combination of

8

Logical Distillation of Graph Neural Networks

learned concepts. In International Conference on Learn-
ing Representations, (ICLR), 2023.

Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reut-
ter, J. L., and Silva, J. P. The logical expressiveness of
graph neural networks. In International Conference on
Learning Representations, (ICLR), 2020.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan,
S., Smola, A. J., and Kriegel, H.-P. Protein function
prediction via graph kernels. Bioinformatics, 21(1):47–
56, 2005.

Boz, O. Extracting decision trees from trained neural net-
works. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 2002.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.
Classification and Regression Trees. Wadsworth, 1984.
ISBN 0-534-98053-8.

Cai, J., Fürer, M., and Immerman, N. An optimal lower
bound on the number of variables for graph identifica-
tion. In Symposium on Foundations of Computer Science
(FOCS), 1989.

Cai, T., Luo, S., Xu, K., He, D., Liu, T.-y., and Wang, L.
Graphnorm: A principled approach to accelerating graph
neural network training. In International Conference on
Machine Learning (ICML), 2021.

Coupier, D., Desolneux, A., and Ycart, B. A zero-one law
for first-order logic on random images. In Mathematics
and Computer Science III: Algorithms, Trees, Combina-
torics and Probabilities, pp. 495–505. Springer, 2004.

Craven, M. W. and Shavlik, J. W. Extracting tree-structured
representations of trained networks. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 1995.

Dancey, D., McLean, D., and Bandar, Z. Decision tree ex-
traction from trained neural networks. In International
Florida Artificial Intelligence Research Society Confer-
ence, 2004.

Gan, G., Ma, C., and Wu, J. Data clustering: theory, algo-
rithms, and applications. SIAM, 2007.

Grohe, M. The logic of graph neural networks. In Sympo-
sium on Logic in Computer Science (LICS), 2021.

Grohe, M. The descriptive complexity of graph neural
networks. In Symposium on Logic in Computer Science
(LICS), 2023.

Howson, C. Logic with trees: an introduction to symbolic
logic. Routledge, 2005.

Kipf, T. and Welling, M. Semi-supervised classification
with graph convolutional networks. In International Con-
ference on Learning Representations (ICLR), 2017.

Kontschieder, P., Fiterau, M., Criminisi, A., and Bulò, S. R.
Deep neural decision forests. In International Joint Con-
ference on Artificial Intelligence, (IJCAI), 2016.

Krishnan, R., Sivakumar, G., and Bhattacharya, P. Extract-
ing decision trees from trained neural networks. Pattern
Recognition, 32(12):1999–2009, 1999.

Longa, A., Azzolin, S., Santin, G., Cencetti, G., Liò, P.,
Lepri, B., and Passerini, A. Explaining the explainers
in graph neural networks: a comparative study. arXiv,
2210.15304, 2022.

Lutz, C., Sattler, U., and Wolter, F. Modal logic and the
two-variable fragment. In International Workshop on
Computer Science Logic (CSL), 2001.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P.,
and Neumann, M. Tudataset: A collection of benchmark
datasets for learning with graphs. In Workshop on Graph
Representation Learning and Beyond (GRL+), 2020.

Müller, P., Faber, L., Martinkus, K., and Wattenhofer, R.
GraphChef: Decision-tree recipes to explain graph neu-
ral networks. In International Conference on Learning
Representations (ICLR), 2024.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Riesen, K. and Bunke, H. IAM graph database repository
for graph based pattern recognition and machine learning.
In International Workshop on Structural, Syntactic, and
Statistical Pattern Recognition, 2008.

Schaaf, N., Huber, M. F., and Maucher, J. Enhancing
decision tree based interpretation of deep neural net-
works through L1-orthogonal regularization. In Inter-
national Conference On Machine Learning And Applica-
tions (ICMLA), 2019.

Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi,
D., and Giannotti, F. GLocalX - from local to global ex-
planations of black box AI models. Artificial Intelligence,
294:103457, 2021.

Sutherland, J. J., O’brien, L. A., and Weaver, D. F. Spline-
fitting with a genetic algorithm: A method for developing
classification structure- activity relationships. Journal
of chemical information and computer sciences, 43(6):
1906–1915, 2003.

9

Logical Distillation of Graph Neural Networks

Wu, M., Hughes, M. C., Parbhoo, S., Zazzi, M., Roth, V.,
and Doshi-Velez, F. Beyond sparsity: Tree regularization
of deep models for interpretability. In AAAI Conference
on Artificial Intelligence (AAAI), 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations (ICLR), 2019.

Yang, Y., Morillo, I. G., and Hospedales, T. M. Deep neural
decision trees. arXiv, 1806.06988, 2018.

Yuan, H., Tang, J., Hu, X., and Ji, S. Xgnn: Towards
model-level explanations of graph neural networks. In
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2020.

A. Proof of Lemma 4.5
Let us first recall the claim:

Lemma 4.5. Given a finite set of EMLC formulas {ψi}i∈[l]

of depth at most k > 0 there is an iterated decision tree with
k layers such that χk−1

i is equivalent to ψi.

Before we prove it, we show the following auxiliary result:

Lemma A.2. Let Φ = {φj}j∈[h] be a finite set of formulas.
There is a decision tree with splitting decisions in Φ such
that for every Boolean combination ψ of formulas in Φ there
is a leaf set M such that χM ⇔ ψ.

Proof. Let T be the complete binary tree of depth h such
that each node of depth j is labeled with the splitting deci-
sion φj . Observe that for each conjunction c of the form
l0 ∧ · · · ∧ lh−1 where lj is ¬φj or φj there exists a leaf t in
T such that χt = c.

Suppose ψ is a Boolean combination of the φj . By the
Disjunctive Normal Form Theorem (Howson, 2005) there
is a set C of conjunctions of the form l0 ∧ · · · ∧ lh−1 where
lj is ¬φj or φj such that

ψ ⇔
∨
C.

The claim then follows by Definition 3.7.

Proof of Lemma 4.5. Note that Iφ > 0 is equivalent to φ
for any formula φ. Therefore, we can rewrite any formula
of depth i as a formula of depth j for any j ≥ i. Thus,
we can view any formula ψ of depth k > 0 as a Boolean
combination of formulas of the form Sφ > n, where S is
a modal parameter and φ is of depth k − 1. For instance,
consider the following formula of depth 2:

(1(AU0 = 0) > 2) ∧ (AU1 = 1) ∧ U0.

We can rewrite it to the equivalent formula

(1(AU0 = 0) > 2)∧(I(AU1 = 1) > 0)∧(I(IU0 > 0) > 0).

We proceed by induction on the maximal depth of the for-
mulas in {ψi}i∈[l], i.e., k.

Suppose k = 1. That is, each formula ψi is of depth at
most 1. As explained earlier, we can always add the modal
parameter I to get a formula of depth 1 from a formula of
depth zero. Hence, we may assume that there are formulas
{φj}j∈[h] such that

• each φj is of the form Sφ > n where φ has depth 0

• and each ψi is a Boolean combination of a subset of
{φj}j∈[h].

By Lemma A.2 there is an IDT Layer L0 with splitting
decisions in {φj}j∈[l] and leaf sets M0

0 . . .M
0
l such that

ψi ⇔ χ0
i for i ∈ [l]. Thus L0 gives us the desired 1-layer

IDT.

Now suppose the claim holds for a given k and the depth
of each ψi is bounded by k + 1. Again, we may assume
a set of formulas {φj}j∈[h] such that each ψi is a Boolean
combination of a subset of these formulas and each φj is
of the form Sφ > n where φ has depth k. Applying the
induction hypothesis, there is an IDT L0 . . . Lk−1 with k
layers and leaf sets Mk−1

0 . . .Mk−1
h such that φj ⇔ χk−1

0 .
Lemma A.2 gives us a decision tree with splitting decisions
in {φj}j∈[h] and leaf sets Mk

0 . . .M
k
l such that χk

i ⇔ ψi.
Thus L0 . . . Lk is the desired IDT.

B. Extended Experiments
There are seven models we consider for experiments1:

• We evaluate two GNN architectures,
GCN+GraphNorm and GIN+GraphNorm as de-
scribed in Cai et al. (2021), simply called GCN and
GIN from here on. The number of layers, hidden
dimensions, and the learning rate are determined
experimentally.

• Two IDTs as described in Section 5. One leveraging
the GCN node representations, IDT(GCN), and the
other one leveraging the GIN node representations,
IDT(GIN).

• Two IDTs as above. However, the final layer of each
IDT is learned using the true labels of the dataset in-
stead of the GNN outputs, denoted as IDT(GCN+True)
and IDT(GIN+True). Using the true labels for the final
layer allows for increased accuracy while still leverag-
ing the information of the underlying GNN.

1Available at github.com/lexpk/LogicalDistillationOfGNNs.

10

https://github.com/lexpk/LogicalDistillationOfGNNs

Logical Distillation of Graph Neural Networks

Table 1. Accuracy of our proposed IDT method and of GNN models we distill from.

Test GCN GIN IDT IDT IDT IDT IDT
Accuracy (GCN) (GCN + True) (GIN) (GIN+True) (True)

AIDS 0.92± 0.02 0.92± 0.03 0.99± 0.01 1.00± 0.02 0.98± 0.01 1.00± 0.00 1.00± 0.00
BZR 0.81± 0.06 0.80± 0.08 0.79± 0.08 0.83± 0.06 0.80± 0.09 0.83± 0.06 0.81± 0.04

PROTEINS 0.72± 0.04 0.73± 0.04 0.73± 0.04 0.74± 0.03 0.73± 0.03 0.72± 0.02 0.71± 0.03
ψ0 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
ψ1 0.88± 0.02 0.88± 0.02 0.93± 0.02 0.97± 0.07 0.92± 0.04 0.95± 0.07 0.96± 0.04
ψ2 0.81± 0.02 0.82± 0.01 0.94± 0.01 0.96± 0.01 0.95± 0.01 0.94± 0.05 0.99± 0.03

BAMulti 0.99± 0.02 0.97± 0.03 1.00± 0.01 1.00± 0.00 0.99± 0.01 1.00± 0.00 1.00± 0.00

Table 2. F1-Score with macro aggregation.

F1-Score GCN GIN IDT IDT IDT IDT IDT
(macro) (GCN) (GCN + True) (GIN) (GIN+True) (True)
AIDS 0.88± 0.04 0.87± 0.03 0.98± 0.02 1.00± 0.00 0.97± 0.02 1.00± 0.00 1.00± 0.00
BZR 0.73± 0.07 0.72± 0.10 0.65± 0.12 0.63± 0.08 0.67± 0.13 0.64± 0.09 0.68± 0.05

PROTEINS 0.71± 0.04 0.72± 0.04 0.72± 0.04 0.73± 0.03 0.72± 0.04 0.70± 0.02 0.69± 0.04
ψ0 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
ψ1 0.86± 0.03 0.86± 0.02 0.92± 0.02 0.96± 0.09 0.91± 0.04 0.94± 0.09 0.95± 0.05
ψ2 0.80± 0.02 0.81± 0.01 0.94± 0.01 0.95± 0.01 0.94± 0.01 0.94± 0.05 0.99± 0.03

BAMulti 0.99± 0.02 0.97± 0.03 1.00± 0.01 1.00± 0.00 0.99± 0.01 1.00± 0.00 1.00± 0.01

Table 3. Fidelity with regard to the predictions of the GCN.

Fidelity GIN IDT IDT
(GCN) (GCN) (True)
AIDS 0.92± 0.02 0.92± 0.02 0.92± 0.02
BZR 0.90± 0.05 0.80± 0.06 0.79± 0.05

PROTEINS 0.90± 0.05 0.84± 0.04 0.80± 0.06
ψ0 1.00± 0.00 1.00± 0.00 1.00± 0.00
ψ1 0.94± 0.01 0.92± 0.01 0.85± 0.02
ψ2 0.86± 0.01 0.83± 0.02 0.81± 0.02

BAMulti 0.97± 0.02 0.99± 0.02 0.98± 0.02

Table 4. Fidelity with regard to the predictions of the GIN.

Fidelity GCN IDT IDT
(GIN) (GIN) (True)
AIDS 0.92± 0.02 0.91± 0.03 0.91± 0.02
BZR 0.90± 0.05 0.80± 0.07 0.77± 0.05

PROTEINS 0.90± 0.05 0.87± 0.03 0.80± 0.04
ψ0 1.00± 0.00 1.00± 0.00 1.00± 0.00
ψ1 0.94± 0.01 0.91± 0.03 0.85± 0.03
ψ2 0.86± 0.01 0.82± 0.02 0.82± 0.01

BAMulti 0.97± 0.02 0.97± 0.03 0.97± 0.03

• As a baseline we consider an IDT in which every layer
is learned with the true labels of the dataset. This model
operates purely on the data and is called IDT(True).

B.1. Datasets

Real world graph classification datasets are obtained from
the TU Dortmund collection (Morris et al., 2020). They are
commonly used in the GNN literature.

• AIDS (Riesen & Bunke, 2008) contains 2000 graphs
representing molecular compounds. The label repre-
sents activity against HIV.

• BZR (Sutherland et al., 2003) contains 405 graphs
representing ligands for the benzodiazepine receptor.
The label represents whether a threshold measuring
binding affinity is crossed.

• PROTEINS (Borgwardt et al., 2005) contains 1113
graphs representing proteins. The label represents
whether a given protein is an enzyme or not.

Synthetic datasets are based on EMLC. We generate 1000
Erdős-Rényi graphs with n = 13 and p = 0.5 and add two
node features. The feature U0 is always 1 and the feature U1

is 1 with probability 0.5 for each node. Then, we label the
graphs according to an EMLC% formula. The following
formulas of increasing complexity are considered:

• ψ0 := 1U1 > 0.5.
“More than half of the nodes satisfy U1.”

• ψ1 := 1((AU0 < 4) ∨ (AU0 > 9)) > 0.
“There is a node v such that dv < 4 or dv > 9.”

• ψ2 := 1(A(AU0 > 6) > 0.5) > 0.5
“For at least half the nodes at least half of their neigh-
bors have degree greater than 6”

BAMultiShapes (Azzolin et al., 2023) is a synthetic dataset
based on subgraph motifs. The samples are generated from
Barabási-Albert graphs. Each node has a feature U0 which
is always 1. To each graph, either nothing, a wheel graph, a

11

Logical Distillation of Graph Neural Networks

house graph, or a grid graph is attached with a single edge,
or a combination of these shapes. Class zero consists of all
graphs with exactly two such shapes added. Class one of
graphs with zero, one, or all three shapes added. Generally,
the existence of such shapes is not expressible in EMLC%.

B.2. Metrics

We report the mean and standard deviation over a 10-fold
cross-validation. The same splits are used for all models.
The training is inductive, i.e., the test set is completely
separated from the training process. We use three metrics
for evaluation:

• The accuracy of the model.

• Macro F1-score: The F1-score of each class is the
harmonic mean of precision and recall. These scores
are then averaged, resulting is a suitable metric for
more imbalanced datasets, such as AIDS.

• Fidelity with regard to each GNN. This is the pro-
portion of predictions where the model and the GNN
agree.

B.3. Quantitative Results

IDTs are able to match and beat the performance of the
GNNs. Table 1 shows that IDTs trained on GCN repre-
sentations and true labels consistently achieve the highest
accuracy, followed by IDTs trained on GIN representations
and true labels. This ranking remains the same under the
F1-score as shown in Table 2. While the performance ben-
efits are consistent, training on the true labels alone gives
only slightly worse results, suggesting that there could be
merit to IDTs as a stand-alone model.

Table 3 and Table 4 show the fidelity to the GCN and GIN
model, respectively. Using the GNN activations generally
results in IDT outputs which are closer to the GNN model,
than just using the training labels. However, the two GNNs
generally have larger fidelity between each other then when
compared to the IDTs. This suggests that the IDTs operate
in a fundamentally different way than GNNs. This point is
further reinforced by the fact that on synthetic datasets the
IDTs outperform both the GNNs.

B.4. Qualitative Results

We will now look at the interpretability of the distilled IDTs.
First, we discard all decision tree layers and node sets which
are not used for the final prediction. This procedure is
automated and results in an equivalent, more compact IDT.

B.4.1. AIDS

Figure 3 shows an IDT for the AIDS dataset. The IDT is
remarkably small. The decision tree in the first layer does
not have a split condition. HenceM0

0 = ⊤ and χ0
0 is true for

every node. The second layer, therefore, simply computes
if there are more than twelve nodes in the graph.

B.4.2. BAMULTISHAPES

Figure 4 shows one extracted IDT for the BAMultiShapes
dataset that achieves an accuracy of 1.0 on the test set. After
some calculation, we have

χ0
0 ⇐⇒AU0 < 2

χ1
0 ⇐⇒ (AU0 > 2) ∧ (AU0 < 12)

A graph is then classified as class 0, i.e., having exactly two
shapes, if

(1χ1
0 > 0.312) ∧ (1χ0

0 > 14)

is satisfied. Recall that U0 is true for all vertices in BAMulti-
Shapes. Hence, if at least 31.2% of all nodes in a graph have
degree between three and eleven and at least fifteen nodes
have degree zero or one, a graph is assigned to Class 0. Due
to the construction of the dataset, these observations about
the degree distribution correlate strongly with the label.

Other Datasets For the other real-world datasets BZR and
PROTEINS, the IDTs are more complex, often containing
more than 10 decision trees. Still, by carefully examining
the trees it is possible to deduce explainable logical infor-
mation which we leave for future work. For the synthetic
datasets labeled with EMLC formulas ψ0 and ψ1, we re-
cover the ground truth, i.e., an IDT equivalent to ψ0 and ψ1

respectively. For the deeper formula ψ2 we are not able to
recover the ground truth formula. The IDTs identify a more
complex formula that approximates ψ2.

12

