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Kurzfassung

Die Fähigkeit eines Materials, Wärme in elektrische Energie umzuwandeln, wird durch
die dimensionslose Größe ZT = S2σT/κ bestimmt. Dabei ist S der Seebeckkoeffizient,
σ die elektrische Leitfähigkeit, T die Temperatur und κ die Wärmeleitfähigkeit. Gu-
te thermoelektrische Materialien sollen daher einen hohen Seebeckkoeffizienten, eine
gute elektrische Leitfähigkeit sowie eine geringe Wärmeleitfähigkeit besitzen. Durch
die starke gegenseitige Abhängigkeit dieser Größen ist es schwierig, ZT -Werte über
eins zu erreichen, womit allerdings nur geringe Wirkungsgrade erreichbar sind. Fort-
schritte in der Nanofabrikation haben zu einem experimentellen Durchbruch bei na-
nostrukturierten, thermoelektrischen Bauelementen geführt. In dieser Arbeit wurden
die thermischen und thermoelektrischen Eigenschaften von Silizium- und Graphen-
basierten Nanostrukturen numerisch untersucht. Die berechneten Größen umfassen
den Seebeckkoeffizienten, die elektrische und die thermische Leitfähigkeit sowie den
ZT -Wert.

Im Fall der Graphen-basierten Nanostrukturen wurde die sogenannte “Force Con-
stant” Methode zur Berechnung der thermischen Eigenschaften verwendet, und die
“Tight-Binding” Methode zur Berechnung der elektronischen Eigenschaften. Es wur-
den sowohl die ballistischen als auch die diffusiven Transporteigenschaften unter-
sucht, wobei für erstere der Landauer-Formalismus und für letztere die Methode der
Nichtgleichgewichts-Greenschen Funktionen verwendet wurde. Für sogenannte “arm-
chair graphene nanoribbons” (AGNR) wurde der Übergang vom ballistischen zum
diffusiven Transportverhalten untersucht. Die Ergebnisse zeigen, dass in AGNR der
thermoelektrische Leistungsfaktor S2σ auf Grund des Beitrages des zweiten Leitungs-
bandes mit der Breite der nanoribbons zunimmt. Andererseits wird mit zunehmender
Breite die Bandlücke kleiner, wodurch der Seebeckkoeffizient und damit der Leistungs-
faktor abnimmt. Auf Grund dieses Zusammenhanges bleibt der ballistische ZT -Wert
mit 0.3 beschränkt. Unter Berücksichtigung der Kantenrauigkeit wird der Elektro-
nentransport deutlich stärker als der Phononentransport beeinträchtigt. Daher ist der
diffusive ZT -Wert von AGNR mit Kantenrauheit kleiner als der ballistische, und ZT
sinkt mit zunehmender Länge.

Im Falle von sogenannten “zigzag graphene nanoribbons” (ZGNR) konnte gezeigt wer-
den, dass positive Hintergrundladungen sowie Liniendefekte in Längsrichtung zu einer
Asymmetrie in der Modendichte um das Ferminiveau führen, wodurch der Seebeckkoef-
fizient verbessert wird. In Gegensatz zu AGNR wird in ZGNR durch die Kantenrauheit
die Phononenleitfähigkeit wesentlich stärker als die Elektronenleitfähigkeit reduziert.
Durch Liniendefekte und Kantenrauheit können ZGNR theoretisch ZT Werte um 4
erreichen.
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In Graphen, das in seiner ursprünglichen Form keine Bandlücke besitzt, kann durch
Strukturierung in ein sogenanntes “Antidot”-Gitter eine kleine Bandlücke erzeugt wer-
den. Wir zeigen, dass Größe und Umfang der Antidots sowie deren Abstand einen
großen Einfluss auf die thermischen Eigenschaften haben. Durch die geeignete Wahl
dieser Parameter kann die thermische Leitfähigkeit von Antidot-Gittern signifikant
reduziert und ein ZT Wert von etwa 0.3 erreicht werden.

Für Silizium-basierte Nanostrukturen wurde die sogenannte “Modified-Valence-Force-
Field” Methode zur Berechnung des Phononenspektrums verwendet. Es wurden Silizi-
um-Nanodrähte mit Durchmessern zwischen 1 und 10 nm sowie ultradünne Silizium-
Filme mit Dicken zwischen 1 und 16 nm untersucht. Unsere Resultate zeigen, dass
die Phononen-Gruppengeschwindigkeiten und damit die thermische Leitfähigkeit in
<110> Nanodrähten am höchsten und in <111> Nanodrähten am niedrigsten sind.

In ultradünnen Silizium-Filmen ist der ballistische thermische Leitwert anisotrop. Für
die Kombination {110}/<110> aus Oberflächenorientierung und Transportrichtung
finden wir den höchsten Leitwert, für {112}/<111> den niedrigsten. Das Verhältnis ist
ungefähr zwei. <111> Nanodrähte sowie {112}/<111> Filme sind somit am geeignets-
ten für thermoelektrische Bauelemente vom Standpunkt der thermischen Leitfähigkeit.
Die Effekte von Streuprozessen wie etwa der Phonon-Phonon-Streuung und der Ober-
flächenrauigkeits-Streuung wurden mit Hilfe der Boltzmanntransportgleichung für Pho-
nonen untersucht. Ein bemerkenswertes Ergebnis ist dass die thermische Leitfähigkeit
von quasi-eindimensionalen Nanodrähten mit abnehmendem Durchmesser divergiert.
Der Grund liegt darin, dass bei verschwindenedr Energie die Zustandsdichte und so-
mit die Phononen-Transmissionsfunktion in ultraschmalen Nanodrähten einen endli-
chen Wert annimmt, während sie in Bulkmaterialien den Wert Null annimmt. Da-
durch steigt der Beitrag von Phononen mit großen Wellenlängen zur Wärmeleitung
beträchtlich an.

Bei einer gegebenen Oberflächenrauigkeit erfahren Phononen in ultradünnen Nan-
odrähten häufiger eine Spiegelreflexion an der Oberfläche und seltener eine diffusive
Streuung. Mit zunehmendem Durchmesser ändert sich dieses Verhältnis in Richtung
Zunahme der diffusiven Streuprozesse. Dies resultiert in einen markanten, anomalen
Anstieg der thermischen Leitfähigkeit bei Durchmessern unter 5 nm. Mit der berech-
neten thermischen Leitfähigkeit und Abschätzungen für den Leistungsfaktor S2σ von
ultraschmalen Nanodrähten aus der Literatur kann der ZT -Wert bei 300 K im bes-
ten Falle mit 0.75 abgeschätzt werden. Dieser für Silizium relativ hohe Werte wird
hauptpsächlich durch eine signifikante Reduktion der Wärmeleitfähigkeit durch Ober-
flächenstreuung der Phononen erreicht. Im Falle vollständig diffusiver Oberflächen
wären ZT -Werte für n- und p-dotierte Nanodrähte von über eins erreichbar.
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Abstract

The ability of a material to convert heat into electricity is measured by the dimension-
less thermoelectric figure of merit ZT = S2σT/κ, where S is the Seebeck coefficient, σ
the electrical conductivity, T the temperature, and κ the thermal conductivity. Good
thermoelectric materials should simultaneously have a high Seebeck coefficient, a high
electrical conductivity, and a low thermal conductivity. Due to the strong interconnec-
tion between the parameters that control ZT , it has been traditionally proved difficult
to achieve values above unity, which translates to low conversion efficiencies. Recent
advancements in nanofabrication, however, have led to breakthrough experiments on
nanostructured thermoelectric devices. In this thesis, the thermal and thermoelectric
properties of silicon- and graphene-based nanostructures are numerically investigated.
The Seebeck coefficient, electrical conductivity, and thermal conductivity in nanos-
tructures are computed, and the thermoelectric figure of merit is extracted.

For graphene-based nanostructures, we employ the force constant method for the cal-
culations of the phononic properties, and the tight-binding model for the electronic
properties. Both ballistic and diffusive transport regimes are considered employing
the Landauer approach and the non-equilibrium Greens function technique, respec-
tively. The ballistic to diffusive crossover of the thermoelectric properties of graphene
nanoribbons with armchair edges has been studied. Our results indicate that in arm-
chair graphene nanoribbons the power factor S2σ increases with the width due to
the contribution of the second conduction subband. However, the small band-gap
of wide ribbons degrades the Seebeck coefficient which results in a low power factor.
Including the high thermal conductance of graphene, we show that the ballistic ZT
value remains below 0.3. The introduction of edge roughness degrades the transport
of electrons much more than that of phonons. The diffusive ZT values of armchair rib-
bons, therefore, are smaller than the ballistic ones, and the thermoelectric performance
decreases with increasing the channel length. On the other hand, by introducing or-
dered antidots, the zero band-gap graphene can be converted into a narrow band-gap
semiconductor. We show that the size and the circumference of the antidots, and
the distance between them can strongly influence the thermal properties of graphene
antidot lattices. By appropriate selection of the antidot parameters, the thermal con-
ductance can be significantly reduced and ZT ≈ 0.3 achieved. In the case of zigzag
graphene ribbons, positively charged substrate background impurities and extended
line defects in the length direction of the nanoribbon create an asymmetry in the
density of modes around the Fermi level, which improves the Seebeck coefficient. In
contrast to armchair ribbons, here, the introduction of edge roughness degrades the
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phonon thermal conductivity much more than the electronic thermal conductivity. In
zigzag graphene nanoribbons these effects can theoretically result in large ZT values
of around 4.

For silicon-based nanostructures, we employ atomistic calculations of the phonon
modes using the modified-valence-force-field method. We consider ultra-narrow sil-
icon nanowires of side sizes of 1 to 10 nm as well as ultra-thin silicon layers of thick-
nesses between 1 and 16 nm. Our results indicate that <110> nanowires have the
highest phonon group velocity and thermal conductance, whereas <111> nanowires
have the lowest. We also find that the ballistic thermal conductance in the thin
layers is anisotropic, with the {110}/<110> channels exhibiting the highest and the
{112}/<111> channels the lowest thermal conductance with a ratio of about two. The
<111> nanowires and {112}/<111> thin layers are thus the most suitable channels for
thermoelectric devices in terms of the thermal conductance. The effects of scattering
mechanisms, such as phonon-phonon scattering and surface roughness scattering are
investigated employing the Boltzmann transport equation for phonons. The thermal
conductivity of quasi-1D nanowires diverges as the diameter is reduced. We attribute
this to the fact that in ultra-narrow nanowires the density-of-states and the trans-
mission function of long-wavelength phonons acquires a finite value, as compared to
zero in the bulk materials, which increases their importance in carrying heat. At the
same roughness conditions, boundary scattering is more specular for the ultra-narrow
nanowires, and becomes more diffusive as the diameter is increased. This results in
a striking anomalous increase in the thermal conductivity as the diameter is reduced
below 5 nm. Taking the electronic power factor of ultra-narrow silicon nanowires from
literatures, we show that in the best case the ZT value at 300 K is around 0.75.
The largest contribution towards achieving this relatively high value is attributed to
the significant reduction in the thermal conductivity due to boundary scattering of
phonons. In the case of fully diffusive boundaries, the ZT values can increase above
unity for both n-type and p-type nanowires.
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1 Introduction

The second law of thermodynamics indicates that in any energy conversion process
there is some waste heat the amount of which depends on the efficiency of the ther-
modynamic engine. The efficiency of typical heat engines is around 40%. In other
words, nearly 60% of the energy is wasted in the form of heat [1]. Thermoelectric
generators are solid state devices that can be used to convert part of this waste heat
into useful electrical energy. Thermoelectricity is currently obtaining large interest,
especially from the automobile industry. For example, the BMW car-manufacturer
is planning to use a 1 kW thermoelectric generator at the exhaust pipes of its cars
for fuel saving (see Fig. 1.1). This interest in thermoelectricity is due to the fact
that currently about 60% of the energy in automobiles is wasted as heat, one third of
which is through the exhaust pipe [1]. Other than energy harvesting, thermoelectric
devices can also be used in a very wide range of applications including solid state
refrigeration, semiconductor lasers, aerospace applications, and military applications.
However, thermoelectric devices have not yet been used in large scale applications be-
cause of their limited efficiency, high costs and material availability. In this chapter, we
introduce the basic principles of thermoelectric phenomena and thermoelectric devices,
and the importance of using nanotechnologies in order to enhance their efficiency.

Figure 1.1: A 200 W thermoelectric generator is used in BMW’s automobile (The 31st
international and 10th European conference on thermoelectrics, July 9-12,
2012, Aalborg, Denmark).

1



1.1 Fundamentals of Thermoelectrics

Thermoelectric phenomena in materials can be described through three thermoelectric
effects, the Seebeck effect, the Peltier effect, and the Thomson effect. The Seebeck
effect, discovered in 1821 by Thomas Johann Seebeck [2], represents the generation
of an electromotive force by a temperature gradient. When a temperature gradient
is applied along a conductive material, charge carriers move from the hot to the cold
side. In the case of open-circuit, charge accumulation results in an electric potential
difference, as shown in Fig. 1.2. The Seebeck coefficient S of a material shows the
magnitude of the induced voltage in response to the temperature difference:

ΔV =

� TH

TC

S(T )dT (1.1)

where TC and TH are the temperatures of the cold and the hot side, respectively. The
Seebeck coefficient of a material is generally a function of temperature. However, if
the temperature difference ΔT = TH−TC is small enough, and the Seebeck coefficient
is nearly constant in the range of applied temperatures, one has:

S =
ΔV

ΔT

%%%%%
I=0

(1.2)

A single thermoelectric conductor, however, is not able to play the role of a battery.
This is due to the fact that the net loop voltage would be zero if circuit wires of the
same conductor were connected. A non-zero loop voltage can be obtained when two
dissimilar conductors are connected in the configuration shown in Fig. 1.3. The circuit
configuration of a thermoelectric generator is shown in Fig. 1.4-a. Here the generator
is composed of two materials, an n-type and a p-type material. The voltage obtained
from this configuration is:

ΔV = SpnΔT = (Sp − Sn)ΔT (1.3)

where Sp and Sn are the Seebeck coefficients of the p-type and n-type materials, re-
spectively, and Spn is the Seebeck coefficient of the device (junction). The Seebeck
coefficient of a p-type material is positive, that of an n-type material negative. There-
fore, using this configuration one can achieve a high net voltage.

The Peltier effect, on the other hand, discovered by Athanaseal Jean Charles Peltier
in 1834, describes how an electrical current can create a heat flow. This effect has
enabled the second application of thermoelectric devices, the thermoelectric cooler, as
shown in Fig. 1.4-b. Here, by applying an external power source, both the electrons of
the n-type conductor and the holes of the p-type conductor move and carry heat from
one side to the other. Therefore, one side cools down, whereas the other side heats

2
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Figure 1.2: Seebeck effect: Electric potential formation in response to the temperature
gradient applied along the open-circuit channel.
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Figure 1.3: Configuration of a thermoelectric generator composed of two dissimilar
materials.

up. The heat flow absorbed at the hot side is proportional to the current through the
junction:

Q̇ = ΠpnI = (Πp − Πn)I (1.4)

where, Πp, Πn, and Πpn are the Peltier coefficients of the p-type material, the n-type
material, and the device, respectively [3].

The Thomson effect, observed by William Thomson in 1851, expresses a relation
for heat production in a current-carrying conductor in the presence of temperature
gradient:

qH = ρJ2 − µJ
dT

dx
(1.5)

where qH is the heat production per volume, ρ the electrical resistivity, J the current
density, and µ the Thomson coefficient. Considering the second term in Eq. 1.5, the
conductor can either release or absorb the heat, depending on the direction of current
with respect to the temperature gradient.

According to the Thomson relations, these three thermoelectric coefficients are not
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Figure 1.4: Circuit configuration for (a) generator and (b) cooler applications.

independent. The Peltier coefficient and the Seebeck coefficient are linearly related to
each other [3]

Π = ST (1.6)

whereas the Thomson coefficient can be expressed as [3]:

µ = T
dS

dT
(1.7)

Therefore, the Seebeck coefficient as a function of temperature is enough for describing
all three thermoelectric phenomena. In Chapter 2, the computational method for
obtaining the Seebeck coefficient, as well as the calculation of the other transport
coefficients, is presented. It is, however, worth mentioning that one can only measure
the Seebeck coefficient for a pair (junction) of dissimilar materials, but not of an
individual conductor, whereas measurement of the Thomson coefficient is possible
even for individual materials.

1.2 Device Efficiency

The efficiency of thermoelectric devices in converting heat into the electricity is defined
as the ratio of “energy provided to the external load” to “heat energy absorbed at the
hot junction”. The maximum efficiency ηmax of the power generator is achieved when
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the external load is matched with the device resistance [3]:

ηmax =
TH − TC

TH

√
1 + ZTM − 1√
1 + ZTM + TC

TH

(1.8)

Here,

ZTM =
1

TH − TC

�
ZTdT (1.9)

is the average of the thermoelectric device figure of merit ZT defined as:

ZT =
(Sp − Sn)

2 T�√
ρnκn +

√
ρpκp

�2 (1.10)

where κn and κp are the thermal conductivities of n-type and p-type materials, re-
spectively.

The efficiency of a thermoelectric power generator, as any other heat engine, is less
than the Carnot engine efficiency:

ηCarnot =
TH − TC

TH

(1.11)

Indeed, the Carnot engine has the most efficient cycle for converting a given amount
of thermal energy into work. In addition to the temperature difference, ηmax is also
related to the average of ZT , which is related to the material properties of the n-
type and p-type materials used in the thermoelectric element. Figure 1.5 shows the
maximum efficiency of the thermoelectric generator as a function of TH for TC = 300 K
and different ZTM. The efficiency increases with ZTM and TH. For ZTM = 0.1, the
maximum efficiency is about 5%. The efficiency for high TH increases to ∼ 20% and
∼ 40% for ZTM = 1 and ZTM = 3, respectively. The efficiency of Carnot cycle is
plotted as well for comparison. We also note that the efficiency of some other common
energy convertors is as follows: 80%− 90% for hydro-electric technologies, 50%− 70%
for fuel cells, 40% − 50% for wind turbines, and 20% − 40% for tidal turbines [1].
As a result, an average figure of merit higher than 3 is required, in order to compete
with the rest of the commercial generators that are already in large-scale use in the
market [4].

The thermoelectric device figure of merit and the efficiency are related to the material
properties of the n-type and p-type semiconductors as well as the electrical and thermal
contact resistances. For simplicity, the thermoelectric material figure of merit:

ZT =
S2T

ρκ
(1.12)

can provide an approximation for the thermoelectric figure of merit. The Eq. 1.12
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can be alternatively written in terms of the electrical conductance G and thermal
conductance K as:

ZT =
S2GT

K
(1.13)

However, one should note that to achieve a high efficiency, it is necessary to have both
n- and p-type materials with high average ZT over a wide range of temperatures [1].

1.3 Thermoelectric Materials

Bismuth telluride Bi2Te3, a narrow bandgap semiconductor, is one of the most com-
monly used thermoelectric materials [5]. It has been shown that by adding antimony
telluride Sb2Te3 and bismuth selenide Bi2Se3 to Bi2Te3, it is possible to obtain a ZT
of around unity. In turn, it was shown that by alloying of Bi2Te3 with bismuth se-
lenide and antimony telluride, the thermal conductivity decreases, without significant
degradation of the electrical conductivity [3]. As mentioned in Sec. 1.2, working at
high temperature is advantageous for energy conversion efficiency. However, the al-
loys of bismuth telluride are not suitable at temperature higher than 400 K. Common
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thermoelectric materials for higher temperatures are lead telluride (PbTe) and silicon-
germanium alloys. These materials have ZT between 0.5 and 1.1, depending on the
temperature and the type of material (whether n-type or p-type) [3]. As a result, the
average efficiency of current thermoelectric generators is about 5% [6].

Good thermoelectric materials should simultaneously have a high Seebeck coefficient,
a high electrical conductivity, and a low thermal conductivity. While each property of
ZT can individually be changed by several orders of magnitude, the interdependence
and coupling between these properties in bulk materials have made it extremely dif-
ficult to increase ZT > 1. In the case of bulk materials, assuming the effective mass
approximation and Fermi-Dirac statistics, one can relate the Seebeck coefficient and
the electrical conductivity σ to the carrier concentration n as [6]:

S =
8π2k2

B

3eh2
m∗T

� π

3n

�2/3

(1.14)

and
σ = neµ (1.15)

where, kB is the Boltzmann constant, h the Planck constant, e the elementary charge,
m∗ the effective mass, and µ the carrier mobility. In addition, the Wiedemann-Franz
law relates the thermal conductivity of charge carriers to the electrical conductivity
by:

κe = LσT (1.16)

where L is the Lorenz number:

L =
π2

3

�
kB
e

�2

= 2.44× 10−8 V2/K2 (1.17)

The electrical conductivity is proportional to the carrier concentration, whereas the
Seebeck coefficient is inversely proportional to the carrier concentration. Therefore, if
one tries to increase ZT by increasing n and thus σ, one may lose the gain through
the reduction of S (and increase in κe). Figure 1.6 schematically shows that insula-
tors have high Seebeck coefficient and extremely low electrical conductivity, whereas
metals have high electrical conductivity and a low Seebeck coefficient [7]. Therefore,
in semiconducting materials a finite maximum of the thermoelectric power factor is
achieved. As a result, the most effective way to enhance the thermoelectric figure
of merit of bulk materials is to decrease the lattice contribution to the thermal con-
ductivity κl. However, thermal conductivity reduction, without decreasing the power
factor, was not possible for a long time (in all efforts up to the 1990s), and the ZT
values were limited to unity. This translates to low conversion efficiencies and limited
applications for thermoelectricity.
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Figure 1.6: Variation of the transport coefficients as a function of the carrier concen-
tration.

1.4 Nanostructured Materials for Thermoelectrics

In the last two decades thermoelectric devices received significant attention, mainly
due to the introduction of nanostructures with promising thermoelectric properties.
One of the first approaches was the phonon-glass-electron-crystal (PGEC) approach.
This means that one has to design nanostructured materials which simultaneously de-
crease the thermal conductivity and keep the carrier mobility unchanged [8]. Another
approach, suggested by Dresselhaus [9, 10], is related to the shape of the density of
states (DOS) of low-dimensional materials. It has been argued that sharp features in
the DOS(E) function of 1D and 2D conductors can result in a higher Seebeck coef-
ficient and higher thermoelectric performance. As shown in Fig. 1.7, the density of
states of 1D nanostructures has sharp features that could increase the Seebeck coef-
ficient. In a different work, it was pointed out that the best thermoelectric material
would be the one with a delta-function shape DOS(E) [11]. This ideal thermoelectric
material, however, benefits from the zero value for the electrical carrier contribution to
the thermal conductivity, which minimizes the dominator of ZT [11, 12]. Nanostruc-
tures could in addition offer several degrees of freedom for parameter optimization, i.e.
geometrical parameters such the diameter of nanowires and thickness of thin-layers,
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and provide the possibility of independently designing the quantities that control ZT .
The advancements in lithography and nanofabrication have recently led to the real-
ization of breakthrough experiments on nanostructured thermoelectric devices that
demonstrated enhanced performance, sometimes even up to 2 orders of magnitude
higher than the performance of corresponding bulk material, as shown in Fig. 1.8.

These experimental (and theoretical) studies utilize several forms of nanostructures,
such as bulk materials with nanocomposites, in-plane and out-plane transport super-
lattices, nanowires and nanoribbons, and 1D supperlattices. As mentioned in Sec. 1.3,
one of the first efforts to improve ZT of bulk materials was alloying Bi2Te3 [3, 13] to
decrease the lattice thermal conductivity, without significant reduction in the elec-
trical conductivity. Similar approaches have been recently followed by introducing
ErAs nanoparticles of 1−5 nm in diameter in InGaAs/AlAs structures [14,15]. These
nanopariticles effectively behave as scattering centers for phonons. In addition, they
provide charge carriers that improve the electrical conductivity.

Further improvement can be achieved in low dimensional materials. 2D supperlattices
have been studied for providing simultaneous enhancement of the thermoelectric power
factor, and reduction of thermal conductivity [4, 16]. In these structures, the power
factor could increase due to the quantum confinement, strain engineering, and the
sharp features of the 2D density of states. In addition, various scattering mechanisms
such as boundary scattering, interface scattering, and defects scattering decrease the
thermal conductivity. These mechanisms can even be stronger in 1D structures such
as nanowires and nanoribons, as their ratio of boundary surface to volume is higher.
To date, several studies have been performed on silicon nanowires [17], Si/Ge super-
lattice nanowires [18], and graphene nanoribbons [19]. However, the record high ZT
of about 2.4 was experimentally achieved for p-type Bi2Te3/Sb22Te3 superlattices (see
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Fig. 1.8) [16], which is composed of the best bulk thermoelectric materials.

1.5 Graphene- and Silicon-based Nanostructures

Bismuth and its compounds that are commonly used in thermoelectric applications [5]
suffer from high cost. In addition, tellurium compounds cannot be used in large-scale
applications due to rarity. Silicon, on the other hand, is the second most abundant
element on earth and has been used in large scale manufacturing processes. Silicon is
the most widely used material in semiconductor industry and its fabrication process
are optimized. Silicon crystallizes in a diamond structure with lattice constant of ac ∼
0.54 nm (see Fig. 1.9) and has a bandgap of nearly 1.1 eV and thermal conductivity
of κl = 149 W/mK at room temperature. Due to high thermal conductivity at room
temperature bulk silicon has ZT ≈ 0.01, which makes it a very poor thermoelectric.
However, recent experimental studies showed that the thermal conductivity is sharply
reduced in silicon-based nanostructures, i.e. nanowires and thin layers [17,20,21]. The
large reduction in the thermal conductivity was attributed to enhanced scattering of
phonons on the surfaces of the nanochannels. As a result, ZT values of about 0.6 were
achieved at room temperature, a large improvement compared to ZT of bulk silicon.
Furthermore, it should be possible to reach even higher values of ZT using techniques
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Figure 1.9: Diamond crystal structure of silicon.

for optimizing the geometry, transport and confinement orientations, and confinement
size.

On the other hand, graphene, a recently discovered form of carbon, has received much
attention over the past few years due to its excellent electrical, optical, and thermal
properties [22]. As shown in Fig. 1.10, carbon atoms in graphene are tightly packed
into a two-dimensional (2D) honeycomb lattice due to their sp2 hybridization. The
primitive unit cell is defined by two lattice vectors Ca1 and Ca2:

Ca1 =
3

2
accx̂+

√
3

2
accŷ (1.18)

and

Ca1 =
3

2
accx̂−

√
3

2
accŷ (1.19)

where acc = 0.14 nm is carbon-carbon bond length. The lattice (unit cell) is composed
of two sublattices called A and B. Although the electrical conductance of graphene
is as high as that of copper [23], as a zero bandgap material, pristine graphene has
a small Seebeck coefficient [24]. However, one can open up bandgaps by appropriate
patterning of graphene sheets [25–27]. Many theoretical studies have been recently
performed on the thermal conductivity of graphene-based structures as well. It has
been shown that boundaries and edge roughness can strongly degrade [19] its high
thermal conductance [28, 29]. Recently, a large scale method to produce graphene
sheets has been reported [30], which could pave the way for large scale graphene
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Figure 1.10: The crystal structure for graphene is defined by lattice vectors Ca1 and Ca2,
and the basis includes two carbon atoms called type A and type B.

applications. These factors render graphene as a candidate for future thermoelectric
applications.
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2 Physical Models

The thermoelectric figure of merit for materials is defined as:

ZT =
S2GT

(Kel +Kph)
(2.1)

where S is the Seebeck coefficient, G the electrical conductance, T the temperature,
Kel andKph the electrical and lattice contributions to the thermal conductivity, respec-
tively [3]. The numerator of Z is called power factor. The figure of merit determines
the efficiency of a thermoelectric material (device) and can be improved by increas-
ing the power factor and decreasing the thermal conductivity. Hence, thermoelectric
materials must simultaneously have a high Seebeck coefficient, a high electrical con-
ductivity, and a low thermal conductivity. For ballistic channels, one needs to employ
conductances instead of conductivities in the Eq. 2.1. For channels in which diffusive
transport prevails, however, the actual conductivity values are employed.

In this chapter, the methodology used for calculating the thermoelectric coefficients is
discussed. Two steps are needed in the simulation procedure: i) material properties,
a step including the calculation of electronic and phononic bandstructures and ii)
transport properties, using formalisms such as the Landauer approach and Boltzmann
transport theory.

2.1 Graphene

To describe the electronic structure of graphene-based nanostructures we employ the
tight-binding (TB) approximation, whereas to describe the phononic bandstructure
we employ the Force Constant Method (FCM).

2.1.1 Electronic Structure

The empirical tight-binding model is a standard, convenient, and accurate method for
calculating the electronic structure of semiconductors. It is also referred to as Bloch or
linear combination of atomic orbitals (LCAO) method [31]. The Hamiltonian matrix
for a simplified 2D system, using the TB method is described as follows: The 2D
structure in Fig. 2.1 is composed of ny chains of lattice points (i.e. atomic sites), each
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Figure 2.1: Two dimensional rectangular structure.

chain with nx sides. Assuming that each point is represented by one basis orbital, the
Hamiltonian matrix will have the size (nxny)× (nxny), and is given by:

H =


�����

α β 0 0 0 ...
β† α β 0 0 ...
0 β† α β 0 ...
...

...
...

...
...

...
... 0 0 0 β† α


     

nxny×nxny

(2.2)

where

α =


�����

2(tx + ty) −ty 0 0 0 ...
−ty 2(tx + ty) −ty 0 0 ...
0 −ty 2(tx + ty) −ty 0 ...
...

...
...

...
...

...
... 0 0 0 −ty 2(tx + ty)


     

ny×ny

(2.3)
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i

Figure 2.2: Schematic representation of the nearest neighbors of the ith carbon atom.
Up to four nearest-neighbors are included.

and

β =


���

−tx 0 0 0 ...
0 −tx 0 0 ...
...

...
...

...
...

... ... 0 0 −tx


   

ny×ny

(2.4)

where the [α]ny×ny
submatrix describes the coupling within each chain, and the [β]ny×ny

submatrix describes the coupling between the adjacent chains. In general, the size of
these components would be nb × nb, where nb is the number of basis orbitals in each
unit cell. The eigenvalues of H are the corresponding energies for the electrons in the
structure and can be adjusted by fitting the parameters tx and ty. In the case of an
open system, the boundary conditions are implemented by modifying the Hamiltonian
to:

H =


�����

α β 0 ... 0 β†

β† α β 0 0 ...
0 β† α β 0 ...
...

...
...

...
...

...
β 0 ... 0 β† α


     

nxny×nxny

(2.5)

The only change, here, is in the submatrices H(1, nx) and H(nx, 1), which now include
the self energies of the left and right contacts. In the case of periodic boundary
conditions, the bandstructure is calculated by considering the unit cell (index n) of
the lattice, connected to the neighboring unit cells (indexm) using the matrix elements
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[Hnm]. For example, as indicated in the structure of Fig. 2.1, once periodic boundary
conditions are applied along the x-axis, then Hnn = α and Hn,n+1 = β for all n ∈
[1, nx]. The bandstructure of the lattice is then obtained by calculating the eigenvalues
of the Hamiltonian as:

[h(k)] =
#
m

Hnme
i'k·('dm−'dn) (2.6)

for each Ck-point in the Brillouin zone (BZ) [32]. Here, Cdm is the vector corresponding
to the position of neighboring unit cell m and the sum is over all neighboring unit
cells.

In the case of graphene, a third nearest neighbor tight-binding model is used to describe
its electronic structure. In this case, the particular atom i and its nearest neighbor
atoms are shown in Fig. 2.2. The hopping parameter between two nearest atoms sepa-
rated by distance acc is t1 = −3.2 eV. The tight-binding parameter of the third-nearest
neighbor atoms located 2acc away from each other is t3 = −0.3 eV [34]. The hopping
parameter for the second nearest-neighbor is assumed to be 0 eV. The bandstructure
of graphene along the high-symmetry band line is shown in Fig. 2.3. The tight-binding
results are in good agreement with experimental data taken from [33], in particular
around the Fermi energy EF = 0 which dominates the electrical properties. As shown
in Ref. [34] this method can capture the details of the bandstructure of graphene-
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Table 2.1: The fitting parameters of the force constant tensor inN/m for graphene [42].

N Φr Φti Φto

1 365.0 245.0 98.2
2 88.0 -32.3 -4.0
3 30.0 -52.5 1.5
4 -19.2 22.9 -5.8

based nanostructures. The tight-binding model with calibrated parameters provides
band-gap and subband-edge energies in excellent agreement with first-principles cal-
culations [34].

2.1.2 Phononic Structure

The phonon bandstructure can be described by first principle models [35, 36], the va-
lence force field (VFF) method [37, 38], and the force constant method (FCM). The
latter has the lowest computation time requirements. In this model, the dynamics
of atoms are simply described by a few force springs connecting an atom to its sur-
roundings up to given numbers of neighbors. In contrast, the VFF method is based
on the evaluation of the force constants [39], which requires a much larger computa-
tional times. The FCM uses a small set of empirical fitting parameters and can be
easily calibrated to experimental measurements. Despite its simplicity, it can provide
accurate and transferable results [40, 41]. Thus, it is a convenient and robust method
to investigate thermal properties of crystals and in particular of graphene nanostruc-
tures.

The FCM model we employ involves a fourth nearest-neighbor approximation (see
Fig. 2.2). The force constant tensor describing the coupling between the ith and the
jth carbon atom, which are the N th nearest-neighbor of each other, is given by:

K
(ij)
0 =


� Φ

(N)
r 0 0

0 Φ
(N)
ti 0

0 0 Φ
(N)
to


  (2.7)

where, Φr, Φti and Φto are the radial, the in-plane transverse, and the out-of-plane
transverse components of the force constant tensor, respectively. Their values are
presented in Table 2.1 [42].
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The motion of the atoms can be described by a dynamic matrix as:

D = [D
(ij)
3×3] =


 1"

MiMj

×

��
��

K
(ij)
3×3 , i �= j

−
#
l �=i

K
(il)
3×3 , i = j


 (2.8)

where Mi is the atomic mass of the ith carbon atom, and Kij is a 3× 3 force constant
tensor describing the coupling between the ith and the jth carbon atom. In Cartesian
coordinates it is given by:

K(ij) = U−1
m K

(ij)
0 Um (2.9)

where Um is a unitary matrix defined as:

Um =


 cosΘij sinΘij 0

− sinΘij cosΘij 0
0 0 1


 (2.10)

Here, we assume that the graphene sheet is located in the x − y plane and that
Θij represents the angle between the x-axes and the bond between the ith and jth

carbon atom. The phononic bandstructure can be calculated by solving the eigen-
value problem described by:�#

l

K(il) − ω2(Cq)I

�
δij −

#
l

K(il) exp (iCq ·ΔCril) = 0 (2.11)

where ΔCrij = Cri −Crj is the distance between the ith and the jth carbon atom, and Cq is
the wave vector. Equivalently, after setting up the dynamic matrix, one can use the
following eigen-value problem:

D +
#
l

Dl exp
�
iCq.ΔCRl

�
− ω2(Cq)I = 0 (2.12)

where Dl is the dynamic matrix representing the interaction between the unit cell and
its neighboring unit cells separated by ΔCRl.

The phononic bandstructure of graphene shown in Fig. 2.4 is evaluated using the
fourth nearest-neighbor FCM with force constants given in Table. 2.1. This method
relies on twelve fitting parameters that determine the force constants, which are ex-
tracted from experiments. To validate the model, we present the experimental phonon
bandstructure results from Refs. [40,43]. As expected, the result is in good agreement
with the experimental data (see Fig. 2.4), especially for the low phonon frequencies,
which are the most important ones in determining the thermal conductivity.

Because the model relies on empirical parameters fitted to experiments, it is much more
computationally efficient compared to other atomistic formalisms, such as the valence
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Figure 2.4: Phononic bandstructure of graphene (solid) evaluated using the fourth
nearest-neighbor FCM. Experimental results (dots) are taken from
Refs. [40, 43].

force field (VFF) method. In the VFF method, for example, the force constants for
each atom in the unit cell are calculated, and the simulation time is dominated by
the dynamic matrix construction [39]. The approximation in that method comes from
the parameters used in the evaluation of the potential energy. For FCM, since force
constants are empirical parameters, the construction time of the dynamic matrix is
negligible, which makes the computation much more efficient. The simulation time
is determined by the solution of the eigenvalue problem. In the graphene lattice this
results in 18 neighbors for each atom as shown in Fig. 2.2. In FCM we assume that
there is a spring between each carbon atom and its 18 neighbors. This number is
reduced in the case of boundary atoms with less nearest-neighbors.
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2.2 Silicon

To calculate the electronic and phononic structures of silicon-based nanostructures,
one can employ the atomistic sp3d5s∗ tight-binding method [44] and the modified
valence force field method [45], respectively.

2.2.1 Electronic Structure

As proposed by Slater in 1954, the bandstructure of silicon (as well as that of other
diamond-like semiconductors) can be calculated using the sp3 tight-binding method.
This method considers four valence orbitals 3s and 3p3, including 3px, 3py, and 3pz, for
each silicon atom [31]. To enhance accuracy for reproducing the conduction band of
diamond and zinc blende semiconductors, it is common to use the sp3s∗ tight-binding
method in which the first excited s-like orbital s∗ (i.e. 4s in the case of silicon) is
also included [46]. It was further improved by including the five excited d orbitals 4d5

in the so called sp3d5s∗ tight-binding method. This method includes ten orbitals per
silicon atom.

We first consider the sp3d5s∗ tight-binding method without spin-orbit coupling for
bulk silicon, the unitcell of which consists of two atoms commonly called the anion
and the cation. Each anion atom is connected to four cation atoms through for bonds
B1, B2, B3, and B4 and vice versa. The Hamiltonian of the unitcell, when considering
the coupling of the anion with only one neighboring cation, consists of four blocks as:

H =

�
Haa Hac

Hca Hcc

�
(2.13)

Here, Haa and Hcc represent the on-site terms and Hac = H†
ca the coupling between

two atoms. In the case of silicon, we note that Haa = Hcc as the unitcell consists of
two similar silicon atoms. The on-site term is a diagonal matrix:

Haa = [Ei,jδi,j] (2.14)

and the coupling term has the form of:

Hac = [gBi,jV
ac
i,j ] (2.15)

where i and j run over all 10 orbital indexes:

s, px, py, pz, dxy, dyz, dzx, dx2−y2 , dz2−r2 (2.16)

The gBi,j in Eq. 2.15 are taken from a sign matrix [47] and depend on the corresponding
bond (B) between the anion and the cation. The matrix elements V ac

i,j are formed as

V ac
i,j = fi,j(l,m, n)Vu,v (2.17)
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where fi,j(l,m, n) are the two center Slater-Koster energy integrals [31]. Vu,v and Ei,j

are fitting parameters used to correctly capture the details of bandstructure over the
entire Brillouin zone. Values are provided in Ref. [44] for silicon.

To describe the top of the valence band correctly, one needs to include the spin-orbit
coupling [32]. In this case, the number of orbitals per atom increases to 20 [44, 47].
However, the spin-orbit interactions affect only orbitals with different spins of the
same atom. Therefore, they are only added to the diagonal blocks Haa, and Hcc of the
Hamiltonian [47].

2.2.2 Phononic Structure

For the calculation of the phononic bandstructure of silicon-based nanostructures, we
employ the modified valence force filed method [45]. In this method the interatomic
potential is modeled by the following bond deformations: bond stretching, bond bend-
ing, cross bond stretching, cross bond bending stretching, and coplanar bond bending
interactions [45]. The model accurately captures the bulk silicon phonon spectrum
as well as the effects of confinement [39]. In the MVFF method, the total potential
energy of the system is defined as [39]:

U ≈ 1

2

#
i∈NA

�#
j∈nni

U ij
bs +

j �=k#
j,k∈nni

�
U jik
bb + U jik

bs−bs + U jik
bs−bb

�
+

j �=k �=l#
j,k,l∈COPi

U jikl
bb−bb


(2.18)

where NA, nni, and COPi are the number of atoms in the system, the number of
the nearest neighbors of a specific atom i, and the coplanar atom groups for atom i,
respectively. As shown in Fig. 2.5, Ubs, Ubb, Ubs−bs, Ubs−bb, and Ubb−bb are the bond
stretching, bond bending, cross bond stretching, cross bond bending stretching, and
coplanar bond bending interactions, respectively [39, 45]. The terms Ubs−bs, Ubs−bb,
and Ubb−bb are an addition to the usual Keating valence force filed (KVFF) model [48],
which can only capture the silicon phononic bandstructure in a limited part of the
Brillouin zone. As indicated in Ref. [39] the introduction of these additional terms
provides a more accurate description of the entire Brillouin zone.

These short-range interactions depends on the atomic positions by [39]:

U ij
bs =

3

8
αij

�
r2ij − d2ij

�2
d2ij

(2.19)

U ij
bb =

3

8
βjik

(Δθjik)
2

dij dik
(2.20)

U ij
bs−bs =

3

8
δjik

�
r2ij − d2ij

�
(r2ik − d2ik)

dij dik
(2.21)
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Figure 2.5: Schematic representation of (a) bond-stretching, (b) bond bending, (c)
cross bond stretching, (d) cross bond bending-stretching, and (e) coplanar
bond bending interactions.

Table 2.2: The force constant fitting parameters for silicon in N/m.

Model α β δ γ ν
KVFF [48] 48.5 13.8 0 0 0
MVFF [45] 49.4 4.79 5.2 0.0 6.99

U ij
bs−bb =

3

8
γjik

�
r2ij − d2ij

�
(Δθjik)

dij dik
(2.22)

U ij
bb−bb =

3

8

√
νjikνikl

(Δθjik) (Δθikl)"
dij d2ik dkl

(2.23)

where Crij and Cdij are the non-equilibrium and equilibrium bond vectors from atom i
to atom j, respectively. The angle deviation of bonds between i and j, and i and k is
defined by Δθjik = Crij · Crik − Cdij · Cdik. The fitting parameters of silicon α, β, δ, γ, and
ν are presented in Table 2.2 for both KVFF and MVFF models.

The total potential energy is zero when all the atoms are located in their equilibrium
position. Under the harmonic approximation, the motion of atoms can be described
by a dynamic matrix as:

D =
�
Dij

3×3

�
=


 1"

MiMj

×

��
��

Dij , i �= j

−
#
l �=i

Dil , i = j


 (2.24)

where dynamic matrix component between atoms i and j is given by [39]:

Dij =


 Dxx

ij Dxy
ij Dxz

ij

Dyz
ij Dyy

ij Dyz
ij

Dzx
ij Dzy

ij Dzz
ij


 (2.25)
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Figure 2.6: Phononic bandstructure of bulk silicon (solid) evaluated using (a) Keat-
ing VFF and (b) MVFF. Experimental results (circles) are taken from
Ref. [49].

and

Dmn
ij =

∂2Uelastic

∂rim∂
j
n

, i, j ∈ NA and m,n ∈ [x, y, z] (2.26)

is the second derivative of the potential energy with respect to the displacement of
atom i along the m-axis and atom j along the n-axis. Uelastic is the potential associated
with the motion of only two atoms i and j, whereas the other atoms are considered
frozen (unlike U , which is the potential when all atoms are allowed to move out of
their equilibrium position). To compute Uelastic: 1) We start with U from Eq. 2.18.
2) We fix the positions of all atoms except atoms i and j. 3) We compute the inter-
atomic potential due to all bond deformations that result from interaction between
both of these two atoms, and sum them up to obtain Uelastic. All other inter-atomic
potential terms that result from interactions due to atom i alone, or atom j alone, are
not considered, since all double derivatives taken with respect to ∂2/∂rim∂

j
n, give zero.

After setting up the dynamic matrix, the eigenvalue problem can be set up according to
Eq. 2.12, the solution of which is the phononic dispersion. Figure 2.6 compares the bulk
silicon dispersions calculated using the KVFF and MVFF models with experimental
data taken from Ref. [49]. The KVFF fails in some part of the Brillouin zone, whereas
the MVFF with three additional terms provides a more accurate description of the
entire Brillouin zone.
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2.3 Electron Transport

To calculate the electron transport properties, the Landauer approach [50] is used for
both ballistic and diffusive regimes.

2.3.1 Landauer Formula

According to the Landauer formalism [51], the electric current can be calculated using
the electronic transmission function T el(E):

I =
2e

h

� +∞

−∞

T el(E) [fs(E)− fd(E)] dE (2.27)

Here, fs,d(E) are the Fermi distribution functions of the source and drain contacts,
respectively. In the linear response regime, the electrical current is proportional to the
applied voltage:

I =
2e2ΔV

h

� +∞

−∞

T el(E)

�
− ∂f

∂E

�
dE = GΔV (2.28)

where the electrical conductance G is defined as:

G =
2e2

h

� +∞

−∞

T el(E)

�
− ∂f

∂E

�
dE (2.29)

The derivative of the Fermi function:

− ∂f

∂E
=

1

4kBT

�
cosh

�
E − EF

2kBT

��−2

(2.30)

is known as the thermal broadening function, where EF is the Fermi-level of the system.
It has a width of a few kBT around EF, indicating that electrons around the Fermi
energy have a major contribution to the electrical current.

Other than the applied voltage, a temperature difference can also result in a flow of
charge carriers, as explained in Chapter 1. In the linear response regime, the electri-
cal and heat currents are proportional to the applied voltage, when the temperature
difference is zero. They are also proportional to the temperature difference, if there is
no applied voltage. These currents are expressed as:

I = GΔV + SGΔT (2.31)

Iq = −TSGΔV −K0ΔT (2.32)
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where I and Iq are the electric and the heat current, respectively. Here, K0 is the elec-
tronic contribution to the thermal conductivity for zero electric field, defined as [52]:

K0 =
2

hT

� +∞

−∞

T el(E) (E − EF)
2

�
− ∂f

∂E

�
dE (2.33)

As we show later, the proportionality factor of the temperature difference ΔT in
Eq. 2.31 is equal to the product SG, where S is the Seebeck coefficient and G is the
electrical conductance. We represent this factor by SG. Similarly, the proportionality
factor of ΔV in Eq. 2.32 is represented by −TSG. Eqs. 2.31 and 2.32 can be rewritten
as [30, 52]:

ΔV = I/G− SΔT (2.34)

Iq = ΠI −KelΔT (2.35)

where Π = −TS is the Peltier coefficient and

Kel = K0 − TS2G (2.36)

The Seebeck coefficient can be evaluated by S = SG/G as [52]:

S =
1

−eT

� +∞

−∞

T el(E)(E − EF)

�
− ∂f

∂E

�
dE� +∞

−∞

T el(E)

�
− ∂f

∂E

�
dE

(2.37)

2.3.2 Transmission Function

An important material property of a semiconductor is the density of states (DOS).
The DOS of a system indicates the number of states per energy interval and per
volume. The analytical descriptions for the DOS of an isotropic material can be
easily calculated [32, 53]. However, the bandstructure of materials is not always
isotropic. Especially in low dimensional materials, the electronic structure is affected
by confinement and several complex features appear. Numerical approaches in the
calculation of the DOS are necessary, and depending on the sophistication of the
numerical model employed, most of the electronic structure properties are usually
captured accurately [32].

If εα(Ck) denotes the bandstructure, where α indicates the band number and Ck is the
wave vector, then the number of states with energy smaller than E is [32]:

N(E) =
#
α,'k

ϑ
�
E − εα(Ck)

�
(2.38)
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where ϑ is the unit step function. Therefore, the DOS is calculated by:

D(E) =
1

Ω

dN(E)

dE
=

1

Ω

#
α,'k

δ
�
E − εα(Ck)

�
(2.39)

where δ is the Dirac-delta function and Ω the volume. In the case of two- and one-
dimensional systems, the volume is replaced by the area A and the length L, respec-
tively. For numerical stability, in order to obtain a continuous DOS, a broadening
through a Lorentzian function is employed, instead of the sharp delta function [32]:

δ
�
E − εα(Ck)

�
=⇒ γ/2π�

E − εα(Ck)
�2

+ (γ/2)2
(2.40)

where the broadening parameter to be used γ = 0.3 meV is similar to the energy
spacing between the various states.

Another important ballistic quantity is the number of subbands or modes. The trans-
mission function T el(E) is, indeed, the multiplication of the number of modes M(E)
and transmission probability Tel(E):

T el(E) = Mel(E)Tel(E) (2.41)

In the ballistic regime, the transmission of each subband is one and, therefore, the
number of modes represents the ballistic transmission function. To calculate Mel(E),
it is enough to count the number of modes at a given energy:

T el(E)|Ballistic = Mel(E) =
#
α,k⊥

ϑ (E −min [εα(k⊥)])− ϑ (E −max [εα(k⊥)])

=
1

2

#
α,'k

δ
�
E − εα(Ck)

�
Δk⊥

∂εα(Ck)

∂k�

(2.42)

where k⊥ refers to the wave vector component perpendicular to the transport direction
and k� to the wave vector component parallel to the transport direction [30, 32, 52].
Finally, we mention that the group velocity of an electron in a Bloch state is defined
as:

Cvg,α(Ck) =
1

�

C∇kεα(Ck) (2.43)

The prefactor 1/2 in Eq. 2.42 is used since only states with positive group velocities
along the transport direction contribute to the conductance:

vg,� =
1

�

∂εα(Ck)

∂k�
> 0 (2.44)

A typical test-case bandstructure and the way of counting the modes is shown in
Fig. 2.7.
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Figure 2.7: A typical bandstructue and its corresponding number of modes at some
energies.

In the presence of scattering processes, the transmission probability Tel is less than
one. To include scattering effects, several transport approaches are commonly used,
such as the linearized Boltzmann transport equation, Monte Carlo simulations for
solutions of the Boltzmann equation beyond the linear regime, the scattering-matrix
method, and the non-equilibrium Green’s function (NEGF) method. From all these
methods, only the quantum mechanical NEGF method is able to capture the wave
nature of electrons. It is also able to take into account the atomistic details of actual
boundaries and surfaces and capture boundary scattering in nanostructures [32,54].

We use the NEGF method to study the effect of boundary scattering on the electronic
transmission of one-dimensional graphene-based structures. For these simulations, the
system is assumed to consist of three sections: the channel, the source contact, and
the drain contact. The boundary scattering mechanism is introduced in the chan-
nel by physically distorting the boundaries. The contacts are assumed to be pristine
and always at equilibrium. To describe the electronic structure of this system, the
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Hamiltonian matrix is set up using the third nearest neighbor tight-binding method
as described in Sec. 2.1.1. The system can be described using the following matri-
ces [32]: i) [Hch]nch×nd

is the Hamiltonian matrix of the channel (device Hamiltonian),
ii) [Hs/d]nR×nR

is the Hamiltonian of the source and drain contacts (reservoirs), and
iii) the couplings between the unit cells of the device [τs/d]nd×nR

. Here, nch and nR

indicate the number of basis orbitals in the channel and contacts, respectively. In the
NEFG method, the contacts are described through the self-energy matrices:

Σs/d = τs/dGs/dτ
†
s/d (2.45)

where
Gs/d =

�
EInR×nR

−Hs/d + i0+InR×nR

�−1
(2.46)

is the Green’s function for the isolated contacts. InR×nR
is an identity matrix of the

size of the contacts. The device (channel) Green’s function can then be calculated
as [32]:

Gch(E) = [EInd×nd
−Hch − Σs − Σd]

−1 (2.47)

The transmission function can be calculated as:

T el(E) = Trace[ΓsGchΓdGch] (2.48)

where the broadening matrices are defined as:

Γs/d = i
�
Σs/d − Σ†

s/d

�
(2.49)

Finally, it is worth mentioning that in NEGF formalism scattering processes are in-
cluded using some additional self-energy functions [32]. However, in this thesis, we
only investigate the effect of roughness scattering (as the dominant scattering event
in nanostructures), which can directly be included in Hch through missing atoms at
the edges.

2.3.2.1 Surface Green’s Function

To calculate the properties of the channel, we assume semi-infinite contacts. Using
the NEGF formalism, these contacts yield a finite surface energy [32,55]. The channel
couples with only a finite number of surface atoms in the contacts that contain, how-
ever, the information of entire semi-infinite lead. Therefore, since most of the elements
in τs/d are zero, the matrices can be reduced to smaller ones, β and β†, which only
contain the couplings between neighboring unit cells. In this case, the first elements
of the Hamiltonian that contain the information of a unit cell, α, is used to describe
the first section/unit cell of the contact, whereas the rest of the contacts can be mod-
eled by self-energy matrices. Due to the periodicity of the semi-infinite contacts, the
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surface Green’s function can be calculated iteratively as:

gsurface(E) =
�
EInb×nb

− α− βgsurfaceβ
†
�−1

(2.50)

where nb is the number of orbital bases in the unit cell. The size of gs can be further
reduced to the number of surface atoms in the contact that couple to the channel
atoms, and not the atoms of the entire unit cell, which simplifies computation signif-
icantly. To solve the non-linear matrix equation 2.50 different algorithms have been
proposed [55]. One of the most efficient one is the Sancho-Rubio method [56]. Af-
ter obtaining the surface Green’s function, one can easily calculate the corresponding
self-energy matrix as:

Σ = βgsurfaceβ
† (2.51)

2.4 Phonon Transport

To calculate the thermal conductivity, we employ non-equilibrium Green’s function for
phonons in conjunction with the Landauer formula for graphene-based nanostructures
and Boltzmann transport equation for phonons for silicon-based materials.

2.4.1 Landauer Formula

In semiconductors, the largest component of the heat current is due to the phonon
transport. Using the Landauer theory for phonon transport, the heat flow is pro-
portional to the phonon transmission function T ph(ω), the Bose-Einstein distribution
function n(ω) of source and drain contacts, and the phonon energy/frequency ω as:

Iq =
1

h

� +∞

0

T ph(ω)�ω [ns(ω)− nd(ω)] d(�ω) (2.52)

In the linear response regime of the Landauer theory the heat current is proportional
to the temperature difference by:

Iq =
1

h

� +∞

0

T ph(ω)�ωΔT
[ns(ω)− nd(ω)]

ΔT
d(�ω)

=
ΔT

h

� +∞

0

T ph(ω)�ω
∂n(ω)

∂T
d(�ω)

(2.53)

This can alternatively be written as:

Iq = −ΔT
k2
BTπ

2

3h

� +∞

0

T ph(ω)Wph(�ω) d(�ω) (2.54)
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where the phononic window function is given by [57]:

Wph(�ω) = − 3

π2

�
�ω

kBT

�2
∂n

∂(�ω)

=
3

4π2kBT

�
�ω

kBT

�2 �
sinh

�
�ω

2kBT

��−2
(2.55)

As Iq = −KphΔT , one can express the lattice contribution to the thermal conductance
as [58]:

Kph =
k2
BTπ

2

3h

� +∞

0

T ph(ω)Wph(ω)d(�ω) (2.56)

To extract the ballistic phonon transmission T ph(E) in Eq. 2.56, similar to the elec-
tronic quantities (Eqs. 2.39-2.42), the phononic density of modes MPh(E) is calculated
using the phononic bandstructures, where E = �ω denotes the energy of a phonon with
frequency ω. In our calculations for phonon density of states DOSph, we broadened
the delta function by 1 meV. This helps to numerically smoothen the DOS function,
without affecting the thermal conductance calculations.

The FCM can also be effectively coupled to NEGF for the investigation of coherent
phonon transport in low dimensional systems. The NEGF method has been tradi-
tionally employed for electronic transport studies, but has been extended to phonon
studies as well [54]. Here, the phononic device Green’s function is obtained by

G(E) =
�
E2I −D − Σs − Σd

�−1
(2.57)

where D is device dynamic matrix and E = �ω is the phonon energy [59]. Note that
this is a Green’s function of a classical wave equation, which is second order in time.
Therefore, the square of the energy appears in Eq. 2.57. This is in contrast to the
Schrodinger equation for quantum treatment of electrons which is first order in time,
such that the eigen energy E appears linearly in that case.

Finally, similar to the electron transport, the transmission probability of phonons
through the rough channel can then be calculated using:

T ph(E) = Trace[ΓsGΓdG
†] (2.58)

Here, the phononic broadening and contact self-energy matrices are obtained in a
similar way as the electronic ones (Eq. 2.51) with the substitutions H → D and
E → �

2ω2.
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2.4.2 Boltzmann Transport Equation

At equilibrium, the distribution of phonons in branch α and wavevector Cq is given by
the Bose-Einstein distribution function n(ω):

n (ωα(Cq)) =
1

e�ωα('q)/kBT − 1
(2.59)

Under non-equilibrium conditions, the distribution of phonons deviates from its equi-
librium distribution, and transport of phonons is computed using the Boltzmann trans-
port formalism. The non-equilibrium distribution function n(t, Cr, ω), in general, is a
function of time t and position Cr. The BTE can be written as:

∂n

∂t
+ Cv · ∇'rn =

�
∂n

∂t

�
scat

(2.60)

and for the steady state:

Cv · ∇'rn =

�
∂n

∂t

�
scat

(2.61)

Under a temperature gradient, the BTE can be written as [60]:

Cv · ∇'rT
∂n

∂T
=

�
∂n

∂t

�
scat

(2.62)

In the relaxation time approximation, the change of the distribution function due to
the scattering events can be given by:�

∂n

∂t

�
scat

=
n− n

τα(Cq)
(2.63)

and therefore

Cv · ∇'rT
∂n

∂T
=

n− n

τα(Cq)
(2.64)

where τα(Cq) is the relaxation time of phonons of frequency ωα(Cq). In this work we
use a linearized form of Eq. 2.64, which assumes that the temperature gradient causes
only a small deviation from Bose-Einstein distribution function [61, 62], so that:

∂n

∂T
≈ ∂n

∂T
=

�ωα(Cq)

kBT 2
n(n+ 1) (2.65)

and

n =
1

e(�ωα('q)−Ψα('q))/kBT − 1
≈ n−Ψα(Cq)

�
∂n

∂(�ω)

�
= n+

Ψα(Cq)n(n+ 1)

kBT
(2.66)
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where Ψα(Cq) shows the deviation from the equilibrium distribution. Then, one may
eliminate the temperature gradient using Ψα(Cq) = −ψα(Cq)∇'rT and write:

n = n− n(n+ 1)

kBT
ψα(Cq)∇'rT (2.67)

Since the equilibrium distribution does not carry any heat flux, the heat flux equals
to [62]:

Iq =
#
α,'q

�ω(n− n)vα(Cq) = −
#
α,'q

�ωvα(Cq)
n(n+ 1)

kBT
ψα(Cq)∇'rT (2.68)

On the other hand, it holds the differential form of Fourier’s law:

Iq = −κl∇T (2.69)

Therefore, one can obtain the lattice thermal conductivity as:

κl =
#
α,'q

�ωvα(Cq)
n(n+ 1)

kBT
ψα(Cq) (2.70)

Under the single-mode relaxation time (SMRT) approximation [62], ψα(Cq) follows from
the linearized BTE (Eqs. 2.64-2.66) as:

ψα(Cq) =
�ωα(Cq)

T
vα(Cq)τα(Cq) (2.71)

Here, τα(Cq) is the scattering time in SMRT approximation. Therefore, Eq. 2.70 be-
comes

κl =
#
α,'q

�ωvα(Cq)
2τα(Cq)

∂n

∂T
(2.72)

32



3 Thermoelectric Properties of

Graphene-Based Nanostructures

Graphene, a recently discovered form of carbon, has received much attention over the
past few years due to its excellent electrical, optical, and thermal properties [22]. The
electrical conductance of graphene is as high as that of copper [23]. As a zero band-gap
material, pristine graphene has a small Seebeck coefficient [24]. However, one can open
up band-gaps by appropriate patterning of the graphene sheets [25–27]. Graphene
nanoribbons (GNRs) are thin strips of graphene, where the band gap is varied by the
chirality of the edge and the width of the ribbon. Zigzag GNRs show metallic behavior,
whereas armchair GNRs are semiconductors with a band-gap inversely proportional
to the width [25]. Very recently, Zhang and coworkers showed that one can open up
a significant band-gap in zigzag GNRs by edge manipulation [63]. In addition, it has
been theoretically [64] and experimentally [65] shown that by introducing an array of
holes into the graphene sheet a band-gap can be achieved. On the other hand, a large
scale method to produce graphene sheets has been reported [30]. Experimental studies
have also reported a high Seebeck coefficient in graphene-based devices [66, 67].

The high Seebeck coefficient has been achieved by applying voltages (e.g. gate voltage)
and magnetic field to the graphene-based devices. The applied voltage is normally used
for breaking the symmetry between electron and hole conduction. Without applying a
voltage, the symmetry between valence and conduction bands results in a low Seebeck
coefficient, and as a result a relatively small thermoelectric power factor for pristine
graphene. The thermoelectric figure of merit, however, can be further improved by
degrading the lattice thermal conductivity. This was also experimentally demonstrated
for traditionally poor thermoelectric materials such as silicon which resulted in ZT
values close to ZT ∼ 0.5, a large improvement compared to ZT = 0.01 of bulk
silicon [17].

The ability of graphene to conduct heat is an order of magnitude higher than that of
copper [28]. The high thermal conductance of graphene is mostly due to the lattice
contribution, whereas the electronic contribution to the thermal conduction can be
ignored [28, 29]. Therefore, for thermoelectric applications it is necessary to reduce
its thermal conductance. By proper engineering the phonon transport properties it is
possible to reduce the total thermal conductance without significant reduction of the
electrical conductance and the power factor.

33



Recently many theoretical studies have been performed on the thermal conductivity
of graphene-based structures. It has been shown that boundaries and edge roughness
can strongly influence the thermal conductance [19]. Uniaxial strain can remarkably
decrease the thermal conductance of GNRs. In the case of zigzag GNRs, 15% uniax-
ial strain can decrease the thermal conductance to one fifth of that of an unstrained
GNR [68]. Vacancy, defects, and isotope doping have magnificent effects on ther-
mal conductance [58, 69]. Furthermore, it has been recently shown that the thermal
conductance of GNRs can be reduced by hydrogen-passivation of the edges [70]. In
this chapter, therefore, we aim to investigate the thermal and thermoelectric proper-
ties of various graphene-based structures. This can help to improve understanding of
thermoelectrics in nanostructues and provide some useful guidelines for engineering
nanostructures for thermoelectric applications.

3.1 Thermoelectric Properties of AGNRs

Recent studies have investigated the thermoelectric properties of AGNRs in the pres-
ence of vacancies and edge defects [58, 71]. The results show that by increasing the
number of defects, the figure of merit decreases. The enhanced phonon scattering on
the boundaries of nanostructures is the primary motivation of using nanostructures
for thermoelectrics. In this section, we explore the role of geometrical parameters and
temperature on the ballistic and diffusive thermoelectric properties.

3.1.1 Ballistic Thermoelectric Properties of AGNRs

GNRs are tailored from the 2D graphene sheet with finite width W . N -AGNR denotes
a GNR with armchair edges, the unit cell of which contains N atoms of each sublattice
(A andB), as shown in Fig. 3.1. The band-gap (Eg) of AGNRs is inversely proportional
to the ribbon’s width. AGNRs are classified according to their indices into three
categories, N = 3m−1, N = 3m, and N = 3m+1, where m in an integer. The lowest
band-gap belongs to the category N = 3m− 1, whereas the category N = 3m+1 has
the highest band-gap. As the band-gap plays an important role in thermoelectrics,
only the category N = 3m+1 is considered. However, similar results are expected for
the other categories too.

In this section, ballistic thermoelectric properties of AGNRs with different widths at
various temperatures are investigated. In the ballistic regime, the transport properties
are independent of channel length L. The features of band structures play an impor-
tant role in the performance of AGNR-based devices. The channel length, therefore, is
chosen to be the length of a unit cell (3acc), whereas the ribbon’s width varies between
W = 1 nm and 6 nm and the temperature between T = 50 K and 750 K.
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Figure 3.1: The geometrical structure of an N -AGNR. The unit cell contains N carbon
atoms of sublattices A and B.

3.1.1.1 Electronic Properties

The ballistic transmission function of AGNRs with different widths is shown in Fig. 3.2.
As expected, the energy-gap between conduction and valence band decreases with
increasing the ribbon’s width. Here, we also denote the energy difference between
the second and the first conduction subband by ΔE. This parameter indicates the
possibility of a contribution of the second subband to the electronic transport. Eg and
ΔE decrease by increasing the ribbons’ width. On the other hand, the derivative of
the Fermi function, known as the thermal broadening function, has a width of a few
kBT around EF. Therefore, the width of the thermal broadening function increases
with the temperature and, at high temperature, one can expect the second subband
also contribute to the electronic conductance of a wide AGNRs.

The electrical conductance (Eq. 2.29), the Seebeck coefficient (Eq. 2.37), the thermo-
electric power factor (S2G), and the electrical contribution to the thermal conductance
(Eq. 2.36) of a 25-AGNR as a function of Fermi energy are shown in Fig. 3.3a-d, re-
spectively. Three different temperatures T = 150 K, 300 K, and 500 K are considered.
Here, Ec = Eg/2 refers to the energy corresponding to the band-edge of the first con-
duction subband. In contrast to the Seebeck coefficient, the electrical conductance
decreases by increasing Ec − EF, so that the power factor has a maximum near the
conduction band-edge. The maximum value of the power factor increases with temper-
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Figure 3.2: The ballistic electronic transmission function as a function of energy with
the ribbon’s width as a parameter. m varies between 2, 5, 8, and 16 which
are corresponding to the ribbon’s width of 1, 2, 3, and 6 nm, respectively.
ΔE is the energy difference between first and second conduction band
edges.

ature due to the contribution of the second conduction subband. Different parameters,
corresponding to the Fermi energy at which the power factor is maximum, are shown
in Fig. 3.3e-f. By increasing the ribbon’s width and so decreasing ΔE, the second
conduction band-edge gets closer to the first conduction band-edge Ec. As a result,
the overall tranmission function increases near the appropriate Fermi energy, and so
the conductance increases with the ribbon’s width. This increase is significant at high
temperature. On the other hand, the band-gap and so the Seebeck coefficient decrease
by increasing W . It is due to the fact that in a low band-gap material, the current of
holes and electrons cancel each other out. Overall, the power factor slightly increases
by the ribbon’s width and temperature. In addition, the electrical contribution to
the thermal conductance increases with the ribbon’s width and temperature, as well.
However, as shown below, it can be neglected in comparison with the lattice thermal
conductance.
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Figure 3.3: (a)-(d) show the ballistic electrical transport parameters of a 25-AGNR
as a function of Ec − EF. Ec is the band edge of the first conduction
subband. Three different temperatures 150, 300, and 500 K are considered.
(e)-(f) show the transport parameters at the Fermi energy at which the
thermoelectric power factor has a maximum (see Fig. 3.3-c).

3.1.1.2 Phononic Properties

The ballistic transmission function of phonons, which is the number of phononic modes
at some energy �ω (Eq. 2.42), is shown in Fig. 3.4. As expected, the transmission func-
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Figure 3.4: Ballistic transmission function of phonons in AGNRs of widths 1, 3, and
6 nm corresponding to N = 7, 25, and 49. The inset shows the phononic
window function at T = 150, 300, and 500 K.

tion increases with the ribbon’s width. In addition, the phononic window function is
shown in the inset of Fig. 3.4 at various temperatures. This function, which qualifies
the contribution of different phonon frequencies in the thermal conductance, increases
with temperature. Therefore, at higher temperatures high energy phonons will con-
tribute to the thermal transport as well.

Figure 3.5-a and -b show the ballistic thermal conductance of AGNRs as a function of
temperature and the ribbon’s width, respectively. By increasing the temperature and
thus the width of the phononic window function, the thermal conductance increases.
However, as the energy spectrum of AGNRs is limited to 0.2 eV (Fig. 3.4), the thermal
conductance saturates at very high temperatures (T >∼ 800K). As shown in Fig. 3.5-
b, the thermal conductance increases linearly with the ribbon’s width. In fact, the
ballistic thermal conductance divided by the width is constant. This is due to the fact
that by increasing the width and thus the number of carbon atoms in the unit cell,
the number of modes increases almost linearly in the whole energy spectrum, and,
therefore, the ballistic transmission function is directly proportional to the width.

3.1.1.3 Thermoelectric Figure of Merit

After calculating the ballistic electrical and thermal parameters, one can evaluate the
thermoelectric figure of merit using the Eq. 2.1. The ZT values are shown in Fig. 3.6
for the ribbon’s widths between 1nm and 6 nm and temperature up to 750 K. By
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increasing the ribbon’s width, ZT decreases drastically. It is due to the fact that
the lattice thermal conductance strongly increases with W , whereas the power factor
slightly increases. On the other hand, for a given ribbon’s width, ZT peaks both at
very low and very high temperatures. At high temperature, the contribution of the
second conduction subband results in a high power factor. On the other hand, the
lattice thermal conductance strongly decreases with temperature, whereas the power
factor can be kept by adjusting the Fermi energy. As a result, a high value of ZT can
be obtained at very low temperature as well, although the ZT value is smaller than
0.3 for various ribbons and temperatures.

3.1.2 The Role of Line-Edge-Roughness

As shown in Sec. 3.1.1, the high lattice thermal conductance of AGNRs causes a
small ballistic ZT value. In fact, A high thermal conductivity in the range of ∼
2000−5300 W/mK has been reported for wide suspended single-layer graphene [28,72],
which is only weakly affected by the boundary and substrate scatterings. On the
other hand, in narrow AGNRs, line-edge-roughness (LER) is the dominant scattering
source for both electron and phonon transport [70, 73–75]. Therefore, in this section,
we examine how LER scattering in very narrow AGNRs can affect the thermal and
thermoelectric properties.

Very recently, the effect of rough boundaries has been studied in defective AGNRs [70,
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Figure 3.6: Ballistic thermoelectric figure of merit as a function of ribbon’s width and
temperature.

76–80]. Those previous works have used a simple model for line-edge-roughness which
neglect the correlation of the roughness. However, due to the wave nature of phonos,
the correlation length of roughness plays an important role as well. To model LER-
limited thermal conductivity, an exponential autocorrelation function is employed [81]:

R(x) = ΔW 2 exp

�
− |x|
ΔL

�
(3.1)

the Fourier transform of which is the power spectrum of the roughness. In Eq. 3.1,
ΔW is the root mean square of the roughness amplitude and ΔL is the roughness
correlation length. The LER in the real space is achieved by adding a random phase
to the power spectrum followed by an inverse Fourier transform [74,81]. Many samples
with the same roughness parameters are generated and their thermal properties are
evaluated by taking an ensemble average.

To investigate the effect of LER on the thermal conductivity and the MFP of phonons,
we performed simulations on a statistical sample of 16-AGNR with roughness param-
eters of ΔW = 0.3 Å and ΔL = 2 nm. The main results are, however, almost
independent of the actual value of the roughness parameters. The statistical average
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of the transmission function is shown in Fig. 3.7 for a channel length of 20 nm. For
reference, the ballistic transmission of a 16-AGNR is also shown with solid line.

Figure 3.7 compares the phonon transmission functions of a 16-AGNR assuming per-
fect edges and rough edges with roughness parameters of ΔW = 0.3 Å and ΔL = 2nm.
By introducing LER, the tranmission decreases from the ballistic value almost over
entire energy range. To quantify the dependence of the transmission function on the
channel length, the phonon MFP is defined as [32, 57]:

T ph(�ω) =
Nph(�ω)

1 + L/λph(�ω)
(3.2)

where Nph(�ω) is the ballistic transmission function and λph(�ω) is the phonon MFP
at energy �ω.

Figure. 3.8 shows the phonon MFP of a 16-AGNR as a function of phonon frequency,
which is around 50 nm. However, to study the dependence of the thermal conductance
on the channel length one can define an effective MFP λph as [19]:

Kl = Kl,B
λph

L+ λph

(3.3)
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which covers the contribution of phonons of different frequencies. Here, the ballistic
thermal conductance of AGNRs with perfect edges is denoted by Kl,B. In the inset
of Fig. 3.8 the effective room temperature MFP is shown for ribbon’s of different
width. The symbols in Fig. 3.8 are ensemble average values. As a rough estimate, the
standard deviations of various quantities calculated in this section are about 10% of
the corresponding average value for short and narrow channels, whereas they decrease
to ∼ 5% of the average values for long and wide channels. By increasing the ribbon’s
width from 1 nm to 6 nm the effective MFP increases linearly from about 20 nm
to 120 nm. The phonon MFP of GNRs with smooth edges was reported to be ∼
775 nm [82]. Therefore, it seems that LER degrades the high thermal conductivity of
AGNRs and can help one achieves higher values of ZT .

To examine the effect of LER on the electronic structure, the electronic transmission
of a 16-AGNR with the channel length of 5 nm is shown in Fig. 3.9, with and without
the LER. LER degrades the transport of electrons at different energies. However, the
reduction is lower at energies near the sub-band edges, where the density of states and
thus the scattering rate is higher. Therefore, the presence of LER degrades the sharp
features of electronic transmission function and the thermoelectric power factor [83].
The corresponding MFP is shown in Fig. 3.10. The MFP is very small near the band
edges due to the high density of states and thus high scattering rate. This indicates
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that the diffusive transmission function is very negligible near the first conduction sub-
band (Fermi energy), which can drastically degrade the transport parameters. The
effective MFP is also shown in the inset of Fig. 3.10. It increases almost nearly with
the ribbon’s width. However it is smaller than 30 nm even for 6 nm AGNR. The small
electron MFP can be described by considering the sensitivity of the band-gap to the
ribbons width. The band-gap is not only inversely dependent on the ribbon’s width,
it is strongly dependent to the index of the ribbon either. Therefore, the presence of
LER is not a small perturbation for the electron transport. In fact, the electron trans-
mission will be in the localization regime and one should even define the localization
length instead of mean-free-path for long channel [74]. As the ratio λel/λph is consid-
erably smaller than one, we conclude that the presence of boundary scattering is not
appropriate for the thermoelectric performance of AGNR-based devices, in contrast
to what has been observed in silicon nanowires [20].

Finally, the inverse of ZT at room temperature as a function of ribbon’s width and
channel length is shown in Fig. 3.11. For very short channels, in which the transport
is almost ballistic, the value of ZT is ∼ 0.2 for narrow ribbons and it decreases by
increasing the width, as described in Sec. 3.1.1. However, the value of ZT decreases
by increasing the channel length, as the electron tranmission decreases faster than the
phonon transmission function. For the channel length of about 100 nm, ZT is less
than 0.05, and even smaller values are expected for longer ribbons.
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In this section, the ballistic and diffusive thermoelectric properties of narrow AGNRs
are comprehensively studied. The results indicate that the contribution of the second
conduction subband increases the power factor. The second conduction is closer to the
first one in wider ribbons. However, the small band-gap of wide AGNRs degrades the
Seebeck coefficient. Designing an AGNR with large band-gap and closer conduction
subbands is the way that could significantly improve the thermoelectric power factor.
On the other hand, the high thermal conductance degrades the thermoelectric perfor-
mance of AGNRs. Using line-edge-roughness for decreasing the thermal conductance
degrades the thermoelectric properties, as it is more severe in the case of electron
transport. Engineering AGNR-based materials in which the transport of phonons is
more sensitive to the boundary scatting than that of electrons can help to improve or
at leat retain the ZT values in long ribbons. It might be accessible in some structures,
in which the band-gap is not strongly related to the width. In the next couple of
sections, these ideas are used in order to achieve high performance graphene-based
thermoelectric devices.

3.2 Thermoelectrics of Graphene Antidot Lattices

In this section, we discuss the ballistic thermoelectric properties of a new graphene-
based structure, called graphene antidot lattice (GALs) [65]. Although the scattering
of electrical and thermal carriers plays an important role in the thermoelectric prop-
erties of materials, the ballistic results give us an insight into how these new materials
can be used in the future thermoelectric applications. The results show that by intro-
ducing antidots in the graphene sheet (Fig. 3.12) the thermal conductance of GALs
decreases and the respective ZT values increase.

3.2.1 Geometrical Structure

The electrical and optical properties of GALs have been theoretically studied in
Refs. [26,64,84]. The results indicate that by introducing regular antidots in a graphene
sheet, it is possible to achieve a direct band gap semiconductor from a semi-metallic
pristine graphene sheet. Bai and co-workers reported the first field-effect-transistor
based on GALs [65]. To investigate the effect of the dot geometry on the thermoelec-
tric properties of GALs, the unit cell of a GAL is described by two parameters LS

and N , where LS is the side length of the hexagon in terms of the graphene lattice
constant (a = 2.46Å) and N is the number of carbon atoms removed from the pristine
supercell. In Fig. 3.12 Circ, Rect, Hex, IsoTri, and RightTri represent a circular, rect-
angular, hexagonal, iso-triangular, and right-triangular antidot in the hexagonal unit
cell, respectively. Fig. 3.12-b shows a circular antidot which is formed by removing 108
carbon atoms from a cell with LS = 10. It is therefore represented by Circ(10, 108).
The number of edge carbon atoms in a unit cell of different GALs is also given in
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Figure 3.12: Geometrical structures of different GALs. (a)-(f) indicate pristine
graphene, Circ(10, 108), Rect(10, 120), Hex(10, 120), IsoTri(10, 126), and
RightTri(10, 126), respectively. Transport is assumed to be in the direc-
tion of the x-axis.

Table 3.1: The number of edge carbon atoms in a unit cell of different GALs.

Structure Number of boundary atoms
Circ(10, 108) 30
Rect(10, 120) 32
Hex(10, 120) 30
IsoTri(10, 126) 36
RightTri(10, 126) 38

Table 3.1. As shown below, the number of carbon atoms at the boundary plays an
important role on the thermal properties of the structure.
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Figure 3.13: The electronic band structure along high symmetry lines. The density
of states and transmission of (a) pristine graphene, (b) Circ(10,108), (c)
Rect(10,120), (d) Hex(10,120), (e) IsoTri(10,126) and (f) RightTri. The
units of the DOS and transmission are [eV−1m−2] and [m−1], respectively.
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3.2.2 Electronic Structure

The Seebeck coefficient and power factor are sensitive to the details of the density
of states and the asymmetry between electrons and holes [85, 86]. The electronic
band structures of GALs are calculated using a third nearest-neighbor tight-binding
method (Sec 2.1.1). By introducing the antidots in the graphene sheet, the zero
band-gap graphene can be converted into a narrow band-gap semiconductor [26, 27]
(see Fig. 3.13). This issue plays an important role in thermoelectric applications.
In contrast to pristine graphene, GALs have a beneficial band-gap, so that one can
suppress either the electron or the hole current to obtain unipolar conduction. For
example, by adjusting the Fermi level near the conduction band the hole current will
be negligible. The electron-hole asymmetry with respect to the Fermi level depends
on the band-gap, on the sharp features of transmission, on the width of the first
conduction subband, and on the value of the transmission. At room temperature,
the width of the thermal broadening function is about 0.2eV. Therefore, a band-gap
around 0.2eV and a first conduction subband width larger than 0.2eV will be ideal for
thermoelectric applications.

In RightTri(10,126), there are some localized midgap states, see Fig. 3.13-f, as a result
of sublattice-symmetry breaking [84, 87]. They have a zero group velocity and can
not contribute to the carrier transport. Although RightTri(10,126) has the sharpest
features in the transmission and its transport band-gap is about 0.4eV, the width
of the first conduction subband of RightTri(10,126) is only 0.12eV. As a result, it
has a high Seebeck coefficient and a low electrical conductance, see Fig. 3.14. The
first conduction subband of a Rect(10,120) has a non-zero group velocity. Therefore,
the rectangular GAL is considered as a zero band-gap material and as a result, the
Seebeck coefficient will be small which is detrimental to thermoelectric applications.
In a Hex(10,120), the first conduction and valence subbands are quasi-flat bands due
to existence of some edge carbon atoms which have only one nearest neighbor [87].
As shown in Fig. 3.13-d, these bands have a small group velocity and have a small
contribution to electron transport. As a result, the maximum value of the Seebeck
coefficient of Hex(10,120) is not very large and is located close to the band-edge of
the second conduction subband. On the other hand, the electrical conductance peaks
close to the second subband-edge. Therefore, Hex(10,120) has the third highest power
factor among the GALs with different antidot shapes.

On the other hand, the band-gap and the first conduction subband width of Circ(10,108)
and IsoTri(10,126) are nearly 0.4eV and 0.2eV, respectively. They also have the high-
est transmissions. Therefore, as shown in Fig. 3.14, they are the best thermoelectric
GALs in terms of the power factor. Because of a sharp feature in the transmission,
Circ(10,108) has the highest power factor of the GALs considered. In addition, as
shown in Fig. 3.14-d the electron contribution to the thermal conductance can be
neglected in comparison with the lattice thermal conductance (see Table 3.2).
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Figure 3.14: (a) Seebeck coefficient, (b) electrical conductance, (c) power factor, and
(d) electrical thermal conductance as a function of the Fermi level.
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3.2.3 Phononic Structure

We compare the thermal conductance of circular GALs with LS = 10 and different
radii, including Circ(10,24), Circ(10,108) and Circ(10,258). The phonon density of
states (DOS) and phonon transmission of these GALs are shown in Fig. 3.15. As indi-
cated in Table 3.2, by increasing the size of the antidot, the phonon DOS, the phonon
transmission, and the thermal conductance are significantly reduced. In Fig. 3.16 two
phonon modes of Circ(10,108) at the Γ point are shown. Fig. 3.16-a presents a localized
phonon mode as a result of introducing antidots, whereas, Fig. 3.16-b shows a prop-
agative mode. By introducing antidots into the graphene sheet, some phonon modes
become localized, similar to electrons, and they can not contribute to the thermal
conductance.
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Figure 3.15: Comparison between (a) phonon density of states and (b) transmission
of pristine graphene and circular GALs with different antidot areas.
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Table 3.2: The comparison of the thermal conductance of pristine graphene and dif-
ferent GALs.

Structure
Thermal

conductance
[W/K-m]

Pristine Graphene 1.3813
Circ(10, 24) 0.6948
Circ(10, 108) 0.3764
Circ(10, 258) 0.2220
Rect(10, 120) 0.3378
Hex(10, 120) 0.3764
IsoTri(10, 126) 0.2606
RightTri(10, 126) 0.2509

To investigate the effect of the antidot circumference, we compare GALs with nearly
the same area and different shapes, including Circ(10,108), Rect(10,120), Hex(10,120),
IsoTri(10,126), and RightTri(10,126). Although the DOS of these GALs have the same
order as that of a pristine graphene sheet, the transmissions can be very different.
Fig. 3.17-a shows that the phonon transmissions of Circ(10, 108) and Rect(10, 120) are
quite different from that of pristine graphene. However, Circ(10, 108), Rect(10, 120),
and Hex(10, 120) have nearly the same transmissions, whereas IsoTri(10, 126) and
Right(10, 126) have similar transmissions which are different from the first group, see
Fig. 3.17-b.

The transmissions of Circ(10, 108), Rect(10, 120), and Hex(10, 120) are similar because
they have similar circumference and thus the same number of boundary carbon atoms.
Furthermore, the nearest-neighbor dots in these GALs have nearly the same distance.
On the other hand, IsoTri(10, 126) and RightTri(10, 126) have the same circumference
which is different from those of the first group.

The thermal conductances of pristine graphene and different GALs are summarized
in Table 3.2. Triangular GALs have the smallest thermal conductance, although they
have the minimum area of all antidot shapes. This behavior can be explained by
considering the fact that triangular antidots have the highest circumference of all
antidots with the same area. This indicates that circumference of the antidot has a
stronger effect on the thermal conductance rather than its area.
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Figure 3.16: Phonon modes at Γ point: (a) represents a localized mode at E = 30meV
and (b) represents a propagating mode at E = 16meV. The amplitude
of the vibrations has been normalized.

3.2.4 Thermoelectric Figure of Merit

The figures of merit of different GALs as a function of the Fermi energy are compared
in Fig. 3.18. IsoTri has the highest ZT , because it has the lowest lattice thermal
conductance and one of the largest Seebeck coefficients. At room temperature, the
factor ∂f/∂E has significant values only in the range of 0.2eV around the Fermi level.
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Figure 3.17: (a) The comparison between the phonon transmission of a pristine
graphene, Circ(10, 108), and Rect(10, 120). (b) The comparison be-
tween the phonon transmission of Circ(10, 108), IsoTri(10, 126), and
RightTri(10, 126). IsoTri(10, 126) and RightTri(10, 126) have similar
transmission, but generally smaller than that of Circ(10, 108). This can
be explained by a larger circumference and a lower distance between the
nearest-neighbor antidots of these two GALs.

Under the condition EG > 0.2eV, holes have no contribution to the total electrical
current. A large value of the Seebeck coefficient is therefore obtained.

In our work we did not consider the passivation of dangling bonds at the edges. How-
ever, it has been shown that hydrogen passivation of dangling bonds results in further
reduction of the thermal conductance [70]. Therefore, a higher ZT for GALs can be
obtained by edge passivation.
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Figure 3.18: The figure of merit ZT of different GALs as a function of the Fermi
energy.

3.3 Thermoelectrics Engineering in ZGNRs

Graphene is not a useful thermoelectric material. Although its electrical conductance
is as high as that of copper [23], its ability to conduct heat is even higher [82], which
increases the denominator of ZT . To make things worse, as a zero bandgap material,
pristine graphene has a very small Seebeck coefficient [24], which minimizes the power
factor S2G. In order to improve the Seebeck coefficient graphene needs to acquire
a bandgap. This can be achieved by appropriate patterning of the graphene sheet
into nanoribbons [25,27]. Graphene nanoribbons (GNRs) are thin strips of graphene,
where the bandgap depends on the chirality of the edges (armchair or zigzag) and
the width of the ribbon. Armchair GNRs (AGNRs) can be semiconductors with a
bandgap inversely proportional to their width [25]. Although the acquired bandgap
can increase the Seebeck coefficient, when attempting to reduce the thermal conduc-
tivity by introducing disorder in the nanoribbon, as described in Sec. 3.1, the electrical
conductivity is also strongly affected [58, 88], and the thermoelectric performance re-
mains low. Zigzag GNRs (ZGNRs), on the other hand, show metallic behavior with
very low Seebeck coefficient, but as described in Ref. [88], the transport in ZGNRs is
nearly unaffected in the presence of line edge roughness, at least in the first conduction
plateau around their Fermi level.

In this section, by using atomistic electronic and phononic bandstructure calcula-
tions, and quantum mechanical transport simulation, it is shown that despite the zero
bandgap, the thermoelectric performance of ZGNRs can be largely enhanced. For this
a series of design steps are employed: i) Introducing extended line defects (ELDs) as
described in Ref. [89] can break the symmetry between electrons and holes by adding

54



additional electronic bands. This provides a sharp band edge around the Fermi level
and offers a band asymmetry which constitutes an “effective bandgap” for thermoelec-
tric purposes. ii) Introducing background impurities enhances the “effective bandgap”.
iii) Introducing edge roughness reduces the lattice part of the thermal conductivity
more effectively than it reduces the electrical conductivity. Using these measures, the
figure of merit ZT can be greatly enhanced and high thermoelectric performance could
be achieved.

3.3.1 The Role of Extended Line Defects

An efficient thermoelectric material must be able to effectively separate hot from cold
carriers. The quantity that determines the ability to filter carriers is the Seebeck
coefficient. The Seebeck coefficient depends on the asymmetry of the density of states
around the Fermi level. In semiconductors the Seebeck coefficient is large, whereas in
a metal the density of states is more uniform in energy and the Seebeck coefficient is
small. Metallic ZGNRs also have a small Seebeck coefficient because their transmission
is constant around the Fermi level, despite the peak in the DOS at E = 0 eV due to
the edge states. Recently, however, Bahamon et al. have investigated the electrical
properties of ZGNRs that included an ELD (ELD-ZGNRs) along the nanoribbon’s
length [89]. It was reported that the ELD breaks the electron-hole energy symmetry
in nanoribbons, and introduces an additional electron band around the Fermi level.
In such a way an asymmetry in the density of states and the transmission function are
achieved which improves the Seebeck coefficient. This particular structure has also
been experimentally realized recently [90].

For the electronic structure calculations, the Hamiltonian of the GNRs is described in
the standard first nearest-neighbor atomistic tight-binding pz orbital approximation.
The hopping parameter is set to −2.7 eV and the on site potential is shifted to zero so
that the Fermi level remains at 0 eV. This model has been recently used to describe the
electronic transport of ELD-ZGNR with double-vacancies and the results are in good
agreement with first-principle calculations and experimental studies [89,90]. To date,
only a few first-principle calculations and experimental studies have been conducted
for structures that include ELDs [90–92]. The two main features of the electronic
structure, the asymmetry between electrons and holes, and the metallic behavior of
the ELD in the graphene ribbon have been described in these studies, and are also
captured by the tight-binding model, which is used here for ZGNR-based structures.

The changes in the electronic structure of the ZGNRs after the introduction of the
ELD are demonstrated in Fig. 3.19. Figure 3.19-a shows the atomistic geometry of
the pristine ZGNR of width W ∼ 4 nm (with 20 zigzag edge lines) and Fig. 3.19-b
its electronic structure. The Fermi level is at E = 0 eV due to the symmetry of
the electron and hole bands. Figure 3.19-c shows the structure of the ELD-ZGNR
with the same width. The region where the ELD is introduced is shown in red color.
The ELD changes the hexagons of the GNR to pentagons and octagons after a local
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Figure 3.19: The geometrical structure of (a) ZGNR(n), (c) ELD-ZGNR(n1,n2), and
(e) 2ELD-ZGNR(n1,n2,n3). The bandstructure of (b) ZGNR(20), (d)
ELD-ZGNR(10,10), and (f) 2ELD-ZGNR(8,4,8). The bandstructure of
ZGNR(20) is folded for a better comparison. The translation vector
length is a = 0.49 nm. The numbers n, n1, n2 and n3 indicate the number
of zigzag edges on the top, bottom, and middle of the ELD regions.

rearrangement of the bonding and the introduction of two additional atoms in the
unit cell. To describe the ELD-ZGNR structure a two parameter notation is used as
ELD-ZGNR(n1,n2), where n1 and n2 are the indices of the partial-ZGNRs above and
below the line defect, respectively (i.e. the number of zigzag edge lines of atoms). In
this work we only consider the cases n1 = n2.

The bandstructure of the ELD-ZGNR(10,10) is shown in Fig. 3.19-d. The thick-red
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line shows a new band that is introduced in the conduction band near the Fermi energy
(E = 0 eV), which corresponds to the ELD. There are two effects that result in the
creation of the extra band. Part of the physics behind this is explained by Pereira et
al. in Ref. [93]. The first effect is that a defect in the graphene system will introduce
states that reside close to the Fermi level at E = 0 eV. This is similar to the edge
states of the ribbons that tend to reside near the Fermi level. The second effect again
described in Ref. [93], is that an asymmetry in the dispersion between electrons and
holes will be created when carbon atoms of the graphene sublattice “A” (or “B”) are
coupled with atoms from “A” (or “B”) again. Usually, the atomic arrangement in
graphene can be splitted in sublattices “A” and “B”, where atoms from “A” couple
to “B” and vise versa. When this happens, the dispersion is symmetric in the first-
nearest neighbor tight-binding model. At a defect site such as the ELD, where “A”
connects to “A” as seen in Fig. 3.19-c, such asymmetry can be observed. The fact
that the overall bandstructure has additional bands compared to the pristine ribbon
is also caused by the two extra atoms in the unit cell.

Moving one step further, in Fig. 3.19-e the geometry of a GNR with two ELDs is
shown. This structure is denoted as 2ELD-ZGNR(n1,n2,n3), where n1, n2, and n3

denote the the number of zigzag carbon lines above, within, and below the line defects.
Figure 3.19-f shows the electronic structure of the 2ELD-ZGNR(8,4,8). In this case
two additional bands are introduced near the Fermi level as designated by the thick-
red lines. In this structure the asymmetry between electron and hole bands around
the Fermi level (E = 0 eV) is further enhanced.

Figure 3.20 demonstrates the increase in the asymmetry of the bands around the Fermi
level by showing how the transmission changes when one or two ELDs are introduced
in the channel. For the pristine ZGNR, the transmission is equal to one, indicating the
existence of a single propagating band at energies around the Fermi level (green line).
With the introduction of one ELD, the conduction band (E > 0 eV) is composed
of two subbands, whereas the valence band (E < 0 eV) is still composed of one
subband. With the introduction of two ELDs, three conduction subbands appear,
but still only one valence subband. As it will be shown below, this asymmetry will
improve the Seebeck coefficient. This constitutes the first design step in improving
the thermoelectric performance of ZGNRs.

There is, however, another point worth mentioning. In Fig. 3.21 the colormaps show
the normalized current spectrum at E = 0.2 eV in the cross sections of the ELD-
ZGNRs described in Fig. 3.20. Figure 3.21-a shows the current spectrum of the
ELD-ZGNR(10,10). The current is zero close to the edges of the ribbon and peaks
near the center. This is demonstrated more clearly in Fig. 3.21-d, which shows the
current along one atomic chain perpendicular to this channel (blue line). The black
line of Fig. 3.21-d illustrates the current density on the cross section of the pristine
ZGNR channel for reference.

The current spectrum for the 2ELD-ZGNR(8,4,8) is shown in Fig. 3.21-b. The sit-
uation is now different since most of the current is confined within the two ELDs.
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Figure 3.20: The transmission function for three different structures: i) The pristine
ZGNR(20), ii) ELD-ZGNR(10,10), and iii) 2ELD-ZGNR(8,4,8).

This, however, is the case only when the distance between the ELDs is smaller than
the widths of the upper/lower regions. In the case where the width of the middle
region is similar to the widths of the upper/lower regions, the current is spread more
uniformly in the channel as shown in Fig. 3.21-c for the 2ELD-ZGNR(7,6,7) channel.
Figure 3.21-e shows again the current along one atomic chain in the cross section of
these ribbons. The current spectrum is localized in the middle of the channel in the
2ELD-ZGNR(8,4,8) channel (red line) compared to the pristine channel (black line).
In a 2ELD-ZGNR(9,2,9) channel with a narrower middle region the current spectrum
is localized even closer around the center (blue line). A large portion of the current
is in general flowing around the ELD regions. The design capability to localize the
current spectrum in the middle of the channel away from the edges will prove advan-
tageous in the presence of edge roughness since the current in this case will be less
affected. On the other hand, in the case of the 2ELD-ZGNR(7,6,7) channel the current
spectrum tends to concentrate more close to the edges (green line).

3.3.2 The Role of Substrate Impurities

The possibility of further enhancing the asymmetry between electron and hole trans-
port near the Fermi level by the introduction of positively charged substrate back-
ground impurities is examined. The effect of background impurities is included in the
Hamiltonian in a simplified way as an effective negative long range potential energy on
the appropriate on-site Hamiltonian elements as described in Ref. [88]. A positive im-
purity in the substrate will constitute a repulsive potential for holes (a barrier for holes
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Figure 3.21: Normalized current spectrum at E = 0.2 eV for (a) ELD-ZGNR(10,10),
(b) 2ELD-ZGNR(8,4,8), and (c) 2ELD(7,6,7). (d) The current in the
cross section of ZGNR(20) (black line) and ELD-ZGNR(10,10) (blue line).
(e) The current in the cross section of ZGNR(20) (black line), 2ELD-
ZGNR(9,2,9) (blue line), 2ELD-ZGNR(8,4,8) (red line), and 2ELD-
ZGNR(7,6,7) (green line).

but a well for electrons) and will degrade hole transport more effectively than electron
transport. Figure. 3.22-a shows how the transmission of the ELD-ZGNR(10,10) chan-
nel (dashed-black line) is affected after the introduction of positive charged impurities
in the channel (solid-blue line). Indeed, the transmission of holes below the Fermi
level (E = 0 eV) is degraded. This effect additionally increases the asymmetry of the
propagating bands and improves the Seebeck coefficient. On the other hand, the op-
posite is observed when negative impurities are introduced in the substrate. Negative
impurities are a barrier for electrons and reduce their transmission [94], but do not
interfere with the hole subsystem as shown in Fig. 3.22-b. This type of impurities will
actually harm the asymmetry and needs to be avoided.
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Figure 3.22: The effect of (a) positive substrate impurity, (b) negative substrate im-
purity, and (c) roughness on the transmission of ELD-ZGNR(10,10) with
length of 125 nm. Inset of (c): The transmission of ZGNR(20) in the
presence of roughness.

3.3.3 The Role of Line-Edge-Roughness

In the third step of the design process the effect of edge roughness is introduced.
The inset of Fig. 3.22-c shows the influence of edge roughness on the transmission
of the ZGNR(20) of length 125 nm. As also described in previous studies [19, 88],
in the first conduction plateau the effect is negligible. In contrast to ZGNR, ELD-
ZGNRs as well as 2ELD-ZGNRs are affected by edge roughness. This is because the
bandstructure of these GNRs has undergone a band folding, and therefore, the states
in the first conduction plateau have lower wave vectors. As the long range defects can
induce only a small momentum transfer, the momentum conservation rule indicates
that, in contrast to the ZGNR, the transport of ELD-ZGNRs and 2ELD-ZGNRs will
not remain ballistic in the presence of line edge roughness and long range substrate
impurities. This is shown in Fig. 3.22-c, where the transmission of a roughened 125 nm
long ELD-ZGNR(10,10) channel (solid-blue line) is reduced by ∼ 25% compared to
the ballistic value (dashed-black line). Edge roughness degrades the conductivity of
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Figure 3.23: The influence of roughness and positive impurities on the ELD-ZGNR
channel. (a) Electronic transmission of ELD-ZGNR(10,10). Rough edges
are assumed and the length L is varied. The arrow indicates increasing
values of length L. (b) Electronic transmission of ELD-ZGNRs with
different widths. The length is assumed to be constant at 250 nm and the
arrow indicates the direction of decreasing the ribbon’s width. Black-solid
and black-dashed lines in (a) and (b): The transmission of the pristine
ELD-ZGNR.

holes and electrons by a similar amount, and therefore, the level of asymmetry around
the Fermi level is retained.

Figures 3.23-a and 3.23-b illustrate the influence of roughness in ELD-ZGNR channels
on their transmission, for channels of different lengths and widths. In this calculation
positive impurities are also included. Figure 3.23-a shows the transmission of edge
roughened ELD-ZGNR(10,10) versus energy for the channel lengths L = 250, 500,
and 2000 nm. As the channel length is increased, the transmission drops further
compared to the transmission of the ideal channel (black-solid line). This is expected
since the channel resistance increases with increasing length. Figure 3.23-b illustrates
the effect of the ribbon’s width on the transmission of ELD-ZGNRs with rough edges.
In this case the length is kept constant at L = 250 nm, and results for three different
ribbons with parameters (10,10), (7,7), and (5,5) are shown. As the width of the
ribbon is decreased, the effect of line edge roughness scattering on the transmission
becomes stronger because the carriers reside on average closer to the edges.

It is worth mentioning that the effect of edge roughness on the transmission is much
stronger in AGNR than in ZGNR. Although in the case of some AGNRs a bandgap
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Figure 3.24: Transmission at E = 0.2 eV for three different structures versus width.
The length is assumed to be constant at 250 nm.

is naturally present and the asymmetry need not be created with the introduction
of line defects and impurities, the conductance is severely degraded by the roughness
which renders this type of ribbon not well suited for transport applications [88]. (Note
that edge roughness will be needed in order to reduce thermal conductivity as will be
shown below.)

As we mentioned above in Fig. 3.21, the channel which includes two ELDs can shift the
majority of the current spectrum in the region between the two ELDs, and thus farther
away from the edges. It is therefore expected that the 2ELD-ZGNR will be less affected
by edge roughness scattering than the ELD-ZGNR. A comparison of the transmission
of these devices with rough edges is shown in Fig. 3.24. The transmission of ELD-
ZGNR(n1,n1), and two cases of 2ELD-ZGNR, 2ELD-ZGNR(n2,4,n2) and the 2ELD-
ZGNR(n3,6,n3) at E = 0.2 eV versus their width W are compared. The parameters
ni are adjusted such that the three channels have nearly the same width W . The
first channel belongs to the category shown in Fig. 3.21-a, the second in the category
of Fig. 3.21-b, and the third in the category of Fig. 3.21-c. The third channel as
shown in Fig. 3.21 spreads the current spectrum more uniformly in the channel and
is expected to be affected the most from edge roughness. All channels have the same
length of L = 250 nm. For smaller widths the effect of roughness is strong, and the
transmissions of all channels are drastically reduced. Since the 2ELD-ZGNR devices
can concentrate the current spectrum around the defect lines as shown in Fig. 3.21-b
and 3.21-c, they effectively bring it closer to the edges and the reduction is larger for
these devices. For larger widths the transmission of the ribbons approaches its ballistic
value, which is 2 for the ELD-ZGNR devices and 3 for the 2ELD-ZGNR devices. The
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transmission of the 2ELD-ZGNR(n2,4,n2) channels increases faster with increasing
channel width, because the current spectrum is located farther from the edges which
makes it less susceptible to scattering as the width increases. The transmission of
2ELD-ZGNR(n3,6,n3) channel eventually increases close to the ballistic transmission
value as the width increases, but it increases more slowly than that of the 2ELD-
ZGNR(n2,4,n2) channel.

3.3.4 The Effect of Roughness on Phonon Transport

The high thermal conductivity of graphene is mostly due to the lattice contribution,
whereas the electronic contribution is much smaller [28, 29]. In order to reduce the
thermal conductivity, therefore, the focus is placed on reducing phonon conduction.
Although the reduction in the electronic transmission of channels with ELDs can be
quite strong when considering edge roughness, the reduction in the lattice part of the
thermal conductivity is even stronger. One can take advantage of this effect when
attempting to optimize the thermoelectric figure of merit.

For the phonon modes, the dynamic matrix is constructed using the fourth nearest-
neighbor force constant model [83]. The force constant method uses a set of empirical
fitting parameters and can be easily calibrated to experimental data. The fitting
parameters given in Ref. [42] are used for graphene-based structures. Here, it is
assumed that this model is still valid for structures that include ELDs. Although
verification of its validity for ELD-ZGNRs has not been demonstrated yet, for instance
using first-principle calculations, in Ref. [95] it was shown using DFT simulations
that there is little difference between the phonon transmission of carbon nanotube
structures with and without ELDs which could justify the model employed here. In
any case, as shown below, the main influence on the phonon transport in this work
originates from edge roughness scattering, which reduces the phonon transmission
drastically. The effect of edge roughness scattering can be captured adequately by the
model employed in this work. The influence of the ELDs on the phonon transmission is
much smaller than the effect of edge roughness, and therefore usage of the numerically
less expensive fourth nearest-neighbor force constant method is justified.

The phonon transmission for the edge roughened ELD-ZGNR(10,10) channel versus
energy is shown in Fig. 3.25-a. Results for channel lengths L = 10, 100, and 2000 nm
are shown. As expected, the transmission decreases as the length is increased. What
is important, however, is that the decrease is much stronger than the decrease of
the electron transmission shown in Fig. 3.23-a. For example, for a channel length of
L = 100 nm the phonon transmission reduces by more than a factor of 6X , whereas
the electronic transmission even at larger length L = 250 nm reduces only by < 30%.
Interestingly, the same order of reduction of the phonon transmission is observed for
the 2ELD-ZGNRs as shown in Fig. 3.25-b, indicating that the line defect does not
affect phonon conduction significantly compared to the effect of edge roughness.
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Figure 3.25: Phonon transmission function of (a) ELD-ZGNR(10,10) and (b) 2ELD-
ZGNR(8,4,8). Rough edges are assumed and the length L of the channel
is varied. The arrows indicate increasing values of channel length L:
10 nm (green), 100 nm (red), 2000 nm (blue). Black lines: The phonon
transmission of the channels with line defects but without roughness.

The denominator of the ZT figure of merit consists of the sum of the contributions
to the thermal conductivity of the electronic system and the phononic system. In
graphene the phonon part dominates the thermal conductivity, whereas the electronic
part contribution is much smaller. The situation is different, however, in rough ELD-
ZGNRs, in which the phonon thermal conductivity is degraded more than the elec-
tronic thermal conductivity. Figure 3.26 clearly illustrates this effect by showing the
ratio of the phonon thermal conductance to the electronic thermal conductance versus
the rough channel length. The cases of ELD-ZGNR(10,10) and 2ELD-ZGNR(8,4,8) are
shown in dashed-red and dash-dot-blue lines, respectively. For small channel lengths,
where transport is quasi-ballistic and roughness does not affect the transmission sig-
nificantly, Kph is almost 5X larger than Kel. As the length of the channel increases
and the effect of the roughness becomes significant, the phonon system is degraded
more than the electronic system, and the Kph is significantly reduced compared to
Kel. For lengths L ∼ 100 nm and beyond, Kph can become even smaller than Kel.
The trend is the same when considering channels with one or two ELDs.

The inset of Fig. 3.26 shows that the ratio of the electrical conductance G over Kel is
almost constant, from which it can be indicated that both G and Kel follow the same
trend, as dictated by the Wiedemann-Franz law. The Kph and Kel values used in
Fig. 3.25 are extracted using the corresponding mean free paths (MFPs) for phonons
and electrons respectively, defined as Eq. 3.2. Alternatively, Kph and Kel could be
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cannel length L for the ELD and 2ELD structures as noted. Inset: The
ratio of the electronic conductivity to the electronic part of the thermal
conductivity versus channel length L.

extracted from the transmission calculations by using a statistical average over several
rough samples for each channel length. The results of both methodologies are in
good agreement for the electronic part of the thermal conductivity. For the lattice
part, the agreement is good only for the shorter channels, below ∼ 100 nm. For
larger channel lengths, the phonon transmission is severely reduced which increases
the relative statistical error in the calculation for extracting the Kph. The values
extracted directly from the integration of the average phonon transmission might be
as much as 2X larger. In this case the ratio Kph/Kel will be closer to unity, but this
is still a huge advantage compared to devices without roughness.

3.3.5 Thermoelectric Figure of Merit

Using the first design step, i.e. the effect of ELDs, it was demonstrated that the
transmission of electrons around the Fermi level can be increased (from T = 1 to
T = 2 and T = 3 in the presence of one and two ELDs, respectively). An asymmetry
is thus created between holes and electrons. This increases both the conductance
and the Seebeck coefficient of the channel as shown in Fig. 3.27. Figure 3.27-a shows
the conductance of the 2ELD-ZGNR(8,4,8) (blue), of the ELD-ZGNR (10,10) (red),
and of the pristine nanoribbon (green) at 300 K. As expected, the conductance of
the channel with two ELDs is the largest, followed by the channel with one ELD.
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Figure 3.27: (a) Electrical conductance, (b) Seebeck coefficient, and (c) thermoelec-
tric power factor of pristine ZGNR(20), ELD-ZGNR(10,10), and 2ELD-
ZGNR(8,4,8) channels with perfect edges . The dots indicate the Fermi
energy values at which the peak of the power factor occurs for the ELD
and 2ELD channels.

The conductances are larger than that of the pristine channel by ∼ 3X and ∼ 2X,
respectively. Figure 3.27-b shows the changes of the Seebeck coefficient after the
introduction of the ELDs in the nanoribbon. Due to its metallic behavior and the flat
transmission near the Fermi level, the pristine channel exhibits zero Seebeck coefficient.
Due to the asymmetry built up after the introduction of the ELDs, however, the
Seebeck coefficient increases for both channels. The channel with two line defects
has the largest asymmetry, and therefore the largest Seebeck coefficient (in absolute
values). Finally, the power factor in Fig. 3.27-c is indeed largely improved in the ELD
structures, and especially the 2ELD-ZGNR channel.

In Figure 3.28 the same thermoelectric coefficients for the same structures as in
Fig. 3.27 are shown, but now edge roughness and positive impurities are included
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Figure 3.28: (a) Electrical conductance, (b) Seebeck coefficient, and (c) thermoelectric
power factor of ELD-ZGNR(10,10) and 2ELD-ZGNR(8,4,8) with rough
edges and positively charged substrate impurities. The channel length is
2 µm. The dots indicate the Fermi energy values at which the peak of the
power factor occurs for the pristine ELD and 2ELD channels of Fig. 3.27.

in the calculation. The length of the channels in this case is 2000 nm. A similar quali-
tative behavior is observed as in Fig. 3.27 for both channels. Quantitatively, however,
the conductance in Fig. 3.28-a is now significantly reduced by a factor of ∼ 15X (the
dots correspond to the position of the peak of the power factor of the devices without
roughness and impurities in Fig. 3.27). The Seebeck coefficient in Fig. 3.28-b, on the
other hand increases. Finally, the peak of the power factor in Fig. 3.28-c reduces
only slightly compared to the peak of the power factor of the devices without edge
roughness in Fig. 3.27-c (dots).

For the devices that include rough edges, however, as demonstrated in Fig. 3.26,
the phonon thermal conductivity is drastically reduced compared to the electronic
thermal conductivity. A large improvement in ZT is therefore expected. Figure 3.29
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Figure 3.29: The thermoelectric figure of merit ZT for the ELD-ZGNR(10,10) (red
line) and 2ELD-ZGNR(8,4,8) (blue line) channels of length L = 2 µm.
The lattice thermal conductance is extracted from the calculated mean
free path. Inset: The same figure of merit ZT but with the lattice thermal
conductance extracted by integrating the simulated phonon transmission.

shows ZT versus energy at room temperature for the ELD-ZGNR(10,10), the ELD-
ZGNR(10,10) with impurities and roughness (red), and the 2ELD-ZGNR(8,4,8) (blue)
with impurities and roughness. As indicated, large values of ZT can be achieved,
especially in the case of the device with two ELDs. The phonon lattice conductivity
value used in this calculation was extracted using the MFP method. As explained
in Sec. 3.3.4, that value could be 2X lower than the value extracted from direct
integration of the simulated phonon transmission. In the inset of Fig. 3.29 the ZT
versus energy using the κl values extracted from the transmission are shown. Indeed
the values might be reduced by a factor of ∼ 2X, but still peak ZT values above 2 can
be achieved at room temperature, which is comparable and even better than the best
thermoelectric materials to date [96]. It is worth mentioning that as shown by Ref. [19]
rough ZGNRs can have high ZT values even without the presence of ELDs. For this
the asymmetry in the sharp edges of the higher subbands is utilized at energies above
0.5 eV. Those energies however, are too high and can not easily be reached. Finally
it is necessary to mention here that the formalism has considered scattering only by
edge roughness and impurity scattering, whereas phonon scattering and dephasing
mechanisms are not included. However, as it is shown for 1D nanowires [97], the
effects of impurity scattering and edge roughness are the most important scattering
effects in channels of cross sections below 5 nm, and one can expect this to hold also
for GNRs as well.
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4 Ballistic Thermal Properties of

Silicon-Based Nanostructures

Low dimensional silicon materials, such as nanowires and ultra-thin layers have demon-
strated record low thermal conductivities of 1 − 2 W/mK, reaching the amorphous
limit. This resulted in ZT values close to ZT ∼ 0.5, a large improvement compared to
bulk silicon with ZTBulk ∼ 0.01 [17, 20]. Although the two order of magnitude reduc-
tion in the thermal conductivity is attributed to boundary scattering of phonons, an
additional reduction can be achieved from changes in the phonon mode structure due
to geometrical confinement. In this chapter, the effect of confinement and orientation
on the phonon transport properties of silicon-based nanostructures of various surface
and transport orientations are investigated. To this aim, the density of states, the
transmission function, the sound velocity, and the ballistic thermal conductance of
silicon-based ultra-thin layers and narrow nanowires are extracted. The lattice dy-
namics is, here, modeled by the modified valence force field method and the ballistic
Landauer transport formalism is employed to calculate the thermal conductance.

4.1 Silicon Nanowires

Numerous studies can be found in the literature regarding the thermal conductivity of
silicon nanowires [98–102]. The effects of different scattering mechanisms, i.e. surface
roughness scattering, mass doping, phonon-phonon scattering, and phonon-electron
scattering have been investigated by several authors [103–106]. In these works, it is
demonstrated that the thermal conductivity in ultra-narrow silicon nanowires drasti-
cally degrades once the diameter of the nanowire is reduced below 50 nm, or when
scattering centers are incorporated. For even smaller nanowire diameters, i.e. below
10 nm, the effect of confinement could further change the phonon spectrum signif-
icantly, and provide an additional mechanism in the reduction of the thermal con-
ductivity [107]. This could provide additional benefits to the thermoelectric figure of
merit ZT . In this section, we employ the modified valence force field method [45] to
address the effect of structural confinement on the phonon dispersion, group velocity
and ballistic thermal conductance of ultra-narrow silicon nanowires of diameters below
10 nm. We consider different transport orientations, and different cross sectional sizes
(square cross sections W = H).
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Figure 4.1: Phononic dispersions of silicon nanowires of square cross sections withW =
H = 2 nm for a) <100>, b) <110>, and c) <111> transport orientations.

4.1.1 Anisotropy in Ultra-Narrow Silicon Nanowires

The phononic dispersions of silicon nanowires of 2 nm×2 nm cross section for different
transport orientations are shown in Fig. 4.1. There are differences in the dispersions,
especially in the low energy, low momentum region, which indicate that the thermal
properties could be orientation-dependent as well. Figure 4.2 shows the ballistic trans-
mission function of nanowires with side sizes W = H = 6 nm for three orientations.
The transmission function of the <110> nanowires is the highest in most part of the
energy spectrum, whereas the transmission of the <111> nanowires is the lowest in
almost the entire energy spectrum. As a result, the ballistic lattice thermal conduc-
tance of the nanowires (see Fig. 4.3-a) shows that the <110> nanowires has the highest
thermal conductance compared to the <100> and <111> nanowires.

The thermal conductance is larger for the <110> nanowires of all the side sizes we
have considered, up to 10 nm as shown in Fig. 4.3-a. The difference between the
thermal conductances of the <110> nanowire, which has the highest, and the <111>
nanowire which has the lowest, is a factor of ∼ 2. Another observation is that the
thermal conductance increases as the cross section of the nanowire increases. This is
expected since the larger nanowires contain more transport modes. The increase is
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Figure 4.2: Transmission function versus energy for nanowires in different transport
orientations. <110> nanowires have the highest and <111> nanowires the
lowest transmission.

close to linear. Once the conductances are normalized by the cross section area of the
nanowires, however, the resultant normalized conductances remain almost constant.
This is indicated in the Fig. 4.3-b. In this case, again, the <111> nanowire has
clearly the lowest conductivity, almost 2 times lower than the <110> nanowire for
all cross section sizes. In the next section, the reasons behind the anisotropy of the
thermal conductance and conductivity are elucidated in terms of the nanowires phonon
bandstructure and its related quantities.

4.1.2 Phonon Properties of Ultra-Narrow Silicon Nanowires

The ballistic transmission function is directly related to the product of the density of
phonon states and phonon group velocity. Below, each of these quantities and their
geometry dependence is investigated in order to provide insight into the orientation
dependence of the thermal conductance. For this, nanowires with W = H = 6 nm in
the three different orientations are considered. Figure 4.4 shows the phonon density of
states, which is nearly the same for all orientations in the entire range of frequencies.
This can be understood by considering the fact that the density of states is mostly
related to the density of atoms in the cross section of the nanowires. The density
of atoms is mostly a bulk property and does not change drastically in silicon-based
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Figure 4.3: (a) Ballistic lattice thermal conductance versus nanowires cross section side
size for nanowires in different orientations. (b) The thermal conductance
normalized by the cross section area.

structures. Each atom has three degrees of freedom ( 3 × 3 elements in its dynamic
matrix component), and therefore provides three eigenmodes. Although for ultra-
narrow structures i.e. of 2 nm × 2 nm there could be some differences in the density
of states due to finite size effects, a 6 nm × 6 nm structure is large enough such that
the density of states is orientation independent.

On the other hand, as shown in Fig. 4.5, the sound velocity, defined by the slope of
the acoustic modes near the Brillouin zone center, is a non-isotropic quantity. The
two lowest modes in the phonon dispersion of nanowires are flexural modes. The third
mode is the one used to calculate the transverse sound velocity, whereas the fourth
mode gives the longitudinal sound velocity. The results, as shown in Fig. 4.5, are
in good agreement with previous studies on nanowire sound velocities [39, 108]. The
<111> nanowire has the highest longitudinal sound velocity (green-solid), whereas
the <100> nanowire the lowest for all cross section sizes. The transverse velocities
are lower, and in that case, the <100> nanowire has the highest velocity. The val-
ues calculated here are different, and in general lower than the bulk sound velocities
(Symbols at the right axis of Fig. 4.5). The velocities in nanowires are lower, also
in agreement with other reports, since confinement flattens the phonon spectrum and
reduces sound velocities [109].

At first, following a bulk way of analysis, it seems that according to the ordering in
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the sound velocity one would expect that the thermal conductance should be higher
in the <111> nanowires, followed by the <110> nanowires and then by the <100>
nanowires. As we show in Fig. 4.3, however, the order is different, namely that the
<110> nanowires have the highest thermal conductance, followed by the <100>, and
then by the <111> nanowires. The reason is that the phonon dispersion is modified in
nanostructures so that the bulk definition of acoustic and optical modes is no longer
the relevant quantity. The sound velocity determines the dispersion only in a small
part of energy spectrum ( ∼ 5 meV of out of the total ∼ 65 meV). In addition, at
room temperature, all the phonons in the entire energy spectrum contribute to the
thermal conduction. Therefore, the sound velocity alone cannot describe the nanowire
phonon spectrum, which is an indication that the bulk treatment is insufficient for
understanding thermal transport in nanowires. What needs to be taken into consid-
eration in order to correctly interpret the results, therefore, is the group velocity of
all phonon modes at all energies. For this, we define the average group velocity as
follows:

<<vg>> =

$
α,'q vα(Cq)|�δ(ω − ωα(Cq))$

α,'q δ(ω − ωα(Cq))
(4.1)

where the sum holds over all the modes. The velocity of a phonon is in general a
function of the subband index, the frequency, and the wave vector. The quantity in
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Figure 4.5: The sound velocity of nanowires in different orientations versus the
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solid and dashed lines, respectively. Symbols at the right axis indicate the
respective bulk silicon velocities.

Eq. 4.1 effectively suppresses the subband and Cq-point indices and provides a quantity
that is only frequency (or energy) dependent. Similar effective quantities are also used
in actual thermal conductivity calculations with adequate accuracy in the results [103,
110], although in our actual calculations we utilize all the information of the phonon
spectrum.

In contrast to the sound velocity, the average weighted group velocity over different
modes can provide a better and more correct insight with regards to phonon transport.
Figure 4.6 shows that the average group velocity of phonons for the <110> nanowires
is the highest compared to the other orientations in the largest part of the energy
spectrum. This can be explained by the shape of the dispersions shown in Fig. 4.1.
In the case of the <111> nanowire, the modes look overall less dispersive, i.e. have
less curvature. This results in the lowest average group velocity. The modes of the
<110> nanowire, on the other hand, are more dispersive, i.e. have more curvature,
which results in the highest group velocity. By considering that all nanowires with
the same cross sectional area have the same phonon density of states, the differences
in the group velocity explain the orientation-dependence observed in the transmission
functions and in the thermal conductance shown in Fig. 4.2 and Fig. 4.3, respectively.
The transmission function of the <111> nanowire is ∼ 1.25x lower than that of the
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Figure 4.6: Average phonon group velocity of nanowires in different transport orien-
tations versus frequency.

<100> nanowires and almost 2x lower than that of the <110> nanowires.

4.1.3 Discussion

In this section we have studied the thermal properties of ultra-narrow silicon nanowires
using the atomistic MVFF method for the computation of the phonon bandstructure.
We have extracted the thermal properties using the ballistic Landauer formalism. We
have addressed the effects of structural confinement on the phonon dispersion, the
phononic density of states, the phononic transmission function, the sound velocity,
and the effective group velocity. Our results show that differently oriented nanowires
can have up to a factor of two difference in their effective group velocity, transmission
function, and ballistic thermal conductance. The <110>-oriented nanowire has the
highest ballistic thermal conductance, followed by the <100> and finally the <111>
nanowire.

Neophytou et al. have recently studied the role of transport orientations and di-
ameter on the thermoelectric power factor of nanowires using atomistic calculations
of the electronic bandstructure [97]. In the case of n-type nanowires only a small
orientation-dependence of the electric power factor was observed. In the case of
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Figure 4.7: The atomistic structure of the cross sections of the different thin silicon
layers investigated (a) {100}, (b) {110}, (c) {111}, and (d) {112} surface.
In all cases the x-axis is along the <110> transport direction. Transport
orientations θ varies between 0 and π.

p-type silicon nanowires, however, they showed that <111> nanowires have signifi-
cantly higher power factors than differently orientated nanowires. The <111> silicon
nanowire channel is, therefore, the most advantageous for p-type thermoelectric appli-
cations, since it simultaneously provides the highest power factor and lowest thermal
conductance compared with other transport orientations.

4.2 Silicon Thin Layers

In this section, the effects of confinement and orientation on the phonon transport
properties of ultra-thin silicon layers of various surface and transport orientations
are investigated. Figure 4.7 shows the geometrical cross sections of the thin-layers
considered. The layers have {100}, {110}, {111}, and {112} surface orientations. In
all cases, we consider the x-axis to be parallel to the <110> orientation, and define
the angle θ of the transport direction counter-clockwise from the x-axis. Below, a
complete analysis is presented by calculating the phononic properties and thermal
conductance as a function of the angle θ for the four surface orientations mentioned.
The layer thickness H varies from 1 to 16 nm. The phononic dispersion, density of
states, ballistic transmission, and effective group velocity of the different structures
are calculated.
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Figure 4.8: Transmission function versus energy for thin-layers of thickness H=2nm
with (a) {100}, (b) {110}, (c) {111}, and (d) {112} surfaces, for two
transport orientations in each case. The different transport orientations
are the ones that yield the highest (blue-solid) and the lowest (red-dashed)
thermal conductance for the corresponding surface orientation.

4.2.1 Anisotropy in Ultra-Thin Silicon Layers

Figure 4.8 shows the transmission functions for the four surface orientations of interest
along two particular transport orientations for each case, that, as shown below, pro-
vide the lowest and the highest thermal conductance for that particular surface. The
layer thickness in all cases is 2 nm. In the case of the thin-layer with {100} surface
orientation, in Fig. 4.8-a we consider the {100}/<110> and the {100}/<100> trans-
port channels. The transmissions of the two channels are almost the same, indicating
negligible anisotropy. In the case of the thin-layer with {111} surface orientation, in
Fig. 4.8-c we consider the {111}/<110> and the {111}/<112> transport channels.
Again in this case, the transmissions are almost the same.

The transmission function of the thin-layers with {110} and {112} surfaces, on the
other hand, is orientation-dependent. For the {110} surface thin-layers in Fig. 4.8-b,
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the {110}/<110> channel (blue line) shows the highest transmission function, and
the {110}/<100> channel (red-dotted line) the lowest. An even larger difference
is observed in the case of the {112} surface thin-layers in Fig. 4.8-d. The highest
transmission is observed for the {112}/<110> channel (blue line), and the lowest for
the {112}/<111> channel (red-dotted line). The difference in the transmission of the
channels in different transport orientations is largest for energies between 10−30 meV
for both the {110} and the {112} thin-layers.

Using the transmission functions extracted from the bandstructures, the ballistic lat-
tice thermal conductance is calculated using the Landauer formula for the thin layers
with the four different surface orientations of interest. The thermal conductance as
a function of the transport orientation θ, varying from 0 to π is shown in Fig. 4.9
for room temperature. We calculate the conductance of thin layers for thicknesses of
1, 4, 8 and 16 nm. With symbols the high symmetry orientations are denoted using
the Miller index notation, i.e. <110> - circle, <111> - star, <112> - triangle, and
<100> - square. These orientations are marked on the 16 nm thin-layer result in
Fig. 4.9. In all cases, the conductance increases linearly as the thickness increases
because the thicker layers contain more phonon modes that contribute to the thermal
conductance.

With regards to anisotropy, for the thin-layers with {100} surface in Fig. 4.9-a, the
conductance has a maximum along the <100> direction (square), and a minimum is
along the <110> direction (circle), although the difference is small (only ∼ 5%). Inter-
estingly, this observation is the same for all thicknesses considered. The conductance
of the channels with {110} surface is shown in Fig. 4.9-b. The conductance is biggest
in the <110> transport orientation ( θ = 0, circle) and smallest for the <100> chan-
nels ( θ = π/2, square). The variation between the maximum and minimum values,
however, in this case is ∼ 30% for the 1 nm thin layer, and decreases to ∼ 20% for the
16 nm layer. The conductance of channels with {111} surface is shown in Fig.4.9-c.
The conductance in this case also peaks along the <110> direction (circle) and is
smallest along the <112> direction (triangle). The variation of the conductance with
transport orientation in this case is negligible for the thinner layers, but increases to
∼ 10% in the 16 nm case. The thermal conductance for channels with {112} surface
is shown in Fig. 4.9-d. The maximum and minimum conductance is observed along
<110> (circle) and <111> (star), respectively. Channels with this surface orienta-
tion exhibit the largest variation in thermal conductance compared to other surfaces.
The difference varies from ∼ 40% for the 1 nm layers to ∼ 30% for the 16 nm lay-
ers. Overall, considering all surface and transport orientations, the maximum thermal
conductance is observed for the {110}/<110> channels, and the minimum for the
{112}/<111> channels. Interestingly, however, regardless of surface orientation, the
thermal conductance is high in <110> direction. This agrees well with previous works
on silicon nanowires, where it is reported that the <110> oriented nanowires have the
highest thermal conductance [107,111]. A similar conclusion was found for thin layers
of larger sizes [112]. As it will be explained in next section, the phonon dispersions
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Figure 4.9: Ballistic lattice thermal conductance for different thin-layers with (a)
{100}, (b) {110}, (c) {111}, and (d) {112} surfaces. The angle θ as shown
in Fig. 4.7 specifies the transport orientation. Some of the high symmetry
orientations are denoted by symbols. Results for different layers thick-
nesses are shown. From bottom to top, the thicknesses are 1, 2, 4, 8, and
16 nm.

along the <110> orientations are more dispersive compared to other orientations,
which yield higher group velocities and, therefore, higher thermal conductance.

Figure 4.10 shows the thermal conductance of the H = 2 nm layers as a function of
temperature. For every surface orientation two transport orientations, the one with
the maximum and the one with the minimum conductance are shown (as in Fig. 4.8).
The conductance increases with temperature as expected from a ballistic quantity, and
starts to saturate around 300 K. The reason is that the phononic window function [57]:

Wph =
3

π2

�
�ω

kBT

�2
∂n

∂(�ω)
(4.2)

which weights the contribution of phonons with different energy, is nearly constant
within the entire phonon energy spectrum of silicon (∼ 65 meV) for sufficiently high
temperatures. This causes the thermal conductance to saturate. Figure 4.10 shows
that the {110}/<110> channel has the largest conductance, and the {112}/<111>
channel the smallest in the entire temperature range. The conductances of the other
channels lie in between and do not deviate significantly from one another. The same
trend is observed for the H = 16 nm channels (inset of Fig. 4.10), although the spread
is smaller. Below, explanations for this geometry dependence are provided in terms of
the phonon bandstructure, by extracting the phonon density of states and the effective
group velocity.
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4.2.2 Analysis and Discussion

The ballistic phonon transmission function and thus the ballistic thermal conductance
in the Landauer formalism are determined by the product of the density of states
and the group velocity (Eq. 2.42). In Fig. 4.11 we plot the density of states for thin-
layers of thickness H = 2 nm with four different surface orientations. Although some
differences are observed for the different surface orientations, especially in the low
frequency range, the overall values and trends are very similar. The inset of Fig. 4.11
shows the density of states for layers of thickness H = 16 nm. In this case a much
smaller variation is observed as expected, since the phonon density of states depends
on the number of atoms, and layers of the same thickness contain a similar amount of
atoms. At smaller thicknesses the different arrangement of atoms can result in slightly
different numbers of atoms for different surfaces, but as the thickness increases the
crystal becomes more uniform and any variations are eliminated. In general, of course,
the arrangement of atoms, the coupling between them, and the type of interactions
they have can also influence their density of states. But as we show in Fig. 4.11, such
effects on the density of states are only important at very thin sizes, i.e. H = 2 nm,
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and even then, they are small. From this one can conclude that the variation in the
thermal conductance and transmission does not originate from the difference in the
density of states.

In Fig. 4.12 the effective group velocity defined in Eq. 4.1 is plotted. This quantity is
orientation-dependent, in contrast to the density of states, and indicates how dispersive
the modes are. The velocity vα(Cq)|� is calculated along the transport direction. The
density of states times the effective group velocity is proportional to the transmission
function. Therefore, the differences in the transmission functions should be seen in the
effective group velocities of the channels, since the density of states is the same for all
channels of the same thickness. Figure 4.12 shows the effective group velocities of the
channels considered. Figures 4.12-a and 4.12-c show the effective group velocities of
thin-layers with {100} and {111} surfaces along the two different orientations with the
lowest and highest thermal conductance for each surface orientation. The two different
cases for each surface are almost identical, as in the case of the transmission functions
in Fig. 4.8-a and 4.8-c. Figures 4.12-b and 4.12-d show the effective group velocities
for channels with {110} and {112} surface orientations, respectively. A variation is
observed for the different channels, which causes the difference in the transmission
functions shown earlier in Fig. 4.8-b and 4.8-d.

The anisotropy of the effective group velocity originates from the phonon bandstruc-
ture. In Fig. 4.13 the contour plots of the phonon bandstructure at E = �ω = 10 meV
is shown for the eight channels considered in Fig. 4.8 and Fig. 4.12 for layer thickness
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Figure 4.12: The effective group velocity versus energy for thin-layers of thickness
H = 2 nm for (a) {100}, (b) {110}, (c) {111}, and (d) {112} surface
orientations, for two transport orientations in each case. Those transport
orientations are chosen that result in the highest (blue-solid) and the
lowest (red-dashed) thermal conductance for the given surface orientation.

H = 2 nm. This is an energy value at which the most significant differences for the
channels with {110} and {112} surfaces appear. It turns out that what is presented
for this energy is a good indicator of the anisotropic behavior of the entire energy
spectrum, most of which contributes to thermal conductance at room temperature.
The lines represent the different modes at that energy, whereas the colormap indicates
the cumulative ballistic thermal conductance at room temperature in the transport
orientation of the specific channel of interest, as indicated by the arrow in each case.
Elongation of contour lines along a specific direction provides high phonon group ve-
locities in the perpendicular direction, and consequently high thermal conductance.
This is very similar to the low effective mass and high velocities of carriers in an
ellipsoidal band along the direction of the short axis.

Figures 4.13-a and 4.13-b show the energy contours for the {100} surface in the <110>
and <100> transport orientations, respectively (indicated by the arrow). Despite the
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Figure 4.13: Energy contours at E = 10 meV for thin-layers of different surface and
transport orientations. (a, b) {100} surface, (c, d) {110} surface, (e,
f) {111} surface, (g, h) {112} surface. Those transport orientations are
chosen that result in the highest (left) and the lowest (right) thermal
conductance for the given surface orientation. The color indicates the
cumulative thermal conductance at E = 10 meV at T = 300 K along
the different transport orientations in each thin-layer (indicated by the
arrow).

square like shape of the contour, which indicates that there is different symmetry in the
two orientations of interest, the contours are elongated similarly in both directions,
which results in a similar thermal conductance for both channels. This is the case
for almost the entire energy spectrum (although at higher energies there are many
more modes and more complex contour shapes). In the case of the {111} surface in
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Fig. 4.13-e and 4.13-f, a highly symmetric contour provides very similar transmission
functions and thermal conductances along the <110> and <112> directions.

The largest differences in the thermal conductance are observed for thin layers with
{110} and {112} surfaces in Fig. 4.13-c, 4.13-d and Fig. 4.13-g, 4.13-h, respectively.
In both cases, the contours at energy E = 10 meV are clearly elongated along the
vertical axis. This results in a larger phonon group velocity along the horizontal axis,
and finally a higher thermal conductance, as also indicated by the colormap. This is
especially evident for the {112} surface, where the contour of the <110> channel in
Fig. 4.13-g is colored much closer to red (higher conductance value) than the <111>
channel in Fig. 4.13-h, indicating much larger phonon group velocities. This causes
the thermal transmission and conductance of the {112}/<110> channel to be higher
than that of the {112}/<111> channel shown in Fig. 4.8-d and Fig. 4.9-d.

Figure 4.13 explains the origin of anisotropy in the ballistic thermal conductance of
thin-layers with 2nm thickness. However, such effects also hold for all the thicknesses
examined, i.e. up to H = 16 nm. The anisotropic behavior depends weakly on the
layer thickness. The ballistic conductance increases linearly as the layer thickness
increases due to the increased number of atoms which results in a larger number of
phonon modes, but the anisotropy does not change significantly. This is illustrated in
Fig. 4.14-a which shows the ballistic thermal conductance for each of the four surface
orientations examined, normalized by the thickness of the layer. For each surface
only the direction showing the maximum conductance is considered. The results show
that in all cases the normalized conductance is constant, even down to a thickness of
H ∼ 5 nm. Below H ∼ 5 nm, variations of the order of 10− 20% are observed for all
channels. From this, it follows that other than the reduction in the size of the phonon
spectrum with thickness scaling, no significant changes in the shape of the phonon
structure are observed, at least not significant enough to introduce changes in the
thermal conductance. This is also supported by Fig. 4.14-b, which depicts the ratio
of the maximum to the minimum thermal conductance that can be achieved for each
surface. Similarly to Fig. 4.14-a, the anisotropy does not change with layer thickness
even down to H ∼ 5 nm. Again, below H ∼ 5 nm, differences of the order of 10−20%
can be observed.

This anisotropy observed is not only a function of thickness, but also of tempera-
ture. Figure 4.15 shows the ratio of the maximum to the minimum ballistic thermal
conductance for the four surface orientations of interest, again by choosing the appro-
priate transport orientations. Figure 4.15-a and 4.15-b show results for H = 2 nm and
H = 16 nm, respectively. The maximum anisotropy (up to 60%) is observed for the
{112} surface, followed by the {110} surface (up to 30%), whereas the thermal con-
ductance for the {111} and {100} surfaces are more or less isotropic (the ratio stays
∼ 1). This holds for most of the temperature range examined, even down to 100 K.
Below 100 K, the ratio approaches unity in all cases, because at this temperature the
main contribution to thermal conductance comes from the acoustic branches at low

84



0.7

0.8

0.9

1

1.1

m
ax

(K
p

h
)/

H
 [

G
W

K
−

1
m

−
2
]

 

 

(a)

{100}

{110}

0 5 10 15

1

1.2

1.4

1.6

m
ax

/m
in

.

Thickness [nm]

 

 

(b)

{111}

{112}

Figure 4.14: (a) The maximum value of the conductance in silicon thin-layers of differ-
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conductance for different surface orientations, versus layer thickness at
T = 300 K. For each surface orientation the transport orientations with
the maximum and minimum conductance values are chosen.

energy, which are more isotropic. This is clearly observed in the low energy range of
the transmissions in Fig. 4.8, in which the thermal conductivity is isotropic.

4.2.3 Remarks

Finally, it is worth mentioning that this chapter focused on the influence of band-
structure on the anisotropic behavior of the thermal transport properties of ultra-thin
silicon layers and ultra narrow silicon nanowires. The accurate phonon bandstructures
is employed, but a rather simplified ballistic transport formalism is utilized, which ig-
nores the effects of phonon scattering. The intent, here, is to provide a qualitative
indication of the anisotropic behavior of phonon transport in thin layers. Employing
atomistic phonon bandstructures and a fully diffusive transport formalism that ac-
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counts for the energy, momentum, and bandstructure dependence of each scattering
event will be the topic of the subsequent chapter.

Our results, however, point out that a factor of two in phonon transport can be
achieved once the channel geometry is optimized. These results agree qualitatively
well with diffusive phonon transport calculations that indicate the superiority of the
thermal conductivity of the {110}/<110> channel over other geometries, and the low
thermal conductance for the {111}/<110> and {112}/<111> channel [112]. They
also agree with calculations for silicon nanowires, which indicate the beneficial <110>
transport orientation to heat transport, compared to other orientations [107,111,113].
When it comes to comparing to experimental results, however, unfortunately we could
not identify any works in the literature that perform systematic thermal conductiv-
ity measurements in such ultra-thin layers (H < 16 nm) and in various confinement
and transport orientations. Most experimental works on thermal conductivity con-
sider relatively thick layers of thicknesses in the range of several 10 to several 100 of
nanometers and primarily on {100} layers. In thicker layers the phonon modes are
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almost bulk-like and one cannot observe the anisotropic phonon confinement effects
that lead to bandstructure modifications and conductance variations. In addition, the
influence of various scattering mechanisms make the thermal conductivity of thicker
layers more isotropic, and hide the results of bandstructure anisotropy (that ballistic
simulations fully capture).

Our findings, however, are useful in understanding phonon transport in ultra-thin
silicon layers, and with regards to applications, could provide guidance in either max-
imizing thermal conductivity as in the case of thermal management, or minimizing it
as in the case of thermoelectrics. For example, for electronic applications, we mention
that for p-type nanoelectronic channels, transport in the {110}/<110> orientation
is beneficial compared to other orientations [114, 115]. This is also the case for the
power factor of thermoelectric devices [116]. In the former case, however, for electronic
devices large thermal conductivity is necessary in order to remove the heat from the
device, otherwise the mobility is degraded. The large thermal conductivity of the
{110}/<110> channel, therefore, could be advantageous for p-type electronic devices.
In the latter case, for thermoelectric devices channels with low thermal conductiv-
ity are needed in order to reduce losses and increase thermoelectric efficiency. The
large thermal conductivity of the {110}/<110> channel, therefore, could counteract
the benefit of its larger power factor, and this channel might not be the optimal for
thermoelectric p-type silicon devices.
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5 Anomalous Diameter Dependence

of Thermal Conductivity in

Ultra-Thin Silicon Nanowires

In this chapter, we present atomistic valence force field calculations of thermal conduc-
tivity in silicon nanowires of diameters from 12 nm down to 1 nm at room temperature.
We show that as the diameter is reduced, the phonon density-of-states and transmis-
sion function acquire a finite value at low frequency, in contrast to approaching zero as
in the bulk material. It turns out that this effect results in what Ziman described as
the “problem of long longitudinal waves” [61], which states that the thermal conduc-
tivity of a material increases as its length is increased due to the vanishing scattering
for long-wavelength phonons. We show that this effect also appears in nanowires as
their diameter is decreased below D = 5 nm. These features persist even in the pres-
ence of phonon-boundary scattering. Due to this increase in the contribution of long
wavelength phonons, we show that the boundary becomes “effectively” more specular,
and strikingly, the thermal conductivity increases with diameter decrease.

5.1 Phonon Transmission Function

Figure. 5.1 depicts the transmission function per unit area as a function of frequency for
<100> nanowires of diametersD = 12 nm, 2 nm, and 1 nm. The inset of Fig. 5.1 shows
the density of states per unit volume of these nanowires versus frequency. Note that we
use the <100> transport orientation throughout this chapter. The basic features we
describe, however, are valid for different orientations as well. The transmission of the
12 nm nanowire as well as the DOS follow the ω2 relation of bulk at low frequencies. For
thinner diameters, however, the transmission and DOS are constant at low frequencies,
and increase as the diameter is reduced. The fact that there is a constant transmission
at ω = 0 for the acoustic branches leads to a strong manifestation of the “long-
wavelength problem” in the thermal conductivity as we will see below.
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Figure 5.1: The normalized transmission function for silicon nanowires of diameters
D = 1 nm (blue), 2 nm (red) and 12 nm (green). Inset: The density of
phonon states per unit volume for the same diameters.

5.2 The Long-Wavelength Problem

In bulk semiconductors and insulators the thermal resistance arises from phonon-
phonon scattering due of the anharmonicity of the inter-atomic potential. At room
temperature, phonon-phonon scattering processes are strong and dominate the behav-
ior of the thermal conductivity (κph). A large part of the heat in semiconductors is
carried by long wavelength longitudinal phonons, which have extremely long mean-
free-paths (MFP) for scattering as well. In fact, it was pointed out that the MFP of
the long wavelength longitudinal phonons diverges as their frequency tends to zero,
resulting in the thermal conductivity to be a function of the size of the bulk solid, and
diverging as the size of the solid increases [61, 117]. The most commonly employed
single-mode-relaxation-time (SMRT) approximation for the solution the Boltzmann
transport equation (BTE) for phonons [60,62], uses an ω2-dependent phonon-phonon
(Umklapp) scattering rate [118, 119]. This model, in combination with the 3D bulk
density-of-states, which is proportional to ω2 at low frequencies, removes this ambi-
guity, and successfully explains the thermal conductivity of various semiconductors
over a wide range of temperatures (also after appropriately including other common
scattering mechanisms, such as defect scattering and grain-boundary scattering).
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The thermal conductivity of 1D channels such as carbon nanotubes (CNTs), nanorib-
bons, and silicon nanowires has also been addressed in several recent studies [72, 98,
111, 120–124], since such channels are attractive for heat management and thermo-
electric applications [20, 59]. The divergence of κph with the size of the solid, or the
“problem of long longitudinal waves” as referred to by Ziman [61], is stronger in this
case, since the density-of-states in 1D structures is no longer ω2-dependent, but has
a finite value even at ω = 0 [125], which increases the importance of low wavevector
phonons. Indeed, several theoretical and experimental works have pointed out that
thermal conductivity in 1D systems deviates from Fourier’s law, or even increases with
increasing channel length, either linearly, logarithmically, or following some power
law [72, 120, 121, 126–128]. By including additional scattering mechanisms to the 3-
phonon Umklapp mechanism usually employed, such as 3-phonon processes of second
order [120], highly anharmonic potentials [129, 130], employing the exact solution of
the Boltzmann equation [126], or molecular dynamics (MD) [122], the divergence is
reduced, but it is still persistent, especially at low temperatures.

Here, we revisit this problem for ultra-thin silicon nanowires of diameters below 12 nm
using the atomistic MVFF method for the calculation of the phonon modes and the
BTE for phonon transport. We show that the issue of long-wavelength phonons turns
out to be much more significant in 1D systems compared to the bulk material: This
holds not only for low temperatures, but also at room temperature, and not only as
the length of the channel is increased, but also as the diameter is reduced.

5.2.1 Scattering Rates

In this work, the thermal conductivity in the silicon nanowires is calculated using
the phonon lifetime approximation in the phononic Boltzmann transport equation
(Eq. 2.72). For the calculation of the relaxation times, we adopt the bulk formalism
for Umklapp scattering [57, 118,119]:

1

τU
= Bωαq

2T exp

�
−C

T

�
(5.1)

where B = 2.8× 10−19 s/K and C = 140 K [57]. For boundary scattering we use:

1

τB,α(q)
=

1− p(q)

1 + p(q)

vg,α(q)

D
(5.2)

where D is nanowire diameter and p(q) is q-dependent specularity parameter given
by [60, 61, 112]:

p(q) = exp
�−4q2Δ2

rms

�
(5.3)

where we used Δrms = 0.3 nm for the root-mean-square of the roughness amplitude.
The specularity parameter p taking values from 0 to 1, is determined by the details
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of the surface and surface roughness. For a smooth surface p = 1, and the phonon-
boundary scattering is fully specular. For a very rough surface p = 0, which results
in fully diffusive boundary scattering. Recently, studies showed that experimental
results for boundary scattering in nanowires of diameters ∼ 50 nm are only explained
if an almost fully diffusive boundary is assumed [131,132]. The overall relaxation rate
including all scattering mechanisms is computed using Matthiessen’s rule.

When considering the classical description of the energy distribution of phonons, in
the Debye approximation, the heat conductivity of acoustic modes is given by [61,121]:

κph =
kB
3Ω

� ωD

ωmin

v2sτ(ω)DOS(ω)dω (5.4)

where vs is the corresponding sound velocity, ωmin = 2πvs/L is the minimum allowed
phonon frequency which is determined by the longest allowed wavelength at a given
channel length, and ωD is the Debye frequency. As the bulk density-of-states DOS(ω)
is proportional to ω2, the Umklapp-limited thermal conductivity in 3D (with τU ∼
1/ω2 as shown in Eq. 5.1) is bounded, even when the contribution of the long MFP
phonons (as ω → ) is included:

κph ∼
� ωD

2πvs/L

v2sdω ∼ ωD − 2πvs/L (5.5)

since the second term of Eq. 5.5 goes to zero as the length increases.

In the case of 1D structures, on the other hand, the DOS is finite for low frequencies
DOS(ω) = L/πvs [53], which does not allow the cancellation of the τU ∼ 1/ω2 term.
Therefore, the Umklapp-limited thermal conductivity of a 1D system is given by:

κph ∝
� ωD

2πvs/L

1

ω2
dω ∼ L (5.6)

indicating a linear divergence with the channel length. Physically, this means that
the lowest wavevector that contributes to thermal conductivity is determined by the
length of the channel. For an infinite channel, longer and longer wavevectors of finite
DOS are involved, which causes divergence in the thermal conductivity, in contrast
to bulk. Several works in the literature attempt to add corrections that would bound
κph as the channel length increases [120,126], although large κph could still be possible
in 1D. Some authors still use the bulk dispersion even for ultra-narrow channels [112,
133, 134], others include a constant specularity parameter for surface roughness, that
adds a constant term in the total scattering rate, and removes the singularity for
ω → 0 [101,123,135,136]. A different approach was proposed recently by Mingo et al.,
where an additional rate of a second order 3-phonon scattering mechanism without
ω-dependence was introduced for thermal transport in carbon nanotubes as [120]:

1

τU2

= A0T
2 (5.7)
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Here A0 is a frequency independent constant. This is just an order of magnitude
approximation which removes the singularity for low frequency phonons, although
very high thermal conductivities are still achieved. A study of the exact solution
of the phonon BTE in carbon nanotubes showed a saturation in κph as the length
increased to the millimeter range [126], which could prove the suitability of using
Eq. 5.7.

5.3 The Effect of Phonon-Phonon Scattering

The importance of the long wavevector phonons, however, is not only pronounced by
the length of the channel. The reduction in the diameter of the nanowire can result in
the same effect. An important point in Fig. 5.1 is that nanowires have a finite phonon
DOS at low frequencies that also increases as the diameter is reduced, in contrast
to bulk. Using the additional scattering mechanism proposed by Mingo et al., and
adjusting the parameter A0, we calibrated our phonon-phonon thermal conductivity
calculations for silicon nanowires against the MD simulation results of Donadio et
al. [122] and the results of Luisier [137] for nanowire diameters up to D = 5 nm
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as shown in Fig. 5.2. These calculations were performed assuming T = 300 K and
nanowires in the <100> transport direction. The parameter A0 of the 3-phonon second
order processes was set to A0 = 15000/sK2, which provides a good agreement between
our results and these two other studies for the entire diameter range considered. Our
results also show good agreement with results from NEGF simulations [137] in a large
temperature range (especially above T = 200 K), as shown in Fig. 5.3.

A clear increase in the thermal conductivity by ∼ 5X is observed as the diameter is
decreased. This increase can be directly attributed to the increasing contribution of the
low-frequency longitudinal modes as the diameter is reduced, since the transmission
and DOS acquire a finite value (Fig. 5.1). Indications about thermal conductivity
improvements due to phonon confinement can be found in other works as well, for
silicon nanowires and other materials [72, 98, 122, 133, 138]. This is the first time,
however, that this increase is attributed to the finite value that the phonon DOS
acquires for the long-wavelength phonons.

The importance of the longitudinal modes is indicated in the colormap of Fig. 5.4
which shows the contribution of each phonon state to the thermal conductivity of
the D = 2 nm nanowire. The dark-red color of the longitudinal acoustic (LA) mode
indicates that most of the heat is carried by this low frequency, low wavevector mode.
A large contribution is also attributed to the transverse acoustic (TA) and flexural
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Figure 5.4: (a) The phonon dispersion of the D = 2 nm <100> nanowire. The col-
ormap shows the contribution of various phonon states to the phonon-
phonon-limited thermal conductivity (red indicates the highest, and blue
the lowest thermal conductivity). (b) The cumulative thermal conductivity
versus energy for nanowires of D = 1 nm (blue-dots), 2 nm (red-square),
and 12 nm (green-triangle). The black-solid line shows the cumulative
thermal conductivity of bulk silicon from Jeong et al. [57].

acoustic (FA) modes. The higher energy quasi-optical and optical modes carry only
little heat due to their low phonon group velocities. To quantify the increasing im-
portance of the low frequency modes with decreasing diameter, Fig. 5.4-b shows the
cumulative phonon-phonon limited thermal conductivity versus energy at room tem-
perature. Even in bulk silicon, the low frequency modes carry most of the heat as
indicated by the black line from the work of Jeong et al. [57]. Almost half of the heat
is carried by phonons of energies below 10 meV. nanowires with larger diameters, e.g.
D = 12 nm, exhibit similar behavior, as shown by the green line marked by triangles.
For thinner diameter nanowires, lower energy phonons become even more important.
For D = 2 nm and D = 1 nm, ∼ 80% of the heat is carried by phonons with energies
below 5 meV.
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5.4 The Effect of Phonon-Boundary Scattering

We now examine the significance of phonon-boundary scattering at long wavelength,
which is the scattering mechanism that dominates thermal transport. Strong phonon-
boundary scattering is indeed the reason for increased thermoelectric performance of
nanostructures and silicon nanowires in particular [20]. Boundary scattering reduces
the phonon MFP and thus the thermal conductivity. The boundary scattering-limited
MFP can be obtained from Eq. 5.2 as:

λ(q) = D

�
1 + p(q)

1− p(q)

�
(5.8)

The MFP inevitably scales with the diameter D, but also by the boundary specularity
parameter p(q). In nanowires, the diameter strongly reduces the MFP. As we explain
below, however, for ultra-narrow nanowire the term in the brackets increases. This
increase relaxes the monotonic decrease of the MFP due to diameter reduction, and
weakens phonon-boundary scattering.

The term in the bracket of Eq. 5.8 is large for long wavelength phonons because
the specularity parameter p(q) peaks at q = 0 as shown in the inset of Fig. 5.5. Long
wavelength phonons have p(0) = 1, which means that they undergo specular boundary
scattering. In other words, waves of lengths larger than the average roughness features
are not affected by the roughness and are more specularly reflected. Phonons of smaller
wavelengths (larger q) scatter more diffusively, as the roughness feature sizes are of
the order of their wavelengths [139]. As we observed in Fig. 5.4, however, the heat
transport in thinner nanowires is shifted towards the low-wavevector phonon states as
the diameter is reduced. These states, however, are affected very weakly by boundary
scattering due to their large p(q), which makes the boundary overall more specular
(although the thermal conductivity is still severely degraded due to the reduction in
diameter).

Figure 5.5 illustrates the importance of this wavevector-dependence of the specularity
parameter p(q) on the cumulative thermal conductivity for the D = 2 nm nanowire.
The phonon-phonon scattering-limited result of Fig. 5.4 which corresponds to the fully
specular case (p = 1), is also shown by the red line for reference. For fully diffusive
boundaries (p = 0 for all frequencies), the thermal conductivity is almost equally
distributed over the phonon energy (Fig. 5.5, green line). Note that here we use
Δrms = 0.3 nm. A similar result is observed once a constant specularity parameter is
used, i.e. p = 0.8 (Fig. 5.5, black line), as it is assumed in several studies [123,136,140].
Interestingly, the distribution of the thermal conductivity over phonon energy for the
fully diffusive (p = 0), and the almost specular (p = 0.8) boundary conditions is very
similar. On the other hand, the cumulative thermal conductivity trend is different
when the q-dependent p is taken into account (blue line) and looks very much like the
phonon-phonon scattering-limited case. The importance of the low frequency modes
becomes even stronger (sharper rise of the cumulative conductivity at low frequencies
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Figure 5.5: The cumulative thermal conductivity versus energy for a nanowire with
D = 2 nm versus energy, for different treatments of the phonon-boundary
scattering specularity parameter p: Phonon-phonon scattering-limited,
p = 1, (red line); constant specularity parameter p = 0.8 (black line),
and p = 0 (green line) for fully diffusive boundary scattering; wavevector-
dependent p, (blue line). Inset: The specularity parameter versus wavevec-
tor for roughness amplitudes Δrms = 0.1 nm and 0.3 nm.

compared to the phonon-phonon scattering case), in which case almost 60% of the
total thermal conductivity is carried by phonons of energies below 2 meV. Above
energies of 2 meV, where the boundaries become totally diffusive for all frequencies
(see inset of Fig. 5.5), the thermal conductivity is distributed almost equally over the
remaining phonon energies. We note that the phonon energy above which the thermal
conductivity becomes fully diffusive (e.g. p(q) becomes zero) is determined by the
roughness amplitude. For smaller amplitudes, e.g. Δrms = 0.1 nm as shown in the
inset of Fig. 5.5, p(q) indicates a stronger specular scattering behavior in a larger part
of the phonon energy spectrum.

Therefore, for ultra-thin nanowires, it is not appropriate to use a constant spec-
ularity parameter for phonons of all wavevectors as is often assumed for thicker
nanowires [123, 141]. The underlying wavevector contributions to the thermal con-
ductivity cannot be captured accurately, although one could adjust the specularity
parameter to fit experimental measurements. This is illustrated in Fig. 5.6, which
shows the thermal conductivity of the D = 2 nm nanowire versus constant values
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Figure 5.6: Thermal conductivity of the D = 2 nm nanowire versus the boundary’s
specularity parameter that is assumed to be constant for all wavevectors.
The blue-dot indicates on the y-axis the thermal conductivity calculated
using the wavevector-dependent specularity parameter p(q). On the x-
axis, it indicates a constant “effective” specularity parameter for this sur-
face. The black-square symbol indicates on the y-axis the thermal con-
ductivity for this nanowire obtained using MD simulations by Donadio et
al. [122]. Inset: The left axis shows the “effective” specularity parameter as
a function of the nanowire’s diameter (solid-dot blue line). The right axis
shows the thermal conductivity considering phonon-phonon and phonon-
boundary scattering for the cases of p = 0 (dashed-square red line), and
p = p(q) (solid-square red line).

of the specularity parameter (the same p for all wavevectors). The thermal conduc-
tivity remains low (below 5 W/mK) for a large range of p, even up to p = 0.8,
and is smaller than the Umklapp scattering-limited conductivity by more than an
order of magnitude. The blue dot indicates the thermal conductivity of the same
nanowire, with the same roughness amplitude, using the wavevector dependent p(q)
as described by Eq. 5.3. In this case, κph ∼ 4 W/mK, which is also in good agreement
with the result of MD simulations by Donadio et al. (black-square point) for the same
nanowire [122]. In order for the two approaches (constant p versus p(q)) to provide the
same value for the thermal conductivity, a constant specularity parameter of p ∼ 0.8
needs to be used. The large “effective” specularity parameter indeed illustrates that
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the phonon-boundary scattering is almost specular. This is a consequence of the in-
creasing importance of the large wavelength phonons that scatter almost specularly
on the nanowire boundary as the diameter is reduced. Indeed, if one extracts an “ef-
fective” constant specularity parameter, that provides the same value for the thermal
conductivity as the wavevector-dependent p(q), then this number will increase as the
diameter is decreased. This is shown in the inset of Fig. 5.6 (left axis). The “effective”
specularity parameter saturates around p ∼ 0.3 for larger nanowire diameters, which
is close to the value usually assumed for larger nanowires. As the diameter is reduced
to D = 1 nm, however, it increases even up to p ∼ 0.9, a consequence of the dominant
role of the long wavelength phonons.

Figure 5.6, therefore, demonstrates the counter-intuitive result that for the same
roughness, boundary scattering is overall more specular for ultra-thin nanowires than
for thicker ones. The phonon-boundary scattering, however, is still dominant and
causes thermal conductivity reduction from κph ∼ 50 W/mK (phonon-phonon only
as shown in Fig. 5.2), to κph ∼ 5 W/mK. The degradation, though, originates from
the influence of the diameter reduction on the MFP (see Eq. 5.8), and not from the
diffusive nature of the boundary. Interestingly, however, for diameters below 5 nm, the
term in the bracket of Eq. 5.8 increases faster than the reduction in D. The MFP then
starts to increase, the effect of phonon-boundary scattering is reduced, and the ther-
mal conductivity increases. This is indicated in the inset of Fig. 5.6 (right axis), which
shows that as the effective specularity increases with decreasing diameter, the same
happens to the thermal conductivity as well (solid-square red line). In contrast, a fully
diffusive boundary with p = 0 as one would assume for such thin nanowire, results to
a monotonic decrease in the conductivity as the diameter is reduced (dashed-square
red line).
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6 Thermoelectric Figure of Merit of

Ultra-Narrow Silicon Nanowires

Thermoelectric materials based on nanostructured and low-dimensional silicon have
attracted a significant attention after recent experiments indicated that they can pro-
vide a large ZT figure of merit [17, 20, 142]. Although bulk silicon has ZTbulk ∼ 0.01,
the ZT of silicon nanowires with side lengths scaled down to ∼ 50 nm was experi-
mentally demonstrated to be ZTNW ∼ 0.5 [17, 20]. A similar observation was made
in silicon nanomeshes of features sizes ∼ 55 nm [142]. This remarkable improvement
in the ZT was a result of a significant suppression in the thermal conductivity κph,
whereas the electronic power factor was not changed significantly compared to the bulk
material. The measurements to date were performed in nanowires or nanomeshes of
feature sizes of several 10s of nanometers [17, 20, 142]. Whether this trend continues,
or even improves, when the nanowire diameters are reduced in the sub-ten nanome-
ter regime still needs to be shown. The initial theoretical studies proposed that the
performance can be improved once the channels are truly one-dimensional, or if the
channel bandstructure is properly optimized [9, 143]. On the other hand, at the sub-
ten nanometer scale, the electronic mobility is severely degraded due to enhanced
electron-phonon interaction and stronger surface roughness scattering (SRS) [143]. It
still needs to be shown if this reduction would offset the performance improvement
achieved through the reduction of thermal conductivity.

In this chapter, we compute the room temperature thermoelectric figure of merit ZT in
ultra-narrow silicon nanowires using atomistic simulations. The role of transport ori-
entations and diameter on the thermoelectric power factor of nanowires using atomistic
bandstructure simulations has been recently studied [143]. Using the thermoelectric
power factor of Ref. [143] (Figs. 3c and 7c of Ref. [143]) and the calculated thermal
conductivity, as in Chapter 5, we estimate the ZT figure of merit for n-type and p-type
cylindrical nanowires of various transport orientations.

6.1 Thermal Conductivity

The thermal conductivity of silicon nanowires versus diameter is shown in Fig. 6.1
for nanowires in the <100> (blue lines), <110> (red lines), and <111> (green lines)
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Figure 6.1: The thermal conductivity for silicon nanowires versus diameter at T =
300 K. Results for nanowires in the <100> (blue-circle), <110> (red-
square), and <111> (green-triangle) orientations are shown. Solid sym-
bols: Results when only phonon-phonon scattering is included. Empty
symbols: Results when phonon-phonon and phonon-boundary scattering
are included.

transport orientations. With solid symbols we show the phonon-phonon scattering-
limited thermal conductivity, whereas with empty symbols the thermal conductivity
additionally includes phonon-boundary scattering. Several interesting observations
can be made here. First, there is a significant anisotropy in the thermal conductivity,
with the <110> nanowires having the highest conductivities in the entire diameter
range, also in agreement with other theoretical studies [111]. Second, the phonon-
phonon scattering-limited thermal conductivity (solid symbols) is reduced by a factor
of ∼ 5X from to the bulk value which is 140 W/mK. This indicates the strong
influence of phonon confinement. Third, phonon-boundary scattering has a quite
strong influence, reducing the thermal conductivity by another factor of ∼ 5X, limiting
the thermal conductivity to values below 10 W/mK in the entire diameter range,
irrespective of transport orientation.

This strong reduction of the thermal conductivity is the main reason for the improved
thermoelectric performance in nanostructures. Phonon-boundary scattering is the
main reason for that reduction, although phonon confinement also contributes to κph

reduction. For nanowires with ultra-narrow diameters, however, the electrical conduc-
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Figure 6.2: The ZT figure of merit for (a) n-type and (b) p-type silicon nanowires
versus diameter at T = 300 K. Results for nanowires in the <100> (blue-
circle), <110> (red-square), and <111> (green-triangle) orientations are
shown. In the calculation of the power factor and the thermal conduc-
tivity, only electron-phonon scattering and phonon-phonon scattering are
respectively considered.

tivity is also strongly degraded by SRS, and it is yet not clear if rough boundaries can
still provide a benefit to the ZT . Below, we provide answers to this issue.

6.2 Thermoelectric Figure of Merit

To illustrate how the different scattering mechanisms affect ZT , in Fig. 6.2 we show
ZT when only electron-phonon scattering is considered for the electronic system and
only phonon-phonon scattering is considered for the phononic system. Results for n-
type nanowires are shown in Fig. 6.2-a, and results for p-type nanowires in Fig.6.2-b.
Further below, in Fig.6.3, we include the effect of boundary scattering for both systems.
We consider nanowires of diameters from D = 3 nm to 12 nm in three different
orientations, <100> (blue lines), <110> (red lines), and <111> (green lines). We
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assume a carrier concentration of 1019cm−3, which is close to the concentration where
the maximum of the power factor is observed. ZT in Fig. 6.2 shows a considerable
orientation and diameter dependence. For n-type nanowires, the ZT reaches values
of ∼ 0.15 in the best case (for the <111> nanowires and diameters above 6 nm). In
the worst case, ZT is significantly lower at only ∼ 0.05, which is achieved for the
lowest diameters, as well as for the <110> nanowire in the entire diameter range. ZT
for these particular nanowires suffers from their large thermal conductivities as shown
in Fig. 6.1 (∼ 50% higher compared to the other orientations). P -type nanowires
have lower ZT values, below 0.05 for most cases. A significant increase is observed
in the cases of the <111> and <110> nanowires with decreasing diameter, which
can be attributed to the improvement of their electrical conductivity [143] since the
bandstructures of these nanowires undergo significant modifications with confinements
and their hole effective mass is significantly reduced [144]. For both p-type, and n-type
nanowires, the <111> orientation provides the best performance. The reduction in
the thermal conductivity due to phonon confinement, therefore, increases ZT by an
order of magnitude compared to the bulk value (ZTbulk ≈ 0.01).

6.2.1 The Effects of Boundary Scattering

A profound increase in ZT can be achieved when we consider the more realist case, in
which we allow for electrons and phonons to undergo boundary scattering in addition
to phonon scattering. The ZT figure of merit in this case is shown in Fig. 6.3, (Fig.6.3-
a for n-type nanowires and Fig. 6.3-b for p-type nanowires). The anisotropy, and the
main features observed with diameter scaling are not altered significantly compared
to Fig. 6.2. ZT , however, increases by almost a factor of 4X with the introduction
of boundary scattering, both for n-type and p-type nanowires (the phonon-scattering
only results of Fig. 6.2-a are shown in Fig. 6.3-a for reference). ZT varies from ∼ 0.25
to ∼ 0.75 for n-type nanowires (ZT ∼ 0.75 at larger diameters), also in agreement
with other theoretical studies [145]. For p-type nanowires it reaches a maximum of
ZT ∼ 0.5 for the <111> nanowires of smaller diameters.

This increase in ZT indicates that the boundary scattering reduces the thermal con-
ductivity by a factor of ∼ 4X more than it reduces the power factor. As explained in
Ref. [143], the introduction of surface roughness (SR) scattering, degrades the elec-
trical conductivity significantly, but improves the Seebeck coefficient slightly. The
degradation in the power factor, therefore, is dominated by the decrease in the elec-
trical conductivity. Fig. 6.3 shows, however, that even in geometries with ultra-small
feature sizes, in which the electrical conductivity is strongly degraded due to enhanced
electron-phonon and electron-SR scattering, the thermal conductivity even stronger
degrads. It suggests that phonon engineering techniques that further increase phonon
scattering can help in the improvement of ZT . This was considered to be the case
for nanowires of larger diameters [20], but it appears to be the case also for nanowire
diameters as thin as a few nanometers.
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Figure 6.3: The ZT figure of merit for (a) n-type and (b) p-type silicon nanowires
versus diameter at T = 300 K. Results for nanowires in the <100>
(blue-circle), <110> (red-square), and <111> (green- triangle) orienta-
tions are shown. In the calculation of the power factor electron-phonon
plus electron-boundary scattering is considered. In the calculation of the
thermal conductivity phonon-phonon and phonon-boundary scattering are
considered. The dotted lines in (a) show for reference ZT when only
electron-phonon and phonon-phonon scattering is considered as in Fig. 6.2-
a.

6.2.2 Electron versus Phonon Transports in Rough Nanowires

The reason why boundary scattering degrades the thermal conductivity more than
the electrical conductivity is that the electronic system is not affected significantly by
boundary scattering for larger nanowire diameters, i.e. D > 10 nm. In the absence of
a confining electric field (e.g. flat potential in the nanowires’ cross section), electron
scattering by surface roughness depends mainly on the shift of the band edges due
to confinement, which is only important for diameters D < 10 nm. On the other
hand, from Eq. 5.2, the phonon-boundary scattering rate is inversely proportional
to the nanowire diameter as D−1, a trend that is initiated at very large diameters.
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Figure 6.4: Filled circle symbols: The ratio of the power factor with electron-phonon
and electron-boundary scattering (σS2(P + B)) included to the power fac-
tor with only electron-phonon scattering (σS2(P)) included. An n-type
<100> silicon nanowires at room temperature is considered. Empty square
symbols: The same ratio for the electrical conductivity. Filled triangle
symbols: For the same nanowires, the ratio of the thermal conductivity
with phonon-phonon plus phonon-boundary scattering (κph(P + B)) in-
cluded to the thermal conductivity with phonon-phonon only scattering
(κph(P)) included.

At D = 10 nm the thermal conductivity is already strongly reduced. Although the
surface-roughness scattering-limited electron mobility degrades strongly with a power
factor of D−6 for D < 10 nm [146], the overall reduction of the electrical conductivity
is less than the κph reduction even for diameters down to D = 3 nm.

This stronger reduction of the thermal conductivity due to boundary scattering com-
pared to the reduction of the electrical conductivity due to boundary scattering, is il-
lustrated in Fig. 6.4. Here we show the ratio of the thermal conductivity for the <100>
nanowires including phonon-phonon and phonon-boundary scattering (κph(P + B)), to
the thermal conductivity including only phonon-phonon scattering (κph(P)) (triangle
symbols). We also show the same ratio for the electrical conductivity of the n-type
nanowires, e.g. the ratio of the electrical conductivity including electron-phonon-plus-
SRS, to the electrical conductivity including only electron-phonon scattering (empty-
square symbols). The figure clearly demonstrates that although the degradation in
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the electrical conductivity due to SRS becomes stronger as the diameter is reduced,
still, the detrimental effect of boundary scattering is larger on the thermal conduc-
tivity. Even at the relatively large nanowire diameters ∼ 12 nm, phonon-boundary
scattering is very effective in reducing the thermal conductivity down to ∼ 20% of its
phonon-phonon scattering-limited value. Additionally, the power factor, benefits from
an increase in the Seebeck coefficient by diameter reduction and surface-roughness-
scattering by ∼ 70% [147]. This improves the power factor, which partly compensates
the reduction of the electrical conductivity as also shown in Fig. 6.4 (circle symbols).

6.2.3 Diffusive Thermoelectric Figure of Merit

This improvement in the power factor further proves the point that boundary scat-
tering is more effective in reducing the thermal conductivity than reducing the power
factor. As a result, phonon engineering techniques that cause additional reductions in
the thermal conductivity could provide improvements of ZT , despite the consequent
reduction in the electrical conductivity. For example, in the case of a fully diffusive
boundary for phonons, either by special engineering of the roughness [21, 148, 149],
by decorating the surfaces with various species [59, 150, 151], or by modulating the
nanowire’s diameter [124], the ZT performance could be increased. This is illustrated
in Fig. 6.5, showing ZT for the same nanowires as before in Fig. 6.3, but now we
assume a fully diffusive boundary for phonons, e.g. the specularity parameter is set
to p = 0 for all wavevectors. In this case, ZT is increased to values close to ZT ∼ 1.3
for both n-type and p-type nanowires (in the best cases). This is almost a factor of
2X improvement compared to the case we present in Fig.6.3 where we employ the
q-dependent specularity parameter p(q), rather than fully diffusive boundaries for all
phonons.
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Figure 6.5: The ZT figure of merit for (a) n-type and (b) p-type silicon nanowires
versus diameter at T = 300 K. Results for nanowires in the <100>
(blue-circle), <110> (red-square), and <111> (green-triangle) orienta-
tions are shown. In the calculation of the power factor electron-phonon
plus electron-boundary scattering is considered. In the calculation of the
thermal conductivity phonon-phonon and phonon-boundary scattering are
considered, but in this case the boundary is assumed to be fully diffusive.
The dotted lines in (a) show for reference the ZT when only electron-
phonon and phonon-phonon scattering is considered as in Fig. 6.2-a.
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7 Summary and Conclusions

In this thesis, we investigate the thermal and thermoelectric properties of silicon- and
graphene-based nanostructures. We start from the investigation of the ballistic to
diffusive crossover in the thermoelectric transport in armchair graphene nanoribbon
(AGNR). Although in the case of AGNRs a bandgap is naturally present, the band-
gap decreases with increasing the width, which results in a lower value of Seebeck
coefficient for wider ribbons. As a result, the ballistic power factor only slightly
increases with temperature and the ribbon’s width. In contrast, by increasing the
width the lattice thermal conductance strongly increases and so the ballistic ZT value
decreases with increasing W . The introduction of edge roughness in order to reduce
high thermal conductivity does not benefit ZT because the electrical conductance is
severely degraded by the roughness. As a result, the ZT figure of merit decreases with
increasing the channel length and its value is limited to values below 0.3.

We also analyze the ballistic thermoelectric properties of GALs. Our results indicate
that the size of the antidots, the circumference of the antidots, and the distance
between antidots can strongly influence the thermal properties of GALs. Results from
ballistic calculations show that by appropriate selection of the geometrical parameters
one can significantly reduce the thermal conductance of GALs and improve their
thermoelectric figure of merit.

We present a theoretical design procedure for achieving high thermoelectric perfor-
mance in zigzag graphene nanoribbon (ZGNRs) channels, which in their pristine form
have very poor performance. We show that by introducing extended line defects in
the length direction of the nanoribbon we can create an asymmetry in the density of
modes around the Fermi level, which improves the Seebeck coefficient. ELDs increase
the electronic conduction subbands, which increase the channel conductance as well.
The power factor is therefore significantly increased. In addition, we show that by
introducing edge roughness the phonon thermal conductivity is degraded effectively
more than the electronic thermal conductivity, or the electronic conductance. These
three effects result in large values of the thermoelectric figure of merit, and indicate
that roughed ZGNRs with ELDs could potentially be used as efficient high perfor-
mance thermoelectric materials.

Next, we investigate how dimensionality affects thermal and thermoelectric properties
of low-dimensional silicon-based nanostructures. We study the effect of confinement on
the phonon properties of ultra-narrow silicon nanowires of side sizes of 1 nm to 10 nm.
We use the modified valence force field (MVFF) method to compute the phononic
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dispersion and extract the density of states, the transmission function, the sound
velocity, and the ballistic thermal conductance. We find that the phononic dispersion
and the ballistic thermal conductance are functions of the geometrical features of the
structures, i.e., the transport orientation and confinement length scale. The phonon
group velocity and thermal conductance can vary by a factor of two depending on
the geometrical features of the channel. The <110> nanowire has the highest phonon
group velocity and thermal conductance, whereas the <111> has the lowest. The
<111> channel is thus the most suitable orientation for thermoelectric devices based
on silicon nanowires since it also has a large power factor.

Next, we investigate the effect of confinement and orientation on the phonon transport
properties of ultra-thin silicon layers of thicknesses between 1 nm to 16 nm. We
consider the major thin layer surface orientations {100}, {110}, {111}, and {112}.
For every surface orientation, we study thermal conductance as a function of the
transport direction within the corresponding surface plane. We find that the ballistic
thermal conductance in the thin layers is anisotropic, with the {110}/<110> channels
exhibiting the highest and the {112}/<111> channels the lowest thermal conductance
with a ratio of about two. We find that in the case of the {110} and {112} surfaces,
different transport orientations can result in∼ 50% anisotropy in thermal conductance.
The thermal conductance of different transport orientations in the {100} and {111}
layers, on the other hand, is mostly isotropic. These observations are invariant under
different temperatures and layer thicknesses. We show that this behavior originates
from the differences in the phonon group velocities, whereas the phonon density of
states is very similar for all the thin layers examined. We also show how the phonon
velocities can be understood from the phonon spectrum of each channel. These findings
could be useful in the design of the thermal properties of ultra-thin silicon layers for
thermoelectric and thermal management applications.

In this work we also study the thermal conductivity of ultra-thin silicon nanowires
using the atomistic modified valence-force-field method for the computation of the
phonon bandstructure and the Boltzmann equation for phonon transport. We show
that the “problem of long-wavelength phonons” as described by Ziman and others,
which causes divergence in the thermal conductivity of quasi-1D channels with in-
creasing length, is also present in silicon nanowires. The divergence occurs not only as
the length is increased, but also as the diameter is reduced. We attribute this to the
fact that in ultra-narrow nanowires the density-of-states and the transmission function
of long-wavelength phonons acquires a finite value, as compared to zero in the bulk
materials, which increases their importance in carrying heat, and causes the thermal
conductivity to increase as the diameter is reduced below 5 nm. We point out that
this effect has two important consequences: The first is that a larger portion of heat is
carried by low frequency phonons in ultra-narrow nanowires as compared to bulk, e.g.
almost 80% of the heat is carried by phonons with energies below 5 meV. The second
is that, counter-intuitively, at the same roughness conditions, the boundary scattering
is more specular for the ultra-narrow nanowires, and becomes more diffusive as the
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diameter is increased. This results in a striking anomalous increase in the thermal
conductivity as the diameter is reduced below 5 nm.

Finally, the room temperature ZT figure of merit of ultra-narrow silicon nanowires of
diameters D < 12 nm is calculated using atomistic simulations for both electrons and
phonons. The ZT values at 300 K in the best case are slightly below unity (∼ 0.75),
in agreement with experimental measurements. We show that the largest contribution
towards achieving this relatively high value is attributed to the significant reduction in
the thermal conductivity due to boundary scattering. Phonon confinement also causes
a reduction in thermal conductivity and ZT improvement, but its effect is weaker. For
ultra-narrow nanowire diameters (D ∼ 3 nm), the power factor is strongly reduced due
to surface roughness scattering. We show, however, that the benefits from phonon-
boundary scattering are still persistent in increasing ZT , since for the same roughness
amplitudes, boundary scattering reduces the thermal conductivity significantly more
than it reduces the power factor (by ∼ 4X). Finally, we calculate that in the case
of fully diffusive boundaries for phonons, the ZT values can increase above unity for
both n-type and p-type nanowires.
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