
Inventiones mathematicae
https://doi.org/10.1007/s00222-024-01287-9

Trace formulas and inverse spectral theory for generalized
indefinite strings

Jonathan Eckhardt1 · Aleksey Kostenko2,3,4,5

Received: 2 November 2023 / Accepted: 24 August 2024
© The Author(s) 2024

Abstract
Generalized indefinite strings provide a canonical model for self-adjoint operators
with simple spectrum (other classical models are Jacobi matrices, Krein strings and
2×2 canonical systems). We prove a number of Szegő-type theorems for generalized
indefinite strings and related spectral problems (including Krein strings, canonical
systems and Dirac operators). More specifically, for several classes of coefficients
(that can be regarded as Hilbert–Schmidt perturbations of model problems), we pro-
vide a complete characterization of the corresponding set of spectral measures. In
particular, our results also apply to the isospectral Lax operator for the conservative
Camassa–Holm flow and allow us to establish existence of global weak solutions with
various step-like initial conditions of low regularity via the inverse spectral transform.
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1 Introduction

1.1 Main results

A generalized indefinite string is a triple (L,ω,υ) such that L ∈ (0,∞], ω is a real
distribution in H−1

loc [0,L) and υ is a positive Borel measure on [0,L). Associated
with such a generalized indefinite string is the ordinary differential equation

−f ′′ = zωf + z2υf (1.1)

on the interval [0,L), where z is a complex spectral parameter. Spectral problems
of this form go back at least to work of M. G. Krein and H. Langer from the 1970s
on indefinite analogues of the classical moment problem [78, 81]. In the generality
above, they were introduced in [42], where we proved that they serve as a canonical
model for self-adjoint operators with simple spectrum. We are going to summarize
some relevant facts about generalized indefinite strings in Sect. 2 as far as they are
needed in this article, but in order to state our main theorems below, let us note that
there is a unique function w in L2

loc[0,L) such that

ω(h) = −
∫ L

0
w(x)h′(x)dx (1.2)

for all h ∈ H 1
c [0,L), called the normalized anti-derivative of the distribution ω.
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One of the main objects in spectral theory for a generalized indefinite string
(L,ω,υ) is the Weyl–Titchmarsh function m defined on C\R by

m(z) = ψ ′(z,0−)

zψ(z,0)
, (1.3)

where ψ(z, · ) is the unique (up to scalar multiples) nontrivial solution of the dif-
ferential equation (1.1) that lies in the homogeneous Sobolev space Ḣ 1[0,L) and
in L2([0,L);υ). This Weyl–Titchmarsh function m turns out to be a Herglotz–
Nevanlinna function, that is, it is analytic, maps the upper complex half-plane C+
into the closure of the upper complex half-plane and satisfies the symmetry relation

m(z∗) = m(z)∗ (1.4)

for all z ∈ C\R (here and henceforth, we will use z∗ to denote the complex con-
jugate of a complex number z). Even more, we established in [42, Sect. 6] that the
map (L,ω,υ) �→ m is a homeomorphism between the set of all generalized indefinite
strings (equipped with a reasonable topology) and the set of all Herglotz–Nevanlinna
functions (equipped with the topology of locally uniform convergence). The main re-
sults of the present article are a couple of Szegő-type theorems for this correspon-
dence. In the first place, we will prove the following theorem, which gives a char-
acterization of all Weyl–Titchmarsh functions for a class of generalized indefinite
strings that can be understood as (relative) Hilbert–Schmidt perturbations of a certain
explicitly solvable model example. Throughout this article, we will let α and β be
arbitrary positive constants.

Theorem I A Herglotz–Nevanlinna function m is the Weyl–Titchmarsh function of a
generalized indefinite string (L,ω,υ) with L = ∞ and

∫ ∞

0

(
w(x) − c − x

1 + 2
√

αx

)2

x dx +
∫

[0,∞)

x dυ(x) < ∞ (1.5)

for some constant c ∈R if and only if all the following conditions hold:

(i) The function m has a meromorphic extension to C\[α,∞) that is analytic at
zero.

(ii) The negative poles σ− and the positive poles σ+ of m in (−∞, α) satisfy

∑
λ∈σ−

1

|λ|3/2 +
∑
λ∈σ+

(α − λ)3/2 < ∞. (1.6)

(iii) The boundary values of the function m satisfy1

∫ ∞

α

√
λ − α

λ3
log(Imm(λ + i0))dλ > −∞. (1.7)

1Remember that m(λ + i0) = limε↓0 m(λ + iε) exists for almost all λ ∈ R because m is of bounded type
in the upper complex half-plane.



J. Eckhardt, A. Kostenko

Remark 1.1 A few remarks about the conditions in Theorem I are in order:

(a) Condition (i) says that the essential spectrum of every generalized indefinite
string (L,ω,υ) with L = ∞ and (1.5) for some constant c ∈ R is contained
in the interval [α,∞). This can be considered as a consequence of Weyl’s the-
orem on compact perturbations. In fact, we are going to show in Sect. 3 that it
is possible to interpret such generalized indefinite strings as relatively compact
perturbations (actually, of Hilbert–Schmidt class) of a particular model example
whose spectrum coincides with the interval [α,∞); see Example I.

(b) Analyticity of the Weyl–Titchmarsh function m at zero alone has strong conse-
quences on the coefficients of a generalized indefinite string (L,ω,υ). In fact,
it implies that L = ∞ and that the inverse of an associated linear relation T is a
bounded linear operator. We recently proved in [47, Proposition 5.2 (i)] that the
latter is equivalent to

lim sup
x→∞

x

∫ ∞

x

(w(s) − w0)
2ds + x

∫
[x,∞)

dυ < ∞ (1.8)

for some constant w0 ∈ R, which is then necessarily given by

w0 = lim
x→∞

1

x

∫ x

0
w(s)ds. (1.9)

Moreover, the constant w0 turns out to be nothing but the value of m at zero as we
will see in Sect. 4. In particular, this shows that under the conditions in Theorem I
one has

m(0) = c + 1

2
√

α
, (1.10)

which relates the constant c in (1.5) explicitly to the function m.
(c) Condition (ii) is a Lieb–Thirring bound on the eigenvalues below α, which im-

plies that negative eigenvalues may accumulate only at −∞ and that positive
eigenvalues in the interval (0, α) may accumulate only at α. In fact, we will ob-
tain a sharp Lieb–Thirring inequality in Corollary 7.2.

(d) Condition (iii) implies that the absolutely continuous spectrum is essentially sup-
ported on the interval (α,∞), which has been shown to be necessary for (1.5) to
hold for some constant c ∈ R before in [46, Theorem 3.2]. Since the pointwise
boundary values of Imm depend only on the absolutely continuous part of the
spectrum, we see that there is no restriction on the support and structure of the
singular spectrum in [α,∞).

Remark 1.2 The Herglotz–Nevanlinna function

mα(z) = eα−zE1(α − z) =
∫ ∞

α

e−(λ−α)

λ − z
dλ, (1.11)

where E1 denotes the principal value of the generalized exponential integral [90,
Equation (8.19.2)], satisfies the conditions (i), (ii) and (iii) of Theorem I (indeed, the
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function mα is nothing but the Stieltjes transform of the shifted Laguerre weight).
In this case, it is possible to express the coefficients of the corresponding general-
ized indefinite string via the Laguerre polynomials. One may view Theorem I as a
characterization of a certain class of perturbations of the Laguerre operator, which
is usually expressed in 
2 as a Jacobi matrix (see Example 12.7). Let us mention
that the Laguerre operator has received some attention recently [73, 74, 80], mainly
because of its appearance in the study of nonlinear waves in (2 + 1)-dimensional
noncommutative scalar field theory [1, 21].

Theorem I can easily be stated as well in terms of the spectral measure ρ of a
generalized indefinite string (L,ω,υ), which is defined such that

m(z) = c1z + c2 − 1

Lz
+

∫
R

1

λ − z
− λ

1 + λ2
dρ(λ), (1.12)

where c1, c2 ∈ R are some constants with c1 ≥ 0 and ρ is a positive Borel measure
on R with ρ({0}) = 0 that satisfies

∫
R

dρ(λ)

1 + λ2
< ∞. (1.13)

The measure ρ is indeed a spectral measure for an associated self-adjoint linear re-
lation T (which we are going to define properly in Sect. 2). Notice that unlike the
Weyl–Titchmarsh function m, the spectral measure ρ does not determine the gener-
alized indefinite string (L,ω,υ) uniquely. More specifically, it does not determine
the length L and assuming that L is known, it determines w only up to an additive
constant and υ up to a point mass at zero (see Remark 2.5 below).

Corollary I A positive Borel measure ρ on R with (1.13) is the spectral measure of a
generalized indefinite string (L,ω,υ) with L = ∞ and (1.5) for some constant c ∈R

if and only if both of the following conditions hold:

(i) The support of ρ is discrete in (−∞, α), does not contain zero and satisfies

∑
λ∈supp(ρ)

λ<0

1

|λ|3/2 +
∑

λ∈supp(ρ)
0<λ<α

(α − λ)3/2 < ∞. (1.14)

(ii) The absolutely continuous part ρac of ρ on (α,∞) satisfies

∫ ∞

α

√
λ − α

λ3 log

(
dρac(λ)

dλ

)
dλ > −∞. (1.15)

Results like Theorem I and Corollary I have their origin in the work of G. Szegő
on orthogonal polynomials on the unit circle (see [97] for a detailed historical ac-
count and further references) and have been pioneered by R. Killip and B. Simon for
Jacobi matrices [70] and Schrödinger operators [71]. In both cases, the proof relies
on two crucial ingredients: (a) Continuous dependence of spectral data on the coeffi-
cients (for example, the spectral measure of a Jacobi matrix on the Jacobi parameters
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or the Weyl–Titchmarsh function on the potential for a Schrödinger operator) and (b)
a trace formula (or sum rule in the terminology of [70, 71, 97]). Of course, in addi-
tion one also needs a sophisticated direct and inverse spectral theory available for the
respective operators. Unlike Jacobi matrices and Schrödinger operators, generalized
indefinite strings were introduced only relatively recently in [42] and are far less well
developed. However, they are closely related to 2 × 2 canonical systems [34, 91, 92]
and this connection provides us with the necessary continuity property. In fact, this is
widely known as continuity of the Krein–de Branges correspondence, a fundamen-
tal result of Krein–de Branges theory. On the other hand, trace formulas are usually
connected to conserved quantities of related completely integrable systems; the Toda
lattice for Jacobi matrices and the Korteweg–de Vries equation for Schrödinger op-
erators. This role is taken by the Camassa–Holm equation [20] for generalized in-
definite strings, whose conservation laws suggest suitable trace formulas. However,
the known conserved quantities for smooth classical solutions of the Camassa–Holm
equation are insufficient and have to be amended. Instead one has to consider more
general conservative weak solutions, a particular kind of weak solutions of low regu-
larity that allows continuation of solutions after blow-up. Conservation laws for these
solutions appear to be new and we are unaware of any previous derivations. In fact,
we already employed a corresponding trace formula earlier when establishing results
akin to the ones by P. Deift and R. Killip [35] for generalized indefinite strings in [46].
Here we will show that this trace formula indeed holds in a strong sense, meaning
that finiteness of one side implies finiteness of the other side; see (7.3) and (7.8). This
readily proves Theorem I.

When compared to Jacobi matrices and Schrödinger operators, there are several
more principal differences. First of all, the spectral problem (1.1) is nonlinear in the
spectral parameter. However, even without the quadratic term, the spectral parameter
enters the problem in the ‘wrong’ place. This makes it difficult to view (1.1) as an
additive perturbation as the underlying Hilbert space varies together with the coef-
ficients. We are going to clarify this situation in Sect. 3 based on recent advances
in [47]. A second issue lies in the fact that in contrast to Schödinger operators even a
relatively small alteration of the coefficients ω and υ (for example, changing them on
a compact interval) can lead to perturbations that are not of trace class anymore (for
Jacobi matrices the latter are even of finite rank). In fact, this only occurs when the
spectrum is not semi-bounded, which constitutes another difference to the Jacobi ma-
trix and Schrödinger operator cases. On a technical level, this makes it necessary to
consider suitably regularized perturbation determinants and infinite products that are
only conditionally convergent in general. Finally, one more major difference to Jacobi
matrices and Schrödinger operators lies in the crucial role played by the high-energy
spectral asymptotics, a very well understood classical subject in both these cases. For
generalized indefinite strings, sufficiently strong asymptotics are not known in fact.
Instead, we will have to rely on a qualified understanding of spectral asymptotics at
zero. These will lead to our trace formulas as well as corresponding conservation
laws for the conservative Camassa–Holm flow.

In addition to Theorem I, we will also prove a similar result for another class of
generalized indefinite strings that give rise to essential spectrum (−∞,−β] ∪ [β,∞)
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for some positive constant β . To this end, we will write

υ(B) =
∫

B

�(x)2dx + υs(B), (1.16)

where � is the (positive) square root of the Radon–Nikodým derivative of υ with
respect to the Lebesgue measure and υs is the singular part of υ . Whereas Theorem I
is motivated by the study of a particular phase space associated with the Hamiltonian
of the Camassa–Holm equation, this result is relevant for another phase space arising
in connection with the two-component Camassa–Holm system [22, 63].

Theorem II A Herglotz–Nevanlinna function m is the Weyl–Titchmarsh function of a
generalized indefinite string (L,ω,υ) with L = ∞ and

∫ ∞

0
(w(x) − c)2x dx +

∫ ∞

0

(
�(x) − 1

1 + 2βx

)2

x dx +
∫

[0,∞)

x dυs(x) < ∞
(1.17)

for some constant c ∈R if and only if all the following conditions hold:

(i) The function m has a meromorphic extension to C+ ∪ (−β,β) ∪ C− that is
analytic at zero.

(ii) The poles σdis of m in (−β,β) satisfy

∑
λ∈σdis

(β − |λ|)3/2 < ∞. (1.18)

(iii) The boundary values of the function m satisfy

∫
R\(−β,β)

√
λ2 − β2

|λ|3 log(Imm(λ + i0))dλ > −∞. (1.19)

Remark 1.3 Similar to Theorem I, condition (i) says that the essential spectrum is con-
tained in the set (−∞,−β] ∪ [β,∞). The constant c in (1.17) is related to the Weyl–
Titchmarsh function m via m(0) = c. Condition (ii) is a Lieb–Thirring bound on
the eigenvalues in the interval (−β,β) with a corresponding sharp Lieb–Thirring in-
equality given in Corollary 10.2 and condition (iii) implies that the absolutely contin-
uous spectrum is essentially supported on the set (−∞,−β] ∪ [β,∞) (a fact proved
before in [53, Theorem 3.2]), whereas there is no restriction on the singular spectrum
in (−∞,−β] ∪ [β,∞).

Let us again state this result also in terms of the spectral measure.

Corollary II A positive Borel measure ρ on R with (1.13) is the spectral measure of
a generalized indefinite string (L,ω,υ) with L = ∞ and (1.17) for some constant
c ∈ R if and only if both of the following conditions hold:
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(i) The support of ρ is discrete in (−β,β), does not contain zero and satisfies

∑
λ∈supp(ρ)

|λ|<β

(β − |λ|)3/2 < ∞. (1.20)

(ii) The absolutely continuous part ρac of ρ on (−∞,−β) ∪ (β,∞) satisfies

∫
R\(−β,β)

√
λ2 − β2

|λ|3 log

(
dρac(λ)

dλ

)
dλ > −∞. (1.21)

Remark 1.4 It is also possible to prove similar results for classes of generalized in-
definite strings with finite length L. This can be achieved by means of the second
transformation in Remark 2.5, which changes the length of a generalized indefinite
string while only altering the residue of the Weyl–Titchmarsh function at zero.

1.2 Completely integrable systems

One of the main motivations for studying inverse spectral theory for Jacobi matrices
and Schrödinger operators stems from their relevance for the Toda lattice and the
Korteweg–de Vries equation. In the same way, inverse spectral theory for generalized
indefinite strings is important for nonlinear wave equations like the Hunter–Saxton
equation and the Dym equation, but in particular the Camassa–Holm equation

ut − uxxt = 2uxuxx − 3uux + uuxxx, (1.22)

which was first found by B. Fuchsteiner and A. S. Fokas [55] to be formally integrable
with Hamiltonians given by

H1 =
∫

u2 + u2
x dx, H2 = 1

2

∫
u3 + uu2

x dx, (1.23)

where the domain of integration is either the real line R or the circle T = R/Z. Its
formulation as a non-local conservation law

ut + uux + Px = 0, (1.24)

where the source term P is defined (for suitable functions u) as the convolution

P = 1

2
e−|·| ∗

(
u2 + 1

2
u2

x

)
, (1.25)

is reminiscent of the three-dimensional incompressible Euler equation. Regarding
the hydrodynamical relevance of the Camassa–Holm equation, let us mention that it
can be derived as an approximation to the Green–Naghdi equations, the governing
equations for shallow water waves over a flat bed [20, 28, 65].

An intensive study of (1.22) started with the discoveries of R. Camassa and
D. Holm [20] (we only refer to a very brief selection of articles [4, 16, 18, 24, 25, 29,
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30, 61, 85, 87, 88, 99]). Indeed, it turned out that equation (1.22) exhibits a rich math-
ematical structure. For instance, the Bott–Virasoro group serves for equation (1.24) as
a symmetry group and thus the Camassa–Holm equation can be viewed as a geodesic
equation with respect to a right invariant metric [88]. Among many celebrated mod-
els for shallow water waves (for example, the Korteweg–de Vries equation or the
Benjamin–Bona–Mahoney equation), the significance of equation (1.22) stems from
the fact that it is the first and long sought-for model with the following three fea-
tures: (a) Complete integrability, as it admits a Lax pair formulation, (b) solitons,
including peaked ones (called peakons) and (c) finite time blow-up of smooth so-
lutions that resembles wave-breaking to some extent; see [26]. More specifically,
singularities develop in a way that the solution u remains bounded pointwise, while
the spatial derivative ux tends to −∞ at some points. However, the H 1 norm of u

remains bounded (actually, the H 1 norm serves as a Hamiltonian for the Camassa–
Holm equation and is thus conserved) and u approaches a limit weakly in H 1 as the
blow-up happens, which raises the natural question of continuation past the blow-up.
Indeed, it was found that the Camassa–Holm equation possesses global weak solu-
tions [99], which are not unique however and hence continuation of solutions after
blow-up is a delicate matter.

A particular kind of weak solutions are so-called conservative solutions, the notion
of which was suggested independently in [18] and [61]. These are weak solutions (in
a sense to be made precise in Definition 13.15) of the system

ut + uux + Px = 0,

μt + (uμ)x = (u3 − 2Pu)x,
(1.26)

where the auxiliary function P satisfies

P − Pxx = u2 + μ

2
. (1.27)

We will call system (1.26) the two-component Camassa–Holm system because it in-
cludes the Camassa–Holm equation as well as its two-component generalization (see
[22, 27, 54, 63])

ut − uxxt = 2uxuxx − 3uux + uuxxx − ��x,

�t = −ux� − u�x,
(1.28)

where one just needs to set μ = u2 +u2
x +�2. The role of the additional positive Borel

measure μ is to control the loss of energy at times of blow-up. More precisely, as
the model example of a peakon–antipeakon collision illustrates (see [18, Sect. 6] for
example), at times when the solution blows up, the corresponding energy, measured
by μ, concentrates on sets of Lebesgue measure zero. Solutions of this kind have been
constructed by a generalized method of characteristics that relied on a transformation
from Eulerian to Lagrangian coordinates and was accomplished for various classes
of initial data in [18, 57, 58, 61, 62].

From our perspective, conservative solutions are of special interest because they
preserve the integrable structure of the Camassa–Holm equation and can be obtained
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by employing the inverse spectral transform method [39, 41, 48], at least in principle.
The underlying isospectral problem is of the form

−f ′′ + 1

4
f = zωf + z2υf, (1.29)

where ω = u − uxx and μ = u2 + u2
x + υ . Despite its relevance and a large amount

of articles, relatively little is known about the spectral problem (1.29) so far when
ω is allowed to change sign and υ to be not zero. In fact, under the necessary low
regularity restrictions (the coefficient ω may be a real distribution and υ may be a
positive measure), not even the well-developed theory about self-adjoint realizations
covers this kind of spectral problem; see [7, 8, 43, 50, 56], where only [43] includes
the additional coefficient υ . Consequently, most of the literature on inverse spectral
theory restricts to the case when υ vanishes identically and ω is strictly positive and
smooth. Under these assumptions, the differential equation can be transformed into
a standard potential form that is known from the Korteweg–de Vries equation and
some conclusions may be drawn from this [3, 24, 31, 82, 86]. In the general case,
apart from the explicitly solvable finite dimensional case [4, 41, 45] and a class of
coefficients that gives rise to purely discrete spectrum [39], only insufficient partial
uniqueness results [6–9, 38, 43, 49, 52] have been obtained so far.

The spectral problem (1.29) differs from the one for a generalized indefinite string
in (1.1) only by a constant coefficient term and can be turned into this form in sev-
eral ways by employing a simple change of variables. For example, when (1.29) is
considered on the half-line [0,∞) with a real-valued function u in H 1

loc[0,∞) and a
positive Borel measure υ on [0,∞), the spectral problem (1.29) can be transformed
into a generalized indefinite string (L, ω̃, υ̃) with L = ∞ using the change of vari-
ables x �→ log(1 + x). The details of this transformation can be found in [46, Sect. 7]
and are also briefly summarized in Sect. 13.1. In this situation, one can also define a
Weyl–Titchmarsh function m for the spectral problem (1.29) on C\R by

m(z) = ψ ′(z,0−)

zψ(z,0)
, (1.30)

where ψ(z, · ) is the unique (up to scalar multiples) nontrivial solution of the differ-
ential equation (1.29) that lies in H 1[0,∞) and L2([0,∞);υ). It turns out that this
function coincides with the Weyl–Titchmarsh function of the corresponding general-
ized indefinite string (L, ω̃, υ̃) up to a pole at zero. As a consequence, it allows an
integral representation of the form

m(z) = c1z + c2 − 1

2z
+

∫
R

1

λ − z
− λ

1 + λ2
dρ(λ), (1.31)

where c1, c2 ∈ R are constants with c1 ≥ 0 and ρ is the spectral measure of (L, ω̃, υ̃).
We will call ρ the spectral measure of the spectral problem (1.29) with a real-valued
function u in H 1

loc[0,∞) and a positive Borel measure υ on [0,∞).
By using the relations described above, we are able to translate all results for

generalized indefinite strings to the half-line spectral problem (1.29). However, for
the sake of brevity, we will only state one of these results here, obtained immediately
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from Theorem I, where κ is a fixed positive constant. A few more consequences that
follow readily in this case are outlined in Sect. 13.1.

Corollary 1.5 A positive Borel measure ρ on R with (1.13) is the spectral measure of
the spectral problem (1.29) on the half-line [0,∞) with a real-valued function u in
H 1

loc[0,∞) and a positive Borel measure υ on [0,∞) satisfying

∫ ∞

0
(u(x) − κ)2 + u′(x)2 dx +

∫
[0,∞)

dυ < ∞ (1.32)

if and only if both of the following conditions hold with α = 1
4κ

:

(i) The support of ρ is discrete in (−∞, α), does not contain zero and satis-
fies (1.14).

(ii) The absolutely continuous part ρac of ρ on (α,∞) satisfies (1.15).

Remark 1.6 Condition (1.32) means that the function u − κ belongs to the Sobolev
space H 1[0,∞) and that the measure υ is finite. These restrictions appear to be
natural for the Camassa–Holm equation; compare the first Hamiltonian in (1.23).
In fact, by employing a generalized method of characteristics, existence of global
conservative weak solutions to the Camassa–Holm equation with initial conditions
such that u − κ ∈ H 1(R) was established by H. Holden and X. Raynaud in [62]. The
constant κ here is related to the critical wave speed and the Camassa–Holm equation
is regarded to be in the dispersive regime for positive κ . The case when the constant
κ is allowed to be different for −∞ and for +∞ has been settled in [58]. We are
going to show below that Theorem I can be used to establish the inverse spectral
transform and existence of weak solutions in the special case when κ is zero for
−∞ and positive for +∞. However, analogous to the situation for the Toda lattice
and the Korteweg–de Vries equation on the line in connection with Killip–Simon
results [70, 71],2 at the moment it is not clear how results like Corollary 1.5 can be
employed to handle the case of positive κ at both endpoints.

Unlike the corresponding result for Schrödinger operators in [71], Theorem I and
Theorem II can, even though they are results for a half-line spectral problem, be ap-
plied to the Camassa–Holm equation and its two-component generalization on the
full real line. In fact, both of these theorems establish an inverse spectral transform
on a particular phase space of step-like profiles that completely linearizes the con-
servative Camassa–Holm flow. Here we will restrict our discussion again to what
follows from Theorem I, further similar results can be deduced readily from the more
detailed exposition in Sects. 13.2 and 13.3. Let us begin by introducing an associated

2Well-posedness of the Korteweg–de Vries equation in L2(R) is a seminal result of J. Bourgain [15] (see
also the recent breakthrough in [72] by R. Killip and M. Visan). On the other side, a complete solution of
the inverse spectral problem for Schrödinger operators with L2 potentials on the half-line is given in [71]
and one would hope that this enables one to integrate the Korteweg–de Vries flow on L2(R) by means of
the inverse scattering method. However, this has not been achieved so far since the solution of the inverse
spectral problem is given in terms of the half-line spectral measure whereas the inverse scattering transform
approach in this setting requires some yet unknown full-line spectral data for potentials in L2(R).
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phase space Dκ for the two-component Camassa–Holm system (1.26), where κ is a
fixed positive constant.

Definition 1.7 The set Dκ consists of all pairs (u,μ) such that u is a real-valued
function in H 1

loc(R) and μ is a positive Borel measure on R with

∫
B

u(x)2 + u′(x)2 dx ≤ μ(B) (1.33)

for every Borel set B ⊆ R, satisfying the asymptotic growth restrictions

∫
(−∞,0)

e−xdμ(x) < ∞,

∫ ∞

0
(u(x) − κ)2 + u′(x)2dx +

∫
[0,∞)

dυ < ∞, (1.34)

where υ is the positive Borel measure on R defined such that

μ(B) = υ(B) +
∫

B

u(x)2 + u′(x)2 dx. (1.35)

Remark 1.8 We chose to work with pairs (u,μ) and the unusual condition (1.33)
instead of the simpler definable pairs (u,υ) for various reasons. For example, the
measure μ is more natural when considering suitable notions of convergence; see
Definition 13.11 for details and compare with (2.39) in Proposition 2.6. Moreover,
in the context of the conservative Camassa–Holm flow, the measure μ satisfies the
transport equation in (1.26) and represents the energy of a solution.

The first condition in (1.34) requires strong decay of both, the function u and the
measure υ , at −∞, whereas the second condition means that the function u − κ lies
in H 1 near +∞ and that the measure υ is finite near +∞. Of course, the conditions
at −∞ and at +∞ could also be switched due to the symmetry

(x, t) �→ (−x,−t) (1.36)

of the two-component Camassa–Holm system (1.26). However, we are not able to
allow nonzero asymptotics at both endpoints with current methods.

Due to the strong decay restriction at −∞, for every pair (u,μ) in Dκ one can
introduce a Weyl–Titchmarsh function m for the spectral problem (1.29) on the real
line. This function coincides with the Weyl–Titchmarsh function of a corresponding
generalized indefinite string. Namely, using the diffeomorphism x �→ ex from R to
(0,∞), the spectral problem (1.29) is transformed to a generalized indefinite string
(L, ω̃, υ̃) with L = ∞. One can then use Corollary I to characterize the corresponding
set of all spectral measures ρ for pairs in Dκ ; see Theorem 13.5. In order to state this
result, we first define Rα for a positive constant α as the set of all positive Borel
measures ρ on R with (1.13) that satisfy conditions (i) and (ii) in Corollary I.

Theorem 1.9 The map (u,μ) �→ ρ from Dκ to R 1
4κ is bijective.
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Remark 1.10 Just like the classical Krein–de Branges correspondence, the map
(u,μ) �→ ρ becomes a homeomorphism with respect to reasonable topologies;
see [48, Proposition 4.5]. In fact, for our phase space Dκ we are able to improve
on this result and obtain homeomorphy with respect to finer topologies, whose defi-
nition is dictated by the trace formula in Corollary 13.10 underlying the phase space
Dκ and takes into account the additional control at +∞; see Definition 13.12.

By means of the bijection in Theorem 1.9, we are able to define the conservative

Camassa–Holm flow on Dκ by introducing a (well-defined) flow on R 1
4κ via

dρ(λ, t) = e− t
2λ dρ(λ,0). (1.37)

That this flow indeed gives rise to global weak solutions (in a sense to be made precise
in Definition 13.15) of the two-component Camassa–Holm system (1.26) with initial
data in Dκ follows from our recent results in [48, Sect. 5].

Theorem 1.11 Integral curves of the conservative Camassa–Holm flow on Dκ are
weak solutions of the two-component Camassa–Holm system (1.26).

Of course, by its very definition, the conservative Camassa–Holm flow on Dκ

is linearized under the inverse spectral transform (u,μ) �→ ρ. The time evolution
on the spectral side can be seen to split into one part on the essential spectrum given
by (1.37) and the usual time evolution of norming constants associated with the eigen-
values in the discrete spectrum. This means that global conservative solutions with
step-like initial data in Dκ can be integrated by means of the inverse spectral trans-
form. One can expect that this will allow to deduce qualitative properties of such
solutions.

Remark 1.12 A pair (u,μ) is called a multi-peakon profile if it is of the form

u(x) = 1

2

N∑
n=1

ωne−|x−xn|, υ =
N∑

n=1

υnδxn, (1.38)

where δx is the unit Dirac measure centered at x. The phase space Dκ clearly does not
contain any multi-peakon profiles. However, it does include certain pairs (u,μ) that
are made up of infinitely many peakons, meaning that they are of the above form with
N = ∞. For example, the shifted Laguerre weight from Remark 1.2 leads to such a
pair (described in more detail in Remark 13.23 (c)) and a complete characterization of
spectral measures for the class of such pairs can be deduced from Theorem 12.3. The
corresponding weak solutions of the two-component Camassa–Holm system (1.26)
can be written down explicitly in terms of the moments of the time-evolved spectral
measure. Asymptotic long-time behavior of these solutions appears to be an intrigu-
ing topic, which will be addressed elsewhere.
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1.3 Further applications

Since generalized indefinite strings serve as yet another canonical model of self-
adjoint operators with simple spectrum [42], one can apply our main results also
to other important one-dimensional models and operators of mathematical physics.
We begin with Krein strings [68, 75] as they constitute a rather obvious and important
subclass of generalized indefinite strings. More specifically, a Krein string is a gener-
alized indefinite string (L,ω,υ) such that ω is a positive Borel measure on [0,L) and
υ is identically zero. On the spectral side, this is equivalent to the condition that the
Weyl–Titchmarsh function m is a Stieltjes function, which means that in the integral
representation (1.12) the constant c1 vanishes, the constant c2 is non-negative and the
measure ρ is supported on [0,∞) with

∫
[0,∞)

dρ(λ)

1 + λ
< ∞. (1.39)

Theorem I and Corollary I can thus easily be specialized to Krein strings; see Theo-
rem 11.1 and Corollary 11.3. Furthermore, even though it is less immediately obvi-
ous, we can also apply Theorem II to Krein strings by using a simple relation between
the Weyl–Titchmarsh functions of a Krein string (L,υ) and the generalized indefi-
nite string (L,0, υ). In this way, we obtain a characterization for another class of
perturbations for Krein strings that is quite different from the previous one in Theo-
rem 11.1. This characterization will be given in Theorem 11.8, of which the following
result is an immediate consequence, where we continue to use the notation introduced
in (1.16).

Corollary 1.13 A positive Borel measure ρ on [0,∞) with (1.39) is the spectral mea-
sure of a Krein string (L,υ) with L = ∞ and

∫ ∞

0

(
�(x) − 1

1 + 2
√

αx

)2

x dx +
∫

[0,∞)

x dυs(x) < ∞ (1.40)

if and only if both of the following conditions hold:

(i) The support of ρ is discrete in [0, α), does not contain zero and satisfies

∑
λ∈supp(ρ)

0<λ<α

(α − λ)3/2 < ∞. (1.41)

(ii) The absolutely continuous part ρac of ρ on (α,∞) satisfies

∫ ∞

α

√
λ − α

λ2
log

(
dρac(λ)

dλ

)
dλ > −∞. (1.42)
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Remark 1.14 A few remarks are in order:

(a) Analogous to our considerations in Sect. 1.2, these additional results for Krein
strings can be applied to the conservative Camassa–Holm flow. More specifi-
cally, Corollary 1.13 gives rise to another phase space and a corresponding in-
verse spectral transform. Due to the positivity condition on the spectral side, the
additional measure μ becomes superfluous and u can be understood as a weak
solution of the Camassa–Holm equation. Moreover, this positivity restriction is
known to prevent blow-ups and one can expect uniqueness of weak solutions;
compare [29].

(b) Let us stress that the difference between conditions (1.42) and (1.15) is only
on the asymptotic behavior of the density of the spectral measure at infinity.
However, condition (1.42) is clearly stronger than (1.15) and ensures that the
absolutely continuous part of the Krein string’s weight measure is not trivial. In
particular, it excludes Krein–Stieltjes strings (compare with Remark 1.2).

(c) Corollary 1.13 has an interesting connection with recent work of R. V. Bessonov
and S. A. Denisov [10–12] on the spectral version of the classical Szegő–Kolmo-
gorov–Krein theorem, which will be discussed in Sect. 11.

Two more subclasses of generalized indefinite strings that are related to the Ham-
burger moment problem and the Stieltjes moment problem are Krein–Langer strings
and Krein–Stieltjes strings. For these kinds of generalized indefinite strings, the coef-
ficients ω and υ are supported on a discrete set, so that the differential equation (1.1)
reduces to a difference equation similar to the second order recurrence relations in the
case of Jacobi matrices. They are also of particular interest because they correspond
to weak solutions of the Camassa–Holm equation that are made up of infinitely many
peakons. More details and applications of our main results to these two subclasses
will be given in Sect. 12.

For the sake of brevity, let us just briefly mention a few more applications of
our results: First of all, our main results obtained for generalized indefinite strings
can be translated to 2 × 2 canonical systems by using a known transformation be-
tween them (see Appendix D). We will state these results for canonical systems ob-
tained from Theorem I and Theorem II in Sect. 14.1 (related results for canonical
systems have been obtained before in [11] and in [33] using the Arov gauge). What
is more important though, we can also apply our results to prove Szegő-type theo-
rems for one-dimensional Dirac operators (a related result can be found in [64]) and
Schrödinger operators. However, we decided to focus only on one straightforward
application to a one-dimensional Dirac operator presented in Sect. 14.2, but using a
standard supersymmetry trick one may derive a corresponding Szegő-type theorem
for one-dimensional Schrödinger operators.

We conclude this lengthy introduction with one more observation. The inverse
spectral theory for generalized indefinite strings also sheds some light on the rich
mathematical structure of the two-component Camassa–Holm system (1.26). One
may easily recognize a lot of similarities between this system and other classical
completely integrable systems: The Toda lattice and multi-peakon interaction [5], the
Korteweg–de Vries equation and the Camassa–Holm equation [3, 82, 86], the AKNS
system and the two-component Camassa–Holm system [22]. All these connections
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are not surprising at all if one realizes that the corresponding isospectral problems
(Jacobi matrices, one-dimensional Schrödinger and Dirac operators) can all be trans-
formed into the form of a generalized indefinite string.

1.4 Outline of this article

The preliminary Sect. 2 first collects all necessary information about generalized in-
definite strings. In Sect. 3, we use some results from our recent work [47] in or-
der to demonstrate how the conditions (1.5) and (1.17) can be understood as addi-
tive Hilbert–Schmidt perturbations. Section 4 then deals with spectral asymptotics
of Weyl–Titchmarsh functions at zero. On the one hand, one may use the results
from [51] to get the leading term of the asymptotics (see Proposition 4.4). However,
since the Weyl–Titchmarsh function has an analytic extension to zero in our case, we
are indeed able to obtain a complete Taylor series expansion at zero (see Proposi-
tion 4.5). This turns out to be an important prerequisite for obtaining trace formulas.

Sections 5, 6 and 7 are dedicated to the proof of Theorem I. The overall strategy
is similar to the one in [70, 71]. More specifically, Sect. 5 contains the key result;
relative trace formulas in Theorem 5.3. Crucial for the proof of these identities are
factorizations of certain meromorphic functions on the open upper complex half-
plane C+ and associated trace formulas that will be derived in Appendix A. Next,
in Sect. 6, we establish lower semi-continuity of certain functionals involving an
associated transmission coefficient, a quantity resembling the classical transmission
coefficient in one-dimensional scattering, which is also related to a perturbation de-
terminant. Having all these ingredients at hand, we finally complete the proof of our
first main result in Sect. 7. As in [70, 71], this is achieved by showing that the trace
formula underlying the class of generalized indefinite strings in Theorem I holds in
the strong sense that if one side is finite, then so is the other one. Even more, we
will additionally also obtain another trace formula in Corollary 7.1 that only involves
the half-line spectral measure and leads to a sharp Lieb–Thirring inequality in Corol-
lary 7.2. In a similar way, the proof of Theorem II is contained in Sects. 8, 9 and 10
as well as Appendix B.

The remaining sections are dedicated to applications of our main results. To begin
with, we describe applications to the special case of Krein strings in Sect. 11. We
then continue to apply our results to Krein–Stieltjes strings and Krein–Langer strings
in Sect. 12. Applications to the conservative Camassa–Holm flow will be explored
in Sect. 13. In the final Sect. 14, we present two more applications to 2 × 2 canon-
ical systems and one-dimensional Dirac operators. Relevant necessary notions and
facts about canonical systems and their connection with generalized indefinite strings
are summarized in Appendix D. For convenience, we also gather some auxiliary in-
formation on two particular functions appearing frequently in our trace formulas in
Appendix C.

2 Preliminaries

We are first going to introduce several spaces of functions and distributions. For ev-
ery fixed L ∈ (0,∞], we denote with H 1

loc[0,L), H 1[0,L) and H 1
c [0,L) the usual
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Sobolev spaces

H 1
loc[0,L) = {f ∈ ACloc[0,L) |f ′ ∈ L2

loc[0,L)}, (2.1)

H 1[0,L) = {f ∈ H 1
loc[0,L) |f, f ′ ∈ L2[0,L)}, (2.2)

H 1
c [0,L) = {f ∈ H 1[0,L) | supp(f ) compact in [0,L)}. (2.3)

The space of distributions H−1
loc [0,L) is the topological dual of H 1

c [0,L), so that the
mapping q �→ χ , defined by

χ(h) = −
∫ L

0
q(x)h′(x)dx (2.4)

for all functions h ∈ H 1
c [0,L), establishes a one-to-one correspondence between

L2
loc[0,L) and H−1

loc [0,L). The unique function q ∈ L2
loc[0,L) corresponding to some

distribution χ ∈ H−1
loc [0,L) in this way will be referred to as the normalized anti-

derivative of χ . Furthermore, a distribution in H−1
loc [0,L) is said to be real if its

normalized anti-derivative is real-valued almost everywhere on [0,L).
A particular kind of distribution in H−1

loc [0,L) arises from Borel measures on the
interval [0,L). In fact, if χ is a complex-valued Borel measure on [0,L), then we
will identify it with the distribution in H−1

loc [0,L) given by

h �→
∫

[0,L)

hdχ. (2.5)

The normalized anti-derivative q of such a measure χ is simply given by the left-
continuous distribution function

q(x) =
∫

[0,x)

dχ (2.6)

for almost all x ∈ [0,L), as an integration by parts (use, for example, [14, Exer-
cise 5.8.112] or [59, Theorem 21.67]) shows.

In order to obtain a self-adjoint realization of our spectral problem in a suitable
Hilbert space later, we also introduce the function space

Ḣ 1[0,L) =
{

{f ∈ H 1
loc[0,L) |f ′ ∈ L2[0,L), limx→L f (x) = 0}, L < ∞,

{f ∈ H 1
loc[0,L) |f ′ ∈ L2[0,L)}, L = ∞,

(2.7)

as well as the linear subspace

Ḣ 1
0 [0,L) = {f ∈ Ḣ 1[0,L) |f (0) = 0}, (2.8)

which turns into a Hilbert space when endowed with the scalar product

〈f,g〉Ḣ 1
0 [0,L) =

∫ L

0
f ′(x)g′(x)∗dx. (2.9)
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The space Ḣ 1
0 [0,L) can be viewed as a completion with respect to the norm induced

by (2.9) of the space of all smooth functions which have compact support in (0,L).
In particular, the space Ḣ 1

0 [0,L) coincides algebraically and topologically with the
usual Sobolev space H 1

0 [0,L) when L is finite.

Definition 2.1 A generalized indefinite string is a triple (L,ω,υ) such that L belongs
to (0,∞], ω is a real distribution in H−1

loc [0,L) and υ is a positive Borel measure on
the interval [0,L).

For a generalized indefinite string (L,ω,υ), the normalized anti-derivative of the
distribution ω will always be denoted with w in the following. Associated with such
a generalized indefinite string is the inhomogeneous differential equation

−f ′′ = zωf + z2υf + χ, (2.10)

where χ is a distribution in H−1
loc [0,L) and z is a complex spectral parameter. Of

course, this differential equation has to be understood in a weak sense: A solution
of (2.10) is a function f ∈ H 1

loc[0,L) such that

f ′(0−)h(0) +
∫ L

0
f ′(x)h′(x)dx = zω(f h) + z2

∫
[0,L)

f hdυ + χ(h) (2.11)

for all functions h ∈ H 1
c [0,L) and a (unique) constant f ′(0−) ∈C.

With this notion of solution, we are able to introduce the fundamental system of
solutions θ(z, · ) and φ(z, · ) of the homogeneous differential equation

−f ′′ = zωf + z2υf (2.12)

satisfying the initial conditions

θ(z,0) = φ′(z,0−) = 1, θ ′(z,0−) = φ(z,0) = 0, (2.13)

for every z ∈ C; see [42, Lemma 3.2]. Even though the derivatives of these func-
tions are only locally square integrable in general, there are unique left-continuous
functions θ [1](z, · ) and φ[1](z, · ) on [0,L) such that

θ [1](z, x) = θ ′(z, x) + zw(x)θ(z, x),

φ[1](z, x) = φ′(z, x) + zw(x)φ(z, x),
(2.14)

for almost all x ∈ [0,L); see [42, Equation (4.12)]. These functions will henceforth
be referred to as quasi-derivatives of the solutions θ(z, · ) and φ(z, · ). As functions
of the spectral parameter z, the solutions as well as their quasi-derivatives are entire;
see [42, Corollary 3.5] for example. We defer justification of the remaining claims in
the following theorem to Appendix D, where we summarize the connection between
generalized indefinite strings and canonical systems.
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Theorem 2.2 For every fixed x ∈ [0,L), the functions

z �→ θ(z, x), z �→ θ [1](z, x)/z, z �→ φ(z, x), z �→ φ[1](z, x), (2.15)

are real entire and have only real and simple zeros (unless they are identically zero3).
Moreover, they belong to the Cartwright class with exponential type given by

∫ x

0
�(s)ds, (2.16)

where � is the square root of the Radon–Nikodým derivative of υ with respect to the
Lebesgue measure.

At the origin, when z is zero, the differential equation (2.12) can of course be
solved explicitly and our fundamental system is given by

θ(0, x) = 1, θ [1](0, x) = 0, φ(0, x) = x, φ[1](0, x) = 1. (2.17)

More crucially, we will furthermore require the following formulas for the derivatives
of this fundamental system with respect to the spectral parameter at the origin, which
have been derived in [46, Proposition 4.1]. Let us note that differentiation with respect
to the spectral parameter will be denoted with a dot here and is always meant to be
done after taking quasi-derivatives.

Proposition 2.3 For every x ∈ [0,L), one has

θ̇ (0, x) = −
∫ x

0
w(s)ds, θ̇ [1](0, x) = 0, (2.18)

φ̇(0, x) =
∫ x

0

∫ s

0
w(t)dt ds −

∫ x

0
w(s)s ds, φ̇[1](0, x) =

∫ x

0
w(s)ds, (2.19)

as well as

θ̈ (0, x) =
(∫ x

0
w(s)ds

)2

− 2
∫ x

0

∫ s

0
w(t)2dt ds − 2

∫ x

0

∫
[0,s)

dυ ds, (2.20)

θ̈ [1](0, x) = −2
∫ x

0
w(s)2ds − 2

∫
[0,x)

dυ, (2.21)

φ̈[1](0, x) =
(∫ x

0
w(s)ds

)2

− 2
∫ x

0
w(s)2s ds − 2

∫
[0,x)

s dυ(s). (2.22)

The differential equation (2.10) for a generalized indefinite string (L,ω,υ) gives
rise to an associated self-adjoint linear relation in the Hilbert space

H = Ḣ 1
0 [0,L) × L2([0,L);υ), (2.23)

3This can happen only if x is zero or ω and υ both vanish on [0, x); see Proposition 2.3 below.
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which is endowed with the scalar product

〈f,g〉H =
∫ L

0
f ′

1(x)g′
1(x)∗dx +

∫
[0,L)

f2(x)g2(x)∗dυ(x). (2.24)

Here, the respective components of some vector f ∈ H are always denoted by adding
subscripts, that is, with f1 and f2. Now the linear relation T in the Hilbert space H is
defined by saying that some pair (f, g) ∈ H×H belongs to T if and only if

−f ′′
1 = ωg1 + υg2, υf2 = υg1. (2.25)

In order to be precise, the right-hand side of the first equation in (2.25) has to be
understood as the H−1

loc [0,L) distribution given by

h �→ ω(g1h) +
∫

[0,L)

g2hdυ, (2.26)

so that the first equation can be understood as a special case of (2.10). Moreover, the
second equation in (2.25) holds if and only if f2 is equal to g1 almost everywhere
on [0,L) with respect to the measure υ . The linear relation T defined in this way
turns out to be self-adjoint in the Hilbert space H; see [42, Theorem 4.1]. It is indeed
closely related to the differential equation (2.10): A pair (f, g) ∈ H × H belongs to
T − z if and only if

−f ′′
1 = zωf1 + z2υf1 + ωg1 + zυg1 + υg2, υf2 = zυf1 + υg1. (2.27)

In particular, this shows that some f ∈ H belongs to ker(T − z) if and only if f1 is a
solution of the differential equation (2.12) and υf2 = zυf1.

For the sake of simplicity, we shall always mean the spectrum of the corresponding
linear relation when we speak of the spectrum of a generalized indefinite string in the
following. We will use the same convention for the various spectral types.

A central object in the spectral theory for the linear relation T is the associated
Weyl–Titchmarsh function m. This function can be defined on C\R by

m(z) = ψ ′(z,0−)

zψ(z,0)
, (2.28)

where ψ(z, · ) is the unique (up to constant multiples) non-trivial solution of the dif-
ferential equation (2.12) that lies in Ḣ 1[0,L) and L2([0,L);υ), guaranteed to exist
by [42, Lemma 4.2]. We have seen in [42, Lemma 5.1] that the Weyl–Titchmarsh
function m is a Herglotz–Nevanlinna function. As such, it admits an integral repre-
sentation of the form (see [42, Sect. 5] for a justification of the third term on the
right-hand side)

m(z) = c1z + c2 − 1

Lz
+

∫
R

1

λ − z
− λ

1 + λ2 dρ(λ) (2.29)



Trace formulas and inverse spectral theory

for some non-negative constant c1, some real constant c2 and a positive Borel measure
ρ on R with ρ({0}) = 0 and

∫
R

dρ(λ)

1 + λ2 < ∞. (2.30)

Here, we employ the convention that whenever an L appears in a denominator, the
corresponding fraction has to be interpreted as zero when L is not finite.

The measure ρ turns out to be a spectral measure for the linear relation T in the
sense that the operator part of T is unitarily equivalent to multiplication with the
independent variable in L2(R;ρ); see [42, Theorem 5.8]. Of course, this establishes
an immediate connection between the spectral properties of the linear relation T and
the measure ρ. For example, the spectrum of T coincides with the topological support
of ρ and thus can be read off the singularities of m (more precisely, the function m

admits an analytic continuation away from the spectrum of T).
The main basic result of inverse spectral theory for generalized indefinite strings

says that every Herglotz–Nevanlinna function is the Weyl–Titchmarsh function of a
unique generalized indefinite string; see [42, Theorem 6.1].

Theorem 2.4 The map (L,ω,υ) �→ m is a bijection between the set of all generalized
indefinite strings and the set of all Herglotz–Nevanlinna functions.

Remark 2.5 According to the definition of the spectral measure ρ above via the in-
tegral representation (2.29), it recovers the Weyl–Titchmarsh function m only up to
the three parameters c1, c2 and L. In view of Theorem 2.4, this means that the col-
lection of all generalized indefinite strings having the same spectral measure ρ is a
three parameters family. The parameters c1 and c2 simply correspond to changes of
point masses of ω and υ at zero, which are invisible to the linear relation T and thus
also to the spectral measure ρ. More precisely, if (L,ω1, υ1) and (L,ω2, υ2) are two
generalized indefinite strings such that

w1(x) = b + w2(x),

∫
[0,x)

dυ1 = a +
∫

[0,x)

dυ2, (2.31)

for almost all x ∈ [0,L) and some a, b ∈R, then the corresponding Weyl–Titchmarsh
functions m1 and m2 are related by

m1(z) = az + b + m2(z), (2.32)

while the corresponding spectral measures are the same. The parameter L corre-
sponds of course to a change of length, which can be achieved via an elementary
transformation. In fact, if (L1,ω1, υ1) and (L2,ω2, υ2) are two generalized indefi-
nite strings such that

w1(x) =
(

1 − x

L1
+ x

L2

)−2

w2(η(x))

+ 2

(
1

L2
− 1

L1

)∫ η(x)

0

(
1 + s

L1
− s

L2

)
w2(s)ds,

(2.33)
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∫
[0,x)

dυ1 =
∫

[0,η(x))

(
1 + s

L1
− s

L2

)2

dυ2(s), (2.34)

for almost all x ∈ [0,L1), where the bijection η : [0,L1) → [0,L2) is given by

η(x) = x

1 − x
L1

+ x
L2

, (2.35)

then the corresponding Weyl–Titchmarsh functions m1 and m2 are related by

m1(z) + 1

L1z
= m2(z) + 1

L2z
, (2.36)

while the corresponding spectral measures are the same. In conclusion, we see that
the spectral measure ρ determines a generalized indefinite string (L,ω,υ) only up to
transformations of the above types.

We will also rely on a continuity property of the correspondence (L,ω,υ) �→ m.
In order to state it, let (Ln,ωn,υn) be a sequence of generalized indefinite strings, let
mn be the corresponding Weyl–Titchmarsh functions and let wn be the normalized
anti-derivatives of ωn.

Proposition 2.6 The Weyl–Titchmarsh functions mn converge locally uniformly to m

if and only if

sup

{
x ∈ {0} ∪ [0, lim inf

k→∞ Lnk
)

∣∣∣∣ lim sup
k→∞

∫ x

0
wnk

(s)2ds +
∫

[0,x)

dυnk
< ∞

}
= L

(2.37)

holds for each subsequence nk and4

lim
n→∞

∫ x

0
wn(s)ds =

∫ x

0
w(s)ds, (2.38)

lim
n→∞

∫ x

0
wn(s)

2ds +
∫

[0,x)

dυn =
∫ x

0
w(s)2ds +

∫
[0,x)

dυ, (2.39)

for almost every x ∈ [0,L).

Proof The claim is a slight variation of [42, Proposition 6.2] and it is enough to justify
why (2.39) is equivalent to pointwise convergence of

lim
n→∞

∫ x

0

(∫ s

0
wn(t)

2dt +
∫

[0,s)

dυn

)
ds =

∫ x

0

(∫ s

0
w(t)2dt +

∫
[0,s)

dυ

)
ds

for all x ∈ [0,L). Due to positivity of the integrands, we only need to show that the
latter implies (2.39) for almost every x ∈ [0,L). However, this immediately follows
from [69, Theorem B] for example. �

4Note that all quantities are well-defined for large enough n ∈ N in view of (2.37).
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We conclude this preliminary section with two examples of unperturbed general-
ized indefinite strings associated with Theorem I and Theorem II.

Example I Let α > 0 and consider the generalized indefinite string (L,ω,υ) such
that L is infinite, the distribution ω is given via its normalized anti-derivative w by

w(x) = x

1 + 2
√

αx
(2.40)

and the measure υ vanishes identically. Under these assumptions, the corresponding
differential equation (2.12) simply reduces to

−f ′′(x) = z

(1 + 2
√

αx)2
f (x). (2.41)

For every k in the open upper complex half-plane C+, the function ψ(k, · ) given by

ψ(k, x) = (1 + 2
√

αx)
ik

2
√

α
+ 1

2 (2.42)

is a solution of this differential equation with z = k2 + α that lies in Ḣ 1[0,∞). Con-
sequently, the corresponding Weyl–Titchmarsh function m is given by

m(k2 + α) = ψ ′(k,0−)

(k2 + α)ψ(k,0)
= 1√

α − ik
(2.43)

and the corresponding spectral measure ρ is given by

ρ(B) = 1

π

∫
B∩[α,∞)

√
λ − α

λ
dλ. (2.44)

In particular, the latter means that the corresponding spectrum coincides with the in-
terval [α,∞) and is purely absolutely continuous. The Weyl–Titchmarsh function m

and the spectral measure ρ clearly satisfy the conditions in Theorem I and Corollary I
in this case.

Remark 2.7 The Weyl–Titchmarsh function and the spectral measure of the general-
ized indefinite string in Example I also serve as a Weyl-Titchmarsh function and a
spectral measure for the one-dimensional half-line Schrödinger operator with con-
stant potential α, subject to mixed boundary conditions at the finite endpoint.

Example II Let β > 0 and consider the generalized indefinite string (L,ω,υ) such
that L is infinite, the distribution ω is identically zero and the measure υ is given by

υ(B) =
∫

B

1

(1 + 2βx)2
dx. (2.45)

Under these assumptions, the corresponding differential equation (2.12) simply re-
duces to

−f ′′(x) = z2

(1 + 2βx)2
f (x). (2.46)
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For every k in the open upper complex half-plane C+, the function ψ(k, · ) given by

ψ(k, x) = (1 + 2βx)
ik

1−k2 + 1
2 (2.47)

is a solution of this differential equation with

z = ζ(k) := β
1 + k2

1 − k2
(2.48)

that lies in both Ḣ 1[0,∞) and L2([0,∞);υ). Consequently, the corresponding
Weyl–Titchmarsh function m is given by

m ◦ ζ(k) = ψ ′(k,0−)

ζ(k)ψ(k,0)
= 1 + ik

1 − ik
(2.49)

and the corresponding spectral measure ρ is given by

ρ(B) = 1

π

∫
B\(−β,β)

√
λ2 − β2

|λ| dλ. (2.50)

In particular, the latter means that the corresponding spectrum coincides with the
set (−∞,−β] ∪ [β,∞) and is purely absolutely continuous. The Weyl–Titchmarsh
function m and the spectral measure ρ clearly satisfy the conditions in Theorem II
and Corollary II in this case.

Remark 2.8 The Weyl–Titchmarsh function and the spectral measure of the general-
ized indefinite string in Example II also serve as a Weyl-Titchmarsh function and a
spectral measure for a one-dimensional half-line Dirac operator; see Example 14.6.

3 Compact perturbations

The aim of this section is to demonstrate how certain generalized indefinite strings
can be understood as compact or Hilbert–Schmidt perturbations of the generalized in-
definite strings in Example I or Example II. In particular, this will establish necessity
of condition (i) in Theorem I and condition (i) in Theorem II.

Theorem 3.1 Let S be a generalized indefinite string (L,ω,υ) with L = ∞ and let
α, β > 0.

(i) If there is a constant c ∈ R such that

lim
x→∞x

∫ ∞

x

(
w(s) − c − s

1 + 2
√

αs

)2

ds + x

∫
[x,∞)

dυ = 0, (3.1)

then zero does not belong to the spectrum of S and the essential spectrum of S

coincides with the interval [α,∞).
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(ii) If there is a constant c ∈ R such that

lim
x→∞x

∫ ∞

x

(w(s) − c)2ds + x

∫ ∞

x

(
�(s) − 1

1 + 2βs

)2

ds + x

∫
[x,∞)

dυs = 0,

(3.2)

where � is the square root of the Radon–Nikodým derivative of υ and υs is the
singular part of υ (both with respect to the Lebesgue measure), then zero does
not belong to the spectrum of S and the essential spectrum of S coincides with
the set (−∞,−β] ∪ [β,∞).

Our proof of the above result will rely on Weyl’s theorem, which guarantees stabil-
ity of the essential spectrum under compact perturbations. However, it is not imme-
diately obvious how to understand the corresponding linear relations here as additive
perturbations. To this end, we first need to recall a few facts, details of which can
be found in [47, Sect. 3]: In the Hilbert space Ḣ 1

0 [0,∞), let us introduce the closed
linear operator Kχ with symbol χ ∈ H−1

loc [0,∞) via its bilinear form

〈Kχf,g〉Ḣ 1
0 [0,∞) = χ(fg∗), (3.3)

which is initially only defined for functions with compact support (for a thorough
discussion we refer the reader to [47, Sect. 3]). We note that this operator Kχ is self-
adjoint if and only if the distribution χ is real. If χ is even a positive Borel measure
on [0,∞), then the bilinear form in (3.3) implies the factorization

Kχ = I∗χ Iχ (3.4)

of the operator Kχ , where Iχ : Ḣ 1
0 [0,∞) → L2([0,∞);χ) is the inclusion map. In

the following proposition, we are going to collect several useful criteria from [47,
Theorem 4.6, Proposition 5.1 and Theorem 5.2] for the inverse of T to be a
bounded/compact/Hilbert–Schmidt operator.

Proposition 3.2 Let S be a generalized indefinite string (L,ω,υ) with L = ∞ and
let T be the corresponding linear relation. Then the following assertions hold:

(i) Zero belongs to the resolvent set of T if and only if the operators Kω and Kυ are
bounded, which is further equivalent to validity of

lim sup
x→∞

x

∫ ∞

x

(w(s) − c)2ds + x

∫
[x,∞)

dυ < ∞ (3.5)

for some constant c ∈R. In this case, the inverse of T is given by

T−1 =
(

Kω I∗υ
Iυ 0

)
(3.6)

and the constant c is given by

c = lim
x→∞

1

x

∫ x

0
w(s)ds. (3.7)
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(ii) The spectrum of T is purely discrete if and only if the operators Kω and Kυ are
compact, which is further equivalent to validity of

lim
x→∞ x

∫ ∞

x

(w(s) − c)2ds + x

∫
[x,∞)

dυ = 0 (3.8)

for some constant c ∈R.
(iii) The inverse of T belongs to the Hilbert–Schmidt ideal if and only if so do the

operators Kω and Iυ , which is further equivalent to validity of

∫ ∞

0
(w(x) − c)2x dx +

∫
[0,∞)

x dυ(x) < ∞ (3.9)

for some constant c ∈R.

Proof of Theorem 3.1 (i) Since

lim sup
x→∞

x

∫ ∞

x

1

(1 + 2
√

αs)2
ds = lim sup

x→∞
1

2
√

α

x

1 + 2
√

αx
= 1

4α
,

it is immediate to see that (3.1) implies condition (3.5) and hence, by Proposi-
tion 3.2 (i), zero belongs to the resolvent set of T and the inverse of T has the
form (3.6). Moreover, in this case (see [47, Corollary 4.7]), the non-zero spectrum
of T−1 coincides with the non-zero spectrum of the block operator matrix

(
Kω

√
Kυ√

Kυ 0

)

acting in Ḣ 1
0 [0,∞) × Ḣ 1

0 [0,∞) and all non-zero eigenvalues of this block operator
matrix are simple. In particular, this also holds for the generalized indefinite string
from Example I, so that the spectrum of the corresponding block operator matrix

(
Kωα 0

0 0

)

coincides with the interval [0, α−1], where ωa is the distribution in H−1
loc [0,∞) whose

normalized anti-derivative is given by (2.40). Now the remaining claim follows be-
cause by Proposition 3.2 (ii) and (3.1), the difference

(
Kω

√
Kυ√

Kυ 0

)
−

(
Kωα 0

0 0

)
=

(
Kω−ωα

√
Kυ√

Kυ 0

)
(3.10)

is compact and we are left to apply Weyl’s theorem. �

Remark 3.3 Comparing condition (1.5) in Theorem I with condition (3.9) in Propo-
sition 3.2 (iii), we immediately conclude that condition (1.5) holds if and only if the
perturbation in (3.10) is a Hilbert–Schmidt operator. In this case, the Hilbert–Schmidt
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norm of the perturbation in (3.10) is given by

‖Kω−ωα‖2
2 + 2 tr Kυ = 2

∫ ∞

0

(
w(x) − c − x

1 + 2
√

αx

)2

x dx + 2
∫

[0,∞)

x dυ(x).

(3.11)

Let us also mention that the above considerations, together with further results
from [47, Theorem 5.2] (see also [2, 93]), imply various criteria for the perturbation
in (3.10) to belong to general Schatten–von Neumann ideals.

The way we view the generalized indefinite strings in Theorem II and Theo-
rem 3.1 (ii) as compact perturbations of Example II is slightly more involved and
hence we present its proof separately.

Proof of Theorem 3.1 (ii) It is again easy to see that (3.2) implies condition (3.5) and
hence, by Proposition 3.2 (i), zero belongs to the resolvent set of T and the inverse
of T has the form (3.6). In particular, for the linear relation Tβ corresponding to the
generalized indefinite string from Example II, one has

T−1
β =

(
0 I∗υβ

Iυβ 0

)
,

where υβ is the measure on [0,∞) defined by (2.45). Since T−1 and T−1
β act on

different spaces, we are not able to compare them directly. However, by decomposing

L2([0,∞);υ) = L2([0,∞);�2) ⊕ L2([0,∞);υs),

we can first rewrite (3.6) as the block operator matrix

T−1 =
⎛
⎝

Kω I∗
�2 I∗υs

I�2 0 0
Iυs 0 0

⎞
⎠

acting on Ḣ 1
0 [0,∞) × L2([0,∞);�2) × L2([0,∞);υs). Using the isometry

V� : L2([0,∞);�2) → L2[0,∞)

f �→ �f

it follows that, except for possibly zero, the spectrum of T −1 coincides with the
spectrum of the block operator matrix

⎛
⎝

Kω I∗
�2V

∗
� I∗υs

V�I�2 0 0
Iυs 0 0

⎞
⎠
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acting on Ḣ 1
0 [0,∞) × L2[0,∞) × L2([0,∞);υs). On the same space, we also have

the block operator matrix

⎛
⎜⎝

0 I∗
�2

β

V ∗
�β

0

V�β I�2
β

0 0

0 0 0

⎞
⎟⎠ ,

whose spectrum coincides with that of T−1
β (as the spectrum of T−1

β already contains
zero), where �β is the square root of the Radon–Nikodým derivative of υβ . Now the
claim follows from Weyl’s theorem because, after noting that

V�I�2 − V�β I�2
β

= V�−�β I(�−�β)2 ,

the difference of the block operator matrices above becomes
⎛
⎜⎝

Kω I∗
(�−�β)2V

∗
�−�β

I∗υs

V�−�β I(�−�β)2 0 0
Iυs 0 0

⎞
⎟⎠ , (3.12)

which is compact. In fact, the operators Kω, I(�−�β)2 and Iυs are all compact in view
of Proposition 3.2 (ii) (see also [47, Theorem 3.5 (ii) and Theorem 3.6 (ii)] and note
that compactness of the embedding Iχ is equivalent to that of Kχ ). �

Remark 3.4 In view of Proposition 3.2 (iii), we notice again that condition (1.17) in
Theorem II means that the perturbation in (3.12) is a Hilbert–Schmidt operator with
Hilbert–Schmidt norm given by

‖Kω‖2
2 + 2 tr K(�−�β)2 + 2 tr Kυs

= 2
∫ ∞

0
(w(x) − c)2x dx + 2

∫ ∞

0

(
�(x) − 1

1 + 2βx

)2

x dx

+ 2
∫

[0,∞)

x dυs(x).

(3.13)

4 Spectral asymptotics near zero

The purpose of this section is to establish the following result about spectral asymp-
totics of the Weyl–Titchmarsh function of a generalized indefinite string near zero. In
particular, this will relate the constant c in condition (1.5) in Theorem I to the value
of the Weyl–Titchmarsh function at zero.

Theorem 4.1 Let (L,ω,υ) be a generalized indefinite string. If the corresponding
Weyl–Titchmarsh function m has an analytic extension to zero, then L = ∞ and

m(0) = lim
x→∞

1

x

∫ x

0
w(s)ds. (4.1)
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Notice that Sect. 3 already contains a characterization of generalized indefinite
strings whose Weyl–Titchmarsh functions admit an analytic extension to zero. In-
deed, we first infer from (2.29) that L must be infinite in this case. Furthermore, if
L = ∞, then the singularities of the Weyl–Titchmarsh function m coincide with the
spectrum of the linear relation T and hence m admits an analytic extension to zero
exactly when zero does not belong to the spectrum of T and such a characterization
is provided in Proposition 3.2 (i). The next result summarizes these considerations.

Proposition 4.2 The Weyl–Titchmarsh function m of a generalized indefinite string
(L,ω,υ) has an analytic extension to zero if and only if L = ∞ and (3.5) holds for
a constant c ∈R. In this case, the constant c is given by (3.7).

Before presenting proofs of the main result of this section, let us mention the
following properties, which, in fact, are immediate consequences of Theorem 4.1
and Proposition 4.2.

Corollary 4.3 Let (L,ω,υ) be a generalized indefinite string with L = ∞ and let m

be the corresponding Weyl–Titchmarsh function.

(i) If (L,ω,υ) satisfies (3.1) for some c ∈ R and α > 0, then m has an analytic
extension to zero and

m(0) = c + 1

2
√

α
. (4.2)

(ii) If (L,ω,υ) satisfies (3.2) for some c ∈ R and β > 0, then m has an analytic
extension to zero and

m(0) = c. (4.3)

We are going to provide two different proofs of Theorem 4.1. Firstly, Theorem 4.1
is a particular case of the more general statement below, which can be deduced in a
similar way as [51, Theorem 6.1].

Proposition 4.4 Let (L,ω,υ) be a generalized indefinite string with L = ∞. The
corresponding Weyl–Titchmarsh function m satisfies

m(z) → ζ0 (4.4)

for some ζ0 ∈ C+ as z → 0 nontangentially in C+ if and only if there are a ∈ R and
b ∈ [0,∞) with a2 ≤ b such that

lim
x→∞

1

x

∫ x

0
w(s)ds = a, lim

x→∞
1

x

∫ x

0
w(s)2ds + 1

x

∫
[0,x)

dυ = b. (4.5)

In this case, the limits a, b and ζ0 are connected via

a = Re ζ0, b = |ζ0|2, ζ0 = a + i
√

b − a2. (4.6)
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Proof For r > 0, let (Lr,ωr , υr) be the generalized indefinite string with Lr = ∞
and coefficients defined by

wr (x) = w(rx),

∫
[0,x)

dυr = 1

r

∫
[0,rx)

dυ.

It is straightforward to check that the solutions ψr(z, · ) of the corresponding differ-
ential equation (2.12) that lie in Ḣ 1[0,∞) and L2([0,∞);υr) are related by

ψr(z, x) = ψ(z/r, rx),

and hence the corresponding Weyl–Titchmarsh functions are connected via

mr(z) = m(z/r). (4.7)

Furthermore, a simple substitution yields that
∫ x

0
wr (s)ds = 1

r

∫ rx

0
w(s)ds,

∫ x

0
wr (s)

2ds +
∫

[0,x)

dυr = 1

r

∫ rx

0
w(s)2ds + 1

r

∫
[0,rx)

dυ.

(4.8)

Apart from this, for a given ζ0 ∈ C+, we also introduce the generalized indefinite
string (L0,ω0, υ0) with L0 = ∞ and coefficients defined by

w0(x) = Re ζ0,

∫
[0,x)

dυ0 = (Im ζ0)
2x,

so that the corresponding Weyl–Titchmarsh function m0 is constant on C+ and equal
to ζ0 there. Now it remains to note that relation (4.7) entails that m satisfies (4.4) as
z → 0 nontangentially in C+ if and only if the functions mr converge to ζ0 locally
uniformly on C+ as r → ∞. In the sense of Proposition 2.6, this is equivalent to
convergence of the generalized indefinite strings (Lr ,ωr, υr) to (L0,ω0, υ0). Since
this holds if and only if

lim
r→∞

∫ x

0
wr (s)ds = Re ζ0x, lim

r→∞

∫ x

0
wr (s)

2ds +
∫

[0,x)

dυr = |ζ0|2x,

for all x ∈ [0,∞), the claim follows readily after taking into account (4.8). �

It is now easy to see that Theorem 4.1 is a consequence of Proposition 4.4.

Proof of Theorem 4.1 One only needs to notice that if the Weyl–Titchmarsh function
m is analytic at zero, then m(0) is real. In particular, this implies that ζ0 = a in
Proposition 4.4, so that the first equality in (4.5) becomes (4.1). �

Our second proof of Theorem 4.1 recovers not only the value of the Weyl–
Titchmarsh function at zero, but it can be used, at least in principle, to find the en-
tire Taylor expansion near zero. However, deriving higher order terms would involve
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computing higher derivatives of the functions in Theorem 2.2 at zero as in Propo-
sition 2.3, which becomes extremely cumbersome quickly. For this reason, we only
provide the first two terms in the Taylor expansion in the following result.

Proposition 4.5 Let (L,ω,υ) be a generalized indefinite string. If the corresponding
Weyl–Titchmarsh function m has an analytic extension to zero, then L = ∞ and m

admits the expansion

m(z) = c + z

∫ ∞

0
(w(x) − c)2dx + z

∫
[0,∞)

dυ +O(z2) (4.9)

near zero, where the constant c = m(0) is given by (3.7).

Proof The proof is again based on the continuity of the correspondence in Theo-
rem 2.4. However, in contrast to Proposition 4.4, here we are going to approximate
the given generalized indefinite string (L,ω,υ), in a way that ensures a uniform
spectral gap around zero. More specifically, let us consider the generalized indefinite
string (Lr,ωr , υr) with Lr = ∞ and coefficients given by

wr (x) =
{

w(x), x ≤ r,

c, x > r,
υr = 1[0,r)υ,

for every r > 0, where the constant c is given by (3.7). It is immediate to check
that (Lr,ωr , υr) converges to (L,ω,υ) in the sense of Proposition 2.6 as r → ∞,
and hence the corresponding Weyl–Titchmarsh functions mr converge to m locally
uniformly on C\R. Moreover, we clearly have the uniform bound

x

∫ ∞

x

(wr (s) − c)2ds + x

∫
[x,∞)

dυr ≤ x

∫ ∞

x

(w(s) − c)2ds + x

∫
[x,∞)

dυ,

where the right-hand side is uniformly bounded for all x ∈ [0,∞) in view of Proposi-
tion 3.2 (i). Due to this bound, the operators Kωr , Kυr and thus also the inverse of Tr

are uniformly bounded (more precisely, this follows from known bounds in [23, 89]
on norms of certain integral operators, which are unitarily equivalent to the operators
Kχ as explained in the proof of [47, Theorem 3.5]). This guarantees that there is a
neighborhood of zero to which m and mr have an analytic extension for all r > 0.
As a consequence (for example, this can be seen from the integral representations),
the functions mr also converge to m locally uniformly on a neighborhood of zero, so
that we are able to obtain (4.9) as the limit of the Taylor expansions of mr . Since the
solutions of the differential equation

−f ′′ = zωrf + z2υrf

are linear to the right of r and coincide with the solutions of (2.12) to the left of r , we
find that the Weyl–Titchmarsh functions mr are given by

mr(z) = cθ(z, r) − θ [1](z, r)/z
φ[1](z, r) − czφ(z, r)

.
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Using the expressions from Proposition 2.3, a simple calculation then shows that

mr(z) = c + zcθ̇(0, r) − zθ̈ [1](0, r)/2 +O(z2)

1 + zφ̇[1](0, r) − zcr +O(z2)

= c + z
(
cθ̇(0, r) − θ̈ [1](0, r)/2 − cφ̇[1](0, r) + c2r

) +O(z2)

= c + z

∫ r

0
(w(x) − c)2dx + z

∫
[0,r)

dυ +O(z2)

near zero and it remains to take the limit as r → ∞. �

5 Relative trace formulas, I

Fix α > 0 and let (L,ω,υ) be a generalized indefinite string with L = ∞ and es-
sential spectrum contained in [α,∞), so that the corresponding Weyl–Titchmarsh
function m has a meromorphic extension to C\[α,∞) that is analytic at zero. We
consider the Weyl solution ψ(k, · ) of the differential equation (2.12) with z = k2 +α

defined by

ψ(k, x) = θ(z, x) + zm(z)φ(z, x) (5.1)

for all k ∈ C+ such that z is not a pole of m. Notice that the quasi-derivative of the
solution ψ(k, · ) is simply given by

ψ [1](k, x) = θ [1](z, x) + zm(z)φ[1](z, x) (5.2)

and that one has ψ [1](k,0) = ψ ′(k,0−) = zm(z). With these solutions, we are able
to define the relative Wronskian a( · , x) for each x ≥ 0 by

a(k, x) = W(k,0)

W(k, x)
, (5.3)

where the functions W( · , x) are given by

W(k,x) = (1 + 2
√

αx)
− ik

2
√

α
+ 1

2

(
zx − ik + √

α

1 + 2
√

αx
ψ(k, x) − ψ [1](k, x)

)
. (5.4)

Because the functions ψ( · , x) and ψ [1]( · , x) are meromorphic on C+, so are the
functions W( · , x) and a( · , x) with W(i

√
α,x) = 2

√
α and a(i

√
α,x) = 1.

Remark 5.1 The relative Wronskian can be viewed as a (suitably regularized5) per-
turbation determinant between two spectral problems (with a parameter x ≥ 0)

−f ′′ = zωxf + z2υxf (5.5)

5Under our assumptions on the coefficients ω and υ , the perturbation is in general not relative trace class,
which is in contrast to the case of one-dimensional Schrödinger operators in [71].
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on the interval (−
α,∞), where 
α , the anti-derivative wx ∈ L2
loc(−
α,∞) of the

distribution ωx and the Borel measure υx on (−
α,∞) are given by


α = 1

2
√

α
, wx(s) =

{
s

1+2
√

αs
, s < x,

w(s), s ≥ x,
υx(B) = υ(B ∩ [x,∞)). (5.6)

In fact, it is the quotient between two characteristic Wronskians for these spectral
problems. Up to cancellations, the zeros and poles of the relative Wronskian corre-
spond to the eigenvalues below α of (5.5) and the eigenvalues below α of (5.5) with
x = 0. The relative trace formula that we will derive in this section is in essence the
difference of trace formulas for these two spectral problems.

In order to prove the main result of this section, we first need to express the deriva-
tives of the relative Wronskian at k = i

√
α in terms of the coefficients of our gener-

alized indefinite string. Remember that we always use a dot to denote differentiation
with respect to the complex variable (which may be k or z here).

Proposition 5.2 Let α > 0 and let (L,ω,υ) be a generalized indefinite string with
essential spectrum contained in [α,∞) and

m(0) = 1

2
√

α
. (5.7)

Then the relative Wronskian a( · , x) satisfies

ȧ(i
√

α,x) = 2i
√

α

∫ x

0

(
w(s) − s

1 + 2
√

αs

)
ds (5.8)

for every x ≥ 0, as well as the identity

ä(i
√

α,x) − ȧ(i
√

α,x)2 − i√
α

ȧ(i
√

α,x)

= 4
√

α

∫ x

0
(1 + 2

√
αs)

(
w(s) − s

1 + 2
√

αs

)2

ds

+ 4
√

α

∫
[0,x)

(1 + 2
√

αs)dυ(s).

(5.9)

Proof The claims basically follow from cumbersome calculations using the definition
of a and the expressions in Proposition 2.3. First of all, let us mention that (5.7) means
that m has an analytic extension to zero and hence L is infinite (see Theorem 4.1).
Next, we compute

ψ̇(i
√

α,x) = − 2i
√

α

∫ x

0

(
w(s) − 1

2
√

α

)
ds,
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ψ̈(i
√

α,x) = − 2
∫ x

0
w(s)ds − 4α

(∫ x

0
w(s)ds

)2

− 8α ṁ(0)x

+ 8α

∫ x

0

∫ s

0
w(t)2dt ds + 8α

∫ x

0

∫
[0,s)

dυ ds + x√
α

− 4
√

αx

∫ x

0
w(s)ds + 8

√
α

∫ x

0
w(s)s ds,

where we also used the identity
∫ x

0

∫ s

0
w(t)dt ds = x

∫ x

0
w(s)ds −

∫ x

0
w(s)s ds.

Furthermore, for the quasi-derivative of ψ , one gets ψ̇ [1](i
√

α,x) = i and

ψ̈ [1](i
√

α,x) = 8α

∫ x

0
w(s)2ds + 8α

∫
[0,x)

dυ + 1√
α

− 4
√

α

∫ x

0
w(s)ds − 8α ṁ(0).

We next compute the derivative for the function W and get

Ẇ (i
√

α,x) = 2i
√

αx − i log(1 + 2
√

αx) − 4iα
∫ x

0
w(s)ds − 2i

= −4iα
∫ x

0

(
w(s) − s

1 + 2
√

αs

)
ds − 2i,

where we used that

2
√

αx − log(1 + 2
√

αx) = 4α

∫ x

0

s

1 + 2
√

αs
ds.

This readily yields (5.8). For the second derivative, one first has

Ẅ (i
√

α,x)

W(i
√

α,x)
− Ẇ (i

√
α,x)2

W(i
√

α,x)2

= 2
∫ x

0
w(s)ds − x2 + 1

2α
+ 4

√
α ṁ(0) + 8

√
α

∫ x

0
w(s)s ds

− 4
√

α

∫ x

0
(1 + 2

√
αs)w(s)2ds − 4

√
α

∫
[0,x)

(1 + 2
√

αs)dυ(s)

and furthermore

Ẅ (i
√

α,x)

W(i
√

α,x)
− Ẇ (i

√
α,x)2

W(i
√

α,x)2
− i√

α

Ẇ(i
√

α,x)

W(i
√

α,x)

= −4
√

α

∫ x

0
(1 + 2

√
αs)

(
w(s) − s

1 + 2
√

αs

)2

ds

− 4
√

α

∫
[0,x)

(1 + 2
√

αs)dυ(s) − 1

2α
+ 4

√
α ṁ(0),
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where we used that

x2 − 2
∫ x

0

s

1 + 2
√

αs
ds = 4

√
α

∫ x

0

s2

1 + 2
√

αs
ds.

The remaining identity (5.9) now follows without much effort. �

This brings us to the key ingredient for the proof of Theorem I; relative trace for-
mulas (called step-by-step sum rules in [70, 71]). In order to state them, we introduce
the two functions F1 and F2 on (0,1) ∪ (1,∞) by

F1(s) = 2s

s2 − 1
+ log

∣∣∣∣ s − 1

s + 1

∣∣∣∣, F2(s) = 2s3 + 2s

(s2 − 1)2 + log

∣∣∣∣ s − 1

s + 1

∣∣∣∣. (5.10)

For basic properties of these functions we refer to Appendix C.

Theorem 5.3 (Relative trace formulas) Let α > 0 and let (L,ω,υ) be a generalized
indefinite string with essential spectrum contained in [α,∞) and (5.7). Then for every
x ≥ 0, the limit a(ξ, x) = limε↓0 a(ξ + iε, x) exists and is nonzero for almost all
ξ ∈ R, satisfies

∫
R

| log |a(ξ, x)||
1 + ξ4

dξ < ∞ (5.11)

and the identities
∫ x

0

(
w(s) − s

1 + 2
√

αs

)
ds

=
√

α

π

∫
R

log |a(ξ, x)|
(ξ2 + α)2

dξ + 1

2α
lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F1

(
κ√
α

)
−

∑
η∈P

δ<η<1/δ

F1

(
η√
α

)
,

(5.12)
∫ x

0
(1 + 2

√
αs)

(
w(s) − s

1 + 2
√

αs

)2

ds +
∫

[0,x)

(1 + 2
√

αs)dυ(s)

= 2

π

∫
R

ξ2 log |a(ξ, x)|
(ξ2 + α)3

dξ + 1

4α3/2
lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F2

(
κ√
α

)
−

∑
η∈P

δ<η<1/δ

F2

(
η√
α

)
,

(5.13)

hold, where Z = {κ > 0 |a(iκ, x) = 0} and P = {η > 0 |a(iη,x) = ∞}.

Proof We first note that the function a( · , x) can be written as

a(k, x) = (1 + 2
√

αx)
ik

2
√

α
− 1

2
G(k,0)

G(k, x)

1

ψ(k, x)
,
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where the meromorphic functions G( · , x) on C+ are given by

G(k,x) = ψ [1](k, x)

zψ(k, x)
− 1

(1 + 2
√

αx)(
√

α + ik)
− x

1 + 2
√

αx
.

It follows readily that ImG(k,x) > 0 when Re k > 0 and ImG(k,x) < 0 when
Re k < 0 because the first term is a Herglotz–Nevanlinna function in z. As a con-
sequence, all zeros and poles of G( · , x), G( · ,0) and ψ( · , x) are simple and lie on
the imaginary axis. The fact that the zeros and poles of a( · , x) are simple as well is
a result of the following three observations:

(a) If k is a zero of ψ( · , x), then k is a pole of G( · , x) because k can not be a zero
of ψ [1]( · , x) as well in this case.

(b) If k is a pole of ψ( · , x), then k is a pole of G( · ,0) because z = k2 + α must be
a pole of m in this case, which is the first term of G( · ,0).

(c) A k that is neither a zero nor a pole of ψ( · , x) is a pole of G( · , x) if and only
if it is a pole of G( · ,0). In fact, this holds true because such a k is a pole of
ψ [1]( · , x) if and only if z = k2 + α is a pole of m.

For x > 0 (the claims are trivial otherwise), we next write the function a( · , x) as

a(k, x) = φ(k2 + α,x)

φα(k2 + α,x)

G(k,0)

G(k, x)

G+(k)

G−(k)
,

where φα is the respective solution for the generalized indefinite string in Example I,
given explicitly by

φα(z, x) = (1 + 2
√

αx)
1
2√

z − α
sin

(√
z − α

2
√

α
log(1 + 2

√
αx)

)
,

and the meromorphic functions G± on C+ are given by

G−(k) = zφ(z, x)ψ(k, x) =
(

φ[1](z, x)

zφ(z, x)
− ψ [1](k, x)

zψ(k, x)

)−1

,

G+(k) = zφα(z, x)(1 + 2
√

αx)
ik

2
√

α
− 1

2

=
(

k

z
cot

(
k

2
√

α
log(1 + 2

√
αx)

)
− ik

z

)−1

.

Since one has that ImG±(k) ≥ 0 when Re k > 0 and ImG±(k) ≤ 0 when Re k < 0,
the claims readily follow from Theorem A.1 and Proposition 5.2. �

Under an additional assumption on the Weyl–Titchmarsh function, the integrals
on the spectral side of the relative trace formulas can also be expressed in terms of
suitable transmission coefficients for the spectral problems in Remark 5.1. To this
end, we first define the meromorphic functions M( · , x) on C+ by

M(k,x) = ψ [1](k, x)

zψ(k, x)
(5.14)
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for x ≥ 0, so that M(k,0) = m(z). The limit M(ξ,x) = limε↓0 M(ξ + iε, x) exists
for almost all ξ ∈R (see Theorem A.2 for example) and we may define

T (ξ, x) = 4ξ

ξ2 + α

(1 + 2
√

αx)ImM(ξ,x)∣∣∣(1 + 2
√

αx)M(ξ, x) − 1√
α+iξ

− x

∣∣∣2
(5.15)

as the denominator is positive for almost all ξ ∈R. In fact, one has

∣∣∣∣(1 + 2
√

αx)M(ξ, x) − 1√
α + iξ

− x

∣∣∣∣
2

≥
(

(1 + 2
√

αx)ImM(ξ,x) + ξ

ξ2 + α

)2

≥ 4ξ

ξ2 + α
(1 + 2

√
αx)ImM(ξ,x),

(5.16)

which also entails that T (ξ, x) ∈ [0,1].

Proposition 5.4 Let α > 0 and let (L,ω,υ) be a generalized indefinite string with
essential spectrum contained in [α,∞) and (5.7). If one has Imm(λ + i0) > 0 for
almost all λ > α, then

|a(ξ, x)|2 = T (ξ, x)

T (ξ,0)
(5.17)

for almost all ξ ∈ R and all x ≥ 0.

Proof Let ξ > 0 be such that Imm(λ + i0) > 0, where λ = ξ2 + α. We consider the
solution ψ(ξ, · ) of the differential equation (2.12) with z = λ such that

ψ(ξ, x) = θ(λ, x) + λm(λ + i0)φ(λ, x) = lim
ε↓0

ψ(ξ + iε, x),

ψ [1](ξ, x) = θ [1](λ, x) + λm(λ + i0)φ[1](λ, x) = lim
ε↓0

ψ [1](ξ + iε, x).

Notice that ψ(ξ, x) �= 0 for all x ≥ 0 because it is not possible for θ(λ, x) and φ(λ, x)

to vanish both. It follows that the limit

M(ξ,x) = lim
ε↓0

M(ξ + iε, x) = ψ [1](ξ, x)

λψ(ξ, x)

exists for all x ≥ 0 and satisfies

ImM(ξ,x) = Imψ(ξ, x)∗ψ [1](ξ, x)

λ|ψ(ξ, x)|2 = Imm(λ + i0)

|ψ(ξ, x)|2 > 0,

where we used that θ(λ, x)φ[1](λ, x) − θ [1](λ, x)φ(λ, x) = 1. Next, one gets

∣∣∣lim
ε↓0

W(ξ + iε, x)

∣∣∣2 =
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= λ2Imm(λ + i0)

(1 + 2
√

αx)ImM(ξ,x)

∣∣∣∣(1 + 2
√

αx)M(ξ, x) − 1√
α + iξ

− x

∣∣∣∣
2

,

which is positive in view of (5.16). We conclude that the limit limε↓0 a(ξ + iε, x)

exists as well and satisfies (5.17) as claimed. Similar arguments (with a few sign
changes) show that this also holds true for all ξ < 0 with Imm(ξ2 +α + i0) > 0. �

Let us also mention that the sums in the relative trace formulas in Theorem 5.3
can be written in terms of the eigenvalues of the spectral problems in Remark 5.1. In
fact, it is possible to replace Z with D0 and P with Dx because one has

Z = D0\(D0 ∩ Dx), P = Dx\(D0 ∩ Dx), (5.18)

where the sets Dx are defined by

Dx =
{
κ > 0

∣∣∣∣ (1 + 2
√

αx)M(iκ, x) = 1√
α − κ

+ x

}
, (5.19)

so that {−κ2 +α |κ ∈ Dx} are precisely the eigenvalues below α of the spectral prob-
lem in Remark 5.1 with ξ = x.

6 Lower semi-continuity, I

Let (L,ω,υ) be a generalized indefinite string and let m be the corresponding Weyl–
Titchmarsh function. For α > 0, we define the transmission coefficient T by

T (ξ) = 4|ξ |
ξ2 + α

Imm(ξ2 + α + i0)∣∣∣m(ξ2 + α + i0) − 1√
α+i|ξ |

∣∣∣2 , (6.1)

which is well-defined for almost all ξ ∈R and belongs to [0,1] because
∣∣∣∣m(ξ2 + α + i0) − 1√

α + i|ξ |
∣∣∣∣
2

≥
(

Imm(ξ2 + α + i0) + |ξ |
ξ2 + α

)2

≥ 4|ξ |
ξ2 + α

Imm(ξ2 + α + i0).

(6.2)

Notice that this function T coincides with T ( · ,0) as given by (5.15) almost ev-
erywhere. The purpose of this section is to establish that the quantity Qα ∈ [0,∞]
defined by

Qα = −
∫
R

ξ2 logT (ξ)

(ξ2 + α)3 dξ (6.3)

depends lower semi-continuously on the generalized indefinite string (L,ω,υ),
where the set of all generalized indefinite strings is endowed with the topology
that makes the correspondence (L,ω,υ) �→ m homeomorphic (and the set of all
Herglotz–Nevanlinna functions is endowed with the topology of locally uniform con-
vergence); compare Proposition 2.6.
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Theorem 6.1 The functional (L,ω,υ) �→ Qα is lower semi-continuous on the set of
all generalized indefinite strings for every α > 0.

We will need the following simple but useful estimate for the proof of this result.

Lemma 6.2 For each α > 0 one has the bound
∣∣∣∣∣
z − 1√

α−ik

z − 1√
α+ik

∣∣∣∣∣ ≤ 1 + 2|k|
Re k

(6.4)

when z ∈C+ ∪R and k ∈ C+ with Re k > 0.

Proof We first notice that∣∣∣∣z − 1√
α + ik

∣∣∣∣ ≥
∣∣∣∣Im

(
z − 1√

α + ik

)∣∣∣∣ =
∣∣∣∣Im z + Re k

|√α + ik|2
∣∣∣∣ ≥ Re k

|√α + ik|2
because Im z ≥ 0 and Re k > 0. From this we get

∣∣∣∣∣
z − 1√

α−ik

z − 1√
α+ik

∣∣∣∣∣ =
∣∣∣∣∣1 − 2ik

k2 + α

1

z − 1√
α+ik

∣∣∣∣∣ ≤ 1 + 2|k|
|k2 + α|

|√α + ik|2
Rek

and the claim follows because

|k2 + α| = |√α − ik||√α + ik| ≥ |√α + ik|2

when k ∈ C+. �

Remark 6.3 There are at least two ways to compute the supremum (as z runs through
C+) of the left-hand side in (6.4). Indeed, under the corresponding assumptions on k,
the linear fractional transformation A given by

A(z) =
z − 1√

α−ik

z − 1√
α+ik

(6.5)

maps C+ into a disc and hence one simply needs to use formulas for the center and
radius of this disc. Another option is to find supx∈R |A(x)| by using basic calculus
tools. However, the corresponding expression is cumbersome and the estimate (6.4)
is sufficient for our purposes.

The actual proof of the claim in Theorem 6.1 now proceeds essentially along the
lines of the one in [71, Sect. 5].

Proof of Theorem 6.1 For a generalized indefinite string (L,ω,υ), we introduce the
analog of the reflection coefficient r defined on the first complex quadrant by

r(k) =
m(k2 + α) − 1√

α−ik

m(k2 + α) − 1√
α+ik

.
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Notice that this function is analytic and obeys the bound

|r(k)| ≤ 1 + 2|k|
Re k

(6.6)

in view of Lemma 6.2. The limit r(ξ) = limε↓0 r(ξ + iε) exists and satisfies the scat-
tering relation

T (ξ) + |r(ξ)|2 = 1

for almost every ξ > 0, so that |r(ξ)| ≤ 1 and, unless T (ξ) = 0, also

− logT (ξ) = − log
(
1 − |r(ξ)|2) =

∞∑
j=1

|r(ξ)|2j

j
. (6.7)

More precisely, to obtain the scattering relation one first computes that

∣∣∣∣m(ξ2 + α + i0) − 1√
α + iξ

∣∣∣∣
2

−
∣∣∣∣m(ξ2 + α + i0) − 1√

α − iξ

∣∣∣∣
2

= 4ξ

ξ2 + α
Imm(ξ2 + α + i0)

and then divides by the first term on the left-hand side. Furthermore, we will later
use that when 0 < a < b and q is a polynomial, contour integration of the analytic
function rq over the boundary of the rectangle with vertices a + iε, b+ iε, b+ i, a + i
and subsequently letting ε ↓ 0 gives

∫ b

a

r(ξ)q(ξ)dξ =
∫ a+i

a

r(k)q(k)dk +
∫ b+i

a+i
r(k)q(k)dk +

∫ b

b+i
r(k)q(k)dk, (6.8)

where we also took the bound in (6.6) into account.
In order to prove that Qα is lower semi-continuous, let (Ln,ωn,υn) be a sequence

of generalized indefinite strings that converge to (L,ω,υ), so that the corresponding
Weyl–Titchmarsh functions mn converge locally uniformly to m. Clearly, the corre-
sponding reflection coefficients rn then converge locally uniformly to r on the first
complex quadrant. Given 0 < a < b and a polynomial q , it follows from (6.8), the
convergence of rn to r and the uniform bound obtained from (6.6) that

lim
n→∞

∫ b

a

rn(ξ)q(ξ)dξ =
∫ b

a

r(ξ)q(ξ)dξ.

Because the functions rn are also uniformly bounded in L∞[a, b], we conclude that
they converge to r in L∞[a, b] with respect to the weak∗ topology in the sense that

lim
n→∞

∫ b

a

rn(ξ)h(ξ)dξ =
∫ b

a

r(ξ)h(ξ)dξ
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for every function h ∈ L1[a, b]. This weak∗ convergence in L∞[a, b] entails weak
convergence in the weighted space Lp([a, b]; ξ2(ξ2 +α)−3dξ) for each p > 1. Since
the norm on a Banach space is weakly lower semi-continuous, this gives

lim inf
n→∞

∫ b

a

|rn(ξ)|p ξ2

(ξ2 + α)3
dξ ≥

∫ b

a

|r(ξ)|p ξ2

(ξ2 + α)3
dξ.

It then follows from (6.7) that for every J ∈ N one has

lim inf
n→∞ −

∫ ∞

0

ξ2 logTn(ξ)

(ξ2 + α)3
dξ ≥ lim inf

n→∞

∫ b

a

J∑
j=1

|rn(ξ)|2j

j

ξ2

(ξ2 + α)3
dξ

≥
∫ b

a

J∑
j=1

|r(ξ)|2j

j

ξ2

(ξ2 + α)3 dξ,

where Tn are the corresponding transmission coefficients. The claim can now be de-
duced readily by letting J → ∞, a ↓ 0 and b → ∞ (also notice that the transmission
coefficients are even by definition). �

7 Proof of Theorem I

We are now ready to put together the proof for our first main result. In fact, taking
into account Corollary 4.3 (i), we are going to prove the following slightly amended
statement: A Herglotz–Nevanlinna function m is the Weyl–Titchmarsh function of a
generalized indefinite string (L,ω,υ) with L = ∞ and (1.5) with c = 0 if and only
if the conditions (i), (ii), (iii) in Theorem I and

m(0) = 1

2
√

α
(7.1)

hold. Theorem I then follows readily upon noticing that adding a constant to w
amounts to adding the same constant to the Weyl–Titchmarsh function m.

Proof of necessity Suppose first that m is the Weyl–Titchmarsh function of a general-
ized indefinite string (L,ω,υ) with L = ∞ that satisfies (1.5) with c = 0. It follows
readily from Theorem 3.1 (i) and Corollary 4.3 (i) that m has a meromorphic ex-
tension to C\[α,∞) that is analytic at zero and that (7.1) holds. In order to verify
the remaining conditions (ii) and (iii), let us consider the sequence of generalized
indefinite strings (L,ωn,υn) whose coefficients are given by

wn(x) =
{

w(x), x < n,
x

1+2
√

αx
, x ≥ n,

υn(B) = υ(B ∩ [0, n)),

so that (L,ωn,υn) converges to (L,ω,υ) in the sense of Proposition 2.6. We will
use the notation from Sect. 2 and Sect. 5, where all quantities corresponding to the
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generalized indefinite strings (L,ωn,υn) will be denoted with an additional subscript.
Theorem 3.1 (i) and Corollary 4.3 (i) guarantee that each (L,ωn,υn) satisfies the
requirements of Theorem 5.3. For large enough x > n, the solutions ψn(k, · ) are
scalar multiples of the ones in Example I and thus

(1 + 2
√

αx)Mn(k, x) = (1 + 2
√

αx)
ψ

[1]
n (k, x)

zψn(k, x)
= 1√

α − ik
+ x, (7.2)

where we continue to use z = k2 + α. Because we may write

Mn(k,0) = θn(z, x)Mn(k, x) − θ
[1]
n (z, x)/z

φ
[1]
n (z, x) − zφn(z, x)Mn(k, x)

,

we see that Mn(ξ,0) = limε↓0 Mn(ξ + iε,0) exists for all ξ ∈ R with ξ �= 0 and

ImMn(ξ,0) = ImMn(ξ, x)∣∣φ[1]
n (ξ2 + α,x) − (ξ2 + α)φn(ξ2 + α,x)Mn(ξ, x)

∣∣2
.

Since Mn(k,0) = mn(z), this implies that Immn(λ + i0) > 0 for almost all λ > α,
so that we can apply Proposition 5.4. Notice that (7.2) implies that Tn(ξ, x) = 1 for
almost all ξ ∈R. Moreover, because

an(k, x) = (1 + 2
√

αx)
ik

2
√

α
+ 1

2
z

2ikψn(k, x)

(
mn(z) − 1√

α + ik

)
,

the set of poles of an( · , x) is empty (remember properties (a), (b) and (c) in the first
part of the proof of Theorem 5.3) and

Zn = {κ > 0 |an(iκ, x) = 0} = {κ > 0 | (√α − κ)mn(α − κ2) = 1}.
We thus obtain from Theorem 5.3 and Proposition 5.4 the identity

∫ n

0
(1 + 2

√
αs)

(
w(s) − s

1 + 2
√

αs

)2

ds +
∫

[0,n)

(1 + 2
√

αs)dυ(s)

= − 1

π

∫
R

ξ2 logTn(ξ,0)

(ξ2 + α)3 dξ + 1

4α3/2

∑
κ∈Zn

F2

(
κ√
α

)
.

If we similarly define Z′ = {κ > 0 | (√α − κ)m(α − κ2) = 1}, then one has

lim inf
n→∞

∑
κ∈Zn

F2

(
κ√
α

)
≥

∑
κ∈Z′

F2

(
κ√
α

)
.

In fact, because the Weyl–Titchmarsh functions mn converge to m by Proposition 2.6,
every neighborhood of a κ ∈ Z′ contains a point in Zn for large enough n. As a
consequence, we get that for every finite subset J ⊆ Z′ one has

lim inf
n→∞

∑
κ∈Zn

F2

(
κ√
α

)
≥

∑
κ∈J

F2

(
κ√
α

)
,
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which gives the claimed bound. Together with the lower semi-continuity from Theo-
rem 6.1, this yields

∫ ∞

0
(1 + 2

√
αs)

(
w(s) − s

1 + 2
√

αs

)2

ds +
∫

[0,∞)

(1 + 2
√

αs)dυ(s)

≥ − 1

π

∫
R

ξ2 logT (ξ,0)

(ξ2 + α)3
dξ + 1

4α3/2

∑
κ∈Z′

F2

(
κ√
α

)
.

(7.3)

It remains to see that this bound implies conditions (ii) and (iii). To prove the former,
let E = {η > 0 |m(α − η2) = ∞}, so that the set E ∪ {√α} interlaces the set Z′ be-
cause m is a Herglotz–Nevanlinna function. Due to monotonicity of the function F2
(see (C.2) in Appendix C), this property and the bound on the sum in (7.3) imply that

∑
η∈E

F2

(
η√
α

)
< ∞. (7.4)

From the estimates (C.8) and (C.9) for the function F2, we conclude that

∑
η∈E

η<
√

α

16η3

3(α − η2)3/2 +
∑
η∈E

η>
√

α

16α3/2

3(η2 − α)3/2 < ∞, (7.5)

which proves condition (ii). Because one has (see Theorem A.2 for example)

∫ ∞

0

ξ2

(ξ2 + α)3

∣∣∣∣log

∣∣∣∣m(ξ2 + α + i0) − 1√
α + iξ

∣∣∣∣
∣∣∣∣dξ < ∞, (7.6)

it follows from the bound on the integral on the right-hand side of (7.3) that

∫ ∞

0

ξ2

(ξ2 + α)3
| log(Imm(ξ2 + α + i0))|dξ < ∞, (7.7)

which yields condition (iii) after the transformation λ = ξ2 + α. �

Proof of sufficiency Suppose now that a Herglotz–Nevanlinna function m satisfies the
three conditions in Theorem I together with (7.1) and let (L,ω,υ) be the corre-
sponding generalized indefinite string. Condition (i) entails that the essential spec-
trum of (L,ω,υ) is contained in [α,∞) and that L = ∞ in view of Theorem 4.1,
so that we can use the notation of Sect. 5. Condition (ii) implies (7.5), where
E = {η > 0 |m(α −η2) = ∞}. In view of the asymptotics in (C.11) and (C.12) for the
function F2 we get (7.4). The set Z′ = {κ > 0 | (√α − κ)m(α − κ2) = 1} interlaces
the set E ∪ {√α} because m is a Herglotz–Nevanlinna function, which implies that

∑
κ∈Z′

F2

(
κ√
α

)
< ∞.
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Condition (iii) transforms into (7.7), which gives

−
∫
R

ξ2 logT (ξ,0)

(ξ2 + α)3 dξ < ∞

because of (7.6). In particular, we see that conditions (i), (iii) and (7.1) guarantee that
the requirements of Theorem 5.3 and Proposition 5.4 are satisfied. From the former,
we get that for each x ≥ 0 one has the identity

∫ x

0
(1 + 2

√
αs)

(
w(s) − s

1 + 2
√

αs

)2

ds +
∫

[0,x)

(1 + 2
√

αs)dυ(s)

= 2

π

∫
R

ξ2 log |a(ξ, x)|
(ξ2 + α)3

dξ + 1

4α3/2
lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F2

(
κ√
α

)
−

∑
η∈P

δ<η<1/δ

F2

(
η√
α

)
,

where Z = {κ > 0 |a(iκ, x) = 0} and P = {η > 0 |a(iη,x) = ∞}. Estimating the
right-hand side by using that 2 log |a(ξ, x)| ≤ − logT (ξ,0) for almost all ξ ∈ R, that
Z ⊆ Z′ and that F2 is non-negative, before letting x → ∞, this becomes

∫ ∞

0
(1 + 2

√
αs)

(
w(s) − s

1 + 2
√

αs

)2

ds +
∫

[0,∞)

(1 + 2
√

αs)dυ(s)

≤ − 1

π

∫
R

ξ2 logT (ξ,0)

(ξ2 + α)3
dξ + 1

4α3/2

∑
κ∈Z′

F2

(
κ√
α

)
,

(7.8)

which concludes the proof of Theorem I. �

Notice that the trace formula underlying Theorem I is given by (7.3) and (7.8).
One of its crucial properties is that all the terms involved are always non-negative
(since the transmission coefficient T ( · ,0) takes values in [0,1] and the function F2

is positive). We are also able to express this trace formula in terms of the spectral
measure of the generalized indefinite string.

Corollary 7.1 If ρ is the spectral measure of a generalized indefinite string (L,ω,υ)

with L = ∞ and (1.5) for some constant c ∈ R, then

∫ ∞

0
(1 + 2

√
αx)

(
w(x) − c − x

1 + 2
√

αx

)2

dx +
∫

(0,∞)

(1 + 2
√

αx)dυ(x)

=
∫
R

dρ(λ)

λ2 − 1

π

∫ ∞

α

√
λ − α

λ3 dλ + 1

4α3/2

∑
λ∈supp(ρ)

λ<α

F2

(√
1 − λ

α

)

− 1

π

∫ ∞

α

√
λ − α

λ3
log

(
πλ√
λ − α

dρac(λ)

dλ

)
dλ.

(7.9)
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Proof Because ρ is also the spectral measure of the generalized indefinite string
(L,ω − cδ0, υ), where δ0 is the unit Dirac measure centered at zero, we may assume
that c = 0. Since in this case one has (7.1), we know from the proof of Theorem I
that the trace formula given by (7.3) and (7.8) holds with equality. By applying iden-
tity (A.5) from Theorem A.1 to the meromorphic function b on C+ defined by

b(k) = 1 − (
√

α + ik)m(k2 + α) =
m(k2 + α) − 1√

α+ik

− 1√
α+ik

,

we also obtain the relation

4
√

αṁ(0) + m(0)2 − 1√
α

m(0)

= 4
√

α

π

∫
R

ξ2

(ξ2 + α)3
log

(
(ξ2 + α)

∣∣∣∣m(ξ2 + α + i0) − 1√
α + i|ξ |

∣∣∣∣
2
)

dξ

+ 1

α
lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F2

(
κ√
α

)
−

∑
η∈P

δ<η<1/δ

F2

(
η√
α

)
,

(7.10)

where Z = {κ > 0 |b(iκ) = 0} and P = {η > 0 |b(iη) = ∞}. The set Z actually coin-
cides with the set Z′ in the trace formula given by (7.3) and (7.8), which in partic-
ular entails that we may omit the limit in (7.10) as the sums converge individually.
Moreover, the set P corresponds to the poles of m below α and thus to the points in
supp(ρ) below α. After replacing the transmission coefficient in the trace formula
given by (7.3) and (7.8) with the expression in (6.1), we can employ the relation
in (7.10) and the facts that (for the former, use the integral representation (2.29) and
recall that c1 = υ({0}); see [42, Lemma 7.1])

ṁ(0) = υ({0}) +
∫
R

dρ(λ)

λ2 , m(0) = 1

2
√

α
,

to arrive at the formula in (7.9). �

We conclude this section with a Lieb–Thirring inequality for generalized indefinite
strings that follows readily from the trace formula in Corollary 7.1.

Corollary 7.2 If ρ is the spectral measure of a generalized indefinite string (L,ω,υ)

with L = ∞ and (1.5) for some constant c ∈ R, then

∑
λ∈supp(ρ)

λ<0

1

|λ|3/2
+ 1

α3

∑
λ∈supp(ρ)

0<λ<α

(α − λ)3/2 ≤ 3

4

∫
(0,∞)

(1 + 2
√

αx)dυ(x)

+ 3

4

∫ ∞

0
(1 + 2

√
αx)

(
w(x) − c − x

1 + 2
√

αx

)2

dx.

(7.11)
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Proof Because the sum of the first, the second and the last term on the right-hand side
of (7.9) is non-negative (to see this, it suffices to use that r −1− log(r) ≥ 0 whenever
r > 0), we get that

1

4α3/2

∑
λ∈supp(ρ)

λ<α

F2

(√
1 − λ

α

)
≤

∫ ∞

0
(1 + 2

√
αx)

(
w(x) − c − x

1 + 2
√

αx

)2

dx

+
∫

(0,∞)

(1 + 2
√

αx)dυ(x).

The claimed inequality then follows by taking (C.8) and (C.9) into account. �

Remark 7.3 The constants in the Lieb–Thirring inequality (7.11) are sharp. For in-
stance, one can see this by considering particular generalized indefinite strings with
spectral measure given by

ρ(B) = 1

π

∫
B∩[α,∞)

√
λ − α

λ
dλ + γ δλ0(B), (7.12)

where γ > 0 and λ0 ∈ (−∞,0)∪ (0, α) are parameters. From the trace formula (7.9),
we know that the right-hand side of (7.11) is then given by

3γ

4λ2
0

+ 3

16α3/2
F2

(√
1 − λ0

α

)
. (7.13)

A comparison with the left-hand side of (7.11) in the limit as γ → 0 and λ0 → α or
λ0 → −∞, also using the asymptotics of the function F2 in (C.11) and (C.12), shows
that the constants in the Lieb–Thirring inequality are indeed best possible.

8 Relative trace formulas, II

In order to start the proof of Theorem II, fix β > 0 and consider the rational function
ζ defined by

ζ(k) = β
1 + k2

1 − k2
= β

1 − |k|4
|1 − k2|2 + 4iβ

Re k Imk

|1 − k2|2 . (8.1)

Its decisive property is that ζ maps the upper complex half-plane C+ conformally
onto C+ ∪ (−β,β)∪C−. More precisely, it maps the first complex quadrant onto the
upper complex half-plane C+, the second complex quadrant onto the lower complex
half-plane C− and the positive imaginary axis onto the interval (−β,β). Furthermore,
we note that ζ(i) = 0 and that the derivatives of ζ are given by

ζ̇ (k) = 4β
k

(1 − k2)2
, ζ̈ (k) = 4β

1 + 3k2

(1 − k2)3
. (8.2)



Trace formulas and inverse spectral theory

For a generalized indefinite string (L,ω,υ) with L = ∞ and essential spectrum
contained in (−∞,−β] ∪ [β,∞), the associated Weyl–Titchmarsh function m has a
meromorphic extension to C+ ∪ (−β,β) ∪ C− that is analytic at zero. We consider
the Weyl solution ψ(k, · ) of the differential equation (2.12) with z = ζ(k) defined by

ψ(k, x) = θ(z, x) + zm(z)φ(z, x) (8.3)

for all k ∈ C+ such that z is not a pole of m. With these solutions, we are able to
define the relative Wronskian a( · , x) for each x ≥ 0 by

a(k, x) = W(k,0)

W(k, x)
, (8.4)

where the functions W( · , x) are given by

W(k,x) = (1 + 2βx)
− ik

1−k2 + 1
2

(
1

1 + 2βx

1 − ik

1 + ik
ζ(k)ψ(k, x) − ψ [1](k, x)

)
. (8.5)

Because the functions ψ( · , x) and ψ [1]( · , x) are meromorphic on C+, so are the
functions W( · , x) and a( · , x) with W(i, x) = 2β and a(i, x) = 1.

Proposition 8.1 Let β > 0 and let (L,ω,υ) be a generalized indefinite string with
essential spectrum contained in (−∞,−β]∪ [β,∞) and m(0) = 0. Then the relative
Wronskian a( · , x) satisfies

ȧ(i, x) = iβ
∫ x

0
w(s)ds (8.6)

for every x ≥ 0, as well as the identity

ä(i, x) − ȧ(i, x)2 − iȧ(i, x)

= β

∫ x

0
(1 + 2βs)w(s)2ds + β

∫
[0,x)

(1 + 2βs)dυ(s) − β

∫ x

0

1

1 + 2βs
ds.

(8.7)

Proof The claims follow again from calculations using the definition of a and the
expressions in Proposition 2.3. To begin with, we compute

ψ̇(i, x) = −iβ
∫ x

0
w(s)ds,

ψ̈(i, x) = β

∫ x

0
w(s)ds − β2

(∫ x

0
w(s)ds

)2

− 2β2ṁ(0)x

+ 2β2
∫ x

0

∫ s

0
w(t)2dt ds + 2β2

∫ x

0

∫
[0,s)

dυ ds.

Furthermore, for the quasi-derivative of ψ , one gets ψ̇ [1](i, x) = 0 and

ψ̈ [1](i, x) = 2β2
∫ x

0
w(s)2ds + 2β2

∫
[0,x)

dυ − 2β2ṁ(0).



J. Eckhardt, A. Kostenko

We next compute the derivative for the function W and get

Ẇ (i, x) = −2iβ2
∫ x

0
w(s)ds,

which immediately gives (8.6). For the second derivative, one has

Ẅ (i, x)

W(i, x)
− Ẇ (i, x)2

W(i, x)2
− i

Ẇ (i, x)

W(i, x)
= 1

2
+ log(1 + 2βs)

2
+ βṁ(0)

− β

∫ x

0
(1 + 2βs)w(s)2ds − β

∫
[0,x)

(1 + 2βs)dυ(s),

which readily yields the remaining identity (8.7). �

Before we state the relative trace formulas in this case, remember that we denote
with � the (positive) square root of the Radon–Nikodým derivative of υ with respect
to the Lebesgue measure and with υs the singular part of υ . We also continue to use
the two functions F1 and F2 as defined by (5.10) in Sect. 5.

Theorem 8.2 (Relative trace formulas) Let β > 0 and let (L,ω,υ) be a general-
ized indefinite string with essential spectrum contained in (−∞,−β] ∪ [β,∞) and
m(0) = 0. Then for every x ≥ 0, the limit a(ξ, x) = limε↓0 a(ξ + iε, x) exists and is
nonzero for almost all ξ ∈R, satisfies

∫
R

| log |a(ξ, x)||
1 + ξ2

dξ < ∞ (8.8)

and the identities

∫ x

0

(
1

1 + 2βs
− �(s)

)
ds = 1

βπ

∫
R

log |a(ξ, x)|
1 + ξ2

dξ

+ 1

β
lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

log

∣∣∣∣κ − 1

κ + 1

∣∣∣∣ −
∑
η∈P

δ<η<1/δ

log

∣∣∣∣η − 1

η + 1

∣∣∣∣,
(8.9)

∫ x

0
w(s)ds = 1

βπ

∫
R

(1 − ξ2) log |a(ξ, x)|
(1 + ξ2)2 dξ

+ 1

β
lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

2κ

κ2 − 1
−

∑
η∈P

δ<η<1/δ

2η

η2 − 1
,

(8.10)
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∫ x

0
(1 + 2βs)w(s)2ds

+
∫ x

0
(1 + 2βs)

(
�(s) − 1

1 + 2βs

)2

ds +
∫

[0,x)

(1 + 2βs)dυs(s)

= 8

βπ

∫
R

ξ2 log |a(ξ, x)|
(1 + ξ2)3

dξ + 1

β
lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F2(κ) −
∑
η∈P

δ<η<1/δ

F2(η),

(8.11)

hold, where Z = {κ > 0 |a(iκ, x) = 0} and P = {η > 0 |a(iη,x) = ∞}.
Proof We first note that the function a( · , x) can be written as

a(k, x) = (1 + 2βx)
ik

1−k2 − 1
2
G(k,0)

G(k, x)

1

ψ(k, x)
,

where the meromorphic functions G( · , x) on C+ are given by

G(k,x) = ψ [1](k, x)

ζ(k)ψ(k, x)
− 1

1 + 2βx

1 − ik

1 + ik
.

It follows readily that ImG(k,x) > 0 when Re k > 0 and ImG(k,x) < 0 when
Re k < 0 because the first term is a Herglotz–Nevanlinna function in z = ζ(k). As
a consequence, all zeros and poles of G( · , x), G( · ,0) and ψ( · , x) are simple and
lie on the imaginary axis. The fact that the zeros and poles of a( · , x) are simple as
well is a result of the following three observations:

(a) If k is a zero of ψ( · , x), then k is a pole of G( · , x).
(b) If k is a pole of ψ( · , x), then k is a pole of G( · ,0).
(c) A k that is neither a zero nor a pole of ψ( · , x) is a pole of G( · , x) if and only if

it is a pole of G( · ,0).

For x > 0 (the claims are trivial otherwise), we next write the function a( · , x) as

a(k, x) = φ(ζ(k), x)

φβ(ζ(k), x)

G(k,0)

G(k, x)

G+(k)

G−(k)
,

where φβ is the respective solution for the generalized indefinite string in Example II,
given explicitly by

φβ(z, x) = (1 + 2βx)
1
2√

z2 − β2
sin

(√
z2 − β2

2β
log(1 + 2βx)

)
,

and the meromorphic functions G± on C+ are given by

G−(k) = ζ(k)φ(ζ(k), x)ψ(k, x) =
(

φ[1](ζ(k), x)

ζ(k)φ(ζ(k), x)
− ψ [1](k, x)

ζ(k)ψ(k, x)

)−1

,

G+(k) = ζ(k)φβ(ζ(k), x)(1 + 2βx)
ik

1−k2 − 1
2 =
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=
(

2k

1 + k2
cot

(
k

1 − k2
log(1 + 2βx)

)
− 2ik

1 + k2

)−1

.

Since one has that ImG±(k) ≥ 0 when Re k > 0 and ImG±(k) ≤ 0 when Re k < 0,
the claims readily follow from Theorem B.2, the formula for the exponential type of
solutions in (2.16) and Proposition 8.1. �

Remark 8.3 Adding up (8.9) and (8.10), we end up with another relative trace formula
involving the function F1. More precisely, under the conditions of Theorem 8.2, one
has

∫ x

0
w(s)ds +

∫ x

0

(
1

1 + 2βs
− �(s)

)
ds

= 2

βπ

∫
R

log |a(ξ, x)|
(1 + ξ2)2

dξ + 1

β
lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F1(κ) −
∑
η∈P

δ<η<1/δ

F1(η).
(8.12)

The integrals on the spectral side of the relative trace formulas can again be ex-
pressed in terms of suitable transmission coefficients. To this end, we first define the
meromorphic functions M( · , x) on C+ by

M(k,x) = ψ [1](k, x)

ζ(k)ψ(k, x)
(8.13)

for x ≥ 0, so that M(k,0) = m(ζ(k)). The limit M(ξ,x) = limε↓0 M(ξ + iε, x) exists
for almost all ξ ∈R (see Theorem A.2 for example) and we may define

T (ξ, x) = 8ξ

1 + ξ2

(1 + 2βx)ImM(ξ,x)∣∣∣(1 + 2βx)M(ξ, x) − 1−iξ
1+iξ

∣∣∣2
(8.14)

as the denominator is positive for almost all ξ ∈R. In fact, one has

∣∣∣∣(1 + 2βx)M(ξ, x) − 1 − iξ

1 + iξ

∣∣∣∣
2

≥
(

(1 + 2βx)ImM(ξ,x) + 2ξ

1 + ξ2

)2

≥ 8ξ

1 + ξ2
(1 + 2βx)ImM(ξ,x),

(8.15)

which also entails that T (ξ, x) ∈ [0,1].

Proposition 8.4 Let β > 0 and let (L,ω,υ) be a generalized indefinite string with
essential spectrum contained in (−∞,−β] ∪ [β,∞) and m(0) = 0. If one has
Imm(λ + i0) > 0 for almost all |λ| > β , then

|a(ξ, x)|2 = T (ξ, x)

T (ξ,0)
(8.16)

for almost all ξ ∈ R and all x ≥ 0.
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Proof Let ξ ∈ (0,1) ∪ (1,∞) be such that Imm(λ + i0) > 0, where λ = ζ(ξ). We
consider the solution ψ(ξ, · ) of the differential equation (2.12) with z = λ such that

ψ(ξ, x) = θ(λ, x) + λm(λ + i0)φ(λ, x) = lim
ε↓0

ψ(ξ + iε, x),

ψ [1](ξ, x) = θ [1](λ, x) + λm(λ + i0)φ[1](λ, x) = lim
ε↓0

ψ [1](ξ + iε, x).

Notice that ψ(ξ, x) �= 0 for all x ≥ 0 because it is not possible for θ(λ, x) and φ(λ, x)

to vanish both. It follows that the limit

M(ξ,x) = lim
ε↓0

M(ξ + iε, x) = ψ [1](ξ, x)

λψ(ξ, x)

exists for all x ≥ 0 and satisfies

ImM(ξ,x) = Imψ(ξ, x)∗ψ [1](ξ, x)

λ|ψ(ξ, x)|2 = Imm(λ + i0)

|ψ(ξ, x)|2 > 0,

where we used that θ(λ, x)φ[1](λ, x) − θ [1](λ, x)φ(λ, x) = 1. Next, one gets

∣∣∣lim
ε↓0

W(ξ + iε, x)

∣∣∣2 = λ2Imm(λ + i0)

(1 + 2βx)ImM(ξ,x)

∣∣∣∣(1 + 2βx)M(ξ, x) − 1 − iξ

1 + iξ

∣∣∣∣
2

,

which is positive in view of (8.15). We conclude that the limit limε↓0 a(ξ + iε, x)

exists as well and satisfies (8.16) as claimed. Similar arguments show that this also
holds true for all ξ ∈ (−∞,−1) ∪ (−1,0) with Imm(ζ(ξ) + i0) > 0. �

9 Lower semi-continuity, II

Let (L,ω,υ) be a generalized indefinite string and m be the corresponding Weyl–
Titchmarsh function. For β > 0 and the function ζ given as in Sect. 8, we define the
transmission coefficient T by

T (ξ) = 8|ξ |
1 + ξ2

Imm(ζ(ξ) + i0)∣∣∣m(ζ(ξ) + i0) − 1−i|ξ |
1+i|ξ |

∣∣∣2 , (9.1)

which is well-defined for almost all ξ ∈R and belongs to [0,1] because

∣∣∣∣m(ζ(ξ) + i0) − 1 − i|ξ |
1 + i|ξ |

∣∣∣∣
2

≥
(

Imm(ζ(ξ) + i0) + 2|ξ |
1 + ξ2

)2

≥ 8|ξ |
1 + ξ2

Imm(ζ(ξ) + i0).

(9.2)

Notice that this function T coincides with T ( · ,0) as given by (8.14) almost ev-
erywhere. Just like in Sect. 6, we are next going to establish that the quantity
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Qβ ∈ [0,∞] defined by

Qβ = −
∫
R

ξ2 logT (ξ)

(1 + ξ2)3
dξ (9.3)

depends lower semi-continuously on the generalized indefinite string (L,ω,υ).

Theorem 9.1 The functional (L,ω,υ) �→ Qβ is lower semi-continuous on the set of
all generalized indefinite strings for every β > 0.

Proof For a generalized indefinite string (L,ω,υ), we introduce the analog of the
reflection coefficient r defined on the first complex quadrant by

r(k) = m(ζ(k)) − 1+ik
1−ik

m(ζ(k)) − 1−ik
1+ik

.

Notice that this function is analytic and obeys the bound

|r(k)| =
∣∣∣∣∣
m(ζ(k)) + 1 − 2

1−ik

m(ζ(k)) + 1 − 2
1+ik

∣∣∣∣∣ ≤ 1 + 2|k|
Re k

in view of Lemma 6.2. The limit r(ξ) = limε↓0 r(ξ + iε) exists and satisfies the scat-
tering relation

T (ξ) + |r(ξ)|2 = 1

for almost every ξ > 0, which can be seen by first computing that

∣∣∣∣m(ζ(ξ) + i0) − 1 − iξ

1 + iξ

∣∣∣∣
2

−
∣∣∣∣m(ζ(ξ) + i0) − 1 + iξ

1 − iξ

∣∣∣∣
2

= 8ξ

1 + ξ2 Imm(ζ(ξ) + i0)

and then dividing by the first term on the left-hand side. Now the claim follows ex-
actly in the same way as in the proof of Theorem 6.1. �

10 Proof of Theorem II

We will again prove a slightly amended statement, from which Theorem II readily
follows: A Herglotz–Nevanlinna function m is the Weyl–Titchmarsh function of a
generalized indefinite string (L,ω,υ) with L = ∞ and (1.17) with c = 0 if and only
if the conditions (i), (ii), (iii) in Theorem II and m(0) = 0 hold.

Proof of necessity Suppose first that m is the Weyl–Titchmarsh function of a gen-
eralized indefinite string (L,ω,υ) with L = ∞ that satisfies (1.17) with c = 0.
It follows readily from Theorem 3.1 (ii) that m has a meromorphic extension to
C+ ∪ (−β,β) ∪C− that is analytic at zero and from Corollary 4.3 (ii) that m(0) = 0
holds. In order to verify the remaining conditions (ii) and (iii), let us consider the
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sequence of generalized indefinite strings (L,ωn,υn) whose coefficients are given
by

wn(x) =
{

w(x), x < n,

0, x ≥ n,
υn(B) = υ(B ∩ [0, n)) +

∫
B∩[n,∞)

1

(1 + 2βx)2
dx,

so that (L,ωn,υn) converges to (L,ω,υ) in the sense of Proposition 2.6. We will
use the notation from Sect. 2 and Sect. 8, where all quantities corresponding to the
generalized indefinite strings (L,ωn,υn) will be denoted with an additional subscript.
Theorem 3.1 (ii) and Corollary 4.3 (ii) guarantee that each (L,ωn,υn) satisfies the
requirements of Theorem 8.2. For large enough x > n, the solutions ψn(k, · ) are
scalar multiples of the ones in Example II and thus

(1 + 2βx)Mn(k, x) = (1 + 2βx)
ψ

[1]
n (k, x)

ζ(k)ψn(k, x)
= 1 + ik

1 − ik
. (10.1)

Because we may write

Mn(k,0) = θn(ζ(k), x)Mn(k, x) − θ
[1]
n (ζ(k), x)/ζ(k)

φ
[1]
n (ζ(k), x) − ζ(k)φn(ζ(k), x)Mn(k, x)

,

we see that Mn(ξ,0) = limε↓0 Mn(ξ + iε,0) exists for all ξ ∈ R\{−1,0,1} and

ImMn(ξ,0) = ImMn(ξ, x)∣∣φ[1]
n (ζ(ξ), x) − ζ(ξ)φn(ζ(ξ), x)Mn(ξ, x)

∣∣2 .

Since Mn(k,0) = mn(ζ(k)), this implies Immn(λ + i0) > 0 for almost all |λ| > β ,
so that we can apply Proposition 8.4. Notice that (10.1) implies that Tn(ξ, x) = 1 for
almost all ξ ∈R. Moreover, because

an(k, x) = (1 + 2βx)
ik

1−k2 + 1
2

1 + k2

4ikψn(k, x)

(
mn(ζ(k)) − 1 − ik

1 + ik

)
,

the set of poles of an( · , x) is empty (remember properties (a), (b) and (c) in the first
part of the proof of Theorem 8.2) and

Zn = {κ > 0 |an(iκ, x) = 0} = {κ > 0 | (1 − κ)mn(ζ(iκ)) = 1 + κ}.
We thus obtain from Theorem 8.2 and Proposition 8.4 the identity

∫ n

0
(1 + 2βs)w(s)2ds

+
∫ n

0
(1 + 2βs)

(
�(s) − 1

1 + 2βs

)2

ds +
∫

[0,n)

(1 + 2βs)dυs(s)

= − 4

βπ

∫
R

ξ2 logTn(ξ,0)

(1 + ξ2)3 dξ + 1

β

∑
κ∈Zn

F2(κ).
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If we similarly define Z′ = {κ > 0 | (1 − κ)m(ζ(iκ)) = 1 + κ}, then one has

lim inf
n→∞

∑
κ∈Zn

F2(κ) ≥
∑
κ∈Z′

F2(κ).

In fact, because the Weyl–Titchmarsh functions mn converge to m by Proposition 2.6,
every neighborhood of a κ ∈ Z′ contains a point in Zn for large enough n. As a
consequence, we get that for every finite subset J ⊆ Z′ one has

lim inf
n→∞

∑
κ∈Zn

F2(κ) ≥
∑
κ∈J

F2(κ),

which gives the claimed bound. Together with the lower semi-continuity from Theo-
rem 9.1, this yields

∫ ∞

0
(1 + 2βs)w(s)2ds

+
∫ ∞

0
(1 + 2βs)

(
�(s) − 1

1 + 2βs

)2

ds +
∫

[0,∞)

(1 + 2βs)dυs(s)

≥ − 4

βπ

∫
R

ξ2 logT (ξ,0)

(1 + ξ2)3 dξ + 1

β

∑
κ∈Z′

F2(κ).

(10.2)

It remains to see that this bound implies conditions (ii) and (iii). To prove the former,
let E = {η > 0 |m(ζ(iη)) = ∞}, so that the set E ∪ {1} interlaces the set Z′ because
m is a Herglotz–Nevanlinna function. Due to monotonicity of the function F2, this
property and the bound on the sum in (10.2) imply that

∑
η∈E

F2(η) < ∞. (10.3)

Since the asymptotics for the function F2 in (C.11) and (C.12) readily turn into

F2(s) = 4
√

2

3β3/2
(β − ζ(is))3/2(1 + o(1)), s → 0, (10.4)

F2(s) = 4
√

2

3β3/2
(β + ζ(is))3/2(1 + o(1)), s → ∞, (10.5)

we conclude from (10.3) that
∑
η∈E
η<1

(β − ζ(iη))3/2 +
∑
η∈E
η>1

(β + ζ(iη))3/2 < ∞, (10.6)

which proves condition (ii). Because one has (see Theorem A.2 for example)

∫ ∞

0

ξ2

(1 + ξ2)3

∣∣∣∣log

∣∣∣∣m(ζ(ξ) + i0) − 1 − iξ

1 + iξ

∣∣∣∣
∣∣∣∣dξ < ∞, (10.7)
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it follows from the bound on the integral on the right-hand side of (10.2) that

∫ ∞

0

ξ2

(1 + ξ2)3
| log(Imm(ζ(ξ) + i0))|dξ < ∞, (10.8)

which yields condition (iii) after the transformation λ = ζ(ξ). �

Proof of sufficiency Suppose now that a Herglotz–Nevanlinna function m satisfies the
three conditions in Theorem II with m(0) = 0 and let (L,ω,υ) be the correspond-
ing generalized indefinite string. Condition (i) entails that the essential spectrum of
(L,ω,υ) is contained in (−∞,−β] ∪ [β,∞) and that L = ∞ in view of Theo-
rem 4.1, so that we can use the notation of Sect. 8. Condition (ii) implies (10.6),
where E = {η > 0 |m(ζ(iη)) = ∞}. In view of the asymptotics in (10.4) and (10.5)
for the function F2 we get (10.3). The set Z′ = {κ > 0 | (1 − κ)m(ζ(iκ)) = 1 + κ} in-
terlaces the set E ∪ {1} because m is a Herglotz–Nevanlinna function, which implies
that

∑
κ∈Z′

F2(κ) < ∞.

Condition (iii) transforms into (10.8), which gives

−
∫
R

ξ2 logT (ξ,0)

(1 + ξ2)3 dξ < ∞

because of (10.7). In particular, we see that conditions (i), (iii) and that m(0) = 0
guarantee that the requirements of Theorem 8.2 and Proposition 8.4 are satisfied.
From the former, we get that for each x ≥ 0 one has the identity

∫ x

0
(1 + 2βs)w(s)2ds

+
∫ x

0
(1 + 2βs)

(
�(s) − 1

1 + 2βs

)2

ds +
∫

[0,x)

(1 + 2βs)dυs(s)

= 8

βπ

∫
R

ξ2 log |a(ξ, x)|
(1 + ξ2)3 dξ + 1

β
lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F2(κ) −
∑
η∈P

δ<η<1/δ

F2(η),

where Z = {κ > 0 |a(iκ, x) = 0} and P = {η > 0 |a(iη,x) = ∞}. Estimating the
right-hand side by using that 2 log |a(ξ, x)| ≤ − logT (ξ,0) for almost all ξ ∈ R, that
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Z ⊆ Z′ and that F2 is non-negative, before letting x → ∞, this becomes

∫ ∞

0
(1 + 2βs)w(s)2ds

+
∫ ∞

0
(1 + 2βs)

(
�(s) − 1

1 + 2βs

)2

ds +
∫

[0,∞)

(1 + 2βs)dυs(s)

≤ − 4

βπ

∫
R

ξ2 logT (ξ,0)

(1 + ξ2)3
dξ + 1

β

∑
κ∈Z′

F2(κ),

(10.9)

which concludes the proof of Theorem II. �

We are again also able to express the underlying trace formula given by (10.2)
and (10.9) in terms of the spectral measure of the generalized indefinite string.

Corollary 10.1 If ρ is the spectral measure of a generalized indefinite string (L,ω,υ)

with L = ∞ and (1.17) for some constant c ∈R, then

∫ ∞

0
(1 + 2βx)(w(x) − c)2dx

+
∫ ∞

0
(1 + 2βx)

(
�(x) − 1

1 + 2βx

)2

dx +
∫

(0,∞)

(1 + 2βx)dυs(x)

=
∫
R

dρ(λ)

λ2 − 1

π

∫
R\(−β,β)

√
λ2 − β2

|λ|3 dλ + 1

β

∑
λ∈supp(ρ)

|λ|<β

F2

(√
β − λ

β + λ

)

− 1

π

∫
R\(−β,β)

√
λ2 − β2

|λ|3 log

(
π |λ|√
λ2 − β2

dρac(λ)

dλ

)
dλ.

(10.10)

Proof Because ρ is also the spectral measure of the generalized indefinite string
(L,ω − cδ0, υ), where δ0 is the unit Dirac measure centered at zero, we may as-
sume that c = 0. Since in this case one has m(0) = 0, we know from the proof of
Theorem II that the trace formula given by (10.2) and (10.9) holds with equality. By
applying identity (B.15) from Theorem B.2 to the meromorphic function b on C+
defined by

b(k) = 1 − m(ζ(k))
1 + ik

1 − ik
= m(ζ(k)) − 1−ik

1+ik

− 1−ik
1+ik

,
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we also obtain the relation

βṁ(0) = 4

π

∫
R

ξ2

(1 + ξ2)3 log

(∣∣∣∣m(ζ(ξ) + i0) − 1 − i|ξ |
1 + i|ξ |

∣∣∣∣
2
)

dξ

+ lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F2(κ) −
∑
η∈P

δ<η<1/δ

F2(η),
(10.11)

where Z = {κ > 0 |b(iκ) = 0} and P = {η > 0 |b(iη) = ∞}. The set Z actually coin-
cides with the set Z′ in the trace formula given by (10.2) and (10.9), which in partic-
ular entails that we may omit the limit in (10.11) as the sums converge individually.
Moreover, the set P corresponds to the poles of m in (−β,β) and thus to the points in
supp(ρ) between −β and β . After replacing the transmission coefficient in the trace
formula given by (10.2) and (10.9) with the expression in (9.1), we can employ the
relation in (10.11) to arrive at the formula in (10.10). �

In conclusion, let us also state the corresponding Lieb–Thirring inequality, the
proof of which follows readily from Corollary 10.1.

Corollary 10.2 If ρ is the spectral measure of a generalized indefinite string (L,ω,υ)

with L = ∞ and (1.17) for some constant c ∈R, then

4
√

2

3β5/2

∑
λ∈supp(ρ)

|λ|<β

(β − |λ|)3/2 ≤
∫ ∞

0
(1 + 2βx)(w(x) − c)2dx

+
∫ ∞

0
(1 + 2βx)

(
�(x) − 1

1 + 2βx

)2

dx +
∫

(0,∞)

(1 + 2βx)dυs(x).

(10.12)

11 Krein strings

The purpose of this section is to apply our results to the class of Krein strings. Recall
that a Krein string is a generalized indefinite string (L,ω,υ) such that the distribution
ω is a positive Borel measure on [0,L) and the measure υ is identically zero. In this
case, we just write (L,ω) for a Krein string and the normalized anti-derivative of ω

is simply given by the distribution function

w(x) =
∫

[0,x)

dω. (11.1)

It goes back to work of M. G. Krein [68]6 (see [42, Proposition 7.3] for a proof in
our setting) that the Weyl–Titchmarsh functions corresponding to Krein strings are
precisely the Stieltjes functions, where a Herglotz–Nevanlinna function m is called a

6Let us mention that the definition of the Weyl–Titchmarsh function in [68], termed coefficient of dynam-
ical compliance there, differs from ours given by (2.28). Namely, the corresponding Weyl–Titchmarsh
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Stieltjes function if the function z �→ zm(z) is a Herglotz–Nevanlinna function as well
(see [67, § 5]). Since it is known that Stieltjes functions always have an analytic ex-
tension to C\[0,∞), the following result is an immediate consequence of Theorem I
and [42, Proposition 7.3]. As in previous sections, we let α be an arbitrary positive
constant.

Theorem 11.1 A Stieltjes function m is the Weyl–Titchmarsh function of a Krein string
(L,ω) with L = ∞ and

∫ ∞

0

(∫
[x,∞)

dω − 1

1 + 4αx

)2

x dx < ∞ (11.2)

if and only if all the following conditions hold:

(i) The function m has a meromorphic extension to C\[α,∞) that is analytic at
zero.

(ii) The poles σ+ of m in (0, α) satisfy

∑
λ∈σ+

(α − λ)3/2 < ∞. (11.3)

(iii) The boundary values of the function m satisfy (1.7).

Proof After noticing that one has

∫
[x,∞)

dω − 1

1 + 4αx
=

∫
[0,∞)

dω − w(x) − 1

2
√

α
+ x

1 + 2
√

αx
+O

(
1

x2

)

as x → ∞, the claim follows readily from Theorem I and [42, Proposition 7.3]. �

Remark 11.2 As in Proposition 4.2, one sees that the Weyl–Titchmarsh function m of
a Krein string (L,ω) has an analytic extension to zero if and only if L = ∞ and

lim sup
x→∞

x

∫
[x,∞)

dω < ∞. (11.4)

function mKr is defined by M. G. Krein as

mKr(z) = lim
x→L

φ(z, x)

θ(z, x)
.

Comparing this definition with [42, Lemma 5.2], we immediately see that

m(z) = − 1

zmKr(z)
,

and hence, in the terminology of [68, §12], our Weyl–Titchmarsh function m is nothing but the coefficient
of dynamical compliance of the dual string (compare with [68, Equation (12.5)]).
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In this case, Theorem 4.1 entails that

m(0) =
∫

[0,∞)

dω. (11.5)

To the best of our knowledge, in the case of Krein strings, the first claim goes back
to the work of I. S. Kac and M. G. Krein [66]. The second claim can be found, for
example, in [68, § 11.4].

Of course, Theorem 11.1 can again also be stated in terms of the spectral measure.
To this end, we first note that the integral representation (2.29) for a Stieltjes function
m simplifies to

m(z) = c0 − 1

Lz
+

∫
[0,∞)

dρ(λ)

λ − z
, (11.6)

where c0 ∈ [0,∞) is some constant and the measure ρ is supported on [0,∞) with
∫

[0,∞)

dρ(λ)

1 + λ
< ∞. (11.7)

Corollary 11.3 A positive Borel measure ρ on [0,∞) with (11.7) is the spectral mea-
sure of a Krein string (L,ω) with L = ∞ and (11.2) if and only if both of the follow-
ing conditions hold:

(i) The support of ρ is discrete in [0, α), does not contain zero and satisfies

∑
λ∈supp(ρ)

0<λ<α

(α − λ)3/2 < ∞. (11.8)

(ii) The absolutely continuous part ρac of ρ on (α,∞) satisfies (1.15).

Remark 11.4 The trace formula in Corollary 7.1 clearly also holds true in this special
case, as does the corresponding Lieb–Thirring inequality

∑
λ∈supp(ρ)

0<λ<α

(α − λ)3/2 ≤ 3α3

4

∫ ∞

0
(1 + 2

√
αx)

(∫
[x,∞)

dω − 1

2
√

α + 4αx

)2

dx.

(11.9)

Even though it is somewhat less immediate, we can also apply Theorem II to Krein
strings. However, we need some simple observations for this first.

Proposition 11.5 Let (L,ω,υ) be a generalized indefinite string. The corresponding
Weyl–Titchmarsh function m is odd, that is, satisfies

m(z) = −m(−z) (11.10)
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for all z ∈C\R, if and only if ω vanishes identically. In this case, one has

m(z) = zm+(z2), (11.11)

where m+ is the Weyl–Titchmarsh function of the Krein string (L,υ).

Proof One first notices that the Weyl–Titchmarsh function m̃ of the generalized in-
definite string (L,−ω,υ) is given by

m̃(z) = −m(−z).

In fact, this follows readily from the definition of the Weyl–Titchmarsh functions
because a function f is a solution of the differential equation (2.12) if and only if it
is a solution of

−f ′′ = (−z)(−ω)f + (−z)2υf.

As m coincides with m̃ if and only if (L,ω,υ) coincides with (L,−ω,υ), we see
that the equivalence in the claim holds. Moreover, in this case one has

m(z) = ψ ′(z,0−)

zψ(z,0)
,

where ψ(z, · ) is a non-trivial solution of the differential equation (2.12) which lies in
Ḣ 1[0,L) and L2([0,L);υ). Since ψ(z, · ) is then a non-trivial solution of

−f ′′ = z2υf

which lies in Ḣ 1[0,L), we have that

m+(z2) = ψ ′(z,0−)

z2ψ(z,0)
= m(z)

z

by the definition of the Weyl–Titchmarsh function m+. �

Corollary 11.6 Let (L,ω,υ) be a generalized indefinite string. The corresponding
spectral measure ρ is even if and only if w is equal to a constant almost everywhere.

Proof One first notices that the Weyl–Titchmarsh function m̃ of the generalized in-
definite string (L,ω− c2δ0, υ) is given by m̃ = m− c2, where c2 is the constant from
the integral representation (2.29) and δ0 is the unit Dirac measure centered at zero.
Now the claim follows readily from Proposition 11.5 because the spectral measure ρ

is even if and only if m̃ is odd. �

Remark 11.7 The Weyl–Titchmarsh function m of the generalized indefinite string
(L,ω,υ) from Example II is clearly odd. In fact, the distribution ω is identically zero
in this case. The corresponding Krein string (L,υ) as in Proposition 11.5 coincides
precisely with the one considered in Example I with α = β2. In particular, its Weyl–
Titchmarsh function m+ and the corresponding spectral measure are simply given by
the expressions in Example I.
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In order to state the second result, for a Krein string (L,υ) we will write

υ(B) =
∫

B

�(x)2dx + υs(B), (11.12)

where � is the (positive) square root of the Radon–Nikodým derivative of υ with
respect to the Lebesgue measure and υs is the singular part of υ .

Theorem 11.8 A Stieltjes function m+ is the Weyl–Titchmarsh function of a Krein
string (L,υ) with L = ∞ and

∫ ∞

0

(
�(x) − 1

1 + 2
√

αx

)2

x dx +
∫

[0,∞)

x dυs(x) < ∞ (11.13)

if and only if all the following conditions hold:

(i) The function m+ has a meromorphic extension to C\[α,∞) that is analytic at
zero.

(ii) The poles σ+ of m+ in (0, α) satisfy (11.3).
(iii) The boundary values of the function m+ satisfy

∫ ∞

α

√
λ − α

λ2 log(Imm+(λ + i0))dλ > −∞. (11.14)

Proof Any Stieltjes function m+ is the Weyl–Titchmarsh function of some Krein
string (L,υ). We denote with m the Weyl–Titchmarsh function of the generalized
indefinite string (L,0, υ). Since the function m is odd by Proposition 11.5 and the
corresponding spectral measure ρ is even in view of Corollary 11.6, the integral rep-
resentation (2.29) takes the form

m(z) = c1z − 1

Lz
+

∫
[0,∞)

2z

λ2 − z2
dρ(λ).

From the relation (11.11) in Proposition 11.5, it then follows that

m+(z) = c1 − 1

Lz
+

∫
[0,∞)

2

λ2 − z
dρ(λ).

After these considerations, the claim can be deduced by applying Theorem II and
Corollary II with β = √

α to the generalized indefinite string (L,0, υ). �

Remark 11.9 A few of remarks are in order:

(a) Condition (11.13) in Theorem 11.8 means that the operators K(�−�α)2 and Kυs

belong to the trace class with the trace formula (involving (11.13) on the right-
hand side)

tr K(�−�α)2 + tr Kυs =
∫ ∞

0

(
�(x) − 1

1 + 2
√

αx

)2

x dx +
∫

[0,∞)

x dυs(x),

(11.15)
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where �α is the corresponding function for the Krein string in Example I. In this
sense, the class of Krein strings in Theorem 11.8 can be viewed again as suitable
perturbations of the Krein string in Example I.

(b) One can easily specify the trace formula in Corollary 10.1 to the class of Krein
strings in Theorem 11.8: If ρ is the spectral measure of a Krein string (L,υ) with
L = ∞ and (11.13), then (with F2 given by (5.10) in Sect. 5)

∫ ∞

0
(1 + 2

√
αx)

(
�(x) − 1

1 + 2
√

αx

)2

dx +
∫

(0,∞)

(1 + 2
√

αx)dυs(x)

=
∫

(0,∞)

dρ(λ)

λ
− 1

π

∫ ∞

α

√
λ − α

λ2 dλ + 2√
α

∑
λ∈supp(ρ)

0<λ<α

F2

(√√
α − √

λ√
α + √

λ

)

− 1

π

∫ ∞

α

√
λ − α

λ2
log

(
πλ√
λ − α

dρac(λ)

dλ

)
dλ.

(11.16)

In particular, one gets the Lieb–Thirring inequality

4

3α2

∑
λ∈supp(ρ)

0<λ<α

(α − λ)3/2 ≤
∫ ∞

0
(1 + 2

√
αx)

(
�(x) − 1

1 + 2
√

αx

)2

dx

+
∫

(0,∞)

(1 + 2
√

αx)dυs(x).

(11.17)

(c) It is interesting to notice that the difference between the perturbations in Theo-
rem 11.1 and Theorem 11.8 on the spectral side lies simply in conditions (1.7)
and (11.14) on the asymptotic behavior of the density of the spectral measure at
infinity. Condition (11.14) is clearly stronger than (1.7) and ensures that the ab-
solutely continuous part of the Krein string’s weight measure is not trivial, which
is not necessary under condition (1.7) as we shall see in Sect. 12. Moreover,
condition (11.14) has certain similarities with recent work of R. Bessonov and
S. Denisov [10–12] to be discussed below.

Let us finish this section with commenting on some connections between Theo-
rem 11.8 and the characterization of the Szegő class obtained in [10]. More specifi-
cally, using the recent work of R. Bessonov and S. Denisov [10] together with some
transformation rules discovered by M. G. Krein [76], one may characterize Krein
strings (L,υ) with spectrum contained in [α,∞) and spectral measure ρ satisfying

∫ ∞

α

1

λ
√

λ − α
log

(
dρac(λ)

dλ

)
dλ > −∞. (11.18)

Unfortunately, this characterization is rather cumbersome when compared to the one
in Theorem 11.8. We are not going to provide all the details here, but shall only indi-
cate how to end up with such a characterization. To this end, recall that a Krein string
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(L,υ) belongs to the Szegő class [10] if L + υ([0,L)) = ∞ and the corresponding
spectral measure ρ satisfies

∫ ∞

0

1√
λ(1 + λ)

log

(
dρac(λ)

dλ

)
dλ > −∞. (11.19)

Let us stress that the Szegő condition (11.19) was stated in [10] for the principal spec-
tral measure ρKr of a Krein string in the sense of M. G. Krein [68] arising from their
Weyl–Titchmarsh function mKr. However, it is not difficult to see that the measure
ρKr satisfies the Szegő condition if and only if so does the spectral measure ρ. We
also note that condition (11.19) implies that the spectrum of a Krein string from the
Szegő class coincides with the positive half-line [0,∞) and its absolutely continuous
spectrum is supported on [0,∞). The following characterization of Krein strings in
the Szegő class was obtained in [10, Theorem 2].

Theorem 11.10 A Krein string (L,υ) with L + υ([0,L)) = ∞ belongs to the Szegő
class if and only if � /∈ L1[0,L) and

∑
n∈N

(
(xn+2 − xn)

∫
(xn,xn+2]

dυ − 4

)
< ∞, (11.20)

where � is given by (11.12) and the sequence (xn)n∈N is defined by

xn = inf

{
x ≥ 0

∣∣∣∣n =
∫ x

0
�(s)ds

}
. (11.21)

Clearly, the difference between conditions (11.18) and (11.19) is simply a shift
in the spectral parameter by α. For this reason, it is possible to apply the following
transformation rule of M. G. Krein [76] (see also [37, Chap. 6.9]) in order to turn
Theorem 11.10 into a characterization of Krein strings with spectrum contained in
[α,∞) and satisfying condition (11.18).

Lemma 11.11 Let (L,υ) be a Krein string with L+υ([0,L)) = ∞ and suppose that
another Krein string (L̃, υ̃) is defined by

L̃ = lim
x→L

x(x),

∫
[0,x(x))

dυ̃ =
∫

[0,x)

θ(−α, s)2dυ(s), (11.22)

where x(x) is given by

x(x) = φ(−α,x)

θ(−α,x)
. (11.23)

Then the corresponding spectral measures ρKr and ρ̃Kr are related via
∫

(−∞,λ)

dρ̃Kr =
∫

(−∞,λ−α)

dρKr. (11.24)

The above transformation holds for negative α too as long as −α ≤ inf supp(ρKr)

and ρKr({−α}) = 0. The latter is equivalent to θ(−α, · ) /∈ L2([0,L);υ).
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Proof It suffices to observe that the fundamental system of solutions for the modified
Krein string (L̃, υ̃) is simply given by

θ̃ (z, x(x)) = θ(z − α,x)

θ(−α,x)
, φ̃(z, x(x)) = φ(z − α,x)

θ(−α,x)
,

and hence, by the definition of mKr and m̃Kr, one has

m̃Kr(z) = mKr(z − α),

which immediately implies (11.24). The remaining claim that this transformation
works for negative α as well follows from monotonicity of x(x) as a function of x.
Indeed, a simple calculation shows that

x
′(x) = 1

θ(−α,x)2
,

and hence, taking into account oscillation properties of solutions, under the given
assumptions, the function θ(−α, · ) does not vanish on [0,L) and x(x) is strictly in-
creasing as a function of x. �

It is not at all surprising that the characterization of Krein strings with spectrum
contained in [α,∞) and satisfying (11.18) is rather complicated. One explanation for
this stems from the fact that there does not appear to exist a criterion formulated in
terms of the Krein string’s coefficient for the equality inf supp(ρ) = α to hold (al-
though there are sharp two-sided estimates, see [66] and [89]). What is curious in our
opinion is the fact that condition (11.18) obviously implies (1.42) with the only dif-
ference between them being the behavior of the weight near the finite spectral edge.
Moreover, according to Remark 11.9 (a), Corollary 1.13 can be seen as a characteri-
zation of spectral measures corresponding to certain perturbations of a model string
and clearly Krein strings with (11.18) are a subclass of these. Using Krein’s transfor-
mation in Lemma 11.11 in a backward direction indicates that the Szegő class can be
viewed as a certain subclass, however, we are unaware of any characterizations of the
Szegő class from this perspective.

12 Krein–Langer and Krein–Stieltjes strings

We are now going to focus on the important subclass of generalized indefinite
strings with coefficients supported on discrete sets. In this case, the differential equa-
tion (2.12) simply reduces to a difference equation.

Definition 12.1 A Krein–Langer string is a generalized indefinite string (L,ω,υ)

such that the coefficients ω and υ are supported on a discrete set in [0,L).

For a Krein–Langer string (L,ω,υ), the distribution ω and the measure υ can be
written in a unique way as

ω =
N∑

n=0

ωnδxn, υ =
N∑

n=0

υnδxn, (12.1)
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for some N ∈ N ∪ {0,∞}, strictly increasing points (xn)
N
n=0 in [0,L) with x0 = 0

and xn → L if N = ∞, real constants (ωn)
N
n=0 and non-negative constants (υn)

N
n=0

with |ωn| +υn > 0 for all n ≥ 1 (notice that we do allow a simultaneous vanishing of
ω0 and υ0). Here we also use δx to denote the unit Dirac measure centered at x. The
distances between consecutive point masses are given by


n = xn − xn−1. (12.2)

Definition 12.2 A Krein–Stieltjes string is a Krein string (L,ω) such that the coeffi-
cient ω is supported on a discrete set in [0,L).

It has been discovered by M. G. Krein, that Krein–Stieltjes strings play a crucial
role in the study of the Stieltjes moment problem and that (except for a point mass
at zero) the measure ω can be recovered explicitly in terms of the moments of the
spectral measure ρ in this case. In a similar way, Krein–Langer strings are related to
the indefinite moment problem [78] and to the Hamburger moment problem [44].

A characterization of all spectral measures corresponding to Krein–Langer strings
is given by [40, Corollary 2.8] and can also be found less explicitly in [44, Sect. 5].
We are now able to also single out those Krein–Langer strings that additionally satisfy
condition (1.5) for some constants c ∈R and α > 0.

Theorem 12.3 A positive Borel measure ρ on R with (1.13) is the spectral measure
of a Krein–Langer string (L,ω,υ) with L = N = ∞ and

∑
n∈N

(

n

xn

)3

+
∑
n∈N


n

xn

(
xn

(
c +

∑
k<n

ωk

)
+ 1

4α

)2

+
∑
n∈N

xnυn < ∞ (12.3)

for some constant c ∈R if and only if all the following conditions hold:

(i) All moments of the measure ρ are finite and the corresponding Hamburger mo-
ment problem is determinate (that is, has a unique solution).

(ii) The support of ρ is discrete in (−∞, α), does not contain zero and satis-
fies (1.14).

(iii) The absolutely continuous part ρac of ρ on (α,∞) satisfies (1.15).

Proof We are first going to show that for a Krein–Langer string (L,ω,υ) with L =
N = ∞, condition (1.5) holds for some c ∈ R if and only if (12.3) holds for some
c ∈ R. In fact, the former property is equivalent to

∫ ∞

x1

(
4αw(x) − c + 1

x

)2

x dx +
∑
n∈N

xnυn < ∞ (12.4)

for some c ∈R. Since the normalized anti-derivative w is simply a piecewise constant
function in this case, the integral in (12.4) becomes

∑
n≥2

∫ xn

xn−1

(
w̃n + 1

x

)2

x dx =
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=
∑
n≥2

w̃2
n
n

(
xn − 
n

2

)
+ 2w̃n
n + log

(
xn

xn−1

)

=
∑
n≥2


n

xn

(
1 − 
n

2xn

)(
xnw̃n +

(
1 − 
n

2xn

)−1)2

+ F

(

n

xn−1

)
,

where we introduced the quantities w̃n defined by

w̃n = −c + 4α
∑
k<n

ωk

and used the function F : [0,∞) → R given by

F(x) = log(1 + x) − 2x

2 + x
.

The function F is strictly increasing because

F ′(x) = 1

1 + x
− 4

(2 + x)2
= x2

(1 + x)(2 + x)2
> 0

and taking into account that F(0) = 0, one ends up with the estimate

x3

3(2 + a)3
≤ F(x) ≤ x3

12
(12.5)

for all x ∈ [0, a] and any fixed a > 0. In particular, we see that both terms in the last
sum above are non-negative and hence (12.4) becomes

∑
n≥2

F

(

n

xn−1

)
+

∑
n≥2


n

xn

(
1 − 
n

2xn

)(
xnw̃n +

(
1 − 
n

2xn

)−1)2

+
∑
n∈N

xnυn < ∞.

(12.6)

Using the estimate in (12.5) and the fact that 
n = o(xn) as well as xn/xn−1 → 1 are
necessary for the validity of (12.6) and of (12.3), it now follows readily that (12.6)
holds for some c ∈R if and only if (12.3) holds for some c ∈R.

Now if a positive Borel measure ρ on R with (1.13) is the spectral measure of a
Krein–Langer string (L,ω,υ) with L = N = ∞ and (12.3) for some constant c ∈R,
then condition (i) follows from [40, Corollary 2.8] and divergence of the series

∑
n∈N


n,

as the latter implies that the corresponding Hamburger moment problem is determi-
nate in view of [44, Theorem 5.7]. Conditions (ii) and (iii) follow from Corollary I by
means of the equivalence proved above. Conversely, if a positive Borel measure ρ on
R with (1.13) satisfies conditions (i), (ii) and (iii), then by Corollary I it is the spectral
measure of a generalized indefinite string (L,ω,υ) with L = ∞ and (1.5) for some
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c ∈ R. Since all moments of ρ are finite, we infer from [40, Corollary 2.7] that the
coefficients ω and υ are supported on an infinite but discrete set in [0,Ld) for some
Ld ∈ (0,∞]. However, because the corresponding Hamburger moment problem is
determinate, we conclude from [44, Theorem 5.7] that Ld = ∞ and thus (L,ω,υ)

is a Krein–Langer string with N = ∞. It remains to apply the equivalence proved
above to see that (12.3) holds for some constant c ∈R. �

Remark 12.4 Determinacy of the Hamburger moment problem in condition (i) in The-
orem 12.3 can be replaced by a more explicit condition on certain Hankel determi-
nants as in [40, Corollary 2.8]. Moreover, the coefficients in condition (12.3) can also
be expressed in terms of these Hankel determinants (see [40, Corollary 2.8] or [44,
Sect. 5.3]).

Corollary 12.5 A positive Borel measure ρ on [0,∞) with (11.7) is the spectral mea-
sure of a Krein–Stieltjes string (L,ω) with L = N = ∞ and

∑
n∈N

(

n

xn

)3

+
∑
n∈N


n

xn

(
xn

∑
k≥n

ωk − 1

4α

)2

< ∞ (12.7)

if and only if all the following conditions hold:

(i) All moments of the measure ρ are finite and the corresponding Stieltjes moment
problem is determinate (that is, has a unique solution).

(ii) The support of ρ is discrete in [0, α), does not contain zero and satisfies (11.8).
(iii) The absolutely continuous part ρac of ρ on (α,∞) satisfies (1.15).

Proof If a positive Borel measure ρ on [0,∞) with (11.7) is the spectral measure of
a Krein–Stieltjes string (L,ω) with L = N = ∞ and (12.7), then (12.3) holds as well
with

c = −
∞∑

k=0

ωk.

Conditions (i), (ii) and (iii) now follow from Theorem 12.3 because determinacy of
the Hamburger moment problem implies that of the Stieltjes moment problem.

Conversely, if a positive Borel measure ρ on [0,∞) with (11.7) satisfies condi-
tions (i), (ii) and (iii), then ρ also satisfies the conditions of Theorem 12.3 in view
of [95, Corollary 8.9]. This guarantees that ρ is the spectral measure of a Krein–
Langer string (L,ω,υ) with L = N = ∞ and (12.3) for some c ∈R. Since removing
possible point masses at zero does not change the spectral measure, we may assume
that ω0 = υ0 = 0. It then follows from [42, Lemma 7.2] that (L,ω,υ) is actually a
Krein string and thus a Krein–Stieltjes string. Because (12.3) holds for some c ∈ R

and ω is a finite measure in view of Corollary 11.3, we infer that

∑
n∈N

(

n

xn

)3

+
∑
n∈N


n

xn

(
xn

(
c̃ −

∑
k≥n

ωk

)
+ 1

4α

)2

< ∞
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for some c̃ ∈ R. However, because the series
∑
n∈N


nxn ≥ x1

∑
n∈N


n

diverges, we conclude that c̃ must necessarily be zero, which proves (12.7). �

Remark 12.6 Determinacy of the Stieltjes moment problem in condition (i) in Corol-
lary 12.5 can be replaced with the stronger determinacy of the Hamburger moment
problem. In fact, under condition (ii) one has ρ({0}) = 0, which guarantees that the
two notions coincide; see [95, Corollary 8.9].

Example 12.7 (Laguerre operator) An example of a measure satisfying all conditions
of Theorem 12.3 and Corollary 12.5 is given by7

ρα(B) =
∫

B

1[α,∞)(λ)e−(λ−α)dλ, (12.8)

which is nothing but the shifted Laguerre weight. The corresponding Krein–Stieltjes
string (L,ω) such that ω has no point mass at zero is explicitly given by (see [44,
Equation (3.3)])

ωn = 1

nLn−1(−α)Ln(−α)
, 
n = Ln−1(−α)2, (12.9)

where the Ln are the classical Laguerre polynomials [90, § 18.3], [98, Chapter V]:

Ln(z) = ez

n!
dn

dzn
e−zzn =

n∑
k=0

(
n

k

)
(−z)k

k! . (12.10)

From the asymptotic behavior of Laguerre polynomials (see [98, Theorem 8.22.3] for
example), we infer that

ωn = 4πα

e−α

e−4
√

αn

√
αn

(1 + o(1)), 
n = e−α

4π

e4
√

αn

√
αn

(1 + o(1)), (12.11)

as n → ∞, which, after a little effort, also implies that

xn = e4
√

αn+O(1). (12.12)

7More generally, one may consider the measure ρ
γ
α given by

ρ
γ
α (B) = 1

�(1 + γ )

∫
B
1[α,∞)(λ)(λ − α)γ e−(λ−α)dλ,

where γ > −1. This leads to generalized Laguerre–Sonin polynomials L
(γ )
n and all expressions become

much more cumbersome.
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Of course, the coefficients in (12.9) for the Krein–Stieltjes string (L,ω) are a bit
more cumbersome than the corresponding Jacobi parameters, as the Jacobi matrix
generated by the measure ρα is simply given by

Jα =

⎛
⎜⎜⎜⎜⎜⎝

1 + α 1 0 0 · · ·
1 3 + α 2 0 · · ·
0 2 5 + α 3 · · ·
0 0 3 7 + α · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

. (12.13)

However, it is not clear to us whether it is possible to obtain analogs of Theorem 12.3
or Corollary 12.5 for Jacobi matrices that are corresponding perturbations of the La-
guerre operator Jα .

13 Conservative Camassa–Holm flow

In this section, we are going to demonstrate how our results so far apply to the
isospectral problem

−f ′′ + 1

4
f = zωf + z2υf (13.1)

for the conservative Camassa–Holm flow. Since this differential equation differs
from (2.12) only by a constant coefficient term, it is not surprising that we are able
to obtain complete solutions of inverse problems for certain classes of coefficients
when (13.1) is considered on a half-line. Less immediately obvious but more impor-
tant, we can also use our results to solve some inverse problems for certain classes of
step-like coefficients (with strong decay at one endpoint and positive asymptotics at
the other endpoint) on the full line, which establishes inverse spectral transforms for
the conservative Camassa–Holm flow on the corresponding phase spaces.

13.1 Inverse spectral theory for half-line coefficients

Let u be a real-valued function in H 1
loc[0,∞) and let υ be a positive Borel measure

on [0,∞). The real distribution ω in H−1
loc [0,∞) is defined by

ω(h) =
∫ ∞

0
u(x)h(x)dx +

∫ ∞

0
u′(x)h′(x)dx (13.2)

for all h ∈ H 1
c [0,∞), so that ω = u − u′′ in a weak sense. Under these assumptions,

a solution of the differential equation (13.1) is a function f ∈ H 1
loc[0,∞) such that

f ′(0−)h(0) +
∫ ∞

0
f ′(x)h′(x)dx + 1

4

∫ ∞

0
f (x)h(x)dx

= zω(f h) + z2
∫

[0,∞)

f hdυ

(13.3)
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for a unique constant f ′(0−) ∈ C and every h ∈ H 1
c [0,∞). The Weyl–Titchmarsh

function m associated with this spectral problem is then defined on C\R by

m(z) = ψ ′(z,0−)

zψ(z,0)
, (13.4)

where ψ(z, · ) is the (up to scalar multiples) unique non-trivial solution of the dif-
ferential equation (13.1) which lies in H 1[0,∞) and L2([0,∞);υ), guaranteed to
exist by [46, Corollary 7.2]. As for generalized indefinite strings, this function is a
Herglotz–Nevanlinna function that contains all the spectral information. In fact, the
measure in the corresponding integral representation is a spectral measure for a suit-
able self-adjoint realization; see [7, 38] and [43] for details.

We have shown in [46, Sect. 7] that for this kind of coefficients, it is always possi-
ble to transform the spectral problem (13.1) into an associated generalized indefinite
string (∞, ω̃, υ̃), where the distribution ω̃ is defined via its normalized anti-derivative
w̃ by

w̃(x) = u(0) − u(log(1 + x)) + u′(log(1 + x))

1 + x
(13.5)

and the measure υ̃ is given by

υ̃(B) =
∫

log(1+B)

e−xdυ(x). (13.6)

The Weyl–Titchmarsh function m̃ of this generalized indefinite string (∞, ω̃, υ̃) is
related to m simply via

m(z) = m̃(z) − 1

2z
, (13.7)

that is, the functions m and m̃ coincide up to a pole at zero (see [46, page 3557]).
Conversely, every generalized indefinite string (∞, ω̃, υ̃) arises in this way.

By means of this connection, it is easily possible to translate all the results of
this article to the spectral problem (13.1) on the half-line. We refrain from stating
these theorems explicitly here, but only mention what the conditions in our main
theorems turn into. Let us just leave a hint here that in order to verify the following
equivalences, one should also remember that a real-valued function h ∈ H 1

loc[0,∞)

belongs to H 1[0,∞) if and only if h + h′ belongs to L2[0,∞).

(i) Condition (1.5) in Theorem I on the generalized indefinite string (∞, ω̃, υ̃) with
c = u(0) − (2

√
α)−1 is equivalent to the condition that the function u − 1

4α

belongs to H 1[0,∞) and the measure υ is finite (see Corollary 1.5).
(ii) Condition (1.17) in Theorem II on the generalized indefinite string (∞, ω̃, υ̃)

with c = u(0) is equivalent to the condition that the function u belongs to
H 1[0,∞), the function �− 1

2β
belongs to L2[0,∞) and the measure υs is finite,

where � is the (positive) square root of the Radon–Nikodým derivative of υ with
respect to the Lebesgue measure and υs is the singular part of υ .
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Due to the importance of the case when ω is a positive Borel measure and υ vanishes
identically (these assumptions prevent blow-ups and one expects uniqueness of weak
solutions; see [29]), we also mention what one obtains in this case from the conditions
in Sect. 11 on Krein strings.

(iii) Condition (11.2) in Theorem 11.1 on the generalized indefinite string (∞, ω̃, υ̃)

is equivalent to the condition that the function u − 1
4α

belongs to H 1[0,∞).
(iv) Condition (11.13) in Theorem 11.8 on the generalized indefinite string (∞, ω̃, υ̃)

is equivalent to the condition that the function �ω − (2
√

α)−1 belongs to
L2[0,∞) and the measure ωs is finite, where �ω is the (positive) square root
of the Radon–Nikodým derivative of ω with respect to the Lebesgue measure
and ωs is the singular part of ω.

Finally, one can also translate the conditions from Theorem 12.3 and Corollary 12.5,
in which case one ends up with functions u that are made up of infinitely many
peakons (compare Remark 13.23 (c) below).

Remark 13.1 All of the conditions on the function u and the measure υ listed above
are related to conserved quantities of the Camassa–Holm equation and its two-
component generalization (both considered on the real line).

(a) The H 1(R) norm of u − κ is conserved [20] for classical solutions u of the
Camassa–Holm equation (1.22), where κ is a positive constant related to the crit-
ical wave speed.

(b) The sum of the H 1(R) norm of u and the L2(R) norm of � − κ is conserved [63,
Equation (1.13)] for classical solutions (u,�) of the two-component Camassa–
Holm system (1.28).

(c) The L2(R) norm of �ω − √
κ is conserved [32, Equation (195)] for classical so-

lutions u of the Camassa–Holm equation (1.22) under the additional assumption
that ω = u − uxx is positive. We note that under this positivity restriction, there
is a relationship of conserved quantities with the Korteweg–de Vries equation via
the Liouville correspondence (see [3, 82, 86] for instance).

In conclusion, let us mention that these quantities are only conserved for classical so-
lutions. For conservative weak solutions, they will have to be modified appropriately
to also take singular parts of the solution into account.

13.2 Inverse spectral theory for step-like coefficients

As mentioned above, our results can also be applied to certain classes of step-like
coefficients on the full line. In this setting, we denote with H 1

loc(R) and H 1
c (R) the

function spaces

H 1
loc(R) = {f ∈ ACloc(R) |f ′ ∈ L2

loc(R)}, (13.8)

H 1
c (R) = {f ∈ H 1

loc(R) | supp(f ) compact}, (13.9)

and with H−1
loc (R) the topological dual space of H 1

c (R). We are first going to de-
scribe a particular phase space D for the conservative Camassa–Holm flow, intro-
duced in [48, Definition 1.1] as follows:
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Definition 13.2 The set D consists of all pairs (u,μ) such that u is a real-valued
function in H 1

loc(R) and μ is a positive Borel measure on R with

∫
B

u(x)2 + u′(x)2 dx ≤ μ(B) (13.10)

for every Borel set B ⊆ R, satisfying the asymptotic growth restrictions

∫ 0

−∞
e−s

(
u(s)2 + u′(s)2)ds +

∫
(−∞,0)

e−sdυ(s) < ∞, (13.11)

lim sup
x→∞

ex

(∫ ∞

x

e−s(u(s) + u′(s))2ds +
∫

[x,∞)

e−sdυ(s)

)
< ∞, (13.12)

where υ is the positive Borel measure on R defined such that

μ(B) = υ(B) +
∫

B

u(x)2 + u′(x)2 dx. (13.13)

Remark 13.3 A couple of remarks are in order:

(a) Condition (13.11) in Definition 13.2 requires strong decay of both, the function
u and the measure υ , at −∞ (for u it means that the function x �→ e−x/2u(x)

belongs to H 1 near −∞), whereas condition (13.12) on the behavior near +∞
is rather mild and satisfied as soon as u + u′ is bounded and υ is a finite mea-
sure for instance. Despite its cumbersome looking form, after a simple change of
variables, condition (13.12) turns into a boundedness condition under the action
of the classical Hardy operator (see [48] for further details).

(b) We chose to work with pairs (u,μ) and the unusual condition (13.10) instead of
the simpler definable pairs (u,υ) for various reasons. For example, the measure μ

is more natural when considering suitable notions of convergence on D; see [48,
Definition 2.5]. Moreover, in the context of the conservative Camassa–Holm flow,
the measure μ corresponds to the energy of a solution.

Associated with each pair (u,μ) in D is a distribution ω in H−1
loc (R) defined by

ω(h) =
∫
R

u(x)h(x)dx +
∫
R

u′(x)h′(x)dx (13.14)

for all h ∈ H 1
c (R), so that ω = u − u′′ in a weak sense, and a measure υ on R given

by (13.13). With these coefficients, the differential equation (13.1) has to be under-
stood in a distributional sense again (see [39, Appendix A] for more details): A solu-
tion of (13.1) is a function f ∈ H 1

loc(R) such that

∫
R

f ′(x)h′(x)dx + 1

4

∫
R

f (x)h(x)dx = zω(f h) + z2
∫
R

f hdυ (13.15)

for every h ∈ H 1
c (R). Even though the derivative of such a solution f is in general

only defined almost everywhere, there is always a unique left-continuous function
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f [1] on R such that

f [1] = f ′ + 1

2
f − z(u + u′)f (13.16)

almost everywhere on R, called the quasi-derivative of f .
The main consequence of the strong decay condition on the pair (u,μ) at −∞

in (13.11) is the existence of a particular fundamental system φ(z, · ), θ(z, · ) of solu-
tions to the differential equation (13.1) with the asymptotics

φ(z, x)e− x
2 → 1, φ[1](z, x)e− x

2 → 1, (13.17)

θ(z, x)e
x
2 → 1, θ [1](z, x)e− x

2 → 0, (13.18)

as x → −∞; see [48, Theorem 3.1]. With this fundamental system of solutions, it is
possible to define a Weyl–Titchmarsh function m on C\R via

m(z) = − lim
x→∞

θ(z, x)

zφ(z, x)
, (13.19)

which is a Herglotz–Nevanlinna function that allows a particular integral representa-
tion of the form

m(z) =
∫
R

z

λ(λ − z)
dρ(λ), (13.20)

where ρ is the same positive Borel measure on R as in the representation (2.29), that
satisfies (2.30). The measure ρ can be seen to be a spectral measure for a suitable
self-adjoint realization again (we only refer to [43, Sect. 5] for more details). It turns
out that zero does not belong to the support of ρ and that the size of the spectral gap
around zero is closely connected to the quantity in (13.12); see [48, Proposition 3.5]
and (13.51) below.

Definition 13.4 The set R0 consists of all positive Borel measures ρ0 on R that satisfy
∫
R

dρ0(λ)

1 + λ2
< ∞ (13.21)

and whose topological support does not contain zero.

One of the main results proved in [48, Sect. 4] states that the spectral transform
(u,μ) �→ ρ is a bijection between the phase space D and the set R0. In particular,
unlike for generalized indefinite strings, the pair (u,μ) and thus the coefficients ω

and υ in (13.1) are uniquely determined by the spectral measure ρ here.
It will be crucial for us below that the function m and the measure ρ introduced

above for a pair (u,μ) in D are the Weyl–Titchmarsh function and the spectral mea-
sure of the generalized indefinite string (∞, ω̃, υ̃), where the distribution ω̃ is defined
via its normalized anti-derivative w̃ by

w̃(x) = −u(logx) + u′(logx)

x
(13.22)



J. Eckhardt, A. Kostenko

and the measure υ̃ is given by
∫

[0,x)

dυ̃ =
∫

(−∞,logx)

e−sdυ(s). (13.23)

In fact, the function w̃ is square integrable, the measure υ̃ is finite with no point mass
at zero and both satisfy the asymptotic condition

lim sup
x→∞

x

∫ ∞

x

w̃(s)2ds + x

∫
[x,∞)

dυ̃ < ∞. (13.24)

Conversely, every generalized indefinite string (∞, ω̃, υ̃) with these properties arises
in this way from a unique pair (u,μ) in D; see [48, Sect. 2 and Sect. 3].

We are now able to use these connections to translate our main results. As before,
the constants α and β will be assumed to be positive. Our first theorem characterizes
the spectral measures ρ for those pairs (u,μ) in D such that the function u − κ lies
in H 1 near +∞ for a positive constant κ and the measure υ is finite near +∞.

Theorem 13.5 A pair (u,μ) in D satisfies

∫ ∞

0

(
u(x) − 1

4α

)2

+ u′(x)2 dx +
∫

[0,∞)

dυ < ∞ (13.25)

if and only if both of the following conditions hold for the spectral measure ρ in R0:

(i) The support of ρ is discrete in (−∞, α) and satisfies (1.14).
(ii) The absolutely continuous part ρac of ρ on (α,∞) satisfies (1.15).

Proof Condition (13.25) is equivalent to

∫ ∞

0

(
w̃(x) + 1

2
√

α
− x

1 + 2
√

αx

)2

x dx +
∫

[0,∞)

x dυ̃(x) < ∞, (13.26)

so that necessity of conditions (i) and (ii) follows immediately from Corollary I. The
conditions are also sufficient because according to Corollary I (note that it is known
that ρ has no mass near zero) they imply that (∞, ω̃, υ̃) satisfies condition (1.5) for
some c ∈ R. However, since w̃ is known to be square integrable, this constant c is
necessarily −(2

√
α)−1 and thus one arrives at (13.25) again. �

In order to apply Theorem II next, we will write

υ(B) =
∫

B

�(x)2dx + υs(B), (13.27)

where � is the (positive) square root of the Radon–Nikodým derivative of υ with
respect to the Lebesgue measure and υs is the singular part of υ . One is then able to
characterize the spectral measures ρ for those pairs (u,μ) in D such that the function
u lies in H 1 near +∞, the function � − κ lies in L2 near +∞ for a positive constant
κ and the measure υs is finite near +∞.
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Theorem 13.6 A pair (u,μ) in D satisfies

∫ ∞

0
u(x)2 + u′(x)2 dx +

∫ ∞

0

(
�(x) − 1

2β

)2

dx +
∫

[0,∞)

dυs < ∞ (13.28)

if and only if both of the following conditions hold for the spectral measure ρ in R0:

(i) The support of ρ is discrete in (−β,β) and satisfies (1.20).
(ii) The absolutely continuous part ρac of ρ on (−∞,−β) ∪ (β,∞) satisfies (1.21).

Proof We first note that

�̃(x) = 1

x
�(logx),

∫
[0,x)

dυ̃s =
∫

(−∞,logx)

e−sdυs(s),

where �̃ is the (positive) square root of the Radon–Nikodým derivative of υ̃ with re-
spect to the Lebesgue measure and υ̃s is the singular part of υ̃ . Then condition (13.28)
is equivalent to

∫ ∞

0
w̃(x)2x dx +

∫ ∞

0

(
�̃(x) − 1

1 + 2βx

)2

x dx +
∫

[0,∞)

x dυ̃s(x) < ∞

and the claim follows from Corollary II as in the proof of Theorem 13.5. �

According to [48, Proposition 3.7], the spectral measure ρ of a pair (u,μ) in D is
supported on the positive half-line if and only if the measure υ vanishes identically
and the distribution ω is a positive Borel measure on R. In particular, this means
that μ is an absolutely continuous measure on R that is uniquely determined by the
function u in view of (13.13). The set of all pairs (u,μ) in D with these properties
will be denoted with D+ in the following.

Definition 13.7 The set D+ consists of all pairs (u,μ) in D such that the distribution
ω is a positive Borel measure on R and the measure υ vanishes identically.

From Theorem 13.5, we immediately obtain a characterization of the spectral mea-
sures ρ for those pairs (u,μ) in D+ such that the function u− κ lies in H 1 near +∞
for a positive constant κ .

Corollary 13.8 A pair (u,μ) in D+ satisfies

∫ ∞

0

(
u(x) − 1

4α

)2

+ u′(x)2 dx < ∞ (13.29)

if and only if both of the following conditions hold for the spectral measure ρ in R0:

(i) The support of ρ is discrete in [0, α) and satisfies (11.8).
(ii) The absolutely continuous part ρac of ρ on (α,∞) satisfies (1.15).
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One more result can be derived from Theorem 11.8 about Krein strings. To this
end, we first introduce the set D+

1 of all pairs (u,μ) in D+ such that
∫

(−∞,0)

e−xdω(x) < ∞. (13.30)

We have shown in [48, Corollary 3.9] that this set can also be characterized in terms of
the corresponding spectral measure ρ. More specifically, a pair (u,μ) in D+ belongs
to D+

1 if and only if
∫

(0,∞)

dρ(λ)

λ
< ∞. (13.31)

In this case, we shall write (recall that ω is a positive Borel measure on R when the
pair (u,μ) belongs to D+)

ω(B) =
∫

B

�ω(x)2dx + ωs(B), (13.32)

where �ω is the (positive) square root of the Radon–Nikodým derivative of ω with
respect to the Lebesgue measure and ωs is the singular part of ω. Our final theorem
characterizes the spectral measures ρ for those pairs (u,μ) in D+

1 such that the func-
tion �ω − √

κ lies in L2 near +∞ for a positive constant κ and the measure ωs is
finite near +∞.

Theorem 13.9 A pair (u,μ) in D+
1 satisfies

∫ ∞

0

(
�ω(x) − 1

2
√

α

)2

dx +
∫

[0,∞)

dωs < ∞ (13.33)

if and only if both of the following conditions hold for the spectral measure ρ in R0:

(i) The support of ρ is discrete in [0, α) and satisfies (11.8).
(ii) The absolutely continuous part ρac of ρ on (α,∞) satisfies (1.42).

Proof If (u,μ) is a pair in D+
1 , then the measure υ̃ vanishes identically and the

function w̃ has a non-decreasing representative that is bounded from below; see [42,
Lemma 7.2] and [48, Remark 3.8 and Corollary 3.9]. It follows that ω̃ + cδ0 is a
positive Borel measure on [0,∞) for some constant c ∈ R, where δ0 is the unit Dirac
measure centered at zero. Since adding point masses at zero to ω̃ does not change
the spectral measure, we see that ρ is also the spectral measure of the Krein string
(∞, ω̃ + cδ0). Furthermore, we will use that

∫
[x,y)

e−sdω(s) =
∫

[ex ,ey)

dω̃,

which follows from [48, Equation (3.26)] and implies that (take into account that a
point mass at zero does not change the absolutely continuous part of a measure)

�̃ω(x) = 1

x
�ω(logx),

∫
(0,x)

dω̃s =
∫

(−∞,logx)

e−sdωs(s),
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where �̃ω is the (positive) square root of the Radon–Nikodým derivative of ω̃ with re-
spect to the Lebesgue measure and ω̃s is the singular part of ω̃. Now condition (13.33)
is equivalent to

∫ ∞

0

(
�̃ω(x) − 1

1 + 2
√

αx

)2

x dx +
∫

[0,∞)

x dω̃s(x) < ∞

and the claim follows from Corollary 1.13 as in the proof of Theorem 13.5. �

13.3 Well-posedness results

We are now going to demonstrate how our results in Sect. 13.2 can be used to obtain
global conservative (weak) solutions of the two-component Camassa–Holm system
on phase spaces that arise from the conditions on the coefficients. For the sake of
brevity, we will focus on the discussion of the phase space obtained from condi-
tion (13.25) in Theorem 13.5, which determines precisely the set Dκ as given in
Definition 1.7 (with the parameters α and κ related by 4ακ = 1). In order to simplify
lengthy expressions, we will also restrict to the particular case when κ = 1, so that
D1 consists of all pairs (u,μ) in D such that

∫ ∞

0
(u(x) − 1)2 + u′(x)2dx +

∫
[0,∞)

dυ < ∞. (13.34)

Note that condition (13.34) is stronger than (13.12), which ensures that this charac-
terization of D1 agrees with our original Definition 1.7 in the introduction.

Two main ingredients will be necessary to establish the conservative Camassa–
Holm flow on D1 below. First of all, we will need the characterization of all spectral
measures corresponding to pairs in D1 as given by Theorem 13.5 with α = 1/4.
Secondly, we are also going to employ the trace formula in Corollary 7.1, which
readily translates to our current setting. In order to shorten notation in the following,
for a pair (u,μ) in D1 we set

E1(u,μ) =
∫
R

(1 + e−x)

(
u(x) + u′(x) − 1

1 + e−x

)2

dx +
∫
R

(1 + e−x)dυ(x).

(13.35)

We also continue to use the function F2 as defined by (5.10) in Sect. 5.

Corollary 13.10 If ρ is the spectral measure of a pair (u,μ) in D1, then

E1(u,μ) =
∫
R

dρ(λ)

λ2 − 1

2π

∫ ∞

1/4

√
4λ − 1

λ3 dλ + 2
∑

λ∈supp(ρ)
λ<1/4

F2
(√

1 − 4λ
)

− 1

2π

∫ ∞

1/4

√
4λ − 1

λ3
log

(
2πλ√
4λ − 1

dρac(λ)

dλ

)
dλ.

(13.36)
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Proof This follows from Corollary 7.1 applied to the corresponding generalized in-
definite string (∞, ω̃, υ̃) as defined in Sect. 13.2, which satisfies (13.26). �

Since both integrals in (13.35) are non-negative, the functional E1 can be defined
on all of D, so that D1 consists of all pairs (u,μ) in D such that E1(u,μ) is finite.
We will make use of this defining functional below to improve on a natural topology
on D that was introduced in [48, Sect. 2].

Definition 13.11 We say that a sequence of pairs (un,μn) converges to (u,μ) in D if
the functions un converge to u pointwise on R and

∫
(−∞,x)

e−sdμn(s) →
∫

(−∞,x)

e−sdμ(s) (13.37)

for almost every x ∈R.

That this mode of convergence on D is indeed induced by a metric can be seen
from [48, Proposition 4.5] for example, which states that a sequence of pairs (un,μn)

converges to (u,μ) in D if and only if the corresponding Weyl–Titchmarsh functions
mn converge to m locally uniformly. We will always regard D equipped with the
topology induced by such a metric. The same convention applies to the following
stronger mode of convergence on D1 that renders the functional E1 continuous.

Definition 13.12 We say that a sequence of pairs (un,μn) converges to (u,μ) in D1

if it converges to (u,μ) in D and E1(un,μn) converges to E1(u,μ).

We are first going to compare these two modes of convergence with more standard
ones.

Lemma 13.13 If a sequence of pairs (un,μn) converges to (u,μ) in D, then the
following assertions hold:

(i) The functions un converge to u weakly in H 1(−∞, x) for every x ∈R.
(ii) For all functions h ∈ Cb(R) with support bounded from above one has

∫
R

h(x)e−xdμn(x) →
∫
R

h(x)e−xdμ(x). (13.38)

If in addition E1(un,μn) is bounded and converges to E1(u,μ), that is, the sequence
of pairs (un,μn) converges to (u,μ) in D1, then the following assertions hold:

(iii) The functions un − 1 converge to u − 1 weakly in H 1[x,∞) for every x ∈ R.
(iv) The functions un converge to u uniformly on R.

Proof We first observe that the convergence in (13.37) entails that

C(x) := sup
n∈N

∫
(−∞,x)

e−sdμn(s) < ∞
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for every x ∈ R, which guarantees that the H 1(−∞, x) norms of the functions un

are uniformly bounded. Together with pointwise convergence of the functions un,
this implies that the functions un converge weakly in H 1(−∞, x). The claim in (ii)
simply follows from pointwise convergence almost everywhere of the distribution
function in (13.37). Under the additional assumption that E1(un,μn) is bounded and
converges to E1(u,μ), we first note that the bound

∫ ∞

x

(un(s) − 1)2 + u′
n(s)

2ds =
∫ ∞

x

(un(s) + u′
n(s) − 1)2ds + (un(x) − 1)2

≤ 2E1(un,μn) + e−2x + 4

3
exC(x) + 2

holds for every x ∈R, where we used [48, Lemma 2.3] to estimate un(x). This shows
that the H 1[x,∞) norms of the functions un − 1 are uniformly bounded, which im-
plies that the functions un − 1 converge weakly in H 1[x,∞). The remaining claim
in (iv) follows from (i) and (iii). �

Remark 13.14 One may be tempted to try for a finer topology on D or D1 that ensures
strong convergence of the function u in H 1

loc(R) instead of weak convergence. How-
ever, due to the presence of finite-time blow-up (see [18, Sect. 6] for the prototypical
example of a peakon-antipeakon collision), solutions of the Camassa–Holm equation
would not be continuous in time with respect to such a topology.

Let us consider next the two-component Camassa–Holm system

ut + uux + Px = 0,

μt + (uμ)x = (u3 − 2Pu)x,
(13.39)

where the auxiliary function P satisfies

P − Pxx = u2 + μ

2
. (13.40)

We first specify a precise meaning of weak solutions to this system in D.

Definition 13.15 A global conservative solution of the two-component Camassa–
Holm system (13.39) with initial data (u0,μ0) ∈ D is a continuous curve

γ : t �→ (u( · , t),μ( · , t)) (13.41)

from R to D with γ (0) = (u0,μ0) that satisfies (13.39) in the sense that for every test
function ϕ ∈ C∞

c (R×R) one has

∫
R

∫
R

u(x, t)ϕt (x, t) +
(

u(x, t)2

2
+ P(x, t)

)
ϕx(x, t) dx dt = 0, (13.42)
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∫
R

∫
R

ϕt (x, t) + u(x, t)ϕx(x, t) dμ(x, t) dt

= 2
∫
R

∫
R

u(x, t)

(
u(x, t)2

2
− P(x, t)

)
ϕx(x, t) dx dt,

(13.43)

where the function P on R×R is given by

P(x, t) = 1

4

∫
R

e−|x−s|u(s, t)2ds + 1

4

∫
R

e−|x−s|dμ(s, t). (13.44)

In [48, Sect. 5], we showed how global conservative solutions of the two-
component Camassa–Holm system (13.39) can be obtained by defining the conser-
vative Camassa–Holm flow � on D as a map

� : D ×R → D (13.45)

in the following way: Given a pair (u,μ) in D with associated spectral measure ρ as
well as a t ∈ R, the corresponding image �t(u,μ) under � is defined as the unique
pair in D for which the associated spectral measure is given by

B �→
∫

B

e− t
2λ dρ(λ). (13.46)

We note that � is well-defined as the measure given by (13.46) belongs to R0 when-
ever so does ρ and hence the existence of a unique corresponding pair �t(u,μ) in D
is guaranteed by the fact that the spectral transform (u,μ) �→ ρ is a bijection between
D and R0. The definition of this flow is motivated by the well-known time evolution
of spectral data for spatially decaying classical solutions of the Camassa–Holm equa-
tion as well as multi-peakons; see [3, Sect. 6]. By combining [48, Proposition 5.2]
and [48, Theorem 5.3], we see that the flow � indeed gives rise to global conservative
solutions:

Theorem 13.16 For every pair (u0,μ0) ∈ D, the integral curve t �→ �t(u0,μ0) is
a global conservative solution of the two-component Camassa–Holm system (13.39)
with initial data (u0,μ0).

Remark 13.17 The question about uniqueness of conservative weak solutions to
the Camassa–Holm equation and its two-component generalization is a subtle one.
Uniqueness of conservative weak solutions to the Camassa–Holm equation has been
established in [19] (see also [17]) under the assumption that the initial data u0 be-
longs to H 1(R). However, the notion of weak solution employed in [19] is stronger
than ours, so that this uniqueness result does not apply in our case. In particular, it
requires Hölder continuity of the function u in both variables as well as Lipschitz
continuity of t �→ u( · , t) as a map into L2(R).

In combination with continuous dependence on the initial data established in [48,
Proposition 5.2], Theorem 13.16 leads to a well-posedness result for the two-compo-
nent Camassa–Holm system (13.39) on D. To this end, we first recall the notion of
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multi-peakon profiles, particular kinds of pairs in D playing the role of multi-solitons
for the Camassa–Holm equation.

Definition 13.18 A pair (u,μ) in D is called a multi-peakon profile if ω and υ are
Borel measures that are supported on a finite set. The set of all multi-peakon profiles
in D is denoted by P .

If (u,μ) is a multi-peakon profile, then the function u is of the form

u(x) = 1

2

N∑
n=1

pne−|x−xn| (13.47)

for some N ∈ N∪ {0}, x1, . . . , xN ∈R and p1, . . . , pN ∈R.

Remark 13.19 With respect to the transformation (u,μ) �→ (∞, ω̃, υ̃) described in
Sect. 13.2, one sees that a pair (u,μ) in D is a multi-peakon profile if and only if the
function w̃ defined by (13.22) is piecewise constant (with finitely many steps) and the
measure υ̃ defined by (13.23) has finite support. In this case, the corresponding spec-
tral problem (1.1) allows a complete direct and inverse spectral theory, which goes
back to work of M. G. Krein and H. Langer on the indefinite moment problem [78]
(see [44] and [40] for further details).

A pair (u,μ) in D is a multi-peakon profile if and only if the support of the cor-
responding spectral measure ρ is a finite set. In this case, the pair (u,μ) can be
recovered explicitly in terms of the moments of the spectral measure ρ; see [4] and
[41, Sect. 4]. Moreover, the set of all multi-peakon profiles P is clearly invariant un-
der the conservative Camassa–Holm flow � and it has been proved in [41] that the
conservative Camassa–Holm flow on P gives rise to the same conservative multi-
peakon solutions that had been constructed before in [18] and [60, 61]. The main re-
sult of [48, Sect. 5] asserts that this flow on P extends continuously and uniquely to
bounded subsets of D, which leads to a well-posedness result of the two-component
Camassa–Holm system on D. More precisely, let us first define the bounded sets

D(R) = {(u,μ) ∈ D |E(u,μ) ≤ R} (13.48)

for each positive R > 0, where the functional E is given by

E(u,μ) = sup
x∈R

e
x
2

(∫ ∞

x

e−s(u(s) + u′(s))2ds +
∫

[x,∞)

e−sdυ(s)

)1/2

. (13.49)

The decisive role of this functional is that it controls the size of the spectral gap

λ0(ρ) = inf{|λ| |λ ∈ supp(ρ)} (13.50)

around zero of the spectral measure ρ corresponding to (u,μ). More explicitly, we
have shown in [48, Proposition 3.5] that one always has

1

6λ0(ρ)
≤ E(u,μ) ≤

√
2

λ0(ρ)
. (13.51)
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Because the spectral gap is clearly preserved under the flow �, this allows one to
control E globally by

1

6
√

2
E(u,μ) ≤ E(�t(u,μ)) ≤ 6

√
2E(u,μ). (13.52)

The latter is crucial for establishing that the conservative Camassa–Holm flow is
continuous on the bounded sets D(R); see [48, Proposition 5.2].

Proposition 13.20 The conservative Camassa–Holm flow � is continuous when re-
stricted to D(R) ×R for every R > 0.

Remark 13.21 Theorem 13.16 and Proposition 13.20 yield well-posedness of the two-
component Camassa–Holm system (13.39) on D in the following sense: The con-
servative Camassa–Holm flow extends uniquely from the set of all multi-peakon
profiles to a continuous map on D(R) × R for every R > 0. In particular, for any
(u,μ) ∈ D(R) and t ∈R, if a sequence of multi-peakon profiles (un,μn) ∈ P∩D(R)

converges to (u,μ) in D and tn converges to t , then the multi-peakon solutions
�tn(un,μn) converge to �t(u,μ) in D.

The Szegő-type theorems obtained in Sect. 13.2 enable us to improve on the above
well-posedness result. More specifically, we are able to establish stability in stronger
topologies when restricted to particular phase spaces. We will once more only state
these results for the phase space D1 for the sake of brevity.

Theorem 13.22 The set D1 is invariant under the conservative Camassa–Holm flow
� and the restricted flow �|D1×R : D1 × R → D1 is continuous with respect to the
topology on D1.

Proof That the set D1 is invariant under the flow � follows from Theorem 13.5 be-
cause the condition on the spectral measure there is preserved.

In order to prove continuity, the crucial observation is that even though our func-
tional E1 is not preserved by the flow �, we are able to control its behavior: For t ∈R

and a pair (u,μ) in D1 with spectral measure ρ one has

E1(�
t (u,μ)) = E1(u,μ) + t +

∫
R

e− t
2λ − 1

λ2
dρ(λ). (13.53)

Now let tn ∈ R be a sequence that converges to t and suppose that the sequence of
pairs (un,μn) converges to (u,μ) in D1. From the trace formula in Corollary 13.10
(remember that the sum of the first, the second and the last term on the right-hand
side of (13.36) is non-negative) and the fact that F2(

√
1 − 4λ) → ∞ as λ → 0, we

first infer that the supports of the corresponding spectral measures ρn have a uniform
gap (−λ0, λ0) around zero, so that the pairs (un,μn) belong to D(R) for some R > 0
in view of (13.51). Taking into account Proposition 13.20, we see that the sequence
�tn(un,μn) converges to �t(u,μ) in D and hence it only remains to show that

E1(�
tn(un,μn)) → E1(�

t (u,μ)).
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Because of (13.53) and E1(un,μn) → E1(u,μ), it then suffices to show that

∫
R

dρn(λ)

λ2
→

∫
R

dρ(λ)

λ2
,

∫
R

e− tn
2λ

λ2
dρn(λ) →

∫
R

e− t
2λ

λ2
dρ(λ).

However, this follows readily from the bound

∣∣∣∣
∫
R

e− tn
2λ

λ2 dρn(λ) −
∫
R

e− t
2λ

λ2 dρ(λ)

∣∣∣∣

≤ sup
ξ∈R\(−λ0,λ0)

∣∣e− tn
2ξ − e− t

2ξ
∣∣
∫
R

dρn(λ)

λ2 +
∣∣∣∣
∫
R

e− t
2λ

λ2 dρn(λ) −
∫
R

e− t
2λ

λ2 dρ(λ)

∣∣∣∣
and the convergence ρn → ρ that we get from [48, Proposition 4.5]. �

Remark 13.23 A few remarks are in order:

(a) Existence of global conservative solutions to the two-component Camassa–Holm
system (13.39) with initial data (u,μ) such that

u(x) = ū(x) + c−χ(−x) + c+χ(x) (13.54)

for some constants c± ∈ R, where ū ∈ H 1(R) and χ is a smooth non-decreasing
function on R with support in [0,∞) such that χ(x) = 1 for x ≥ 1, has been
established in [58] by means of a transformation from Eulerian to Lagrangian
variables. These solutions are continuous with respect to a metric that is defined
in terms of Lagrangian variables, which makes it somewhat involved in Eulerian
variables. However, its relation to more standard topologies given in [61, Propo-
sition 5.2] shows that it implies uniform convergence of the function u as well as
vague convergence of the measure μ, which indicates that it may be close to our
topology (compare with Lemma 13.13).

(b) Our results in the present section show that under a stronger decay assumption
at −∞ (compare the set D1 with the phase space in [58] when c− = 0; this case
can be viewed as a regime with dispersion at one end), conservative solutions can
be integrated by means of the inverse spectral transform. We expect that this will
allow to deduce qualitative properties of such solutions.

(c) The results in Sect. 12 characterize certain classes of pairs in D1 that are made
up of infinitely many peakons, where the positions of the peakons may only ac-
cumulate at +∞. One example of such a pair (u,μ) is given by

u(x) = 1

2

∑
n∈N

pne−|x−xn|, υ = 0, (13.55)

with the peakons’ positions xn and their weights pn explicitly expressed via the
Laguerre polynomials by

xn = log

(
n−1∑
k=0

Lk(−1/4)2

)
, pn =

∑n−1
k=0 Lk(−1/4)2

nLn−1(−1/4)Ln(−1/4)
. (13.56)
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In fact, this pair (u,μ) belongs to D1 and corresponds (up to a negative point
mass at zero) to the Krein–Stieltjes string in Example 12.9 with α = 1/4. Using
this connection and the asymptotics in (12.11), one sees that

xn = 2
√

n +O(1), pn = 1√
n

+O(n−1), (13.57)

as n → ∞. We will not pursue an exploration of corresponding solutions to the
two-component Camassa–Holm system here. However, let us mention that even
though D1 does not contain any multi-peakon profiles (despite the fact that multi-
peakon profiles are dense in D), one can show that pairs in D1 that are made up
of infinitely many peakons (with positions only accumulating at +∞) are dense
in D1 (with respect to the D1 topology).

(d) When restricted to the invariant subset D1 ∩ D+, the additional measure μ be-
comes superfluous and our global conservative solutions can be understood as
weak solutions to the Camassa–Holm equation (1.22).

We conclude this section with a brief outline of further results that can be ob-
tained in a similar way from condition (13.28) in Theorem 13.6 with β = 1/2. The
corresponding phase space consists of all pairs (u,μ) in D such that

∫ ∞

0
u(x)2 + u′(x)2 dx +

∫ ∞

0
(�(x) − 1)2dx +

∫
[0,∞)

dυs < ∞, (13.58)

where � is the (positive) square root of the Radon–Nikodým derivative of υ with
respect to the Lebesgue measure and υs is the singular part of υ . A complete char-
acterization of the spectral measures corresponding to this phase space is given by
Theorem 13.6 with β = 1/2. Furthermore, the trace formula in Corollary 10.1 read-
ily translates to such pairs (u,μ) with spectral measure ρ and gives

∫
R

(1 + e−x)(u(x) + u′(x))2dx

+
∫
R

(1 + e−x)

(
�(x) − 1

1 + e−x

)2

dx +
∫
R

(1 + e−x)dυs(x)

=
∫
R

dρ(λ)

λ2 − 1

2π

∫
R\(− 1

2 , 1
2 )

√
4λ2 − 1

|λ|3 dλ + 2
∑

λ∈supp(ρ)
|λ|<1/2

F2

(√
1 − 2λ

1 + 2λ

)

− 1

2π

∫
R\(− 1

2 , 1
2 )

√
4λ2 − 1

|λ|3 log

(
2π |λ|√
4λ2 − 1

dρac(λ)

dλ

)
dλ.

(13.59)

With the help of these two main ingredients, one can proceed along the same lines as
in the discussion of the phase space D1 above.
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14 Applications to other operators

The aim of this final section is to point out possible applications of our results to other
classical one-dimensional models including Dirac operators.

14.1 Canonical systems

Let h be a Hamiltonian according to Definition D.1 (for a brief account on associ-
ated canonical systems and Weyl–Titchmarsh functions we refer to Appendix D) and
define the function H22 on [0,∞) by

H22(x) =
∫ x

0
h22(s)ds. (14.1)

If the Hamiltonian h is trace normalized, then H22 is nothing but the function ξ

defined by (D.19). Furthermore, we introduce the subsets

� = {x ∈ [0,∞) |h22(x) = 0}, �c = [x0 + 1,∞)\�, (14.2)

where the constant x0 is defined by (D.10), so that H22(x) > 0 when x > x0. We shall
also use the logarithmic derivative of H22 denoted by h, that is, we set

h(x) = d

dx
logH22(x) = h22(x)

H22(x)
, (14.3)

which is well-defined for almost all x > x0. Our first result will follow by applying
Theorem I to canonical systems, where α is once more a positive constant.

Theorem 14.1 A Herglotz–Nevanlinna function m is the Weyl–Titchmarsh function of
a Hamiltonian h with h22 /∈ L1[0,∞) and

∫
�

H22(x)h11(x)dx +
∫

�c

deth(x)

h(x)
dx +

∫
�c

(
h12(x)

h(x)
+ 1

4α

)2

h(x)dx < ∞,

(14.4)

if and only if all the following conditions hold:

(i) The function m has a meromorphic extension to C\[α,∞) that is analytic at
zero with m(0) = 0.

(ii) The negative poles σ− and the positive poles σ+ of m in (−∞, α) satisfy (1.6).
(iii) The boundary values of the function m satisfy (1.7).

Proof We just need to use Theorem I together with the transformation between canon-
ical systems and generalized indefinite strings as described in Appendix D. To this
end, suppose first that h is a trace normalized Hamiltonian and let (L,ω,υ) be the
corresponding generalized indefinite string with the same Weyl–Titchmarsh function
m. Since we then have the relation

L =
∫ ∞

0
h22(x)dx,
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one sees that the condition h22 /∈ L1[0,∞) is equivalent to L = ∞. In this case, we
next notice that the first integral in (1.5) with c = −(2

√
α)−1 is finite if and only if

∫ ∞

ε

(
w(x) + 1

4αx

)2

x dx < ∞

for some ε > 0. After a substitution (using [14, Corollary 5.4.4]), we get

∫ ∞

ε

(
w(x) + 1

4αx

)2

x dx =
∫ ∞

x0+1

(
w(ξ(x)) + 1

4αξ(x)

)2

ξ(x)ξ ′(x)dx

=
∫

�c

(
w(ξ(x))ξ(x) + 1

4α

)2
ξ ′(x)

ξ(x)
dx

=
∫

�c

(
ξ ′(x)w(ξ(x))

ξ(x)

ξ ′(x)
+ 1

4α

)2
ξ ′(x)

ξ(x)
dx

=
∫

�c

(
h12(x)

h(x)
+ 1

4α

)2

h(x)dx

upon setting ε = ξ(x0 + 1) > 0. In order to treat the second integral in (1.5), we
employ (D.22) to obtain that

∫
[0,∞)

x dυ(x) =
∫ ∞

0
ξ(x)(1 − ξ ′(x) − ξ ′(x)w(ξ(x))2)dx

=
∫

�

ξ(x)dx +
∫

[0,∞)\�
ξ(x)(1 − ξ ′(x) − ξ ′(x)w(ξ(x))2)dx

=
∫

�

H22(x)dx +
∫

[0,∞)\�
H22(x)

h22(x)
deth(x)dx.

(14.5)

From these equalities, we infer that condition (1.5) with c = −(2
√

α)−1 is equivalent
to condition (14.4). Since the correspondence between trace normalized Hamiltoni-
ans and generalized indefinite strings is bijective, we may conclude from Theorem I
that the conditions on the function m in the claim are sufficient.

Let us now consider an arbitrary Hamiltonian h and define the trace normalized
Hamiltonian h̃ as in Remark D.3 (associated quantities will be denoted with a tilde
sign), so that the corresponding Weyl–Titchmarsh functions coincide. We then ob-
serve that according to (D.13) one has

H̃22(x) =
∫ x

0

h22(x
−1(s))

x′(x−1(s))
ds = H22(x

−1(x)),

which shows that h̃22 /∈ L1[0,∞) if and only if h22 /∈ L1[0,∞). Moreover, from the
relations

h̃(x) = h(x−1(x))

x′(x−1(x))
, det h̃(x) = deth(x−1(x))

x′(x−1(x))2 ,
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it follows that condition (14.4) is equivalent to the same condition for h̃. Together
with our considerations above and Theorem I, this proves that the conditions on the
function m are also necessary. �

Remark 14.2 We could have used any other real normalization of the function m

at zero in condition (i) of Theorem 14.1 instead, which then slightly changes the
conditions on the Hamiltonian accordingly. Indeed, this more general claim can be
deduced from Theorem 14.1 by using the following simple fact: If h is a Hamiltonian
with Weyl–Titchmarsh function m and one defines another Hamiltonian by

h̃ =
(

1 −c

0 1

)
h

(
1 0

−c 1

)
=

(
h11 − 2ch12 + c2h22 h12 − ch22

h12 − ch22 h22

)
(14.6)

for a given constant c ∈ R, then the corresponding Weyl–Titchmarsh function m̃ is
given by

m̃(z) = m(z) − c. (14.7)

Since the bottom-right entries of h and h̃ coincide, only the last integral in condi-
tion (14.4) will change under this transformation. Moreover, it is also possible to
handle the case when the function m is required to have a pole at zero instead of a
finite value. This can be deduced from Theorem 14.1 again by using that the Weyl–
Titchmarsh function of the Hamiltonian

h̃ =
(

0 −1
1 0

)
h

(
0 1

−1 0

)
=

(
h22 −h12

−h12 h11

)
(14.8)

can be expressed in terms of the Weyl–Titchmarsh function m via

m̃(z) = − 1

m(z)
, (14.9)

where we have to suppose that the function h11 is not identically zero almost every-
where on [0,∞), so that m is not identically zero.

Remark 14.3 The condition that h22 /∈ L1[0,∞) in Theorem 14.1 can be replaced
with the stronger condition that h11 ∈ L1[0,∞). In fact, the function h11 being inte-
grable always implies that h22 is not because the Hamiltonian is assumed to be in the
limit-point case; see (D.2). On the other hand, the condition that the Weyl–Titchmarsh
function m has an analytic extension to zero with m(0) = 0 implies that zero is an
eigenvalue for the Hamiltonian in (14.8). Since the corresponding eigenfunctions are
constant and identically zero in the first component, this guarantees that

∫ ∞

0
h11(x)dx =

∫ x

0

(
0 1

)(
h22(x) −h12(x)

−h12(x) h11(x)

)(
0
1

)
dx < ∞. (14.10)

Under this assumption, one also obtains the limit

lim
x→∞

∫ x

0 |h12(s)|ds∫ x

0 h22(s)ds
= 0 (14.11)
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by using that h2
12 ≤ h11h22 and applying the Cauchy–Schwarz inequality.

In a similar way, we are able to derive another result from Theorem II for a positive
constant β . As the proof is not too different from the one for Theorem 14.1, we are
going to omit most details and calculations.

Theorem 14.4 A Herglotz–Nevanlinna function m is the Weyl–Titchmarsh function of
a Hamiltonian h with h22 /∈ L1[0,∞) and

∫
�

H22(x)h11(x)dx +
∫

�c

h12(x)2

h(x)
dx +

∫
�c

(√
deth(x)

h(x)
− 1

2β

)2

h(x)dx < ∞
(14.12)

if and only if all the following conditions hold:

(i) The function m has a meromorphic extension to C+ ∪ (−β,β) ∪ C− that is
analytic at zero with m(0) = 0.

(ii) The poles σdis of m in (−β,β) satisfy (1.18).
(iii) The boundary values of the function m satisfy (1.19).

Proof We are only going to explain briefly how condition (14.12) for a trace normal-
ized Hamiltonian h is related to condition (1.17) with c = 0 for the corresponding
generalized indefinite string (L,ω,υ). Firstly, performing a substitution gives

∫ ∞

ξ(x0+1)

w(x)2x dx =
∫ ∞

x0+1
w(ξ(x))2ξ(x)ξ ′(x)dx =

∫
�c

h12(x)2

h(x)
dx.

Through another substitution and the identity (D.23), one also obtains

∫ ∞

ξ(x0+1)

(
�(x) − 1

2βx

)2

x dx =
∫ ∞

x0+1

(
�(ξ(x)) − 1

2βξ(x)

)2

ξ(x)ξ ′(x)dx

=
∫

�c

(
ξ ′(x)�(ξ(x))

ξ(x)

ξ ′(x)
− 1

2β

)2
ξ ′(x)

ξ(x)
dx

=
∫

�c

(√
deth(x)

h(x)
− 1

2β

)2

h(x)dx.

Finally, it remains to mention that the equality
∫

[0,∞)

x dυs(x) =
∫

�

H22(x)dx

follows from (14.5) in the proof of Theorem 14.1 because
∫

[0,∞)\�
H22(x)

h22(x)
deth(x)dx =

∫ ∞

0
�(ξ(x))2ξ(x)ξ ′(x)dx =

∫ ∞

0
�(x)2x dx,

where we used (D.23) once more in the first step. �
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14.2 Dirac operators

Let us consider the one-dimensional Dirac system of the form (called canonical
in [84, Sect. 7.1])

(
0 1

−1 0

)
f ′ +

(
p q

q −p

)
f = zf. (14.13)

We will assume that p and q are real-valued and locally square integrable functions
on [0,∞). Together with the boundary condition f1(0) = 0 at zero, it is well known
that the corresponding maximally defined operator in L2([0,∞);C2) is self-adjoint;
see [84, Sect. 8.6] for example. Consequently, for all z ∈ C\R there is a unique (up
to constant multiples) Weyl solution ψ(z, · ) of the system (14.13) that is square inte-
grable. This allows one to define the Weyl–Titchmarsh function m on C\R by

m(z) = −ψ2(z,0)

ψ1(z,0)
, (14.14)

which is a Herglotz–Nevanlinna function. Under the current assumptions on the po-
tential, the function m obeys the high energy asymptotic behavior

m(z) = i + o(1) (14.15)

as z → ∞ in any non-real sector in the upper complex half-plane C+. In particular,
these asymptotics imply that the integral representation of m takes the form

m(z) = c +
∫
R

1

λ − z
− λ

1 + λ2
dρ(λ) (14.16)

for some real constant c and a positive Borel measure ρ on R with (2.30). Let us point
out that unlike in our definition of the measure ρ for generalized indefinite strings,
we do not exclude possible point masses at zero here. However, as for generalized
indefinite strings, the measure ρ defined in this way is a spectral measure for the
previously mentioned self-adjoint operator associated with (14.13).

Remark 14.5 In contrast to generalized indefinite strings and canonical systems, not
every positive Borel measure ρ on R with (2.30) is the spectral measure of a Dirac
system (see [77] and also [36] for example).

Example 14.6 Let p = 0 and q = −β for some real constant β �= 0. Under these
assumptions, the system (14.13) simplifies to

f ′
2 − βf2 = zf1,

−f ′
1 − βf1 = zf2.

(14.17)

For z ∈ C+ and k ∈ C+ with k2 = z2 −β2, we find a Weyl solution ψ(z, · ) explicitly
given by

ψ(z, x) =
( −z

β + ik

)
eikx, (14.18)
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so that the corresponding Weyl–Titchmarsh function m can be written as

m(z) = β + ik

z
= z

β − ik
. (14.19)

It is not at all surprising that this function is closely related to the Weyl–Titchmarsh
function of the generalized indefinite string in Example II. Namely, one has

m(z) =
{

mβ(z), β > 0,
2β
z

+ m−β(z), β < 0,
(14.20)

where mβ is the Weyl–Titchmarsh function in Example II. Of course, this also gives
a simple connection between the corresponding spectral measures.

Example 14.7 (Dirac system with positive mass) Let p = β and q = 0 for some pos-
itive constant β > 0. Under these assumptions, the system (14.13) simplifies to

f ′
2 + βf1 = zf1,

−f ′
1 − βf2 = zf2.

(14.21)

For z ∈ C+ and k ∈ C+ with k2 = z2 −β2, we find a Weyl solution ψ(z, · ) explicitly
given by

ψ(z, x) =
(

ik
z − β

)
eikx, (14.22)

so that the corresponding Weyl–Titchmarsh function m can be written as

m(z) = ik

β + z
= β − z

ik
. (14.23)

We note that m has an analytic extension to zero with m(0) = −1 and that the corre-
sponding spectral measure ρ is given by

ρ(B) = 1

π

∫
B\(−β,β)

√
λ − β

λ + β
dλ. (14.24)

By transforming the Dirac system (14.13) to a canonical system (D.4), we are
able to apply Theorem 14.4 to Dirac operators. For the sake of keeping calculations
simple, we will restrict our considerations to the cases of diagonal and off-diagonal
potential matrices, that is, when either q = 0 or p = 0. We begin with the latter case,
so that the potential matrix has the form

(
0 q

q 0

)
. (14.25)

It is not difficult to see that the potential matrix of a Dirac system is of this form if
and only if the Weyl–Titchmarsh function m is odd, which in turn is equivalent to the
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corresponding spectral measure ρ being even. In order to state the main result of this
section, we also introduce the functions

q(x) = exp

(
−

∫ x

0
q(s)ds

)
, Q(x) = q(x)

(
∫ x

0 q(s)2ds)1/2
, (14.26)

and note that we continue to use β for an arbitrary positive constant.

Theorem 14.8 An even positive Borel measure ρ on R with (1.13) is the spectral mea-
sure of a Dirac system with potential of the form (14.25) satisfying 1/q ∈ L2[0,∞)

and

∫ ∞

1

(
Q(x) − 2β

Q(x)

)2

dx < ∞ (14.27)

if and only if all the following conditions hold:

(i) The transfer function �ρ is well-defined on [0,∞) by

�ρ(x) =
∫

[0,∞)

1 − cos(xλ)

λ2
dρ(λ) (14.28)

and belongs to H 2
loc[0,∞).

(ii) The support of ρ is discrete in (−β,β), does not contain zero and satis-
fies (1.20).

(iii) The absolutely continuous part ρac of ρ on (−∞,−β)∪ (β,∞) satisfies (1.21).

Proof For a Dirac system with potential matrix of the form (14.25) we define the
matrix-valued function U0 on [0,∞) by

U0(x) =
(

e
∫ x

0 q(s)ds 0

0 e− ∫ x
0 q(s)ds

)
=

(
q(x)−1 0

0 q(x)

)
,

which solves the system (14.13) with z = 0. Using this solution, we introduce the
Hamiltonian h by setting

h(x) = U0(x)∗U0(x) =
(

q(x)−2 0
0 q(x)2

)
.

It is straightforward to verify that the Weyl–Titchmarsh function of the Dirac system
then coincides with the Weyl–Titchmarsh function of the Hamiltonian h. In fact, the
solution ψh(z, · ) for the corresponding canonical system defined as in (D.7) gives a
Weyl solution ψ(z, · ) for the Dirac system by setting

ψ(z, x) = U0(x)ψh(z, x);
see [91, Sect. 6.4] for example. Applying Theorem 14.4 then shows that the corre-
sponding spectral measure ρ satisfies conditions (ii) and (iii) if and only if the Hamil-
tonian h satisfies h11 ∈ L1[0,∞) and (14.12). Taking into account that deth = 1
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and that the set � defined in (14.2) is empty in this case, the latter is equivalent to
1/q ∈ L2[0,∞) and (14.27). Finally, in view of [36, Theorem 6.3, Theorem 14.4
and Equations (2.23) and (4.2)], it suffices to mention that condition (i) is nothing
but the local solvability condition ensuring that ρ is indeed the spectral measure of
a Dirac system (the latter goes back to work of M. G. Krein on Krein systems [77];
see also [36, Sect. 12] for a detailed exposition of this theory) with potential matrix
of the form (14.25) since ρ is even. �

Remark 14.9 It is also possible to obtain an analogue statement for Dirac systems
with diagonal potential matrices from Theorem 14.8 by using the following simple
observation: If m is the Weyl–Titchmarsh function of the Dirac system

(
0 1

−1 0

)
f ′ +

(
p 0
0 −p

)
f = zf (14.29)

and m̃ is the Weyl–Titchmarsh function of the Dirac system
(

0 1
−1 0

)
f ′ +

(
0 p

p 0

)
f = zf, (14.30)

then these functions are related via

m̃(z) = m(z) − 1

m(z) + 1
. (14.31)

The condition that the Weyl–Titchmarsh function m̃ is odd (that the corresponding
spectral measure ρ̃ is even) turns into the condition

m(−z)m(z) = 1 (14.32)

on the Weyl–Titchmarsh function m in the diagonal case.

Remark 14.10 As a final remark, let us mention that one may also apply Theorem 14.8
to one-dimensional Schrödinger operators by using the well-known supersymmetry
relations (see [36, Sect. 15] for example).

Appendix A: Meromorphic functions and trace formulas, I

Our main goal here is to prove Theorem A.1, an auxiliary technical result for applica-
tion in the proof of the relative trace formula in Sect. 5. To this end, let us first recall
(see [83, Lecture 16] for example) that an entire function � belongs to the Cartwright
class if it is of finite exponential type and satisfies

∫
R

log+ |�(λ)|
1 + λ2 dλ < ∞, (A.1)

where log+ is the positive part of the logarithm. We are also going to use the two
functions F1 and F2 defined on (0,1) ∪ (1,∞) by (5.10) in Sect. 5 (their crucial
properties are collected in Appendix C).
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Theorem A.1 Let α > 0 and let a be a meromorphic function on C+ with a(i
√

α) = 1
and only simple zeros and poles. Suppose that a can be written as

a(k) = �+(k2 + α)

�−(k2 + α)

N∏
n=1

G+,n(k)

G−,n(k)
(A.2)

for some N ∈N and functions �±, G±,1, . . . ,G±,N , where:

(i) The real entire functions �± are of Cartwright class with �±(0) = 1 and only
real and simple zeros.

(ii) The functions G±,1, . . . ,G±,N are meromorphic on C+ but not identically zero
and such that ImG±,n(k) ≥ 0 when Re k > 0 and ImG±,n(k) ≤ 0 when Re k < 0
for all n = 1, . . . ,N .

Then the limit a(ξ) = limε↓0 a(ξ + iε) exists and is nonzero for almost all ξ ∈ R,
satisfies

∫
R

| log |a(ξ)||
1 + ξ4

dξ < ∞, (A.3)

and the identities

ȧ(i
√

α) = 2iα

π

∫
R

log |a(ξ)|
(ξ2 + α)2

dξ

+ i√
α

lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F1

(
κ√
α

)
−

∑
η∈P

δ<η<1/δ

F1

(
η√
α

)
,

(A.4)

ä(i
√

α) − ȧ(i
√

α)2 − i√
α

ȧ(i
√

α) = 8
√

α

π

∫
R

ξ2 log |a(ξ)|
(ξ2 + α)3

dξ

+ 1

α
lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F2

(
κ√
α

)
−

∑
η∈P

δ<η<1/δ

F2

(
η√
α

)
,

(A.5)

hold, where Z = {κ > 0 |a(iκ) = 0} and P = {η > 0 |a(iη) = ∞}.
The proof of this theorem will rely on several ingredients. We begin with a factor-

ization of some meromorphic functions that is essentially due to B. Simon [96].

Theorem A.2 Let κ0 > 0 and let G be a meromorphic function on C+ with ±G(iκ0) >

0 and such that ImG(k) ≥ 0 when Re k > 0 and ImG(k) ≤ 0 when Re k < 0. Then
the limit G(ξ) = limε↓0 G(ξ + iε) exists and is nonzero for almost all ξ ∈ R, satisfies

∫
R

| log |G(ξ)||
1 + ξ2

dξ < ∞, (A.6)

and the function G admits the factorization

G(k) = ±B(k) exp

(
i

π

∫
R

1 + kξ

k − ξ

log |G(ξ)|
1 + ξ2

dξ

)
, (A.7)
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where the meromorphic function B is the Blaschke-type product given by

B(k) = lim
δ↓0

∏
κ∈Z

δ<κ<1/δ

κ0 − κ

|κ0 − κ|
k − iκ

k + iκ

∏
η∈P

δ<η<1/δ

κ0 − η

|κ0 − η|
k + iη

k − iη
(A.8)

with Z = {κ > 0 |G(iκ) = 0} and P = {η > 0 |G(iη) = ∞}, and the convergence
holds locally uniformly on C+ away from the poles of G.

Proof This follows from [96, Theorem 1.1] applied to the function G◦ϕ on D, where
D is the open unit disc in the complex plane and ϕ : D →C+ is given by

ϕ(z) = iκ0
1 − z

1 + z
= κ0

2 Im z

1 + |z|2 + 2 Re z
+ iκ0

1 − |z|2
1 + |z|2 + 2 Re z

.

Note that the limit in our Blaschke-type product in (A.8) is slightly different to the one
in [96, Theorem 1.1]. However, as also mentioned in the proof of [96, Theorem 1.1],
they are indeed the same in view of [96, Theorem 2.1]. �

We will also need some more results about real entire functions of Cartwright
class. The first one is a technical fact, which is probably known to experts, but we
were not able to locate it explicitly in the literature.

Lemma A.3 Let � be a real entire function of Cartwright class with �(0) = 1 and
only real and simple zeros. For each r > 0, define the polynomial pr by

pr(z) =
∏
λ∈�|λ|<r

(
1 − z

λ

)
, (A.9)

where � is the set of zeros of �. Then there is a constant C > 0 such that

| log |pr(z)|| ≤ C|z|(log(1 + |z|) + 1) + | log |�(z)|| (A.10)

for all r > 0 and all z ∈ R\�.

Proof Since � is an entire function of Cartwright class, one has

M = lim
r→∞

∑
λ∈�|λ|<r

1

λ
, sup

r>0

∣∣∣∣
∑
λ∈�|λ|<r

1

λ

∣∣∣∣ ≤ C0,

for some constants M , C0 ∈ R; see [83, Theorem 1 in Lecture 17]. Moreover, by the
Hadamard theorem, the function � can be written as

�(z) = e−Mz
∏
λ∈�

(
1 − z

λ

)
e

z
λ . (A.11)
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Because the polynomials pr admit the similar factorization

pr(z) = exp

(
−

∑
λ∈�|λ|<r

z

λ

) ∏
λ∈�|λ|<r

(
1 − z

λ

)
e

z
λ , (A.12)

one also gets

�(z)

pr(z)
= exp

(
−Mz +

∑
λ∈�|λ|<r

z

λ

) ∏
λ∈�|λ|≥r

(
1 − z

λ

)
e

z
λ

away from the set �. Applying [83, Theorem 2 in Lecture 4] to estimate the canonical
product on the right-hand side then yields

log

∣∣∣∣ �(z)

pr(z)

∣∣∣∣ ≤ 2C0|z| + C1|z|
(∫ |z|

0

nr(t)

t2
dt + |z|

∫ ∞

|z|
nr(t)

t3
dt

)

for all z ∈ R\�, where C1 = 12e is an absolute constant and

nr(t) = #{λ ∈ � | r ≤ |λ| ≤ t} ≤ #{λ ∈ � | |λ| ≤ t} = n(t).

However, as the function � is of Cartwright class, one has n(t) ≤ C2t for some
positive constant C2; see [83, Theorem 1 in Lecture 17]. From this we get

− log |pr(z)| = log

∣∣∣∣ �(z)

pr(z)

∣∣∣∣ − log |�(z)|

≤ 2C0|z| + C1C2|z|(log(1 + |z|) + | logλ0| + 1) + | log |�(z)||,
(A.13)

where λ0 = minλ∈� |λ| > 0, so that n(t) = 0 when t < λ0. The same estimate for the
canonical product representing pr in (A.12) gives

log |pr(z)| ≤ C0|z| + C1|z|
(∫ |z|

0

mr(t)

t2
dt + |z|

∫ ∞

|z|
mr(t)

t3
dt

)

for all z ∈ R\�, where

mr(t) = #{λ ∈ � | |λ| < r, |λ| ≤ t} ≤ n(t) ≤ C2t.

In a similar way as above, this results in the bound

log |pr(z)| ≤ C0|z| + C1C2|z|(log(1 + |z|) + | logλ0| + 1),

which, together with (A.13), implies (A.10) for some constant C > 0. �

With this auxiliary result, we are now able to establish some identities for real
entire functions of Cartwright class with only real and simple zeros.
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Theorem A.4 Let � be a real entire function of Cartwright class with �(0) = 1 and
only real and simple zeros. Then for every α > 0 one has

�̇(0) =
√

α

π

∫
R

log |�(ξ2 + α)|
(ξ2 + α)2 dξ + 1

2α

∑
κ∈Z

F1

(
κ√
α

)
,

(A.14)

�̇(0) − α�̈(0) + α�̇(0)2 = 2
√

α

π

∫
R

ξ2 log |�(ξ2 + α)|
(ξ2 + α)3 dξ + 1

4α

∑
κ∈Z

F2

(
κ√
α

)
,

(A.15)

where Z = {κ > 0 |�(−κ2 + α) = 0}.

Proof For each fixed α > 0, the entire function � admits the representation

�(k2 + α) = lim
r→∞Cr exp

(
i

π

∫
R

1 + kξ

k − ξ

log |pr(ξ
2 + α)|

1 + ξ2 dξ

) ∏
κ∈Z

κ<
√

r+α

k − iκ

k + iκ
,

(A.16)

where Cr are some complex constants with |Cr | = 1, the polynomials pr are de-
fined in (A.9) and the convergence holds locally uniformly for all k ∈ C+. More
specifically, since the zero set {k ∈ C+ |pr(k

2 + α) = 0} coincides with the set
{iκ |κ ∈ Z, κ <

√
r + α} whenever r > α, for sufficiently large r one has the Nevan-

linna factorization [94, Theorem 6.13]

pr(k
2 + α) = Cr exp

(
i

π

∫
R

1 + kξ

k − ξ

log |pr(ξ
2 + α)|

1 + ξ2 dξ

) ∏
κ∈Z

κ<
√

r+α

k − iκ

k + iκ
(A.17)

on the upper complex half-plane, where Cr is some complex constant with |Cr | = 1.
In view of [83, Remark 2 in Lecture 17], this gives the claimed representation.

By taking the logarithm of the absolute value of (A.17) at k = i
√

α, we first get
the identity

0 =
√

α

π

∫
R

log |pr(ξ
2 + α)|

ξ2 + α
dξ +

∑
κ∈Z

κ<
√

r+α

log

∣∣∣∣κ − √
α

κ + √
α

∣∣∣∣. (A.18)

Furthermore, taking the logarithmic derivative of (A.16) gives

2k
�̇(k2 + α)

�(k2 + α)
= lim

r→∞− i

π

∫
R

log |pr(ξ
2 + α)|

(k − ξ)2 dξ +
∑
κ∈Z

κ<
√

r+α

2iκ

k2 + κ2 (A.19)
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for all k near i
√

α (such that �(k2 + α) �= 0) and evaluating at k = i
√

α yields (take
into account that � is a real entire function)

2
√

α�̇(0) = lim
r→∞− 1

π

∫
R

(ξ2 − α) log |pr(ξ
2 + α)|

(ξ2 + α)2 dξ +
∑
κ∈Z

κ<
√

r+α

2κ

κ2 − α
.

After adding (A.18) divided by
√

α to the limit, we end up with

2
√

α�̇(0) = lim
r→∞

2α

π

∫
R

log |pr(ξ
2 + α)|

(ξ2 + α)2
dξ + 1√

α

∑
κ∈Z

κ<
√

r+α

F1

(
κ√
α

)
. (A.20)

Differentiating (A.19) once more and evaluating at k = i
√

α yields

2�̇(0) − 4α�̈(0) + 4α�̇(0)2

= lim
r→∞

2
√

α

π

∫
R

(3ξ2 − α) log |pr(ξ
2 + α)|

(ξ2 + α)3 dξ +
∑
κ∈Z

κ<
√

r+α

4
√

ακ

(κ2 − α)2 ,

which, after adding (A.20) divided by
√

α, becomes

4�̇(0) − 4α�̈(0) + 4α�̇(0)2

= lim
r→∞

8
√

α

π

∫
R

ξ2 log |pr(ξ
2 + α)|

(ξ2 + α)3
dξ + 1

α

∑
κ∈Z

κ<
√

r+α

F2

(
κ√
α

)
. (A.21)

Finally, because of the asymptotics of the functions F1 and F2 at ∞ (see Appendix C)
and the uniform bound on the polynomials pr in Lemma A.3, we can pass to the limit
r → ∞ in (A.20) and (A.21) to arrive at the claimed identities. �

We are now in position to prove the main result of this appendix.

Proof of Theorem A.1 Choose a κ0 > 0 such that iκ0 is neither a zero nor a pole of
G±,n for all n = 1, . . . ,N and define the meromorphic function Q on C+ by

Q(k) =
N∏

n=1

G+,n(k)

G−,n(k)
. (A.22)

Since the functions G±,1, . . . ,G±,N all satisfy the requirements of Theorem A.2,
it follows readily that the limit Q(ξ) = limε↓0 Q(ξ + iε) exists and is nonzero for
almost all ξ ∈R and that this limit satisfies

∫
R

| log |Q(ξ)||
1 + ξ2

dξ < ∞. (A.23)
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Moreover, Theorem A.2 guarantees that the function Q admits the factorization

Q(k) = sgn(Q(iκ0)) exp

(
i

π

∫
R

1 + kξ

k − ξ

log |Q(ξ)|
1 + ξ2 dξ

)
lim
δ↓0

N∏
n=1

B+,n,δ(k)

B−,n,δ(k)
, (A.24)

where the rational functions B±,n,δ are given by

B±,n,δ(k) =
∏

κ∈Z±,n

δ<κ<1/δ

κ0 − κ

|κ0 − κ|
k − iκ

k + iκ

∏
η∈P±,n

δ<η<1/δ

κ0 − η

|κ0 − η|
k + iη

k − iη

with Z±,n = {κ > 0 |G±,n(iκ) = 0} and P±,n = {η > 0 |G±,n(iη) = ∞}, and the
convergence holds locally uniformly on C+ away from the zeros and poles of the
functions G±,1, . . . ,G±,N . In fact, because i

√
α is neither a zero nor a pole of

Q by our assumptions, we can remove
√

α from all the sets Z±,1, . . . ,Z±,N and
P±,1, . . . ,P±,N , since the corresponding factors just cancel out anyway. As a con-
sequence, the convergence also holds locally uniformly near i

√
α. This allows us to

take the logarithmic derivative of (A.24) near i
√

α and arrive at

Q̇(i
√

α) = 2iα

π

∫
R

log |Q(ξ)|
(ξ2 + α)2 dξ + lim

δ↓0

i√
α

N∑
n=1

( ∑
κ∈Z+,n

δ<κ<1/δ

F1

(
κ√
α

)

−
∑

η∈P+,n

δ<η<1/δ

F1

(
η√
α

)
−

∑
κ∈Z−,n

δ<κ<1/δ

F1

(
κ√
α

)
+

∑
η∈P−,n

δ<η<1/δ

F1

(
η√
α

))

(A.25)

in the same way as in the proof of Theorem A.4 (by also using the identity

0 =
√

α

π

∫
R

log |Q(ξ)|
ξ2 + α

dξ + lim
δ↓0

N∑
n=1

( ∑
κ∈Z+,n

δ<κ<1/δ

log

∣∣∣∣κ − √
α

κ + √
α

∣∣∣∣

−
∑

η∈P+,n

δ<η<1/δ

log

∣∣∣∣η − √
α

η + √
α

∣∣∣∣ −
∑

κ∈Z−,n

δ<κ<1/δ

log

∣∣∣∣κ − √
α

κ + √
α

∣∣∣∣ +
∑

η∈P−,n

δ<η<1/δ

log

∣∣∣∣η − √
α

η + √
α

∣∣∣∣
)

(A.26)

obtained from (A.24) after taking the logarithm of the absolute value at k = i
√

α).
Differentiating the logarithmic derivative of Q once more and evaluating at k = i

√
α,

as in the proof of Theorem A.4, yields

Q̈(i
√

α) − Q̇(i
√

α)2 − i√
α

Q̇(i
√

α) =
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= 8
√

α

π

∫
R

ξ2 log |Q(ξ)|
(ξ2 + α)3 dξ + lim

δ↓0

1

α

N∑
n=1

( ∑
κ∈Z+,n

δ<κ<1/δ

F2

(
κ√
α

)
(A.27)

−
∑

η∈P+,n

δ<η<1/δ

F2

(
η√
α

)
−

∑
κ∈Z−,n

δ<κ<1/δ

F2

(
κ√
α

)
+

∑
η∈P−,n

δ<η<1/δ

F2

(
η√
α

))
.

It remains to notice that the limit a(ξ) = limε↓0 a(ξ + iε) also exists and is nonzero
for almost all ξ ∈ R because �± are entire functions. The limit satisfies (A.3) due
to (A.23) and condition (A.1) for entire functions of Cartwright class. By combining
the identities we proved for Q with the ones we get from Theorem A.4 applied to the
functions �±, one obtains the claimed identities after taking into account cancella-
tions in the sums and that a has only simple zeros and poles. �

Appendix B: Meromorphic functions and trace formulas, II

For the proof of the relative trace formula in Sect. 8 we need another auxiliary tech-
nical result that is somewhat different to the one in Appendix A. To this end, we are
first going to establish some more identities for a real entire function � of Cartwright
class that also involve its exponential type τ , which is given by

τ = lim sup
s→∞

log |�(is)|
s

(B.1)

under our assumptions on � (see [83, Lecture 16], [94, Theorem 6.18] for example).
As in Sect. 8, we fix β > 0 and let ζ be the rational function given by

ζ(k) = β
1 + k2

1 − k2
, (B.2)

mapping the upper complex half-plane C+ conformally onto C+ ∪ (−β,β) ∪ C−.
We also continue to use the functions F1 and F2 defined by (5.10).

Theorem B.1 Let � be a real entire function of Cartwright class with �(0) = 1 and
only real and simple zeros. Then for every β > 0 one has

−τ = 1

πβ

∫
R

log |�(ζ(ξ))|
1 + ξ2 dξ + 1

β

∑
κ∈Z

log

∣∣∣∣κ − 1

κ + 1

∣∣∣∣, (B.3)

�̇(0) − τ = 2

πβ

∫
R

log |�(ζ(ξ))|
(1 + ξ2)2 dξ + 1

β

∑
κ∈Z

F1(κ), (B.4)

−β�̈(0) + β�̇(0)2 − 2τ = 8

πβ

∫
R

ξ2 log |�(ζ(ξ))|
(1 + ξ2)3 dξ + 1

β

∑
κ∈Z

F2(κ), (B.5)

where Z = {κ > 0 |� ◦ ζ(iκ) = 0} and τ is the exponential type of �.



J. Eckhardt, A. Kostenko

Proof The polynomials pr defined in Lemma A.3 converge locally uniformly to � as
r → ∞ in view of [83, Remark 2 in Lecture 17]. For large enough r > β , the zero set
Z and {κ > 0 |pr ◦ ζ(iκ) = 0} coincide and hence the rational function pr ◦ ζ admits
the Nevanlinna factorization [94, Theorem 6.13]

pr(ζ(k)) = Cr exp

(
i

π

∫
R

1 + kξ

k − ξ

log |pr(ζ(ξ))|
1 + ξ2

dξ

) ∏
κ∈Z

k − iκ

k + iκ
(B.6)

on the upper complex half-plane, where Cr is some complex constant with |Cr | = 1.
Taking the logarithm of the absolute value of (B.6) at k = i yields the identity

0 = 1

π

∫
R

log |pr(ζ(ξ))|
1 + ξ2

dξ +
∑
κ∈Z

log

∣∣∣∣κ − 1

κ + 1

∣∣∣∣. (B.7)

Now applying [13, Theorem 8.2.1] to the function �̃(z) = eMz�(z), which is the
canonical product in (A.11), and taking into account that � is a real entire function
of Cartwright class, the exponential type of � is given by

−τ = lim
R→∞

1

π

∫ R

−R

log |�̃(λ)|
λ2

dλ

= 1

π

∫ β

−β

log |�(λ)| − �̇(0)λ

λ2 dλ + 1

π

∫
R\[−β,β]

log |�(λ)|
λ2 dλ.

(B.8)

Due to locally uniform convergence of the polynomials pr to � as well as the uniform
bound in Lemma A.3, the first integral in (B.8) can be written as

∫ β

−β

log |�(λ)| − �̇(0)λ

λ2
dλ = lim

r→∞

∫ β

−β

log |pr(λ)| − ṗr (0)λ

λ2
dλ.

Notice that the uniform estimate in the above integral near zero is ensured by the
normalization �(0) = pr(0) = 1 and the locally uniform convergence of the cor-
responding second derivatives. The second integral in (B.8) exists because � is of
Cartwright class and becomes

∫
R\[−β,β]

log |�(λ)|
|λ|√λ2 − β2

dλ +
∫
R\[−β,β]

log |�(λ)|
(

1

λ2
− 1

|λ|√λ2 − β2

)
dλ

= 1

β

∫
R

log |�(ζ(ξ))|
1 + ξ2

dξ + lim
r→∞

∫
R\[−β,β]

log |pr(λ)|
(

1

λ2
− 1

|λ|√λ2 − β2

)
dλ,

where we performed a transformation λ = ζ(ξ) and passing to the limit is justified
by the uniform bound in Lemma A.3. After adding up in (B.8), we get

−τ = 1

πβ

∫
R

log |�(ζ(ξ))|
1 + ξ2

dξ − lim
r→∞

1

π

∫
R\[−β,β]

log |pr(λ)|
|λ|√λ2 − β2

dλ,
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where we also took into account that pr has zero exponential type (apply [13, Theo-
rem 8.2.1] to pr ). It remains to perform a transformation λ = ζ(ξ) and use (B.7) to
arrive at the first identity (B.3).

Taking the logarithmic derivative of (B.6) gives

ζ̇ (k)ṗr (ζ(k))

pr(ζ(k))
= − i

π

∫
R

log |pr(ζ(ξ))|
(k − ξ)2

dξ +
∑
κ∈Z

2iκ

k2 + κ2
(B.9)

for all k near i (such that pr ◦ ζ(k) �= 0) and evaluating at k = i yields (take into
account that pr is a real polynomial)

ṗr (0) = 1

πβ

∫
R

(1 − ξ2) log |pr(ζ(ξ))|
(1 + ξ2)2

dξ + 1

β

∑
κ∈Z

2κ

κ2 − 1
. (B.10)

Because the polynomials pr obey the uniform bound in Lemma A.3, we are able to
pass to the limit r → ∞ to obtain

�̇(0) = 1

πβ

∫
R

(1 − ξ2) log |�(ζ(ξ))|
(1 + ξ2)2 dξ + 1

β

∑
κ∈Z

2κ

κ2 − 1

and after adding (B.3) we end up with the second identity (B.4). Differentiating (B.9)
once more and evaluating at k = i yields

− ṗr (0) − βp̈r (0) + βṗr(0)2

= 2

πβ

∫
R

(3ξ2 − 1) log |pr(ζ(ξ))|
(1 + ξ2)3

dξ + 1

β

∑
κ∈Z

4κ

(κ2 − 1)2
,

which, after adding (B.10) and subtracting (B.7) divided by β , becomes

− βp̈r (0) + βṗr(0)2

= − 2

πβ

∫
R

(1 − ξ2)2 log |pr(ζ(ξ))|
(1 + ξ2)3

dξ + 1

β

∑
κ∈Z

2κ3 + 2κ

(κ2 − 1)2
− log

∣∣∣∣κ − 1

κ + 1

∣∣∣∣.

Due to the bound in Lemma A.3, we may pass to the limit r → ∞ and obtain

− β�̈(0) + β�̇(0)2

= − 2

πβ

∫
R

(1 − ξ2)2 log |�(ζ(ξ))|
(1 + ξ2)3

dξ + 1

β

∑
κ∈Z

2κ3 + 2κ

(κ2 − 1)2
− log

∣∣∣∣κ − 1

κ + 1

∣∣∣∣.

It remains to add (B.3) twice to get the last identity (B.5). �

The main result of this appendix now follows in a similar way as Theorem A.1.
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Theorem B.2 Let β > 0 and let a be a meromorphic function on C+ with a(i) = 1
and only simple zeros and poles. Suppose that a can be written as

a(k) = �+(ζ(k))

�−(ζ(k))

N∏
n=1

G+,n(k)

G−,n(k)
(B.11)

for some N ∈N and functions �±, G±,1, . . . ,G±,N , where:

(i) The real entire functions �± are of Cartwright class with �±(0) = 1 and only
real and simple zeros.

(ii) The functions G±,1, . . . ,G±,N are meromorphic on C+ but not identically zero
and such that ImG±,n(k) ≥ 0 when Re k > 0 and ImG±,n(k) ≤ 0 when Re k < 0
for all n = 1, . . . ,N .

Then the limit a(ξ) = limε↓0 a(ξ + iε) exists and is nonzero for almost all ξ ∈ R,
satisfies

∫
R

| log |a(ξ)||
1 + ξ2

dξ < ∞, (B.12)

and the identities

β(τ− − τ+)

= 1

π

∫
R

log |a(ξ)|
1 + ξ2

dξ + lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

log

∣∣∣∣κ − 1

κ + 1

∣∣∣∣ −
∑
η∈P

δ<η<1/δ

log

∣∣∣∣η − 1

η + 1

∣∣∣∣, (B.13)

ȧ(i) + iβ(τ− − τ+)

= 2i

π

∫
R

log |a(ξ)|
(1 + ξ2)2

dξ + i lim
δ↓0

∑
κ∈Z

δ<κ<1/δ

F1(κ) −
∑
η∈P

δ<η<1/δ

F1(η), (B.14)

ä(i) − ȧ(i)2 − iȧ(i) + 2β(τ− − τ+)

= 8

π

∫
R

ξ2 log |a(ξ)|
(1 + ξ2)3 dξ + lim

δ↓0

∑
κ∈Z

δ<κ<1/δ

F2(κ) −
∑
η∈P

δ<η<1/δ

F2(η), (B.15)

hold, where Z = {κ > 0 |a(iκ) = 0}, P = {η > 0 |a(iη) = ∞} and τ± are the expo-
nential types of �±.

Proof We have seen in the proof of Theorem A.1 that for the meromorphic function
Q defined on C+ by (A.22) the limit Q(ξ) = limε↓0 Q(ξ + iε) exists and is nonzero
for almost all ξ ∈ R and satisfies (A.23). Moreover, the identities (A.25), (A.26)
and (A.27) hold with α = 1. It remains to notice that the limit a(ξ) = limε↓0 a(ξ + iε)
also exists and is nonzero for almost all ξ ∈ R because �± are entire functions.
The limit satisfies (B.12) due to (A.23) and condition (A.1) for entire functions of
Cartwright class. By combining the identities (A.25), (A.26) and (A.27) for Q with
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the ones we get from Theorem B.1 applied to the functions �±, one obtains the
claimed identities after taking into account cancellations in the sums and that a has
only simple zeros and poles. �

Appendix C: Properties of F1 and F2

The purpose of this appendix is to collect a few facts about the functions F1 and F2,
which appear in several trace formulas throughout this article. These two functions
are defined on (0,1) ∪ (1,∞) by

F1(s) = 2s

s2 − 1
+ log

∣∣∣∣ s − 1

s + 1

∣∣∣∣, F2(s) = 2s3 + 2s

(s2 − 1)2
+ log

∣∣∣∣ s − 1

s + 1

∣∣∣∣. (C.1)

After computing the respective derivatives

F ′
1(s) = − 4

(s2 − 1)2
, F ′

2(s) = − 16s2

(s2 − 1)3
, (C.2)

we see that F1 is strictly decreasing on (0,1) and on (1,∞), whereas F2 is strictly
increasing on (0,1) and strictly decreasing on (1,∞). Because F2(s) tends to zero
as s → 0 and as s → ∞, it follows that F2 takes only positive values.

In order to estimate the function F1, we first write it as

F1(s) =
∫ ∞

s

4

(r2 − 1)2 dr (C.3)

for s ∈ (1,∞), and then estimate the integrand to obtain

4

3s3
=

∫ ∞

s

4

r4
dr < F1(s) <

∫ ∞

s

4r

(r2 − 1)5/2
dr = 4

3(s2 − 1)3/2
. (C.4)

Of course, this readily gives the asymptotics

F1(s) = 4

3s3
+ o(s−3) (C.5)

as s → ∞. On the other side, one has the estimate

−4s − s2

2
= −

∫ s

0
4 + r dr < F1(s) =

∫ s

0
− 4

(1 − r2)2
dr < −4s (C.6)

for s close enough to zero, which yields the asymptotics −4s/F1(s) → 1 as s → 0.
In a similar way as for F1, we write the function F2 as

F2(s) =
∫ ∞

s

16r2

(r2 − 1)3
dr (C.7)
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for s ∈ (1,∞), so that we can estimate

16

3(s2 − 1)3/2 =
∫ ∞

s

16r

(r2 − 1)5/2 dr < F2(s). (C.8)

Using the symmetry property F2(s
−1) = F2(s), this readily gives the estimate

16s3

3(1 − s2)3/2 < F2(s) (C.9)

for s ∈ (0,1). Moreover, since one has

F2(s) =
∫ s

0

16r2

(1 − r2)3 dr <

∫ s

0
16r2 + 8r3 dr = 16s3

3
+ 2s4 (C.10)

for s close enough to zero, we get the asymptotic behavior

F2(s) = 16s3

3(1 − s2)3/2
+ o(s3), s → 0, (C.11)

F2(s) = 16

3(s2 − 1)3/2
+ o(s−3), s → ∞. (C.12)

Appendix D: Canonical first order systems

The aim of this appendix is to briefly review some facts about canonical systems as
far as they are needed in Sect. 14. For more details we only refer the reader to the
books [34, 91] and [92]. In this article, we are going to use the following notion of a
Hamiltonian.

Definition D.1 A Hamiltonian is a locally integrable, real, symmetric and non-
negative definite 2 × 2 matrix function

h =
(

h11 h12
h12 h22

)
(D.1)

on [0,∞) such that the following properties hold:

(i) The limit-point case prevails at infinity, meaning that
∫ ∞

0
trh(x)dx =

∫ ∞

0
h11(x) + h22(x) dx = ∞. (D.2)

(ii) The function h does not vanish on subsets of positive Lebesgue measure.
(iii) The function h22 is not equal to zero almost everywhere on [0,∞).

If the Hamiltonian h additionally satisfies

trh = h11 + h22 = 1 (D.3)

almost everywhere on [0,∞), then it is said to be trace normalized.
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With each Hamiltonian h, one associates the canonical first order system

(
0 1

−1 0

)
f ′ = zhf, (D.4)

where z is a complex spectral parameter. The fundamental matrix solution U of the
canonical system (D.4) is the unique solution of the integral equation

U(z, x) =
(

1 0
0 1

)
− z

∫ x

0

(
0 1

−1 0

)
h(s)U(z, s)ds. (D.5)

Using this solution, the Weyl–Titchmarsh function m of the canonical system (D.4)
with Hamiltonian h can be defined on C\R by

m(z) = lim
x→∞

U11(z, x)

U12(z, x)
. (D.6)

It is then possible to show that the solution ψ(z, · ) of the system (D.4) given by

ψ(z, x) = U(z, x)

(
1

−m(z)

)
(D.7)

for z ∈ C\R is square integrable with respect to h, meaning that

∫ ∞

0
ψ(z, x)∗h(x)ψ(z, x)dx < ∞. (D.8)

We note that with these solutions, the Weyl–Titchmarsh function m can in turn be
expressed as the quotient

m(z) = −ψ2(z,0)

ψ1(z,0)
. (D.9)

Finally, as a Herglotz–Nevanlinna function, the Weyl–Titchmarsh function m of
course admits an integral representation of the form (2.29).

Remark D.2 The meaning of the coefficients c1, c2 and L in the integral representa-
tion (2.29) are different for canonical systems when compared to generalized indefi-
nite strings (see Remark 2.5). For example, the constant c1 in the linear term can be
read off the Hamiltonian h directly since

c1 =
∫ x0

0
trh(x)dx, (D.10)

where the point x0 ∈ [0,∞) is given by

x0 = sup{x ∈ [0,∞) |h22 = 0 almost everywhere on [0, x)}. (D.11)
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Remark D.3 Canonical systems with different Hamiltonians may have the same
Weyl–Titchmarsh function. Indeed, introducing the function x : [0,∞) → [0,∞) by

x(x) =
∫ x

0
trh(s)ds, (D.12)

which is strictly increasing and bijective, it is straightforward to check that the canon-
ical system with the new Hamiltonian defined by

h̃(x) = 1

trh(x−1(x))
h(x−1(x)) (D.13)

has the same Weyl–Titchmarsh function. In order to avoid such an ambiguity, it is
customary to assume that the Hamiltonian is trace normalized. Notice that in this
case, the function defined in (D.12) is simply x(x) = x for all x ∈ [0,∞).

It is a fundamental result of L. de Branges (see [91, 92]) that the Weyl–Titchmarsh
function determines the Hamiltonian almost everywhere up to a reparametrization
(in particular, it uniquely determines trace normalized Hamiltonians) and that indeed
all Herglotz–Nevanlinna functions arise as the Weyl–Titchmarsh function of some
Hamiltonian. Moreover, the correspondence h �→ m on all trace normalized Hamilto-
nians, widely known as the Krein–de Branges correspondence, becomes homeomor-
phic with respect to suitable topologies.

We are now going to briefly summarize a connection between trace normalized
Hamiltonians and generalized indefinite strings; see [42, Sect. 6]. For a given gener-
alized indefinite string (L,ω,υ), introduce the function ς : [0,L] → [0,∞] by

ς(x) = x +
∫ x

0
w(s)2ds +

∫
[0,x)

dυ (D.14)

and define ξ on [0,∞) as the generalized inverse of ς via

ξ(x) = sup{s ∈ [0,L) |ς(s) ≤ x}. (D.15)

Notice that ξ is locally absolutely continuous with 0 ≤ ξ ′ ≤ 1 almost everywhere on
[0,∞). Moreover, one has ξ ◦ ς(x) = x for all x ∈ [0,L) and

ς ◦ ξ(x) =
{

x, x ∈ ran(ς),

sup{s ∈ ran(ς) | s ≤ x}, x /∈ ran(ς).
(D.16)

It then follows that the function h defined by (see [42, Equation (6.10)])

h(x) =
(

1 − ξ ′(x) ξ ′(x)w(ξ(x))

ξ ′(x)w(ξ(x)) ξ ′(x)

)
(D.17)

is a trace normalized Hamiltonian. Furthermore, the corresponding fundamental ma-
trix solution U of the canonical system (D.4) is given by

U(z, x) =
(

1 0
z(x − ς ◦ ξ(x))) 1

)(
θ(z, ξ(x)) −zφ(z, ξ(x))

−z−1θ [1](z, ξ(x)) φ[1](z, ξ(x))

)
, (D.18)
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which implies that the Weyl-Titchmarsh function of the Hamiltonian h coincides with
the Weyl–Titchmarsh function of the generalized indefinite string (L,ω,υ).

Conversely, in order to show how to transform a canonical system to a generalized
indefinite string, let a trace normalized Hamiltonian h be given. We introduce the
locally absolutely continuous, non-decreasing function ξ on [0,∞) by

ξ(x) =
∫ x

0
h22(s)ds, (D.19)

as well as its generalized inverse ς : [0,L] → [0,∞] via

ς(x) = sup{s ∈ [0,∞) | ξ(s) < x} ∪ {0}. (D.20)

Here, the quantity L ∈ (0,∞] denotes the limit of ξ(s) as s → ∞ which is non-zero
indeed due to our assumption on h22. The function ς is readily verified to be strictly
increasing and to satisfy ξ ◦ ς(x) = x for all x ∈ [0,L) as well as (D.16). One can
then show that the real-valued function w defined on [0,L) by

w(x) =
{

h12
h22

◦ ς(x), if h22 ◦ ς(x) �= 0,

0, if h22 ◦ ς(x) = 0,
(D.21)

belongs to L2
loc[0,L) and thus gives rise to a real distribution ω in H−1

loc [0,L). Fur-
thermore, we may define a positive Borel measure υ on [0,L) via its distribution
function by

∫
[0,x)

dυ =
∫ ς(x)

0
1 − ξ ′(s) − ξ ′(s)w(ξ(s))2 ds. (D.22)

It is then possible to verify again that the Weyl–Titchmarsh function of the general-
ized indefinite string (L,ω,υ) coincides with the Weyl–Titchmarsh function of the
Hamiltonian h.

Remark D.4 The considerations above reveal that generalized indefinite strings can
be viewed as another instance of suitably normalized canonical systems. Namely,
reparametrizing the independent variable using (D.19), the Hamiltonian h is trans-
formed into a new one (possibly on a finite interval) with the bottom-right entry nor-
malized to one. However, with this choice of normalization, the top-left entry of the
new Hamiltonian becomes a measure in general. The entries of this new Hamiltonian
can be identified with the coefficients of a generalized indefinite string.

With the explicit connection between canonical systems and generalized indefinite
strings described above, we are now in position to verify the expression (2.16) for the
exponential type of solutions stated in Sect. 2.

Proof of Theorem 2.2 Let h be the trace normalized Hamiltonian defined by (D.17).
In view of relation (D.18), except for the expression (2.16) for the exponential type,
all claims follow immediately from the corresponding facts for canonical systems;
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see [91, Sect. 4.4] or [79, Sect. 1]. However, we are also able to infer from (D.18) and
the Krein–de Branges type formula (see [91, Theorem 4.26] or [92, Theorem 11]),
that the exponential type of the functions in (2.15) is given by

∫ ς(x)

0

√
deth(s)ds =

∫ ς(x)

0

√
ξ ′(s) − ξ ′(s)2 − ξ ′(s)2w(ξ(s))2ds.

It therefore suffices to show that one has

ξ ′(s) = ξ ′(s)2 + ξ ′(s)2w(ξ(s))2 + ξ ′(s)2�(ξ(s))2 (D.23)

for almost all s ∈ [0,∞), since the expression for the exponential type above then
simplifies to

∫ ς(x)

0
ξ ′(s)�(ξ(s))ds,

which yields the integral in (2.16) after a simple substitution (use [14, Corollary 5.4.4]
for example). In order to verify (D.23), let D be the set of all x ∈ (0,L) such that ς

is differentiable at x with

ς ′(x) = 1 + w(x)2 + �(x)2.

As ς is strictly increasing and given by (D.14), the complement of D has Lebesgue
measure zero. By performing another substitution, one then gets

∫ x

0
1[0,L)\D(ξ(s))ξ ′(s)ds =

∫ ξ(x)

0
1[0,L)\D(s)ds = 0

for every x ∈ [0,∞), which implies that

1[0,L)\D(ξ(s))ξ ′(s) = 0

for almost all s ∈ [0,∞). For such an s, one clearly has (D.23) whenever ξ ′(s) = 0.
Otherwise, if ξ ′(s) �= 0, then (we do not need to consider the case when ξ(s) = L as
this happens at most for one s with ξ ′(s) �= 0) ξ(s) belongs to D and one has

ς ′(ξ(s)) = 1 + w(ξ(s))2 + �(ξ(s))2.

Since ς is continuous at ξ(s), we may infer from (D.16) that s necessarily belongs to
ran(ς). Due to left-continuity of the function ς , it then follows that there is a strictly
increasing sequence sn in ran(ς) that converges to s (we may assume that s is not
zero of course). We thus get from (D.16) that

ς(ξ(sn)) − ς(ξ(s))

ξ(sn) − ξ(s)

ξ(sn) − ξ(s)

sn − s
= 1

and it remains to take the limit as n → ∞ to obtain
(
1 + w(ξ(s))2 + �(ξ(s))2)ξ ′(s) = 1,

which readily yields (D.23) again. �
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10. Bessonov, R.V., Denisov, S.A.: A spectral Szegő theorem on the real line. Adv. Math. 359, 106851
(2020)

11. Bessonov, R.V., Denisov, S.A.: De Branges canonical systems with finite logarithmic integral. Anal.
PDE 14(5), 1509–1556 (2021)
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