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A B S T R A C T

Machine learning-based intrusion detection requires suitable and realistic data sets for training and testing.
However, data sets that originate from real networks are rare. Network data is considered privacy sensitive
and the purposeful introduction of malicious traffic is usually not possible. In this paper we introduce a labeled
data set captured at a smart factory located in Vienna, Austria during normal operation and during penetration
tests with different attack types. The data set consists of 173 GB of Packet Capture (PCAP) files, which
represent 16 days (395 h) of factory operation. It includes Message Queuing Telemetry Transport (MQTT),
OPC Unified Architecture (OPC UA), and Modbus/TCP traffic. The captured malicious traffic was originated
by a professional penetration tester who performed two types of attacks: (a) aggressive attacks that are easier to
detect and (b) stealthy attacks that are harder to detect. Our data set includes the raw PCAP files and extracted
flow data. Labels for packets and flows indicate whether packets (or flows) originated from a specific attack
or from benign communication. We describe the methodology for creating the data set, conduct an analysis of
the data and provide detailed information about the recorded traffic itself. The data set is freely available to
support reproducible research and the comparability of results in the area of intrusion detection in industrial
networks.
1. Introduction

The prevailing use of communication technology in Industrial Con-
trol Systems (ICSs) creates a new demand for the deployment of so-
phisticated Intrusion Detection Systems (IDSs). It therefore increases
the demand for appropriate data sets from industrial environments to
evaluate IDSs. Suitable data sets need to include representative network
traffic with machine-to-machine communication, modern attack pat-
terns and, ideally, labeled instances. Machine learning-based classifiers
need data with typical patterns for training and testing. IDS detection
performance profits if representative data recorded from productive
operations in real-world networks can be used.

However, representative and recent public network data sets are
rare already for classical Information Technology (IT) networks. The
situation is even worse for ICSs, (which are Operational Technology
(OT) networks), where only few data sets exist as of today.

Most of those rare OT data sets originate from simplified testbeds,
are artificially generated in simulations (see Section 2), or do not
provide labels. Data privacy concerns are a primary reason for not pub-
lishing such data. Data captured in a real network can contain sensitive
information about the network or the operating company. Removing
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this information (known as data set anonymization) is challenging and
error-prone.

In addition, most data sets do not contain attack traffic. This is
especially true for datasets captured in real networks since it is usually
problematic to introduce attacks in production environments.

In summary, we observed a significant gap between the demand for
realistic ICSs network traffic by the scientific community and existing
datasets. This work aims to reduce this gap by publishing a represen-
tative labeled data set from a real production environment in a pilot
factory. It contains 173 GB of raw PCAP OT network traffic captured
over two weeks and four days in the pilot factory.

This factory is owned by TU Wien. It is unique because, in addition
to being experimental, it produces individual items or small series of
custom parts in response to client demands. Therefore, the factory is
only temporarily operational, which can be observed in the benign data
set ‘‘TF A’’ (cf. Fig. 7). However, the benefit of this non-continuous
operation is that the variety of events observed in the data set is
more heterogeneous than if it were consistently producing the same
workpieces.

The contributions of this work include the following:
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• Collection of a network data set containing two weeks of ICS
communication during normal operation in a smart pilot factory
and four days of attack traffic.

• Introducing a set of attacks by a professional penetration tester
across two different scenarios with multiple attack types.

• Losslessly recording both operational traffic and attacks using
buffered capture hardware.

• Extracting flow and packet information.
• Labeling the extracted packets and flows.
• Analyzing the data set to support future users.

e make the original data set (PCAP) as well as aggregated information
vailable to the research community.1

In addition, we provide the following analyses for the data set:

• Distribution of observed protocols during normal operation and
for each attack day (cf. Section 7.1)

• Time series of observed packets and bytes per minute during the
two weeks of normal factory operation (cf. Section 7.1.1)

• Time series of observed packets per minute for the days with
attacks (cf. Section 7.1.2)

• Distributions of flow durations for benign and attack traffic (cf.
Section 7.1.3)

2. Related work

When evaluating available ICS data sets, it is essential to differ-
entiate between the collection of data about the control process itself
(process data) and the collection of ICS-related communication network
data.

Process data, on the one hand, is the information exchanged at the
application layer between ICSs like, e.g., values of sensors, time series,
or control commands. This information is of relevance mainly for ICS
state simulation or analysis. Network data, on the other hand, includes
addressing information (link-layer-, network-layer-, and transport-layer
headers) in addition to potentially transport-layer (TLS) encrypted
application layer data. In our paper, we provide such a network data set
that aims at supporting the development and configuration of network-
based IDS or anomaly detection algorithms. Since we publish an ICS
network data set, this section also focuses on network data sets.

Morris et al. published several OT data sets that are popular in
the community [1–4]. The data originates from testbeds and artificial
generation, not from real OT systems. Some of these data sets are
network data sets and some are process data sets. The Electra Railway
ICS data set [5] contains network data from a simulated railway
substation network. The authors describe the simulated network as
resembling a realistic railway substation containing seven network
devices (of which four communicate via Modbus, and five communicate
via the S7 protocol). The data set is split into two parts, containing
S7 (1.7 GB) and Modbus (56 MB) traffic. Lemay et al. also created
a data set in 2016. Their data set focuses on packet captures from
Modbus/TCP-based communication. It includes benign and malicious
traffic and also Comma Separated Values (CSV) files for the labels.
The data set is created by a simulated testbed environment running on
virtual machines. The data set is available for download [6].

Alatram et al. published an OT network data set in 2023. This data
set also originates from a testbed consisting of Raspberry Pi micro-
computers that continuously publish values obtained from Internet of
Things (IOT) sensors to an MQTT broker. The paper itself focuses on the
MQTT protocol for the use case of the IOT and contains attack traffic of
Denial of Service (DoS) attacks [7]. Specific to this paper is the variety
of sensors used.

1 The dataset is published with the DOI 10.48436/vs6hv-1vs74 at
esearchdata.tuwien.ac.at.
2 
Sarica and Angin [8] released a data set in 2020. Their data set
consists of two parts with several million records and is focused on an
IOT network. It is obtained from a testbed.

Our evaluation of related work yields that publicly available ICS
data sets have been captured within simulation or testbed environ-
ments, not in actual OT networks. Beyond that, fewer data sets focusing
on network data of ICSs are available than data sets focusing on IOT
network data. Our paper is one of the few that are accompanied by a
network data set created in a real factory, containing attack data.

Flood et al. analyze seven network datasets and highlight six key
shortcomings to avoid: Poor data diversity, highly dependent features,
unclear ground truth, traffic collapse, artificial diversity, and wrong
labels [9]. These issues and their consequences are detailed in the
paper, especially in Section 4. Recommendations for avoiding these
mistakes and improving datasets are provided in Section 6, focusing
on generalization, feature selection, and overall design.

Of the seven datasets analyzed, five were IT datasets, and two were
IOT datasets, namely Ton IoT [10] and Bot-IoT [11], both recorded
from testbed networks. Both IoT datasets suffered from unclear ground
truth, highly dependent features, traffic collapse, artificial diversity,
and poor data diversity.

Their work is a valuable contribution for us during the creation and
especially documentation of the data set since this paper was published
after we recorded the data in the factory.

3. Technical setup and methodology

This section details on the technical setup, the methodology of the
data set collection, the attacks, and some descriptive statistics about
the data set itself. The attack setup can be seen in Fig. 1. All tests
are performed within the turning cell of the pilot factory located in
Vienna, Austria in autumn 2023, with the turning machine as its most
crucial production asset (cf. Fig. 2). The factory is equipped with
comparatively recent equipment, such as the EMCO MAXXTURN 45
turning machine, Siemens SENTRON PAC power sensors, and a Siemens
840D SL PCU/NCU pair. Fig. 1 depicts the cell network.

The following systems (hosts, addressed by dedicated IP addresses
in the network capture) are used during normal productive operation:

• A Sinumeric PCU (human interface device which is a host on its
own and is built into the turning machine).

• A Sinumeric NCU (controller, contains a Programmable Logic
Controller (PLC)) as part of the turning machine.

• The turning machine itself as an actuator, which is only connected
to the PLC

• Three power sensors attached to the turning machine
• A firewall for this network segment
• An enterprise-grade network switch
• Other hosts such as an MQTT broker

In addition, we attached the following hosts as part of our experi-
ments:

• Our IDS, attached to the network segment’s switch. The IDS is a
common-of-the-shelf PC equipped with an Endace Data Acquisi-
tion and Generation (DAG) hardware capture card as the main
component. The host is used exclusively as a capture device,
i.e., to capture and record the network data directly from the
mirror port of the switch and store it in a lossless and persistent
manner.

• Additional hosts (colored black in Fig. 1) were connected to the
Local Area Network (LAN) as attackers and attack targets.

The technical administrators of the pilot factory prohibited attacks
beyond reconnaissance on productive hosts. This is why we connected
three additional hosts to the cell as targets: Three virtual machines

running (intentionally) vulnerable Linux distributions on a Windows 10

https://researchdata.tuwien.ac.at/


B. Brenner et al. Computer Networks 255 (2024) 110804 
Fig. 1. Penetration test topology. (For interpretation of the references to color in all figures, the reader is referred to the web version of this article.)
Laptop with an Intel Core i7 6700HQ and 12 GB RAM were deployed
in the factory as targets for all but the reconnaissance attacks. The
three attacked hosts are running Metasploitable Linux 2 (IP .132),
Metasploitable Linux 3 (IP .132), and a Kubuntu installation using
Damn Vulnerable Web Application (IP: .93) [12–14]. All listed hosts
are in operation during all days of the attack experiment, with one
exception: on day one, the turning machine itself (including PCU and
NCU) is turned off. In fact, this provides for a more realistic scenario,
since systems in the pilot factory are typically only turned on when
they are needed in order to save energy and wear.

3.1. Factory operation: Benign

During regular operation, the observable interaction between the
machines includes the following: The MQTT broker is in operation. The
turning machine is sometimes, but not always, turned on. The power
sensors are constantly sending information about the turning machine’s
power supply and consumption via Modbus/TCP. Furthermore, lo-
cal hosts and cloud services synchronize their state using Hypertext
Transport Protocol - Secure (HTTPS) based protocols. Figs. 4(a) and
4(b) show the protocol distributions during the two weeks of regular
operation.

3.2. Factory operation: Benign and malicious

During the four experiment days, the turning machine was turned
on, except for day A1 (cf. Fig. 3). Except for the three additional
target hosts and the attacker’s host, the entire factory cell operated
normally. The protocol distributions are similar to the ones of the
regular operation (cf. Figs. 5(a), 5(b), 6(a) and 6(b)).

4. Description of the data set

The data was collected from the turning cell that hosts and connects
the turning machine depicted in Fig. 2. Table 3 shows details about
every of the available PCAP files.

The data set comprises 173 GB of PCAP files, which have been
collected during 395.2 h of smart factory operation. The data set also
comprises various modern IP-based factory communication protocols
such as MQTT, OPC UA, and Modbus/TCP.

The pilot factory granted permission to capture a data set in their
real OT communication network and release it to the public. For this
purpose, a penetration tester from [company] conducted a series of
attacks within two different scenarios consisting of two dedicated sets
of attacks:
3 
Fig. 2. The turning machine of the pilot factory in Vienna, Austria (in operation). In
the blue box, there is the PCU. The NCU is mounted inside, on the rear.

• Aggressive (referred to as attack set A in the following): The
attacker is informed that there is no IDS or monitoring system
deployed in this network, so he can run any attack without the
risk of being detected.

• Stealth referred to as attack set S: Assuming an IDS is in use,
the attacker is advised to ‘‘stay below the radar’’ and conceal
all attacks. Furthermore, the attacker’s Internet Protocol (IP)
address (.91) is included in the training data week by temporarily
assigning the address to a trusted host (training file S).

5. Adversary model and attack scenarios

For this experiment, the attacker is connected to the local network
and uses a dedicated IP address. However, the earlier-mentioned two
scenarios are subject to distinct prerequisites:

• In the aggressive scenario:

– the attacker is informed that there is no operational IDS in
this network.

– the attacker is not limited regarding the rate or ‘‘aggressive-
ness’’ of attacks.

– the attacker’s IP address has not been used before by autho-
rized hosts.

• In the stealth scenario:
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Fig. 3. Workflow of the data set creation with emphasis on the attacks.
Fig. 4. Protocol distribution during the two weeks of training data acquisition (training files A and S, respectively).
– the attacker is aware of the presence of an IDS deployed in
the network.

– the attacker uses low-rate and concealed attacks, contacting
only a few hosts and transferring fewer data at a time
compared to the aggressive scenario.

– the attacker uses an IP address that authorized hosts have
used before. This is done on purpose to test the capability
of the IDS that, for instance, cannot rely on trusted IP
addresses.

The attacker’s resources are restricted to one business laptop, built
in 2023, with an Intel Core i7 and 32 GB of Random Access Memory
(RAM). The attacker, furthermore, is assumed to possess knowledge and
skills on the level of a single activist/hacker, referring to Table 11.2 of
[15].

The attacker is furthermore assumed to not know credentials, tech-
nical details, nor additional information about assets such as IP ad-
dresses, host names, etc., with one exception: The IP addresses of the
three target hosts were provided to the attacker (pentester) to ensure
that only those are attacked with active attacks. Machines that are
part of the production system are only included for reconnaissance
activities.

The successful setup in the factory was followed by five days of
attacks. Note that the entire data of the second day (which would be
A2) (the DoS attack) is omitted from the data set due to the large file
size of 86.1 GB. We therefore named the third day A2 for simplicity,
therefore having two aggressive and two stealth days of network attack
data.
4 
The data set itself can be found in our repository (cf. Section 1),
where the PCAP files, as well as all extracted and labeled flows, are
provided.

The data set can be used either by extracting desired information
from the PCAP files or by using the labeled flows found in the reposi-
tory. The flows are extracted using the tool go-flows [16] and labeled
based on information that is available for us, such as attacker’s IP and
Media Access Control (MAC) addresses, time frames, and other details
such as packet sizes and Time To Live (TTL) using a custom written
Python script.

For the extraction of flows, a subset of the multikey feature vector
by Meghdouri et al. is used [17]. Our repository contains a list of all
extracted features.

The experiments were conducted in October and November 2023,
with one week of preparation and two days of attacks each. During
the preparation week, the operational traffic of the factory cell was
recorded.

5.1. Files and sizes

The data set consists of six PCAP files and has a total size of 173 GB
(intentionally excluding the DoS attack). There are four days in total
that contain malicious traffic (cf. Fig. 3), with an aggregated file size
of 28.4 GB. The other two files are training files containing one week
of traffic right before the experiment days each. Sizes are: 53.5 GB (TF
A) and 93.2 GB (TF S) for the training files. These training files of usual
operational traffic can be used for instance to train the ‘‘default’’ state
that anomaly detectors rely on.
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Table 1
Attacks performed during the four attack days: A1, A2, S1, and S2.
Attack command Attack category Day Attack description

fping Reconnaissance A1, A2, S2 Simple host discovery in local network
nmap Reconnaissance A1, A2, S1 Port scans in local network
sqlmap Reconnaissance A1 Automated SQL injection attempts
gobuster Reconnaissance A2 Automated search for web directories
revshell Control A2, S1 Reverse shell
file exfiltration(FTP) Exfiltration A2 Exfiltration of file via FTP upload
meterpreter Control, exfiltration S2 Metasploit-based reverse shell
5.1.1. Time frames and timestamps
The series A and S come in a bundle with the appropriate training

and attack files. The training files contain one week of traffic each
and were captured the week before the attacks were conducted. For
example, training data was captured from Monday to Sunday. The
attacks were conducted on Monday and Tuesday (attack set S) and
Monday and Wednesday (attack set A). On Tuesday, a prolonged DoS
attack was performed and therefore the resulting data set is relatively
large (97.5 GB). We decided not to label or analyze this data set.
However, the data of Tuesday of set A is included in the publicly
available data as well, and ready for download (cf. Section 1). The
data sets were created and recorded in October 2023 (attack set A) and
November 2023 (attack set S).

All timestamps are recorded as utc+1 local time. Enterprise-grade
DAG hardware with Pulse Per Second (PPS) synchronization was used
and attached to our DAG system to obtain highly precise timestamps.
This accurate timing allows the correlation of distributed network
captures with potential external (application-layer) events.

In Fig. 1, the sensors, actuators, and network gear are part of
the factory cell network. At the same time, the black hosts with
red descriptions underneath are involved in the penetration testing
scenarios.

The switch of the turning cell is an enterprise-grade gigabit Ethernet
switch. One port of the switch is configured as a mirror port. This
mirror path sends a copy of every frame leaving the switch to the DAG
server’s capture interface.

During the four measurement days, the target hosts were attacked
in two modes: two days for aggressive attacks and two days for stealth,
concealed attacks.

On the one hand, option ‘‘-T5’’ is the fastest scanning mode and the
easiest to detect in the network. On the other hand, the option ‘‘-T1’’
takes a very long time to deliver results but is harder to detect, e.g., by
an IDS.

6. Attacks

In both of the scenarios, the attacker first obtains knowledge of the
local assets in the network and then attacks by obtaining control of the
target hosts and stealing confidential data through exfiltration. Apart
from the target hosts, it is assumed that the attacker has no knowledge
of the attacked infrastructure and network at the beginning of any
scenario.

6.1. Data set A - Aggressive scenario

In this scenario, the adversary is allowed to run arbitrary attacks,
as there is no caution needed to remain undetected. The first days
(A1) focused on reconnaissance, for which the attacker uses the tools
fping [18], nmap [19] and sqlmap [20] on Day A1 with maximum
aggressiveness. Then, on the second day A2, the web application of
host .92 (Metasploitable 3) is scanned using the tool gobuster [21].
On the same day, a PHP-based reverse shell is used, and lastly, a file
exfiltration attack using the FTP protocol is performed on the same

host.

5 
6.2. Data set S- Stealth scenario

In this scenario, the attacker is tasked to remain as undetected as
possible by the IDS deployed within the network and attack in a way
as concealed as possible. The number of ports scanned was adjusted to
the duration of the scan. The following scans were performed using the
tools nmap and fping on days S1 and S2:

• SYN scan of all ports
• TCP scan of all ports
• nmap SYN scan with speed T0 of the ports: 21, 22, 80, 443, 445
• nmap SYN scan with speed T1 of the top 20 ports
• nmap SYN scan with speed T2 of the top 100 ports

On day S1, a reverse shell is run on host .93 (Kubuntu with DVWA).
On day S2, a meterpreter-based remote shell is used to execute com-
mands and exfiltrate files from the target host in a slower and more
concealed way compared to days A1–A2.

Labeling was performed considering the recommendations of Flood
et al. [9]: We did not only rely on the attackers IP address to label the
traffic as malicious but several individual parameters of every single
attack such as packet size, TTL, receiver address, protocol identifier,
source port, etc. which led to a more accurate labeling: while packets
that are part of the attack itself in forward direction were labeled as
malicious, the target’s responds traffic was not — with all reverse shells
as only exception. Furthermore, in the PCAP files it can be observed
that the attacker’s host sent administrative traffic such as NETBIOS [22]
hostname resolution, etc., sent Domain Name System (DNS) requests
or did research on the internet. All these actions have been labeled as
benign traffic since they are not part of attacks.

The File Transfer Protocol (FTP) protocol and a Metasploit remote
shell are used for the exfiltration process. The exhaustive list of the
conducted attacks can be found in Table 1. Days marked in red contain
only aggressive modes of attacks, and days marked in blue contain only
stealth modes of attacks.

7. Analysis of the data set

This section contains detailed properties of the provided data set.

7.1. Protocols

Figs. 4(a) and 4(b) show the network traffic’s protocol distribution
during 14 days of normal factory operation. The legend shows the
top 10 observed protocols by prevalence. For the full list of protocols
identified, however, please refer to the file ‘‘ identified_protocols.txt’’
within the repository of the provided data set(cf. Section 1). Please
note the meaning of the patterns, too: User Datagram Protocol (UDP)-
based protocols are marked with circles, whereas Transmission Control
Protocol (TCP)-based protocols are marked with stripes within the
diagrams. The legend shows the ten most common protocols during
the recording in terms of the number of packets transmitted — from
the most common protocol to the least common protocol.

What is observable here is e.g. that OPC UA is only among the top

10 protocols on days S1 and A2. beyond that, SSH is only found in the
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Table 2
Starting times/Sequence numbers of packet, of performed attacks (time zone: Central European).

Data set First attack appearance in data set

Tool Timestamp Sequence number

A1 fping
nmap
sqlmap
meterpreter

2023-10-23 10:46:41
2023-10-23 11:01:48
2023-10-23 15:09:03
2023-10-23 16:53:09

1 489 166
2 124 001
14 064 302
18 483 608

A2 fping
nmap
gobuster
revshell
exfiltration(ftp)

2023-10-25 10:07:22
2023-10-25 10:08:40
2023-10-25 10:08:40
2023-10-25 12:16:51
2023-10-25 13:40:31

495 722
555 316
555 317
7 143 051
11 115 494

S1 fping
meterpreter
nmap
revshell
exfiltration

2023-11-21 09:23:26
2023-11-21 09:31:00
2023-11-21 09:31:00
2023-11-21 10:01:34
2023-11-21 10:34:29

64 029
423 486
423 487
2 025 510
3 645 668

S2 fping
nmap
gobuster
revshell
meterpreter

2023-11-20 09:31:26
2023-11-20 10:24:20
2023-11-20 10:24:20
2023-11-20 14:33:52
2023-11-20 15:00:23

7 133 768
10 035 491
10 035 741
22 587 712
23 947 386
Table 3
Data set files, their content, and details.

Data set Time captured Duration No. Pkts. No. bytes No. flows Type Attack-actions

TFA 2023-10-15 22:30:01
2023-10-22 12:09:26

6 d 13 h 39 m 176.615.865 56 470 492 187 769 903 Normal operation –

A1 2023-10-23 10:11:35
2023-10-23 20:31:58

10 h 20 m 27.847.171 5 574 769 640 370 363 Aggressive attacks Reconnaissance

A2 2023-10-25 09:56:40
2023-10-25 16:29:09

6 h 32 m 18.882.114 3 913 818 540 348 195 Aggressive attacks Reconnaissance, control, exfiltration

TFS 2023-11-12 19:23:44
2023-11-19 19:23:44

7 d 0 h 0 m 493.159.029 97 417 854 436 553 675 Normal operation –

S1 2023-11-20 06:59:49
2023-11-20 21:41:47

14 h 41 m 51.258.814 10 925 600 828 199 553 Stealth attacks Reconnaissance, control

S2 2023-11-21 09:22:00
2023-11-21 01:02:05

08 h 19 m 44.574.874 11 937 655 812 166 231 Stealth attacks Reconnaissance, control, exfiltration

Sum: 15 d 5 h 31 m 812.337.867 186.240.191.443 2.407.920
i
a

7

s
t
t
m
a
f
s

training files’ top 10 protocols — indicating that the attacker never used
the SSH protocol. Interestingly, the relative amount of Modbus/TCP
traffic did not differ between training files and attack files as expected:
some of the attack files (A1 for example) have a relatively high amount
of Modbus/TCP traffic — Even though the applicant did not introduce a
single Modbus/TCP packet himself. For us, this is a hint that the attacks
generally made up a minority of traffic.

Lastly, we found that a significant amount of Transport Layer Secu-
rity (TLS) v1 traffic (between 0.5 and 2.02) is observable in the training
data (TF A and TF S).

Fig. 5 depicts the protocol distributions for the aggressive attack
days A1 in Fig. 5(a) and A2 in Fig. 5(b), whereas 6 illustrates the
protocol distributions on the two stealthy attack days S1 in Fig. 6(a)
and S2 in Fig. 6(b), respectively. For both figures, the following labeling
is applied: Segments with stripes build upon the TCP protocol whereas
segments with rings use UDP.

7.1.1. Progression of traffic over time
Figs. 7 and 8 show the progression of the network traffic over time,

i.e., the number of bytes and packets exchanged in the local network
in the form of a bar plot. Each bar depicts the accumulated amount
of bytes/packets within one minute. Since the two fingers belong to
the training files (TF A and TF S), the total time frame is around one
week, around 10,000 min. while the traffic was very regular during the
6 
second training week (TF S), traffic during the first training week (TF
A) was meager at around 60% of the time.

7.1.2. Progression of the attacks over time
Figs. 9–12 show the courses of attacks over time. Some benign

traffic peaks are caused by attacks, e.g., from reflections, i.e., replies
of benign hosts to attack traffic. Those are marked as benign traffic.

7.1.1 furthermore allows us to identify which traffic peaks are
caused by attacks since both are bar plots with a time block size of
one minute (cf. also Table 2).

The 𝑌 -axis represents the number of packets accumulated over a
one-minute time block, while the 𝑋-axis indicates the time. The legend
s a crucial tool, as it shows the specific color associated with each
ttack, aiding in the interpretation of the graphs.

.1.3. Histograms of flow durations
This section discusses the distribution of flow durations of the data

et. Note that the two training data sets (TF A and TF S) contain benign
raffic only. The four days A1, A2, S1, and S2, on the other hand, show
he flow durations of benign traffic in blue and the flow durations of
alicious traffic in red, slightly transparent so that both distributions

re visible at the same time. Figs. 13 and 14 show the distributions of
low durations for the days A1 and S2. All figures for all of the data
ets can be found in our data set repository. We chose to include these
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Fig. 5. Protocol distribution of operational traffic and attack traffic on days A1 and A2, respectively.
Fig. 6. Protocol distribution of operational traffic and attack traffic on days S1 and S2, respectively.
Fig. 7. Packets and bytes over time, training file A (TF A).

two examples since they show a clear difference between benign and
malicious traffic is observable.

8. Findings

This section points out the most relevant findings of this paper.
7 
Fig. 8. Packets and bytes over time, training file S (TF S).

One important finding is the remarkable traffic regularity that we
could observe in the factory network. This regularity is generally
beneficial for attack detection because traffic peaks (cf. Section 7.1.1)
as well as flow amount peaks (cf. Section 7.1.2) and also differences in
flow duration distribution were observable for benign and attack traffic
— in both the aggressive and the stealth data sets.
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Fig. 9. The graph shows the attacks performed by the pentester over time on day A1.

Fig. 10. The graph shows the attacks performed by the pentester over time on day A2.

Fig. 11. The graph shows the attacks performed by the pentester over time on day S1.
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Fig. 12. The graph shows the attacks performed by the pentester over time on day S2.
Fig. 13. Histogram of flow durations. Traffic: Day A1. Blue: Benign traffic. Red (transparent): Attack traffic.
At first glance, it seems that the protocol distribution did not
change significantly when attacks were introduced into the network (cf.
Section 7.1). But in fact, this is due to the amount of benign traffic in
comparison to the amount of malicious traffic.

Another finding was that the difference in the distribution of the
flow durations between operational and malicious traffic was signifi-
cant enough to be even easily observable with the plane eye for every
one of the attack days.

Note that the graphs shown in this paper are the only a selection.
We created all graphs seen in this paper for every of the PCAP files.
The complete collection of grass is also found on the repository (cf.
Section 1).

9. Conclusion

In our related work, we have shown that most data sets available
either is generated traffic or obtained it from a testbed environment
9 
(cf. Section 2). The data set provided with this paper, in contrast, is
obtained from a real factory OT network. It is one of very few OT data
sets that contain both operational traffic and authentic attack traffic in
an authentic OT network.

The paper itself describes the data set in detail. We document
the methodology and assumptions made during the data capturing
along with the documentation of our technical setup and present the
experiments and attacks that led to the data set.

The data set consists of two weeks of benign operational traffic and
four days in which different attacks are conducted by a pentester. We
include two scenarios: an aggressive scenario where no effort is put into
concealing attacks, and a stealthy scenario in which the attacker tries
to avoid detection.

The data set was created in October and November of 2023. It
contains modern Machine to Machine (M2M) communication protocols
such as OPC UA, Modbus/TCP, and MQTT and stems from modern
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Fig. 14. Histogram of flow durations. Traffic: Day A1. Blue: Benign traffic. Red (transparent): Attack traffic.
industrial control network equipment. The data set can be downloaded
and used under the CC BY 4.0 license. (cf. Section 1).
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