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Kurzfassung

In Standardsimulatoren für Halbleiterbauelemente werden die elektrischen Eigen-
schaften der Bauelemente durch Anwendung des Drift-Diffusionsmodells berechnet.
Die Entwicklung immer komplexerer und kleinerer Bauelemente verlangt jedoch
zunehmend nach physikalisch exakteren Simulationsmethoden, so wie die in dieser
Arbeit behandelte Monte Carlo Methode. Ein besonders relevantes Einsatzgebiet
dieser Methode ist die Erforschung der elektrischen Eigenschaften von verspanntem
Silizium und Germanium. Mechanische Verspannung erhöht signifikant die Ladungs-
trägerbeweglichkeit, ein Effekt der seit einigen Jahren wesentlich zur Leistungs-
steigerung in der CMOS Technologie eingesetzt wird.

In dieser Arbeit werden zuerst der Spannungs- und der Verzerrungsstensor eingeführt
und anschließend die Symmetrieeigenschaften der Bandstruktur des kubisch flächen-
zentrierten Kristalls im unverspannten sowie im verspannten Zustand dargestellt.
Aus den Symmetrieeigenschaften wird für mehrere Verspannungszustände der ir-
reduzible Bereich der Brillouin Zone hergeleitet, für den die Berechnung der Band-
struktur zu erfolgen hat. Die Bandstruktur wird mit der Pseudopotentialmethode
berechnet und auf einem Gitter diskretisiert.

Der Hauptteil dieser Arbeit beschäftigt sich mit der Simulation des Ladungsträger-
transports mit Hilfe der sogenannten Full Band Monte Carlo Methode. Die wesent-
lichen verwendeten Algorithmen und Streumodelle werden dargestellt. Der Schwer-
punkt liegt hierbei auf neuen Methoden zur Verkürzung der Simulationszeiten. In
diesem Zusammenhang werden die Implementierung lokal verfeinerter Tetraedergit-
ter für die Diskretisierung der Brillouinzone und der effiziente Einsatz von Verwer-
fungsmethoden bei der Monte Carlo Methode untersucht.

Die Ergebnisse der Bandstuktur- und der Transportberechnungen werden im Kon-
text neuer theoretischer Beschreibungen diskutiert. Im verspannten Silizium kommt
es zu einer Aufhebung der Entartung der X-Täler und in Folge zu einer bevozugten
Besetzung der energetisch niedrigeren Täler. Zusätzlich zur Verschiebung der Lei-
tungsbandtäler relativ zueinander kann auch eine Änderung der effektiven Elektro-



nenmassen auftreten. Dieser Effekt beruht auf der Wirkung von Scherspannung, die
eine Deformation der Leitungsbandminima verursacht. Eine Analyse der Valenz-
bänder im verspannten Kristall zeigt eine Aufhebung der Entartung des schweren
und leichten Löcherbandes im Γ-Punkt. Scherspannung erhöht die Löcherbeweglich-
keit in bestimmte Vorzugsrichtungen aufgrund einer Deformierung der Valenzbänder.

Bei industriell gefertigten CMOS Transistoren wird der Kanal mit uniaxialer Zug-
verspannung in [110] Richtung belegt. Für diesen Verspannungszustand ergibt sich
bei 1.5 GPa in der Simulation im Bulkkristall für Silizium eine Beweglichkeitssteige-
rung der Elektronen um den Faktor 1.68. Die Löcherbeweglichkeit in Germanium
kann mit kompressiver Verspannung von 1.5 GPa in [110] Richtung um den Faktor
2.55 auf 4790 cm/Vs gesteigert werden.

Ein weiter Teil der Arbeit behandelt die Simulation von Blocked Impurity Band
Fotodetektoren. Diese Bauelemente werden im langwelligen Infrarotbereich einge-
setzt und arbeiten bei niedrigen Temperaturen unter 10 K. Die Detektion eines
Photons erfolgt dabei durch die Anhebung eines Ladungsträgers aus einem hoch
dotierten Störstellenband in ein höhergelegenes Leitungsband aufgrund einer op-
tischen Anregung. Es werden die Erweiterungen des Monte Carlo Simulators um
ein für tiefe Simulationstemperaturen geeignetes inelastisches Streumodell für akus-
tische Phononen beschrieben, sowie ein Modell zur individuellen Simulation aller
Ladungsträger einer durch Stoßionisation enstehenden Ladungsträgerlawine. Es wer-
den die energetischen und zeitlichen Verteilungen der Ladungsrägerlawine berechnet.



Abstract

In standard simulators for semiconductor devices the electrical behavior of the de-
vices is calculated using the drift-diffusion model. The development of more complex
and smaller devices demands for more exact simulation methods, such as the Monte
Carlo method examined within this work. An important application of the Monte
Carlo method is the study of the electrical behavior of Silicon and Germanium. Me-
chanical strain can raise significantly the carrier mobility in a semiconductor. This
effect has been utilized over the last few years to enhance performance of CMOS
technology.

This work starts with an introduction of the stress- and strain tensors. Then the
symmetry properties of the band structure of the relaxed and the strained diamond
lattice are presented. The irreducible domains of the Brillouin zone for band struc-
ture calculation are derived for important strain configurations. The band structure
is calculated using the pseudo potential method and discretized on a mesh.

The main part of this work is about the simulation of carrier transport using the full-
band Monte Carlo method. Important numerical algorithms and scattering models
are presented. The scope is on new algorithms, which reduce simulation times. In
this regard the generation of locally refined meshes for the Brillouin zone and the
efficient implementation of rejection algorithms are explored.

Results from band structure and carrier transport calculations are discussed in the
context of recent theoretical findings. In strained Silicon the degeneration of the X-
valleys is lifted. As a consequence the valleys lower in energy are higher populated.
Band structure calculations show, that in addition to the shift of the conduction
band valleys relative to each other, the effective electron masses can be changed.
This is caused by shear strain, which leads to an deformation of the valley minima.
An analysis of the valence bands of a strained crystal shows that the degeneration
of the heavy hole and light hole bands at the Γ-point is lifted. Shear strain increases
the hole mobility along certain directions, an effect caused by a deformation of the
valence bands.



Mass manufactured CMOS transistors feature a uniaxially tensile strained channel in
[110] direction. Simulations at 1.5 GPa for this strain configuration show a mobility
gain by a factor of 1.68 to 2410 cm/Vs for electrons in bulk Silicon. For compressively
strained Germanium hole mobility is raised by a factor of 2.55 up to 4790 cm/Vs at
1.5GPa stress in [110] direction.

The final part of this work deals with the simulation of blocked impurity band
photo detectors. These devices operate in the long wave length infrared range at
temperatures below 10 K. A photon is detected by lifting a carrier from a heavy
doped impurity band by optical excitation to the conduction band. The simulator is
extended by an inelastic scattering model for acoustic phonons, which is appropriate
for simulations at low device temperature. A model for individual simulation of
every carrier from an avalanche caused by impact ionization is also implemented.
The distribution in energy and arrival time of the carrier avalanche is calculated.
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Chapter 1

Introduction

Over the last three decades our way of life was dramatically changed by the spread of
new electronic appliances. Important achievements like personal computers, mobile
phones, or the world wide web form a new digital world, a world driven by the
progress in semiconductor device and process research and development.

By far the most widely used semiconductor device for logic integrated circuits is
the metal-oxide-semiconductor field-effect transistor (MOSFET). It is implemented
exclusively on Si substrates. The main reason for the impressive performance im-
provements over the last decades results from the down scaling of this device. Scaling
does not just allow to integrate more transistors within one circuit. When making
the devices smaller they also exhibit reduced switching times and reduced power
consumption. As predicted by the International Technology Road-map for Semicon-
ductors [SIA06] this trend is expected to continue in the coming decade and then
coming to an end because of rising costs when scaling is pushed close to principal
physical limits [Haensch06].

These limits are, on the one hand, related to the fabrication process itself. It gets
more and more challenging to achieve the needed resolution in lithography for the
next technology node. On the other hand, important device properties do not benefit
from scaling any more, or even get worse. A major problem in this respect is the gate
leakage current, which raises exponentially for smaller gate oxide thickness. For the
upcoming 45 nm technology node this problem is solved by the introduction of metal
gates and hafnium-based high-κ dielectrics [Intel07]. With further downscaling also
variability in the delay and power consumption is becoming an urgent problem for
designers [Bernstein06]. Another problem is the increase of the source-drain series
resistance caused by the need for ultra-shallow p-n junctions in the source-drain
regions [Skotnicki05].

These problems slow down the scaling process significantly and already brought

1



INTRODUCTION

alternative approaches to improve device performance into focus. These approaches
include new device designs like multi-gate MOSFETs or ultra thin body (UTB)
MOSFETs as well as the introduction of strain engineering.

In this work the use of strained Si to improve the carrier mobility is explored with
technical computer aided design (TCAD) methods. Whereas conventional TCAD
simulators are based on drift-diffusion models, here, a full-band Monte Carlo (FBMC)
simulator is developed which delivers more accurate and refined electrical transport
properties of strained Si, Ge, and SiGe alloys. In the past the use of full-band Monte
Carlo methods was limited by their high demand for computation time, so that
their main purpose in TCAD was to deliver accurate data for calibration of less
fundamental methods such as drift-diffusion. However, it is shown, that due to the
ever increasing availability of computational power and with the implementation
of CPU-time efficient algorithms, FBMC can be used for simulation of MOSFET
devices [Jungemann03]. In this work FBMC is applied to explore blocked impurity
band (BIB) devices [Petroff86]. These devices are photo detectors for the far infrared
band which operate at very low temperatures.

In Chapter 2 a short introduction to the theory of stress and strain in elastic
bodies is given. Next the conduction band structure of Si as well as the valence
band structure of Ge is analyzed in detail. The band structure data are obtained
with the empirical pseudopotential method (EPM). To improve the performance of
EPM calculations and of FBMC simulations it is important to take advantage of
the symmetry properties of the Brillouin zone. Therefore, the symmetry properties
under several strain conditions are investigated in detail.

In Chapter 3 an introduction to the semi-classical Monte Carlo method is given,
with emphasis on the algorithms and models actually implemented in the full-band
simulator. This also includes a description of the methods used for meshing the Bril-
louin zone, which have a critical impact on the simulator performance and accuracy.

The Monte Carlo simulator is adopted to explore BIB devices in Chapter 4. These
photo detectors for the far infrared range are mainly used in space based obser-
vation facilities. BIB detectors deliver high quantum efficiency in a volume much
smaller than in conventional photoconductors because of their much higher primary
doping. The primary dopants form an impurity band, in which significant hopping
conduction occurs. To block dark current introduced by hopping carriers the device
features an undoped region, referred as the blocking layer. Some of the standard
scattering models for Monte Carlo have to be extended to deliver valid results for
temperatures below 10 K. Also an approach for a non-Markovian impact ionization
model is presented. At the end of that chapter simulation results for a BIB device
operating as a photon counter are presented.

2



Chapter 2

Strain Related Effects on the

Band Structure

In this chapter a short introduction to the theory of stress and strain in elastic
bodies is given. To improve the performance of FBMC simulations it is important
to take advantage of the symmetry properties of the band structure. Therefore, the
symmetry properties of the reciprocal diamond lattice are investigated in detail for
several strain conditions.

2.1 Definition of Stress

To keep a body in static equilibrium the sum of all forces acting on it must be zero.
If a small cubicle volume as depicted in Figure 2.1 of the body is considered, forces
ΔFi act on the surfaces ΔAi. The index i indicates one of the surface planes. The
stress vector Ti is then defined as the limit [Bir74]

Ti = lim
ΔAi→0

ΔFi

ΔAi

=
dFi

dAi

. (2.1)

As depicted in Figure 2.1, each of the three stress vectors can be decomposed
into two components within the plane, the so called shear stress components, and
one normal component. The total number of six shear stress components and three
normal stress components can be lumped together into the stress tensor

¯
T

¯
T =

(
��

Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

)
�� . (2.2)

3



STRAINED BAND STRUCTURE 2.2 Definition of Strain

x

y

z

Txx

Txy

Txz

Tyx

Tyy

Tyz
Tzx

Tzy

Tzz

Figure 2.1: Stress components acting on an infinitesimal cube.

To fulfill the condition of static equilibrium, the shear stress components across a
diagonal are identical,

Txy = Tyx , Tyz = Tzy , Tzx = Txz , (2.3)

which leads to six independent components in the stress tensor.

2.2 Definition of Strain

Stress forces within a body cause an elastic deformation which is called strain. Two
points at locations x and x + dx within a relaxed body move under deformation
caused by stress to the locations x + u(x) and x + dx + u(x + dx). The absolute
squared distance between the deformed points can then be obtained as [Bir74]

∑
i

(dxi + ui(x + dx) − ui(x))2 =
∑

i

(
dxi +

∑
j

∂ui

∂xj

dxj

)2

. (2.4)

Since dx is considered to be a small displacement, a Taylor expansion around x can
be performed, which gives for the the absolute squared distance

∑
i

(
dxi +

∑
j

∂ui

∂xj

dxj

)2

=
∑

i

dx2
i +2

∑
i,j

dxi
∂ui

∂xj

dxj +
∑
i,j,k

∂ui

∂xj

dxj
∂ui

∂xk

dxk. (2.5)

4



STRAINED BAND STRUCTURE 2.3 Stress-Strain Relations

Since the first term in (2.5) is the squared distance between the points in the relaxed
system the change in the squared distance caused by strain becomes

D(dx) =
∑
i,j

dxi

(
∂ui

∂xj

+
∂uj

∂xi

)
dxj +

∑
i,j,k

∂uk

∂xi

∂uk

∂xj

dxidxj

=
∑
i,j

dxi

│(
∂ui

∂xj

+
∂uj

∂xi

)
+

∑
k

∂uk

∂xi

∂uk

∂xj

│
dxj

= 2
∑
i,j

dxiεijdxj . (2.6)

Here, εij are the components of the strain tensor which are defined as

εij =
1

2

│
∂ui

∂xj

+
∂uj

∂xi

+
∑

k

∂uk

∂xi

∂uk

∂xj

│
. (2.7)

If the strain is small enough such that
∂uk

∂xi

≪ 1 holds, the second order term in (2.7)

can be neglected. This simplifies the resulting tensor components to

εij =
1

2

⌡
∂ui

∂xj

+
∂uj

∂xi

⌡
. (2.8)

The strain tensor is therefore symmetric

¯
ε =

(
��

εxx εxy εxz

εyx εyy εyz

εxz εyz εzz

)
�� . (2.9)

In literature sometimes the so called engineering shear strain definition is used. The
engineering shear strain γij for i /= j is given by the relation

γij = εij + εji = 2εij . (2.10)

2.3 Stress-Strain Relations

By observation of the behavior of spring systems, Robert Hooke [Hooke78] first
identified a mathematical relation between stress and strain. Hooke’s Law denotes

F = k x . (2.11)

5



STRAINED BAND STRUCTURE 2.3 Stress-Strain Relations

Si Ge Units

c11 166.0 126.0 GPa

c12 64.0 44.0 GPa

c44 79.6 67.7 GPa

Table 2.1: Elastic stiffness constants of Si and Ge [Levinshtein99].

Here, k is the material-dependent spring constant, F is the applied force, and x is
the resulting deformation of the spring. Later Cauchy generalized Hooke’s law for
application to three dimensional elastic bodies

Tij = Cijkl εkl , (2.12)

where Cijkl is the elastic stiffness tensor of order four. The tensor contains 81 com-
ponents. Since there are only six independent components in the stress and strain
tensors they can be written in a contracted notation as six component vectors. In
this formulation the elastic stiffness tensor simplifies to a 6x6 matrix.

The number of independent components in the elastic stiffness tensor is further
reduced by symmetry properties of the considered crystal [Kittel96]. For cubic semi-
conductors such as Si, Ge or GaAs, the elastic stiffness tensor contains only three
independent components, c11, c12, and c44, which lead to a stress-strain relation of
the form(

����������

Txx

Tyy

Tzz

Tyz

Txz

Txy

)
����������

=

(
����������

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

)
����������

·

(
����������

εxx

εyy

εzz

2εyz

2εxz

2εxy

)
����������

. (2.13)

The factor 2 in the notation of the off-diagonal elements of the strain tensor stems
from the fact, that in literature the values of the elastic stiffness constants are usually
given for the engineering strain notation. The values for the elastic stiffness constants
of Si and Ge are given in Table 2.1.

In the case that the stresses are known, the values for the strains have to be deter-
mined by inversion of (2.12). With the introduction of the elastic compliance tensor
Sijkl, the inverted equation reads

εij = SijklTkl , (2.14)
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or in matrix form for the specific symmetry properties of the diamond lattice

(
����������

εxx

εyy

εzz

2εyz

2εxz

2εxy

)
����������

=

(
����������

s11 s12 s12 0 0 0

s12 s11 s12 0 0 0

s12 s12 s11 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s44

)
����������

·

(
����������

Txx

Tyy

Tzz

Tyz

Txz

Txy

)
����������

. (2.15)

The elastic compliance constants sij are related to the elastic stiffness constants cij

by

s11 =
c11 + c12

c2
11 + c11c12 − 2c2

12

, (2.16)

s12 =
−c12

c2
11 + c11c12 − 2c2

12

, (2.17)

s44 =
1

c44

. (2.18)

It should be noted that in literature the stiffness constants are consistently repre-
sented by the symbol cij, while sij is used for the compliance constants.

2.3.1 Notation of Planes and Directions in a Crystal

To specify directions and planes in a crystal the Miller index notation is commonly
used [Ashcroft76, Kittel96]. The Miller indices of a plane are defined in the following
way: In a first step three lattice vectors, which form the axis of the crystallographic
coordinate system have to be found. In cubic crystal systems, the lattice vectors are
chosen along the edges of the crystallographic unit cell. Second the points where a
crystal plane intercepts the axes are derived and their coordinates are transformed
into fractional coordinates by dividing by the respective cell dimension. In a last
step the Miller indices are obtained as the reciprocals of the fractional coordinates.
For a cubic crystal they are given as a triplet of integer values (hkℓ). A Miller index
0 indicates a plane parallel to the respective axis. Negative indices are defined by
a bar written over the number. To denote all planes equivalent by symmetry, the
notation {hkℓ} is used.

7
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Figure 2.2: Three planes in the cubic system along with their Miller indices.

It is also common to indicate directions in the basis of the lattice vectors by Miller
indices with square brackets like in [hkℓ]. The notation <hkℓ> is used to indicate all
directions that are equivalent to [hkℓ] by crystal symmetry.

Figure 2.2 depicts the Miller notation for several planes in the cubic system. The
Miller indices of a plane coincide with those of the direction perpendicular to the
plane.

2.3.2 Stress Applied Along Symmetry Directions

Uniaxial stress applied along symmetry directions of the cubical crystal is of techno-
logical importance since it is preferably used in actual devices. The stress and strain

8
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tensors in the principal coordinate system of the crystal are given in the following for
uniaxial stress of magnitude S applied along [100], [110], [111] and [120] directions,
respectively. Here, the strain tensors are calculated by inserting the corresponding
stress tensors in (2.15).

¯
T [100] = S

(
��

1 0 0

0 0 0

0 0 0

)
�� ,

¯
ε[100] = S

(
��

s11 0 0

0 s12 0

0 0 s12

)
��

¯
T [110] =

S

2

(
��

1 1 0

1 1 0

0 0 0

)
�� ,

¯
ε[110] =

S

2

(
��

s11 + s12 s44/2 0

s44/2 s11 + s12 0

0 0 s12

)
��

¯
T [111] =

S

3

(
��

1 1 1

1 1 1

1 1 1

)
�� ,

¯
ε[111] =

S

3

(
��

s11 + 2s12 s44/2 s44/2

s44/2 s11 + 2s12 s44/2

s44/2 s44/2 s11 + 2s12

)
��

¯
T [120] =

S

5

(
��

1 2 0

2 4 0

0 0 0

)
�� ,

¯
ε[120] =

S

5

(
��

s11+4s12 s44 0

s44 s12+4s11 0

0 0 5s12

)
�� (2.19)

Biaxial strain can be introduced in Si by epitaxially growing a Si layer on an SiGe
substrate, which features a different lattice constant. The Si layer adjusts to the
lattice constant of the SiGe substrate and becomes globally biaxially strained. If the
interface is a (001)-plane the strain tensor reads [Hinckley90]

¯
ε(001) = ε||

(
���

1 0 0

0 1 0

0 0 −2c12

c11

)
��� , (2.20)

where ε|| is the strain in the interface plane, related to the lattice mismatch via

ε|| =
al − a0

a0

. (2.21)

Here a0 = 5.431 Å denotes the lattice constant of relaxed Si and al that of the
substrate layer. Note that biaxial strain in the (001)-plane leads to the same form
of the strain tensor as uniaxial stress in [001]-direction.

9
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2.4 Configuration of the Diamond Structure

A Bravais lattice is an infinite set of points generated by discrete translation op-
erations. Each lattice point is made up by one ore more atoms which are called
the basis. In the most simple case the basis consists of one atom. It can be derived
by point group theory that there exist 14 different Bravais lattices which are di-
vided into seven crystal systems [Bir74]. The lattices within one system share the
same point group symmetry operations. Figure 2.3 shows this classification with the
properties of each system regarding angles and lengths of their elementary cells./-?!?*) "?-?83'3-) I*81=3 ("& F2=$83 /?)3 #?
3=?''*
3 
35'3-36 (4& 
35'3-36 (,& 
35'3-36 (#&H-*
=*5*
 $% B: $# B: $!

&%# B: &#! B: &!%+252
=*5*
 $% B: $# B: $!
&#! : &!% : AGÆ

&%# B: AGÆ%-'.2-.28>*
 $% B: $# B: $!
&%# : &#! : &!% : AGÆH3'-?025?= $% : $# B: $!
&%# : &#! : &!% : AGÆH-*025?= $% : $# : $!
&%# : &#! : &!% " EDGÆ,$>*
 $% : $# : $!
&%# : &#! : &!% : AGÆ73J?025?= $% : $# B: $!

&%# : EDGÆ
&#! : &!% : AGÆ a1

a2

a3

Figure 2.3: Bravais lattices in three dimensions [Anghel03]
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a
a1

a2

a3

Figure 2.4: Crystallographic unit cell of the diamond structure. The primitive basis
vectors and the two atoms forming the basis are shown.

Figure 2.4 depicts the structure of the diamond lattice, which is the lattice of group
IV semiconductors such as Si and Ge. The basis consists of two atoms at (0, 0, 0)
and a0

4
(1, 1, 1) and the basis vectors a1, a2 and a3. The lattice can also be described

as two inter-penetrating face centered cubic (fcc) lattices, one displaced from the
other by a translation of a0

4
(1, 1, 1) along a body diagonal.

For group IV semiconductors the two basis atoms are identical, whereas for III-V
semiconductors such as GaAs, AlsAs, InAs, or InP the basis atoms are different and
the structure is called the zinc-blende structure.

The basis vectors of the Bravais lattice read

a1 =
a0

2

(
��

0

1

1

)
�� , a2 =

a0

2

(
��

1

0

1

)
�� , and a3 =

a0

2

(
��

1

1

0

)
�� . (2.22)

The lattice is invariant for all translations from a lattice vector R0 to a lattice vector
R of the form

R = R0 + ia1 + ja2 + ka3 , (2.23)

where i, j and k are integers.
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2.5 The Strained Diamond Structure

Generally, applying strain to a crystal reduces its symmetry. The basis vectors ai

of the strained Bravais lattice can be directly obtained by a transformation of the
vectors ai of the unstrained crystal [Bir74]

ai
′ = (! + ε) · ai . (2.24)

The volume of the strained primitive cell can be obtained as

Ω′
0 = Ω0(1 + εH) , (2.25)

where εH is the hydrostatic strain component

εH = εxx + εyy + εzz. (2.26)

Strain can also cause a change of the Bravais lattice type. The resulting Bravais
lattice can be determined by looking up Figure 2.3. Since it is not straight forward
to find the transitions between lattice types by intuition the following guidance may
be convenient.

< The relaxed diamond structure is a face centered cubic system.

< If the face centered cubic cell is distorted along one of the orthogonal directions
the cell is transformed to the centered tetragonal system. The face centered
tetragonal system is equivalent to the volume centered system.

< Distorting the centered tetragonal cell along one of the orthogonal directions
within the squared plane leads to the face centered orthorhombic cell.

< Applying strain to the centered tetragonal cell along one of the orthogonal
directions within the squared plane leads to the face centered orthorhombic
cell.

< By applying arbritrary shear strain components to the face centered orthorhom-
bic cell it is further degraded to the triclinic lattice.

< As a special case the face centered orthorhombic cell can also be sheared to
the volume centered triclinic system.
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2.5.1 The Point Group Symmetry Operations

To describe the lattice symmetry properties on a more formal basis a definition of
the possible point operations is needed:

E unity operation
n+

k clockwise rotation of angle 2π/n around axis rk

n−
k counter-clockwise rotation of angle 2π/n around axis rk

I inversion
n̄+

k clockwise rotation of angle 2π/n around axis rk followed by inversion
n̄−

k counter-clockwise rotation of angle 2π/n around axis rk followed by inversion

where rk is in one out of five sets of rotation axes

ri = (1, 0, 0), (0, 1, 0), (0, 0, 1)

ri′′ = (0, 1, 0), (
√

3,−1, 0), (−√
3,−1, 0)

rj = (1, 1, 1), (−1,−1, 1), (1,−1,−1), (−1,−1,−1)
rp = (1, 1, 0), (−1, 1, 0), (1, 0, 1), (0, 1, 1), (−1, 0, 1), (0,−1, 1)
rs = (1, 1, 0), (−1, 1, 0)

Table 2.2 [Yu03] lists the resulting point groups in Schönfließ notation when applying
strain to the diamond lattice. Starting point is the unstrained diamond structure
denoted by Oh. |P (Γ)| denotes the number of elements of the point group which is
48 for Oh and is decreased under strain as indicated in the table.

point group symmetry elements |P (Γ)| stress direction

Oh E 2i 3+
j 3−j 2p 4+

i 4−i I 2̄i 3̄+
j 3̄−j 2̄p 4̄+

i 4̄−i 48 unstrained

D4h E 4+
z 4−z 2i 2s I 4̄+

z 4̄−z 2̄i 2̄s 16 stress along <100>
D3d E 3+

z 3−z 2i′′ I 3̄+
z 3̄−z 2̄i′′ 12 stress along <111>

D2h E 2i I 2̄i 8 stress along <110>
C2h E 2z I 2̄z 4 stress along <120>
S2 E I 2 other directions

Table 2.2: Point group and symmetry elements of strained lattices that originate
when stress is applied along various high symmetry directions to an
initially cubic lattice Oh. Schönfließ symbols are used to specify the
point groups. |P (Γ)| denotes the number of elements of the point group.
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2.6 The Reciprocal Lattice

The basis vectors bi of the reciprocal lattice are related to the basis vectors ai of
the Bravais lattice via

bi · aj = 2πδij (2.27)

Relations (2.27) and (2.22) give the reciprocal basis vectors

b1 =
2π

a0

(
��
−1

1

1

)
�� , b2 =

2π

a0

(
��

1

−1

1

)
�� , and b3 =

2π

a0

(
��

1

1

−1

)
�� . (2.28)

General reciprocal lattice vectors have the form

Glmn = lb1 + mb2 + nb3 , (2.29)

where l, m, and n are integers.

The unit cell of the reciprocal lattice is the Brillouin zone. It contains all points
nearest to one enclosed lattice point. Due to periodicity of the reciprocal lattice
only the first Brillouin zone has to be considered for band structure calculation. The
shape of the first Brillouin zone is determined by the boundary faces

|kx|+ |ky|+ |kz| =
3

2

2π

a0

, |kx| =
2π

a0

, |ky| =
2π

a0

, and |kz| =
2π

a0

. (2.30)

These faces are constructed by finding the reciprocal lattice vectors pointing from
the origin to the fourteen nearest lattice points and take perpendicular planes to
these vectors at a position where the planes bisect the vectors [Jungemann03].

The volume for band structure calculation can be further reduced by taking into
account that the symmetry operations for the reciprocal lattice are the same as
for the Bravais lattice. Therefore the symmetry elements given in Table 2.2 can be
directly applied to the reciprocal lattice cell. The smallest possible domain in the
Brillouin zone is termed the irreducible wedge. Figure 2.5 depicts the first Brillouin
zone highlighting the irreducible wedge as well as one octant.

Figure 2.6 shows one octant of the Brillouin zone and a detailed view of the irre-
ducible wedge with the location of some symmetry points as they are usually named
in literature.
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Figure 2.5: Brillouin zone of Si highlighting the first octant and the first irreducible
wedge.

Γ

kx

ky

kz

X

U

L

W
K

Figure 2.6: The irreducible wedge of the diamond structure showing important
symmetry points.
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2.6.1 The Relaxed Diamond Structure: Oh Symmetry

The point group Oh refers to the relaxed diamond structure. It contains 48 symmetry
elements which are listed in Table 2.2. From these symmetry properties follows that
the energy bands are invariant under eight reflections

εn(kx, ky, kz) = εn(|kx|, |ky|, |kz|) (2.31)

and six permutations

εn(kx, ky, kz) = εn(kx, kz, ky) = εn(ky, kx, kz) =

εn(ky, kz, kx) = εn(kz, kx, ky) = εn(kz, ky, kx) . (2.32)

The choice of the irreducible wedge as shown in Figure 2.6 is not unique. If the
irreducible wedge is allowed to exceed the borders of the Brillouin zone, simpler
shapes can be found [Stanley98]. Figure 2.7 depicts the conduction and valence
bands of unstrained Si along lines from one symmetry point to another.

L Γ X U,K Γ
Wave Vector k

-5

-4

-3

-2

-1

0

1

2

3

4

5

E
ne

rg
y 

[e
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Figure 2.7: Valence and conduction bands of Si.
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Figure 2.8: Irreducible wedge of a diamond structure strained along direction [100].

2.6.2 The Biaxially Strained Diamond Structure: D4h Sym-

metry

Biaxial strain applied in a {001} plane of a cubic lattice transforms the cell from
Oh to the D4h symmetry, a member of the tetragonal crystal class [Bir74]. The
same symmetry reduction is observed, if uniaxial strain along a fourfold axis ri is
applied. The point group D4h has 16 remaining symmetry elements. The symmetry
operations maintain invariance of the energy bands under reflections

εn(kx, ky, kz) = εn(|kx|, |ky|, |kz|) . (2.33)

The invariance of the energy bands under permutation depends on the direction of
stress, since only the indices perpendicular to the stress direction can be permuted,
which gives in the case of stress along [100]

εn(kx, ky, kz) = εn(kx, kz, ky) . (2.34)

Figure 2.8 shows a possible choice for the irreducible wedge of the Dh system. The
wedge fits into the first octant of the Brillouin zone and has a volume of ΩBZ/16.
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Figure 2.9: Irreducible wedge of a diamond structure stressed along direction [110].

2.6.3 D2h Symmetry

The cube of the crystal class Oh is converted to a parallelepiped of the orthorhombic
system belonging to D2h when uniaxial stress is applied along <110> or when biaxial
strain is applied in a {110} plane. Equation (2.19) exhibits the form of the strain
tensor [Bir74] which includes off-diagonal elements. As a result the unit cube is
sheared and the angles between the basis vectors are altered.

The D2h group has only eight symmetry elements (given in Table 2.2). A possible
irreducible wedge with a volume of ΩBZ/8 is depicted in Figure 2.9. The irreducible
wedge is any of the eight octants of the Brillouin zone. It should be noted that
the D2h group can also be reached by applying strain to the Oh class along two of
the three fourfold axes ri. In this case, the strain tensor consists of three different
diagonal elements ε11, ε22, and ε33 and vanishing off-diagonal components.

2.6.4 S2 Symmetry

Under arbitrary stress – that is stress along directions other than those given in
Table 2.2 – no rotational symmetries remain. The crystal is invariant only under
inversion and therefore a member of the crystal class S2. In this case half of the
Brillouin zone must be chosen as the irreducible volume for band structure calcula-
tion and for the transport simulation.
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2.6.5 Utilizing Symmetry Properties in Monte Carlo Simu-

lation

Due to the symmetry properties of the reciprocal lattice the simulation domain is
restricted to the first Brillouin zone. All wave vectors k exceeding the first Brillouin
zone are mapped back via subtracting a reciprocal lattice vector Gi,j,k

kfirstBZ = k − Gi,j,k . (2.35)

As illustrated in the last section, only the irreducible wedge is needed as the actual
simulation domain. Mapping a carrier back to the domain of the irreducible wedge is
more complicated as a coordinate transformation is necessary after applying equa-
tion (2.35) and every possible shape of the irreducible wedge demands for its own
set of transformation rules.

To keep the code simple only two sizes of the simulation domain are implemented in
the simulator: if the irreducible wedge fits into the first octant then the first octant
is chosen as the domain, if it exceeds the first octant one half of the Brillouin zone
is chosen. Since these domains can be larger then the irreducible wedge it may be
necessary to extend the original band structure data by permutation.

In the case of the first octant as the simulation domain the octants are numbered as
shown in Figure 2.10. If the carrier crosses the Brillouin zone border in a first step
it is mapped back by subtraction of a lattice vector. In a second step it is mapped
into the first octant by a coordinate transformation. This coordinate transformation
is simply realized by a set of mirror operations as shown in Table 2.3. The table
entries indicate which of the coordinates kx, ky and kz have to be mirrored for a

0 1 2 3 4 5 6 7

0 x y xy z xz yz xyz

1 x xy y xz z xyz yz

2 y xy x yz xyz z xz

3 xy y x xyz yz xz z

4 z xz yz xyz x y xy

5 xz z xyz yz x xy y

6 yz xyz z xz y xy x

7 xyz yz xz z xy y x

Table 2.3: Mirroring operations for transitions between octants of the Brillouin
zone.
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Figure 2.10: Numbering of the octants of the first Brillouin zone. The first octant
is labeled 0.

specific transition from one octant to another. The transformation is applied to the
particle k-vector and to the force vector (see also equation of motion (3.3)).

If the carrier is crossing a border to another octant within the Brillouin zone, the
mirror operations are applied to map it back to the first octant.

If one half of the Brillouin zone is used as the simulation domain there is only one
mirroring operation: all three coordinates of the k-vector and the force vector are
mirrored if a transition from one halfspace to the other occurs.
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Chapter 3

The Semiclassical Transport

Model

As computational power raises and more efficient new Monte Carlo algorithms are
developed, the Monte Carlo approach to solve the Boltzmann equation for TCAD
device simulation is getting more and more important. In this work the Boltzmann
equation – originally developed to describe the flow of kinetic gases – is used with
extensions to meet the properties of quantum mechanical transport occurring for
electron or hole ensembles in crystals. These extensions include particle kinetics de-
pending on a position-dependent band structure and on scattering events, which are
calculated quantum-mechanically using Fermi’s Golden Rule. The carrier motion
consists of periods of collisionless acceleration caused by external forces, interrupted
by instantaneous scattering events. The Monte Carlo approach solves the semiclas-
sical Boltzmann transport equation [Kosina00].

During this work our in-house Monte Carlo tool named VMC [IuE06] was further
developed in general and extended by a FBMC part. This chapter gives an overview
of the used Monte Carlo models and algorithms with focus on the numerical methods
used for CPU time efficient FBMC simulation.

3.1 The Equations of Motion

The semiclassical Hamilton function He
n(r,k, t) for an electron in a conduction band

is given by

He
n(r,k, t) = Ec(r) + εn(r,k) − eψ(r, t) (3.1)
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where Ec is the conduction band edge, εn is the energy of the n-th band relative to
the conduction band edge, ψ is the electrostatic potential, r is the position, k is the
wave vector of the carrier, and e the elementary charge. The Hamilton function for
holes reads

Hh
n(r,k, t) = −Ev(r) + εn(r,k) + eψ(r, t) (3.2)

where Ev is the valence band edge. The collisionless motion of the carriers is de-
scribed by the equations of motions given by Newton’s law

h
∂k

∂t
= −∇rH = F (3.3)

and the carrier group velocity

∂r

∂t
=

1

h
∇kH = v(r,k) . (3.4)

Here, h is the reduced Planck constant, F denotes the force and v the group velocity.
In the semiclassical Monte Carlo framework the velocity vn for a carrier in the band
n is the group velocity of the wave packet of the carrier and follows from (3.4)

vn(r,k) =
1

h
∇kεn(r,k). (3.5)

The force F denotes

Fe
n(r,k, t) = ∇r(−Ec(r) + eψ(r, t) − εn(r,k)) (3.6)

for electrons and

Fh
n(r,k, t) = ∇r(Ev(r) − eψ(r, t) − εn(r,k)) (3.7)

for holes.

3.2 The Boltzmann Transport Equation

Because of the nature of scattering as a random process it is impossible to determine
the path of a carrier exactly. Instead a stochastic approach is used where the carrier
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gas is described by a distribution function fn(r,k, t). This distribution function is
related to the total number of particles Ntot in the system by

Ntot =
2

(2π)3

∑
n

∫
Ω

∫
BZ

fn(r,k, t)d3kd3r. (3.8)

The integral in real space is hereby over the whole device domain Ω whereas the
integral in k-space is over the first Brillouin zone (BZ), 1/(2π)3 is the minimum
phase-space volume of a particle and the factor of two originates from the two
possible spin states of the carriers. The semiclassical Boltzmann equation reads
then

{
∂

∂t
+ FT

n (r,k, t)
1

h
∇k + vT

n (r,k)∇r

}
fn(r,k, t) = SSC(r,k, t). (3.9)

The left hand side is derived from the equations of motion (3.2) and (3.3). SSC is
the scattering integral given by

SSC =
Ω

(2π)3

∑
n′

∫
BZ

(1 − fn(r,k, t))Sn,n′(k|k′)(r, t)fn′(r,k′, t)−

(1 − fn′(r,k′, t))Sn′,n(k|k′)(r, t)fn(r,k′, t)d3k′.

(3.10)

SSC describes the transition from a state (n′, r,k′) into a state (n, r,k) and the
inverse process. The rate for a transition from an initial state (n′, r,k′) to a final
state (n, r,k) is proportional to the probabilities that the initial state is occupied,
fn′(r,k′, t), and that the final state is not occupied, (1 − fn(r,k, t)), and to the
transition rate Sn,n′(k|k′)(r, t). The factor (1 − fn(r,k, t)) stems from the Pauli
exclusion principle.

The Boltzmann equation in the form of (3.9) is non-linear, because the transition
rate may depend on the carrier distribution and the scattering integral includes a
product of the distribution function with itself. The latter can be avoided if the Pauli
exclusion principle is neglected. If additionally it is assumed, that the transition
rate does not depend on the distribution function, we achieve the linear Boltzmann
equation

{
∂

∂t
+ FT

n (r,k)
1

h
∇k + vT

n (r,k)∇r + Sn(r,k)

}
fn(r,k, t)

=
Ω

(2π)3

∑
n′

∫
BZ

Sn,n′(k|k′)fn′(r,k′, t)d3k′.
(3.11)
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The scattering rate Sn(r,k) is the rate at which carriers are scattered out of their
initial state and is defined as

Sn(r,k) =
Ω

(2π)3

∑
n′

∫
BZ

Sn,n′(k′|k)d3k′. (3.12)

Equation (3.11) describes the kinetics of a carrier ensemble where the particles are
considered independent and noninteracting.

3.3 Scattering Mechanisms

In this work scattering is treated on the basis of Fermi’s Golden Rule [Landau81]

Sif =
2π

h
|Mif(t)|2δ(ε − εf) . (3.13)

Here, Sif is the transition probability from the initial state i to the final state f and
εf is the energy of the final state. The matrix element Mif(t) is given by

Mif(t) =

∫
Ψ∗

i V (t)Ψfd
3r , (3.14)

where Ψi and Ψf are the wave functions of the initial and final state, respectively.
V (t) is the perturbation potential.

The density of states per spin of a band n is given by

gn (ε) =
1

(2π)3

∫
cell

δ(ε − εn(k)) d3k . (3.15)

The density of states integral can be evaluated numerically as for FBMC simu-
lation or approximated by analytical expressions. Following the approach of Ja-
coboni [Jacoboni83] an analytical description for the conduction bands is derived
by approximating the minima of the conduction bands – the so called valleys – by
using the bandform function

γv(ε) =
h

2

2

3∑
i,j=1

ki
1

mv
ij

kj =

(εv(k) − εv
0) (1 + αv(εv(k) − εv

0)) = ε (1 + αvε) ,

(3.16)
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vn Volume Boundaries

1 : kx ≥ |ky| ∧ kx ≥ |kz|
2 : −kx ≥ |ky| ∧ −kx ≥ |kz|
3 : ky ≥ |kx| ∧ ky ≥ |kz|
4 : −ky ≥ |kx| ∧ −ky ≥ |kz|
5 : kz ≥ |kx| ∧ kz ≥ |ky|
6 : −kz ≥ |kx| ∧ −kz ≥ |ky|

Table 3.1: The six volumes in the first Brillouin representing the six X-valleys of
the first conduction band.

where v denotes the valley index and ε is the energy relative to the valley energy off-
set εv

0. One can include strain effects by introducing for each valley strain-dependent
effective mass tensors mv

ij, nonparabolicity coefficients αv, and valley energy offsets.
If αv is set to zero the shape of the band approximation simplifies from nonparabolic
to parabolic. The density of states of a nonparabolic band can be written as

gv (ε) =
1√
2

{mv
dos}3/2

π2h3

√
γv (ε)(1 + 2αvε) , (3.17)

where mv
dos is the density of states effective mass of the v-th valley, which can be

obtained from the effective mass tensor

mv
dos = 3

√
mv

11m
v
22m

v
33 . (3.18)

The approach to use valley-dependent scattering models can be adapted from Monte
Carlo with analytical band structure models to fit into the framework of FBMC
[Jungemann03]. The first Brillouin zone of the first conduction band of Si is divided
into six volumes vn as defined in Table 3.1 where vn indices the v-th valley in the
n-th band. The same approximation is also applied to the higher conduction bands.
This approach is in the spirit of the analytical many valley model [Jacoboni83].
In combination with constant matrix elements it gives a CPU efficient formulation
of the scattering rates, because scattering rates are proportional to the density of
states, which is calculated numerically from the full-band structure.
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3.3.1 Phonon Scattering

The transition rate from an initial state (v,k) to a final state (v′,k′) for phonon
scattering in a non-polar semiconductor can be written as [Jacoboni83]

{Sabs
emi}v′v(k′|k) =

π

ρΩωq

(
Nq +

1

2
∓ 1

2

)
O|Dijqjξi|2δ[εv′

(k′)− εv(k)∓hωq] (3.19)

Here, the upper and lower signs denote phonon absorption and emission, respectively.
The rate depends on the the phonon number Nq, the momentum transfer q = k−k′,
the deformation potential tensor Dij , the mass density of the crystal ρ, the overlap
integral O, the phonon angular frequency ωq and its polarization ξi.

The overlap integral

O =

      
∫

BZ

u∗
k′(r)uk(r) exp(iG · r)d3r

      
2

(3.20)

depends on the type of transition. For intravalley transitions of electrons it is com-
mon to set O to unity, which is exact only for wave functions of pure s-states or
for exact plane waves [Jacoboni83]. The lowest conduction band of cubic semicon-
ductors is a mixture of a s and p-type states and so overlap factors less than unity
are obtained. Since for both intra- and intervalley transitions the overlap factors O

were found to be almost constant [Reggiani73] the values for O can be included in
the coupling constants.

The phonon number Nq is given by the Bose-Einstein statistics

Nq =
1

exp

(
hωq

kBTL

)
− 1

, (3.21)

where TL denotes the lattice temperature and kB the Boltzmann constant.

Acoustic Intravalley Scattering at Room Temperature

Since at room temperature the acoustic phonon energy hωq is very small compared to
the thermal energy kBTL the expression for the transition rate for acoustic intravalley
scattering can be simplified by using the elastic and equipartition approximation.
Within the latter approximation the Bose-Einstein statistics (3.21) is replaced by
its first order Taylor expansion which gives for the phonon population Nq

Nq ≃ kBTL

hqus

− 1

2
. (3.22)
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Symbol Value Units

ρ 2.33a g/cm3

us 9.05b cm/sec

ΞΔ
adp 9.0b eV

hωop 61.2c meV

DtKL 1.75c 108eV/cm
a [Jacoboni83], b [Jungemann03], c [Fischetti96b]

Table 3.2: Parameters for acoustic and optical intravalley phonon scattering in Si.

The phonon dispersion relation for small q is approximated as ω(q) ≃ usq. Thus,
(3.19) becomes

{Sabs
emi

ac }v(k′,k) =
πq{Ξv

adp}2

Ωusρ

(
kBTL

hqus

∓ 1

2

)
δ[εv(k′) − εv(k) ± hωq] , (3.23)

where us denotes the average sound velocity and ρ is the mass density of the crystal.
Ξv

adp is the acoustic deformation potential of the v-th valley, which is derived by
averaging the two non-zero elements of the deformation potential tensor over the
polar angle [Jacoboni83].

In the elastic approximation the phonon energy is neglected, hωq = usq → 0. There-
fore, emission and absorption processes are equivalent and the transition probabili-
ties can be added. This leads to a scattering rate for acoustic intraband scattering
which is a function of energy only

{Sac}v (ε) =
2πkBTL{Ξv

adp}2

hu2
sρ

gv(ε) . (3.24)

In (3.24), gv (ε) denotes the density of states of valley v. The values of the parameters
used in (3.24) can be found in Table 3.3.1.

Acoustic Intravalley Scattering at Low Temperatures

When the lattice temperature is very low (3.22) does not hold anymore and the
dependence on the acoustic phonon energy and momentum transfer have to be
considered. Using a model in which the phonon dispersion has to be evaluated during
simulation will demand long calculation times. Therefore it is useful to derive a
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temperature-dependent but otherwise constant mean phonon energy <εac> = hωac

and formulate the acoustic intraband scattering rate as [R.-Boĺıvar05] [Bufler01]

{Sabs
emi

ac }v (ε) =
πΞ2

adp <q>
ρus

(
Nac +

1

2
∓ 1

2

)
gv(ε ± hωac) . (3.25)

To obtain the average momentum transfer <q> a mean momentum transfer q is
calculated first by taking an average over the solid angle Ω

q(ε) =
1

4π

ɸ
qdΩ =

1

2

∫
k
√

1 − 2 cos(ϑ) sin(ϑ)dϑ =
4

3
k . (3.26)

This result is used to take a second average with the equilibrium distribution func-
tion, i.e., the Maxwell-Boltzmann distribution

<q> =

∫ ∞

0

q(ε)e−ε/kBTLg(ε)dε∫ ∞

0

e−ε/kBTLg(ε)dε

. (3.27)

With a parabolic band approximation <q> evaluates to

<q> =

4

3

√
2m∗

h
(kBT )

1

2

0.886
, (3.28)

where m∗ is the effective electron mass. Now, the average phonon energy is obtained
by assuming a linear dispersion relation

<εac> = hus <q> . (3.29)

Optical Intravalley Scattering

From the matrix element theorem one can derive that optical intravalley scattering
occurs only in the conduction band valleys along the <111> directions [Harrison56].
Thus this type of scattering is important in Ge. In Si it contributes only at high
electron energies.

By replacing Ξ2q2ξ2 in (3.19) with a squared optical coupling constant the scat-
tering probability can be reformulated with a squared optical coupling constant
{DtK

v}2 [Jacoboni83]. The optical phonon energies hωop and the phonon number
Nq = Nop can be assumed to be constant since the dispersion curve is nearly flat for
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phonons involved in optical intraband transitions. If the overlap factor O is lumped
in the coupling constant the resulting transition rate can be written as

{Sabs
emi

op }v(k′,k) =
π

ρΩωop

(
Nop +

1

2
∓ 1

2

)
{DtK

v}2δ[εv(k′)−εv(k)∓hωop] . (3.30)

With the above formulation the scattering rate for optical phonons is a function of
the final energy ε ± hωop

{Sabs
emi

op }v (ε) =
π{DtK

v}2

ρωop

(
Nop +

1

2
∓ 1

2

)
gv (ε ± hωop) . (3.31)

The values used for optical intravalley scattering are given in Table 3.3.1.

Intervalley Phonon Scattering

Both acoustic and optical phonons can cause electron transitions between states in
different conduction band valleys [Harrison56, Conwell67]. The scattering rate for
intervalley scattering out of a valley v for a phonon mode η reads

{Sabs
emi

η }v (ε) =
∑
v′ /=v

π{DtK
v′v
η }2Zv′

ρωη

(
Nη +

1

2
∓ 1

2

)
gv′

(
εv′ ± hωη − Δεv′v

)
. (3.32)

The possible final valleys v′ are determined by two selection rules for the phonon
mode η: g-type phonons induce transitions between opposite valleys on the same
axis in k space, and f -type phonons induce transitions among orthogonal axes. The
coupling constants {DtK

v′v
η } depend on the phonon branch η and the initial and final

valley in a particular transition. Zv′

denotes the number of possible final equivalent
valleys in a transition, Nη is the phonon number, and Δεv′v is the energy difference
between the minima of the final and initial valley.

The numerical values for the bulk phonon scattering rates are summarized in Ta-
ble 3.3.

Figure 3.1 depicts the low field electron mobility over temperature. This result is
obtained by Monte Carlo simulation including only phonon scattering and agrees
very well with simulation data from [Canali75]. Because of the influence of impu-
rity scattering the mobility obtained from experimental data is lower in the low
temperature regime.
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Figure 3.1: Low field electron mobility in Si versus lattice temperature as a re-
sult of Monte Carlo simulation (VMC) compared to experimental and
theoretical data [Canali75].

Phonon Mode η DtK[MeV/cm] hω[meV] Selection Rule r

Transversal acoustic 50 12.06 g

Longitudinal acoustic 80 18.53 g

Longitudinal optical 1100 62.04 g

Transversal acoustic 30 18.86 f

Longitudinal acoustic 200 47.39 f

Transversal optical 200 59.03 f

Table 3.3: Phonon modes, coupling constants, phonon energies, and selection rule
for Si as used in the analytical intervalley phonon scattering model.
Values are taken from [Jacoboni83].

Full-Band Phonon Scattering

As explained in the introduction of Section 3.3, the many-valley approach for ana-
lytical band models is adapted for the full-band framework. The differences in the
formulation of the scattering rates lie then in the analytical versus the numerical
calculation of the density of states and the implementation of interband transitions.
The transition rate of full-band acoustic intravalley scattering is derived by applying
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Phonon Mode η DtK[MeV/cm] hω[meV] Selection Rule r

Transversal acoustic 47.2 12.1 g

Longitudinal acoustic 75.5 18.5 g

Longitudinal optical 1042 62.0 g

Transversal acoustic 34.8 19.0 f

Longitudinal acoustic 232 47.4 f

Transversal optical 232 58.6 f

Holes acoustic 991 63.3 a

Table 3.4: Phonon modes, coupling constants, phonon energies, and phonon
branch of inelastic phonon scattering for Si [Dhar06] as used in FBMC
simulation.

Phonon Mode η DtK[MeV/cm] hω[meV] Selection Rule r

Transversal acoustic 47.9 5.6 g

Longitudinal acoustic 77.2 8.6 g

Longitudinal optical 928 37.0 g

Transversal acoustic 283 9.9 f

Longitudinal acoustic 1940 28.0 f

Transversal optical 1690 32.5 f

Holes acoustic 3500 37.0 a

Table 3.5: Phonon modes, coupling constants, phonon energies, and phonon
branch of inelastic phonon scattering for Ge [Jungemann03] as used
in FBMC simulation.

the elastic approximation to (3.23)

{Sac}n′n(k′|k) =
2π

h

kBTL{Ξadp}2

Ωρu2
s

δ(εv
n′(k′) − εv

n(k))δvn′ (k′),vn(k) . (3.33)

The deformation potentials Ξ are assumed to be 8.5 eV for electrons and 5.12 eV
[Dhar06] for holes in Si [Dhar06] and 8.79 eV for electrons and 7.40 eV for holes in
Ge [Jungemann03]. The Kronecker delta term on the right hand side defines that
transitions are allowed only within a valley v, but between different bands n′ and n.
The probability to scatter to another band n is determined by the contribution of
the density of states in this band at the final energy.
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For the simulation of SiGe alloys the parameter values for Si and Ge are linearly
interpolated according to the material composition. Since only the Δ-valleys are
considered in the the implemented full-band scattering formalism, simulation of
SiGe compounds is only valid as long as the Δ-valleys are dominantly populated.

The coupling constants, phonon energies, and phonon modes η, and the selection
rule r for inelastic full-band phonon scattering in Si are shown in Table 3.4. The
coupling constants are taken from [Jacoboni83] and [Jungemann03] and are fine-
tuned to match the measured data for biaxial strained Si [Dhar06]. Table 3.5 shows
the respective values for Ge, which are used to calculate the interpolated parameter
values of SiGe alloys.

The phonon branches determine a set of selection rules labeled r(η, v(k′), v(k)). In
the full-band formulation these selection rules act on the density of states whereas
the coupling constant is kept constant for all combination of valleys and bands. This
leads to the expression

{Sabs
emi

η }n,n′

(k′|k) = (3.34)

=
π{DtKη}2

V ρωη

(
Nη +

1

2
∓ 1

2

)
δ(εn′(k′) ± hωη − εn(k))r(η, v(k′), v(k))

for the transition rate due to intervalley phonon scattering. For holes there is no
restriction in the selection of the final state by a selection rule and there is only one
inelastic optical phonon mode.

Figure 3.2 shows the electron velocity for relaxed Si as a function of the electric
field in [100] direction. It can be observed that the data from VMC agrees well with
measurements.

Figure 3.3 depicts the hole velocity as a function of the electric field and Figure 3.4
the energy as a function of the electric field in [100] direction for relaxed Ge. These
results are compared to values from literature [Fischetti96a][Yamada95][Ghosh06]
and show good agreement.
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Figure 3.2: Electron velocity versus field in [100] direction for relaxed Si. Monte
Carlo results (VMC) are compared to measurement [Canali75].
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Figure 3.3: Hole velocity versus field in [100] direction for relaxed Ge.
Monte Carlo results (VMC) are compared to results from litera-
ture [Fischetti96a][Yamada95][Ghosh06].
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Figure 3.4: Hole energy versus field in [100] direction for relaxed Ge.
Monte Carlo results (VMC) are compared to results from litera-
ture [Fischetti96a][Yamada95][Ghosh06].

3.3.2 Ionized Impurity Scattering

In this work the well known model of Brooks and Herring [Brooks51] is used in an
extended form, where multi-potential scattering and dispersive screening is included.
The Fourier transformed potential VBH of a screened, ionized impurity is given by

VBH (q) =
Ze

4πǫ0ǫs

1

q2 + β2
s

. (3.35)

Here, Ze is the charge of the impurity center and βs is the inverse Thomas-Fermi
screening length

β2
s =

e2nI

ǫ0ǫskBTL

F−1/2 (η)

F1/2 (η)
, (3.36)

where nI is the concentration of the impurity centers and Fi denotes the Fermi
integral of the i-th order with the reduced Fermi energy η as argument

η =
εF − εC

kBTL

. (3.37)
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Application of the Golden Rule (3.13) and the scattering potential (3.35) gives the
transition rate

{SBH}n′n(k′|k) =
2π

h

(
Ze

4πǫ0ǫs

)2
1

(q2 + β2
s )

2 δ(εv
n′(k′) − εv

n(k)) . (3.38)

The ionized impurity scattering rate from the above potential can be formulated
[Kosina98]

SBH = C(k)
1

2β2
s

b

1 + b
. (3.39)

Here, b = 4k2/β2
s and the prefactor C (k) is set

C (k) =
nIZ

2e4

2πh2ǫ2
0ǫ

2
svg (k)

, (3.40)

where vg denotes the magnitude of the group velocity. In the approximation based
on non-parabolic analytic bands, the scattering rate for a valley v evaluates to

SNP
BH (ε) =

nIZ
2e4

2
√

2π(ǫ0ǫs)2ε2
β,v

√
m∗

v

√
γ(ε)

1 + 2αvε

1 + 4γ(ε)
εβ,v

, (3.41)

with

εβ,v =
h

2β2
s

2m∗
v

. (3.42)

Multi-Potential Scattering and Dispersive Screening

The Brooks-Herring model significantly overestimates the mobility for higher impu-
rity concentrations. To extend the validity of the model, multi-potential scattering
and dispersive screening via Lindhard’s dielectric function is included. Multi poten-
tial scattering to the first order considers only the Coulomb interaction of the carrier
with pairs of impurities. The Fourier transform of the applied potential takes the
form:

V0 (q) =
Ze

4πǫ0ǫs|q|2 (1 + exp (−iqR)) , (3.43)

where R is the distance between the centers.
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Vt is the total potential which forms because of the response of the electrons to the
applied potential V0. The total potential is related to the applied potential via the
dielectric function ǫ(q, ω)

Vt (q) =
V0 (q)

ǫ (q, 0)
. (3.44)

The frequency ω equals zero because the applied potential is time independent.
When considering only low order screening effects, Lindhard’s dielectric function is
appropriate [Ferry91]:

ǫ (q, 0) = 1 +
β2

s

q2
G (ξ, η) , (3.45)

Here, G (ξ, η) denotes the screening function for which an integral representation
exists [Ferry91]

G (ξ, η) =
1

F−1/2 (η)

1

ξ
√

π

∞∫
0

x

1 + exp (x2 − η)
ln

    x + ξ

x − ξ

    dx , (3.46)

with

ξ2 =
h

2q2

8m∗kBTL

. (3.47)

The integral (3.46) cannot be evaluated analytically, but there are attempts in liter-
ature to approximate it with a sufficiently accurate rational expression [Kosina98].
After combining equations (3.43)(3.44) and (3.45) and averaging the term |1 +
exp(−iqR)|2 over the solid angle |Vt|2 is found as

|Vt(q)|2 =

(
Ze

4πǫ0ǫs

)2
1

(q2 + β2
s
G(ξ, η))2

(
1 +

sin (qR)

qR

)
. (3.48)

Equivalent Scattering Cross Section

The long range of the Coulomb force causes a large scattering cross section of a
single ion. This makes Coulomb scattering occur very frequently and consume a
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high amount of computation time during a Monte Carlo simulation. The momen-
tum transfer per scattering event is rather small. This leads to a very anisotropic
scattering behavior with a high percentage of small-angle scattering events.

The number of scattering events can be significantly reduced by the introduction
of an isotropic equivalent scattering cross section σ̃, which has the same momen-
tum relaxation time as the original cross section σ. These cross sections are related
by [Kosina97]

σ̃(k, cos(θ)) =
1

2

1∫
−1

(1 − cos θ) σ (k, cos θ) d cos θ , (3.49)

where θ is the angle between k and k′. The equivalent total scattering rate S̃BH is

S̃BH = 2πnIvg(k)

1∫
−1

(1 − cos θ) σ (k, cos θ) d cos θ . (3.50)

Using the potential (3.35) in Fermi’s golden rule and integrating over the final states
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Figure 3.5: Electron low field mobility versus doping concentration for Si. Ex-
perimental data [Masetti83] are compared to Monte Carlo results. An
ionized impurity model which includes a two-ion potential and disper-
sive screening is used for the Monte Carlo simulation.
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the equivalent total scattering rate S̃BH is found to be [Kosina97]

S̃BH = C(k)
1

4k2

(
ln(1 + b) − b

1 + b

)
. (3.51)

Figure 3.5 shows the low field electron mobility versus the doping concentration in
Si. The Monte Carlo result is achieved by using a modified Brooks-Herring scattering
model, which includes a two-ion potential and dispersive screening. The result shows
fairly good agreement with experimental data [Masetti83]. Further improvements
can be achieved by taking the second Born correction and plasmon scattering into
account [Kosina98].

3.3.3 Impact Ionization

Impact ionization is modeled using a modified threshold expression [Cartier93]

SII =

����
����

P1

(
ε

1eV
− ε1

th

1eV

)3

: ε1
th < ε < ε1

th + εOS

P2

(
ε

1eV
− ε2

th

1eV

)2

: ε1
th + εOS < ε

(3.52)

where SII is the impact ionization scattering rate, ε1
th and ε2

th are threshold energies,
and P1 and P2 are prefactors which determine the softness of the threshold. The
value of the offset energy εOS is chosen to render the scattering function continuous.

The parameters are tuned to reproduce measured electron velocity field character-
istics [Canali75] and impact ionization coefficients [Slotboom87][Overstraeten70]
[Maes90] for relaxed Si: ε1

th = εg, ε2
th = εg + 444 meV, P1 = 4.5 · 1011 1/s, P2 =

3.4 · 1012 1/s, and εOS = 622 meV. For strained Si the threshold values are adjusted
in accordance with the bandgap change. After an impact ionization scattering event
is evaluated the overall final energy ε− εg is randomly distributed between the hole
and the primary and secondary electrons.

Fig 3.6 depicts the impact ionization coefficient of electrons in Si as a function of the
inverse electric field. The simulation result agrees very well with various measured
values from literature.
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Figure 3.6: Impact ionization coefficient versus the inverse electric field. Monte
Carlo result (VMC) is compared to measurements [Overstraeten70]
[Slotboom87][Maes90].
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Chapter 4

Monte Carlo Technique

4.1 Random Numbers: Direct and Indirect Method

Monte Carlo Methods require a large amount of uniformly distributed random num-
bers. In computer simulations usually a sufficient long sequence of pseudo random
numbers is used, which makes the results reproducible and debugging of program
code generally easier. The probability density p(r) of a uniformly distributed random
number r is

p(r) =

{
1, 0 < r < 1

0, otherwise
(4.1)

The uniformly distributed pseudo random numbers are used to obtain random num-
bers x according to a given distribution function F (x). The distribution function
reads [Papoulis84]

F (x) =

x∫
−∞

p(x′)dx′ . (4.2)

The distribution function satisfies

F (−∞) = 0, 0 ≤ F (x) ≤ 1, and F (∞) = 1. (4.3)

If the distribution function is simple enough so that its inverse F−1 can be found
the direct method [Kalos86] [Jacoboni83] can be used to obtain a random number
x from a uniformly distributed random number r by

x = F−1(r) . (4.4)
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If the probability distribution is discrete – with Pj being the probability of the jth
event – the integer number i can be calculated with a discrete formulation of the
direct method

i :
i−1∑
j=1

Pj < r ≤
i∑

j=1

Pj, (4.5)

With this procedure the i−th event of N possible events is chosen according to the
discrete probabilities of the events. For those cases where the inverse distribution
cannot be obtained the rejection method can be used.

This method consists of two steps. It involves the probability density p̃(x) which is
chosen so that it reproduces the original probability density p(x) as close as possible
but with the constraint that a closed form of the inverse distribution function can
be found. In a first step a random number x1 is generated with a probability density
p̃(x) with the condition

Mp̃(x) ≥ p(x), (4.6)

where M is a positive constant. The closed form of the inverse distribution function
allows to generate x1 using the direct method from an uniformly distributed random
number r1. In a second step it is determined if the random number x1 is accepted
by the condition

p(x1) > r2Mp̃(x1). (4.7)

Here, r2 is another uniformly distributed random number. If (4.7) does not hold, x1

is rejected and the whole procedure is repeated with two new random numbers r1

and r2.

4.2 Piecewise Constant Gamma Scheme

During a Monte Carlo simulation the scattering rate depends in a complex way on
the carrier state. Therefore, calculating the time tscat of the next scattering event
demands for high computing time. To speed up the calculation of tscat the scattering
rate can be rendered to a constant upper bound value, Γ, by introducing an artificial
scattering process, the so called self-scattering [Jacoboni83] process. In the follow-
ing a scheme using piecewise constant Γ-values is illustrated, which is particularly
suitable for FBMC.

For the sake of a simplified notation the variables of a particle state are written as

ξ = (n, rT,kT)T . (4.8)

41



MONTE CARLO TECHNIQUE 4.2 Piecewise Constant Gamma Scheme

With (3.3) and (3.4) ξ̇ is formulated as

ξ̇ =

(
n,vT

n (r,k),FT
n (r,k)

1

h

)T

. (4.9)

Furthermore, the integral over the phase space volume and the summation over the
band index is shortened as∫

dξ =
∑

n

∫
Ω

∫
BZ

d3kd3r . (4.10)

With the above formulations and the definitions [Jungemann03]

ξ̇T∇ξ = FT
n (r,k)

1

h
∇k + vT

n (r,k)∇r , (4.11)

S(ξ, ξ′) =
Ω

(2π)3
Sn,n′(k,k′)(r)δ(r − r′) , (4.12)

the BTE (3.11) for the probability density can be written as

{
∂

∂t
+ ξ̇T∇ξ + S(ξ)

}
p(ξ, t) =

∫
S(ξ, ξ′)p(ξ′, t)dξ′ . (4.13)

The probability density in the phase-space is related to the distribution function by

p(ξ) = p(r,k, t) =
2

N(2π)3
fn(r,k, t) . (4.14)

Here, N denotes the total number of carriers in the carrier gas. With the introduction
of the conditional probability density p(ξ′, t′|ξ, t), which gives the probability that
a carrier in the state ξ at the time t is found in the state ξ′ at time t′, the formal
integration of the BTE gives for the probability density

p(ξ, t|ξ0, t0) = p0(ξ, t|ξ0, t0)+

t∫
t0

∫ ∫
p0(ξ, t|ξ′1, t1)S(ξ′1|ξ1)p(ξ1, t1|ξ0, t0)dξ′1dξ1dt1 .

(4.15)

In (4.15) p0(ξ, t|ξ0, t0) is the conditional probability density that a particle with the
initial state ξ0 at the time t0 is found in the state ξ at time t without being scattered

p0(ξ, t|ξ0, t0) = δ(ξ − ξMot(t|ξ0, t0)) exp

(
−

t∫
t0

S(ξMot(τ |ξ0, t0))dτ

)
 . (4.16)
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Here, ξMot(t|ξ0, t0) is the solution of the equations of motion (3.3) and (3.4) for a
carrier tracked from time t0 to time t with the initial position ξ0 in phase-space.
The evaluation of (4.16) is simplified by adding a self-scattering process SSelf to the
scattering integral, which has the transition rate [Jacoboni83]

SSelf(ξ
′, ξ) = (Γ − S(ξ)δ(ξ′ − ξ) , (4.17)

This self-scattering does not change the carrier state and therefore leaves the solution
of the BTE unchanged, but renders the total scattering rate to a constant Γ.

Stot =

∫
SSelf(ξ

′|ξ)dξ′ + S(ξ) = Γ . (4.18)

Γ must be larger than the scattering rate for all possible states ξ. The probability
that a scattering event occurs at time τ in an interval dτ after being propagated
since time t0 without scattering is

dpscat = τ

(∫
p0(ξ, τ |ξ0, t0)dξ

)
dτ (4.19)

With the direct method the time tscat is obtained by integration of (4.19), where r
is a uniformly distributed random number

r∫
0

dpscat =

tscat∫
t0

∫
τp0(ξ, τ |ξ0, t0)dξdτ = 1 − exp(−τ(tscat − t0)) . (4.20)

Solving (4.20) for tscat yields

tscat = t0 − 1

τ
ln(1 − r) . (4.21)

Evaluation of (4.21) allows a much more efficient calculation of the time of flight
compared to solving the integral (4.16). As a tradeoff it introduces new artificial
scattering events. Since Γ must be larger than the physical scattering rate S(ξ) for
all possible states ξ, and S(ξ) usually varies over several orders of magnitude, a
constant Γ leads to a dominating self scattering rate for some regions. To overcome
this drawback the phase-space is partitioned into small regions Ωi and for each region
a local Γi is determined

Γi = max
ξ∈Ωi

[S(ξ)]. (4.22)
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Within FBMC it is convenient to choose the region Ωi to be the volume of a
mesh element of the phase space mesh. The duration of a collisionless flight is
then [Jungemann03]

Γj(tscat − tj) = − ln(1 − r) −
j∑

k=1

Γk−1(tk − tk−1) for tj ≤ tscat < tj+1 (4.23)

where tj is the time at which a particle passes from mesh element Ωj−1 to Ωj. The
sum on the right hand side of (4.23) is evaluated during the collisionless flight until
tscat is smaller than the time the carrier needs to reach the border of the next mesh
element. The random number r remains unchanged during this procedure. After the
element where the collisionless flight ends is determined, the new state

ξ = ξmot(tscat|ξ0, t0) (4.24)

is obtained by evaluating the equations of motion (3.3) and (3.4). Next one of the
scattering processes (including self scattering) is selected by using the direct method

i−1∑
l=1

Sl(ξ) < Γjr ≤
i∑

l=1

Sl(ξ) (4.25)

where r is another uniformly distributed random number. If self scattering is se-
lected the carrier state remains unchanged but particle statistics are updated and
evaluation of equation (4.23) is started again with a new random number. If a phys-
ical scattering process is selected a position within the k-space has to be determined
for the scattered particle.

4.3 Self-Scattering Scheme for Ionized Impurity

Scattering

Instead of evaluating the ionized impurity scattering rate with the complicated po-
tential (3.48), a more efficient self-scattering scheme can be implemented in a Monte
Carlo simulator. Within this scheme the Brooks-Herring rate multiplied by a factor
M is evaluated. Using (3.35) and (3.48) M is chosen so that the following relation
is fulfilled for any q in the interval [0, 2k]

M |VBH(q)|2 ≥ |Vt(q)|2 . (4.26)
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A scattering rate of Brooks-Herring type is obtained which is always larger than the
scattering rate resulting from the potential (3.48)

M |SBH(q)|2 ≥ |St(q)|2 . (4.27)

Here, St is the scattering rate, which is evaluated with the potential (3.48). There-
fore a well defined probability P exists that a Coulomb scattering event is ac-
cepted [Kosina97]

P =

2k∫
0

|Vt(q)|2q3dq

M

2k∫
0

|VBH(q)|2q3dq

. (4.28)

Instead of solving these integrals numerically a solution by means of Monte Carlo
integration can be found the following way. First a random number qr ∈ [0, 2k] with
the probability density |VBH(q)|2q3 is chosen. Then a second random number pr is
chosen, which is evenly distributed between [0, M |VBH(qr)|2]. If pr < |Vt(qr)|2, the
scattering event is accepted, otherwise it is rejected and a self-scattering event is
performed.

4.4 Selecting a k-vector after Scattering

In this section, the basic layout of a rejection algorithm to select the final state of a
carrier after a scattering event is shown.

For scattering models with constant matrix elements the scattering rates are propor-
tional to the DOS at the carrier’s final energy εf (see Section 3.3). Selection of a state
after scattering then relies mainly on the calculation of the contribution to the DOS
of the mesh elements including the particle’s final energy. This is achieved by using
tetrahedral mesh elements and linear interpolation of the energy within the mesh
elements. The contribution gi to the DOS of the i-th tetrahedron is proportional to
the intersection of the equi-energy surface Ai(εf) [Lehmann72][Jungemann03]

gi =
1

(2π)3h

Ai(εf)

|v(k)| . (4.29)
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The group velocity v(k) defined by equation (3.5) is constant within a tetrahe-
dron if we consider a linear interpolation of the energy. The group velocity can be
precalculated and stored in a table. The total DOS for a band n is given by

gn (εf) =
1

(2π)3

∫
BZ

δ(εf − εn(k)) d3k =
1

(2π)3h

∫
A(εf )

1

|v(k)| d2k =
∑

i

gi . (4.30)

It should be noted, that with linear energy interpolation an equi-energy surface
within the Brillouin zone is continuous.

The most time consuming task while computing a scattering event is the selection
of a final tetrahedron containing the final energy εf . Several tables are calculated
once at start time of the simulation to speed up this selection process.

< Table of Sorted Tetrahedrons: the tetrahedral mesh elements represent-
ing the considered part of the first Brillouin zone are sorted with respect to
their lowest energy values. Additionally, the numbering of the vertices of each
tetrahedron is sorted with respect to increasing energy values.

< Table of Upper Bounds for DOS: the range from the lowest to the highest
occuring energy within a band is divided into small energy intervals Δεi. For
each energy interval the highest DOS within all tetrahedrons is stored to build
a table of upper bounds DOS(ε).

< Upper Bound for Energy Differences: for each energy interval Δεi the
largest energy difference within the tetrahedrons which intersect a specific
energy interval Δεi is stored to build a list of upper bounds Δεmax(ε).

After a scattering process is selected the final energy εf of the scattered particle is
known and so the search for a final tetrahedron can be constricted to the tetrahe-
drons containing εf . Actually only tetrahedrons with a minimum energy in the range
between εmin and εmax from the table of sorted tetrahedrons are considered in this
search.

εmin = (εf − Δεmax(εf))

εmax = εf

(4.31)

The corresponding table indices Nmin and Nmax are calculated by a binary search.
Then a tetrahedron Ti is chosen randomly from this interval. There is a small number
of tetrahedrons in the considered interval which do not contain εf . These are sorted
out within a first rejection step.
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no

yes

no

yes

Get tetrahedron index range from
Nmin to Nmax from table

Get tetrahedron Ti from index range
with uniform probability and r1

ǫ
Ti
max > ǫf

DOS(ǫf) r2 < DOSTi (ǫf)

Select final tetrahedron Ti

Figure 4.1: Rejection technique for the selection of the final state in k-space. r1

and r2 are uniformly distributed random numbers between zero and
one.

During a second rejection step the DOS within the tetrahedron has to be evaluated
using equation (4.29). Figure 4.1 shows a flow-chart of the selection procedure with
its two step rejection technique. Since the whole procedure is repeated until the
second rejection step is passed, gi(εf) has to be evaluated frequently during the
simulation.
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Finding the Final Wave Vector within the Chosen Tetrahedron

After selecting the final tetrahedron Ti, a final wave vector kf has to be chosen
within this tetrahedron. Since equi-energy areas are planes and the group velocity
is constant within a tetrahedron, this problem is reduced to the determination of a
uniformly distributed random point on the equi-energy plane defined by εf .

The equi-energy plane has the shape of either a triangle or a quadrangle as depicted
in Figure 4.9 and Figure 4.10, respectively. In the case of a quadrangle, it is split
into two triangles and one triangle is randomly chosen according to the surface ratio.
The final k-vector is then determined with

kf = t1 + λ1(t2 − t)1 + λ2(t3 − t1) , (4.32)

where t1, t2, and t3 are the k-vectors to the vertices of the triangle. The random
numbers λ1 and λ2 are derived as [Jungemann03]

λ1 = 1 −√
1 − r1 (4.33)

λ2 = r2(1 − λ1) .

Here, r1 and r2 uniformly distributed random numbers.

4.5 Meshing of the Brillouin Zone

Within this work we mesh the first octant of the first Brillouin zone to represent
the band structure of relaxed and biaxially strained Si (see Section 2.6). Because
an octant is a larger volume than the irreducible wedge, this approach obviously
increases memory consumption. However, it simplifies the manipulations needed
when particles reach a boundary [Karlowatz07].

The energy bands are calculated for the irreducible wedge using the empirical pseu-
dopotential method [Ungersboeck07a][Rieger93] and then transformed by coordinate
permutation to completely fill the first octant. Two approaches of mesh generation
employing structured and unstructured tetrahedral meshes are explored for several
simulation setups.

The structured mesh is based on an octree approach. The domain to be meshed is
devided into cubes and afterwards the cubes are divided into six tetrahedrons. To
mesh the {111} surface of the Brillouin zone either one or five tetrahedrons have to
be cut away from the six tetrahedrons forming one cube. The result is a structured
tetrahedral mesh, whose surface is conform with the Brillouin zone boundary.

Figure 4.2(a) shows the kx-ky plane of the first octant of the Brillouin zone with
the contour plot of the energy of the first conduction band. The main drawback of
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the octree approach is the difficulty to implement a sufficiently flexible refinement
strategy to accomodate different mesh densities. In [Fischer99] an octree algorithm
is proposed which can deal with different mesh densities, but the refinement zone is
limited to a cubical region and is therefore not very flexible.

A more flexible way of generating unstructured meshes is to use a mesh generator
which can handle arbitrary point clouds with different point densities. In this par-
ticular work DeLink [Fleischmann99] was used to generate an initial, very coarse,
unstructured mesh. For different energy bands this initial mesh was refined by the
so-called tetrahedral bisection method. The basic idea of this method is to insert a
new vertex on a particular edge, the refinement edge, of a tetrahedron, and to cut
the tetrahedron into two pieces.

In literature one can find different improvements and specifications for this algo-
rithm (see, for example [Arnold00]). One common problem is the detection of the
refinement edge. In a mesh, tetrahedrons are not isolated and inserting a new ver-
tex influences the whole refinement edge batch of the tetrahedron if the conformity
of the mesh after the refinement step should be kept, which is normally the case.
To guarantee good shaped elements, a recursive refinement mechanism was chosen.
This approach produces very regular, almost isotropic elements.

To guarantee a conforming mesh during the refinement procedure, all tetrahedrons
sharing a common refinement edge have to be divided. A tetrahedron is said to be
compatibly divisible if its refinement edge is either the refinement edge of all other
tetrahedrons sharing that edge or the edge is part of the boundary of the domain.
If a tetrahedron is compatibly divisible, we divide the tetrahedron and all other
tetrahdedrons sharing the refinement edge simultaneously. If a tetrahedron is not
compatibly divisible, we ignore it temporarily and divide a neighbor tetrahedron by
the same process first. This leads to the atomic algorithm [Kossaczký94]. Figure 4.3
illustrates the recursive refinement process, where one new vertex is inserted.

As an input to the mesher, regions of high point densities are pre-defined by the
known positions of the band-minima in the Brillouin zone of Si. The dimension of
this region is chosen such that the shifted band-minima of strained Si are taken into
account and so the same mesh is usable with recalculated energy values for different
amounts of strain. As every band has its unique position of the band-minina, the
meshes are calculated for each band seperately. For the valence bands only one one
mesh is used, which is refined around the Γ-point.

To demonstrate the benefits of mesh refinement four meshes are compared. A fine
one and a coarse one of each the structured and the unstructured mesh type were
generated. The number of points and tetrahedrons in the first conduction band of
these meshes are shown in Table 4.5.

Figure 4.4 shows the mean electron energy as a function of the electric field for
bulk Si for both structured and unstructured tetrahedral meshes. As the curves
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(a) Structured Mesh

(b) Unstructured Mesh

Figure 4.2: kx-ky plane of the first conduction band in the first Brillouin zone with
(a) structured and (b) unstructured meshes. Shown is only one octant.
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(a) Four tetrahedrons. (b) The refinement edge.

(c) New vertex. (d) Eight tetrahedrons.

Figure 4.3: The recursive refinement procedure involving four tetrahedrons with
one common refinement edge.
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Figure 4.4: Electron mean energy versus field along [100] direction for Si at 77K
and 300K.

for 300K and also for 77K are grouped very close together above 10kV/cm, it can
be concluded that for practical purposes the accuracy of the results in the high
field regime is about the same for all meshes. Figure 4.5 shows a similar result for
the velocity as a function of the electric field. These results demonstrate that the
unstructured meshes perform very well in the high energy regimes, despite they
contain less mesh elements than the structured meshes in that areas.

Figure 4.6 shows the normalized mean energy of electrons obtained from FBMC
simulation at thermal equilibrium. The result for the unstructured meshes are in
good agreement and converge for low temperatures to the theoretical equilibrium
value of 3kBT/2. While the fine structured mesh is sufficiently accurate at high tem-
peratures, both structured meshes fail completely at low temperatures. Figure 4.7
shows the low field mobility of electrons. Again the coarse structured mesh fails,
while fine structured mesh is in fair agreement with the unstructured meshes.

Table 4.5 gives an overview about computation times for different meshes. The
computation times are separated into the times for mesh data structure build-up,
which is required once at the beginning of the simulation, and two typical velocity
calculations, one in the low field regime at 0.1kV/cm and a second one at 200kV/cm.
For every velocity calculated the total amount of scattering events was set to 5 ·106.
For the calculations a computer system with a Intel; Pentium; 4 CPU with 2.4GHz
was used and the user process CPU time was measured.
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Figure 4.5: Electron velocity versus field along [100] direction for Si at 77K and
300K.
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Figure 4.6: Normalized mean energy of electrons in Si at thermal equilibrium ver-
sus temperature.

53



MONTE CARLO TECHNIQUE 4.5 Meshing of the Brillouin Zone

50 100 150 200 250 300 350
Temperature [K]

1000

10000

1e+05

M
ob

ili
ty

 [c
m

2 /V
s]

coarse structured
fine structured
coarse unstructured
fine unstructured

Figure 4.7: Low field mobility of electrons in Si versus temperature.

One can clearly observe that the CPU time consumption is high for the structured
meshes. This is mainly due the higher build-up times. With the much higher amount
of mesh elements for the fine structured mesh, it takes a long time to compute the
precalculated tables shown in the last section. The computation time using the un-
structured fine mesh is approximately in the same range as for the coarse structured
mesh, but one has to keep in mind, that the structured mesh fails completely for
the average kinetic energy at temperatures less than room temperature, where the
coarse unstructured mesh still gives reasonable results (see Figure 4.6).

In conclusion, the tetrahedral meshes offer a very good potential for refinement
techniques. Simulation results in the high field regime show similar accuracy for
properly refined meshes as for structured octree-based meshes with more than ten

data structure
group granularity

points
tetrahedrons

fine 278 166 1 536 134
structured

coarse 37 286 192 618

fine 39 330 180 294
unstructured

coarse 20 346 88 938

Table 4.1: Parameter values of the meshes used for the first conduction band.

54



MONTE CARLO TECHNIQUE 4.6 Calculating the DOS

group granularity build-up time 200 kV/cm 0.1 kV/cm

fine 12′19′′ 18′55′′ 14′49′′
structured

coarse 2′26′′ 4′51′′ 3′12′′

fine 1′45′′ 4′57′′ 3′54′′
unstructured

coarse 1′26′′ 4′11′′ 3′01′′

Table 4.2: CPU time consumption for electron velocity simulations for a set of four
different test meshes.

times the amount of tetrahedral elements. Simulations of electron mobility and mean
electron energy in the low field regime show much better accuracy for refined meshes
than octree-based meshes, particularly for simulations at low lattice temperatures.

4.6 Calculating the DOS

As shown in the last section the contribution of the tetrahedrons at a certain en-
ergy to the DOS has to be evaluated very frequently during a FBMC simulation.
Therefore it is important to implement a CPU time efficient calculation algorithm.

x
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k3

0
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k13

k23

Figure 4.8: Tetrahedron with its defining location vectors
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According to (4.30) the crucial step for the calculation of the DOS is to obtain the
areas Ai of the intersecting equi-energy planes of all contributing tetrahedrons i.

In a first step the table of sorted tetrahedrons as defined in the last section is used
to efficiently find tetrahedrons which intersect the considered energy surface. In the
following both a conventional way to obtain this area and a more efficient approach
based on the use of pre-calculated coefficients are presented. For the conventional
calculation of the equi-energy plane the intersection points of the plane with the
tetrahedron’s edges are determined first.

With the vectors k0 to k3 of the tetrahedron’s corners as depicted in Figure 4.8 the
edges are derived as

k01 = k1 − k0, k02 = k2 − k0, k03 = k3 − k0, (4.34)

k12 = k2 − k1, k13 = k3 − k1, k23 = k3 − k2.

The edge equation in parameter form is then

sij = ki · (1 − tij) + kjtij , tij ∈ [0, 1] . (4.35)

The energy is interpolated linearly

εij = εi · (1 − tij) + εjtij . (4.36)

For a given energy ε the parameter tij evaluates to

tij =
ε − εi

εj − εi

. (4.37)

The sij are the sought intersection points of the euqi-energy plane with the edge
vectors. With (3.5) and (4.37) equation (4.35) evaluates to

sij(ε) = ki +
ε − εi

hvT · (kj − ki)
(kj − ki) , i, j = 0, 1, 2, 3 , i /= j . (4.38)

Expression (4.38) is symmetric, sij = sji. The intersection plane has either the shape
of a triangle or a rectangle. If the intersection area consists of three intersection
points forming a triangle AT, its area is calculated by

AT =
1

2
|(sij − sil) × (sik − sil)|. (4.39)

In the case that the intersection is a quadrangle, it is split into two triangles the
areas of which can be calculated as in (4.39).
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Calculation of the area coefficients

To save computation time the calculation of intersection planes can be optimized by
introducing area coefficients [Jungemann03], which are calculated in a pre-processing
step and stored for each tetrahedron. The tetrahedron’s vertices k0,k1,k2, and k3

carry the energies ε0, ε1, ε2, and ε3. The energy ε changes linearly along the edges
and is proportional to the parameter t (4.37). Therefore for the case of a triangular
shaped slice as shown in Figure 4.9 we obtain for the area AT

AT = c1t
2 = c2(ε − ε0)

2. (4.40)

For energies ε in the range between ε0 and ε1 the intersection is given by the triangle
{s01, s02, s03} with the area

AT(ε) =
1

2

   (s02(ε) − s01(ε)
)
×

(
s03(ε) − s01(ε)

)   (4.41)

= α1(ε − ε0)
2 ,

where α1 is the first area coefficient. In the case of energies between ε2 and ε3 the
intersection is also a triangle specified by {s30, s31, s32}. Similar to the first case we
can obtain the intersection area with another area coefficient α3.

A(ε) =
1

2

   (s32(ε) − s30(ε)
)
×

(
s31(ε) − s30(ε)

)   (4.42)

= α3(ε − ε3)
2.

For energies between ε1 and ε2 the intersection has the shape of a quadrangle as
depicted in 4.10. Its area AQ(ε) is obtained by subtracting the area of the inner

k0
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k2

k3

s01

s02

s03

Figure 4.9: Triangular shaped equi-energy slice of a tetrahedron
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Figure 4.10: Quadrangular shaped equi-energy slice of a tetrahedron

triangle {s11, s12, s14} from the area of the surrounding triangle {s10, s13, s14}. The
inner triangle is parameterized by the introduction of another area coefficient α2

AQ(ε) = α1(ε − ε0)
2 − 1

2

   (s11(ε) − s14(ε)
)
×

(
s13(ε) − s14(ε)

)   (4.43)

= α1(ε − ε0)
2 − α2(ε − ε1)

2.

The area coefficients α1, α2 and α3 derive as

α1 =
A(εu)(εv − ε1)

2 − A(εv)(εu − ε1)
2

(εu − ε0)2(εv − ε1)2 − (εv − ε0)2(εu − ε1)2
, (4.44)

α2 =
A(εu)(εv − ε0)

2 − A(εv)(εu − ε0)
2

(εv − ε0)2(εu − ε0)2 − (εu − ε0)2(εv − ε0)2
, (4.45)

and

α3 =
A(εw)

(εw − ε3)
. (4.46)

Here, εu = (ε2 + 2ε1)/3, εv = (2ε2 + ε1)/3, and εw = (ε3 + ε2)/2.

For the special case ε0 = ε1, an area calculation with equation (4.44) fails because
both triangle areas become infinite. In this case another parameterization with the
parameters δ and ǫ can be used, which is derived in the following. First the quad-
rangle shaped intersection area is split into two triangles with areas AT

1 and AT
2

AT
1 =

1

2
|(s11 − s10) × (s13 − s10)| , AT

2 =
1

2
|(s11 − s12) × (s13 − s12)| . (4.47)
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The terms on the right hand sides of (4.47) are given by

s11 − s10 =
(k2 − k1) (ε − ε0)

ε2 − ε0

+ k1 − (k2 − k0) (ε − ε0)

ε2 − ε0

− k0 = (4.48)

= (k0 − k1)
ε − ε0

ε2 − ε0

− (k0 − k1)
ε − ε0

ε2 − ε0

= ka (ε − ε0) − ka (ε2 − ε0) ,

s13 − s10 =
(k3 − k0) (ε − ε0)

ε3 − ε0

+ k0 − (k2 − k0) (ε − ε0)

ε2 − ε0

− k0 = (4.49)

=

(
k13 − k10

ε3 − ε0

− k2 − k0

ε2 − ε0

)
(ε − ε0) = kb (ε − ε0) ,

s11 − s12 =
(k2 − k1) (ε − ε0)

ε2 − ε0

+ k1 − (k3 − k1) (ε − ε0)

ε3 − ε0

− k1 = (4.50)

=

(
k2 − k1

ε2 − ε0

− k3 − k1

ε3 − ε0

)
(ε − ε0) = kc (ε − ε0) ,

and

s3 − s2 =
(k3 − k0) (ε − ε0)

ε3 − ε0

+ k0 − (k3 − k1) (ε − ε0)

ε3 − ε0

− k1 = (4.51)

= (k1 − k0)
ε − ε0

ε3 − ε0

− (k1 − k0)
ε3 − ε0

ε3 − ε0

= kd (ε − ε0) − kd (ε3 − ε0) .

Now, the area AQ = AT
0 + AT

1 of the quadrangle can be written in a parameterized
formulation

AQ =
1

2
α4 (ε − ε0) − 1

2
α5 (ε − ε0)

2 , (4.52)

where α4 and α5 are pre-calculated parameters for the given tetrahedron:

α4 = |ka × kb| + |kc × kd| (4.53)

α5 = (ε2 − ε0) |ka × kb| + (ε3 − ε0) |kc × kd| . (4.54)

Since the regular tetrahedron and the tetrahedron where ε0 equals ε1 are completely
alternative appearances, the area coefficient α2 is not needed in the latter case.
Therefore the area calculation is in any case completely parameterized with four
pre-calculated area coefficients per tetrahedron.
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4.7 Precalculated Values related to the Mesh

Structure

As shown in Section 4.5 it is convenient to use tetrahedral meshes for discretization
of the Brillouin zone. It has also been shown that frequently used values like the area
coefficients can be precalculated to improve performance during simulation. These
values are stored related to the tetrahedral mesh elements, where they are either
connected to the vertices, the surfaces or the volume.

The numbering of the vertices of each tetrahedron is sorted after increasing energies
as explained in Section 4.4. The energies und positions of the vertices are stored in
a table.

There are also several precalculated values with are connected to the tetrahedron
volumes: the energy gradient, which is used to calculate the group velocity, the area-
coefficients α1 to α5 (see Section 4.6), and the upper bounds for the scattering rates
for different types of scattering mechanisms.

For each of the four surfaces of a tetrahedron the type of the surface and a pointer to
the neighbor tetrahedron are stored. Figure 4.11 shows the definition of the surface
types. This value is used for efficient detection of the surface that would be crossed
when a carrier has reached a border of the meshed part of the Brillouin zone. If
the surface of the tetrahedron is inside of the meshed domain then the value of the
surface type is defined as zero.

The pointer to the neighbors fulfills a special purpose if a tetrahedron’s surface is
part of the boundary of the meshed domain. In this case the pointer is set to the
tetrahedron to which the carrier’s position is mapped back when leaving the domain.
This mapping procedure requires tetrahedrons with a surface mesh structure where
the initial surface elements are congruent with the final elements. Because the mesh
is built by the permutation of irreducible wedges as explained in section Section 2.6.5,
this feature is guaranteed for the surfaces one to six. For surface seven the initial
mesh must provide an additional symmetry [Jungemann03] as shown in Figure 4.12.

4.8 Selfconsistent Monte Carlo Scheme

The Boltzmann equation can be solved either with a given electric field or with a
selfconsistent field using an iteration scheme as shown in Figure 4.13. After each time
step Δt the carrier concentration is evaluated and the Poisson equation is solved

∇T
r

[ǫ(r)∇rψ(r, t)] = −ρ(r, t) (4.55)
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Figure 4.11: Surface types for one octant of the Brillouin zone in k-
space [Wagner04].
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Figure 4.12: Symmetry properties of the surface 7. Solid lines are boundaries of
irreducible wedges, with one wedge indicated in blue. Dashed-dotted
lines indicate the additional symmetry needed for the mapping pro-
cedure.
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for the electrostatic potential ψ which in turn gives a new field for the next iteration
step. In (4.55) ǫ denotes the dielectric constant and ρ is the space charge density

ρ(r, t) = e(p(r, t) − n(r, t) + N+
D − N−

A ). (4.56)

Here, n denotes the electron concentration, p is the hole concentration, N+
D and N−

A

are the concentrations of the ionized donors and acceptors, respectively.

Figure 4.13: Flowchart of a selfconsistent Monte Carlo device simulation for a
given total simulation time Tsim.
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Chapter 5

Results

In this chapter the origin of the electron mobility gain in strained Si is explored by
the analysis of the band structure obtained by EPM calculations. The same approach
is used to explore the mobility gain for holes in strained Ge. Further, results from
FBMC simulations are discussed for electrons in strained Si and for holes in strained
Ge.

5.1 The Conduction Band Structure of Strained

Si

5.1.1 Valley splitting

Usage of strained Si for performance enhancement of CMOS devices started with
Si layers epitaxially grown on relaxed SiGe substrates [Welser92] [Welser94]. The
thin Si layer takes the larger lattice constant of the SiGe substrate and therefore
gets biaxially tensile strained. The usual configuration is a (001) oriented substrate,
where the Δ6-valleys of the Si layer split into four equivalent valleys in the (001)
plane which are shifted up in energy, and two equivalent valleys perpendicular to this
plane which are shifted down in energy. The valley splitting suppresses intervalley
scattering and therefore increases the mobility. The valley splitting also leads to a
higher electron population in the lower valleys. Since the lower valleys exhibit lower
effective masses, this redistribution mainly contributes to the mobility gain. With
increasing strain the lower valleys are fully populated and the intervalley scattering
to higher valleys is completely suppressed. From this point on the low field mobility
does not benefit from further increasing the strain and mobility saturates. Uniaxial
strain along [110] or [120] also induces valley splitting, but not as strong as biaxial
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Figure 5.1: Energies of the [100] and the [010] valleys relative to the [001] valley
for biaxial tensile strain and uniaxial [110] and [120] tensile strain.
The abscissa shows the biaxial strain or the strain component in the
stressed direction.

strain does. Figure 5.1 shows a comparison of the strain induced valley splitting as a
result of EPM calculation for biaxial strain and uniaxial stress along [110] and [120]
directions. It can be observed that biaxial tension is more effective in splitting the
conduction band valleys than uniaxial tension.

5.1.2 Effective mass change

Experiments [Irie04][Uchida04] have shown that in the presence of shear strain the
electron mobility enhancement in strained Si cannot solely be attributed to the en-
ergy splitting of the valleys. A recent study has shown that a stress along the [110]
direction leads to a change of the effective masses [Uchida05][Ungersboeck07c]. The
in-plane effective mass is rendered anisotropic and can be described by a compo-
nent mt,‖ parallel to the stress direction and one component mt,⊥ normal to stress
direction [Ungersboeck07b].

The in-plane effective masses of the lowest valley were extracted from EPM cal-
culations. Figure 5.2 shows that uniaxial tensile stress along [110] yields the most
pronounced Δmt. This explains the pronounced anisotropy of the mobility in the
transport plane as discussed in Section 5.2. The change Δmt is negligible for biaxial
tensile strain.
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Figure 5.2: In-plane masses of the lowest valley for biaxial tensile strain and uni-
axial [110] and [120] tensile strain.

This result points out another advantage of uniaxially stressed Si over biaxially
strained Si. For high uniaxial stress levels in [110] direction the mobility enhance-
ment originates mostly from the reduced conductivity mass, which is almost linearly
reduced with increasing stress. Therefore no saturation for the mobility enhancement
occurs within the technological relevant range of strain levels.

5.2 Low Field Electron Mobility of Strained Si

Figure 5.3 depicts the in-plane low field mobility in the strained Si layer versus the Ge
mole fraction of the SixGe1−x substrate. This result is obtained by FBMC simulation.
Since the lattice constant of SiGe is larger than that of Si the resulting strain is
tensile. For a mole fraction x = 0.4 the low field electron mobility is enhanced by
a factor of 1.68 to 2410 cm2/Vs. The mobility enhancement saturates for Ge mole
fractions above 0.2.

Figure 5.4 depicts the in-plane electron mobility at low electric field for uniaxial
tensile stress. Due to the effective mass change a strong anisotropy can be observed
with the most pronounced mobility enhancement in stress direction.

A stress of 1.5GPa enhances the low field mobility by a factor of 1.63 to 2330
cm2/Vs. Note that compressive stress instead of tensile stress could also be used for
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Figure 5.3: In-plane low field mobility of electrons in biaxially strained Si grown
on a relaxed SixGe1−x substrate.

electron mobility enhancement. The most pronounced enhancement is then achieved
perpendicular to the applied stress in [110] direction, otherwise the result looks
similar as in Figure 5.4.

Figure 5.5 shows the electron mobility in a (110) plane at low electric field for
uniaxial tensile stress in [110] direction. In this setup a small low field mobility
enhancement along the direction of stress can be achieved for low stress and a
degradation for higher stress levels. In [110] direction one can observe a strong
mobility degradation for any stress level.

Recent achievements in strain engineering focus on combining different stress con-
figurations to maximize the mobility gain. A promising approach is to apply tensile
stress along [110] and compressive stress along [11̄0] to maximize shear strain and
combine that with uniaxial compressive stress along [001] [Ungersboeck07a]. The
shear strain considerably lowers the mass in the [110] direction whereas the [001]
uniaxial strain component introduces enhanced mobility due to the valley spitting
effect. Figure 5.6 shows the mobility enhancement along [110] for this stress setup
for several stress level combinations.
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Figure 5.4: Low field electron mobility in the (001) plane in bulk Si for uniaxial
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Figure 5.6: Low field electron bulk mobility of Si along [110] for a combination of
tensile stress F[110] along [110], compressive stress F[11̄0] along [11̄0] and
compressive stress F[001] along [001].

5.3 High Field Electron Mobility of Strained Si

In the following the effect of strain on the high field mobility of Si is discussed.

Figure 5.7 depicts the electron velocity as a function of the electric field in biaxially
strained Si grown on a SixGe1−x substrate for various Ge contents. The curves show
large velocity enhancement at medium fields but approach for high fields the satu-
ration velocity of relaxed Si. A saturation of the enhancement can be observed for
higher stress levels.

Figure 5.8 presents the velocity field characteristics for uniaxial tensile stress in [110]
direction and field in [110] and the orthogonal [110] direction. As applied stress is
rising, the curves for field in [110] direction show a steeper slope in the low field
regime and exhibit a higher saturation velocity.

In contrast to the biaxial stress case the velocity enhancement exhibits no satura-
tion for the shown stress levels, which once again can be explained by the shear
strain component for stress in [110] direction and the related effective mass change.
Transport in the orthogonal [110] direction shows a degradation of velocity.
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Figure 5.7: Electron velocity as a function of the electric field for field in [100]
direction for biaxially strained Si grown on a SixGe1−x substrate.
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5.4 The Valence Band Structure of Strained Ge

The behavior of hole transport mainly depends on the features of two highly an-
isotropic bands: the heavy hole (HH) band and the light hole (LH) band. Even in the
case of a low applied field both of these bands are important because their minima
(in the hole picture) are degenerate at the Γ-point and therefore both contribute to
the density of states. For hot holes also the split-off (SO) band has to be considered.
Whereas the valence band structure for Si under strain is already explored by means
of EPM calculation in literature [Wang06], the following sections focus on the less
explored properties of the valence band structure of strained Ge.

5.4.1 Band splitting

Strain lifts the degeneracy of the HH and LH bands and also shifts the SO band.
Depending on the type of strain the HH band can be above or below the LH band.
Figure 5.9(a) shows the energy splitting between the SO band and the HH band
and Figure 5.9(b) the heavy/light hole band energy splitting of biaxially compres-
sively strained Ge grown on a [001] oriented Si1−xGex substrate as a result of EPM
calculation. For higher compressive strain the heavy/light hole band splitting satu-
rates [Fischetti96a].

Figure 5.10(a) depicts the energy splitting between the SO band and the HH band
and Figure 5.10(b) the heavy/light hole band splitting energies of compressively
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(b) Heavy hole/light hole band energy splitting

Figure 5.9: Split-off band shift relative to the valence band edge and energy split-
ting of heavy hole/light hole bands in strained Ge grown on a SixGe1−x

layer.
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Figure 5.10: Split-off band shift relative to the valence band edge and energy split-
ting of heavy hole/light hole bands of compressively stressed Ge in
[110] direction.

stressed Ge in [110] direction. The splitting energy rises almost linearly with com-
pressive stress in [110] direction for the shown range of pressure. In these strain
configurations the HH band is the lowest band and therefore defines the valence
band edge whereas for tensile uniaxial strain the LH band is below the HH band. In
any case the band splitting reduces the density of states in the low energy regime
and suppresses interband scattering, which increases the mobility.

5.4.2 Effective mass change

A change in the effective mass can also contribute to the mobility gain [Wang06].
Figure 5.11 shows an equi-energy surface of the HH band at 200 meV as a result
of EPM calculation. Carrier population follows the wing shaped form of the band.
These wings are indicated as OW in the case of an off-plane wing and as IW for the
in-plane wings with respect to the transport plane in (001). For relaxed Ge these
wings are evenly populated, but they are not equivalent regarding transport, which
is shown for the in-plane wings in Figure 5.12. For each wing an effective mass can
be defined [Wang06]. For electric field in [110] direction the curvature of the equi-
energy surface shows heavy masses in the wings IW2 and IW4, whereas for IW1
and IW3 the wings exhibit lower masses. Carriers in the off-plane wings exhibit an
intermediate mass.

Under strain some of the wings move up in energy and some move down. This leads
to a repopulation effect where the lowest wings get more populated and determine
the mobility behavior.
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Figure 5.11: Equi-energy surface at 200 mV of the heavy hole band of relaxed Ge.
OW indicates an off-plane wing and IW an in-plane wing.

As shown in Figure 5.12(b), for uniaxial compressive stress in [110] the lower mass
wings IW1 and IW3 are lowered in energy and therefore higher populated, which
leads to a mobility gain for transport along the [110] direction.

5.5 Low Field Mobility of Holes in Strained Ge

The hole mobility of unstrained Ge, being approximately four times higher than that
of Si, can be further enhanced by stress engineering. This has been shown in previous
experimental and theoretical works for biaxially strained Ge epitaxially grown on a
[001] oriented SixGe1−x substrate [Fischetti96a][Lee01][Leitz01][Ritenour03]. In the
following hole transport properties of arbitrarily stressed/strained Ge are analyzed
by means of full-band Monte Carlo simulation. Fig. 5.13 shows the in-plane low field
mobility versus mole fraction of Si in the SixGe1−x substrate. For a mole fraction
x = 0.4 the low field hole mobility is enhanced by a factor of 3.38 to 6350 cm2/Vs.
This mole fraction corresponds to biaxial compressive strain of 1.7% in the Ge layer.
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(a) Relaxed

(b) Compressive stress

Figure 5.12: kx-ky plane of the heavy hole band of Ge. The thick arrow indicates
a heavy effective mass for transport in [110] direction and the thin
arrow a low effective mass.
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Figure 5.13: In-plane low field mobility of holes in biaxially compressed Ge grown
on a SixGe1−x substrate.

Fig. 5.14 depicts the in-plane hole mobility at low electric field for uniaxial compres-
sive stress in [110] direction. In Si technology p-MOS devices with uniaxially stressed
channels in this configuration are already fabricated in large volumes [Ghani03]. A
strong anisotropy with the most pronounced mobility enhancement in stress direc-
tion can be observed. Stress of 1.5GPa enhances the low field mobility by a factor
of 2.55 to 4790 cm2/Vs.

In Figure 5.15 the energy distribution functions for holes in relaxed and uniaxially
stressed Ge are compared. Compressive stress is applied in [110] direction. As a result
of stress the hole distribution is shifted to higher energies, which is in accordance
with the calculated mean hole energy of 43 meV for relaxed Ge and 56 meV for
strained Ge. This result is caused by the alteration of the DOS under stress.

5.6 High Field Mobility of Holes in Strained Ge

In Figure 5.16 the velocity versus field characteristics for holes in biaxially strained
Ge on a SixGe1−x substrate is depicted. The field is applied in [100] direction. The
highest mobility gain can be observed in the low field regime while the curves con-
verge in the high field regime to a saturation velocity of 8 · 106 cm/s.

Figure 5.17 presents the velocity versus field characteristics for uniaxial compressive
stress and field in [110] direction. In the low field regime the curves show a superlinear
increase of velocity with increasing stress, while at high fields the curves converge
as observed for biaxial strain.
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Figure 5.14: Low field hole mobility in the (001) plane of bulk Ge for uniaxial [110]
compressive stress.
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Figure 5.15: Energy distribution function for holes in equilibrium for relaxed Ge
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direction.
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Figure 5.16: Hole velocity versus electric field in [100] for biaxially compressed Ge
grown on a SixGe1−x substrate.
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Figure 5.17: Hole velocity as a function of the electric field in compressively
stressed Ge for field and stress in [110] direction.
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Chapter 6

Simulation of Blocked Impurity

Band Devices

6.1 Introduction

Blocked impurity band (BIB) photo detectors [Stetson86], invented by Petroff and
Stapelbroek [Petroff86], are usually designed for the mid- to far-infrared range from
10 µm to 1000 µm wavelength. This wavelength range gained considerable impor-
tance in astronomy since the molecular and atomic emission lines from species like O,
C or H2O are within this range and far away objects are often hidden by interstellar
dust clouds which absorb higher energy photons. On the other hand the atmosphere
filters most of the infrared radiation and so exploring the infrared spectrum got an
significant upturn with the realization of space based observation facilities such as
the Spitzer Space Telescope where BIB detectors are applied in the form of detector
arrays [Beeman07][Gehrz07].

BIB detectors deliver high quantum efficiency in a volume much smaller than in
conventional photoconductors because of their much higher primary doping. Thus,
BIB detectors are more resistant to the deleterious effects of radiation and offer a
high signal to noise ratio. They offer also an extended wavelength response, which
is caused by the formation of the impurity band and do not suffer from a transient
response with memory like effects such as conventional photo detectors exhibit in
the low temperature regime [Haegel03a]. Depending on the implementation BIB
detectors can be set up for intensity measurement as well as photo multipliers with
single phonon detection.

The schematic view of an n-type BIB detector is shown in Figure 6.1. It consists of a
heavily – but not degenerately – doped layer of width d with donor concentration ND

so that the dopants form an impurity band in which carrier hopping occurs [Miller60].
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Figure 6.1: Schematic of an n-type BIB device.

This region is referred to as the infrared (IR)-active layer because an incoming
photon can lift an electron from the impurity band to the conduction band. The
IR-active layer is also partly compensated by a much weaker acceptor doping with
concentration NA. Next to that layer comes an area of intrinsic Si of width b where
hopping conduction is strongly suppressed. It is referred to as the blocking layer.

The contacts consist of degenerately doped Si. The contact next to the blocking
layer is illuminated and must be transparent in the infrared regime. Typically, a
BIB detector is manufactured by starting from a degenerately doped Si substrate
on which then the IR-active layer and the blocking layer are epitaxially grown.

6.2 Operation of BIB Detectors

A BIB detector is usually operated at temperatures below 10K. This is necessary
to suppress dark current originating from thermally generated carriers. As a second
effect the acceptors in the IR-active region take their charge from the donors and
get completely ionized,

ND+ = NA− . (6.1)
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Figure 6.2: Energy band diagram of an n-type BIB device.

The negative charges NA− on the fixed sites are immobile. If a reverse bias is applied,
the ND+ charges move away from the blocking layer interface due to the impurity
band hopping mechanism. Since impurity band hopping is suppressed in the blocking
layer no new carriers are delivered from there and a depletion region of width w in
the IR-active region is formed. In this case depletion refers to the ND+ charges. The
remaining acceptor charges form a negative space charge region, while the electrons
in the conduction band are collected at the transparent contact side after passing
the blocking layer region.

Figure 6.2 depicts the energy band diagram for a BIB detector operating at reverse
bias. The detection of a phonon takes place by generation of an electron hole pair.
While the electron in the conduction band moves to the transparent contact, the
hole can be interpreted as the charge of a D+ donor moving to the other side by
hopping conduction.

For an ideal BIB detector with no doping in the blocking layer a one dimensional
Poisson equation can be formulated for the blocking and the depletion area, which
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gives the depletion width as [Szmulowicz87]

w =

(
2ǫsV

eNA

+ b2

)1/2

− b , (6.2)

where V is the applied bias, and ǫs is the static dielectric permittivity. For Si ǫs =
11.7 ǫ0, where ǫ0 is the free space permittivity.

The electric field depends on the spatial coordinate x

E(x) =

(
eNA

ǫs

)
(w − x) , 0 ≤ x ≤ w , (6.3)

in the depletion region and

E(x) =

(
eNA

ǫs

)
w , −b ≤ x ≤ 0 , (6.4)

in the blocking layer. In the neutral region of the IR-active layer the field vanishes.
The above formulae show that the maximum field occurs in the blocking layer. It
depends on the depletion layer thickness w and on the acceptor doping concentration
NA, but is independent on the donor doping concentration ND.

Another quantity of interest is the optical carrier generation rate G(x). If the reflec-
tivity of the transparent contact is R1 and the reflectivity of the interface between
the IR active layer and the substrate is R2, G(x) can be written as [Szmulowicz80]
[Szmulowicz86]

G(x) =
αΦ(1 − R1)(e

−αx + R2e
−2αdeαx)

1 − R1R2e−2αd
. (6.5)

Here, Φ is the flux density of the incoming radiation and α is the optical absorption
coefficient which depends on the photon wave length λ.

In the depletion region the continuity equation for the electrons in the conduction
band is

e
∂n

∂t
=

dJn

dx
+ ξ(x)Jn(x) + eg(x) (6.6)

and for holes in the impurity band

e
∂p

∂t
= −dJp

dx
+ ξ(x)Jn(x) + eg(x) . (6.7)
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Here, ξ is the impact ionization coefficient, Jn is the electron current density and Jp

the hole hopping current density. The total generation rate g(x) can be written as

g(x) = G(x) + G0 , (6.8)

where G0 is the thermal generation rate. It is assumed that the ionizing collisions
are independent from each other so that the probability ξ of ionizing collisions per
unit length can be meaningfully defined [McIntyre66]. Equations (6.6) and (6.7) are
solved by multiplication by the integrating factors

M(x) = exp

(
 x∫

0

ξ(x′)dx′

)
 = M(w) = exp

(
 w∫

x

ξ(x′)dx′

)
 . (6.9)

As a result the total current density J = Jp(x) + Jn(x) is obtained for the steady
state as [Szmulowicz87]

J = M(0)Jp(0) + M(w)Jn(w) + e

w∫
0

g(x)M(x)dx . (6.10)

The current density Jp(0) in equation (6.10) can be interpreted as positive donor
charges which are injected at x = 0. Because of the low mobility of these hopping
carriers they undergo no multiplication, hence M(0) = 1. On the other hand elec-
trons injected at the right side at x = w are multiplied due to the avalanche effect
by M(w) after traveling the distance of the depletion region. Carriers generated in
the depletion region by thermal or optical generation undergo a position dependent
multiplication by M(x) which is taken into account by the last term on the right
hand side of (6.10).

Equation (6.10) can be simplified if an ideal blocking layer is assumed, which pre-
vents the injection of hopping carriers so that Jp(0) = 0. Furthermore, it can be
assumed that the current density Jn(w) which stems from diffusion of carriers from
the heavily doped neutral part of the IR-active region is small enough to be ne-
glected. This simplifies the equation for the total current density to

J = e

w∫
0

g(x)M(x)dx . (6.11)

In a macroscopic formulation the impact ionization coefficient can be written as [Sze81]
[Stillman77]

ξ(x) = NDσI exp

(
− Ec

E(x)

)
. (6.12)
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Here, ND is the majority dopant concentration, σI is the cross section for impact ion-
ization and Ec is the critical field for impact ionization. With (6.12) the integrating
factor M(x) can be obtained as

M(x) = exp

│
⌡NDσI

(
��we−

A
w − (w − x)e−

A
w−x − A

∞∫
A
w

e−t

t
dt + A

∞∫
A

w−x

e−t

t
dt

)
��

│
⌡ (6.13)

with the parameter

A =
ǫsEc

eNA

. (6.14)

The two integrals in (6.13) have to be solved numerically since there is no solution
in closed form.

6.3 Hopping Conduction

Semiconductors exhibit intrinsic conductivity at sufficiently high temperatures due
to thermal activation of carriers from the valence band to the conduction band. A
wide band gap causes a rapid decrease of this kind of conduction at lower temper-
atures. Therefore shallow impurities become the most important provider for free
carriers as their ionization energy is much lower than the bandgap. At low temper-
atures the thermal activation energy is so small that the carriers are recaptured by
the impurities. This is a gradual process known as freeze-out.

At even lower temperatures the impurities are completely frozen out and hopping
conduction is the prominent transport effect. In the case of no compensation hopping
conduction can occur – if an n-type semiconductor is considered – when an electron
is removed from a neutral donor site and moves to a neighbor neutral donor site,
creating an overcharged impurity there [Nishimura65]. The conductivity σ caused
by this thermally activated process is characterized by an activation energy ε2

σ = σ2 exp

(
− ε2

kBT

)
. (6.15)

Here, σ2 as well as the activation energy ε2 depend on the average distance between
the impurities.

In n-type BIB devices the donor concentration is slightly compensated by a frozen
acceptor doping. The acceptors are ionized with carriers from the impurity band,
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Figure 6.3: Nearest neighbor hopping illustrated in a n-type BIB device. The
electron is transfered from a D0 donor to a D+ donor by the assistance
of a phonon absorption and emission process.

leaving positively charged donor sites in the impurity band even at the lowest tem-
peratures. Such a setup gives rise to another carrier hopping effect, where the elec-
tron of a neutral donor site is transfered to a positively charged neighbor donor
site. This process is assisted by the absorption and emission of a phonon, lifting the
electron to an excited intermediate state as illustrated in Figure 6.3 for a n-type
device. The conductance can be described with another thermal activation energy
ε3 [Shklovskii84]

σ = σ3 exp

(
− ε3

kBT

)
. (6.16)

This nearest neighbor hopping process is the most important hopping mechanism
within BIB devices, but at very low temperatures there is another hopping process,
namely the so called variable-range hopping mechanism. When the thermal energy
kBT becomes very low the hopping carrier may not find a suitable energy state
within the possible range at neighbor impurity sites. In this situation the carrier
may be transfered to a more distant site despite of the small wavefunction over-
lap [Shklovskii84].
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6.4 Monte Carlo Simulation of BIB Detectors

A two step procedure is used to simulate the properties of BIB detectors. First the
electrostatic field is calculated using a conventional TCAD device simulator. In this
work MINIMOS-NT [IuE04] was used. This field is then fed to the Monte Carlo
simulator where in a second step the Boltzmann equation is solved. The detector is
modeled as a one-dimensional device.

The following sections show some features for Monte Carlo simulation at very low
temperatures and present a concept for an alternative impact ionization model to
capture a non-Markovian avalanche effect.

6.4.1 Neutral Impurity Scattering

At very low temperatures neutral impurity scattering can significantly contribute
to the total scattering rate. In literature several attempts exists to describe neutral
impurity scattering [Sclar56][Kwong90][Itoh97]. For the sake of simplicity the expres-
sion of Erginsoy [Erginsoy50][Bhattacharyya93] is used for the scattering probability

Γni =
20 · 4πǫ0ǫsNnh

3

m∗2
v e2

. (6.17)
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Figure 6.4: Low field electron mobility versus lattice temperature for several neu-
tral impurity concentrations in Si as a result of Monte Carlo simulation.
Simulation data without impurity scattering is taken from [Canali75].
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In (6.17) Nn is the neutral impurity concentration and m∗
v is the effective mass in

the valley v. Erginsoy’s model is based on a parabolic band approximation and gives
an energy-independent result for the scattering probability, whereas Sclar’s [Sclar56]
or other more sophisticated approaches lead to an energy-dependent formulation.

Figure 6.4 depicts the low field mobility of electrons in Si in the low temperature
regime. Shown are MC simulation results based on phonon scattering and in addition
neutral impurity scattering when indicated. It is shown that neutral impurities cause
a mobility reduction at low temperatures, and therefore neutral impurity scattering
has to be considered in simulation of BIB devices.

6.4.2 Non-Markovian Impact Ionization Model

An BIB detector can also operate as a single photon multiplier if the bias voltage is
large enough to cause an avalanche effect to due impact ionization. In the following,
an impact ionization model is described which captures the non-Markovian nature
of the avalanche [Sinitsa02][Petroff87].

It is assumed that impact ionization takes place exclusively in the depletion region
and that the carriers do not recombine again. The impact ionization rate SII

BIB is
derived from (3.52), taking into account that the rate depends on the impurity
concentration N0

D of the impurity band

SII
BIB ∝ N0

D · SII . (6.18)

When an impact ionization event occurs the energy and position in real space of
the secondary particle is saved in a table. The energy is calculated by randomly
distributing the primary carrier energy between the primary and the secondary
carrier. The primary carrier trajectory is followed until it ends at a contact. On its
way through the depletion region several impact ionization events may occur which
produce new entries in the table. After the original carrier is collected at a contact
the table is reduced by the entry of the already executed carrier and the simulation
continuous with the carrier defined by the next table entry. The simulation is finished
when there are no more table entries to be processed. With this procedure all carriers
of the avalanche are simulated under consideration of their individual trajectory.

Because of their low mobility the carriers in the impurity band experience no
avalanche multiplication. As another consequence of the low mobility, the slow car-
riers in the impurity band cause a local breakdown of the field in the areas of
avalanche generation [Petroff87]. This leads to a limitation of carrier multiplica-
tion. With Monte Carlo this effect can only be treated by applying a self-consistent
simulation scheme.
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6.5 Results

In the following simulations are based on the specification of the n-type device given
in Table 6.1. It is assumed that the doping concentration changes abruptly at the
blocking layer/active layer interface and that the blocking layer is undoped. In the
following the orientation of the device is so that the blocking layer is positioned
on the right side starting at 26.5 @m. The degenerately doped contacts are not in-
cluded in the simulation domain. Results obtained with different specifications than
in Table 6.1 are indicated as they occur.

Device Parameter Value

Substrate Material Si

Active Region: n+ Doping Sb, ND = 4 · 1017 cm−3

Active Region: p− Doping B, NA = 2 · 1012 cm−3

Blocking Layer Thickness b = 3.5 @m

Active Layer Thickness d = 26.5 @m

Bias Voltage V = 1.0 V

Lattice Temperature T = 7 K

Table 6.1: Specification of the n-type BIB device.

6.5.1 Electrostatic Field

The electrostatic field within the BIB device is obtained from a conventional TCAD-
device simulation using MINIMOS-NT. Figure 6.5 shows the electrostatic field in an
n-type BIB device at several bias voltages V . The results show very good agreement
with simulation results from literature [Haegel03b][Huffman92]. Figure 6.6 depicts
the electrostatic field in an n-type BIB device for several acceptor concentrations in
the IR-active region. Both results agree well with the analytical solutions (6.3) and
(6.4).

These figures also illustrate some basic rules for the design of BIB devices. It is
shown how the depletion area is determined by the bias V and the compensation
doping. To achieve good quantum efficency it is necessary to have a large depletion
area, because this is the part of the IR-active layer where the field is non-zero and
so the optical generated electrons are able to proceed to the contact.
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Figure 6.5: Electrostatic field in an n-type BIB device at several bias voltages.
The results show very good agreement with simulation results from
literature [Haegel03b][Huffman92].
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Figure 6.6: Electrostatic field in an n-type BIB device for several acceptor concen-
trations in the active region.
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On the other hand, to avoid a breakdown condition, the depletion region must not
grow into the contact. As a consequence the compensating acceptor doping must be
well controlled at a quite low level.

It should also be noted that the field distribution does not depend on the majority
doping, which forms the impurity band. In principle, a higher donor concentration
leads to higher quantum efficency, but also introduces band broadening, which in
turn leads to unwanted thermal dark current.

6.5.2 BIB Device as a Single Photon Counter

For the following simulations the field distribution is obtained by a conventional
TCAD simulator and then passed to the Monte Carlo simulator, here VMC. Then
a non-selfconsistent Monte Carlo simulation is performed.

When a photon is detected, it lifts an electron from the impurity band to the con-
duction band, which – if the field is sufficiently large – causes an avalanche multi-
plication. Two positions for the photon detection at x1 = 10 @m and x2 = 14 @m are
evaluated as depicted in Figure 6.7. Each injection position is simulated 1000 times.
In this setup the bias voltage V = 2.5 V and the acceptor doping concentration in
the IR-active region is NA = 5 · 1012 cm−3. All other device specifications are in
accordance with Table 6.1.

Figure 6.9 depicts the energy distribution of electrons collected at the contact for an
assumed optical generation of the original electron at position x1. The mean energy
is 46.4 meV which is only slightly below the energy of electrons starting at position
x2. This indicates that the impact ionization limits the energy gain of the carriers
as they proceed through the depletion region.

Figure 6.10 and Figure 6.11 show the shape of the electron avalanche, when it reaches
the contact, for electrons generated at position x1 and x2 respectively.

It should be noted that these results are not calibrated against measurement data
and therefore only give qualitative insights about the avalanche behavior.
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Figure 6.7: Electrostatic field in an n-type BIB device. The dotted lines indicate
the detection of two photons at the positions x1 and x2.
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Figure 6.8: Energy distribution of electrons at the contact caused by a photon
detected at x1 = 10 @m.
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Figure 6.9: Energy distribution of electrons at the contact caused by a photon
detected at x1 = 14 @m.
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Figure 6.10: Distribution of the arrival time at the contact caused by a photon
detected at x2 = 10 @m.
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Figure 6.11: Distribution of the arrival time at the contact caused by a photon
detected at x2 = 14 @m.
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Chapter 7

Summary and Conclusions

Due to the rapid progress of Si technology and the introduction of new device types
and materials, it is a challenging task to develop and improve models for TCAD
device simulation. In this development process it is essential to have access to reliable
data from measurements, but as device fabrication gets more and more complex also
experiments become more expensive and – as a major drawback – also more time
consuming. As a consequence it is of increasing interest to obtain data by simulations
based on more fundamental methods.

In this work it has been shown that Monte Carlo methods based on a full-band
dispersion relation are a powerful tool in this respect. Full-band Monte Carlo is
generally applicable to hot carrier problems, because an accurate representation of
the band structure at higher energies is essential here. Beyond that, the simulator
has been extended to handle transport in arbritrarily strained Si, Ge and SiGe alloys.
This is an important feature, since modern high performance MOSFET devices rely
heavily on strain engineering techniques to increase the performance. It has been
exemplarily demonstrated that in Si the electron mobility is increased by a <110>
strain setup and that in Ge the higher hole mobility compared to Si can be further
increased by the introduction of strain.

These effects are explained by an evaluation and theoretical interpretation of band
structure data from EPM calculations. It is concluded that the electronic mobility
increase or decrease, depending on the setup, stems from an energy separation of
the Δ valleys, which also lifts their degeneracy, and from a change in the effective
masses in transport direction. For hole transport the latter effect is also valid, but
there is also a contribution from the relative shift of the heavy hole, light hole and
split-off bands.

It has been also demonstrated that the high computational costs of full-band Monte
Carlo can be reduced by the implementation of performance optimizing features
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like rejection algorithms or irregular mesh refinement in k-space. These features
in combination with the availability of successively increasing computational power
indicate that full-band Monte Carlo will play a stronger role in device simulation in
the future.

In this work Monte Carlo techniques are also applied to simulate blocked impu-
rity band photo detectors. These devices operate at temperatures below 10 K. The
scattering models were extended to deliver valid results in this temperature range.
Some simulation results of the avalanche effect in blocked impurity band devices
were presented. The avalanche effect can be used to operate the devices as single
photons detectors.
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