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Kurzfassung

Kreuzdiffusion ist ein Phänomen in Systemen, bei dem die Diffusion einer Spezies, also der Aus-
gleich des Konzentrationsunterschiedes innerhalb selbiger, durch den Gradienten anderer im
System vorhandener Spezies induziert wird. Aufgrund ihres häufigen Auftretens zum Beispiel
in biologischen Systemen oder Prozessen sowie chemischen Reaktionen wurden Kreuzdiffusi-
onssysteme in den letzten Jahrzehnten intensiv untersucht.
Diffusive Systeme mit Drift, in denen die Bewegung von Partikeln nicht nur durch die Ände-
rung von deren Konzentration induziert wird, sondern auch durch eine Kraft, welche mit den
Partikeln interagiert, sind wiederum von großem Interesse, da diese mitunter Halbleiter model-
lieren – ein kleiner jedoch umso essentiellerer Bauteil in den meisten elektrischen Schaltkreisen
heutzutage.

Entropiemethoden nutzen die natürliche Präsenz eines Lyapunovfunktionales zur Studie par-
tieller Differentialgleichungen aus und haben sich als mächtiges Werkzeug in der Analyse von
Kreuzdiffusions- und Driftdiffusionssystemen erwiesen. Besonders wenn klassische Methoden
wie zum Beispiel Maximumprinzipien, (elliptische) Regularitätstheorie, Monotonieargumente,
etc. nicht anwendbar sind erweisen sie sich als praktisches Instrument. In der vorliegenden
Arbeit illustrieren wir dies anhand unterschiedlichster Anwendungen.

Im ersten Teil der Arbeit betrachten wir Systeme von partiellen Differentialgleichungen, die
die Evolution von Populationsdichten oder Zustände von Neuronen beschreiben. Interaktio-
nen zwischen den verschiedenen Spezies führen zu Kreuzdiffusionstermen in den Gleichungen.
Weiters erhält man nichtlokale Terme in den Gleichungen, wenn man berücksichtigt, dass
Individuen oftmals einen gewissen Interaktionsradius oder eine

”
Interaktionsdistanz“ haben,

beispielsweise deren Sichtfeld oder die nähere Umgebung. Ziel dieses Teiles der Arbeit ist das
Erweitern bereits bestehender Resultate für Systeme mit einer beliebigen Anzahl an Gleichun-
gen, wobei wir

”
minimale“ Forderungen an die Nichtlokalitäten stellen, sowie die Entwicklung

eines zuverlässigen numerischen Verfahrens zur approximativen Lösung der Gleichungen.

Die Kreuzdiffusion und die Nichtlokalität stellen eine beträchtliche Herausforderung für die
(Existenz-) Analyse dar, denn sie verhindern die Anwendung klassischer Methoden wie etwa
Maximumprinzipien oder Regularitätstheorie. Das Ausnutzen der Entropiestruktur des Sys-
tems ermöglicht es uns diese Schwierigkeiten zu umgehen. Wir werden die globale Existenz
schwacher Lösungen beweisen und zeigen, dass schwache Lösungen und starke Lösungen des
Systems übereinstimmen. Hierbei werden wir das Vorhandensein zweier verschiedener Entro-
piefunktionale im System nutzen, unter der Voraussetzung, dass die Nichtlokalitäten in einem
gewissen Sinn positiv semi-definit sind.

Weiters werden wir ein implizites Euler Finite-Volumen Schema entwickeln, welches wichtige
strukturelle Eigenschaften des Systems wie etwa dessen Entropiestruktur und die Nichtnega-
tivität von Lösungen auf der diskreten Ebene erhält. Wir werden die Existenz von (diskreten)
Lösungen sowie deren Konvergenz gegen schwache Lösungen des Systems bei Verfeinerung des



Gitters beweisen. Wie auch im kontinuierlichen Fall nutzen wir im Existenzbeweis stark die
doppelte Entropiestruktur des Systems aus.
Im zweiten Teil dieser Arbeit werden wir uns mit der Analyse eines instationären nichtli-

nearen Driftdiffusionssystems, welches Memristoren modelliert, beschäftigen. Ein Memristor
ist ein nichtlinearer Widerstand mit einem gewissen Gedächtniseffekt, in dem die Elektronen,
Löcher und Sauerstoffvakanzen als Ladungsträger fungieren und Drift- sowie Diffusionseffekten
ausgesetzt sind. Die nichtlineare Diffusion der Elektronen und Löcher wird mittels Fermi-Dirac
Statistik der Ordnung 1/2 modelliert, jene der Sauerstoffvakanzen mit Blakemore Statistik. Je-
de der Diffusionsgleichungen enthält einen Driftterm, der sich proportional zum Gradienten
des elektrischen Potentials des Systems verhält. Das elektrische Potential wiederum ist über
eine Poissongleichung mit den vorhandenen Teilchenkonzentrationen gekoppelt. Das Ziel die-
ses Kapitels ist das Etablieren neuer Erkenntnisse über dieses Modell, da bisher nur wenige
Resultate für nichtlineare Driftdiffusionssysteme mit mehr als zwei Spezies existieren.
Die Nichtlinearitäten in der Diffusion, welche nur implizit gegeben sind, stellen eine große

Herausforderung für die Existenzanalyse dar. Erschwerend kommen die verschiedenen Rand-
bedingungen der Konzentrationen sowie das Betrachten von drei oder mehr unterschiedlichen
Teilchenkonzentrationen hinzu. Der Einsatz klassischer Techniken oder Monotonieargumente
wird dadurch unterbunden. Wie auch bei den nichtlokalen Kreuzdiffusionssystemen werden wir
diese Schwierigkeiten umgehen, indem wir die Entropiestruktur des Systems ausnutzen. Wir
werden die globale Existenz schwacher Lösungen zeigen und, unter geeigneten Regularitätsvor-
aussetzungen an das elektrische Potential, deren Beschränktheit für alle Zeit. Der Existenzbe-
weis basiert auf einer Entropiemethode, zusätzlich müssen wir aber feine Abschätzungen für
das asymptotische Verhalten der Statistikfunktionen herleiten. Eine weitere Schwierigkeit be-
reitet die Singularität der Blakemore Statistik, welche wir mit einem Minty-Trick überwinden
werden.



Abstract

Systems including cross-diffusion, i.e. the process where the flux of one component or species
is induced by the gradient of another component or species, have received increased attention
in the PDE community over the last few decades due to the presence of this phenomenon in
many real life situations such as chemical reactions or biological processes or systems.
Another important class are diffusive systems containing drift, where the movement of particles
is not just induced by the change of their concentration, which is called diffusion, but also by
the presence of a force that interacts with the particles. These systems are of high interest
since they model, among other things, semiconductors – a small yet essential component of
most nowadays electrical circuits.

Entropy methods, where the natural presence of a Lyapunov functional is used to study
the behaviour of partial differential equations (PDEs), proved to be a powerful tool in the
analysis of cross-diffusion and drift-diffusion systems. These methods are especially useful
when standard techniques, for example maximum or comparison principles, (elliptic) regularity
theory, monotonicity arguments, etc. cannot be applied. In this thesis we demonstrate the
usefulness of these methods in various settings.

In the first part of the thesis we will focus on systems of PDEs that model the evolution
of populations of different species or states of neurons. Interactions between the different
species lead to the appearance of cross-diffusion terms in the equations. Nonlocal terms enter
the equations if we take into account that individuals of a given species usually have some
interaction radius or “distance”, e.g. their effective area of sight or sense. The aim of this
part of the thesis is to extend existing results on systems with an arbitrary number of species
by imposing “minimal” conditions on the nonlocalities and to design a reliable numerical
approximation to capture the behaviour of solutions.

The main mathematical difficulties come from the presence of cross-diffusion and nonlocali-
ties, preventing the use of standard PDE techniques such as maximum principles and regularity
theory. We will show that weak solutions exist globally in time and that a weak-strong unique-
ness result holds. The proofs are based on the entropy method, where we exploit the fact that
the system we investigate possesses two different entropy functionals, under the assumption
that the nonlinearities fulfil a certain positive semi-definiteness condition.

We continue by defining an implicit Euler finite-volume scheme that preserves the important
properties of the system such as the nonnegativity of its solutions and its entropy structure on
a discrete level. At this point we prove the existence of (discrete) solutions to the scheme and
show their convergence to solutions of the continuous scheme when the mesh is refined. As in
the continuous case, the existence proof relies heavily on the double entropy structure of the
system.

In the second part of the thesis we will analyse an instationary drift-diffusion system, which
arises in the modelling of memristors. A memristor is a nonlinear resistor with memory, in



which electrons, holes and oxygen vacancies act as charge carriers experiencing both drift and
diffusion phenomena. The nonlinear diffusion of electrons and holes is governed by Fermi-Dirac
statistics of order 1/2, while Blakemore statistics are chosen for the oxygen vacancies. Each
of the diffusion equations contains a drift term involving the electric potential of the system,
which is coupled to the present particle concentrations via a Poisson equation. The main goal
of this part is to advance our understanding of this model, as only few results exist for nonlinear
drift-diffusion systems having three or more species.
The main challenges we encounter in the analysis of this system come from the nonlinearities

in the diffusion, as they are only given implicitly. A misfit of boundary conditions between
electrons/holes and oxygen vacancies and the fact that we are dealing with three or more
distinct species further complicate the analysis. We will show that weak solutions exist globally
in time and that under certain elliptic regularity assumptions they are bounded uniformly in
time. The proofs are, as in the case of the nonlocal cross-diffusion systems, based on the
entropy method with the additional careful study of the behaviour of the statistics functions.
It is worth mentioning that another difficulty arises from the singularity that the Blakemore
statistics exhibits, which is overcome by a Minty-type trick.
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1 Introduction

The purpose of this thesis is twofold. First,we aim to establish new results in the area of
nonlocal cross-diffusion systems for multi-species populations, i.e. systems that involve more
than two density functions and hence are comprised of more than two equations describing the
evolution of the respective densities. While there exists a plethora of results on the analysis of
local cross-diffusion systems (for multiple species), less is known for nonlocal systems of two
species, and for nonlocal systems of more than two species analytical results are scarce and
usually include some strong requirements on the initial and boundary data or the structure of
the equations. Typical examples of these requirements are the differentiability of the interaction
kernels or cases where the system can be reduced to two or even one equation. Our aim is
to provide a new perspective on the analysis of nonlocal cross-diffusion systems with as little
assumptions on the interaction kernels as possible. We especially want to avoid the assumption
of the differentiability of the kernel functions.

Second, we aim to advance our knowledge in the analysis of nonlinear drift-diffusion systems
arising from semiconductor physics and neuro-computing. Here, only few results exist in the
literature for systems that include more than two charge carriers in the semiconductor setting,
or species in general, and therefore consist of more than two equations for their respective
densities. The scarcity of results in this topic is, in parts, owed to the various mathematical
difficulties that have to be overcome in the analysis. Recent developments in the industry
(perovskite solar cells) and in neuromorphic computing (artificial synapses), fuelled by the
emergence of memristive devices and materials, sparked a new growing interest in such non-
linear systems. In this thesis, we will establish new results in the study of such systems and
relate them to existing work such as [71, 77].

At a first glance, it seems that these two topics, nonlocal cross-diffusion systems and nonlin-
ear drift-diffusion systems, have little to do with each other. What unites them in the context
of this work is the fact that entropy methods [72, 73] play a crucial role in our approaches.
Accordingly, this thesis naturally splits into two main parts with entropy methods acting as
an intrinsic underlying thread spanning throughout this work. In the first part of the the-
sis, which consists of Chapters 2 and 3, we discuss nonlocal cross-diffusion systems modelling
multi-species populations or networks. The second part, consisting of Chapter 4, is devoted to
the analysis of a nonlinear drift-diffusion system that models memristive devices.

The results in this thesis are based on the publication [74] (Ansgar Jüngel, Stefan Portisch,
Antoine Zurek), the publication [75] (Ansgar Jüngel, Stefan Portisch, Antoine Zurek) and the
ongoing research collaboration (Maxime Herda, Ansgar Jüngel, Stefan Portisch), for which a
manuscript is currently prepared for submission.

1



1 Introduction

1.1 Nonlocal cross-diffusion systems

We start this section by introducing a system of nonlocal partial differential equations, which
models multi-species populations or networks. As in [59], we will consider the system on
the d-dimensional torus Td.

1.1.1 Model equations and motivation

We consider the following nonlocal cross-diffusion system:

∂tui − σ∆ui = div(ui∇pi[u]), t > 0, ui(0) = u0i in Td, i = 1, . . . , n, (1.1)

where σ > 0 is the diffusion coefficient, Td is the d-dimensional torus (d ≥ 1) and pi[u] is a
nonlocal operator given by

pi[u](x) =
n%

j=1

�
Td

Kij(x− y)uj(y) dy, i = 1, . . . , n, (1.2)

with the kernel functions Kij : Td → R (extended periodically to Rd), and with the solution
vector u = (u1, . . . , un).

As it was discussed in [59, 87], when the kernel functions are given by Kij = aijK with
numbers aij ∈ R and a nonnegative function K, this model describes the dynamics of a popu-
lation with n species, where each species can detect other species over a spatial neighborhood
by nonlocal sensing, described by the kernel function K. The coefficient aij is a measure of
the strength of attraction (if aij < 0) or repulsion (if aij > 0) of the i-th species to or from
the j-th species. A typical choice of K is the characteristic function 1B of a ball B centered
at the origin. The authors of [59] proved the local existence of a unique (strong) solution to
system (1.1)–(1.2) for d ≥ 1 under the condition that K is twice differentiable. Furthermore,
they have shown that this solution can be extended globally in one space dimension. However,
their assumptions on K exclude the typical case K = 1B mentioned above. In this thesis we
will extend the results of [59] for non-differentiable kernels Kij and prove the global existence of
weak solutions to (1.1)–(1.2) as well as a weak-strong uniqueness result in any space dimension.
Following [59], we consider (1.1) on the torus; see Remark 9 in Section 2.2 for a discussion
about the case where the whole space or a bounded domain is considered.
Another motivation comes from the work [31], where the system (1.1)–(1.2) was rigorously

derived from interacting many-particle systems in a mean-field-type limit. As a by-product
of this limit, the local existence of smooth solutions to (1.1)–(1.2) has been shown under the
assumption that the Kij are smooth. Moreover, under the same assumptions on the kernels,
the so-called localization limit was proved, i.e. if Kij converges to the delta distribution times
some factor aij , the solution to the nonlocal system (1.1)–(1.2) converges to a solution to the
model (1.1) with

pi[u] =
n%

j=1

aijuj , i = 1, . . . , n. (1.3)

We note that the local system was first introduced in [56] in the case of two species. In
this thesis, we generalize the results of [31] by imposing “minimal” conditions on the initial
datum u0 and the kernels Kij .
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1.1 Nonlocal cross-diffusion systems

A third motivation for our work comes from neuroscience. Indeed, following [11, 58], we
see that deterministic nonlocal models of the form (1.1)–(1.2) can be obtained as the mean-
field limit of stochastic systems describing the evolution of the states of neurons belonging
to different populations. When the number of neurons becomes very large, the solutions of
the generalized Hodgkin–Huxley model of [11] can be described in the mean-field limit by a
probability distribution ui for the i-th species, which solves the McKean–Vlasov–Focker–Planck
equation of the type

∂tui = σ∆ui + div

n%
j=1

�
Td

Mij(x, y)ui(x)uj(y) dx dy, i = 1, . . . , n, (1.4)

where we simplified the diffusion part involving σ. In neural network theory, the kernel func-
tion Mij(x, y) describes the weight of a connection between the node x associated to species i
and node y associated to species j. In the present work, we simplify the problem further by
assuming that the interaction kernels Mij have the special form Mij(x, y) = ∇Kij(x − y),
resulting in (1.1)–(1.2) again.

1.1.2 State of the art

We recall the current state of the art in the study of nonlocal equations and systems, follow-
ing [74], and mention additional results, which have been found since the publication of this
paper.
Most nonlocal models studied in the literature describe a single species. A simple example

is the equation
∂tu = div(uv),

with v = ∇(K ∗ u). This equation corresponds to the continuity equation for the density u
with a nonlocal velocity v. An Lp-theory for this equation was provided in [16], while the
Wasserstein gradient-flow structure was explored in [27]. In the context of machine learning,
the equation can be seen as the mean-field limit of infinitely many hidden network units [82, 94].
Beyond the study of single-species dynamics one can find some work which deals with the

existence of solutions to multi-species nonlocal systems of the form (1.1)–(1.2) or similar to it.
For instance, in the case of two species and symmetrizable cross-interaction potentials (mean-
ing K12 = αK21 for some α > 0) without diffusion σ = 0, a complete existence and uniqueness
theory for measure solutions to (1.1)–(1.2) in the whole space with smooth convolution kernels
was established in [45] using the Wasserstein gradient-flow theory.
In [56], a nonlocal version of the Shigesada–Kawasaki–Teramoto (SKT) cross-diffusion sys-

tem, where the diffusion operator is replaced by an integral diffusion operator, was analysed.
Similar to our approach, which we will explain shortly, the authors obtain a priori estimates
on the solutions via an entropy inequality, which allows them to prove existence of solutions
using a compactness argument. In [43], the authors show the existence of weak solutions to a
nonlocal version of the SKT system, where the nonlocalities are similar to the ones considered
in this work. Assuming some regularity on the convolution kernels, their proof is based on the
so-called duality method [42, 80]. They also prove a localization limit result.

In the works [29, 44, 45] the authors analyse nonlocal cross-diffusion systems for two species
similar to our model. In [29], the steady states are characterized and numerical simulations
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are presented, while the works [44, 45] prove the existence of weak measure solutions under a
global Lipschitz condition onKij and∇Kij . The innovation of the presented work in this thesis
is that we impose only integrability conditions on Kij and have (slightly) weakened positive
definiteness to detailed balance. The weak-strong uniqueness result and the localization limit
are also new in this context.
For the sake of completeness, we mention that a nonlocal system for two species with size

exclusion was analysed in [15], using entropy methods. The authors proved the global existence
of weak solutions and additionally investigated phase separation effects by means of analytical
as well as numerical studies of the energy functional of the system. Contrary to our model,
this system has nonlinear diffusion and also takes into account the influence of the total mass
density of the species in the equations.
It is worth mentioning that all the aforementioned cited works, except [43], are concerned

with two-species models, whereas we will allow for an arbitrary number of species and nondif-
ferentiable kernel functions.
Recently, the authors of [60] showed that for any initial datum u0 to (1.1) an energy functional

of the corresponding solution, which we will touch on shortly, converges to a local minimum.
Furthermore, the authors propose a method to find corresponding minimum energy states.
In [61] the authors proved the global existence of nonnegative weak solutions to (1.1) in any
space dimension, assuming the kernels Kij to be twice differentiable with ∇Kij essentially
bounded, but dropping all other assumptions on the kernels. Additionally, they showed that
blow-up of solutions in the localized version of (1.1) is possible under certain assumptions on
the parameters.
Recently, the authors of [23] derived the local version (1.1) & (1.3) of the system considered

in this work from nonlocal interaction systems and used gradient flow techniques to show
that solutions of the nonlocal system converge to the local system in the limit of localizing
interaction kernels.

1.1.3 Mathematical difficulties and strategy of our proofs

The mathematical difficulties we encounter in the analysis of system (1.1)–(1.2) stem from the
cross-diffusion terms and the nonlocality, which prevent the application of standard techniques
like maximum principles and regularity theory. For instance, it is well known that nonlocal
diffusion operators generally do not possess regularizing effects on the solution [8]. The key
ingredient to our analysis lies in the observation that the nonlocal system possesses, like the
associated local one, two entropies, namely the Shannon-type entropy H1 [92] and the Rao-
type entropy H2 [89],

H1(u) =
n%

i=1

�
Td

πiui(log ui − 1) dx, (1.5)

H2(u) =
1

2

n%
i,j=1

�
Td

�
Td

πiKij(x− y)ui(x)uj(y) dx dy, (1.6)

where π1, . . . , πn > 0 are numbers such that

πiKij(x− y) = πjKji(y − x) for all i, j = 1, . . . , n, x, y ∈ Td (1.7)
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and
n%

i,j=1

�
Td

�
Td

πiKij(x− y)vi(x)vj(y) dx dy ≥ 0 for all vi, vj ∈ L2(Td). (1.8)

A formal computation that is made rigorous in Chapter 2 shows that the following entropy
inequalities hold:

dH1

dt
+ 4σ

n%
i=1

�
Td

πi|∇√
ui|2 dx = −

n%
i,j=1

�
Td

�
Td

πiKij(x− y)∇ui(x) · ∇uj(y) dx dy ≤ 0,

(1.9)

dH2

dt
+

n%
i=1

�
Td

πiui|∇pi[u]|2 dx = −σ
n%

i,j=1

�
Td

�
Td

πiKij(x− y)∇ui(x) · ∇uj(y) dx dy ≤ 0.

(1.10)

In particular, the functionals H1 and H2 are Lyapunov functionals. We can think of (1.7)
as a generalized detailed-balance condition for the Markov chain associated to (Kij(x − y))
(for fixed (x − y)) with the corresponding reversible measure (π1, . . . , πn). Condition (1.8),
on the other hand, is a generalisation of the usual definition of positive definite kernels in the
multi-species case [22]. Examples of kernels that satisfy (1.7) and (1.8) are given in Remark 1
in Section 2.1.
The positive definiteness condition for kernels is essential in reproducing kernel Hilbert

theory [86]. From a PDE viewpoint, this condition can be replaced by the smoothness as-
sumption Kij ∈ C1; see, e.g. [45, 59]. Because of the nonlocality, we cannot conclude estimates
in L2(Td) for ui and ∇ui from our entropy inequalities like in the local case; see [78] and
Section 2.6. Nonetheless, we can deduce bounds for ui log ui in L1(Td) and

√
ui in H1(Td)

from (1.9).
These bounds are not sufficient to pass to the limit in the approximate problem. In particular,

we cannot identify the limit of the product ui∇pi[u], since ui and ∇pi[u] are elements in spaces
larger than L2(Td). We solve this issue by exploiting the uniform L2(Td)-bound for

√
ui∇pi[u],

which follows from (1.10), and prove a “compensated compactness” lemma (see Lemma 13 in
Section 2.5): If uε → u strongly in Lp(Td), vε ⇀ v weakly in Lp(Td), and uεvε ⇀ w weakly
in Lp(Td) for some 1 < p < 2, then uv = w. The estimates from (1.9)–(1.10) are the key for
the proof of the global existence of weak solutions to (1.1)–(1.2).
Additionally to the above existence result, we prove the weak-strong uniqueness of solutions,

i.e. if u is a weak solution to (1.1)–(1.2) satisfying ui ∈ L2(0, T ;H1(Td)) and if v is a “strong”
solution to this problem with the same initial data, then u(t) = v(t) for a.e. t ≥ 0. The proof
relies on the relative entropy

H(u|v) =
n%

i=1

�
Td

πi
�
ui(log ui − 1)− ui log vi + vi

�
dx,

a variant of which was used in [52] for reaction-diffusion systems in the context of renormal-
ized solutions and later extended to Shigesada–Kawasaki–Teramoto systems [36]. The recent
work [67] generalizes this approach to more general Shigesada–Kawasaki–Teramoto as well as
energy-reaction-diffusion systems. To our knowledge, our work is the first one to apply these
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techniques to nonlocal cross-diffusion systems. The main idea in the proof of the uniqueness
is to differentiate H(u|v) and to derive the inequality

H(u(t)|v(t)) ≤ C
n%

i=1

� t

0
∥ui − vi∥2L1(Td) ds for t > 0,

which, together with the Csiszár–Kullback–Pinsker inequality [73, Theorem A.2], allows us to
estimate the relative entropy from below by ∥ui(t)−vi(t)∥2L1(Td)

, up to some factor. Grönwall’s

lemma is then used to conclude the desired result.
It is worth pointing out that our use of this inequality is different from the proofs

in [36, 52, 67], where the relative entropy is estimated from below by |ui − vi|2 on the
set {ui ≤ K}. The difference stems from the nonlocal terms. Indeed, if Kij is bounded,

n%
i,j=1

�
Td

�
Td

πiKij(x− y)(ui − vi)(x)(uj − vj)(y) dx dy ≤ C
n%

i=1

��
Td

|ui − vi| dx
�2

,

leading to an estimate of the difference |ui − vi| in L1(Td). In the local case, the associated
estimate yields an L2(Td) estimate:

n%
i,j=1

�
Td

πiaij(ui − vi)(x)(uj − vj)(x) dx ≤ C
n%

i=1

�
Td

|ui − vi|2 dx.

We observe that the uniqueness of weak solutions to cross-diffusion systems is a delicate
task, and there are only few results in the literature. Most of the results are based on the fact
that the total density

&n
i=1 ui satisfies a simpler equation for which uniqueness can be shown;

see [15, 35].
Contrary to this, in [14], a weak-strong uniqueness result on a cross-diffusion system, based

on L2-estimates and the fact that the studied system could be considered as a perturbation of
a system of heat equations, was shown. A so–called duality method was used by the authors
of [56] to prove the uniqueness of solutions for a nonlocal version of the Shigesada–Kawasaki–
Teramoto system.

To end this short subsection we would like to mention that the bounds obtained in the
proof of our existence result are independent of the kernels, thus allowing us to perform the
localization limit. To achieve this, we assume that Kij = Bε

ij → aijδ0 as ε → 0 in the sense
of distributions, where δ0 is the Dirac delta distribution. Then we show that if uε is a weak
solution to (1.1)–(1.2), it follows that uεi → ui strongly in L1(Td × (0, T )), and the limit u
solves the local system (1.1) and (1.3). As a by-product, we obtain the global existence of
weak solutions to this problem; see Section 2.6 for the precise statement.

1.2 A finite-volume scheme for nonlocal cross-diffusion systems

In this section we discuss a slightly modified version of the nonlocal cross-diffusion system
presented in the previous section. In particular, we assume local instead of nonlocal self-
diffusion. The proof of global existence of weak solutions, which we mentioned earlier, relies
heavily on the positive semi-definiteness condition (1.8) of the kernels. While useful in the
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1.2 A finite-volume scheme for nonlocal cross-diffusion systems

theoretical setting, checking this condition in practice is rather tedious, which motivates our
modification of the system. We will derive an implicit Euler finite-volume scheme (FV-scheme)
for the modified system, prove existence of discrete solutions and the convergence of the scheme.
Additionally, we investigate numerically the segregation phenomenon such systems exhibit in
their localized version [17].

1.2.1 Model equations and connection to previous work

In this part of our work we will design and study a structure-preserving finite-volume dis-
cretization of the following one-dimensional nonlocal cross-diffusion initial-value problem:

∂tui = ∂x(σ∂xui + ui∂xpi(u)) in T, t > 0, (1.11)

ui(·, 0) = u0i in T, i = 1, . . . , n, (1.12)

where σ ≥ 0 is the diffusion coefficient, T := R/Z is the one-dimensional torus of unit measure,
and pi is the nonlocal operator

pi(u)(x) := aiiui(x) +
n%

j=1
j ̸=i

aij(B
ij ∗ uj)(x) = aiiui(x) +

n%
j=1
j ̸=i

�
T
aijB

ij(x− y)uj(y) dy, (1.13)

where aij are given constants. The kernel functions Bij : T → R are periodically extended to R
and u = (u1, . . . , un) is the solution vector. In the case where Bii = δ0, with i ∈ {1, . . . , n}
and δ0 being the Dirac measure, we can rewrite pi as

pi(u) =
n%

j=1

aij(B
ij ∗ uj)(x). (1.14)

Equations (1.11) with definition (1.14) and general kernels Bij for i, j = 1, . . . , n can be derived
from stochastic interacting particle systems in the many-particle limit [31].
As mentioned above, we will show that the “full” nonlocal system, that is (1.11) & (1.14),

where Bii ̸= δ0 are general kernels, admits global weak solutions, cf. Chapter 2. Our analysis
is based on the fact that this system possesses two Lyapunov functionals. More precisely,
and as mentioned in Section 1.1, under the assumption of detailed-balance and semi positive-
definiteness, i.e. that there exist numbers π1, . . . , πn > 0 such that the kernels Bij satisfy

πiaijB
ij(x− y) = πjajiB

ji(y − x) for i, j = 1, . . . , n and a.e. x, y ∈ T,

and
n%

i,j=1

�
T

�
T
πiaijB

ij(x− y)vj(y)vi(x) dy dx ≥ 0 for all vi, vj ∈ L2(T), (1.15)

we will show that the Boltzmann-type and Rao-type entropies, respectively,

HB(u) =
n%

i=1

�
T
πiui(log ui − 1) dx,
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HR(u) =
1

2

n%
i,j=1

�
T

�
T
πiaijB

ij(x− y)uj(y)ui(x) dy dx,

fulfill the following entropy dissipation inequalities:

dHB

dt
+ 4σ

n%
i=1

�
T
πi|∂x√ui|2 dx = −

n%
i,j=1

�
T

�
T
πiaijB

ij(x− y)∂yuj(y)∂xui(x) dy dx ≤ 0,

(1.16)

dHR

dt
+

n%
i=1

�
T
πiui|∂xpi(u)|2 dx = −σ

n%
i,j=1

�
T

�
T
πiaijB

ij(x− y)∂yuj(y)∂xui(x) dy dx ≤ 0.

(1.17)

The Boltzmann entropy is related to the thermodynamic entropy of the system and the Rao
entropy is a measure of the functional diversity of the species [89].

While this theoretical framework is suitable to prove the existence of weak solutions, con-
dition (1.15) is cumbersome to check in practice. It is satisfied for smooth kernels such as
the Gaussian one, i.e. Bij(x − y) = exp(−(x − y)2/2) for i, j = 1, . . . , n, but fails to hold for
kernels Bij of the type Bij = 1K , where 1K is the indicator function of some interval K around
the origin; see the counterexample in Section 3.6.

The system (1.11) and (1.14), with local or nonlocal self-diffusion terms, describes the dy-
namics of a population with n species, where the evolution of each species is driven by nonlocal
sensing [87]. In other words, each species has the capability to detect other species over a spatial
neighborhood, specified by the kernel Bij , and weighted by the strength of attraction (aij < 0)
or repulsion (aij > 0). Thus, from a modelling point of view, the case Bij = 1K is biologi-
cally meaningful. To include this case in our analysis (at the continuous or discrete level), we
propose to slightly modify the model by considering (1.13) instead of (1.14).

For model (1.11)–(1.13), we impose the following assumptions:

• There exist numbers π1, . . . , πn > 0 such that πiaij = πjaji for all i, j ∈ {1, . . . , n}.

• Bji(−x) = Bij(x) ≥ 0 for a.e. x ∈ T and all i, j ∈ {1, . . . , n} with i ̸= j.

• For all i, j ∈ {1, . . . , n} with i < j, the matrices

M ij(x) :=

�
πiaii (n− 1)πiaijB

ij(x)
(n− 1)πjajiB

ij(x) πjajj

�
(1.18)

are uniformly positive definite for a.e. x ∈ T. In particular, we could choose some
nonpositive off-diagonal coefficients.

The ability to analyse system (1.11)–(1.13) with nonpositive off-diagonal coefficients is a new
and meaningful result. However, we notice that under the above assumptions the system is
only “weakly” nonlocal in the sense that the self-diffusion coefficients have to dominate the
cross-diffusion terms.
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We claim that the functionals HB and HR are still entropies for system (1.11)–(1.13), where
under our asssumptions we now have

HR(u) =
1

2

n%
i=1

�
T
πiaii|ui(x)|2 dx+

1

2

n%
i,j=1
i ̸=j

�
T

�
T
πiaijB

ij(x− y)uj(y)ui(x) dy dx.

Both functionals satisfy some entropy dissipation inequalities similar to (1.16)–(1.17), where,
if i = j, the terms on the right-hand side are simply given by the square of the L2(T)-norm
of ∂xui and we get that the entropy production term

Q :=
n%

i=1

�
T
πiaii|∂xui(x)|2 dx+

n%
i,j=1
i ̸=j

�
T

�
T
πiaijB

ij(x− y)∂xuj(y)∂xui(x) dy dx (1.19)

is nonnegative; see Lemma 31 in Section 3.5. Therefore, at least formally, the functionals HB

and HR are entropies for system (1.11)–(1.13). In this work, we will translate this property to
the discrete level by analysing a two-point flux approximation FV-scheme for (1.11)–(1.13).

1.2.2 Finite-volume methods (in a nutshell)

In this subsection we will give a very brief introduction to finite-volume methods by using
the d-dimensional version of equation (1.11) as an example, which then reads as follows:

∂tui = ∇ · (σ∇ui + ui∇pi(u)) in Td, t > 0, i = 1, . . . , n. (1.20)

Despite the fact that we will study (1.11) in detail in one space dimension and only comment
on higher space dimensions, we choose to use the setting of the d-dimensional torus for our
presentation in this subsection as it illustrates the concept of finite-volumes better than the
one-dimensional case.

Before we start, we want to emphasize that finite-volume methods is a broad research topic
and we will barely scratch its surface with this simplified motivation. We therefore refer the
interested reader to the foundation [51] for a detailed introduction to finite-volume methods.

To construct a scheme for our system, we start by discretizing the system of equations with
an implicit Euler method in time. Consequently, the continuous time derivative in (1.20) is
replaced by

∂tui ≈ uki − uk−1
i

∆t
,

for given k ∈ {1, . . . , NT }, where NT denotes the number of time steps, ∆t is the time step
size and uki is the solution at time t = k∆t.

The idea of finite-volumes is to partition the domain Ω into a set T of convex, polygonal or
polyhedral subsets K, such that

)
K∈T K = Ω. We call T a mesh and its elements K control

volumes or cells. The boundary ∂K of a cell K naturally partitions into a set EK of disjoint,
convex, (d− 1)-dimensional sets ς, which we call edges or surfaces of K. Each of these edges ς
has associated to it a unique unit normal vector νK,ς pointing outwards of K.
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Integrating equation (1.20) over a control volume K and (formally) applying the divergence
theorem therefore yields�

K

uki − uk−1
i

∆t
dx−

%
ς∈EK

�
ς
(σ∇ui + ui∇pi(u)) · νK,ς ds = 0. (1.21)

The next step is to rewrite equation (1.21) in terms of uki,K where uki,K = m(K)−1
�
K uki (x) dx

is the approximation to the solution uki on the cell K and m(K) denotes the d-dimensional
measure of the cell K. It is rather obvious how to do this for the first term in (1.21), therefore
we only sketch it for the integral over the boundary of a cell K. In order to do that, we will
need some additional notation.
Each cell K also has an associated point xK ∈ K called “middle point”. For this simplified

motivation it suffices to think of xK as the center of mass, although more general conditions
are possible, cf. [51]. Let us assume that the edge ς ∈ EK is separating the two cells K and L,
we denote this by ς = K|L, and that the edge ς is orthogonal to the straight line connecting the
two middle points xK and xL of the cells K and L, respectively. Furthermore, we define the
so-called transmissibility coefficient τς := m(ς)/dς , with m(ς) the (d− 1)-dimensional measure
of the edge ς and dς the Euclidean distance between the two cell centers xK and xL. Then

−
�
ς
(σ∇ui + ui∇pi(u)) · νK,ς ds ≈ −στςDK,ςu

k
i − τςu

k
i,ςDK,ςp

k
i =: Fk

i,K,ς , (1.22)

where DK,ςv := vL − vK and the mobilites uki,ς := �F (uki,K , uki,L) are an approximation of uki
on the edge ς, which we will rigorously define in Chapter 3. Note that we have not given a
definition for the approximation pki of pi(u) either, as this will be done in detail in Chapter 3
as well. The approximation in (1.22) is called two-point flux approximation. Let us point out
that the orthogonality assumption for the edges is crucial for the convergence result we will
prove. However, that assumption will be trivially satisfied in our case as we have to choose
a Cartesian mesh for our finite-volume discretization due to the convolution in the nonlocal
operators pi. In summary, we will obtain the following finite-volume approximation:

m(K)

∆t

�
uki,K − uk−1

i,K

�
+

%
ς∈EK

Fk
i,K,ς = 0.

1.2.3 State of the art

We recall the current state of the art in the study of (1.11)–(1.13) and similar systems. Addi-
tional information can be found in [75] and the references therein.

We start by mentioning several works that deal with the design and analysis of numerical
schemes for nonlocal cross-diffusion systems. The work [29] studies a positivity-preserving
one-dimensional finite-volume scheme for (1.11) with n = 2 and additional local cross-diffusion
terms. The authors focused on segregated steady states but did not include any numerical
analysis. The convergence of this finite-volume scheme was proved in [28], which still focused
on the two-species model.
A converging finite-volume scheme for a nonlocal cross-diffusion system modelling either a

food chain of three species or an SIR model when the cross-diffusion is dropped, was analysed
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in [7, 13]. In both works the nonlocality of the system comes from the dependence of the
self-diffusion coefficients on the total mass of the corresponding species.
A structure-preserving finite-volume scheme for the nonlocal Shigesada–Kawasaki–Teramoto

system was suggested and analysed in [65].
We would also like to mention the paper [26] on a second-order finite-volume scheme for a

nonlocal diffusion equation, which preserves the nonnegativity and fulfils a spatially discrete
entropy inequality. Related works include a Galerkin scheme for a nonlocal diffusion equa-
tion with additive noise [81], a finite-volume discretization of a nonlocal Lévy–Fokker–Planck
equation [10], and numerical schemes for nonlocal diffusion equations arising in image process-
ing [55]. To our knowledge, there does not exist any numerical analysis of system (1.11)–(1.13).

In this work we propose a finite-volume scheme which preserves the structure of equa-
tions (1.11)–(1.13). Compared to [28], we allow for an arbitrary number of species, include
linear diffusion σ ≥ 0, and show that the discrete equivalents of the Boltzmann and Rao en-
tropies are Lyapunov functionals for our scheme. Since we need the positive definiteness of
the matrix M ij(x), self-diffusion is needed in our situation. Moreover, in contrast to [28], we
impose periodic boundary conditions instead of no-flux conditions. Our proofs rely on the
discrete analog of the identity

∂xB
ij ∗ uj = Bij ∗ ∂xuj ,

see (3.8) in Section 3.1.2, which allows us to consider kernels Bij that are not differentiable,
whereas in [28] the kernels are required to be in C2

b (R). Compared to [65], our equations do
not have a Laplacian structure, which was used in [65] to define the numerical scheme, and we
allow for nonpositive off-diagonal coefficients.

1.3 A charge transport system with Fermi-Dirac statistics for
memristors

The last topic we will cover in this thesis is a nonlinear drift-diffusion system modelling memris-
tive devices. Memristors are nonlinear resistors with memory, which show a resistive switching
behaviour. They were postulated in the work [39] from 1971.

In neuromorphic computing, memristors can be used to build artificial neurons and
synapses [69]. Besides the electrons and holes, which act as charge carriers in general semincon-
ductors, in memristors the oxygen vacancies also act as charge carriers. Applying an electric
field in a memristor results in the drift of the oxygen vacancies and changes the boundary
between the low- and high-resistance layers. This allows memristors to mimic the conductance
response of synapses.
Aside from neuromorphic computing, memristors also play an important role in recent ad-

vances in photovoltaic technology, where perovskite solar cells (PSCs) have emerged as a
promising technology. In a PSC a perovskite material layer is embedded between two trans-
port layers and exhibits a memristive behaviour [91, 98]. In this application the accumulation
of anions plays a fundamental role as well.
Memristive devices can be modelled by a system of drift-diffusion equations for the electrons,

holes and oxygen vacancies, coupled to a Poisson equation for the electric potential [63, 84, 97].
Fermi-Dirac statistics of order 1/2 are chosen to govern the nonlinear diffusion of electrons and
holes [3, 63, 96, 97]. To correctly model the accumulation of ionic vacancies and take into
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1 Introduction

account the fact that accumulating an excessive number of vacancies is physically unrealistic,
the nonlinear diffusion of the oxygen vacancies is governed by Fermi-Dirac statistics of order −1
(also known as Blakemore statistics). This is motivated by the authors of [3] and corresponds
to a mean-field ideal lattice gas [12, Eqn. (3.5.1)].

For completeness, let us point out that we consider anorganic oxide-based memristors in
this work. In the case of organic semiconductor devices Gauss-Fermi integrals instead of
Fermi-Dirac integrals have to be used. This was done by the authors of [62], who showed
global existence and boundedness of weak solutions to an instationary drift-diffusion system
modelling such an ogranic device with two distinct charge carriers.

Owing to the novelty of the developments in memristor technology and the use of Fermi-
Dirac statistics for the nonlinearities, the mathematical analysis of these drift-diffusion systems
is rather challenging and new. Only few analytical results for three or more species exist in
the literature.

In this thesis we will prove the global existence of weak solutions to this model in up to
four space dimensions. Furthermore, in three space dimensions we will show the uniform-in-
time boundedness of solutions, given that the electric potential satisfies some elliptic regularity
constraint.

1.3.1 Model equations

Let us now present the equations that we will consider in this part.

The Fermi-Dirac integrals of orders 1/2 and −1, defined for all η ∈ R, are given by

F1/2(η) :=
1

Γ(1 + 1/2)

� ∞

0

ξ
1
2

1 + eξ−η
dξ,

F−1(η) :=
1

1 + e−η
,

(1.23)

where Γ is the Gamma function

Γ(z) =

� ∞

0

tz−1

et
dt, z > 0.

The corresponding inverse functions to the Fermi-Dirac integrals are given by

G(z) := F−1
1/2(z), z ∈ (0,∞),

H(z) := F−1
−1 (z) = log(z)− log(1− z), z ∈ (0, 1).

(1.24)

We assume that the time evolution of the densities for the electrons n, the holes p, the
oxygen vacancies D and the electric potential V is given by

∂tn−∇ · Jn = 0, Jn = n∇G(n)− n∇V,

∂tp+∇ · Jp = 0, Jp = −(p∇G(p) + p∇V ),

∂tD +∇ · JD = 0, JD = −(D∇H(D) +D∇V ),

λ2∆V = n− p−D +A, in Ω, t > 0,

(1.25)

12



1.3 A charge transport system with Fermi-Dirac statistics for memristors

where Jn, Jp and JD are the current densities of the electrons, holes and oxygen vacancies,
respectively, λ > 0 is the scaled Debye length and A(x) is the given immobile dopant acceptor
density. Following [96] we neglect recombination terms. We use physically motivated initial
data and mixed Dirichlet-Neumann boundary conditions:

n(0, .) = nI , p(0, .) = pI , D(0, .) = DI , in Ω,

n = 'n, p = 'p, V = 'V , on ΓD, t > 0,

Jn · ν = Jp · ν = ∇V · ν = 0, on ΓN , t > 0,

JD · ν = 0, on ∂Ω, t > 0,

(1.26)

where ΓD denotes the Dirichlet part of the boundary ∂Ω and ΓN its Neumann part. The
boundary part ΓD models the Ohmic contacts, at which we prescribe the electron and hole
densities as well as the applied voltage, while ΓN is the union of insulating boundary elements.
The no-flux Neumann boundary condition for D reflects the fact that oxygen vacancies cannot
pass through the boundary, i.e. they are not supposed to leave the semiconductor domain.
These boundary conditions are typically used in the memristor literature [63, 96] and can be
seen as a first-order approximation of the densities derived from the semiconductor Boltzmann
equation [88].

1.3.2 Mathematical difficulties

The misfit of boundary conditions between the different species gives the main mathematical
difficulty in the study of (1.25)–(1.26). Indeed, having mixed Dirichlet-Neumann boundary
conditions for n, p, V and no-flux boundary conditions for D creates difficulties in estimates
which include mixed terms related to different boundary conditions (e.g. ∇D and ∇V ).

Another difficulty is the fact that we consider three species, instead of just two. In a
two-species system, the quadratic drift terms can be estimated by exploiting monotonicity
properties. For three or more species, this is not possible anymore, cf. [71] and [77].

Further difficulties come from the use of Fermi-Dirac statistics and the fact that the non-
linearities are only given implicitly and behave differently for small and large densities. Fine
estimates on the behaviour of the inverse functions of the Fermi-Dirac integrals and their re-
spective derivatives are needed for our analysis, cf. Section 4.4. To illustrate this, let us give the
behaviour of the derivative G′ close to 0 and at ∞, where G is the inverse of the Fermi-Dirac
integral of order 1/2:

G′(z) ∼ z−11(z<F1/2(0)) + z−1/31(z>F1/2(0)),

where 1M stands for the indicator function of the given set M in subscript. The above also
illustrates that the nonlinear diffusion in the equation for the electron densities, n∇G(n), can
be approximated by ∇n in the low density regime and by ∇n5/3 in the high density regime
respectively (the same holds for the hole density p). The Blakemore statistics, on the other
hand, exhibit a singularity at D = 1, bringing additional technical issues, which the authors
of [25] dealt with in the case of a one-species equation.

13
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1.3.3 State of the art and strategy of our proofs

To our knowledge, there exist only few analytical results in the literature on drift-diffusion
equations for more than two species. The study of the existence of solutions in the low-density
regime for the three-species memristor drift-diffusion system was done in [71] using Boltzmann
statistics for all three species. The high-density regime was analysed in [77].
In [2] the authors analysed a drift-diffusion model for PSCs similar to (1.25)–(1.26). Fermi-

Dirac statistics of order 1/2 are used for the electrons and holes and Blakemore statistics for
the oxygen vacancies, but the underlying domain Ω consists of three distinct regions where the
electrons and holes can move freely while the oxygen vacancies remain confined to the middle
region.
For two space dimensions the authors of [2] proved existence of global (bounded) solutions.

Their approach was to truncate the quasi-Fermi potentials and show uniform bounds for the
solutions from above and below with iterated Lq estimates. However, this truncation requires
the initial data to be pointwise bounded from above as well as bounded away from 0 from below
and as a result neither void nor saturation are allowed. An entropy-dissipation inequality for
the same model with up to three space dimensions was proven in [1].
In our work we will use a different argument to obtain a global existence result. Based on

entropy methods [53, 54, 73] and similar to [71, 77] we will use the free energy of the system
to derive a priori estimates. We introduce the energy densities

ψ1(n) :=

� n

F1/2(0)
G(z) dz,

ψ1(n|'n) := ψ1(n)− ψ1('n)− ψ′
1('n)(n− 'n)

=

� n

�n G(z) dz −G('n)(n− 'n),
ψ2(D) :=

� D

F−1(0)
H(z) dz,

(1.27)

and define the free energy functional of the system to be

E [n, p,D, V ] :=

�
Ω
ψ1(n|'n) + ψ1(p|'p) + ψ2(D) +D'V +

λ2

2
|∇(V − 'V )|2 dx, (1.28)

where V solves the Poisson equation in (1.25) with the boundary condition(s) given by (1.26).
A formal computation, which will be made rigorous in Section 4.2 for an approximate system,
shows that

dE
dt

[n, p,D, V ] +

�
Ω

n

2
|∇(G(n)− V )|2 + p

2
|∇(G(p) + V )|2 +D|∇(H(D) + V )|2 dx

≤ C('n, 'p, 'V , T ), (1.29)

which provides a priori estimates for n, p in L∞(0, T ;L5/3(Ω)), for ∇n,∇p in L2(0, T ;L5/4(Ω))
and for D in L2(0, T ;H1(Ω)). Improved bounds on the solution are then derived using the
Gagliardo-Nirenberg inequality and a bootstrapping argument. Utilizing the asymptotic be-
haviour of the Fermi-Dirac statistics for large as well as low concentrations of n and p, these a

14



1.4 Outline of the thesis

priori estimates will allow us to infer bounds for ∂tn, ∂tp and ∂tD in some Sobolev space and
to then apply the Aubin–Lions lemma [9, 93] to conclude the compactness of a sequence of
approximate solutions. The limit of a subsequence of this sequence is a solution to the original
problem (1.25)–(1.26). Identifying the limit of the fluxes in this problem is challenging. Using
the derived bounds on G′′ allows us to identify Jn and Jp. The flux JD is a bit more delicate
as it exhibits a singularity at D = 1 and to find its limit we are going to use a Minty-type
trick [49, Lemma D.10].

Additionally, we will also show the existence of bounded weak solutions. The difficulties
in achieving this stem from the terms n∇V · ∇n and p∇V · ∇p, which we get when testing
with n and p in the weak formulation. These terms cannot be bounded easily since we cannot
use monotonicity properties. Therefore, as a first step, we will assume that V ∈ W 1,3(Ω) and
improve the regularity of the fluxes by redoing the bootstrapping argument on the level of
the approximate system. This will allow us to then use nq − 'nq and pq − 'pq, q ∈ N, as test
functions in the weak formulation and iteratively derive bounds on n, p in L∞(0, T ;Lq(Ω)) and
for ∇nα,∇pα in L2(QT ) for all 1 ≤ α < ∞. Unfortunately, the bounds will depend on q and
therefore might blow up as q → ∞.

To overcome this problem we will need slightly more regularity for the gradient of the poten-
tial and will consequently assume that ∇V ∈ Lr(Ω) with r > 3. This will allow us to apply an
Alikakos-type iteration [5], similar to [71, 77], and obtain estimates for n, p in L∞(0, T ;Lqk(Ω))
uniformly in k ∈ N, where qk is of the order 2k. By taking the limit k → ∞ we will be able to
conclude L∞-bounds on all densities.

1.4 Outline of the thesis

In this section we give an overview of the structure of the thesis.

In Chapter 2 we will focus on the nonlocal cross-diffusion system (1.1)–(1.2). The main
results that we will show are:

• Global existence of weak solutions to the nonlocal system (1.1)–(1.2) for nondifferentiable
positive semi-definite kernels in detailed balance;

• Weak-strong uniqueness of solutions to the nonlocal system;

• Localization limit to the local system (1.1) and (1.3).

The chapter is organized as follows: Our hypotheses and main results are made precise in
Section 2.1. The global existence of weak solutions to the nonlocal system and some regularity
results are proven in Section 2.2. The weak-strong uniqueness result is shown in Section 2.3. In
Section 2.4, the localization limit, based on the a priori estimates of Section 2.2, is performed.
Finally, we collect some auxiliary lemmas in Section 2.5 and state a global existence result for
the local system (1.1) and (1.3) in Section 2.6.

The results in this chapter are based on the research collaboration with Ansgar Jüngel
(TU Wien) and Antoine Zurek (UTC) and have been published under the title Nonlocal
cross-diffusion systems for multi-species populations and networks [74].
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In Chapter 3 we present the finite-volume scheme and numerical analysis for the nonlocal
cross-diffusion system (1.11)–(1.13). The main results that we will show are as follows (see
Section 3.1.3 for details):

• We prove the existence of solutions to the finite-volume scheme, which are nonnegative
componentwise, preserve the discrete mass, and satisfy discrete versions of the entropy
inequalities (1.16) and (1.17).

• We show that the discrete solutions converge to a weak solution to (1.11)–(1.13) when
the mesh size tends to zero. As a by-product, this proves the existence of a weak solution
to (1.11)–(1.13).

• We illustrate numerically the rate of convergence of the scheme (in space) in the Lp-norm.
Additionally we demonstrate the rate of convergence in different metrics of the solution to
the nonlocal system towards the solution of the local one (localization limit). Moreover,
we illustrate the segregation phenomenon exhibited by the solutions to (1.11)–(1.13); see
also [17].

The chapter is organized as follows. The numerical scheme and our main results are intro-
duced in Section 3.1. We prove the existence of discrete solutions in Section 3.2, while the
proof of the convergence of the scheme is presented in Section 3.3. In Section 3.4 numerical
experiments are given, Section 3.5 contains some auxiliary results, and we show in Section 3.6
that indicator kernels generally do not fulfill inequality (1.15).
The results of this chapter are based on the research collaboration with Ansgar Jüngel

(TU Wien) and Antoine Zurek (UTC) and have been published under the title A conver-
gent finite-volume scheme for nonlocal cross-diffusion systems for multi-species
populations [75].

Chapter 4 is devoted to the analysis of the memristor model (1.25)–(1.26). The main results
that we will show are:

• The existence of global weak solutions;

• The solutions are bounded uniform in time under certain elliptic regularity assumptions.

The chapter is organized as follows. We precisely state our assumptions and main results
in Section 4.1. The global existence of weak solutions is proved in Section 4.2 and uniform-in-
time bounds are shown in Section 4.3. Lastly, in Section 4.4 we collect and prove necessary
properties of the Fermi-Dirac integrals and their respective inverses.
The results in this chapter are based on the research collaboration with Maxime Herda

(Inria Lille) and Ansgar Jüngel (TU Wien) and are ongoing work. A manuscript is currently
under preparation for submission.

1.5 Note on updated status of references

In our bibliography, we have updated manuscripts that we cited in our papers [74, 75] and
which were available as preprint on arXiv or HAL at that time, but have been published in
the meantime, to their current published status. This concerns the articles [4, 33, 59, 67, 68].
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2 Analysis of nonlocal cross-diffusion systems
for multi-species populations and networks

The results in this chapter have been published in [74].

In this chapter we provide the details of the analysis of the nonlocal cross-diffusion sys-
tem (1.1)–(1.2). We present the main results, i.e. the global existence of weak solutions, the
weak-strong uniqueness and the localization limit in Section 2.1. In Section 2.2 we prove
the existence Theorem 2 and some improved regularity result for the weak solution, and in
Section 2.3 we prove the weak-strong uniqueness of solutions to the nonlocal system. The lo-
calization limit is proved in Section 2.4 and some auxiliary results are collected in Section 2.5.
An existence result for the local system (1.1) & (1.3) is formulated and proven in Section 2.6.

2.1 Main results

We collect the main theorems, which are proved in the subsequent sections. We impose the
following hypotheses:

(H1) Data: Let d ≥ 1, T > 0, σ > 0, and let u0i ∈ L2(Td) satisfy u0i ≥ 0 in Td, i = 1, . . . , n.

(H2) Regularity: Kij ∈ Ls(Td) for i, j = 1, . . . , n, where s = d/2 if d > 2, s > 1 if d = 2,
and s = 1 if d = 1.

(H3) Detailed balance: There exist π1, . . . , πn > 0 such that πiKij(x− y) = πjKji(y − x) for
all i, j = 1, . . . , n and for a.e. x, y ∈ Td.

(H4) Positive definiteness: For all v1, . . . , vn ∈ L2(Td), it holds that

n%
i,j=1

�
Td

�
Td

πiKij(x− y)vi(x)vj(y) dx dy ≥ 0.

We need the same diffusivity σ for all species, since otherwise we cannot prove that the
Rao-type functional H2 is a Lyapunov functional. The reason is the mixing of the species
in the definition of H2, cf. (1.6). The regularity Kij ∈ Ls(Td) of the interaction kernels is
required to prove the weak convergence of (uδi∇pi[u

δ]) in L1(Td), where (uδ) is an approximate
sequence. More precisely, the regularity of Kij implies that ∇pi[u

δ] ⇀ ∇pi[u] weakly in Ld(Td)
(if d ≥ 3) and, as a consequence of the entropy estimate, we have uδi → ui strongly in Lr(Td)
for r < d/(d− 2). Thus, uδi∇pi[u

δ] ⇀ ui∇pi[u] weakly in Lρ(Td) for 1 ≤ ρ < d/(d− 1).
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2 Analysis of nonlocal cross-diffusion systems for multi-species populations and networks

Remark 1 (Kernels satisfying Hypotheses (H2)–(H4)). Kernels satisfying Hypothesis (H4)
with n = 1 can be characterized by Mercer’s theorem [22, 83].

An example of a kernel that satisfies Hypotheses (H2)–(H4) is given by the so–called Gaussian
kernel B(|x− y|) = (2π)−d/2 exp(−|x− y|2/2). We define for i, j = 1, . . . , n and x, y ∈ Rd,

Kij(x− y) = Bε
ij(x− y) :=

aij

(2πε2)d/2
exp

�
− |x− y|2

2ε2

�
,

where ε > 0 and aij ≥ 0 are such that the matrix (πiaij) is symmetric and positive definite for
some πi > 0. Thus, Hypothesis (H3) holds. Hypothesis (H4) can be verified as follows. The
identity

e−|x−y|2/(2ε2)

(2πε2)d/2
=

�
Rd

e−|x−z|2/ε2

(πε2)d/2
e−|y−z|2/ε2

(πε2)d/2
dz,

shows that

n%
i,j=1

�
Td

�
Td

πiKij(x− y)vi(x)vj(y) dx dy =
n%

i,j=1

�
Td

�
Td

πiaij
e−|x−y|2/(2ε2)

(2πε2)d/2
vi(x)vj(y) dx dy

=

n%
i,j=1

πiaij

�
Rd

�
Td

�
e−|x−z|2/ε2

(πε2)d/2
vi(x)

�
dx

�
Td

�
e−|y−z|2/ε2

(πε2)d/2
vj(y)

�
dy dz

≥ α

(πε2)d

n%
i=1

�
Rd

��
Td

e−|x−z|2/ε2vi(x) dx
�2

dz ≥ 0,

where α > 0 is the smallest eigenvalue of (πiaij). This proves the positive definiteness of Kij .
Note that Bε

ij → aijδ0 as ε → 0 in the sense of distributions.

We can construct further examples from the Gaussian kernel. For instance,

Kij(x− y) =
aij

1 + |x− y|2 , i, j = 1, . . . , n, x, y ∈ Rd,

satisfies Hypothesis (H4), since

1

1 + |x− y|2 =

� ∞

0
e−s(1+|x−y|2) ds,

and B(x− y) = exp(−s(1 + |x− y|2)) is positive definite.

We call u = (u1, . . . , un) a weak solution to system (1.1)–(1.2) if it holds for all test func-
tions ϕi ∈ Ld+2(0, T ;W 1,d+2(Td)), i = 1, . . . , n, that� T

0
⟨∂tui, ϕi⟩ dt+ σ

� T

0

�
Td

∇ui · ∇ϕi dx dt = −
� T

0

�
Td

ui∇pi[u] · ∇ϕi dx dt, (2.1)

where ⟨·, ·⟩ denotes the dual pairing between W 1,d+2(Td)′ and W 1,d+2(Td), and the initial
datum ui(0) = u0i is satisfied in the sense of W 1,d+2(Td)′.
First, we show the global existence of weak solutions. Let QT = Td × (0, T ).
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2.1 Main results

Theorem 2 (Global existence). Let Hypotheses (H1)–(H4) hold. Then there exists a global
weak solution u = (u1, . . . , un) to (1.1)–(1.2) satisfying ui ≥ 0 in QT and

u
1/2
i ∈ L2(0, T ;H1(Td)), ui ∈ L1+2/d(QT ) ∩ Lq(0, T ;W 1,q(Td)),

∂tui ∈ Lq(0, T ;W−1,q(Td)), ui∇pi[u] ∈ Lq(QT ),
(2.2)

where q = (d+ 2)/(d+ 1) and i = 1, . . . , n. The initial datum in (1.1) is satisfied in the sense
of W−1,q(Td) := W 1,d+2(Td)′. Moreover, the following entropy inequalities hold:

H1(u(t)) + 4σ
n%

i=1

� t

0

�
Td

πi|∇u
1/2
i |2 dx ds ≤ H1(u

0), (2.3)

H2(u(t)) +
n%

i=1

� t

0

�
Td

πiui|∇pi[u]|2 dx ds ≤ H2(u
0). (2.4)

Unfortunately, we cannot treat vanishing diffusion σ = 0, since this would not allow us to
derive suitable gradient bounds. However, we can allow for arbitrarily small σ > 0, which
means that cross-diffusion may dominate diffusion, or in other words, the cross-diffusion term
is generally not just a perturbation.
Imposing more regularity on the kernel functions, we can derive H1(Td) regularity for ui,

which is needed for the weak-strong uniqueness result.

Proposition 3 (Regularity). Let Hypotheses (H1)–(H4) hold and let ∇Kij ∈ Ld+2(Td) for
all i, j = 1, . . . , n. Then there exists a weak solution u = (u1, . . . , un) to system (1.1)–(1.2)
satisfying ui ≥ 0 in Td and

ui ∈ L2(0, T ;H1(Td)), ∂tui ∈ L2(0, T ;H−1(Td)), ∇pi[u] ∈ L∞(0, T ;L∞(Td)).

Moreover, if additionally ∇Kij, ∆Kij ∈ L∞(Td) and m0 ≤ u0i ≤ M0 in Td, then it holds that

0 < m0e
−λt ≤ ui(t) ≤ M0e

λt in Td for t < 0,

where λ > 0 depends on ∆Kij and u0.

The proof of the H1(Td)-regularity is based on standard L2-estimates if ∇Kij ∈ L∞(Td).
The difficulty is the reduced regularity ∇Kij ∈ Ld+2(Td), which requires some care. Indeed,
using the test function ui in the weak formulation of (1.1) leads to a cubic term, which is
reduced to a subquadratic term for ∇ui by combining the Gagliardo–Nirenberg inequality and
the uniform L1(Td)-bound for ui.
Similar lower and upper bounds as in Proposition 3 were obtained in [43] with a different

proof. Since the L∞-bounds depend on the derivatives of Kij , they do not carry over in
the localization limit to the local system. In fact, it is an open problem whether the local
system (1.1) and (1.3) possesses bounded weak solutions. The proposition also holds for kernel
functions Kij(x, y) that are used in neural network theory; see Remark 10.

Theorem 4 (Weak-strong uniqueness). Let Kij ∈ L∞(Rd) and c ≤ u0i ≤ C in Td for
all i, j = 1, . . . , n with constants 0 < c ≤ C < ∞. Let u be a nonnegative weak solution
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2 Analysis of nonlocal cross-diffusion systems for multi-species populations and networks

to (1.1)–(1.2) satisfying (2.2) as well as ui ∈ L2(0, T ;H1(Td))∩H1(0, T ;H−1(Td)). Addition-
ally, let v = (v1, . . . , vn) be a “strong” solution to (1.1)–(1.2), i.e. a weak solution to (1.1)–(1.2)
satisfying

c ≤ vi ≤ C in QT , ∂tvi ∈ L2(0, T ;H−1(Td)), vi ∈ L∞(0, T ;W 1,∞(Td)),

and having the same initial data as u. Then u(x, t) = v(x, t) for a.e. (x, t) ∈ Td × (0, T ).

The existence of a strong solution vi to (1.1)–(1.2) was proved in [31, Prop. 1], but only
locally in time and in the whole space setting. While the proof can be adapted to the case of
a torus, it is less clear how to extend it globally in time. Theorem 4 cannot be extended in a
straightforward way to the whole space case since vi ≥ c > 0 would be nonintegrable. In the
case of the Maxwell–Stefan cross-diffusion system on a bounded domain Ω ⊂ Rd, it is possible
to relax the lower bound to vi > 0 a.e. and log vi ∈ L2(0, T ;H1(Ω)) [68]. The proof could
be possibly extended to the whole space, but the computations in [68] are made rigorous by
exploiting the specific structure of the Maxwell–Stefan diffusion coefficients.
For the localization limit, we choose the radial kernel

Kη
ij(x− y) =

aij
ηd

B

� |x− y|
η

�
, i, j = 1, . . . , n, x, y ∈ Td, (2.5)

where η > 0, B ∈ C0(R), supp(B) ⊂ (−1, 1),
� 1
−1B(|z|) dz = 1, and aij ≥ 0 is such that (πiaij)

is symmetric and positive definite for some πi > 0, i = 1, . . . , n.

Theorem 5 (Localization limit). Let Kη
ij be given by (2.5) and satisfying Hypothesis (H4).

Let uη be the weak solution to (1.1)–(1.2), constructed in Theorem 2. Then there exists a
subsequence of (uη) that is not relabeled such that, as η → 0,

uη → u strongly in L2(0, T ;Ld/(d−1)(Td)),

if d ≥ 2 and strongly in L2(0, T ;Lr(Td)) for any r < ∞ if d = 1. Moreover, u is a nonnegative
weak solution to (1.1) and (1.3).

The existence of global weak solutions to (1.1) and (1.3) can be proved for any bounded
domain Ω with Lipschitz boundary ∂Ω imposing no-flux boundary conditions; see Section 2.6.

2.2 Global existence for the nonlocal system

We prove the global existence of a nonnegative weak solution u to (1.1)–(1.2) and show the
regularity properties of Proposition 3. Since the proof is based on the entropy method similar
to [73, Chapter 4], we sketch the standard arguments and focus on the derivation of uniform
estimates. We assume throughout this section that Hypotheses (H1)–(H4) hold.

2.2.1 Solution of an approximated system

Let T > 0, N ∈ N, τ = T/N , δ > 0, and m ∈ N with m > d/2 + 1. We proceed by induction
over k ∈ N. To this end, let uk−1 ∈ L2(Td;Rn) be given, where the superindex k refers to the
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2.2 Global existence for the nonlocal system

time step tk = kτ . Set ui(w) = exp(wi/πi) > 0. We wish to find wk ∈ Hm(Td;Rn) to the
approximated system

1

τ

�
Td

(u(wk)− uk−1) · ϕ dx+ σ

n%
i=1

�
Td

∇ui(w
k) · ∇ϕi dx+ δb(wk, ϕ)

= −
n%

i=1

�
Td

ui(w
k)∇pi[u(w

k)] · ∇ϕi dx, (2.6)

for ϕ = (ϕ1, . . . , ϕn) ∈ Hm(Td;Rn). The bilinear form

b(wk, ϕ) =

�
Td

� %
|α|=m

Dαwk ·Dαϕ+ w · ϕ
�
dx

is coercive on Hm(Td;Rn), i.e. b(wk, wk) ≥ C∥wk∥2
Hm(Td)

for some C > 0, as a consequence of

the generalized Poincaré–Wirtinger inequality (see Lemma 15 in Section 2.5). By a fixed-point
argument, which uses a mapping of the type L∞(Td) → Hm(Td) �→ L∞(Td) and is done in
the entropy variable wk, it is sufficient to derive a uniform bound for all fixed points wk

i in the
space Hm(Td) (see [73, Section 4.4] for details). To this end, let wk

i ∈ Hm(Td) be such a fixed
point. We use the admissible test function ϕi = wk

i = πi log u
k
i (with uki := ui(w

k)) in (2.6):

n%
i=1

πi
τ

�
Td

(uki − uk−1
i ) · log uki dx+ 4σ

n%
i=1

πi

�
Td

|∇(uki )
1/2|2 dx+ δb(wk, wk)

= −
n%

i=1

�
Td

uki∇pi[u
k] · ∇wk

i dx = −
n%

i=1

�
Td

πi∇pi[u
k] · ∇uki dx,

where we used the identity uki∇wk
i = πi∇uki . An integration by parts gives�

Td

∇Kij(x− y)ukj (y) dy =

�
Td

∇Kij(z)u
k
j (x− z) dz =

�
Td

Kij(x− y)∇ukj (y) dy. (2.7)

Thus, in view of definition (1.2) of pi[u
k] and Hypothesis (H4),

n%
i=1

πi
τ

�
Td

(uki − uk−1
i ) · log uki dx+ 4σ

n%
i=1

πi

�
Td

|∇(uki )
1/2|2 dx+ δb(wk, wk)

= −
n%

i,j=1

�
Td

�
Td

πiKij(x− y)∇ukj (y) · ∇uki (x) dx dy ≤ 0.

The convexity of f(z) = z(log z − 1) for z ≥ 0 implies that f(z) − f(y) ≤ f ′(z)(z − y) for
all y, z > 0. Using this inequality to estimate the first integral on the left-hand side of the
displayed inequality and the coercivity of b(wk, wk) to estimate the third term, we find that

1

τ

n%
i=1

�
Td

πi
�
uki (log u

k
i − 1)− uk−1

i (log uk−1
i − 1)

�
dx
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+ 4σ

n%
i=1

πi∥∇(uki )
1/2∥2L2(Td) + δC

n%
i=1

∥wk
i ∥2Hm(Td) ≤ 0, (2.8)

where C is the coercivity constant of the bilinear form b(·, ·). This provides an estimate uniform
in the fixed points wk in Hm(Td) �→ L∞(Td), necessary to conclude the fixed-point argument
and giving the existence of a solution wk ∈ Hm(Td;Rn) to (2.6). This defines uk := u(wk),
finishing the induction step.

To derive further uniform estimates, we wish to use ψi = πipi[u
k] as a test function in (2.6).

However, we cannot estimate the term δb(wk, ψ) appropriately. Therefore, we perform the
limits δ → 0 and τ → 0 separately.

2.2.2 Limit δ → 0

Let us first list some uniform bounds and convergence results.

Lemma 6. Let uδ = (uδ1, . . . , u
δ
n) with uδi = ui(w

k) be a solution to (2.6) and let wδ
i = πi log u

δ
i

for i = 1, . . . , n (slightly abusing the notation). Then there exists a constant C > 0, independent
of δ, such that

∥(uδi )1/2∥Lr1 (Td) + ∥∇uδi ∥Lr2 (Td) ≤ C,

where r1 = 2d/(d − 2) and r2 = d/(d − 1) if d > 2, r1 < ∞ and r2 < 2 if d = 2 and r1 = ∞
and r2 = 2 if d = 1. Moreover, it holds, up to a subsequence, as δ → 0 that

uδi → ui strongly in Lr(Td), r < r1/2,

∇uδi ⇀ ∇ui weakly in Lr2(Td),

δwδ
i → 0 strongly in Hm(Td).

Proof. Estimate (2.8) and the Poincaré–Wirtinger inequality show that (uδi )
1/2 is uniformly

bounded in H1(Td) and, by Sobolev’s embedding, in Lr1(Td). Therefore, we infer that the
gradient ∇uδi = 2(uδi )

1/2∇(uδi )
1/2 is uniformly bounded in Lr2(Td). By Sobolev’s embedding,

the sequence (uδi ) is relatively compact in Lr(Td) for r < r1/2, and there exists a subsequence
that is not relabeled such that, as δ → 0, the claimed convergences of uδi and ∇uδi hold. We
deduce from (2.8) that

√
δwδ

i is uniformly bounded in Hm(Td), hence δwδ
i → 0 in Hm(Td) in

the limit δ → 0. This ends the proof.

Thanks to Lemma 6, we have, up to a subsequence, uδi → ui a.e. and (uδi ) is dominated
by some function in Lr(Td). By dominated convergence, pi[u

δ] → pi[u] a.e. and Young’s
convolution inequality (see Lemma 11 in Section 2.5) shows that, for d > 2,

∥pi[uδ]∥L∞(Td) ≤
n%

j=1

**** �
Td

Kij(.− y)uδj(y) dy

****
L∞(Td)

≤
n%

j=1

∥Kij∥Ld/2(Td)∥uδj∥Ld/(d−2)(Td) ≤ C.
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2.2 Global existence for the nonlocal system

Here and in the following, C > 0 denotes a constant independent of δ with values possibly
changing from line to line. In a similar way, we can prove that (pi[u

δ]) is bounded in Lr(Td) for
any r < ∞ if d = 2 and in L∞(Td) if d = 1, assuming that Kij ∈ L1(Td); see Hypothesis (H2).
Lemma 12 in Section 2.5 then implies that pi[u

δ] → pi[u] strongly in Lr(Td) for any r < ∞.
Furthermore, if d > 2, we use again Young’s convolution inequality and Lemma 6 to show that

∥∇pi[u
δ]∥Lr3 (Td) ≤

n%
j=1

∥Kij∥Ld/2(Td)∥∇uδj∥Ld/(d−1)(Td)

≤ max
1≤j≤n

∥Kij∥Ld/2(Td)

n%
j=1

∥∇uδj∥Ld/(d−1)(Td) ≤ C,

where r3 = d. Similar computations show that for d = 2 we have ∇pi[u
δ] is bounded in Lr3(Td)

for some r3 > 2 and for r3 = 2 if d = 1. Hence, for a subsequence,

∇pi[u
δ] ⇀ ∇pi[u] weakly in Lr3(Td).

Combining this with the strong convergence uδi → ui in Lr(Td) for r < r1/2, we conclude that
the product converges:

uδi∇pi[u
δ] ⇀ ui∇pi[u] weakly in L1(Td).

We deduce from the uniform bounds ∥uδi ∥Lr1/2(Td) ≤ C and ∥∇pi[u
δ]∥Lr3 (Td) ≤ C that the

sequence (uδi∇pi[u
δ]) is bounded in Lmin{2,d/(d−1)}(Td) and

uδi∇pi[u
δ] ⇀ ui∇pi[u] weakly in Lmin{2,d/(d−1)}(Td).

Thus, we can pass to the limit δ → 0 in (2.6) to conclude that uki := ui ≥ 0 for i = 1, . . . , n
solves

1

τ

�
Td

(uk − uk−1) · ϕ dx+ σ

n%
i=1

�
Td

∇uki · ∇ϕi dx = −
n%

i=1

�
Td

uki∇pi[u
k] · ∇ϕi dx, (2.9)

for all test functions ϕi ∈ W 1,r3(Td). Observe that pi[u
k] is an element of the space W 1,r3(Td)

and is an admissible test function; this will be used in the next subsection.

2.2.3 Uniform estimates

We introduce the piecewise constant in time functions u(τ)(x, t) = uk(x) for x ∈ Td and

for t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N . At time t = 0, we set u
(τ)
i (·, 0) = u0i . Furthermore, we use

the time-shift operator (Sτu
(τ))(x, t) = uk−1(x) for x ∈ Td, t ∈ ((k − 1)τ, kτ ]. Then, summing

over k in (2.9), we obtain

1

τ

� T

0

�
Td

(u(τ) − Sτu
(τ)) · ϕ dx dt+ σ

n%
i=1

� T

0

�
Td

∇u
(τ)
i · ∇ϕi dx dt

= −
n%

i=1

� T

0

�
Td

u
(τ)
i ∇pi[u

(τ)] · ∇ϕi dx dt,
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2 Analysis of nonlocal cross-diffusion systems for multi-species populations and networks

for piecewise constant functions ϕ : (0, T ) → W 1,r3(Td;Rn) and, by a density argument, for all
functions ϕ ∈ L2(0, T ;W 1,r3(Td;Rn)). Summing the entropy inequality (2.8) over k = 1, . . . , N ,
it follows that

H1(u
(τ)(T )) + 4σ

n%
i=1

� T

0
πi∥∇(u

(τ)
i )1/2∥2L2(Td) dt ≤ H1(u

0). (2.10)

These bounds allow us to derive further estimates. Since the L1 logL1-bound dominates
the L1(Td)-norm, we deduce from the Poincaré–Wirtinger inequality that

∥u(τ)i log u
(τ)
i ∥L∞(0,T ;L1(Td)) + ∥(u(τ)i )1/2∥L2(0,T ;H1(Td)) ≤ C(u0), i = 1, . . . , n.

This implies, by the Gagliardo–Nirenberg inequality with θ = d/(d+ 2), that

∥u(τ)i ∥1+2/d

L1+2/d(QT )
=

� T

0
∥(u(τ)i )1/2∥2+4/d

L2+4/d(Td)
dt

≤ C

� T

0
∥(u(τ)i )1/2∥θ(2d+4)/d

H1(Td)
∥(u(τ)i )1/2∥(1−θ)(2d+4)/d

L2(Td)
dt

≤ C∥u(τ)i ∥2/d
L∞(0,T ;L1(Td))

� T

0
∥(u(τ)i )1/2∥2H1(Td) dt ≤ C(u0, d), (2.11)

and by Hölder’s inequality with q = (d+ 2)/(d+ 1),

∥∇u
(τ)
i ∥Lq(QT ) = 2∥(u(τ)i )1/2∇(u

(τ)
i )1/2∥Lq(QT )

≤ 2∥(u(τ)i )1/2∥L2+4/d(QT )∥∇(u
(τ)
i )1/2∥L2(QT ) ≤ C. (2.12)

These bounds are not sufficient to pass to the limit τ → 0, since we also need uniform bounds
on uτi pi[u

τ ] and on the discrete time derivative. To derive further estimates, we use the test
function ϕi = πipi[u

k] ∈ W 1,r3(Td) in (2.9):

1

τ

n%
i,j=1

�
Td

�
Td

πi(u
k
i (x)− uk−1

i (x))Kij(x− y)ukj (y) dx dy

+ σ
n%

i,j=1

�
Td

�
Td

πiKij(x− y)∇uki (x) · ∇ukj (y) dx dy = −
n%

i=1

�
Td

πiu
k
i |∇pi[u

k]|2 dx. (2.13)

Because of the positive definiteness of πiKij , the second term on the left-hand side is nonnega-
tive. Exploiting the symmetry and positive definiteness of πiKij (Hypotheses (H3)–(H4)), the
first integral can be estimated from below as

1

2τ

n%
i,j=1

�
Td

�
Td

πiKij(x− y)
�
uki (x)u

k
j (y)− uk−1

i (x)uk−1
j (y)

+ (uki (x)− uk−1
i (x))(ukj (y)− uk−1

j (y))
�
dx dy

≥ 1

2τ

n%
i,j=1

�
Td

�
Td

πiKij(x− y)
�
uki (x)u

k
j (y)− uk−1

i (x)uk−1
j (y)

�
dx dy
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2.2 Global existence for the nonlocal system

=
1

τ
(H2(u

k)−H2(u
k−1)).

Therefore, we infer from (2.13) that

H2(u
k) + τ

n%
i=1

�
Td

πiu
k
i |∇pi[u

k]|2 dx ≤ H2(u
k−1),

and summing this inequality over k = 1, . . . , N , we have

H2(u
(τ)(T )) +

n%
i=1

πi

� T

0

**(u(τ)i )1/2∇pi[u
(τ)]

**2
L2(Td)

dt ≤ H2(u
0). (2.14)

The previous bound allows us to derive an estimate for the discrete time derivative.

Lemma 7. Let u(τ) be a previously obtained solution to the weak formulation

1

τ

� T

0

�
Td

(u(τ) − Sτu
(τ)) · ϕ dx dt+ σ

n%
i=1

� T

0

�
Td

∇u
(τ)
i · ∇ϕi dx dt

= −
n%

i=1

� T

0

�
Td

u
(τ)
i ∇pi[u

(τ)] · ∇ϕi dx dt

(2.15)

for all functions ϕ ∈ L2(0, T ;W 1,r3(Td;Rn)). Then there exists a constant C > 0 independent
of τ such that

τ−1∥u(τ) − Sτu
(τ)∥Lq(0,T ;W 2,(d+2)/2(Td)′) ≤ C, (2.16)

where q = (d+ 2)/(d+ 1).

Proof. Estimates (2.11) and (2.14) imply that

u
(τ)
i ∇pi[u

(τ)] = (u
(τ)
i )1/2 · (u(τ)i )1/2∇pi[u

(τ)]

is uniformly bounded in Lq(QT ), where q = (d+2)/(d+1). Let ϕ ∈ Lq′(0, T ;W 2,(d+2)/2(Td)),
where q′ = d+ 2. Then 1/q + 1/q′ = 1 and

1

τ

++++ � T

0

�
Td

(u(τ) − Sτu
(τ)) · ϕ dx dt

++++
≤ σ

n%
i=1

∥u(τ)i ∥L1+2/d(QT )∥∆ϕi∥L(d+2)/2(QT ) +

n%
i=1

∥u(τ)i ∇pi[u
(τ)]∥Lq(QT )∥∇ϕi∥Lq′ (QT )

≤ C∥ϕ∥Lq′ (0,T ;W 2,(d+2)/2(Td)).

We conclude that

τ−1∥u(τ) − Sτu
(τ)∥Lq(0,T ;W 2,(d+2)/2(Td)′) ≤ C,

which finishes the proof of the lemma.
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2 Analysis of nonlocal cross-diffusion systems for multi-species populations and networks

2.2.4 Limit τ → 0

Estimates (2.10) and (2.16) allow us to apply the Aubin–Lions compactness lemma in the
version of [19] to conclude the existence of a subsequence that is not relabeled such that,
as τ → 0,

u
(τ)
i → ui strongly in L2(0, T ;Ld/(d−1)(Td)), i = 1, . . . , n,

if d ≥ 2 and strongly in L2(0, T ;Lr(Td)) for any r < ∞ if d = 1. Strictly speaking, the
version of [19] holds for the continuous time derivative, but the technique of [48] shows that
the conclusion of [19] also holds for the discrete time derivative. Then, maybe for another

subsequence, u
(τ)
i → ui a.e. inQT , and we deduce from (2.11) that u

(τ)
i → ui strongly in Lr(QT )

for all r < 1+ 2/d (see Lemma 12 in Section 2.5). Furthermore, we obtain from (2.10), (2.12),
(2.14), and (2.16) the convergences

∇u
(τ)
i ⇀ ∇ui weakly in Lq(QT ), i = 1, . . . , n,

τ−1(u(τ) − Sτu
(τ)) ⇀ ∂tui weakly in Lq(0, T ;W 2,(d+2)/2(Td)′),

(u
(τ)
i )1/2∇pi[u

(τ)] ⇀ zi weakly in L2(QT ), (2.17)

where zi ∈ L2(QT ) and q = (d + 2)/(d + 1). Since u
(τ)
i ≥ 0, we infer that ui ≥ 0 in QT . It

remains to identify the limit zi, which is stated in the following result.

Lemma 8. Let u(τ) be the previously obtained solution to (2.15). Then the weak limit zi

in (2.17) can be identified as zi = u
1/2
i ∇pi[u], i.e., as τ → 0,

(u
(τ)
i )1/2∇pi[u

(τ)] ⇀ u
1/2
i ∇pi[u] weakly in L2(QT ).

Proof. We show first that

∇pi[u
(τ)] ⇀ ∇pi[u] weakly in Lq(QT ).

It follows from the strong convergence of (u
(τ)
i ) that Kij(x− y)u

(τ)
j (y, t) → Kij(x− y)uj(y, t)

for a.e. (y, t) ∈ QT and for a.e. x ∈ Td. Hence, because of the uniform bounds, there holds
the convergence pi[u

(τ)] → pi[u] a.e. in QT . We deduce from Young’s convolution inequality

and the uniform bound for ∇u
(τ)
i in Lq(QT ) that ∇pi[u

(τ)] is uniformly bounded in Lq(QT ).
Therefore,

∇pi[u
(τ)] ⇀ ∇pi[u] weakly in Lq(QT ).

When d = 2, we have the convergences of ∇pi[u
(τ)] ⇀ ∇pi[u] weakly in L4/3(QT ) and

of (u
(τ)
i )1/2 → u

1/2
i strongly in L4(QT ), which is sufficient to pass to the limit in the product

and to identify it with zi. However, this argument fails when d > 2, and we need a more
sophisticated proof. The div-curl lemma does not apply, since the exponents of the respective

Lebesgue spaces, in which the convergences of (u
(τ)
i )1/2 and ∇pi[u

(τ)] take place, are not
conjugate for d > 2. Also the generalization [21, Theorem 2.1] to nonconjugate exponents
cannot be used for general d.
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2.2 Global existence for the nonlocal system

Our idea is to exploit the fact that the product converges in a space better than L1. Then
Lemma 13 in Section 2.5 immediately implies that

(u
(τ)
i )1/2∇pi[u

(τ)] ⇀ u
1/2
i ∇pi[u] weakly in Lq(QT ).

In fact, estimate (2.14) implies that this convergence holds in L2(QT ), which finishes the proof
of Lemma 8.

Combining Lemma 8 and the strong convergence of (u
(τ)
i )1/2 in L2(QT ) gives

u
(τ)
i ∇pi[u

(τ)] ⇀ ui∇pi[u] weakly in L1(QT ).

In view of the uniform bounds for (u
(τ)
i )1/2 in L2+4/d(QT ) and of (u

(τ)
i )1/2∇pi[u

(τ)] in L2(QT ),

the product u
(τ)
i ∇pi[u

(τ)] is uniformly bounded in Lq(QT ). Thus, the previous weak conver-
gence also holds in Lq(QT ).

2.2.5 End of the proof

The convergences of the previous subsection allow us to pass to the limit τ → 0 in (2.9),
yielding � T

0
⟨∂tui, ϕi⟩ dt+ σ

� T

0

�
Td

∇ui · ∇ϕi dx dt = −
� T

0

�
Td

ui∇pi[u] · ∇ϕi dx dt,

for all smooth test functions. Because of ∇ui, ui∇pi[u] ∈ Lq(QT ), a density argument shows
that the weak formulation holds for all ϕ ∈ Lq′(0, T ;W 1,q′(Td)), recalling that q′ = d + 2.
Then ∂tui lies in the space Lq(0, T ;W−1,q(Td)), where W−1,q(Td) := W 1,q′(Td)′. The proof
that u(·, 0) satisfies the initial datum can be done exactly as in [72, p. 1980]. Finally, using
the convexity of H1 and the lower semi-continuity of convex functions, the entropy inequali-
ties (2.10) and (2.14) become (2.3) and (2.4), respectively, in the limit τ → 0. This ends the
proof of Theorem 2.

Remark 9 (Whole space and bounded domains). We believe that the whole space Ω = Rd

can be treated by using the techniques of [33], under the assumption that a moment of u0

is bounded, i.e.
�
Rd u

0
i (x)(1 + |x|2)α/2 dx < ∞ for a suitable α > 0. Indeed, standard esti-

mates show that uεi (1 + |x|2)α/2 is bounded in L∞(0, T ;L1(Rd)), where (uεi ) is a sequence of
approximating solutions. By the previous proof, (

#
uεi ) is bounded in L2(0, T ;H1(Rd)), and

estimate (2.12) shows that (uεi ) is bounded in L2(0, T ;W 1,q(Rd)) with q = (d + 2)/(d + 1).
Since W 1,q(Rd) ∩ L1(Rd; (1 + |x|2)α/2) is compactly embedded in Lr(Rd) for r < 2q/(2 − q)
and 1 ≤ q < 2 (by adapting the proof of [24, Lemma 1]), we can apply the Aubin–Lions lemma,
concluding that, up to a subsequence, uεi → u strongly in L2(0, T ;L2(Rd)).
The case of bounded domains Ω ⊂ Rd with Lipschitz boundary ∂Ω seems to be more delicate.

We assume no-flux boundary conditions to recover the weak formulation (2.1). The problem
comes from the treatment of the boundary integrals when integrating by parts. For instance,
we need to integrate by parts in ∇pi[u] (see (2.7)) and to control the integral

qi[u](x) :=
n%

j=1

�
∂Ω

Kij(x− y)uj(y)ν(y) dy,
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2 Analysis of nonlocal cross-diffusion systems for multi-species populations and networks

where ν is the exterior unit normal vector of ∂Ω. If Kij ∈ L∞(Rd), we may estimate this
integral by ∥ui∥L1(∂Ω) ≤ C∥ui∥W 1,1(Ω). Consequently, ∥qi[u]∥L∞(Ω) ≤ C

&n
j=1 ∥uj∥W 1,1(Ω).

The integral qi[u] appears in the weak formulation, for instance, as++++σ �
Ω
∇ui · qi[u] dx

++++ ≤ C
n%

j=1

∥∇uj∥2W 1,1(Ω) ≤ 2C
n%

j=1

∥uj∥L1(Ω)∥∇u
1/2
j ∥2L2(Ω),

and this integral cannot generally be absorbed by the corresponding term in (2.8) except
if ∥u0j∥L1(Ω) is sufficiently small.

2.2.6 Proof of Proposition 3.

The proof of the H1(Td) regularity requires an approximate scheme that differs from the
one used in the proof of Theorem 2. Given uk−1 ∈ L2(Td;Rn) with uk−1

i ≥ 0, we wish to
find uk ∈ H1(Td;Rn) such that

1

τ

�
Td

(uki − uk−1
i )ϕi dx+ σ

�
Td

∇uki · ∇ϕi dx+

�
Td

(uki )
+

1 + δ(uki )
+
∇pi[u

k] · ∇ϕi dx = 0, (2.18)

for ϕi ∈ H1(Td), where δ > 0 and z+ = max{0, z}. Since ∇Kij ∈ Ld+2(Td), ∇pi[u
k] can be

bounded in Ld+2(Td) in terms of the L1(Td)-norm of uk. Thus, the last term on the left-hand
side is well defined. The existence of a solution to this discrete scheme is proved by a fixed-
point argument, and the main step is the derivation of uniform estimates. First, we observe
that the test function (uki )

− = min{0, uki } yields

1

τ

�
Td

(uki − uk−1
i )(uki )

− dx+ σ

�
Td

|∇(uki )
−|2 dx

= −
�
Td

(uki )
+

1 + δ(uki )
+
∇pi[u

k] · ∇(uki )
− dx = 0,

and consequently, (uki )
− = 0 in Td. Thus, uki ≥ 0 and we can remove the plus sign in (2.18).

Second, we use the test function uki in (2.18) and sum over i = 1, . . . , n:

1

τ

n%
i=1

�
Td

(uki − uk−1
i )uki dx+ σ

n%
i=1

�
Td

|∇uki |2 dx = −
n%

i=1

�
Td

uki
1 + δuki

∇pi[u
k] · ∇uki dx. (2.19)

The first integral becomes

n%
i=1

�
Td

(uki − uk−1
i )uki dx ≥ 1

2

n%
i=1

�
Td

�
(uki )

2 − (uk−1
i )2

�
dx.

The right-hand side in (2.19) is estimated by Hölder’s inequality and Young’s convolution
inequality:

−
n%

i=1

�
Td

uki
1 + δuki

∇pi[u
k] · ∇uki dx ≤

n%
i=1

∥uki ∥L2+4/d(Td)∥∇pi[u
k]∥Ld+2(Td)∥∇uki ∥L2(Td)
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≤ CK

n%
i,j=1

∥uki ∥L2+4/d(Td)∥ukj ∥L1(Td)∥∇uki ∥L2(Td),

where CK > 0 depends on the Ld+2(Td)-norm of ∇Kij but not on δ. Taking the test func-
tion ϕi = 1 in (2.18) shows that ∥uki ∥L1(Td) = ∥u0i ∥L1(Td) is uniformly bounded. This allows us
to reduce the cubic expression on the right-hand side of the previous inequality to a quadratic
one. This is the key idea of the proof. Combining the previous arguments, (2.18) becomes

1

2

n%
i=1

�
Td

(uki )
2 dx− 1

2

n%
i=1

�
Td

(uk−1
i )2 dx+ τσ

n%
i=1

�
Td

|∇uki |2 dx

≤ τC
n%

i=1

∥uki ∥L2+4/d(Td)∥∇uki ∥L2(Td)

≤ 1

2
τσ

n%
i=1

∥∇uki ∥2L2(Td) + τC
n%

i=1

∥uki ∥2L2+4/d(Td)
.

The Gagliardo–Nirenberg and Poincaré–Wirtinger inequalities (see Lemmas 14 and 15 in Sec-
tion 2.5) show that

∥uki ∥2L2+4/d(Td)
≤ C∥uki ∥2θH1(Td)∥uki ∥2(1−θ)

L1(Td)

≤ C
�∥∇uki ∥L2(Td) + ∥uki ∥L1(Td)

�2θ∥uki ∥2(1−θ)

L1(Td)

≤ C(u0)∥∇uki ∥2θL2(Td) + C(u0),

where θ = d(d+ 4)/(d+ 2)2 < 1. We deduce from Young’s inequality that for any ε > 0,

C(u0)∥∇uki ∥2θL2(Td) ≤ θε1/θ∥∇uki ∥2 + (1− θ)ε−1/(1−θ)C(u0)1/(1−θ).

After setting C(ε) = C(u0) + ε−1/(1−θ)C(u0)1/(1−θ), we find that

∥uki ∥2L2+4/d(Td)
≤ ε1/θ∥∇uki ∥2L2(Td) + C(ε).

Therefore, choosing ε > 0 sufficiently small, we infer that

1

2

n%
i=1

�
Td

(uki )
2 dx− 1

2

n%
i=1

�
Td

(uk−1
i )2 dx+

1

4
τσ

n%
i=1

�
Td

|∇uki |2 dx ≤ τC(ε). (2.20)

This provides a uniform H1(Td)-estimate for uk. Defining the fixed-point operator as a map-
ping from L2(Td) to L2(Td), the compact embedding H1(Td) �→ L2(Td) implies the compact-
ness of this operator (see [73, Chapter 4] for details). This shows that (2.18) possesses a weak
solution uk ∈ H1(Td).

In order to pass to the limit (δ, τ) → 0, we need uniform estimates for the piecewise constant

in time functions u
(τ)
i , using the same notation as in the proof of Theorem 2. Estimate (2.20)
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provides uniform bounds for u
(τ)
i in L∞(0, T ;L2(Td)) and L2(0, T ;H1(Td)). By the Gagliardo–

Nirenberg inequality, (u
(τ)
i ) is bounded in L2+4/d(QT ). By Young’s convolution inequality,

sup
t∈(0,T )

∥∇pi[u
(τ)(t)]∥L∞(Td) ≤

n%
j=1

∥∇Kij∥Ld+2(Td) sup
t∈(0,T )

∥u(τ)j ∥Lq(Td) ≤ C,

where q = (d + 2)/(d + 1). Thus, (∇pi[u
(τ)]) is bounded in L∞(0, T ;L∞(Td)). From these

estimates, we can derive a uniform bound for the discrete time derivative. Using the uniform

estimates ∥u(τ)i ∥L2(0,T ;H1(Td)) ≤ C and ∥∇pi[u
(τ)]∥L∞(0,T ;L∞(Td)) ≤ C, we can prove in a similar

way as in the proof of Theorem 2 that

τ−1∥u(τ) − Sτu
(τ)∥L2(0,T ;H−1(Td)) ≤ C.

Therefore, by the Aubin–Lions lemma [48], up to a subsequence, as (δ, τ) → 0,

u
(τ)
i → ui strongly in L2(QT ),

and this convergence even holds in Lr(QT ) for any r < 2+4/d. We can show as in the proof of
Theorem 2 that pi[u

(τ)] → pi[u] a.e. and consequently, for a subsequence, ∇pi[u
(τ)] ⇀ ∇pi[u]

weakly in L2(QT ). We infer that

u
(τ)
i ∇pi[u

(τ)] ⇀ ui∇pi[u] weakly in L1(QT ).

Omitting the details, it follows that u = (u1, . . . , un) is a weak solution to (1.1)–(1.2) satisfying
the regularity ui ∈ L2(0, T ;H1(Td)) for i = 1, . . . , n.
Next, we show the lower and upper bounds for ui. Define M(t) = M0e

λt, where λ > 0 will
be specified later. Recall that we assume ∇Kij ∈ L∞(Td), and 0 < m0 ≤ u0i ≤ M0 in Td (see
Proposition 3). Hence, we can apply Young’s convolution inequality with p = 1 and q, r = ∞
and estimate

∥∇pi[u]∥L∞(Td) ≤
n%

j=1

∥∇Kij∥L∞(Td)∥uj∥L1(Td) ≤ C.

Then, with the test function e−λt(ui −M)+(t) = e−λtmax{0, (ui −M)(t)} in the weak formu-
lation of (2.18), we deduce from

∂tuie
−λt(ui −M)+ =

1

2
∂t
�
e−λt[(ui −M)+]2

�
+

λ

2
e−λt[(ui −M)+]2 + λe−λtM(ui −M)+

that

1

2

�
Td

e−λt(ui −M)+(t)2 dx+ σ

� t

0

�
Td

e−λs|∇(ui −M)+|2 dx ds

= −
� t

0

�
Td

e−λs(ui −M)∇pi[u] · ∇(ui −M)+ dx ds− λ

2

� t

0

�
Td

e−λs[(ui −M)+]2 dx ds

−
� t

0

�
Td

e−λsM∇pi[u] · ∇(ui −M)+ dx ds− λ

� t

0

�
Td

e−λsM(ui −M)+ dx ds.
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We write (ui−M)∇(ui−M)+ = 1
2∇[(ui−M)+]2 and integrate by parts in the first and third

terms of the right-hand side:

1

2

�
Td

e−λs(ui −M)+(t)2 dx+ σ

� t

0

�
Td

e−λs|∇(ui −M)+|2 dx ds

≤ 1

2

�∥∆pi[u]∥L∞(0,T ;L∞(Td)) − λ
� � t

0

�
Td

e−λs[(ui −M)+]2 dx ds

+
�∥∆pi[u]∥L∞(0,T ;L∞(Td)) − λ

� � t

0

�
Td

e−λsM(ui −M)+ dx ds.

By Young’s convolution inequality and the regularity assumptions on Kij ,

∥∆pi[u]∥L∞(0,T ;L∞(Td)) ≤ C
n%

j=1

∥uj∥L∞(0,T ;L1(Td)) ≤ C0.

Therefore, choosing λ ≥ C0, it follows that�
Td

e−λt(ui −M)+(t)2 dx ≤ 0,

and we infer that e−λt(ui − M)+(t) = 0 and ui(t) ≤ M(t) = M0e
λt for t > 0. The lower

bound ui(t) ≥ m(t) := m0e
−λt is proved in the same way, using the test function e−λt(ui−m)−,

where (ui −m)− = min{0, ui −m}.
Remark 10. Proposition 3 holds true for more general kernel functions of the type Kij(x, y).
In that case, we need the regularity ∇xKij ∈ L∞

y Ld+2
x ∩L∞

x Ld+2
y to apply the Young inequality

for kernels; see [95, Theorem 0.3.1]. For the lower and upper bounds of the solution, we
additionally need the regularity ∇xKij , ∆xKij ∈ L∞

x L∞
y .

2.3 Weak-strong uniqueness for the nonlocal system

In this section, we prove Theorem 4. Let u be a nonnegative weak solution and v be a positive
“strong” solution to (1.1)–(1.2), i.e., v = (v1, . . . , vn) is a weak solution to (1.1)–(1.2) satisfying

0 < c ≤ vi ≤ C in QT , ∂tvi ∈ L2(0, T ;H−1(Td)), vi ∈ L∞(0, T ;W 1,∞(Td)).

In particular, we have log vi, ∇ log vi ∈ L∞(0, T ;L∞(Td)). Then, for 0 < ε < 1, we define the
regularized relative entropy density

hε(u|v) =
n%

i=1

πi
�
(ui + ε)(log(ui + ε)− 1)− (ui + ε) log vi + vi

�
,

and the associated relative entropy

Hε(u|v) =
�
Td

hε(u|v) dx.
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2 Analysis of nonlocal cross-diffusion systems for multi-species populations and networks

2.3.1 Preparations

We compute

∂hε
∂ui

(u|v) = πi log(ui + ε)− πi log vi,
∂hε
∂vi

(u|v) = −πi
ui + ε

vi
+ πi.

Then we have

∇∂hε
∂ui

=
πi

ui + ε
∇ui − πi

vi
∇vi, ∇∂hε

∂vi
= −πi

vi
∇ui +

πi(ui + ε)

v2i
∇vi.

The second function is an admissible test function for the weak formulation of (1.1), satisfied
by vi, since ∇ui ∈ L2(QT ) and ∇vi ∈ L∞(QT ). Strictly speaking, the first function is not an
admissible test function for the weak formulation of (1.1), satisfied by ui, since it needs test
functions in W 1,d+2(Td). However, the nonlocal term becomes with this test function�

Td

�
Td

Kij(x− y)∇uj(y) · ∇ui(x)

ui(x) + ε
dx dy,

which is finite since Kij is essentially bounded and ∇ui · ∇uj ∈ L1(QT ). Thus, by a suitable
approximation argument, the following computation can be made rigorous. We find that

d

dt
Hε(u|v) =

n%
i=1

��
∂tui,

∂hε
∂ui

(u|v)
�
+

�
∂tvi,

∂hε
∂vi

(u|v)
��

= −σ
n%

i=1

�
Td

�
∇ui · ∇∂hε

∂ui
(u|v) +∇vi · ∇∂hε

∂vi
(u|v)

�
dx

−
n%

i=1

�
Td

�
ui∇pi[u] · ∇∂hε

∂ui
(u|v) + vi∇pi[v] · ∇∂hε

∂vi
(u|v)

�
dx

= −σ
n%

i=1

�
Td

πi

++++ ∇ui√
ui + ε

−√
ui + ε

∇vi
vi

++++2 dx
−

n%
i=1

�
Td

πi

�
ui

ui + ε
∇pi[u] · ∇ui − ui

vi
∇pi[u] · ∇vi −∇pi[v] · ∇ui

+
ui + ε

vi
∇pi[v] · ∇vi

�
dx.

The first integral is nonpositive. Thus, an integration over (0, t) gives

Hε(u(t)|v(t))−Hε(u(0)|v(0))

≤ −
n%

i=1

� t

0

�
Td

πi(ui + ε)∇(pi[u]− pi[v]) · ∇ log
ui + ε

vi
dx ds

+ ε

n%
i=1

� t

0

�
Td

πi∇pi[u] · ∇ log
ui + ε

vi
dx ds =: I1 + I2. (2.21)
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2.3.2 Estimation of I1 and I2

Inserting the definition of pi,

∇(pi[u]− pi[v])(x) =

n%
j=1

�
Td

Kij(x− y)∇(uj − vj)(y) dy

=

n%
j=1

�
Td

Kij(x− y)

�
(uj + ε)(y)∇ log

uj + ε

vj
(y)

+ (uj − vj)(y)∇ log vj(y) + ε∇ log vj(y)

�
dy,

leads to

I1 = −
n%

i,j=1

� t

0

�
Td

�
Td

πiKij(x− y)

�
(ui + ε)(x)(uj + ε)(y)∇ log

uj + ε

vj
(y)

×∇ log
ui + ε

vi
(x) + (ui + ε)(x)(uj − vj)(y)∇ log vj(y) · ∇ log

ui + ε

vi
(x)

�
dx dy ds

− ε

n%
i,j=1

� t

0

�
Td

�
Td

πiKij(x− y)(ui + ε)(x)∇ log vj(y) · ∇ log
ui + ε

vi
(x) dx dy ds

=: I11 + I12.

Setting

Ui = (ui + ε)∇ log
ui + ε

vi
, Vi =

1

2
(ui − vi)∇ log vi,

we can formulate the first integral as

I11 = −
n%

i,j=1

� t

0

�
Td

�
Td

πiKij(x− y)
�
Ui(x) · Uj(y) + 2Ui(x) · Vj(y)

�
dx dy ds

= −
n%

i,j=1

� t

0

�
Td

�
Td

πiKij(x− y)(Ui + Vi)(x) · (Uj + Vj)(y) dx dy ds

+
n%

i,j=1

� t

0

�
Td

�
Td

πiKij(x− y)Vi(x) · Vj(y) dx dy ds

≤ 1

4

n%
i,j=1

� t

0

�
Td

�
Td

πiKij(x− y)(ui − vi)(x)(uj − vj)(y)∇ log vi(x) · ∇ log vj(y) dx dy ds

≤ 1

4
max

i,j=1,...,n
∥πiKij∥L∞(Td) max

k=1,...,n
∥∇ log vk∥2L∞(QT )

×
n%

i,j=1

� t

0

�
Td

|(ui − vi)(x)| dx
�
Td

|(uj − vj)(y)| dy ds

≤ C

n%
i=1

� t

0

��
Td

|ui − vi| dx
�2

ds,
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using the symmetry and positive definiteness of πiKij as well as the regularity assumptions
on Kij and ∇ log vi. This estimate is crucial, as it will allow us later to apply Grönwall’s lemma
to conclude the equality of ui(t) and vi(t). The second integral I12 is estimated as

I12 = −ε
n%

i,j=1

� t

0

�
Td

�
Td

πiKij(x− y)∇ log vj(y) ·
�∇ui − (ui + ε)∇ log vi

�
(x) dx dy ds

≤ εC

n%
i,j=1

∥∇ log vj∥L∞(QT )

� t

0

�
Td

�|∇ui|+ (ui + 1)|∇ log vi|
�
dx ds

≤ εC
n%

i=1

�∥∇ui∥L1(QT ) + ∥ui∥L1(QT ) + 1
� ≤ εC.

We conclude that

I1 ≤ C
n%

i=1

� t

0

��
Td

|ui − vi| dx
�2

ds+ εC.

It remains to estimate I2. Here we need the improved regularity ∇ui ∈ L2(QT ). Inserting
the definition of pi[u], we have

I2 = ε
n%

i,j=1

� t

0

�
Td

�
Td

πiKij(x− y)∇uj(y) · ∇ log
ui + ε

vi
(x) dx dy ds.

Since

ε|∇uj(y) · ∇ log(ui + ε)(x)| = 2ε

++++∇uj(y) · ∇
√
ui + ε√
ui + ε

(x)

++++ ≤ 2
√
ε|∇uj(y)||∇

#
ui(x)|,

we find that

I2 ≤ C
n%

i,j=1

�
ε∥∇uj∥L1(QT ) +

√
ε∥∇uj∥L2(QT )∥∇

√
ui∥L2(QT )

� ≤ √
εC.

We summarize the estimates for I1 and I2 and conclude from (2.21) that

Hε(u(t)|v(t))−Hε(u(0)|v(0)) ≤ C
n%

i=1

� t

0

��
Td

|ui − vi| dx
�2

ds+
√
εC. (2.22)

2.3.3 Limit ε → 0

We perform first the limit in Hε(u(t)|v(t)). We claim that for 0 < ε < 1,++(ui + ε)(log(ui + ε)− 1)
++ ≤ ui(log ui + 1) + 1 + e−2.

Indeed, set f(s) := (s + ε)(log(s + ε) − 1) and g(s) := s(log s + 1) + 1 + e−2 for s ≥ 0. A
computation shows that |f(s)| ≤ 1 and g(s) ≥ 1 on the interval [0, e− ε]. Thus, |f(s)| ≤ g(s)
on this interval. Next, it holds that 0 = f(e− ε) < g(e− ε) and

f ′(s) = log(s+ ε) = log(1 + ε/s) + log s < 2 + log s = g′(s)

34



2.3 Weak-strong uniqueness for the nonlocal system

for s > e − ε. This implies that f(s) < g(s) for s > e − ε and proves the claim. Due
to ui ∈ L2(0, T ; H1(Td)) ∩H1(0, T ;H−1(Td)) �→ C0([0, T ];L2(Td)), we infer that++(ui + ε)(log(ui + ε)− 1)

++ ≤ ui(log ui + 1) + C ∈ L∞(0, T ;L1(Td)).

Therefore, by dominated convergence, as ε → 0,
n%

i=1

�
Td

πi(ui(t) + ε)(log(ui(t) + ε)− 1) dx →
n%

i=1

�
Td

πiui(t)(log ui(t)− 1) dx,

and this convergence holds for a.e. t ∈ (0, T ). Furthermore, the assumption c ≤ vi ≤ C in QT

shows that log vi is bounded in QT and hence,
n%

i=1

πi(−(ui + ε) log vi + vi) ≤ C(v)

� n%
i=1

ui + 1

�
∈ L∞(0, T ;L1(Td)).

By dominated convergence again,
n%

i=1

�
Td

πi
�− (ui(t) + ε) log vi(t) + vi(t)

�
dx →

n%
i=1

�
Td

πi
�− ui(t) log vi(t) + vi(t)

�
dx.

This shows that for a.e. t ∈ (0, T ),

Hε(u(t)|v(t)) → H(u(t)|v(t)) as ε → 0, where

H(u|v) =
n%

i=1

�
Td

πi
�
ui(log ui − 1)− ui log vi + vi

�
dx,

and Hε(u(0)|v(0)) = Hε(u
0|u0) → 0. Then we deduce from (2.22) in the limit ε → 0 that

H(u(t)|v(t)) ≤ C
n%

i=1

� t

0
∥ui − vi∥2L1(Td) ds. (2.23)

The constant C depends on the L∞-norm of ∇ log vi, which is bounded thanks to our assump-
tions.
Taking the test function ϕi = 1 in the weak formulation of (1.1), we directly see conservation

of mass,
�
Td u

0
i dx =

�
Td ui(t) dx for all t > 0. Furthermore, since u and v have the same initial

data, it follows that
�
Td ui(t) dx =

�
Td vi(t) dx for all t > 0. Thus, by the classical Csiszár–

Kullback–Pinsker inequality [73, Theorem A.2], we have

H(u|v) =
n%

i=1

�
Td

πiui log
ui
vi

dx+
n%

i=1

�
Td

πi(vi − ui) dx =
n%

i=1

�
Td

πiui log
ui
vi

dx

≥ 2

��
Td

u0i dx

�−1 n%
i=1

∥ui − vi∥2L1(Td) = C(u0)
n%

i=1

∥ui − vi∥2L1(Td).

We infer from (2.23) that

n%
i=1

∥(ui − vi)(t)∥2L1(Td) ≤ C

� t

0

n%
i=1

∥ui − vi∥2L1(Td) ds.

Grönwall’s inequality now implies that ∥(ui − vi)(t)∥L1(Td) = 0 and hence ui(t) = vi(t) in Td

for a.e. t > 0 and i = 1, . . . , n.
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2.4 Localization limit

We prove Theorem 5. Let uη be the nonnegative weak solution to (1.1)–(1.2) with kernel (2.5),
constructed in Theorem 2. The entropy inequalities (2.3) and (2.4) as well as the proof of
Theorem 2 show that all estimates are independent of η. More precisely, the right-hand side
of (2.4) depends on Kη

ij , but in view of [20, Theorem 4.22], it holds that Kη
ij ∗ uj → aijuj

as η → 0 and therefore, we can bound the right-hand side of (2.4) uniformly in η. Therefore,
for i = 1, . . . , n (see (2.10)–(2.12), (2.14)–(2.16)),

∥uηi log uηi ∥L∞(0,T ;L1(Td)) + ∥uηi ∥L1+2/d(QT ) + ∥uηi ∥Lq(0,T ;W 1,q(Td)) ≤ C,

∥(uηi )1/2∥L2(0,T ;H1(Td)) + ∥∂tuηi ∥Lq(0,T ;W 1,d+2(Td)′) + ∥(uηi )1/2∇pηi [u
η]∥L2(QT ) ≤ C,

where C > 0 is independent of η, q = (d+2)/(d+1), and pηi [u
η
i ] =

&n
j=1

�
Td K

η
ij(x−y)uηj (y) dy.

We infer from the Aubin–Lions lemma in the version of [19, 48] that there exists a subsequence
(not relabeled) such that, as η → 0,

uηi → ui strongly in L2(0, T ;Ld/(d−1)(Td)), i = 1, . . . , n, (2.24)

if d ≥ 2 and strongly in L2(0, T ;Lr(Td)) for any r < ∞ if d = 1. Moreover,

∇uηi ⇀ ∇ui weakly in Lq(QT ), i = 1, . . . , n, (2.25)

∂tu
η
i ⇀ ∂tui weakly in Lq(0, T ;W 1,d+2(Td)′), (2.26)

(uηi )
1/2∇pηi [u

η] ⇀ zi weakly in L2(QT ), (2.27)

where zi ∈ L2(QT ) for i = 1, . . . , n.

As in Section 2.2, the main difficulty is the identification of zi with the term u
1/2
i ∇pi[u],

where pi[u] :=
&n

j=1 aij∇uj . Since the kernel functions also depend on η, the proof is different
from the one in Section 2.2. We claim that

∇pηi [u
η] ⇀ ∇pi[u] weakly in Lq(QT ). (2.28)

Indeed, let ϕ ∈ Lq′(QT ;Rn), where q′ = d+ 2 satisfies 1/q + 1/q′ = 1. We compute++++ � T

0

�
Td

(∇pηi [u
η]−∇pi[u]) · ϕ dx dt

++++
=

++++ n%
j=1

� T

0

�
Td

��
Td

Kη
ij(x− y)∇uηj (y, t) dy

�
· ϕ(x, t) dx dt

−
n%

j=1

� T

0

�
Td

aij∇uj(y, t) · ϕ(y, t) dy dt
++++

≤
n%

j=1

++++ � T

0

�
Td

��
Td

Kη
ij(x− y)ϕ(x, t) dx− aijϕ(y, t)

�
· ∇uηj (y, t) dy dt

++++
+

n%
j=1

aij

++++ � T

0

�
Td

∇(uηj − uj)(y, t) · ϕ(y, t) dy dt
++++
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≤
n%

j=1

**** �
Td

Kη
ij(.− y)ϕ(y) dy − aijϕ

****
Lq′ (QT )

∥∇uηj∥Lq(QT )

+

n%
j=1

aij

++++ � T

0

�
Td

∇(uηj − uj)(y, t) · ϕ(y, t) dy dt
++++.

Since B has compact support in R, we can apply Lemma 16 to infer that the first term
on the right-hand side, formulated as the convolution Kη

ij ∗ ϕ − aijϕ (slightly abusing the

notation), converges to zero strongly in Lq′(Rd) as η → 0. Thus, taking into account the weak
convergence (2.25), convergence (2.28) follows.
Because of the convergences (2.24), (2.27), and (2.28), we can apply Lemma 13 from Sec-

tion 2.5 to infer that zi = u
1/2
i ∇pi[u]. Therefore,

uηi∇pηi [u
η] ⇀ ui∇pi[u] weakly in L1(QT ).

Estimate (2.27) shows that the convergence holds in Lq(QT ). This convergence as well as (2.25)
and (2.26) allow us to perform the limit η → 0 in the weak formulation of (1.1), proving that u
solves (1.1) and (1.3).

2.5 Auxiliary results

We recall the Young convolution inequality (the proof in [20, Theorem 4.33] also applies to the
torus).

Lemma 11 (Young’s convolution inequality). Let 1 ≤ p ≤ q ≤ ∞ such that 1+1/q = 1/p+1/r
and let K ∈ Lr(Td) (extended periodically to Rd). Then for any v ∈ Lp(Td),**** �

Td

K(· − y)v(y) dy

****
Lq(Td)

≤ ∥K∥Lr(Td)∥v∥Lp(Td).

The next result is a consequence of Vitali’s lemma and is well known. We recall it for the
convenience of the reader.

Lemma 12. Let Ω ⊂ Rd (d ≥ 1) be a bounded domain, 1 < p < ∞, and uε, u ∈ L1(Ω) be such
that (uε) is bounded in Lp(Ω) and uε → u a.e. in Ω. Then uε → u strongly in Lr(Ω) for all
exponents 1 ≤ r < p.

Proof. We have for any M > 0,�
{uε≥M}

|uε|r dx =

�
{uε≥M}

|uε|p|uε|−(p−r) dx ≤ M−(p−r)

�
Ω
|uε|p dx ≤ CM−(p−r) → 0,

as M → ∞. Thus, (uε) is uniformly integrable. Since convergence a.e. implies convergence in
measure, we conclude with Vitali’s convergence theorem.

The following lemma specifies conditions under which the limit of the product of two con-
verging sequences can be identified.

37



2 Analysis of nonlocal cross-diffusion systems for multi-species populations and networks

Lemma 13. Let p > 1 and let uε ≥ 0, uε → u strongly in Lp(Td), vε ⇀ v weakly in Lp(Td),
and uεvε ⇀ w weakly in Lp(Td) as ε → 0. Then w = uv.

The lemma is trivial if p ≥ 2. We apply it in Section 2.2 with 1 < p < 2. Note that the
strong convergence of (uε) cannot be replaced by weak convergence. A simple counter-example
is given by uε(x) = exp(2πix/ε) ⇀ 0 and vε(x) = exp(−2πix/ε) ⇀ 0 weakly in L2(−1, 1), but
the product fulfils uεvε ≡ 1 ̸= 0 · 0.

Proof. We define the truncation function T1 ∈ C2([0,∞)) satisfying T1(s) = s for 0 ≤ s ≤ 1,
T1(s) = 2 for s > 3, and T1 is nondecreasing and concave in the interval [1, 3]. Furthermore, we
set Tk(s) = kT1(s/k) for s ≥ 0 and k ∈ N. The strong convergence of (uε) implies the existence
of a not relabelled subsequence such that uε → u a.e.. Hence, Tk(uε) → Tk(u) a.e. and since Tk

is bounded for fixed k ∈ N, we conclude by dominated convergence that Tk(uε) → Tk(u)
strongly in Lr(Td) for any r < ∞. Because of the uniqueness of the limit, the convergence
holds for the whole sequence. Thus, Tk(uε)vε ⇀ Tk(u)v weakly in L1(Td). Writing zε for the
weak limit of a sequence (zε) (if it exists), this result means that Tk(uε)vε = Tk(u)v and the
assumption translates to uεvε = w. Consequently, w−Tk(u)v = (uε − Tk(uε))vε. Then we can
estimate

∥w − Tk(u)v∥L1(Td) ≤ sup
0<ε<1

�
Td

|uε − Tk(uε)||vε| dx ≤ sup
0<ε<1

�
{|uε|>k}

|uε||vε| dx

≤ 1

kp−1
sup

0<ε<1

�
{|uε|>k}

|uε|p|vε| dx ≤ 1

kp−1
sup

0<ε<1

�
Td

|uε|p(1 + |vε|p) dx ≤ C

kp−1
,

where we used the properties uε = Tk(uε) for uε ≤ k and |uε−Tk(uε)| ≤ |uε| due to Tk(uε) ≤ uε
for uε > k. The constant C depends on the bounds for uε in Lp(Td) and uεvε in Lp(Td).
We infer that Tk(u)v → w strongly in L1(Td) and (for a subsequence) a.e. as k → ∞.
Since Tk(u)v = uv in {|u| ≤ k} for any k ∈ N and meas{|u| > k} ≤ ∥u∥L1(Td)/k → 0, we

infer in the limit k → ∞ that w = uv a.e. in Td.

For convenience, we recall the Gagliardo–Nirenberg inequality [100, Appendix A, (54a)] and
the Poincaré–Wirtinger inequality [50, Sec. 5.8.1, Theorem 1].

Lemma 14 (Gagliardo-Nirenberg inequality). Let Ω ⊂ Rd (d ≥ 1) be a bounded domain with
Lipschitz boundary. Let m ∈ N, β ∈ Nd

0 be such that 0 ≤ |β| ≤ m− 1, let 1 ≤ p, q, r ≤ ∞, and
let θ ∈ [0, 1] be such that

1

p
=

|β|
d

+

�
1

r
− m

d

�
θ + (1− θ)

1

q
,

|β|
m

≤ θ ≤ 1.

Then there exists a constant C > 0 such that for all u ∈ Wm,r(Ω) ∩ Lq(Ω), it holds that

∥Dβu∥Lp(Ω) ≤ C∥u∥θWm,r(Ω)∥u∥1−θ
Lq(Ω).

If 1 < r < ∞ and m − |β| − d/r is a nonnegative integer, then the inequality holds only
for |β|/m ≤ θ < 1.
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2.6 Local cross-diffusion system

Lemma 15 (Poincaré-Wirtinger inequality). Let Ω ⊂ Rd (d ≥ q) be a bounded domain with
Lipschitz boundary and let 1 ≤ p ≤ ∞. Then there exists a constant C > 0 such that for
all u ∈ W 1,p(Ω), ****u− 1

|Ω|
�
Ω
u dx

****
Lp(Ω)

≤ C∥∇u∥Lp(Ω).

In particular, we have

∥u∥Lp(Ω) ≤ C(∥∇u∥Lp(Ω) + ∥u∥L1(Ω)).

The following lemma states the convergence of a convolution with a sequence of mollifiers,
see [20, Theorem 4.22].

Lemma 16. Let 1 ≤ p < ∞, f ∈ Lp(Rd), and let (ρn)n∈N be a sequence of mollifiers, i.e.

ρn ∈ C∞
0 (Rd), supp ρn ⊂ B(0, 1/n),

�
ρn dx = 1, ρn ≥ 0 on Rd.

Then ρn ∗ f → f in Lp(Rd) as n → ∞.

2.6 Local cross-diffusion system

The existence of global weak solutions to the local system (1.1) and (1.3) in any bounded
polygonal domain was shown in [78] by analysing a finite-volume scheme. For existence results
on related systems, we refer to, e.g., [4, 6, 32, 38]. For completeness, we state the assumptions
and the theorem and indicate how the result can be proved using the techniques of Section 2.2.
We assume that Ω ⊂ Rd (d ≥ 1) is a bounded domain with Lipschitz boundary ∂Ω, T > 0,
and u0 ∈ L2(Ω) satisfies u0i ≥ 0 in Ω for i = 1, . . . , n. We set QT = Ω× (0, T ).

Theorem 17 (Existence for the local system). Let σ > 0, aij ≥ 0, and let the matrix (uiaij)
be positively stable for all ui > 0, i = 1, . . . , n. Assume that there exist π1, . . . , πn > 0 such
that πiaij = πjaji for all i, j = 1, . . . , n. Then there exists a global weak solution to (1.1)
and (1.3) with no-flux boundary conditions, satisfying ui ≥ 0 in QT and

ui ∈ L2(0, T ;H1(Ω)) ∩ L2+4/d(QT ), ∂tui ∈ Lq(0, T ;W−1,q(Ω)),

for i = 1, . . . , n, where q = (d+ 2)/(d+ 1). The initial datum in (1.1) is satisfied in the sense
of W−1,q(Ω). Moreover, the following entropy inequalities are satisfied:

dH1

dt
+ 4σ

n%
i=1

�
Ω
πi|∇√

ui|2 dx+ α

n%
i=1

�
Ω
|∇ui|2 dx ≤ 0,

dH0
2

dt
+

n%
i=1

�
Ω
πiui|∇pi[u]|2 dx+ ασ

n%
i=1

�
Ω
|∇ui|2 dx ≤ 0,

(2.29)

where α > 0 is the smallest eigenvalue of (πiaij) and H0
2 (u) :=

1
2

&n
i,j=1

�
Ω πiaijuiuj dx ≥ 0.
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2 Analysis of nonlocal cross-diffusion systems for multi-species populations and networks

We call a matrix positively stable if all eigenvalues have a positive real part. This condition
means that (1.1) is parabolic in the sense of Petrovskii, which is a minimal condition to ensure
the local solvability [6]. Inequalities (1.9)–(1.10) and (2.29) reveal a link between the entropy
structures of the nonlocal and local systems. This link was explored recently in detail for
related systems in [43].

Proof. If Ω is the torus, the theorem is a consequence of the localization limit (Theorem 5).
If Ω is a bounded domain, the result can be proved by using the techniques of the proof of
Theorem 2. In fact, the proof is simpler since the problem is local. The entropy identities are
(formally)

dH1

dt
+ 4σ

n%
i=1

�
Ω
πi|∇√

ui|2 dx = −
n%

i,j=1

�
Ω
πiaij∇ui · ∇uj dx,

dH0
2

dt
+

n%
i=1

�
Ω
πiui|∇pi[u]|2 dx = −σ

n%
i,j=1

�
Ω
πiaij∇ui · ∇uj dx.

(2.30)

We claim that the matrix (πiaij) is positive definite. Let A1 := diag(ui/πi) and A2 := (πiaij).
Then A1 is symmetric and positive definite by our assumptions, A2 is symmetric and the prod-
uct A1A2 = (uiaij) is positively stable. Therefore, by [37, Prop. 3], A2 is positive definite. We
infer that the right-hand sides in (2.30) are nonpositive, and we derive estimates for an approx-
imate family of ui in L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)). By the Gagliardo–Nirenberg in-
equality, this yields bounds for ui in L2+4/d(QT ). Consequently, ui∇pi[u] is bounded in Lq(QT ),
where q = (d + 2)/(d + 1) (we can even choose q = 4(d + 2)/(3d + 4)), and the time deriva-
tive ∂tui is bounded in Lq(0, T ;W−1,q(Ω)). These estimates are sufficient to deduce from the
Aubin–Lions lemma the relative compactness for the approximate family of ui in L2(QT ). The
limit in the approximate problem, similar to (2.6), shows that the limit satisfies (1.1) and (1.3).
Finally, using the lower semicontinuity of convex functions and the norm, the weak limit in
the entropy inequalities leads to (2.29).
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3 A convergent finite-volume scheme for
nonlocal cross-diffusion systems for
multi-species populations

The results in this chapter have been published in [75].

This chapter is devoted to the design and analysis of a finite-volume scheme for the nonlocal
cross-diffusion system (1.11)–(1.12) & (1.13). We start by introducing some necessary nota-
tion in Section 3.1.1. Then we introduce the scheme and its properties in Section 3.1.2 and
state our main results, the existence of discrete solutions and the convergence of the scheme,
in Section 3.1.3. The proof of the existence Theorem 22 is detailed in Section 3.2 and the
convergence Theorem 23 is proved in Section 3.3. Finally, we present numerical experiments
in Section 3.4, where we investigate the convergence rate of our scheme in space as well as the
rate of convergence of the localization limit and we illustrate the segregation pattern of the
system due to the nonlocal kernels. Some auxiliary results are collected in Section 3.5 and in
Section 3.6 we show that indicator functions of a ball with a radius r > 0 in general do not
fulfil the positive semi-definiteness condition (1.8).

3.1 Notation and numerical scheme

3.1.1 Notation

A uniform mesh T of the torus T consists of N intervals (or cells) Kℓ of length ∆x = 1/N ,
given by Kℓ = (xℓ−1/2, xℓ+1/2) with end points xℓ±1/2 = (ℓ ± 1/2)∆x and centers xℓ = ℓ∆x
for ℓ ∈ G = Z \ NZ. For given end time T > 0, let NT ∈ N and define the time step
size ∆t = T/NT and the time steps tk = k∆t. A space-time discretization of QT := T×(0, T ) is
denoted by D; it consists of the space discretization T of T and the time discretization (NT ,∆t)
of (0, T ).
We introduce some function spaces. The space of piecewise constant (in space) functions is

given by

VT =

�
v : T → R : ∃(vℓ)ℓ∈G ⊂ R, v(x) =

%
ℓ∈G

vℓ1Kℓ
(x)

�
,

where 1Kℓ
is the indicator function of Kℓ. We identify the function v ∈ VT and the num-

bers (vℓ)ℓ∈G by writing v = (vℓ)ℓ∈G. For q ∈ [1,∞) and v ∈ VT , we introduce the Lq(T)-norm,
the discrete W 1,q(T)-seminorm, and the discrete W 1,q(T)-norm by, respectively,

∥v∥q0,q,T =
%
ℓ∈G

∆x|vℓ|q, |v|q1,q,T =
%
ℓ∈G

∆x

++++vℓ+1 − vℓ
∆x

++++q,
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3 A convergent finite-volume scheme for nonlocal cross-diffusion systems

∥v∥q1,q,T = |v|q1,q,T + ∥v∥q0,q,T .
We also define the discrete L∞(T)-norm by ∥v∥0,∞,T = maxℓ∈G |vℓ|. Let us point out that for
functions v ∈ VT it holds that ∥v∥0,q,T = ∥v∥Lq(T) . We set

Dℓv :=
vℓ+1 − vℓ

∆x
and Dv := (Dℓv)ℓ∈G.

We briefly recall the definition of the space BV(T) of functions of bounded variation. A
function v ∈ L1(T) belongs to BV(T) if its total variation TV(v), given by

TV(v) = sup

��
T
v(x)∂xϕ(x) dx : ϕ ∈ C1

0 (T), |ϕ(x)| ≤ 1 for all x ∈ T
�
,

is finite. We endow the space BV(T) with the norm

∥v∥BV (T) = ∥v∥L1(T) +TV(v) for all v ∈ BV(T).

In particular, it holds that ∥v∥BV (T) = ∥v∥1,1,T for any v ∈ VT ∩ BV(T).
For any given q ∈ [1,∞), we associate to these norms a dual norm with respect to the L2(T)-

inner product by

∥v∥−1,q′,T = sup

�++++ �
T
vw dx

++++ : w ∈ VT , ∥w∥1,q,T = 1

�
,

where 1/q + 1/q′ = 1. Then, the following estimate holds for all v, w ∈ VT :++++ �
T
vw dx

++++ ≤ ∥v∥−1,q′,T ∥w∥1,q,T .

We also need the space of piecewise constant (in time) functions taking values in VT :

VD =

�
v : T× (0, T ] → R : ∃(vk)k=1,...,NT

, v(x, t) =

NT%
k=1

1(tk−1,tk](t)v
k(x)

�
,

and the discrete Lp(0, T ;W 1,q(T))-norm� NT%
k=1

∆t∥vk∥p1,q,T
�1/p

, where 1 ≤ p, q < ∞, v ∈ VD.

3.1.2 Numerical scheme

The initial datum (1.12) is approximated by

u0i,ℓ =
1

∆x

�
Kℓ

u0i (x) dx for ℓ ∈ G, i = 1, . . . , n. (3.1)

For given k ∈ {1, . . . , NT } and uk−1 ∈ Vn
T , the values uk = (uki,ℓ)i=1,...,n, ℓ∈G are determined by

the implicit Euler finite-volume scheme

∆x

∆t
(uki,ℓ − uk−1

i,ℓ ) + Fk
i,ℓ+1/2 −Fk

i,ℓ−1/2 = 0, i = 1, . . . , n, ℓ ∈ G, (3.2)
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with the numerical fluxes

Fk
i,ℓ+1/2 = − σ

∆x
(uki,ℓ+1 − uki,ℓ)−

uki,ℓ+1/2

∆x
(pki,ℓ+1 − pki,ℓ), (3.3)

where the discrete nonlocal operators are given by

pki,ℓ = aiiu
k
i,ℓ +

n%
j=1
j ̸=i

%
ℓ′∈G

∆xaijB
ij
ℓ−ℓ′u

k
j,ℓ′ , Bij

ℓ−ℓ′ =
1

∆x

�
Kℓ−ℓ′

Bij(y) dy, (3.4)

for all i, j = 1, . . . , n and ℓ, ℓ′ ∈ G. We will show in the proof of Lemma 27 that the iden-
tity pki,ℓ = aiiu

k
i (xℓ) +

&
j ̸=i aij(B

ij ∗ ukj )(xℓ) holds for ℓ ∈ G, verifying the consistency of the

discretization of pki,ℓ. The mobility uki,ℓ+1/2 =
�F (uki,ℓ, u

k
i,ℓ+1) is assumed to satisfy the following

properties for all ui,ℓ, ui,ℓ+1:

• The function �F : [0,∞)2 → [0,∞) is continuous and satisfies �F (ui,ℓ, ui,ℓ) = ui,ℓ as well

as min{ui,ℓ, ui,ℓ+1} ≤ �F (ui,ℓ, ui,ℓ+1) ≤ max{ui,ℓ, ui,ℓ+1}.
• There exists c0 > 0 such that the following discrete chain rule holds:

ui,ℓ+1/2(pi,ℓ+1 − pi,ℓ)(log ui,ℓ+1 − log ui,ℓ) ≥ c0(pi,ℓ+1 − pi,ℓ)(ui,ℓ+1 − ui,ℓ). (3.5)

Remark 18 (Examples for mobilities). Property (3.5) is satisfied if ui,ℓ (we omit the su-
perindex k) is defined by the upwind approximation

ui,ℓ+1/2 =

�
ui,ℓ+1 if pi,ℓ+1 − pi,ℓ ≥ 0,

ui,ℓ if pi,ℓ+1 − pi,ℓ < 0,
(3.6)

or by the logarithmic mean

ui,ℓ+1/2 =

����
ui,ℓ+1 − ui,ℓ

log ui,ℓ+1 − log ui,ℓ
if ui,ℓ+1 > 0, ui,ℓ > 0, and ui,ℓ+1 ̸= ui,ℓ,

ui,ℓ if ui,ℓ+1 = ui,ℓ > 0,

0 else.

(3.7)

We refer to Lemma 32 in Section 3.5 for a proof.

Remark 19 (Symmetry of discrete kernels). Definition (3.4) of Bij
ℓ−ℓ′ is consistent with the

discrete analog of Bji(−x) = Bij(x). Indeed, with the change of variables y �→ −y,

Bji
−ℓ′ =

1

∆x

�
K−ℓ′

Bji(y) dy =
1

∆x

�
Kℓ′

Bji(−y) dy =
1

∆x

�
Kℓ′

Bij(y) dy = Bij
ℓ′ .

Remark 20 (Discrete derivative of the convolution). A shift of ∆x in definition (3.4) of Bij
ℓ−ℓ′

shows that Bij
ℓ−ℓ′ = Bij

(ℓ+1)−(ℓ′+1), which leads to%
ℓ′∈G

(Bij
(ℓ+1)−ℓ′ −Bij

ℓ−ℓ′)uj,ℓ′ =
%
ℓ′∈G

�
Bij

(ℓ+1)−(ℓ′+1)uj,ℓ′+1 −Bij
ℓ−ℓ′uj,ℓ′

�
(3.8)
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=
%
ℓ′∈G

Bij
ℓ−ℓ′(uj,ℓ′+1 − uj,ℓ′)

for all ℓ ∈ G, i, j = 1, . . . , n. This is the discrete analog of the rule ∂xB
ij ∗uj = Bij ∗ ∂xuj .

Remark 21 (Asymptotic-preserving scheme). For j ̸= i, consider kernels Bij
ε for some param-

eter ε > 0 and Bij
ε → δ0 in the sense of distributions as ε → 0. Let pk,εi,ℓ be defined as in (3.4)

with the kernels Bij(y) replaced by Bij
ε (y). Then, as ε → 0,

pk,εi,ℓ →
n%

j=1

aij (δ0 ∗ uj) (xℓ) =
n%

j=1

aijuj,ℓ.

Thus, our numerical scheme is asymptotic-preserving in the sense that the method converges to
a finite-volume scheme for the local system, which also preserves the nonnegativity, conserves
the mass, and dissipates the Boltzmann and Rao entropies.

3.1.3 Main results

We impose the following hypotheses:

(H1) Domain and parameters: T is a one-dimensional torus, i.e. we impose periodic boundary
conditions, T > 0, σ ≥ 0, and QT := T× (0, T ).

(H2) Initial datum: u0 = (u01, . . . , u
0
n) ∈ L2(T;Rn) satisfies u0i ≥ 0 in T.

(H3) Kernels: Let Bij ∈ L∞(T) for j ̸= i be nonnegative functions satisfying the symmetry
condition Bji(x) = Bij(−x) for a.e. x ∈ T. There exist numbers π1, . . . , πn > 0 such
that πiaij = πjaji (detailed-balance condition), and the matrices M ij , defined in (1.18),
are uniformly positive definite for a.e. x ∈ T.

We consider the one-dimensional equations mainly for notational simplicity. In several space
dimensions d > 1, we infer uniform estimates in spaces with weaker integrability than in one
space dimension, because of Sobolev embeddings. Thanks to the positive definiteness condition
on M ij

ℓ−ℓ′ , we obtain a bound for ui in the discrete L2(0, T ;H1(T))-norm, which allows us
to conclude, together with the Rao entropy estimate, by the discrete Gagliardo–Nirenberg
inequality, a bound for ui in L2(QT ), which is sufficient to estimate the product ui∂xpi(u).
In the one-dimensional situation, this procedure simplifies; see Lemma 28. We discuss the
multidimensional case in Remark 30.

Our results also hold if σ = 0, since the condition σ > 0 provides an estimate for ui in the
discrete norm of L2(0, T ;W 1,1(T)), while the positive definiteness condition on M ij

ℓ−ℓ′ allows
us to conclude a stronger bound in the discrete norm of L2(0, T ;H1(T)). Notice that kernels
of the type Bij = 1K satisfy Hypothesis (H3) (for suitable πi and aij).

Condition u0 ∈ L2(T;Rn) in Hypothesis (H2) is needed to obtain a finite initial Rao en-
tropy HR(u

0). For the existence result, the assumption on the kernels can be weakened
to Bij ∈ L1(T). The boundedness condition on Bij in Hypothesis (H3) is needed in the proof
of the convergence of the scheme.
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3.1 Notation and numerical scheme

We introduce for a given nonnegative function u ∈ Vn
T the discrete entropies

HB(u) =

n%
i=1

%
ℓ∈G

∆xπih(ui,ℓ), h(s) = s(log s− 1), (3.9)

HR(u) =
1

2

n%
i=1

%
ℓ∈G

∆xπiaii|ui,ℓ|2 + 1

2

n%
i,j=1
i ̸=j

%
ℓ,ℓ′∈G

(∆x)2πiaijB
ij
ℓ−ℓ′uj,ℓ′ui,ℓ,

and the matrices

M ij
ℓ−ℓ′(x) :=

�
πiaii (n− 1)πiaijB

ij
ℓ−ℓ′(x)

(n− 1)πjajiB
ij
ℓ−ℓ′(x) πjajj

�
for i < j, ℓ, ℓ′ ∈ G. (3.10)

In view of Hypothesis (H3), they are symmetric and positive definite uniformly in ℓ, ℓ′ ∈ G
and x ∈ T, i.e. z⊤M ij

ℓ−ℓ′(x)z ≥ cM |z|2 for z ∈ R2, x ∈ T and some cM > 0.

Our first main result is the existence of discrete solutions.

Theorem 22 (Existence of discrete solutions). Let Hypotheses (H1)–(H3) hold. Then there
exists a solution uk ∈ Vn

T to system (3.1)–(3.4) for all k = 1, . . . , NT , satisfying uki,ℓ ≥ 0 for
all i = 1, . . . , n, ℓ ∈ G and the discrete entropy inequalities

HB(u
k) +

c0∆t

n− 1

n%
i,j=1
i<j

%
ℓ,ℓ′∈G

(∆x)2
�
Dℓu

k
i

Dℓ′u
k
j

�⊤
M ij

ℓ−ℓ′

�
Dℓu

k
i

Dℓ′u
k
j

�
(3.11)

+ 4σ∆t
n%

i=1

πi|(uki )1/2|21,2,T ≤ HB(u
k−1),

HR(u
k) + ∆t

n%
i=1

%
ℓ∈G

∆xπiu
k
i,ℓ+1/2

�
pki,ℓ+1 − pki,ℓ

∆x

�2

(3.12)

+
σ∆t

(n− 1)

n%
i,j=1
i<j

%
ℓ,ℓ′∈G

(∆x)2
�
Dℓu

k
i

Dℓ′u
k
j

�⊤
M ij

ℓ−ℓ′

�
Dℓu

k
i

Dℓ′u
k
j

�
≤ HR(u

k−1).

Furthermore, the solution conserves the mass,
&

ℓ∈G∆xuki,ℓ =
�
T u

0
i (x) dx for all i = 1, . . . , n

and k = 1, . . . , NT .

This theorem is proved by solving a fixed-point problem based on a topological degree
argument, similar as in [79]. For this step, we formulate (3.2) in terms of the entropy vari-
able wi = πi log ui and regularize the equations by adding the discrete analog of −ε∆wi+ εwi.
The regularization ensures the coercivity in the variable wi. After transforming back to the
original variable ui = exp(wi/πi), we obtain automatically the positivity of ui (and nonnegativ-
ity after passing to the limit ε → 0). Like on the continuous level, the derivation of the discrete
entropy inequalities (3.11) and (3.12) relies on the detailed-balance condition πiaij = πjaji for
all i, j = 1, . . . , n.
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3 A convergent finite-volume scheme for nonlocal cross-diffusion systems

For our second main result, we need to introduce some notation. We define the “diamond”
cell of the dual mesh Tℓ+1/2 = (xℓ, xℓ+1) with center xℓ+1/2. These cells define another partition
of T. The gradient of v ∈ VD is then defined by

∂D
x v(x, t) = Dℓv

k =
vkℓ+1 − vkℓ

∆x
for x ∈ Tℓ+1/2, t ∈ (tk−1, tk].

We also introduce a sequence of space-time discretizations (Dm)m∈N indexed by the mesh
size ηm = max{∆xm,∆tm} satisfying ηm → 0 as m → ∞. The corresponding spatial mesh is
denoted by Tm with Gm = Z \NmZ and the number of time steps by Nm

T . Finally, to simplify
the notation, we set ∂m

x := ∂Dm
x .

Theorem 23 (Convergence of the scheme). Let Hypotheses (H1)–(H3) hold and let (Dm) be
a sequence of uniform space-time discretizations satisfying ηm → 0 as m → ∞. Let (um) be
the solutions to (3.1)–(3.4) constructed in Theorem 22. Then there exists u = (u1, . . . , un)
satisfying ui ≥ 0 in QT and, up to a subsequence, as m → ∞,

ui,m → ui strongly in L2(QT ),

∂m
x ui,m ⇀ ∂xui weakly in L2(QT ),

and u is a weak solution to (1.11)–(1.12), i.e., it holds for all ψi ∈ C∞
0 (T × [0, T )) and for

all i = 1, . . . , n that� T

0

�
T
ui∂tψi dx dt+

�
T
u0iψi(·, 0) dx =

� T

0

�
T
(σ∂xui + ui∂xpi(u))∂xψi dx dt.

The proof of Theorem 23 is based on suitable estimates uniform with respect to ∆xm
and ∆tm, derived from the discrete entropy inequalites. A discrete version of the Aubin–
Lions lemma from [57] yields the strong convergence of a subsequence of solutions (um)
to (3.2)–(3.4). The most technical part is the identification of the limit function as a weak
solution to (1.11)–(1.12).

3.2 Proof of Theorem 22

Theorem 22 is proved by induction over k = 1, . . . , NT . We first regularize the problem and
prove the existence of an approximate solution by using a topological degree argument for the
fixed-point problem. The discrete entropy inequalities yield a priori estimates independent of
the approximation parameter. The de-regularization limit is performed thanks to the Bolzano–
Weierstraß theorem.

Let k ∈ {1, . . . , NT } and uk−1 ∈ Vn
T satisfying uk−1

i,ℓ ≥ 0 for i = 1, . . . , n, ℓ ∈ G be given.

3.2.1 Solution to a linearized regularized scheme

We prove the existence of a unique solution to a linearized regularized problem, which allows
us to define the fixed-point operator. Let R > 0, ε > 0 and define

ZR :=
�
w = (w1, . . . , wn) ∈ Vn

T : ∥wi∥1,2,T < R for i = 1, . . . , n
�
.
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3.2 Proof of Theorem 22

We introduce the mapping F : ZR → RnN , w �→ wε, where wε is the solution to the linear
regularized problem

−ε
wε
i,ℓ+1 − 2wε

i,ℓ + wε
i,ℓ−1

∆x
+ ε∆xwε

i,ℓ = −∆x
ui,ℓ − uk−1

i,ℓ

∆t
− (Fi,ℓ+1/2 −Fi,ℓ−1/2), (3.13)

where i = 1, . . . , n, ℓ ∈ G, ui,ℓ is defined by ui,ℓ = exp(wi,ℓ/πi), Fi,ℓ±1/2 is defined as in (3.3)

with uki replaced by ui and pki,ℓ replaced by

pi,ℓ = aiiui,ℓ +
n%

j=1
j ̸=i

%
ℓ′∈G

∆xaijB
ij
ℓ−ℓ′uj,ℓ′ .

We claim that F is well defined. For this, we write (3.13) in the form

Mwε = v, where vi,ℓ = −∆x
ui,ℓ − uk−1

i,ℓ

∆t
− (Fi,ℓ+1/2 −Fi,ℓ−1/2).

The matrix M ∈ RnN×nN is a block diagonal matrix with entries M ′ ∈ RN×N , which are
tridiagonal matrices such that M ′

ℓ,ℓ = ε∆x + 2ε/∆x, M ′
ℓ+1,ℓ = M ′

ℓ,ℓ+1 = −ε/∆x. We can
decompose the full system Mwε = v into the subsystems M ′wε

i = vi for i = 1, . . . , n. Since M ′

is strictly diagonally dominant, there exists a unique solution to M ′wε
i = vi and consequently

for Mwε = v by setting wε = (wε
1, . . . , w

ε
n). We infer that the mapping F is well defined.

3.2.2 Continuity of F

We fix i ∈ {1, . . . , n}, multiply (3.13) by wε
i,ℓ, and sum over ℓ ∈ G:

ε
%
ℓ∈G

�
− wε

i,ℓ+1 − 2wε
i,ℓ + wε

i,ℓ−1

∆x
+∆xwε

i,ℓ

�
wε
i,ℓ (3.14)

= −
%
ℓ∈G

∆x
ui,ℓ − uk−1

i,ℓ

∆t
wε
i,ℓ −

%
ℓ∈G

(Fi,ℓ+1/2 −Fi,ℓ−1/2)w
ε
i,ℓ.

The left-hand side can be rewritten by using discrete integration by parts (or summation by
parts):

ε
%
ℓ∈G

�
− (wε

i,ℓ+1 − wε
i,ℓ)− (wε

i,ℓ − wε
i,ℓ−1)

∆x
wε
i,ℓ +∆x(wε

i,ℓ)
2

�
(3.15)

= ε
%
ℓ∈G

(wε
i,ℓ+1 − wε

i,ℓ)
2

∆x
+ ε

%
ℓ∈G

∆x(wε
i,ℓ)

2 = ε∥wε
i ∥21,2,T .

The first term on the right-hand side of (3.14) is estimated by the Cauchy–Schwarz inequality,
where we take into account that w ∈ ZR, which in turn implies a finite discrete L2(T)-norm
for ui,ℓ = exp(wi,ℓ/πi):++++−%

ℓ∈G
∆x

ui,ℓ − uk−1
i,ℓ

∆t
wε
i,ℓ

++++ ≤ C(∆t)∥ui − uk−1
i ∥0,2,T ∥wε

i ∥0,2,T ≤ C(∆t, R)∥wε
i ∥1,2,T ,
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3 A convergent finite-volume scheme for nonlocal cross-diffusion systems

where here and in the following C > 0, C(∆t, R) > 0, etc. are generic constants with values
changing from line to line. We split the second term on the right-hand side of (3.14) into two
parts:

−
%
ℓ∈G

(Fi,ℓ+1/2 −Fi,ℓ−1/2)w
ε
i,ℓ = I1 + I2, where

I1 = σ
%
ℓ∈G

�
ui,ℓ+1 − ui,ℓ

∆x
− ui,ℓ − ui,ℓ−1

∆x

�
wε
i,ℓ,

I2 =
%
ℓ∈G

�
ui,ℓ+1/2

pi,ℓ+1 − pi,ℓ
∆x

− ui,ℓ−1/2
pi,ℓ − pi,ℓ−1

∆x

�
wε
i,ℓ.

For I1, we use discrete integration by parts, the Cauchy–Schwarz inequality, and the fact
that w ∈ ZR:

|I1| =
++++− σ

%
ℓ∈G

∆x
ui,ℓ+1 − ui,ℓ

∆x

wε
i,ℓ+1 − wε

i,ℓ

∆x

++++
≤ σ

�%
ℓ∈G

∆x

++++ui,ℓ+1 − ui,ℓ
∆x

++++2�1/2�%
ℓ∈G

∆x

++++wε
i,ℓ+1 − wε

i,ℓ

∆x

++++2�1/2

= σ|ui|1,2,T |wε
i |1,2,T ≤ C(R)∥wε

i ∥1,2,T .

Using discrete integration by parts, and definition (3.4) of pi,ℓ, we obtain

|I2| =
++++−%

ℓ∈G
∆xui,ℓ+1/2

pi,ℓ+1 − pi,ℓ
∆x

wε
i,ℓ+1 − wε

i,ℓ

∆x

++++ ≤ I21 + I22, where

I21 =

++++%
ℓ∈G

∆xui,ℓ+1/2aii
(ui,ℓ+1 − ui,ℓ)

∆x

(wε
i,ℓ+1 − wε

i,ℓ)

∆x

++++,
I22 =

++++ n%
j=1
j ̸=i

%
ℓ,ℓ′∈G

(∆x)2ui,ℓ+1/2aij
Bij

ℓ+1−ℓ′ −Bij
ℓ−ℓ′

∆x
uj,ℓ′

wε
i,ℓ+1 − wε

i,ℓ

∆x

++++.
For I21, because of the bound in ZR, we can estimate ui,ℓ+1/2 ≤ max{ui,ℓ+1, ui,ℓ} ≤ C(R).
Then, thanks to the Cauchy–Schwarz inequality, we obtain

I21 ≤ C(R)aii |ui|1,2,T |wε
i |1,2,T ≤ C(R) ∥wε

i ∥1,2,T .

For I22, applying the discrete analog (3.8) of the rule ∂xB
ij ∗ uj = Bij ∗ ∂xuj ,

I22 =

++++ n%
j=1
j ̸=i

%
ℓ,ℓ′∈G

(∆x)2ui,ℓ+1/2aijB
ij
ℓ−ℓ′

uj,ℓ′+1 − uj,ℓ′

∆x

wε
i,ℓ+1 − wε

i,ℓ

∆x

++++
=

++++ n%
j=1
j ̸=i

%
ℓ,ℓ′∈G

(∆x)2ui,ℓ+1/2aijB
ij
ℓ−ℓ′(Dℓ′uj)(Dℓwi)

++++,
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3.2 Proof of Theorem 22

where we used the notation of Section 3.1.1. Similarly to I21, we infer that

I22 ≤ C(R)

n%
j=1
j ̸=i

aij
%
ℓ∈G

∆x

� %
ℓ′∈G

∆xBij
ℓ−ℓ′Dℓ′uj

�
Dℓwi.

Then, by the Cauchy–Schwarz inequality and the discrete convolution inequality cf. Lemma 33
in Section 3.5,

I22 ≤ C(R)
n%

j=1
j ̸=i

�%
ℓ∈G

∆x

� %
ℓ′∈G

∆xBij
ℓ−ℓ′Dℓ′uj

�2�1/2

|wi|1,2,T

≤ C(R)

n%
j=1
j ̸=i

∥Bij∥L1(T)|uj |1,2,T |wi|1,2,T ≤ C(R)∥wi∥1,2,T .

Combining these estimates, we deduce from (3.14) that ε∥wε
i ∥1,2,T ≤ C(∆t, R).

We can proceed to show the continuity of F . Let (wk)k∈N be such that wk → w ∈ ZR

as k → ∞ and set wε,k := F (wk). We have just proved that (wε,k)k∈N is bounded with respect
to the ∥ · ∥1,2,T -norm. By the Bolzano–Weierstraß theorem, there exists a subsequence (not
relabeled) such that wε,k → wε in ZR as k → ∞. Performing the limit k → ∞ in (3.14),
satisfied for wε,k, shows that wε solves the scheme (3.14) with ui,ℓ = exp(wε

i /πi). This means
that wε = F (w), which proves the continuity of F .

3.2.3 Existence of a fixed point

We show that F : ZR → RnN admits a fixed point by using a topological degree argument.
We recall that the Brouwer topological degree is a mapping deg : M → Z, where

M =
�
(f, Z, y) : f ∈ C0(T), Z is open, bounded, y ̸∈ f(∂Z)

�
;

see [41, Chap. 1, Theorem 3.1] for details and properties.
If we show that any solution (wε, ρ) ∈ ZR × [0, 1] to the fixed-point equationwε = ρF (wε)

satisfies (wε, ρ) ̸∈ ∂ZR × [0, 1] for sufficiently large values of R > 0, then we deduce from the
invariance by homotopy that deg(I − ρF, ZR, 0) is invariant in ρ. Then, choosing ρ = 0, it
follows that deg(I, ZR, 0) = 1 and, if ρ = 1, deg(I−F,ZR, 0) = deg(I, ZR, 0) = 1. This implies
that there exists wε ∈ ZR such that (I − F )(wε) = 0, which is the desired fixed point.
Let (wε, ρ) be a fixed point of wε = ρF (wε). If ρ = 0, there is nothing to show. Therefore,

let ρ > 0. Then wε
i solves

−ε
wε
i,ℓ+1 − 2wε

i,ℓ + wε
i,ℓ−1

∆x
+ ε∆xwε

i,ℓ = −ρ

�
∆x

uεi,ℓ − uk−1
i,ℓ

∆t
+ Fε

i,ℓ+1/2 −Fε
i,ℓ−1/2

�
(3.16)

for all ℓ ∈ G and i = 1, . . . , n, where uεi,ℓ = exp(wε
i,ℓ/πi), and the fluxes Fε

i,ℓ±1/2 are defined as

in (3.3) with uki,ℓ replaced by uεi,ℓ. We multiply the previous equation by ∆twε
i,ℓ, sum over ℓ ∈ G

and i = 1, . . . , n and use discrete integration by parts as in (3.15):

ε∆t

n%
i=1

∥wε
i ∥21,2,T = −ρ

n%
i=1

%
ℓ∈G

�
∆x(uεi,ℓ − uk−1

i,ℓ )wε
i,ℓ +∆t(Fε

i,ℓ+1/2 −Fε
i,ℓ−1/2)w

ε
i,ℓ

�
. (3.17)
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3 A convergent finite-volume scheme for nonlocal cross-diffusion systems

For the first term on the right-hand side, we use wε
i,ℓ = πi log u

ε
i,ℓ and the convexity of the

function h(s) = s(log s− 1):

(uεi,ℓ − uk−1
i,ℓ )πi log u

ε
i,ℓ ≥ πi

�
h(uεi,ℓ)− h(uk−1

i,ℓ )
�
.

Recalling definition (3.9) of HB, this shows that

−ρ

n%
i=1

%
ℓ∈G

∆x(uεi,ℓ − uk−1
i,ℓ )wε

i,ℓ ≤ −ρ
�HB(u

ε)−HB(u
k−1)

�
.

Like in Section 3.2.2, we split the second term in (3.17) into two parts:

− ρ∆t
n%

i=1

%
ℓ∈G

(Fε
i,ℓ+1/2 −Fε

i,ℓ−1/2)w
ε
i,ℓ = I3 + I4, where (3.18)

I3 = ρσ∆t
n%

i=1

%
ℓ∈G

�
uεi,ℓ+1 − uεi,ℓ

∆x
− uεi,ℓ − uεi,ℓ−1

∆x

�
wε
i,ℓ,

I4 = ρ∆t
n%

i=1

%
ℓ∈G

�
uεi,ℓ+1/2

pεi,ℓ+1 − pεi,ℓ
∆x

− uεi,ℓ−1/2

pεi,ℓ − pεi,ℓ−1

∆x

�
wε
i,ℓ.

We use discrete integration by parts, the definition wε
i,ℓ = πi log u

ε
i,ℓ, and the elementary

inequality (a− b)(log a− log b) ≥ 4(
√
a−√

b)2 for a, b > 0 to estimate the first term:

I3 = −ρσ∆t
n%

i=1

%
ℓ∈G

uεi,ℓ+1 − uεi,ℓ
∆x

(wε
i,ℓ+1 − wε

i,ℓ)

≤ −4ρσ∆t
n%

i=1

%
ℓ∈G

πi
∆x

�
(uεi,ℓ+1)

1/2 − (uεi,ℓ)
1/2

�2
= −4ρσ∆t

n%
i=1

πi|(uεi )1/2|21,2,T .

For the second term I4, we use discrete integration by parts and wε
i,ℓ = πi log u

ε
i,ℓ again as

well as property (3.5) (discrete chain rule):

I4 = −ρ
∆t

∆x

n%
i=1

%
ℓ∈G

πiu
ε
i,ℓ+1/2(p

ε
i,ℓ+1 − pεi,ℓ)(log u

ε
i,ℓ+1 − log uεi,ℓ)

≤ −ρc0
∆t

∆x

n%
i=1

%
ℓ∈G

πi(p
ε
i,ℓ+1 − pεi,ℓ)(u

ε
i,ℓ+1 − uεi,ℓ).

Then, inserting definition (1.13) of pεi,ℓ and using the discrete analog (3.8) of the derivation of

a convolution, ∂xB
ij ∗ uj = Bij ∗ ∂xuj ,

I4 ≤ −ρc0
∆t

∆x
(I41 + I42), where

I41 =

n%
i=1

%
ℓ∈G

πiaii(u
ε
i,ℓ+1 − uεi,ℓ)

2,
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3.2 Proof of Theorem 22

I42 =

n%
i,j=1
j ̸=i

%
ℓ,ℓ′∈G

∆xπiaijB
ij
ℓ−ℓ′(u

ε
j,ℓ′+1 − uεj,ℓ′)(u

ε
i,ℓ+1 − uεi,ℓ).

We insert (n − 1)−1
&

j ̸=i 1 = 1 and
&

ℓ′∈G∆x = 1 (note that m(T) = 1) in I41 and split the
resulting sum into two parts:

I41 =
1

n− 1

n%
i,j=1
i<j

%
ℓ,ℓ′∈G

∆xπiaii(u
ε
i,ℓ+1 − uεi,ℓ)

2 +
1

n− 1

n%
i,j=1
i>j

%
ℓ,ℓ′∈G

∆xπiaii(u
ε
i,ℓ+1 − uεi,ℓ)

2.

We exchange i and j as well as ℓ and ℓ′ in the second term, which leads to

I41 =
1

n− 1

n%
i,j=1
i<j

%
ℓ,ℓ′∈G

∆x
�
πiaii(u

ε
i,ℓ+1 − uεi,ℓ)

2 + πjajj(u
ε
j,ℓ′+1 − uεj,ℓ′)

2
�
.

Similarly, we distinguish between i < j and i > j in I42 and exchange i and j as well as ℓ
and ℓ′ in the sum over i > j, leading to

I42 =

n%
i,j=1
i<j

%
ℓ,ℓ′∈G

∆xπiaijB
ij
ℓ−ℓ′(u

ε
j,ℓ′+1 − uεj,ℓ′)(u

ε
i,ℓ+1 − uεi,ℓ)

+
n%

i,j=1
i<j

%
ℓ,ℓ′∈G

∆xπjajiB
ji
ℓ′−ℓ(u

ε
i,ℓ+1 − uεi,ℓ)(u

ε
j,ℓ′+1 − uεj,ℓ′).

By Remark 19, we have Bji
ℓ′−ℓ = Bij

ℓ−ℓ′ . Therefore,

I42 =

n%
i,j=1
i<j

%
ℓ,ℓ′∈G

∆x(πiaij + πjaji)B
ij
ℓ−ℓ′(u

ε
j,ℓ′+1 − uεj,ℓ′)(u

ε
i,ℓ+1 − uεi,ℓ).

The sum of I41 and I42 can be written as a quadratic form in Dℓu
ε
i and Dℓ′u

ε
j with the

matrix M ij
ℓ−ℓ′ , defined in (3.10). This shows that

I4 ≤ − ρc0∆t

(n− 1)

n%
i,j=1
i<j

%
ℓ,ℓ′∈G

(∆x)2
�
Dℓu

ε
i

Dℓ′u
ε
j

�⊤
M ij

ℓ−ℓ′

�
Dℓu

ε
i

Dℓ′u
ε
j

�
≤ 0.

Collecting the estimates for I3 and I4 in (3.18), we deduce from (3.17) the following regu-
larized discrete entropy inequality:

ρHB(u
ε) + ε∆t

n%
i=1

∥wε
i ∥21,2,T + 4ρσ∆t

n%
i=1

πi|(uεi )1/2|21,2,T (3.19)
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+
ρc0∆t

(n− 1)

n%
i,j=1
i<j

%
ℓ,ℓ′∈G

(∆x)2
�
Dℓu

ε
i

Dℓ′u
ε
j

�⊤
M ij

ℓ−ℓ′

�
Dℓu

ε
i

Dℓ′u
ε
j

�
≤ ρHB(u

k−1).

We proceed with the topological degree argument. We set R = 1 + (HB(u
k−1)/(ε∆t))1/2.

Then (3.19) implies that

ε∆t

n%
i=1

∥wε
i ∥21,2,T ≤ ρHB(u

k−1) ≤ HB(u
k−1) = ε∆t(R− 1)2 < ε∆tR2,

and hence wε ̸∈ ∂ZR. We infer that deg(I − F,ZR, 0) = 1 and consequently, F admits a fixed
point. Note that we did not use the estimate for uεi in the seminorm | · |1,2,T at this point, such
that σ = 0 is admissible here (and also in the following two subsections).

3.2.4 Limit ε → 0

There exists a constant C > 0 such that C(s− 1) ≤ h(s) for all s ≥ 0. Hence,

Cπi∆x(uεi,ℓ − 1) ≤ πi∆xh(uεi,ℓ) ≤ HB(u
ε) ≤ HB(u

k−1),

for all ℓ ∈ G, i = 1, . . . , n. Thus, (uεi,ℓ) is bounded in ε and the Bolzano–Weierstraß theorem

implies the existence of a subsequence (not relabeled) such that uεi,ℓ → uki,ℓ ≥ 0 as ε → 0. It

follows from (3.19) that εwε
i,ℓ → 0. Thus, the limit ε → 0 in (3.16) shows that uk is a solution

to the numerical scheme (3.2)–(3.4). Moreover, the limit ε → 0 in (3.19) leads to the discrete
entropy inequality (3.11).

3.2.5 Discrete Rao entropy inequality

We prove inequality (3.12). To this end, we multiply (3.2) by ∆tπip
k
i,ℓ and sum over ℓ ∈ G,

i = 1, . . . , n:

n%
i=1

%
ℓ∈G

∆xπi(u
k
i,ℓ − uk−1

i,ℓ )pki,ℓ +
n%

i=1

%
ℓ∈G

∆tπi(Fk
i,ℓ+1/2 −Fk

i,ℓ−1/2)p
k
i,ℓ = 0. (3.20)

For the first term in (3.20), we use the definition of pki,ℓ:

n%
i=1

%
ℓ∈G

∆xπi(u
k
i,ℓ − uk−1

i,ℓ )pki,ℓ = I5 + I6, where

I5 =

n%
i=1

%
ℓ∈G

∆xπiaii(u
k
i,ℓ − uk−1

i,ℓ )uki,ℓ,

I6 =

n%
i,j=1
j ̸=i

%
ℓ,ℓ′∈G

(∆x)2πiaijB
ij
ℓ−ℓ′(u

k
i,ℓ − uk−1

i,ℓ )ukj,ℓ′ .
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We rewrite I5 and I6 according to

I5 =
1

2

n%
i=1

%
ℓ∈G

∆xπiaii
�
(uki,ℓ)

2 − (uk−1
i,ℓ )2

�
+

1

2

n%
i=1

%
ℓ∈G

∆xπiaii
�
uki,ℓ − uk−1

i,ℓ

�2
,

I6 =
1

2

n%
i,j=1
j ̸=i

%
ℓ,ℓ′∈G

(∆x)2πiaijB
ij
ℓ−ℓ′(u

k
i,ℓu

k
j,ℓ′ − uk−1

i,ℓ uk−1
j,ℓ′ )

+
1

2

n%
i,j=1
j ̸=i

%
ℓ,ℓ′∈G

(∆x)2πiaijB
ij
ℓ−ℓ′(u

k
i,ℓ − uk−1

i,ℓ )(ukj,ℓ′ − uk−1
j,ℓ′ ).

Combining the second terms in I5 and I6, using similar computations as for I4 in Section 3.2.3,
and applying Hypothesis (H3) shows that the second term of I5 + I6 is nonnegative leading to

I5 + I6 ≥ 1

2

n%
i=1

%
ℓ∈G

∆xπiaii
�
(uki,ℓ)

2 − (uk−1
i,ℓ )2

�
+

1

2

n%
i,j=1
j ̸=i

%
ℓ,ℓ′∈G

(∆x)2πiaijB
ij
ℓ−ℓ′(u

k
i,ℓu

k
j,ℓ′ − uk−1

i,ℓ uk−1
j,ℓ′ ).

Then it holds that

n%
i=1

%
ℓ∈G

∆xπi(u
k
i,ℓ − uk−1

i,ℓ )pki,ℓ ≥ HR(u
k)−HR(u

k−1).

Now, we split the second term in (3.20) again into two parts:

n%
i=1

%
ℓ∈G

∆tπi(Fk
i,ℓ+1/2 −Fk

i,ℓ−1/2)p
k
i,ℓ = I7 + I8, where

I7 = −σ∆t
n%

i=1

%
ℓ∈G

πi

�
uki,ℓ+1 − uki,ℓ

∆x
− uki,ℓ − uki,ℓ−1

∆x

�
pki,ℓ,

I8 = −∆t
n%

i=1

%
ℓ∈G

πi

�
uki,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆x

− uki,ℓ−1/2

pki,ℓ − pki,ℓ−1

∆x

�
pki,ℓ.

We reformulate I7 by using discrete integration by parts:

I7 = σ∆t

n%
i=1

%
ℓ∈G

πi
uki,ℓ+1 − uki,ℓ

∆x
(pki,ℓ+1 − pki,ℓ).

Then, with similar computations as for I4 in Section 3.2.3, we obtain

I7 =
σ∆t

(n− 1)

n%
i,j=1
i<j

%
ℓ,ℓ′∈G

(∆x)2
�
Dℓu

k
i

Dℓ′u
k
j

�⊤
M ij

ℓ−ℓ′

�
Dℓu

k
i

Dℓ′u
k
j

�
≥ 0.
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3 A convergent finite-volume scheme for nonlocal cross-diffusion systems

Finally, the term I8 can be rewritten as

I8 = ∆t
n%

i=1

%
ℓ∈G

πiu
k
i,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆x

(pki,ℓ+1 − pki,ℓ) = ∆t
n%

i=1

%
ℓ∈G

πi∆x
++(uki,ℓ+1/2)

1/2Dℓp
k
i

++2.
Hence, we infer from (3.20) that

HR(u
k) + ∆t

n%
i=1

%
ℓ∈G

πi∆x
++(uki,ℓ+1/2)

1/2Dℓp
k
i

++2
+

σ∆t

(n− 1)

n%
i,j=1
i<j

%
ℓ,ℓ′∈G

(∆x)2
�
Dℓu

k
i

Dℓ′u
k
j

�⊤
M ij

ℓ−ℓ′

�
Dℓu

k
i

Dℓ′u
k
j

�
≤ HR(u

k−1),

which proves (3.12).
Finally, conservation of mass follows from summing (3.2) over ℓ ∈ G and observing that the

sum over the numerical fluxes vanishes. This ends the proof of Theorem 22.

3.3 Proof of Theorem 23

To prove the convergence of the scheme, we first derive some uniform estimates and then apply
a discrete Aubin–Lions compactness lemma.

3.3.1 Uniform estimates

Let (um)m∈N be a sequence of finite-volume solutions to (3.2)–(3.4) associated to the mesh Dm

and constructed in Theorem 22. The conservation of mass and the discrete entropy inequali-
ties (3.11) and (3.12) show that, after summing over k = 1, . . . , Nm

T ,

max
k=1,...,Nm

T

∥uki ∥20,2,Tm +

Nm
T%

k=1

∆tm∥(uki )1/2∥21,2,Tm ≤ C, i = 1, . . . , n, (3.21)

where C > 0 denotes here and in the following a constant that is independent of the mesh
size ηm = max{∆xm,∆tm}, but possibly depending on u0 and T . Because of the positive
definiteness of M ij

ℓ−ℓ′ , we conclude a bound for uki in the norm ∥ · ∥1,2,Tm .
Lemma 24. Let the assumptions of Theorem 23 hold. Then there exists C > 0 independent
of ηm (but depending on the positive definiteness constant cM ) such that for all m ∈ N and
all i = 1, . . . , n,

Nm
T%

k=1

∆tm∥uki ∥21,2,Tm ≤ C. (3.22)

Proof. We infer from (3.11) that

c0
n− 1

Nm
T%

k=1

∆tm

n%
i,j=1
i<j

%
ℓ,ℓ′∈Gm

(∆x)2
�
Dℓu

k
i

Dℓ′u
k
j

�⊤
M ij

ℓ−ℓ′

�
Dℓu

k
i

Dℓ′u
k
j

�
≤ HB(u

0).
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Since M ij
ℓ−ℓ′ is uniformly positive definite with constant cM > 0,

c0
n− 1

n%
i,j=1
i<j

%
ℓ,ℓ′∈Gm

(∆x)2
�
Dℓu

k
i

Dℓ′u
k
j

�⊤
M ij

ℓ−ℓ′

�
Dℓu

k
i

Dℓ′u
k
j

�

≥ cMc0
n− 1

n%
i,j=1
i<j

%
ℓ,ℓ′∈Gm

(∆x)2
�|Dℓu

k
i |2 + |Dℓ′u

k
j |2

�

= cMc0

n%
i=1

%
ℓ∈Gm

∆x|Dℓu
k
i |2 + cMc0

n%
j=1

%
ℓ′∈Gm

∆x|Dℓ′u
k
j |2

= 2cMc0

n%
i=1

%
ℓ∈Gm

∆x|Dℓu
k
i |2.

Together with the first bound in (3.21), this finishes the proof.

Lemma 25. Let the assumptions of Theorem 23 hold. Then there exists a constant C > 0
independent of ηm (but depending on σ) such that for all m ∈ N, i = 1, . . . , n,

Nm
T%

k=1

∆tm∥uki ∥21,1,Tm +

Nm
T%

k=1

∆tm∥uki ∥20,∞,Tm ≤ C.

Moreover, there exists another constant, still denoted by C > 0 and independent of ηm, such
that

Nm
T%

k=1

∆tm|pki |21,2,Tm ≤ C. (3.23)

Proof. As m(T) = 1, thanks to the Cauchy–Schwarz inequality,

|uki |1,1,Tm =
%
ℓ∈Gm

|uki,ℓ+1 − uki,ℓ| ≤ |uki |1,2,Tm .

Using (3.22), this shows that

Nm
T%

k=1

∆tm∥uki ∥21,1,Tm ≤ 2

Nm
T%

k=1

∆tm
�∥uki ∥20,1,Tm + |uki |21,1,Tm

�
≤ 2T max

k=1,...,Nm
T

∥uki ∥20,1,Tm + 2

Nm
T%

k=1

∆tm|uki |21,2,Tm ≤ C(u0, T ).

To show the discrete L∞(T)-bound, we apply the continuity of the embedding BV(T) �→ L∞(T)
(in one space dimension). We conclude that, for i = 1, . . . , n,

Nm
T%

k=1

∆tm∥uki ∥20,∞,Tm ≤ C

Nm
T%

k=1

∆tm∥uki ∥2BV (T) = C

Nm
T%

k=1

∆tm∥uki ∥21,1,Tm ≤ C(u0, T ).
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For the last part, we estimate as follows:

|pki |21,2,Tm =
%
ℓ∈Gm

∆xm

++++pki,ℓ+1 − pki,ℓ
∆xm

++++2

≤ Ca2ii|uki |21,2,Tm + C
%
ℓ∈Gm

∆xm

++++ n%
j=1
j ̸=i

%
ℓ′∈Gm

∆xmaij
Bij

ℓ+1−ℓ′ −Bij
ℓ−ℓ′

∆xm
ukj,ℓ′

++++2

≤ C|uki |21,2,Tm + C
%
ℓ∈Gm

∆xm

++++ n%
j=1
j ̸=i

%
ℓ′∈Gm

∆xmaijB
ij
ℓ−ℓ′

ukj,ℓ′+1 − ukj,ℓ′

∆xm

++++2

≤ C|uki |21,2,Tm + C
%
ℓ∈Gm

∆xm

++++ n%
j=1
j ̸=i

%
ℓ′∈Gm

∆xmaijB
ij
ℓ−ℓ′Dℓ′u

k
j

++++2.
Then we deduce from the elementary inequality (

&n
j=1, j ̸=i aj)

2 ≤ (n−1)
&n

j=1, j ̸=i a
2
j for aj ∈ R

and the discrete Young convolution inequality in Lemma 33 that%
ℓ∈Gm

∆xm

++++ n%
j=1
j ̸=i

%
ℓ′∈Gm

∆xmaijB
ij
ℓ−ℓ′Dℓ′u

k
j

++++2

≤ (n− 1)

n%
j=1
j ̸=i

%
ℓ∈Gm

∆xm

� %
ℓ′∈Gm

∆xmaijB
ij
ℓ−ℓ′Dℓ′u

k
j

�2

≤ C

n%
j=1
j ̸=i

∥Bij∥2L2(T)|ukj |21,1,Tm .

Summing over k, we infer that

Nm
T%

k=1

∆tm|pki |21,2,Tm ≤ C

� n%
i=1

Nm
T%

k=1

∆tm|uki |21,2,Tm +
n%

j=1
j ̸=i

�
∥Bij∥2L2(T)

Nm
T%

k=1

∆tm|ukj |21,1,Tm
��

≤ C,

where we used Lemma 25 for the last inequality. It is at this point, where we need the
discrete L2(0, T ;H1(T))-bound of (um,i). This ends the proof.

Next, we show a uniform bound for the discrete time derivative.

Lemma 26. Let the assumptions of Theorem 23 hold. Then there exists C > 0 independent
of ηm such that for all m ∈ N, i = 1, . . . , n,

Nm
T%

k=1

∆tm

****uki − uk−1
i

∆tm

****4/3
−1,2,Tm

≤ C.

Proof. Let ϕ = (ϕℓ)ℓ∈Gm ∈ VTm be such that ∥ϕ∥1,2,Tm = 1. We multiply (3.2) by ϕℓ, sum
over ℓ ∈ Gm, and use discrete integration by parts:

%
ℓ∈Gm

∆xm
uki,ℓ − uk−1

i,ℓ

∆tm
ϕℓ = σ

%
ℓ∈Gm

�
uki,ℓ+1 − uki,ℓ

∆xm
− uki,ℓ − uki,ℓ−1

∆xm

�
ϕℓ (3.24)
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+
%
ℓ∈Gm

�
uki,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆xm

− uki,ℓ−1/2

pki,ℓ − pki,ℓ−1

∆xm

�
ϕℓ

= −σ
%
ℓ∈Gm

∆xm
uki,ℓ+1 − uki,ℓ

∆xm

ϕℓ+1 − ϕℓ

∆xm
−

%
ℓ∈Gm

∆xmuki,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆xm

ϕℓ+1 − ϕℓ

∆xm

=: I9 + I10.

By the Cauchy–Schwarz inequality,

|I9| ≤ σ
%
ℓ∈Gm

∆xm
�
(uki,ℓ+1)

1/2 + (uki,ℓ)
1/2

�++++(uki,ℓ+1)
1/2 − (uki,ℓ)

1/2

∆xm

++++++++ϕℓ+1 − ϕℓ

∆xm

++++
≤ 2σ∥(uki )1/2∥0,∞,Tm |(uki )1/2|1,2,Tm |ϕ|1,2,Tm .

Furthermore, using (uki,ℓ+1/2)
1/2 ≤ max{(uki,ℓ)1/2, (uki,ℓ+1)

1/2} ≤ ∥(uki )1/2∥0,∞,Tm ,

|I10| ≤
%
ℓ∈Gm

∆xm
++(uki,ℓ+1/2)

1/2
++++++(uki,ℓ+1/2)

1/2
pki,ℓ+1 − pki,ℓ

∆xm

++++++++ϕℓ+1 − ϕℓ

∆xm

++++
≤ ∥(uki )1/2∥0,∞,Tm

� %
ℓ∈Gm

∆xm

++++(uki,ℓ+1/2)
1/2

pki,ℓ+1 − pki,ℓ
∆xm

++++2�1/2

|ϕ|1,2,Tm .

Applying the elementary inequality (a + b)r ≤ C(ar + br) for all a, b ≥ 0 and r > 1, inserting
the previous estimates into (3.24), and using Hölder’s inequality, we find that

Nm
T%

k=1

∆tm

****uki − uk−1
i

∆tm

****4/3
−1,2,Tm

=

Nm
T%

k=1

∆tm sup
∥ϕ∥1,2,Tm=1

++++ %
ℓ∈Gm

∆xm
uki,ℓ − uk−1

i,ℓ

∆tm
ϕℓ

++++4/3

≤ C

Nm
T%

k=1

∆tm∥(uki )1/2∥4/30,∞,Tm |(uki )1/2|
4/3
1,2,Tm

+ C

Nm
T%

k=1

∆tm∥(uki )1/2∥4/30,∞,Tm

� %
ℓ∈Gm

∆xm

++++(uki,ℓ+1/2)
1/2

pki,ℓ+1 − pki,ℓ
∆xm

++++2�2/3

≤ C

� Nm
T%

k=1

∆tm∥(uki )1/2∥40,∞,Tm

�1/3� Nm
T%

k=1

∆tm|(uki )1/2|21,2,Tm
�2/3

+ C

� Nm
T%

k=1

∆tm∥(uki )1/2∥40,∞,Tm

�1/3� Nm
T%

k=1

∆tm
%
ℓ∈Gm

∆xm

++++(uki,ℓ+1/2)
1/2

pki,ℓ+1 − pki,ℓ
∆xm

++++2�2/3

≤ C(u0, T ),

and the last bound follows from Lemma 25 and the discrete Rao entropy inequality (3.12).
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3.3.2 Compactness

We claim that the estimates from Lemmas 25 and 26 are sufficient to conclude the relative
compactness of (um)m∈N. In fact, the result follows from the discrete Aubin–Lions lemma in
the version of [57, Theorem 3.4] if the following two properties are satisfied:

• For any (vm)m∈N ⊂ VTm such that supm∈N ∥vm∥1,2,Tm ≤ C for some C > 0, there exists
a function v ∈ L2(T) satisfying, up to a subsequence, vm → v strongly in L2(T). This
property follows from [51, Theorem 14.1].

• If vm → v strongly in L2(T) and ∥vm∥−1,2,Tm → 0 as m → ∞, then v = 0. This property
can be replaced by the condition that ∥ · ∥1,2,Tm and ∥ · ∥−1,2,Tm are dual norms with
respect to the L2(T)-norm, which is the case [57, Remark 6]. A more detailed proof can
be found in [79, Prop. 10].

Hence, it follows from [57, Theorem 3.4] that there exists a subsequence, which is not relabeled,
such that

um,i → ui strongly in L1(0, T ;L2(T)) as m → ∞.

Let us now adapt the Gagliardo–Nirenberg inequality to our situation. Let k = 1, . . . , Nm
T be

fixed. We first apply Lemma 34 with s = p = 2:

∥ukm,i∥0,∞,Tm ≤ C∥ukm,i∥1/21,2,Tm∥ukm,i∥1/20,2,T .

Then, it follows from the Hölder inequality

∥ukm,i∥0,6,Tm ≤ ∥ukm,i∥2/30,∞,Tm∥(ukm,i)
1/3∥0,6,Tm = ∥ukm,i∥2/30,∞,Tm∥ukm,i∥1/30,2,Tm

that

∥ukm,i∥0,6,Tm ≤ C∥ukm,i∥1/31,2,Tm ∥ukm,i∥2/30,2,T .

Therefore,

NT%
k=1

∆tm∥ukm,i∥60,6,Tm ≤ C max
k=1,...,NT

∥um,i∥40,2,Tm
NT%
k=1

∆tm ∥ukm,i∥21,2,Tm .

Recalling estimates (3.21) and (3.22), we conclude that the sequence (um,i)m∈N is uniformly
bounded in L6(T). The convergence dominated theorem implies that, up to a subsequence, for
every p < 6,

um,i → ui strongly in Lp(QT ) as m → ∞.

Lemma 25 implies that the sequence of discrete derivatives (∂m
x um,i)m∈N is bounded in L2(QT ).

Thus, there exists a subsequence (not relabeled) such that ∂m
x um,i ⇀ vi weakly in L2(QT ),

and the proof of [30, Lemma 4.4] allows us to identify vi = ∂xui.

Lemma 27. The following convergences hold, up to subsequences, as m → ∞:

pm,i → pi(u) strongly in L2(QT ),

∂xpm,i ⇀ ∂xpi(u) weakly in L2(QT ), i = 1, . . . , n.
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Proof. We follow the strategy of [65, Corollary 14]. First, we rewrite pki,ℓ defined in (3.4). By
a change of variables, we have

pki,ℓ = aiiu
k
m,i,ℓ +

n%
j=1
j ̸=i

%
ℓ′∈Gm

aij

��
Kℓ−ℓ′

Bij(y) dy

�
ukm,j,ℓ′

= aiiu
k
m,i,ℓ +

n%
j=1
j ̸=i

%
ℓ′∈Gm

aij

�
Kℓ′

Bij(xℓ − z)ukm,j(z)dz

= aiiu
k
m,i(xℓ) +

n%
j=1
j ̸=i

aij(B
ij ∗ ukm,j)(xℓ).

We introduce the piecewise constant function Qij
m by setting Qij

m := (Bij ∗ um,j)(xℓ) in Kℓ

for ℓ ∈ Gm. Then

pi(u)− pm,i = aii(ui − um,i) +
n%

j=1
j ̸=i

aij(B
ij ∗ uj −Qij

m).

Since we know that ui − um,i → 0 strongly in L2(QT ), it is sufficient to prove the following

convergence Bij ∗ uj −Qij
m → 0 strongly in L2(QT ). For this, we write

(Bij ∗ uj −Qij
m)(x, t) = Bij ∗ (uj − um,j)(x, t) +

�
T
(Bij(x− y)−Bij(xℓ − y))um,j(y, t) dy.

By Young’s convolution inequality, we have

∥Bij ∗ (uj − um,j)∥L2(QT ) ≤ ∥Bij∥L1(T)∥uj − um,j∥L2(QT ) → 0.

Setting ξ(x, y) = Bij(x− y)−Bij(xℓ − y) for x ∈ Kℓ and y ∈ T, we estimate**** �
T
ξ(·, y)um,j(y, t) dy

****2
L2(QT )

≤
�
T
∥ξ(x, ·)∥2L2(T) dx∥um,j∥2L2(QT )

≤ sup
|z|≤∆xm

∥Bij(z + ·)−Bij∥2L2(T)∥um,j∥2L2(QT ).

Since (um,j) is bounded in L2(QT ), it remains to verify that the first factor converges to zero
as ∆xm → 0. This follows from the density of continuous functions in L2(T). Indeed, let ε > 0
and Bij

ε be continuous such that ∥Bij
ε −Bij∥L2(T) ≤ ε. Then

sup
|z|≤∆xm

∥Bij(z + ·)−Bij∥L2(T) ≤ sup
|z|≤∆xm

∥Bij(z + ·)−Bij
ε (z + ·)∥L2(T)

+ sup
|z|≤∆xm

∥Bij
ε (z + ·)−Bij

ε ∥L2(T) + ∥Bij
ε −Bij∥L2(T)

≤ 2ε+ sup
|z|≤∆xm

∥Bij
ε (z + ·)−Bij

ε ∥L2(T).
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The last term is smaller than ε if we choose ∆xm sufficiently small. Consequently, we have
shown that sup|z|≤∆xm

∥Bij(z+ ·)−Bij∥2L2(T) → 0 as m → ∞ and Bij ∗ uj −Qij
m → 0 strongly

in L2(QT ). This proves the first part of the lemma.

Thanks to (3.23), we have shown that (∂m
x pm,i)m∈N is bounded in L2(QT ). Hence, up to a

subsequence, ∂m
x pm,i ⇀ z weakly in L2(QT ). The first part of the proof shows that z = ∂xpi(u),

finishing the proof.

3.3.3 Convergence of the scheme

We show that the limit u = (u1, . . . , un) of the finite-volume solutions is a weak solution
to (1.11)–(1.12). Let i ∈ {1, . . . , n} be fixed, let ψi ∈ C∞

0 (T× [0, T )) be given, and denote the
mesh size by ηm = max{∆xm,∆tm}. We set ψk

i,ℓ := ψi(xℓ, tk), multiply (3.2) by ∆tmψk−1
i,ℓ and

sum over ℓ ∈ Gm, k = 1, . . . , Nm
T . This yields Fm

1 + Fm
2 + Fm

3 = 0, where

Fm
1 =

Nm
T%

k=1

%
ℓ∈Gm

∆xm(uki,ℓ − uk−1
i,ℓ )ψk−1

i,ℓ ,

Fm
2 = −σ

Nm
T%

k=1

∆tm
%
ℓ∈Gm

�
uki,ℓ+1 − uki,ℓ

∆xm
− uki,ℓ − uki,ℓ−1

∆xm

�
ψk−1
i,ℓ ,

Fm
3 = −

Nm
T%

k=1

∆tm
%
ℓ∈Gm

�
uki,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆xm

− uki,ℓ−1/2

pki,ℓ − pki,ℓ−1

∆xm

�
ψk−1
i,ℓ .

Furthermore, we introduce the terms

Fm
10 = −

� T

0

�
T
um,i∂tψi dx dt−

�
T
um,i(x, 0)ψi(x, 0) dx,

Fm
20 = σ

� T

0

�
T
∂m
x um,i∂xψi dx dt,

Fm
30 =

� T

0

�
T
um,i∂

m
x pm,i∂xψi dx dt.

Lemma 28. Let the assumptions of Theorem 23 hold. Then it holds that, as m → ∞,

Fm
10 → −

� T

0

�
T
ui∂tψi dx dt−

�
T
u0i (x)ψi(x, 0) dx, (3.25)

Fm
20 → σ

� T

0

�
T
∂xui∂xψi dx dt, (3.26)

Fm
30 →

� T

0

�
T
ui∂xpi(u)∂xψi dx dt. (3.27)

Proof. The strong convergence of (um,i)m∈N as well as the weak convergence of (∂m
x um,i)m∈N

in L2(QT ) together with the fact that um,i(x, 0) = (∆xm)−1
�
Kℓ

u0i (z)dz for x ∈ Kℓ and ℓ ∈ G
immediately show convergences (3.25) and (3.26). It remains to verify (3.27). We know from
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3.3 Proof of Theorem 23

Lemma 27 that ∂m
x pm,i ⇀ ∂xpi(u) weakly in L2(QT ). Since um,i → ui strongly in L2(QT ), this

implies that
um,i∂

m
x pm,i ⇀ ui∂xpi(u) weakly in L1(QT ).

In fact, since u
1/2
m,i∂

m
x pm,i is uniformly bounded in L2(QT ) and u

1/2
m,i is uniformly bounded

in L∞(0, T ;L4(T)), this weak convergence even holds in L2(0, T ;L4/3(T)). This proves (3.27)
and ends the proof.

Lemma 29. Let the assumptions of Theorem 23 hold. Then it holds that, as m → ∞,

Fm
10 − Fm

1 → 0, Fm
20 − Fm

2 → 0, Fm
30 − Fm

3 → 0.

The lemma implies that

Fm
10 + Fm

20 + Fm
30 = (Fm

10 − Fm
1 ) + (Fm

20 − Fm
2 ) + (Fm

30 − Fm
3 ) + (Fm

1 + Fm
2 + Fm

3 )

= (Fm
10 − Fm

1 ) + (Fm
20 − Fm

2 ) + (Fm
30 − Fm

3 ) → 0 as m → ∞.

Therefore, thanks to Lemma 28, we conclude that u = (u1, . . . , un) is a weak solution to
system (1.11)–(1.12). This finishes the proof of Theorem 23, once Lemma 29 is proved.

Proof of Lemma 29. The limit Fm
10 − Fm

1 → 0 is shown in [30, Theorem 5.2]. For the conver-
gence of Fm

20 − Fm
2 , we use discrete integration by parts:

Fm
2 = σ

Nm
T%

k=1

∆tm
%
ℓ∈Gm

uki,ℓ+1 − uki,ℓ
∆xm

(ψk−1
i,ℓ+1 − ψk−1

i,ℓ )

= σ

Nm
T%

k=1

%
ℓ∈Gm

� xℓ+1

xℓ

uki,ℓ+1 − uki,ℓ
∆xm

� tk

tk−1

ψk−1
i,ℓ+1 − ψk−1

i,ℓ

∆xm
dx dt,

Fm
20 = σ

Nm
T%

k=1

%
ℓ∈Gm

� tk

tk−1

� xℓ+1

xℓ

uki,ℓ+1 − uki,ℓ
∆xm

∂xψi dx dt.

By the mean-value theorem,++++ � tk

tk−1

1

∆xm

� xℓ+1

xℓ

�
ψk−1
i,ℓ+1 − ψk−1

i,ℓ

∆xm
− ∂xψi

�
dx dt

++++ ≤ C∆tmηm.

This shows that, as m → ∞,

|Fm
2 − Fm

20 | ≤ σ

Nm
T%

k=1

%
ℓ∈Gm

++++ � tk

tk−1

� xℓ+1

xℓ

�
ψk−1
i,ℓ+1 − ψk−1

i,ℓ

∆xm
− ∂xψi

�
uki,ℓ+1 − uki,ℓ

∆xm
dx dt

++++
≤ Cηm

Nm
T%

k=1

∆tm
%
ℓ∈Gm

|uki,ℓ+1 − uki,ℓ| = Cηm

Nm
T%

k=1

∆tm|uki |1,1,Tm → 0,

where we used the uniform discrete L2(0, T ;W 1,1(T))-bound from Lemma 25.
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It remains to prove that |Fm
30 − Fm

3 | → 0. First, using discrete integration by parts, we
rewrite Fm

3 as well as Fm
30 as

Fm
3 =

Nm
T%

k=1

%
ℓ∈Gm

� tk

tk−1

uki,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆xm

(ψk−1
i,ℓ+1 − ψk−1

i,ℓ ) dt,

Fm
30 =

Nm
T%

k=1

%
ℓ∈Gm

� tk

tk−1

�� xℓ+1/2

xℓ

uki,ℓ
pki,ℓ+1 − pki,ℓ

∆xm
∂xψi dx

+

� xℓ+1

xℓ+1/2

uki,ℓ+1

pki,ℓ+1 − pki,ℓ
∆xm

∂xψi dx

�
.

Then we find that

|Fm
3 − Fm

30 | =
++++ N

m
T%

k=1

%
ℓ∈Gm

(uki,ℓ+1/2 − uki,ℓ)
pki,ℓ+1 − pki,ℓ

∆xm

×
� tk

tk−1

�
ψk−1
i,ℓ+1 − ψk−1

i,ℓ

2
−
� xℓ+1/2

xℓ

∂xψi(x) dx

�
dt

+

Nm
T%

k=1

%
ℓ∈Gm

(uki,ℓ+1/2 − uki,ℓ+1)
pki,ℓ+1 − pki,ℓ

∆xm

×
� tk

tk−1

�
ψk−1
i,ℓ+1 − ψk−1

i,ℓ

2
−
� xℓ+1

xℓ+1/2

∂xψi(x) dx

�
dt

++++.
Thanks to the regularity of ψi, there exists a constant C independent of ηm such that++++ � tk

tk−1

�
ψk−1
i,ℓ+1 − ψk−1

i,ℓ

2
−
� xℓ+1/2

xℓ

∂xψi(x) dx

�
dt

++++ ≤ Cηm∆tm.

We obtain a similar expression if we integrate ∂xψi over (xℓ+1/2, xℓ+1). Thus, since

|uki,ℓ+1/2 − uki,ℓ| ≤ |uki,ℓ+1 − uki,ℓ| and

|uki,ℓ+1/2 − uki,ℓ+1| ≤ |uki,ℓ − uki,ℓ+1|,
we have

|Fm
3 − Fm

30 | ≤ 2Cηm

Nm
T%

k=1

∆tm
%
ℓ∈Gm

|uki,ℓ+1 − uki,ℓ||Dℓ p
k
i |

≤ 2Cηm

� n%
i=1

aii

Nm
T%

k=1

∆tm|uki |21,2,Tm

+

n%
j=1
j ̸=i

Nm
T%

k=1

∆tm
%

ℓ,ℓ′∈Gm

|uki,ℓ+1 − uki,ℓ||aij(Bij
ℓ+1−ℓ′ −Bij

ℓ−ℓ′)u
k
j,ℓ′ |

�
.
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3.3 Proof of Theorem 23

It follows for j ∈ {1, . . . , n} with j ̸= i, using the discrete analog (3.8) of ∂xB
ij ∗uj = Bij ∗∂xuj ,

that

max
ℓ∈Gm

� %
ℓ′∈Gm

|aij(Bij
ℓ+1−ℓ′ −Bij

ℓ−ℓ′)u
k
j,ℓ′ |

�
= max

ℓ∈Gm

� %
ℓ′∈Gm

∆xm|aij ||Bij
ℓ−ℓ′ ||Dℓ′u

k
j |
�

≤ |aij |∥Bij∥L∞(T)|ukj |1,1,Tm .

At this point, we need the regularity condition Bij ∈ L∞(T) from Hypothesis (H3). Hence, it
holds that

|Fm
3 − Fm

30 | ≤ 2Cηm

� n%
i=1

Nm
T%

k=1

∆tm|uki |21,2,Tm +

Nm
T%

k=1

∆tm|uki |1,1,Tm
n%

j=1
j ̸=i

|ukj |1,1,Tm
�
.

It remains to apply the Cauchy–Schwarz inequality to conclude that

|Fm
3 − Fm

30 | ≤ 2Cηm

� n%
i=1

Nm
T%

k=1

∆tm|uki |21,2,Tm

+
n%

j=1
j ̸=i

� Nm
T%

k=1

∆tm|uki |21,1,Tm
�1/2� Nm

T%
k=1

∆tm|ukj |21,1,Tm
�1/2�

.

Finally, we infer from Lemma 25 that |Fm
3 − Fm

30 | → 0 as m → ∞. Here, we need the
discrete L2(0, T ;H1(T))-bound for ui, which follows if aii > 0. This concludes the proof of
Lemma 29.

Remark 30 (Multidimensional case). Theorems 22 and 23 also hold in the multidimensional
situation. The proof of Theorem 22 does not change, but the Sobolev embeddings in the
proof of Theorem 23 change because of their dependence on the space dimension. We only
sketch the changes. We consider a uniform mesh on Td by taking the tensor product of the
mesh T introduced in Section 3.1.1. The cells Kℓ are then d-dimensional cubes with cell
centers ℓ = (ℓ1, . . . , ℓd) and measure m(Kℓ) = (∆x)d. We write ς = Kℓ|Kℓ′ for the edge (or
hyper-face) ς between the neighboring cells Kℓ and Kℓ′ , and Eℓ for the set of edges of the
cell Kℓ. Finally, for every ς = Kℓ|Kℓ′ , we define the transmissibility coefficient τς := m(ς)/dς
with m(ς) = (∆x)d−1 and dς being the Euclidean distance between the cell centers. The
numerical scheme (3.2)–(3.3) changes to

m(Kℓ)
uki,ℓ − uk−1

i,ℓ

∆t
+

%
ς∈Eℓ

Fk
i,ℓ,ς = 0, i = 1, . . . , n, ℓ ∈ Gd, (3.28)

Fk
i,ℓ,ς = −σ τς Dℓ,ςu

k
i − τς u

k
i,ς Dℓ,ςp

k
i , (3.29)

where we have set Dℓ,ςv := vℓ′ − vℓ for an edge ς := Kℓ|Kℓ′ , the mobilities are defined

by uki,ς =
�F (uki,ℓ, u

k
i,ℓ′) with

�F as in Section 3.1.2, and the discrete nonlocal operators are given
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by

pki,ℓ = aiiu
k
i,ℓ +

n%
j=1
j ̸=i

%
ℓ′∈Gd

m(Kℓ′)aijB
ij
ℓ,ℓ′u

k
j,ℓ′ , Bij

ℓ,ℓ′ =
1

m(Kℓ−ℓ′)

�
Kℓ−ℓ′

Bij(y) dy. (3.30)

Let um be a solution to (3.28)–(3.30) associated to some space-time discretization indexed by
the mesh size ηm = max{∆xm,∆tm} satisfying ηm → 0 as m → ∞. The corresponding spatial
mesh is denoted by T d

m and the number of time steps by Nm
T . The uniform estimates (3.21)

and (3.22) also hold for d ≥ 2, but the regularity obtained in Lemma 25 is slightly weaker.
Indeed, the embedding BV(Td) �→ Ld/(d−1)(Td) (with d/(d− 1) = ∞ if d = 1) yields

Nm
T%

k=1

∆tm∥uki ∥21,1,T d
m
+

Nm
T%

k=1

∆tm∥uki ∥20,d/(d−1),T d
m
≤ C,

see for instance [18, 79] for the definitions of the discrete norms. Then from Hölder’s inequal-
ity ∥v∥0,2d/(2d−1),T d

m
≤ ∥v1/2∥0,2d/(d−1),T d

m
∥v1/2∥0,2,T d

m
for v ∈ VT d

m
we get the following bound

on the discrete time derivative (replacing the estimate in Lemma 26):

NT
M%

k=1

∆tm

****uki − uk−1
i

∆tm

****4/3
−1,2d/(2d−1),T d

m

≤ C.

Similarly as in the one-dimensional case, we conclude from [57, Theorem 3.4] the existence of
a subsequence (which is not relabeled) such that um,i → ui strongly in L1(0, T ; L2d/(2d−1)(Td))
as m → ∞. We deduce from the discrete Gagliardo–Nirenberg inequality [18, Lemma 3.1]

∥uki ∥0,2d/(d−1),T d
m
≤ C∥uki ∥1/21,2,T d

m
∥uki ∥1/20,2,T d

m
,

that the strong convergence um,i → ui holds in Lp(QT ) for every p < 2d/(d − 1) (instead
of p < 6 in the one-dimensional case) and in particular in L2(QT ). Thus, the statement
of Lemma 27 holds, and we have ∇mpm,i ⇀ ∇pi(u) weakly in L2(QT ), where ∇m denotes
the discrete gradient. In particular, um,i∇mpm,i ⇀ ui∇pi(u) weakly in L4/3(QT ) as in the
one-dimensional case. From this point on, the convergence of the scheme follows the lines of
Section 3.3.3.

3.4 Numerical experiments

In this section, we present several numerical experiments to illustrate the behavior of the
scheme. The scheme was implemented in one space dimension using Matlab. In all the
subsequent numerical tests, we choose the upwind mobility (3.6). The code is available at
https://gitlab.tuwien.ac.at/asc/nonlocal-crossdiff. Our code is an adaptation of the
one developed in [65] for the approximation of the nonlocal SKT system. We refer the reader
to [65, Section 6.1] for a complete presentation of the different methods used to implement the
scheme.
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3.4 Numerical experiments

3.4.1 Test case 1. Rate of convergence in space for various Lp-norms,
convolution kernels, and initial data

We investigate the rate of convergence in space of the scheme at final time T = 1. In all test
cases of this section, we consider n = 2 species, σ = 10−4, the coefficient matrix A = (aij)1≤i,j≤2

given by

A =

�
0.1251 0.25

1 2

�
,

and π1 = 4, π2 = 1. We consider various initial data and kernels. More precisely, we choose

u01(x) = 1[1/4,3/4](x), u02(x) = 1[0,1/4](x) + 1[3/4,1](x), (3.31)

u01(x) = cos (2πx) + 1, u02(x) = sin (2πx− π/2) + 1, (3.32)

u01(x) = max (1− |1− 2x|, 0) , u02(x) = max (1− 2|x|, 0) (3.33)

and the kernels

Bij(z) = 1[−0.3,0.3](z), (3.34)

Bij(z) = 2max (1− |z|/0.3, 0) , (3.35)

Bij(z) = exp
�−|z|2/2ε2� /√2πε2, ε = 10−3. (3.36)

First, we consider a mesh of Ninit = 32 cells and the time step size ∆tinit = 1/64. Then,
starting from this initial mesh, we refine the mesh in space by doubling the number of cells
and halving the time step size, i.e. Nnew = 2Nold and ∆tnew = ∆told/2. This refinement of the
meshes is in agreement with the first-order convergence rate of the Euler discretization in time
and the expected first-order convergence rate in space of the scheme, due to the choice of the
upwind mobility in the numerical fluxes. As exact solutions to system (1.11)–(1.13) are not
explicitly known, we refine the mesh in space and time until Nend = 2048 and ∆tend = 1/4096,
and we consider the solutions of the scheme obtained for Nend and ∆tend as reference solutions.
The error is computed between the reference solutions and the solutions obtained for N = 1024
cells and ∆t = 1/2048 at final time T = 1. Finally, using linear regression in logarithmic scale,
we present in Table 3.1 the experimental order of convergence in the L1- and L∞-norms. As
expected, we observe a rate of convergence around one. In Table 3.1, the numbers in bold
letters denote the number of the test case available in our code (see the file loadTestcase.m).

3.4.2 Test case 2. Rate of convergence of the localization limit in various metrics

In the second test case, following [65], we evaluate numerically the rate of convergence of
the localization limit. More precisely, for some sequences of kernels converging towards the
Dirac measure δ0, we compute the rate of convergence in different metrics of the solutions
to scheme (3.1)–(3.4) towards its local version, i.e. Bij = δ0 for all i, j = 1, . . . , n. At the
continuous level, one can show, by adapting the approach of [74], that the localization limit
holds thanks to a compactness method; see also [43] for the SKT system. However, so far no
explicit rate of convergence is available. The goal of this numerical test is to obtain a better
insight into this rate of convergence. Besides, it also illustrates Remark 21.
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3 A convergent finite-volume scheme for nonlocal cross-diffusion systems

Kernel →
Indicator (3.34) Triangle (3.35) Gaussian (3.36)

Initial Data ↓

(3.31)

Testcase 13 Testcase 16 Testcase 19
L1-order: 1.1741 L1-order: 1.1741 L1-order: 1.0109
L1-error: 9.76 · 10−4 L1-error: 9.76 · 10−4 L1-error: 3.20 · 10−3

L∞-order: 1.14 L∞-order: 1.1331 L∞-order: 0.98437
L∞-error: 1.49 · 10−3 L∞-error: 1.68 · 10−3 L∞-error: 2.45 · 10−2

(3.32)

Testcase 14 Testcase 17 Testcase 20
L1-order: 1.0948 L1-order: 1.0336 L1-order: 0.93381
L1-error: 1.81 · 10−5 L1-error: 2.78 · 10−5 L1-error: 2.35 · 10−3

L∞-order: 1.0486 L∞-order: 1.0092 L∞-order: 0.91831
L∞-error: 4.73 · 10−5 L∞-error: 8.57 · 10−5 L∞-error: 8.87 · 10−3

(3.33)

Testcase 15 Testcase 18 Testcase 21
L1-order: 0.97752 L1-order: 0.97495 L1-order: 0.9611
L1-error: 6.39 · 10−5 L1-error: 5.35 · 10−5 L1-error: 9.27 · 10−4

L∞-order: 0.99787 L∞-order: 0.99741 L∞-order: 0.9761
L∞-error: 1.74 · 10−4 L∞-error: 11.48 · 10−4 L∞-error: 3.69 · 10−3

Table 3.1: Orders of convergence in the L1- and L∞-norms in space at final time T = 1 for
different kernels and initial data.

We consider the following parameters (for all 6 test cases of this section): n = 3 species,
diffusion parameter σ = 10−4, coefficient matrix

A =

 0.5 0.2 0.125
0.4 1 0.2
0.25 0.2 1

 ,

and π1 = 4, π2 = 2, π3 = 2. We choose the final time T = 1, a mesh of N = 512 cells, and the
time step size ∆t = 10−3. Furthermore, we take the nonsmooth initial data

u01(x) = 1[3/6,5/6](x), u02(x) = 1[0,1/6](x) + 1[5/6,1](x), u03(x) = 1[1/6,3/6](x), (3.37)

and the smooth initial data

u01(x) = cos (2πx) + 1, u02(x) = sin (2πx) + 1, (3.38)

u03(x) = (cos (2πx) + sin (2πx) + 2) /2.

The kernels are chosen according to

Bij
α (z) = 1[−α,α](z)/2α, (3.39)

Bij
α (z) = max (1− |z|/α, 0) /α, (3.40)

Bij
α (z) = exp

�−|z|2/2α2
�
/
√
2πα2. (3.41)
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In our experiments, starting from αinit = 27∆x, we successively halve α until we arrive
at α = ∆x. For each value of α, we compute the solutions to the nonlocal scheme (3.1)–(3.4)
at final time. We evaluate the L1, L∞, and Wasserstein distance W1 between the solution to
the nonlocal scheme and the solution to the local one (for this, it is enough to set α = 0 in
our code). Since we work in one space dimension, we can explicitly compute the Wasserstein
distance W1; see [90, Chapter 2]. The rates of convergence are estimated by linear regression
(in log scale) and the results are presented in Table 3.2. Surprisingly, we observe a slightly
better rate of convergence in the case of nonsmooth initial data. As before, the names in
bold letters in Table 3.2 denote the name of the test case available in our code (see also the
file loadTestcase.m).

Kernel →
(3.39) (3.40) (3.41)

Initial Data ↓

nonsmooth (3.37)

Testcase NLTL2 Testcase NLTL4 Testcase NLTL6
L1-order: 1.8280 L1-order: 1.8709 L1-order: 1.7386
L∞-order: 1.8271 L∞-order: 1.8698 L∞-order: 1.7379
W1-order: 1.8306 W1-order: 1.8724 W1-order: 1.7426

smooth (3.38)

Testcase NLTL3 Testcase NLTL5 Testcase NLTL7
L1-order: 1.7430 L1-order: 1.8240 L1-order: 1.5991
L∞-order: 1.7462 L∞-order: 1.8261 L∞-order: 1.6038
W1-order: 1.7451 W1-order: 1.8252 W1-order: 1.6023

Table 3.2: Rates of convergence of the localization limit in the L1-, L∞- and W1-metric for
different initial data and kernels.

3.4.3 Test case 3. Segregation phenomenon

In this numerical experiment, we set σ = 0. Under the assumptions of n = 2 species, aij = 1,
and Bij = δ0 for i, j = 1, 2, it has been shown in [17] that if the initial data are segregated (ini-
tial data with disjoint supports) then the solutions remain segregated (i.e., they have disjoint
supports) for all time. The main goal of this subsection is to illustrate the segregation pattern
due to the nonlocal terms, i.e. Bij ̸= δ0. We expect that the solutions to the nonlocal model,
given segregated initial data, are completely segregated, and that there exists a small region,
i.e. a “gap” between the supports of the species, with a size that is related to the radius of the
interaction kernels. Let us notice that in the subsequent test cases, Hypothesis (H3) is never
satisfied. However, we did not encounter any numerical issues with our code.

We launched the code for a mesh of 512 cells and the time step size ∆t = 10−4. In the case
of n = 2 species, we considered the initial data

u01(x) = 1[0.1,0.4](x), u02(x) = 1[0.6,0.8](x),

while for n = 3 species, we have taken

u01(x) = 1[0.5,0.6](x), u02(x) = 1[0.8,0.9](x), u03(x) = 1[0.1,0.2](x).
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3 A convergent finite-volume scheme for nonlocal cross-diffusion systems

In both cases, we set aij = 1 for all i, j = 1, . . . , n.
In Figures 3.1 and 3.2, we present the segregation pattern at times t = 0.02 and t = 0.2

obtained for the local model, Bij = δ0, and the nonlocal model with

Bij(z) = 100 · 1[−0.1,0.1](z).

For small times, the support of the species extends until reaching the support of another
species. In the local model, the species slightly mix (due to numerical diffusion), while we
observe a “gap” between the supports of the solutions in the nonlocal model. This “gap” is
of order 0.1 which is the size of the radius of the kernels Bij . Similar numerical results have
been observed in [28, Section 6] but using different kernel functions and two species only.
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Figure 3.1: Comparison of the segregation pattern for two species at times t = 0.02 (top) and
t = 0.2 (bottom) obtained from the local model (left) and nonlocal model (right).
The solutions are almost in the steady state at t = 0.2.

3.4.4 Test case 4. Dissipation of entropy

In the last numerical experiment, we plot the two entropies HB(u(t)) and HR(u(t)) over time
in semi-logarithmic scale to illustrate the entropy production as proved in Theorem 22. We
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Figure 3.2: Comparison of the segregation patterns for three species at times t = 0.02 (top) and
t = 0.2 (bottom) obtained from the local model (left) and nonlocal model (right).
The solutions are almost in the steady state at t = 0.2.

set the final time T = 1.5, the time step size ∆t = 10−4, use a mesh of N = 512 cells, and
choose n = 2 species. The remaining parameters are taken as in Section 3.4.1; see Table 3.1
and the test cases therein. As expected, the entropies are decreasing functions of time. The
Rao entropy decays first quickly but then stabilizes slowly, while the Boltzmann entropy takes
more time to stabilize.

3.5 Some auxiliary results

Lemma 31. Under Hypothesis (H3), the entropy dissipation Q, defined in (1.19), is nonneg-
ative.

Proof. We follow the approach of [43] and write Q = Q1 + · · ·+Q3, where

Q1 =
1

n− 1

n%
i,j=1, i<j

�
T
πiaii|∂xui(x)|2 dx+

1

n− 1

n%
i,j=1, i>j

�
T
πiaii|∂xui(y)|2 dy,
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Figure 3.3: Temporal decay of the Boltzmann and Rao entropies for test cases 15 (left) and 16
(right) in semi-logarithmic scale.

Q2 =

n%
i,j=1, i<j

�
T

�
T
πiaijB

ij(x− y)∂xuj(y)∂xui(x) dy dx,

Q3 =
n%

i,j=1, i>j

�
T

�
T
πiaijB

ij(x− y)∂xuj(y)∂xui(x) dy dx.

Exchanging i and j in the second integral of Q1 and using m(T) = 1, we have

Q1 =
1

n− 1

n%
i,j=1, i<j

�
T

�
T

�
πiaii|∂xui(x)|2 + πjajj |∂xuj(y)|2

�
dy dx.

Exchanging i and j as well as x and y in Q3 gives

Q3 =

n%
i,j=1, i<j

�
T

�
T
πjajiB

ji(y − x)∂xuj(y)∂xui(x) dy dx

=
n%

i,j=1, i<j

�
T

�
T
πjajiB

ij(x− y)∂xuj(y)∂xui(x) dy dx.

We collect these expressions to obtain

Q =
1

(n− 1)

n%
i,j=1, i<j

�
T

�
T

�
∂xui(x)
∂xuj(y)

�⊤
M ij(x− y)

�
∂xui(x)
∂xuj(y)

�
dy dx ≥ 0,

where M ij is defined in (1.18), and the last inequality follows from Hypothesis (H3).

Lemma 32. The upwind approximation (3.6) and the logarithmic mean (3.7) satisfy prop-
erty (3.5) of the mobilities ui,σ.
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Proof. The proof is based on the following inequalities for the logarithmic mean:

min{a, b} ≤ a− b

log a− log b
≤ max{a, b} for all a, b > 0. (3.42)

They imply the linear growth ui,ℓ+1/2 ≤ max{ui,ℓ, ui,ℓ+1} for the logarithmic mean, which also
holds, by definition, for the upwind approximation. We show that property (3.5) is satisfied
for the upwind approximation (3.6). Let pi,ℓ+1 − pi,ℓ ≥ 0. Then, by (3.42),

ui,ℓ+1/2(pi,ℓ+1 − pi,ℓ)(log ui,ℓ+1 − log ui,ℓ) = ui,ℓ+1(pi,ℓ+1 − pi,ℓ)(log ui,ℓ+1 − log ui,ℓ)

≥ (pi,ℓ+1 − pi,ℓ)(ui,ℓ+1 − ui,ℓ).

On the other hand, if pi,ℓ+1 − pi,ℓ < 0, again by (3.42),

ui,ℓ+1/2(pi,ℓ+1 − pi,ℓ)(log ui,ℓ+1 − log ui,ℓ) = ui,ℓ(pi,ℓ+1 − pi,ℓ)(log ui,ℓ+1 − log ui,ℓ)

≥ (pi,ℓ+1 − pi,ℓ)(ui,ℓ+1 − ui,ℓ).

Property (3.5) follows immediately after inserting definition (3.7) of the logarithmic mean.
This ends the proof.

Lemma 33 (Discrete Young convolution inequality). Let 1 ≤ p, q ≤ ∞ and 1 ≤ r ≤ ∞
be such that 1 + 1/r = 1/p + 1/q and let B ∈ Lp(T) and v = (vℓ)ℓ∈G ∈ VT . Furthermore,
define Bℓ−ℓ′ := (∆x)−1

�
Kℓ−ℓ′

B(y) dy for every ℓ and ℓ′ ∈ G. Then

�%
ℓ∈G

∆x

++++ %
ℓ′∈G

∆xBℓ−ℓ′ vℓ′

++++r�1/r

≤ ∥B∥Lp(T)∥v∥0,q,T .

Proof. First, let ℓ ∈ G be fixed. Then++++ %
ℓ′∈G

∆xBℓ−ℓ′vℓ′

++++ ≤ %
ℓ′∈G

∆x
�|Bℓ−ℓ′ |p|vℓ′ |q

�1/r|Bℓ−ℓ′ |(r−p)/r|vℓ′ |(r−q)/r.

Thanks to the assumption 1 = 1/p + 1/q − 1/r, we can apply Hölder’s inequality with the
exponents r, pr/(r − p), and qr/(r − q) to obtain++++ %

ℓ′∈G
∆xBℓ−ℓ′vℓ′

++++ ≤ � %
ℓ′∈G

∆x|Bℓ−ℓ′ |p|vℓ′ |q
�1/r� %

ℓ′∈G
∆x|Bℓ−ℓ′ |p

�(r−p)/pr

×
� %

ℓ′∈G
∆x|vℓ′ |q

�(r−q)/qr

=

� %
ℓ′∈G

∆x|Bℓ−ℓ′ |p|vℓ′ |q
�1/r

∥B∥(r−p)/r
0,p,T ∥v∥(r−q)/r

0,q,T .

Then, taking the exponent r and summing over ℓ ∈ G,%
ℓ∈G

∆x

++++ %
ℓ′∈G

∆xBℓ−ℓ′vℓ′

++++r ≤ ∥B∥r−p
0,p,T ∥v∥r−q

0,q,T

�%
ℓ∈G

∆x
%
ℓ′∈G

∆x|Bℓ−ℓ′ |p|vℓ′ |q
�
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≤ ∥B∥r−p
0,p,T ∥v∥r−q

0,q,T

� %
ℓ′∈G

∆x|vℓ′ |q
%
ℓ∈G

∆x|Bℓ−ℓ′ |p
�

≤ ∥B∥r−p
0,p,T ∥v∥r−q

0,q,T ∥v∥q0,q,T ∥B∥p0,p,T = ∥B∥r0,p,T ∥v∥r0,q,T .

Finally, it holds that

∥B∥p0,p,T ≤
%
ℓ∈G

∆x

++++ 1

∆x

�
Kℓ

B(y) dy

++++p ≤ %
ℓ∈G

��
Kℓ

|B(y)|p dy
���

Kℓ

dx

∆x

�p−1

≤
%
ℓ∈G

�
Kℓ

|B(y)|p dy = ∥B∥pLp(T),

which concludes the proof.

Lemma 34. Let s > 1 and p > 1. Then there exists a constant C > 0 only depending on s
such that for any sequence u = (uℓ)ℓ∈G it holds that

∥u∥0,∞,T ≤ C∥u∥1/s1,p,T ∥u∥1−1/s
0,(s−1)p/(p−1),T .

Proof. We adapt the proof of [18, Lemma 4.1] to the one-dimensional case. Due to the em-
bedding BV(T) �→ L∞(T) applied to the sequence (|uℓ|s)ℓ∈G,

∥u∥s0,∞,T ≤ C

�
∥u∥s0,s,T +

%
ℓ∈G

++|uℓ|s − |uℓ+1|s
++�. (3.43)

Since s > 1, we have%
ℓ∈G

++|uℓ|s − |uℓ+1|s
++ ≤ s

%
ℓ∈G

�|uℓ|s−1 + |uℓ+1|s−1
�|uℓ − uℓ+1|.

We apply Hölder’s inequality with exponents p and p/(p− 1):

%
ℓ∈G

++|uℓ|s − |uℓ+1|s
++ ≤ 2s

�%
ℓ∈G

|uℓ − uℓ+1|p
∆xp−1

�1/p�%
ℓ∈G

∆x|uℓ|
(s−1)p
p−1

�(p−1)/p

.

Besides, using again Hölder’s inequality (with the same exponents), we find that

∥u∥0,s,T =

�%
ℓ∈G

∆x|uℓ||uℓ|s−1

�1/s

≤ ∥u∥1/s0,p,Tm∥u∥
(s−1)/s
0,(s−1)p/(p−1),T .

Then, inserting the last two inequalities into (3.43) yields the desired result. This concludes
the proof of Lemma 34.
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3.6 Counter-example

3.6 Counter-example

We claim that there exist kernels Bij , being indicator functions, and piecewise constant func-
tions u1, . . . , un such that the positive semi-definiteness condition

J :=
n%

i,j=1

�
T

�
T
πiaijB

ij(x− y)uj(y)ui(x) dy dx ≥ 0,

is not satisfied. For this statement, we assume that the matrix (πiaij) ∈ Rn×n is (symmetric
and) positive definite. With the notation of Section 3.1.1, we set ∆x = 1/N for some even
number N > 5 and choose r = 3∆x/2 as well as the kernels

Bij(x) = 1(−r,r)(x) for x ∈ T.

Let ui = (ui,ℓ)ℓ∈G ∈ VT for i = 1, . . . , n. Then we can write J as

J =

n%
i,j=1

%
ℓ,ℓ′∈G

πiaij�M ij
ℓ,ℓ′uj,ℓ′ui,ℓ, where �M ij

ℓ,ℓ′ =

�
Kℓ

�
Kℓ′

Bij(x− y) dy dx. (3.44)

A straightforward, but tedious computation shows that the matrix �M ij = (�M ij
ℓ,ℓ′)ℓ,ℓ′∈G ∈ RN×N

is pentadiagonal with entries

M ij
ℓ,ℓ′ = (∆x)2, M ij

ℓ,ℓ±1 =
7

8
(∆x)2, M ij

ℓ,ℓ±2 =
1

8
(∆x)2.

This matrix possesses the eigenvector w ∈ RN , defined by wℓ = 1 for odd ℓ and wℓ = −1 for
even ℓ, associated with the negative eigenvalue λ = −4(∆x)2.
Let v1, . . . , vn ∈ Rn be the eigenvectors of the symmetric matrix (πiaij)i,j=1,...,n associ-

ated with the eigenvalues 0 < ν1 ≤ . . . ≤ νn, respectively. We define the nN × nN ma-
trix �M = (πiaij�M ij) consisting of the N ×N blocks πiaij�M ij . It can be verified that this ma-

trix �M possesses the eigenvector z = (z1, . . . , zn) ∈ RnN with zi = vn,iw ∈ RN for i = 1, . . . , n
associated with the eigenvalue λνn = −4(∆x)2νn. Then, choosing ui = zi in (3.44), we find
that

J =
n%

i,j=1

πiaijz
⊤
i
�M ijzj = −4(∆x)2νn

n%
i=1

|zi|2 < 0.

This provides the desired counter-example.
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4 Analysis of a charge transport system with
Fermi-Dirac statistics for memristive devices

The results in this chapter are from an ongoing research collaboration with Maxime Herda
(Inria Lille) and Ansgar Jüngel (TU Wien). A manuscript for submission is currently in

preparation.

In this chapter we analyse an instationary nonlinear drift-diffusion system that models mem-
ristive devices. We present our hypothesis and main results, i.e. the global existence of weak
solutions and the uniform-in-time boundedness of weak solutions in Section 4.1. In Section 4.2
we prove the existence Theorem 35 and Section 4.3 is concerned with the proof of bounded
solutions, cf. Theorem 36. The necessary estimates on the statistics functions, their inverses
and the corresponding derivatives, are collected and proved in Section 4.4.

4.1 Main results

We will impose the following assumptions.

(A1) Domain: Ω ⊂ Rd (d ≥ 1) is a bounded domain with Lipschitz boundary ∂Ω = ΓD ∪ ΓN

and µ(ΓD) > 0, where µ is the (d − 1)-dimensional Lebesgue measure, ΓN is relatively
open in ∂Ω and ΓD ∩ ΓN = ∅.

(A2) Data: T > 0, λ > 0, A ∈ L∞(Ω).

(A3) Boundary data: 'n, 'p, 'V ∈ W 1,∞(Ω) with 'n, 'p > 0 in Ω.

(A4) Initial data: nI , pI , DI ∈ L2(Ω) satisfy nI , pI , DI ≥ 0 in Ω and such that

E [nI , pI , DI , V I ] < ∞.

Furthermore, we assume that DI := ess supx∈ΩDI(x) ≤ 1 and DI
Ω < 1, where

DI
Ω :=

1

m(Ω)

�
Ω
DI dx (4.1)

and m(Ω) is the d-dimensional Lebesgue measure of Ω.

(A5) Elliptic Regularity: There exists some r ≥ 3 such that for C > 0 and all f ∈ L3r/(r+3)(Ω)
the weak solution V of the Poisson problem

∆V = f in Ω, V = 'V on ΓD, ∇V · ν = 0 on ΓN , (4.2)

satisfies the estimate
∥V ∥W 1,r(Ω) ≤ C∥f∥L3r/(r+3)(Ω) + C. (4.3)
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Additionally, we set QT := (0, T ) × Ω, W 1,q
D (Ω) := {u ∈ W 1,q(Ω): u = 0 on ΓD} and

introduce the initial electric potential V I − 'V ∈ H1
D(Ω) as the unique solution to

λ2∆V I = nI − pI −DI +A, in Ω,

V I = 'V on ΓD, ∇V I · ν = 0 on ΓN .
(4.4)

Constants C > 0 in the following computations may change their value from line to line.
Let us discuss our assumptions. The boundary data in (A3) are supposed to be time inde-

pendent to simplify the computations. Assumption (A4) marks the biggest difference of our
work to [2]. While the authors of [2] have to assume pointwise positive bounds on the initial
data from below and above and far from saturation for ion vacancies, we allow for void as well
as saturation. We only suppress DI

Ω = 1, which would be physically unrealistic. The most
restrictive assumption is (A5). In general, for the solution to elliptic problems (4.2) with mixed
boundary conditions one can only expect V ∈ W 1,r(Ω) for some r > 2, cf. [64]. Under certain
geometric conditions to the Dirichlet and Neumann boundary part of ∂Ω, this regularity is
improved to r > 3, as is shown in [47]. In particular, it is necessary that ΓD and ΓN meet
at an angle not larger than π. The authors of [47] also argued that, while it is a restrictive
condition, it is satisfied in most applications. Assumption (A5) was also used by the authors
of [77] to prove existence of bounded weak solutions to the degenerate drift-diffusion system,
which is an approximation to (1.25) in the high density regime of the species n and p.
Our main result is the global existence of weak solutions in space dimension d ≤ 4.

Theorem 35 (Global Existence). Let the assumptions (A1)–(A4) hold and assume that d ≤ 4
for the spatial dimension. Then there exists a weak solution (n, p,D, V ) to system (1.25)–(1.26)
with (4.4) satisfying

n, p ∈ L∞(0, T ;L5/3(Ω)) ∩ L2(0, T ;W 1,κ(Ω)),

D,
√
D ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)), V ∈ L∞(0, T ;H1(Ω)),

2nG′(n)∇√
n−√

n∇V, 2pG′(p)∇√
p+

√
p∇V

2∇ tanh−1(
√
D) +

√
D∇V



∈ L2(QT ),

∂tn, ∂tp ∈ L1(0, T ;W 1,κ′
D (Ω)′) ∩ L2(0, T ;W 1,5

D (Ω)′), ∂tD ∈ L2(0, T ;H1(Ω)′),

(4.5)

where 1/κ′ = 1− 1/κ and κ depends on the spatial dimension d as follows

κ

��������
= 2, d = 1,

< 2, d = 2,

< 8
5 , d = 3,

< 16
11 , d = 4.

The fluxes have to be understood in the senses

Jn = nG′(n)∇n− n∇V ∈ L1(0, T ;Lκ(Ω)) ∩ L2(0, T ;L5/4(Ω)),

−Jp = pG′(p)∇p+ p∇V ∈ L1(0, T ;Lκ(Ω)) ∩ L2(0, T ;L5/4(Ω)),

−JD = −∇ log(1−D) +D∇V ∈ L2(QT ).
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4.1 Main results

The Dirichlet boundary conditions in (1.26), n = ñ, p = p̃ on ΓD, t > 0, are satisfied in the
sense of traces and the initial condition in (1.26) holds in the sense

n(t, .) → nI , p(t, .) → pI strongly in W 1,κ′
D (Ω)′ ∩W 1,5

D (Ω)′,

D(t, .) → DI strongly in H1(Ω)′,

as t → 0. The solution satisfies the free energy inequality

E [n, p,D, V ](τ) +
1

2

� τ

0

�
Ω
|2nG′(n)∇√

n−√
n∇V |2 + |2pG′(p)∇√

p+
√
p∇V |2 dx dt

+
1

2

� τ

0

�
Ω
|2∇ tanh−1(

√
D) +

√
D∇V |2 dx dt ≤ EI + C(EI ,Λ, T ), (4.6)

for all τ ∈ (0, T ], where the initial free energy EI := E [nI , pI , DI , V I ] is defined in (1.28),

Λ := 2
�
∥∇(G('n)− 'V )∥2L∞(QT ) + ∥∇(G('p) + 'V )∥2L∞(QT )

�
, (4.7)

and it holds that C(EI ,Λ, T ) = 0 if Λ = 0.

The property Λ = 0 means that the boundary conditions are in thermal equilibrium and the
free energy then is a nonincreasing function in time.

As already mentioned in Section 1.3.3, we will approximate (1.25) – (1.26) by truncating
both the drift and the diffusion term (more precisely we cut off the densities, but leave the
potentials alone) and prove the existence of a solution (nk, pk, Dk, Vk) to the approximate
problem. Estimates uniform in the approximation parameter k, obtained via an approximate
free energy inequality, will allow us to then take the limit k → ∞ and thus prove existence of
a solution (n, p,D, V ) to (1.25) – (1.26).
As a second result we prove the boundedness of solutions under slightly stricter assumptions.

Theorem 36 (Bounded Solutions). Let assumptions (A1)–(A4) (assumptions of Theorem 35)
and (A5) hold with r = 3, let d = 3 and assume that nI , pI , DI ∈ L∞(Ω). Then the weak
solution constructed in Theorem 35 fulfills

n, p,D ∈ L∞(0, T ;Lq(Ω)), for all 1 ≤ q < ∞, V ∈ L∞(0, T ;W 1,3(Ω)),

∇nα,∇pα ∈ L2(QT ), for all 1 ≤ α < ∞.
(4.8)

If additionally r > 3 in assumption (A5), there holds the improved regularity

n, p,D ∈ L∞(0, T ;L∞(Ω)), V ∈ L∞(0, T ;W 1,r(Ω)). (4.9)

As stated in Section 1.3.3, the theorem is proved by an Alikakos-type iteration method. The
restriction to three space dimensions comes from the regularity assumption (4.3).

Remark 37. Our results hold for an arbitrary number of charged particles, since we use the
Poisson equation only through the norm estimates on V and ∇V in the various Lq-spaces. The
system of equations for the charge densities would then read as

∂tui = ∇ · (ui∇G(ui) + ziui∇V ), i ∈ I,

∂tui = ∇ · (ui∇H(ui) + ziui∇V ), i ∈ I0,

λ2∆V = −
%

i∈I∪I0
ziui +A(x),
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4 Analysis of a charge transport system with Fermi-Dirac statistics for memristive devices

where zi ∈ R corresponds to the charge number of the species ui, I and I0 are the respective
sets of indices, and initial and mixed boundary conditions are chosen according to (1.26).

Remark 38. Let us point out that our results also hold when using Fermi-Dirac statistics of
order 1/2 instead of Blakemore statistics for the oxygen vacancies. The proofs for D are then
analogue to the proofs for p, with the exception that vanishing boundary terms due to the
no-flux boundary condition simplify the computations a bit and conservation of mass (for D)
stays upright. The regularity results will be the same for all species in that case, cf. [71, 77].

Let us also introduce the following notation, which will be used throughout the entire chapter.

Notation 1. Given terms A and B, we write A ≲ B if there exists a constant C > 0, such
that it holds that A ≤ CB. If A ≲ B ≲ A holds, we write A ∼ B. Furthermore, if there exist
two constants C1, C2 > 0, such that A ≤ C1B + C2 is true, we write A ≲ B + 1.

4.2 Proof of Theorem 35

In this section we prove the global existence of weak solutions to (1.25)–(1.26). We first show
the existence of solutions to an approximate problem, followed by deriving uniform estimates
and then pass to the limit to show that the original problem has weak solutions.

4.2.1 Approximate problem to (1.25)–(1.26)

The approximate problem is defined by cutting off the nonlinearities. To this end we introduce
for z ∈ R and k ∈ N the truncations

Tk(z) := max(0,min(k, z)),

S1
k(z) :=

��
1, z ≤ 0,

zG′(z), 0 < z ≤ k,

k2/3z1/3G′(z), k < z,

, S2
k(z) :=

��
1, z ≤ 0,

zH ′(z), 0 < z ≤ k
k+1 ,

1 + k, k
k+1 < z.

(4.10)

Note that it holds that zH ′(z) = 1
1−z and, thanks to Lemma 73, zG′(z) ∼ 1 + z

2
3 . This allows

us to define the approximate system as follows:

∂tnk −∇ · �S1
k(nk)∇nk − Tk(nk)∇Vk

�
= 0,

∂tpk −∇ · �S1
k(pk)∇pk + Tk(pk)∇Vk

�
= 0,

∂tDk −∇ ·
�
S2
k(Dk)∇Dk + T k

k+1
(Dk)∇Vk

�
= 0,

λ2∆Vk − nk + pk +Dk +A = 0,

����������
in Ω, t > 0, (4.11)

supplemented with initial and boundary conditions

nk(0, .) = nI , pk(0, .) = pI , Dk(0, .) = DI , in Ω,

nk = 'n, pk = 'p, Vk = 'V , on ΓD, t > 0,

∇nk · ν = ∇pk · ν = ∇Vk · ν = 0, on ΓN , t > 0,�
S2
k(Dk)∇Dk + T k

k+1
(Dk)∇Vk

�
· ν = 0, on ∂Ω, t > 0.

(4.12)
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4.2.2 Existence of solutions to the approximate problem (4.11)–(4.12)

We prove that the approximate problem has a weak solution. This can be done by a Schaefer
fixed point argument, which requires us to first linearize the approximate problem. To this
end, let (n∗, p∗, D∗) ∈ L2(QT ;R3) and σ ∈ [0, 1]. Then we define the linearized problem

∂tn−∇ · �S1
k(n

∗)∇n− σTk(n
∗)∇V

�
= 0,

∂tp−∇ · �S1
k(p

∗)∇p+ σTk(p
∗)∇V

�
= 0,

∂tD −∇ ·
�
S2
k(D

∗)∇D + σT k
k+1

(D∗)∇V
�
= 0,

λ2∆V − n+ p+D + σA = 0,

����������
in Ω, t > 0, (4.13)

together with initial and boundary conditions

n(0, .) = σnI , p(0, .) = σpI , D(0, .) = σDI , in Ω,

n = σ'n, p = σ'p, V = σ'V , on ΓD, t > 0,

∇n · ν = ∇p · ν = ∇V · ν = 0, on ΓN , t > 0,�
S2
k(D

∗)∇D + σT k
k+1

(D∗)∇V
�
· ν = 0, on ∂Ω, t > 0,

(4.14)

which has a unique weak solution (n, p,D, V ) ∈ L2(QT ;R4), cf. [99, Theorem 23.A].

This allows us to define the fixed-point operator F and prove the existence of a solution to
the approximate system (4.11)–(4.12)

F :

�
L2(QT ;R3)× [0, 1] → L2(QT ;R3)

(n∗, p∗, D∗, σ) �→ (n, p,D) solution to (4.13)-(4.14).
(4.15)

Lemma 39. Let assumptions (A1)–(A4) hold. Then, for σ = 1, the operator F (., 1) map-
ping L2(QT ;R3) → L2(QT ;R3) defined by (4.15) has a fixed point (n, p,D) ∈ L2(QT )

3, i.e. it
solves the equation F (n, p,D, 1) = (n, p,D).

Proof. We will use the Leray-Schauder fixed point theorem to establish the existence of a fixed
point. It is straightforward to check that, for σ = 0, the unique solution to system (4.13)–(4.14)
is (n, p,D, V ) = (0, 0, 0, 0), hence F (n∗, p∗, D∗, 0) = 0 for all (n∗, p∗, D∗) ∈ L2(QT ;R3).

Next, we show that F is continuous. To this end, let (n∗
m, p∗m, D∗

m, σm) → (n∗, p∗, D∗, σ)
in L2(QT ;R3)×[0, 1] and set (nm, pm, Dm) := F (n∗

m, p∗m, D∗
m, σm), (n, p,D) := F (n∗, p∗, D∗, σ),

respectively. We have to show that (nm, pm, Dm) → (n, p,D) as m → ∞. We use the test
functions nm−σm'n, pm−σm'p, Dm and Vm−σm 'V in the weak formulation of (4.13). Starting
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with Vm − σm 'V in the weak formulation of the Poisson equation we obtain

λ2

�
Ω

+++∇(Vm − σm 'V )
+++2 dx = −λ2

�
Ω
σm∇'V · ∇(Vm − σm 'V ) dx

−
�
Ω
(nm − pm −Dm − σmA)(Vm − σm 'V ) dx

≤ λ2

2

�
Ω
σ2
m

+++∇'V +++2 dx+
λ2

2

�
Ω

+++∇(Vm − σm 'V )
+++2 dx

+
1

2δ

�
Ω
(nm − pm −Dm − σmA)2 dx

+
δC2

P

2

�
Ω

+++∇(Vm − σm 'V )
+++2 dx,

where we have used Young’s inequality for products and the Poincaré inequality. Choosing δ
sufficiently small and rearranging terms, we obtain

λ2 − δC2
P

2

�
Ω

+++∇(Vm − σm 'V )
+++2 dx ≤ λ2σ2

m

2

�
Ω

+++∇'V +++2 dx+
1

2δ

�
Ω
(nm − pm −Dm − σmA)2 dx.

Computing the square on the left-hand side, dropping the nonnegative part with |∇'V |2, rear-
ranging terms and using Young’s inequality again for the product, we get

λ2 − δC2
P

2

�
Ω
|∇Vm|2 dx ≤ ε

2

�
Ω
|∇Vm|2 dx+

λ2σ2
mε+ (λ2 − δC2

P )
2σ2

m

2ε

�
Ω
|∇'V |2 dx

+
4

2δ

�
Ω
n2
m + p2m +D2

m + σ2
mA2 dx.

Choosing ε sufficiently small, we can absorb the first term on the right-hand side into the
left-hand side and thus, after integrating over t ∈ (0, τ) get the estimate� τ

0

�
Ω
|∇Vm|2 dx dt ≤ C + C

� τ

0

�
Ω
n2
m + p2m +D2

m dx dt.

We proceed with the test function nm − σm'n in the equation for nm and get� τ

0
⟨∂t(nm − σm'n), nm − σm'n⟩ dt
+

� τ

0

�
Ω
(S1

k(n
∗
m)∇(nm − σm'n)− σmTk(n

∗
m)∇(Vm − σm 'V )) · ∇(nm − σm'n) dx dt

+

� τ

0

�
Ω
σm(S1

k(n
∗
m)∇'n− Tk(n

∗
m)σm∇'V ) · ∇(nm − σm'n) dx dt = 0.

Simplifying terms, we obtain

1

2

�
Ω
(nm(τ)− σm'n)2 dx− 1

2

�
Ω
(nm(0)− σm'n)2 dx

+

� τ

0

�
Ω
S1
k(n

∗
m)∇nm · ∇(nm − σm'n) dx dt
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= σm

� τ

0

�
Ω
Tk(n

∗
m)∇Vm · ∇(nm − σm'n) dx dt.

Now we estimate term by term. Using nm(0) = σmnI together with Young’s inequality for
products and 0 ≤ σm ≤ 1 we get

1

2

�
Ω
(nm(τ)− σm'n)2 − (nm(0)− σm'n)2 dx ≥ 1

4

�
Ω
nm(τ)2 dx− C1.

To estimate the last integral on the left-hand side we split the domain Ω into the disjoint
union of the sets Ω = {n∗

m ≤ 0} ∪ {0 < n∗
m ≤ k} ∪ {k < n∗

m} to use the definition of S1
k(n

∗
m)

and combine this with the estimates from Corollary 74 and Young’s inequality for products to
obtain� τ

0

�
Ω
S1
k(n

∗
m)∇nm · ∇(nm − σm'n) dx dt

=

� τ

0

�
{n∗

m≤0}
∇nm · ∇(nm − σm'n) dx dt

+

� τ

0

�
{0<n∗

m≤k}
n∗
mG′(n∗

m)∇nm · ∇(nm − σm'n) dx dt
+

� τ

0

�
{k<n∗

m}
k2/3(n∗

m)1/3G′(n∗
m)∇nm · ∇(nm − σm'n) dx dt

≥
� τ

0

�
{n∗

m≤0}
1

2
|∇nm|2 − σ2

m

2
|∇'n|2 dx dt

+

� τ

0

�
{0<n∗

m≤k}
C

2
|∇nm|2 − C̃2(1 + k2/3)2σ2

m

2C
|∇'n|2 dx dt

+

� τ

0

�
{k<n∗

m}
C

2
|∇nm|2 − C̃2(1 + k2/3)2σ2

m

2C
|∇'n|2 dx dt

≥ min(1, C)

2

� τ

0

�
Ω
|∇nm|2 dx dt

− (1 + k2/3)2max(C, C̃2)

2C

� τ

0

�
Ω
|∇'n|2 dx dt.

We estimate the right-hand side using Young’s inequality for products, together with the two
inequalities Tk(n

∗
m) ≤ k, σm ≤ 1 and the estimate previously obtained for ∇Vm and obtain

σm

� τ

0

�
Ω
Tk(n

∗
m)∇Vm · ∇(nm − σn'n) dx dt ≤ δ

2

� τ

0

�
Ω
|∇(nm − σm'n)|2 dx dt

+
k2σ2

m

2δ

� τ

0

�
Ω
|∇Vm|2 dx dt

≤ δ

� τ

0

�
Ω
|∇nm|2 + |∇'n|2 dx dt

+
k2

2δ

�
C + C

� τ

0

�
Ω
n2
m + p2m +D2

m dx dt

�
.

81



4 Analysis of a charge transport system with Fermi-Dirac statistics for memristive devices

Combining all these estimates, choosing δ = min(1,C)
4 and rearranging terms, as well as multi-

plying or dividing by constants, we get�
Ω
n2
m(τ) dx+

� τ

0

�
Ω
|∇nm|2 dx dt ≤ C(k) + C(k)

� τ

0

�
Ω
n2
m + p2m +D2

m dx dt.

The computations when using pm − σm'p as a test function are analogue to the previous com-
putations with nm − σm(nm and the final estimate is identical, hence we do not write them
down explicitly.
Finally, we use Dm as a test function in the equation for Dm. Rewriting and simplifying

terms analogous to the case of nm yields

1

2

�
Ω
D2

m(τ) dx− 1

2

�
Ω
D2

m(0) dx

+

� τ

0

�
Ω
S2
k(D

∗
m)|∇Dm|2 dx dt

= −σm

� τ

0

�
Ω
T k

k+1
(D∗

m)∇Vm · ∇Dm dx dt.

The second term in the first line is a positive constant, so there is nothing to do about this.
To deal with the term in the second line we note that S2

k(D
∗
m) ≥ 1 by definition, hence� τ

0

�
Ω
S2
k(D

∗
m)|∇Dm|2 dx dt ≥

� τ

0

�
Ω
|∇Dm|2 dx dt.

To estimate the integral in the third line, we use that T k
k+1

(D∗
m) ≤ 1, and together with Young’s

inequality for products and σm ≤ 1 we obtain

−σm

� τ

0

�
Ω
T k

k+1
(D∗

m)∇Vm · ∇Dm dx dt ≤ 1

2

� τ

0

�
Ω
|∇Dm|2 dx dt

+
1

2

�
C + C

� τ

0

�
Ω
n2
m + p2m +D2

m dx dt

�
.

We put everything together, rearrange terms and end up with�
Ω
D2

m(τ) dx+

� τ

0

�
Ω
|∇Dm|2 dx dt ≤ C + C

� τ

0

�
Ω
n2
m + p2m +D2

m dx dt.

Hence, by adding all three inequalities, we get�
Ω
n2
m(τ) + p2m(τ) +D2

m(τ) dx+

� τ

0

�
Ω
|∇nm|2 + |∇pm|2 + |∇Dm|2 dx dt

≤ C(k) + C(k)

� τ

0

�
Ω
n2
m + p2m +D2

m dx dt.

Let us note that the bound on the right-hand side is independent of σm. By Grönwall’s
inequality we now obtain that

∥nm(τ)∥2L2(Ω) + ∥pm(τ)∥2L2(Ω) + ∥Dm(τ)∥2L2(Ω) ≤ C(k)eC(k)τ ,
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which yields uniform bounds on nm, pm, Dm in L2(QT ), independent of (n∗
m, p∗m, D∗

m, σm).
Plugging this into the combined inequality which we used for the Grönwall argument, we also
see that we have a uniform bound on the gradients, namely� τ

0
∥∇nm∥2L2(Ω) + ∥∇pm∥2L2(Ω) + ∥∇Dm∥2L2(Ω) dt ≤ C(k) + C(k)(eC(k)τ − 1) = C(k)eC(k)τ .

Thus, we have a bound on nm, pm, Dm in L2(0, T ;H1(Ω)), uniform in (n∗
m, p∗m, D∗

m, σm). We
will derive uniform bounds on the time derivatives in L2(0, T ;H1

D(Ω)
′) and L2(0, T ;H1(Ω)′)

as well. To this end, let φ ∈ L2(0, T ;H1
D(Ω)) such that ∥φ∥L2(0,T ;H1

D(Ω)) = 1. Using it as a test

function in the weak formulation for nm (where we have already dropped cancelling terms)
and applying Hölder’s inequality, together with the bounds S1

k(z) ≤ C(k), Tk(z) ≤ k and the
estimate on ∇Vm in L2(QT ), we compute++++� T

0

�
Ω
⟨∂t(nm − σm'n), φ⟩ dt++++ = ++++� T

0

�
Ω
(S1

k(n
∗
m)∇nm − σmTk(n

∗
m)∇Vm) · ∇φdx dt

++++
≤

� T

0

�
Ω
C(k)|∇nm||∇φ|+ k|∇Vm||∇φ| dx dt

≤ C(k)

� T

0
∥nm∥H1(Ω)∥φ∥H1(Ω) + ∥∇Vm∥L2(Ω)∥φ∥H1(Ω) dt

≤ C(k)∥nm∥L2(0,T ;H1(Ω)) + C(k)∥∇Vm∥L2(QT )

≤ C(k).

Note that σm'n is independent of t, hence we obtained a uniform estimate on ∂tnm

in L2(0, T ;H1
D(Ω)

′). The estimates for the two remaining time derivatives are computed in the
same way. Since the computations for ∂tpm are identical to the previous computations, we do
not write them down and only detail those for ∂tDm.

Therefore, let φ ∈ L2(0, T ;H1(Ω)) with ∥φ∥L2(0,T ;H1(Ω)) = 1. Then for ∂tDm we obtain,
using that S2

k(z) ≤ C(k),++++� T

0

�
Ω
⟨∂tDm, φ⟩ dt

++++ ≤ C(k)∥Dm∥L2(0,T ;H1(Ω)) + C(k)∥∇Vm∥L2(QT ) ≤ C(k).

This shows that the time derivatives ∂tnm, ∂tpm are bounded in L2(0, T ;H1
D(Ω)

′) and ∂tDm is
bounded in L2(0, T ;H1(Ω)′), uniformly in (n∗

m, p∗m, D∗
m, σm). Due to Aubin-Lions lemma [9, 93]

there exists a subsequence (nm′ , pm′ , Dm′) and ζ = (ζn, ζp, ζD) such that

nm′ → ζn, pm′ → ζp, Dm′ → ζD, strongly in L2(QT ),

∂tnm′ ⇀ ∂tζn, ∂tpm′ ⇀ ∂tζp, weakly in L2(0, T ;H1
D(Ω)

′),

∂tDm′ ⇀ ∂tζD, weakly in L2(0, T ;H1(Ω)′).

These convergences are good enough to take the limit in the weak formulation, which shows
that (ζn, ζp, ζD) is a solution to the system for (n∗, p∗, D∗, σ), i.e. ζ = F (n∗, p∗, D∗, σ). Since the
solution to the system is unique, it follows that (n, p,D) = (ζn, ζp, ζD), and furthermore we get
that the entire sequence (nm, pm, Dm) converges to (n, p,D). In conclusion, F is continuous.
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Next, we show that all fixed points of F (., σ) are uniformly bounded in L2(QT ), independent
of σ. For this we recall that, thanks to Grönwall’s inequality, we had the bound

∥nm(τ)∥2L2(Ω) + ∥pm(τ)∥2L2(Ω) + ∥Dm(τ)∥2L2(Ω) ≤ C(k)eC(k)τ ,

where the constant C(k) was independent of the input (n∗
m, p∗m, D∗

m, σm). This yields the
uniform bound for the fixed points of F (., σ), independent of σ.

It remains to show compactness of F . Again, we will use the already derived uniform bounds
to conclude this. To this end, let (n∗

m, p∗m, D∗
m, σm) be a bounded sequence in L2(QT )

3× [0, 1].
Again, denote by (nm, pm, Dm) = F (n∗

m, p∗m, D∗
m, σm). The bounds derived above allow us

to conclude that (nm, pm, Dm)m∈N is uniformly bounded in the right spaces to apply Aubin-
Lions lemma, thus there exists a subsequence (nm′ , pm′ , Dm′)m′∈N, which is strongly converging
in L2(QT )

3, hence F is compact.
By the Leray-Schauder fixed-point theorem, it follows that F (., 1) has (at least) one fixed

point (n, p,D) ∈ L2(QT )
3, which concludes the proof.

To close this subsection, we will show that the obtained fixed point is nonnegative and that
we have conservation of mass for Dk. More precisely, the following statement holds.

Lemma 40. Let the assumptions (A1)-(A4) hold and let (nk, pk, Dk) be the fixed point obtained
in Lemma 39, i.e. (nk, pk, Dk, Vk) is a weak solution to (4.11)-(4.12). Then it holds that the
solution is nonnegative, i.e. nk, pk, Dk ≥ 0.

Proof. We will prove the nonnegativity of nk. The strategy will be to test with the negative
part of the solution and then conclude that it has to be 0. Let n−

k = min(0, nk) and note that
we have to use n−

k −'n− as a test function in order to respect the Dirichlet boundary condition,
but since 'n > 0 in Ω, integrals involving the negative part of 'n vanish. By definition of n−

k , it
holds that Tk(nk)1(nk≤0) = 0. Since ∇n−

k = 1(nk≤0)∇nk, the weak formulation reduces to� τ

0
⟨∂tnk, n

−
k ⟩ dt+

� τ

0

�
Ω
S1
k(nk)∇nk · ∇n−

k dx dt = 0.

We reformulate the first integral and see� τ

0
⟨∂tnk, n

−
k ⟩ dt =

1

2

� τ

0

d

dt

�
Ω
(n−

k )
2 dx dt

=
1

2

�
Ω
(n−

k )
2(τ) dx− 1

2

�
Ω
(n−

k )
2(0) dx

=
1

2

�
Ω
(n−

k )
2(τ) dx,

since n−
k (0) = min(0, nI) and nI ≥ 0 by assumption. To compute the second integral, we note

that S1
k(nk)1(nk≤0) = 1, therefore we have� τ

0

�
Ω
S1
k(nk)∇nk · ∇n−

k dx dt =

� τ

0

�
Ω
S1
k(nk)1(nk≤0)∇nk · ∇nk dx dt

=

� τ

0

�
Ω
1(nk≤0)∇nk · ∇nk dx dt

=

� τ

0

�
Ω
|∇n−

k |2 dx dt.
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Combining our computations we obtain

1

2

�
Ω
(n−

k )
2(τ) dx+

� τ

0

�
Ω
|∇n−

k |2 dx dt = 0,

hence n−
k = 0 a.e in QT , since both integrands are nonnegative. This shows that nk ≥ 0. The

computations to show that pk ≥ 0 and Dk ≥ 0 are completely identical, thus we do not write
them down.

Lemma 41. Let the assumptions (A1)–(A4) hold and let (nk, pk, Dk) be the fixed point obtained
in Lemma 39, i.e. (nk, pk, Vk) is a weak solution to (4.11)–(4.12). Then it holds that the mass
of Dk is conserved for all τ ∈ [0, T ],�

Ω
Dk(τ) dx =

�
Ω
DI dx, for all τ ∈ [0, T ]. (4.16)

Proof. We use 1 as a test function in the weak formulation for Dk and directly obtain

0 =

� τ

0
⟨∂tDk, 1⟩ dt =

� τ

0

d

dt

�
Ω
Dk dx dt =

�
Ω
Dk(τ) dx−

�
Ω
DI dx.

4.2.3 Uniform estimates

The next step is to derive k-uniform estimates. Since the densities are only nonnegative
and G,H are singular at 0 we cannot use G(nk) − G('n) − (Vk − 'V ), G(pk) − G('p) + Vk − 'V
and H(Dk) + Vk directly as a test function and thus need to regularize. Let us recall the
cut-offs

Tk(z) = max(0,min(k, z)),

S1
k(z) =

��
1, z ≤ 0,

zG′(z), 0 < z ≤ k,

k2/3z1/3G′(z), k < z,

, S2
k(z) =

��
1, z ≤ 0,

zH ′(z), 0 < z ≤ k
k+1 ,

1 + k, k
k+1 < z.

We now define the regularizations via the following desired relations:#
Tk(nk) + δ∇g′k,δ(nk) = ∇'gk,δ(nk),#
Tk(nk) + δ∇'gk,δ(nk) = S1

k(nk)∇nk,#
Tk(pk) + δ∇g′k,δ(pk) = ∇'gk,δ(pk),#
Tk(pk) + δ∇'gk,δ(pk) = S1

k(pk)∇pk,"
T k

k+1
(Dk) + δ∇h′k,δ(Dk) = ∇'hk,δ(Dk),"

T k
k+1

(Dk) + δ∇'hk,δ(Dk) = S2
k(Dk)∇Dk,
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which yields

g′′k,δ(s) =
S1
k(s)

Tk(s) + δ
=

�
sG′(s)
s+δ , 0 < s ≤ k,

k2/3s1/3G′(s)
k+δ , k < s,

'g′k,δ(s) = #
Tk(s) + δ g′′k,δ(s) =


sG′(s)√

s+δ
, 0 < s ≤ k,

k2/3s1/3G′(s)√
k+δ

, k < s,

h′′k,δ(s) =
S2
k(s)

T k
k+1

(s) + δ
=


1

1−s
1

s+δ , 0 ≤ s ≤ k
k+1 ,

1+k
k

k+1
+δ

, k
k+1 < s,

'h′k,δ(s) = "
T k

k+1
(s) + δ h′′k,δ(s) =


1

1−s
1√
s+δ

, 0 ≤ s ≤ k
k+1 ,

1+k�
k

k+1
+δ

, k
k+1 < s,

(4.17)

with the respective anti-derivatives

gk,δ(s) =

� s

F1/2(0)

� y

F1/2(0)

S1
k(z)

Tk(z) + δ
dz dy,

'gk,δ(s) = � s

0

S1
k(y)#

Tk(y) + δ
dy,

hk,δ(s) =

� s

F−1(0)

� y

F−1(0)

S2
k(z)

T k
k+1

(z) + δ
dz dy,

'hk,δ(s) = � s

0

S2
k(y)"

T k
k+1

(y) + δ
dy.

(4.18)

We also define
Gk,δ(s|'s) := gk,δ(s)− gk,δ('s)− g′k,δ('s)(s− 's),
Hk,δ(s) := hk,δ(s) + s'V ,

(4.19)

and the regularized entropy

Ek,δ[nk, pk, Dk, Vk](t) :=

�
Ω
Gk,δ(nk|'n) +Gk,δ(pk|'p) +Hk,δ(Dk) +

λ2

2
|∇(V − 'V )|2 dx,

Ek,δ[nk, pk, Dk, Vk](0) := Ek,δ[nI , pI , DI , V I ] = EI
k,δ,

Λk,δ := 2

�***∇(g′k,δ('n)− 'V )
***2
L∞(QT )

+
***∇(g′k,δ('p) + 'V )

***2
L∞(QT )

�
.

(4.20)

The following estimate holds.

Lemma 42. There exist constants C1, C2 > 0 such that for any k and δ satisfying the inequal-
ities 0 < δ < F1/2(0) < k and s > 0 the following estimate holds:

Tk(s)
5/3 ≤ C1gk,δ(s) + C2. (4.21)
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Proof. Observe that since gk,δ is nonnegative, if 0 < s ≤ F1/2(0) then by assumption s < k

and Tk(s)
5/3 = s

5
3 ≤ F1/2(0)

5
3 . If F1/2(0) < s ≤ k, we can infer from the definition of gk,δ and

from Corollary 74 that

gk,δ(s) =

� s

F1/2(0)

� y

F1/2(0)

zG′(z)
z + δ

dz dy ≥ C

� s

F1/2(0)

� y

F1/2(0)

1 + z2/3

z + δ
dz dy

≥ C

� s

F1/2(0)

� y

F1/2(0)

z2/3

z + δ
dz dy ≥ C

2

� s

F1/2(0)

� y

F1/2(0)
z−1/3 dz dy

=
3C

4

�
3

5
s5/3 −F1/2(0)

2/3s+
2

5
F1/2(0)

5/3

�
,

where we used δ < F1/2(0) for the second inequality in the second line. This shows the claim

for arguments s ∈ (F1/2(0), k]. Finally if s > k, then Tk(s)
5/3 = Tk(k)

5/3 and gk,δ(k) ≤ gk,δ(s),
so inequality (4.21) also holds on this interval.

To take the limit δ → 0 we now derive δ-uniform bounds.

Lemma 43. Let the assumptions (A1)–(A4) hold and let (nk, pk, Dk, Vk) be a weak solution
to (4.11)–(4.12) as obtained in Lemma 39. Then for all δ > 0 and all 0 < τ < T there holds
the following regularized energy inequality:

Ek,δ[nk, pk, Dk, Vk](t)

+
1

2

� τ

0

�
Ω
|∇'gk,δ(nk)−

#
Tk(nk) + δ∇Vk|2 dx dt

+
1

2

� τ

0

�
Ω
|∇'gk,δ(pk) +#

Tk(pk) + δ∇Vk|2 dx dt

+
1

2

� τ

0

�
Ω
|∇'hk,δ(Dk) +

"
T k

k+1
(Dk) + δ∇Vk|2 dx dt ≤ EI

k,δ + C(EI
k,δ,

'V , δ,Λk,δ, T ).

(4.22)
The constant C(EI

k,δ,
'V , δ,Λk,δ, T ) vanishes if Λk,δ = 0 and δ = 0.

Proof. We use g′k,δ(nk)−g′k,δ('n)−(Vk− 'V ), g′k,δ(pk)−g′k,δ('p)+Vk− 'V and h′k,δ(Dk)+Vk as test
functions in the weak formulations and add the equations. For the left-hand side this yields

� τ

0
⟨∂tnk, g

′
k,δ(nk)− g′k,δ('n)− (Vk − 'V )⟩ dt

+

� τ

0
⟨∂tpk, g′k,δ(pk)− g′k,δ('p) + (Vk − 'V )⟩ dt

+

� τ

0
⟨∂tDk, h

′
k,δ(Dk) + Vk⟩ dt.
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We rewrite this expression term by term, use that 'n, 'p, 'D are independent of t, and get

⟨∂tnk, g
′
k,δ(nk)− g′k,δ('n)⟩ = d

dt

�
Ω
(gk,δ(nk)− gk,δ('n))− g′k,δ('n)(nk − 'n) dx

⟨∂tpk, g′k,δ(pk)− g′k,δ('p)⟩ = d

dt

�
Ω
(gk,δ(pk)− gk,δ('p))− g′k,δ('p)(pk − 'p) dx

⟨∂tDk, h
′
k,δ(Dk) + 'V ⟩ = d

dt

�
Ω
hk,δ(Dk) +Dk

'V dx,

−⟨∂t(nk − pk −Dk), Vk − 'V ⟩ = λ2

2

d

dt

�
Ω
|∇(Vk − 'V )|2 dx.

By (4.20), this is exactly

Ek,δ[nk, pk, Dk, Vk](τ)− EI
k,δ.

Next, we compute and estimate the right-hand sides of the weak formulation. We start with
the equation for nk,

� τ

0
⟨∂tnk, g

′
k,δ(nk)− g′k,δ('n)− (Vk − 'V )⟩ dt

= −
� τ

0

�
Ω
(S1

k(nk)∇nk − Tk(nk)∇Vk) · ∇(g′k,δ(nk)− g′k,δ('n)− (Vk − 'V )) dx dt.

Rewriting the first term of the product using the definition of 'g′k,δ(nk) yields

S1
k(nk)∇nk − Tk(nk)∇Vk =

#
Tk(nk) + δ

�
S1
k(nk)#

Tk(nk) + δ
∇nk −

#
Tk(nk) + δ∇Vk

�
+ δ∇Vk

=
#
Tk(nk) + δ (∇'gk,δ(nk)−

#
Tk(nk) + δ∇Vk) + δ∇Vk.

We also rewrite the first part of the test function,

∇(g′k,δ(nk)− Vk) = g′′k,δ(nk)∇nk −∇Vk =
∇'gk,δ(nk)−

#
Tk(nk) + δ∇Vk#

Tk(nk) + δ
.
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Plugging these into the integral and further using Young’s inequality we obtain

−
� τ

0

�
Ω
(S1

k(nk)∇nk − Tk(nk)∇Vk) · ∇(g′k,δ(nk)− g′k,δ('n)− (Vk − 'V )) dx dt

= −
� τ

0

�
Ω
|∇'gk,δ(nk)−

#
Tk(nk) + δ∇Vk|2 dx dt

−
� τ

0

�
Ω

δ#
Tk(nk) + δ

∇Vk · (∇'gk,δ(nk)−
#

Tk(nk) + δ∇Vk) dx dt

+

� τ

0

�
Ω

#
Tk(nk) + δ (∇'gk,δ(nk)−

#
Tk(nk) + δ∇Vk) · ∇(g′k,δ('n)− 'V ) dx dt

+

� τ

0

�
Ω
δ∇Vk · ∇(g′k,δ('n)− 'V ) dx dt

≤ −1

2

� τ

0

�
Ω
|∇'gk,δ(nk)−

#
Tk(nk) + δ∇Vk|2 dx dt

+

� τ

0

�
Ω

δ2

Tk(nk) + δ
|∇Vk|2 dx dt+

� τ

0

�
Ω
(Tk(nk) + δ)|∇(g′k,δ('n)− 'V )|2 dx dt

+
δ

2

� τ

0

�
Ω
|∇Vk|2 dx dt+ δ

2

� τ

0

�
Ω
|∇(g′k,δ('n)− 'V )|2 dx dt

≤ −1

2

� τ

0

�
Ω
|∇'gk,δ(nk)−

#
Tk(nk) + δ∇Vk|2 dx dt

+ 2δ

� τ

0

�
Ω
|∇Vk|2 dx dt+ 2∥∇(g′k,δ('n)− 'V )∥2L∞(QT )

� τ

0

�
Ω
Tk(nk) + δ dx dt.

We estimate the first integral in the very last line by

2δ

� τ

0

�
Ω
|∇Vk|2 dx dt = 2δ

� τ

0

�
Ω
|∇(Vk − 'V ) +∇'V |2 dx dt

≤ 4δ

� τ

0

�
Ω
|∇(Vk − 'V )|2 dx dt+ 4δ

� τ

0

�
Ω
|∇'V |2 dx dt.

The term Tk(nk) in the last integral can be estimated by Gk,δ(nk), which we will do once we
add the estimates for all species nk, pk and Dk.
Combining the last estimates, we find that

−
� τ

0

�
Ω
(S1

k(nk)∇nk − Tk(nk)∇Vk) · ∇(g′k,δ(nk)− g′k,δ('n)− (Vk − 'V )) dx dt

≤ −1

2

� τ

0

�
Ω
|∇'gk,δ(nk)−

#
Tk(nk) + δ∇Vk|2 dx dt

+ 4δ

� τ

0

�
Ω
|∇(Vk − 'V )|2 dx dt+ 4δ

� τ

0

�
Ω
|∇'V |2 dx dt

+ 2∥∇(g′k,δ('n)− 'V )∥2L∞(QT )

� τ

0

�
Ω
Tk(nk) + δ dx dt.

Note that we did not plug in the estimate for Tk(nk) yet, since we will use it after finally adding
all the inequalities.
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Computing and estimating the right-hand side of the weak formulation for pk is analogue to
the computations for nk, hence we omit the details and only state the final estimate

−
� τ

0

�
Ω
(S1

k(pk)∇pk + Tk(pk)∇Vk) · ∇(g′k,δ(pk)− g′k,δ('p) + (Vk − 'V )) dx dt

≤ −1

2

� τ

0

�
Ω
|∇'gk,δ(pk) +#

Tk(pk) + δ∇Vk|2 dx dt

+ 4δ

� τ

0

�
Ω
|∇(Vk − 'V )|2 dx dt+ 4δ

� τ

0

�
Ω
|∇'V |2 dx dt

+ 2∥∇(g′k,δ('p) + 'V )∥2L∞(QT )

� τ

0

�
Ω
Tk(pk) + δ dx dt.

And lastly, we estimate the right-hand side of the weak formulation for Dk:

� τ

0
⟨∂tDk, h

′
k,δ(Dk) + Vk⟩ dt

= −
� τ

0

�
Ω
(S2

k(Dk)∇Dk + T k
k+1

(Dk)∇Vk) · ∇(h′k,δ(Dk) + Vk) dx dt.

We rewrite the first factor on the right-hand side to

S2
k(Dk)∇Dk + T k

k+1
(Dk)∇Vk

=
"
T k

k+1
(Dk) + δ

 S2
k(Dk)"

T k
k+1

(Dk) + δ
∇Dk +

"
T k

k+1
(Dk) + δ∇Vk


− δ∇Vk

=
"
T k

k+1
(Dk) + δ (∇'hk,δ(Dk) +

"
T k

k+1
(Dk) + δ∇Vk)− δ∇Vk,

and reformulate the gradient of the test function to

∇(h′k,δ(Dk) + Vk) = h′′k,δ(Dk)∇Dk +∇Vk =
∇'hk,δ(Dk) +

"
T k

k+1
(Dk) + δ∇Vk"

T k
k+1

(Dk) + δ
.
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Plugging these computations into the integral and using Young’s inequality we obtain

−
� τ

0

�
Ω
(S2

k(Dk)∇Dk + T k
k+1

(Dk)∇Vk) · ∇(h′k,δ(Dk) + Vk) dx dt

= −
� τ

0

�
Ω
|∇'hk,δ(Dk) +

"
T k

k+1
(Dk) + δ∇Vk|2 dx dt

+

� τ

0

�
Ω

δ"
T k

k+1
(Dk) + δ

∇Vk · (∇'hk,δ(Dk) +
"
T k

k+1
(Dk) + δ∇Vk) dx dt

≤ −1

2

� τ

0

�
Ω
|∇'hk,δ(Dk) +

"
T k

k+1
(Dk) + δ∇Vk|2 dx dt

+
δ

2

� τ

0

�
Ω
|∇Vk|2 dx dt

≤ −1

2

� τ

0

�
Ω
|∇'hk,δ(Dk) +

"
T k

k+1
(Dk) + δ∇Vk|2 dx dt

+ δ

� τ

0

�
Ω
|∇(Vk − 'V )|2 dx dt+ δ

� τ

0

�
Ω
|∇'V |2 dx dt.

Now, we add all estimates, recall Λk,δ = 2(∥∇(g′k,δ('n)−'V )∥2L∞(QT )+∥∇(g′k,δ('p)+'V )∥2L∞(QT )),
and obtain

Ek,δ[nk, pk, Dk, Vk](τ) +
1

2

� τ

0

�
Ω
|∇'gk,δ(nk)−

#
Tk(nk) + δ∇Vk|2 dx dt

+
1

2

� τ

0

�
Ω
|∇'gk,δ(pk) +#

Tk(pk) + δ∇Vk|2 dx dt

+
1

2

� τ

0

�
Ω
|∇'hk,δ(Dk) +

"
T k

k+1
(Dk) + δ∇Vk|2 dx dt

≤ EI
k,δ + Λk,δ

� τ

0

�
Ω
Tk(nk) + Tk(pk) + δ dx dt

+ 9δ

� τ

0

�
Ω
|∇(Vk − 'V )|2 dx dt+ 9δ

� τ

0

�
Ω
|∇'V |2 dx dt

≤ EI
k,δ + C(δ, 'n, 'p, 'V ) + C

� τ

0
Ek,δ[nk, pk, Dk, Vk] dt.

By Grönwall’s inequality we conclude that

Ek,δ[nk, pk, Dk, Vk](τ) ≤ (EI
k,δ + C(δ, 'n, 'p, 'V ))eCτ .

Using this information in the previous inequality shows (4.22).

The next step is taking the limit δ → 0. To this end, we first define the following auxiliary
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functions:

g′′k(s) :=
S1
k(s)

Tk(s)
=

�
G′(s), 0 < s ≤ k,

k−1/3s1/3G′(s), k < s,

'g′k(s) := #
Tk(s)g

′′
k(s) =

�√
sG′(s), 0 < s ≤ k,

k1/6s1/3G′(s), k < s,

h′′k(s) :=
S2
k(s)

T k
k+1

(s)
=


1

1−s
1
s , 0 < s ≤ k

k+1 ,
k+1

( k
k+1)

= (k + 1)k+1
k , k

k+1 < s,

'h′k(s) := "
T k

k+1
(s)h′′k(s) =

��
1

1−s
1√
s
, 0 < s ≤ k

k+1 ,

k+1�
k

k+1

= (k + 1)
"

k+1
k , k

k+1 < s.

(4.23)

The respective anti-derivatives are

gk(s) =

� s

F1/2(0)

� y

F1/2(0)

S1
k(z)

Tk(z)
dz dy,

'gk(s) = � s

0

S1
k(y)#
Tk(y)

dy,

hk(s) =

� s

F−1(0)

� y

F−1(0)

S2
k(z)

T k
k+1

(z)
dz dy,

'hk(s) = � s

0

S2
k(y)"

T k
k+1

(y)
dy.

(4.24)

Furthermore, we define

Gk(s|'s) := gk(s)− gk('s)− g′k('s)(s− 's),
Hk(s) := hk(s) + s'V ,

(4.25)

and the approximate entropy

Ek[nk, pk, Dk, Vk](t) :=

�
Ω
Gk(nk|'n) +Gk(pk|'p) +Hk(Dk) +

λ2

2
|∇(Vk − 'V )|2 dx,

Ek[nk, pk, Dk, Vk](0) := Ek[nI , pI , DI , V I ] = EI
k ,

Λk := 2
�
∥∇(g′k('n)− 'V )∥2L∞(QT ) + ∥∇(g′k('p) + 'V )∥2L∞(QT )

�
.

(4.26)

Now the following estimate holds:

Lemma 44. Let the assumptions (A1)–(A4) hold and let (nk, pk, Dk, Vk) be a weak solution
to (4.11)-(4.12). Then there exists a constant C(EI

k ,Λk, T ) > 0 such that for all 0 < τ < T it
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holds that

Ek[nk, pk, Dk, Vk](τ)

+
1

2

� τ

0

�
Ω
|∇'gk(nk)−

#
Tk(nk)∇Vk|2 dx dt

+
1

2

� τ

0

�
Ω
|∇'gk(pk) +#

Tk(pk)∇Vk|2 dx dt

+
1

2

� τ

0

�
Ω
|∇'hk(Dk) +

"
T k

k+1
(Dk)∇Vk|2 dx dt ≤ EI

k + C(EI
k ,Λk, T ).

(4.27)

The constant C(EI
k ,Λk, T ) vanishes if Λk = 0. Furthermore, there exists a constant C > 0

independent of k, such that the following bounds hold for all k ∈ N:

∥gk(nk)∥L∞(0,T ;L1(Ω)) + ∥gk(pk)∥L∞(0,T ;L1(Ω)) + ∥hk(Dk)∥L∞(0,T ;L1(Ω)) ≤ C,***∇'gk(nk)−
#

Tk(nk)∇Vk

***
L2(QT )

+
***∇'gk(pk) +#

Tk(pk)∇Vk

***
L2(QT )

≤ C,

∥∇Vk∥L∞(0,T ;L2(Ω)) +

****∇'hk(Dk) +
"
T k

k+1
(Dk)∇Vk

****
L2(QT )

≤ C.

(4.28)

Proof. Since the computations for nk and pk are analogue, we will only explicitly write them
down for nk. We have to show the following convergences as δ → 0:

∇'gk,δ(nk)−
#
Tk(nk) + δ∇Vk ⇀ ∇'gk(nk)−

#
Tk(nk)∇Vk, weakly in L2(QT ),

∇'hk,δ(Dk) +
"
T k

k+1
(Dk) + δ∇Vk ⇀ ∇'hk(Dk) +

"
T k

k+1
(Dk)∇Vk, weakly in L2(QT ),

gk,δ(nk) → gk(nk), strongly in L1(QT ),

hk,δ(Dk) → hk(Dk), strongly in L1(QT ).

Using the following estimates andconvergences as δ → 0,

|
#
Tk(nk) + δ −

#
Tk(nk)| = δ

|#Tk(nk) + δ +
#

Tk(nk)|
<

√
δ → 0,

|
"

T k
k+1

(Dk) + δ −
"

T k
k+1

(Dk)| = δ

|
"
T k

k+1
(Dk) + δ +

"
T k

k+1
(Dk)|

<
√
δ → 0,

|Tk(nk) + δ − Tk(nk)| = δ → 0,

|T k
k+1

(Dk) + δ − T k
k+1

(Dk)| = δ → 0,

we can conclude by the monotone convergence theorem that

gk,δ(nk) =

� nk

F1/2(0)

� y

F1/2(0)

T 1
k (z)

Tk(z) + δ
dz dy

→
� nk

F1/2(0)

� y

F1/2(0)

T 1
k (z)

Tk(z)
dz dy = gk(nk), a.e. in QT ,
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and similarly this convergence holds for 'gk,δ(nk) → 'gk(nk), gk,δ(pk) → gk(pk), 'gk,δ(pk) → 'gk(pk)
and hk,δ(Dk) → hk(Dk), 'hk,δ(Dk) → 'hk(Dk) almost everywhere in QT .

Next, we derive uniform in δ bounds on gk(nk), 'gk(nk), gk(pk), 'gk(pk), hk(Dk), 'hk(Dk), which
will allow us to apply the dominated convergence theorem and obtain the desired strong and
weak convergences. We start with 'gk,δ(s). Assuming that s > k, we have

'gk(s) = � s

0
'g′k(y) dy =

� k

0

√
yG′(y) dy +

� s

k
k1/6y1/3G′(y) dy

≤ C

� k

0
y1/6 + y−1/2 dy + Ck1/6

� s

k
1 + y−2/3 dy

≤ C(k)(s+ 1),

and the same inequality holds for s ≤ k, since the constant is allowed to depend on k. Hence,
we conclude that 'gk,δ(nk) ≤ 'gk(nk) ≤ C(k)(nk + 1).

Next, we estimate 'hk,δ(s). Assuming s > k
k+1 , we get

'hk(s) = � s

0

'h′k(y) dy =

� k
k+1

0

1

1− y

1√
y
dy +

� s

k
k+1

(k + 1)

$
k + 1

k
dy ≤ C(k)(s+ 1).

Note that again for s ≤ k
k+1 this bound trivially holds as well, hence we have

'hk,δ(Dk) ≤ 'hk(Dk) ≤ C(k)(Dk + 1).

Next, we give a bound on gk,δ(s). Assume that s > k and w.l.o.g. k > 1, then we can compute

gk(s) =

� k

F1/2(0)

� y

F1/2(0)
G′(z) dz dy +

� s

k

� k

F1/2(0)
G′(z) dz dy +

� s

k

� y

k
k−1/3z1/3G′(z) dz dy

≤ C

� k

F1/2(0)
y2/3 dy +G(k)(s− k) + Ck−1/3

� s

k
y + 3y1/3 − k − 3k1/3 dy

≤ C(k)(s2 + 1),

where we used Lemma 77 to estimate G(y) ≤ Cy2/3. Again, if s ≤ k, the above bound holds
trivially. This allows us to conclude

gk,δ(nk) ≤ gk(nk) ≤ C(k)(n2
k + 1).

Finally, we estimate hk,δ(s). Assume that s > k
k+1 , then we can compute (cf. F−1(0) = 1/2)

hk(s) =

� k
k+1

F−1(0)

� y

F−1(0)

1

1− z

1

z
dz dy

+

� s

k
k+1

� k
k+1

F−1(0)

1

1− z

1

z
dz dy +

� s

k
k+1

� y

k
k+1

(k + 1)
k + 1

k
dz dy

≤ C(k) + C(k)(s+ 1) + C(k)(s2 + 1) ≤ C(k)(s2 + 1).
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Again, if s ≤ k
k+1 , the above bound holds trivially and we conclude

hk,δ(Dk) ≤ hk(Dk) ≤ C(k)(D2
k + 1).

Using the derived uniform in δ bounds together with the QT -a.e. convergences and the
regularities nk, pk, Dk ∈ L2(QT ), we can conclude that

'gk,δ(nk) → 'gk(nk), strongly in L2(QT ),

gk,δ(nk) → gk(nk), strongly in L1(QT ),'hk,δ(Dk) → 'hk(Dk), strongly in L2(QT ),

hk,δ(Dk) → hk(Dk), strongly in L1(QT ).

From (4.22) we infer that there exists a constant C > 0 independent of δ such that***∇'gk,δ(nk)−
#
Tk(nk) + δ∇Vk

***
L2(QT )

+
***∇'gk,δ(pk) +#

Tk(pk) + δ∇Vk

***
L2(QT )

+

****∇'hk,δ(Dk) +
"
T 3
k (Dk) + δ∇Vk

****
L2(QT )

≤ C,

hence there exists a subsequence that converges weakly in L2(QT ). By the previous arguments
we can identify the weak limit and obtain

∇'gk,δ(nk)−
#
Tk(nk) + δ∇Vk ⇀ ∇'gk(nk)−

#
Tk(nk)∇Vk

∇'gk,δ(pk) +#
Tk(pk) + δ∇Vk ⇀ ∇'gk(pk) +#

Tk(pk)∇Vk

∇'hk,δ(Dk) +
"
T 3
k (Dk) + δ∇Vk ⇀ ∇'hk(Dk) +

"
T 3
k (Dk)∇Vk,

all weakly in L2(QT ). Furthermore, thanks to the derived convergences, we can take the
limit δ → 0 in (4.22), which shows (4.27). The uniform bounds in (4.28) are now a direct
consequence of (4.27), which finishes the proof.

In the next lemma we collect some estimates, which are needed to improve the regularity of
the solution.

Lemma 45. For s > 0 and k > 1 it holds that

G′(s) ≤ g′′k(s),

s5/3 ≲ gk(s) + 1,

Tk(s)
7/6 ≲ 'gk(s),'gk(s)10/7 ≲ gk(s) + 1,

Tk(s)
5/3 ≲ gk(s) + 1.

(4.29)

Proof. The first inequality is a direct consequence of the definition of g′′k(s) in (4.23). To
show the second estimate, we use the first inequality together with the estimate on G′ from
Lemma 73 and compute

gk(s) ≥ C

� s

F1/2(0)

� y

F1/2(0)
z−1 + z−1/3 dz dy ≥ 'C1s

5/3 − 'C2.
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4 Analysis of a charge transport system with Fermi-Dirac statistics for memristive devices

To show the third estimate, let 0 < s ≤ k. By definition we then have Tk(s) = s and, thanks
to Corollary 74, s1/6 ≤ Cs1/2G′(s). Combining this with the definition of 'g′k(s) we obtain

T ′
k(s)Tk(s)

1/6 ≤ Cs1/2G′(s) = C'g′k(s).
Integrating this inequality from 0 to s yields

Tk(s)
7/6 ≤ C'gk(s).

If s > k, the same inequality holds since Tk is constant and 'gk is nondecreasing. To show the
fourth estimate, let again 0 < s ≤ k. Then, from the definition of 'gk(s) and by Corollary 74
we have

'gk(s) = � s

0
y1/2G′(y) dy ≤ C

� s

0
y1/6 + y−1/2 dy = C

�
6

7
s7/6 + 2s1/2

�
.

It directly follows that

'gk(s)10/7 ≤ C
�
s5/3 + 1

�
.

If s > k, we can use this estimate together with Corollary 74 and compute

'gk(s) = � k

0
y1/2G′(y) dy +

� s

k
k1/6y1/3G′(y) dy

≤ C
�
k7/6 + k1/2

�
+ Ck1/6

�
s+ s1/3

�
≤ Cs7/6.

Together with the estimate on s ∈ (0, k] we can conclude that

'gk(s)10/7 ≤ C
�
s5/3 + 1

�
≤ C1gk(s) + C2, ∀ s > 0.

The last inequality is a direct consequence of the previously proven inequalities. This finishes
the proof.

With the estimates from Lemma 44 and Lemma 45 we can derive the following uniform
bounds.

Lemma 46. Let the assumptions (A1)–(A4) hold and let (nk, pk, Dk, Vk)k∈N be the sequence
of solutions to (4.11)–(4.12). Then there exists a constant C > 0 independent of k ∈ N, such
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that ***#Tk(nk)
***
L∞(0,T ;L10/3(Ω))

+
***#Tk(pk)

***
L∞(0,T ;L10/3(Ω))

≤ C,

∥'gk(nk)∥L∞(0,T ;L10/7(Ω)) + ∥'gk(pk)∥L∞(0,T ;L10/7(Ω)) ≤ C,

∥∇'gk(nk)∥L2(0,T ;L5/4(Ω)) + ∥∇'gk(pk)∥L2(0,T ;L5/4(Ω)) ≤ C,***#Tk(nk)∇Vk

***
L∞(0,T ;L5/4(Ω))

+
***#Tk(pk)∇Vk

***
L∞(0,T ;L5/4(Ω))

≤ C,

∥nk∥L∞(0,T ;L5/3(Ω)) + ∥√nk∥L∞(0,T ;L10/3(Ω)) ≤ C,

∥pk∥L∞(0,T ;L5/3(Ω)) + ∥√pk∥L∞(0,T ;L10/3(Ω)) ≤ C,

∥∇nk∥L2(0,T ;L5/4(Ω)) + ∥∇pk∥L2(0,T ;L5/4(Ω)) ≤ C,***∇'hk(Dk)
***
L2(QT )

+

****"T k
k+1

(Dk)∇Vk

****
L∞(0,T ;L2(Ω))

≤ C,

∥∇Dk∥L2(QT ) +
***∇#

Dk

***
L2(QT )

≤ C.

(4.30)

Proof. All estimates except those for∇nk,∇pk,∇Dk and∇√
Dk follow directly from Lemma 44

and Lemma 45 by simply combining the results. Let us note that in order to obtain the
estimates on∇'hk(Dk) as well as

"
T k

k+1
(Dk)∇Vk one additionally has to use that T k

k+1
(Dk) < 1

for all k ∈ N. To show the bound on ∇nk and ∇pk, we write

|∇'gk(nk)| = |'g′k(nk)∇nk|.
By definition of 'g′k, together with Corollary 74, we have

'g′k(s) =
�
s1/2G′(s) ∼ s1/6 + s−1/2, s ∈ (0, k),

k1/6s1/3G′(s) ∼ k1/6(1 + s−2/3), s ≥ k,

hence there exists a constant C > 0 independent of s and k such that

'g′k(s) ≥ C.

This shows that
|∇'gk(nk)| = |'g′k(nk)∇nk| ≥ C|∇nk|,

which proves the bound for ∇nk and ∇pk. In order to show the bound for ∇Dk and ∇√
Dk

we remark that 'h′k(s) > 1 for all s > 0. Moreover, from the definition of 'h′k we also readily see

that it holds that 'h′k(s) > 1√
s
for all s > 0. Together, this shows that

|∇'hk(Dk)| = |'h′k(Dk)∇Dk| > |∇Dk|
|∇'hk(Dk)| = |'h′k(Dk)∇Dk| > | 1√

Dk
∇Dk| = 2|∇

#
Dk|,

which shows the claim and thus finishes the proof.

The next step is to improve the spatial regularity of some of the terms by using the Gagliardo-
Nirenberg inequality and a bootstrapping argument.
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4 Analysis of a charge transport system with Fermi-Dirac statistics for memristive devices

Lemma 47. Let d ≤ 9, then there exists a constant C > 0 independent of k such that the
following holds: ***#Tk(nk)

***
L2(0,T ;Lq(Ω))

+
***#Tk(pk)

***
L2(0,T ;Lq(Ω))

≤ C,***#Tk(nk)∇Vk

***
L2(0,T ;L2q/(q+2)(Ω))

+
***#Tk(pk)∇Vk

***
L2(0,T ;L2q/(q+2)(Ω))

≤ C,

∥∇'gk(nk)∥L2(0,T ;L2q/(q+2)(Ω)) + ∥∇'gk(pk)∥L2(0,T ;L2q/(q+2)(Ω)) ≤ C,

∥'gk(nk)∥L2(0,T ;L2qd/[(q+2)d−2q](Ω)) + ∥'gk(pk)∥L2(0,T ;L2qd/[(q+2)d−2q](Ω)) ≤ C,

∥∇nk∥L2(0,T ;L2q/(q+2)(Ω)) + ∥∇pk∥L2(0,T ;L2q/(q+2)(Ω)) ≤ C,

(4.31)

where the range of the exponent q depends on the dimension d as follows,

q ∈

��
[2,∞], d = 1,

[2,∞), d = 2,

[2, 8d
3(d−2)), d ∈ [3, 9].

(4.32)

Observe that the lower bound on q is due to the condition 2q/(q + 2) ≥ 1.

Proof. Let us define q0 := 10/3, which is the regularity exponent of
#

Tk(nk) in space as ob-
tained in Lemma 46. With this notation, we can rewrite the spatial exponents from Lemma 46
as follows, where a doublearrow ←→ means that the term on the right-hand side is the spatial
exponent of the term on the left-hand side:#

Tk(nk) ←→ q0,#
Tk(nk)∇Vk ←→

�
1

q0
+

1

2

�−1

,

∇'gk(nk) ←→
�

1

q0
+

1

2

�−1

.

By the Gagliardo-Nirenberg inequality we can use ∇'gk(nk) to improve the regularity of 'gk(nk).
With θ = 1 we obtain the following spatial exponent:

'gk(nk) ←→
�

1

q0
+

1

2
− 1

d

�−1

.

By the estimate from (4.29), we obtain the following improved spatial exponent for
#

Tk(nk):

#
Tk(nk) ←→ 7

3

�
1

q0
+

1

2
− 1

d

�−1

=: q1.

This allows us to derive the following recursion for the spatial exponent of
#

Tk(nk):

1

qm+1
=

3

7

�
1

qm
+

1

2
− 1

d

�
.
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Solving this recursion for its limit ℓ we get

1

ℓ
=

3

7

�
1

ℓ
+

1

2
− 1

d

�
⇒ ℓ =

8d

3(d− 2)
.

From d = 10 on we would not gain any regularity. Furthermore, since we are using the
Gagliardo-Nirenberg inequality, the constants in the bounds might blow up, hence we can only
do finitely many steps in the recursion and thus cannot reach the limit ℓ. For the case d = 1,
however, the exponent q = ∞ is due to Sobolev embeddings and no bootstrapping argument is
needed. The arguments for pk are exactly the same, hence we will omit them. This concludes
the proof.

4.2.4 Aubin-Lions lemma & identification of limits

Next, we derive uniform bounds for nk, pk, Dk as well as ∂tnk, ∂tpk, ∂tDk in order to apply the
Aubin-Lions lemma and extract a converging subsequence.

To this end, let us recall the equations in our system:

∂tnk = ∇ ·
�#

Tk(nk)∇'gk(nk)−
#

Tk(nk)
#
Tk(nk)∇Vk

�
,

∂tpk = ∇ ·
�#

Tk(pk)∇'gk(pk) +#
Tk(pk)

#
Tk(pk)∇Vk

�
,

∂tDk = ∇ ·
�"

T k
k+1

(Dk)∇'hk(Dk) +
"

T k
k+1

(Dk)
"
T k

k+1
(Dk)∇Vk

�
.

We also note that in the equations for nk and pk we will have to use test functions that have
a vanishing trace on the Dirichlet boundary ΓD of Ω.

Lemma 48. Let the assumptions (A1)–(A4) hold, let d ≤ 5 and let (nk, pk, Dk, Vk)k∈N be the
sequence of solutions to (4.11)–(4.12). Then there exists a constant C > 0 independent of k
such that

∥∂tnk∥L1(0,T ;W
1,2q/(q−4)
D (Ω)′) + ∥∂tpk∥L1(0,T ;W

1,2q/(q−4)
D (Ω)′) + ∥∂tDk∥L2(0,T ;H1(Ω)′) ≤ C,

∥nk∥L2(0,T ;W 1,2q/(q+2)(Ω)) + ∥pk∥L2(0,T ;W 1,2q/(q+2)(Ω)) + ∥Dk∥L2(0,T ;H1(Ω)) ≤ C.
(4.33)

Proof. We start with the bounds for Dk and ∂tDk. Using the Poincaré-Wirtinger inequality,
we can estimate

∥Dk∥L2(QT ) ≤ ∥Dk −Dk,Ω∥L2(QT ) + ∥Dk,Ω∥L2(QT ) ≤ CP ∥∇Dk∥L2(QT ) + ∥Dk,Ω∥L2(QT ) ,

where

Dk,Ω(t) =
1

m(Ω)

�
Ω
Dk(t) dx.

By Lemma 41 there holds conservation of mass, i.e.�
Ω
Dk(t) dx =

�
Ω
DI dx,
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and together with the uniform bound on ∇Dk from (4.30) we obtain a constant C > 0 inde-
pendent of k ∈ N such that

∥Dk∥L2(0,T ;H1(Ω)) ≤ C.

To derive a bound for ∂tDk, we recall that
"

T k
k+1

(Dk) is uniformly bounded in L∞(QT )

and by (4.28) we have that ∇'hk(Dk) +
"
T k

k+1
(Dk)∇Vk is uniformly bounded in L2(QT ).

Combining this yields that there exists a constant C > 0 independent of k such that****"T k
k+1

(Dk)∇'hk(Dk) +
"

T k
k+1

(Dk)
"
T k

k+1
(Dk)∇Vk

****
L2(QT )

≤ C.

This shows that ∂tDk is uniformly bounded in L2(0, T ;H1(Ω)′).
Next, we show the uniform bounds for nk, pk and ∇nk,∇pk. From (4.31) we have that the

sequences ∇nk and ∇pk are uniformly bounded in L2(0, T ;L2q/(q+2)(Ω)). By the Poincaré
inequality we therefore obtain that

∥nk∥L2(0,T ;L2q/(q+2)(Ω)) ≤ C ∥∇nk∥L2(0,T ;L2q/(q+2)(Ω))

+ C(T )
�
∥'n∥L2q/(q+2)(Ω) + ∥∇'n∥L2q/(q+2)(Ω)

�
≤ C.

To derive the uniform bound on ∂tnk and ∂tpk we recall that
#
Tk(nk) is uniformly bounded

in L2(0, T ;Lq(Ω)) and ∇'gk(nk) +
#

Tk(nk)∇Vk is uniformly bounded in L2(0, T ;L2q/(q+2)(Ω))
thanks to (4.31). Combining these estimates yields the existence of a constant C > 0 indepen-
dent of k such that***#Tk(nk)∇'gk(nk) +

#
Tk(nk)

#
Tk(nk)∇Vk

***
L1(0,T ;L2q/(q+4)(Ω))

≤ C.

This shows that ∂tnk and ∂tpk are uniformly bounded in L1(0, T ;W
1,2q/(q−4)
D (Ω)′), if q > 4,

which is the case if d < 6.

Having collected all necessary uniform bounds, we can now state the convergence result.

Lemma 49. Let the assumptions (A1)–(A4) hold and let (nk, pk, Dk)k∈N be the sequence of
solutions to (4.11)–(4.12). Then there exists a subsequence (which we have not relabelled) and
functions n, p ∈ L2(0, T ;L2q/(q+2)(Ω)) and D ∈ L2(QT ), such that in the limit k → ∞ and for
space dimension d ≤ 5 the following convergences hold:

nk → n, strongly in L2(0, T ;L2q/(q+2)(Ω)) ∩ L∞−(0, T ;L5/3−(Ω)),

pk → p, strongly in L2(0, T ;L2q/(q+2)(Ω)) ∩ L∞−(0, T ;L5/3−(Ω)),

Dk → D, strongly in L2(QT ),

(4.34)

where a Lebesgue space with exponent r− means that the statement holds for all spaces Ls(Ω)
with 1 ≤ s < r.
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Proof. The uniform bounds from Lemma 48 allow us to apply the Aubin-Lions lemma and
thus obtain a subsequence (nk, pk, Dk)k∈N, which is not relabelled, together with some func-
tions n, p ∈ L2(0, T ;L2q/(q+2)(Ω)) and D ∈ L2(QT ), such that

nk → n, strongly in L2(0, T ;L2q/(q+2)(Ω)),

pk → p, strongly in L2(0, T ;L2q/(q+2)(Ω)),

Dk → D, strongly in L2(QT ).

Observe that we have used the following chain of embeddings when applying the Aubin-Lions
lemma for nk and pk:

W
1,2q/(q+2)
D (Ω) �→ L2q/(q+2)(Ω) ⊂ L2q/(q+4)(Ω) ⊂ W

1,2q/(q−4)
D (Ω)′.

The improved regularity of the limit and convergences for nk and pk in the respective spaces
are now a consequence of (4.30).

It remains to identify the limits of all terms in the system. We start with the limits in the
equations for nk and pk.

Lemma 50. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence obtained in Lemma 49 and let (n, p,D) be the respective limit. Then it holds that

Tk(nk) → n, strongly in L1(0, T ;Lq/2−(Ω)) ∩ L∞−(0, T ;L5/3−(Ω)),

Tk(pk) → p, strongly in L1(0, T ;Lq/2−(Ω)) ∩ L∞−(0, T ;L5/3−(Ω)),#
Tk(nk) →

√
n, strongly in L2(0, T ;Lq−(Ω)) ∩ L∞−(0, T ;L10/3−(Ω)),#

Tk(pk) → √
p, strongly in L2(0, T ;Lq−(Ω)) ∩ L∞−(0, T ;L10/3−(Ω)).

(4.35)

Proof. We start with the convergence of Tk(nk) and Tk(pk). For r > 1 we compute

|nk − k|1(nk≥k) ≤ |nk|1(nk≥k) ≤ nk

�nk

k

�r−1
1(nk≥k) ≤

nr
k

kr−1
1(nk≥k).

Using this computation together with the uniform bound of nk in L2(0, T ;L2q/(q+2)(Ω)), we
obtain for the limit k → ∞

∥Tk(nk)− nk∥L1(QT ) =

� T

0

�
{nk≥k}

|k − nk| dx dt

≤
� T

0

�
Ω

nr
k

kr−1
dx dt =

∥nk∥rLr(QT )

kr−1
≤ C

kr−1
→ 0.

This shows the strong L1(QT )-convergence of Tk(nk) and Tk(pk) and hence the strong L2(QT )-
convergence of

#
Tk(nk) and

#
Tk(pk). From the uniform bounds in (4.30) and (4.31), we can

conclude the desired strong convergence of Tk(nk), Tk(pk),
#
Tk(nk) and

#
Tk(pk). This finishes

the proof.
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Lemma 51. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence obtained in Lemma 49 and let (n, p,D) be the respective limit. Then it holds that#

Tk(nk)∇Vk ⇀
√
n∇V, weakly in L2(0, T ;L2q/(q+2)(Ω)),#

Tk(pk)∇Vk ⇀
√
p∇V, weakly in L2(0, T ;L2q/(q+2)(Ω)).

(4.36)

Proof. From (4.28) we infer that

∇Vk ⇀ ∇V, weakly* in L∞(0, T ;L2(Ω)).

Combining this with the strong convergence
#

Tk(nk) →
√
n in L2(0, T ;Lq−(Ω)) we obtain#

Tk(nk)∇Vk ⇀
√
n∇V, weakly in L2(0, T ;L2q/(q+2)−(Ω)),

and together with the uniform bound from (4.31) we conclude#
Tk(nk)∇Vk ⇀

√
n∇V, weakly in L2(0, T ;L2q/(q+2)(Ω)).

The same holds for
#

Tk(pk)∇Vk, which finishes the proof.

Next, we will show the convergence of
#

Tk(nk)∇'gk(nk) and
#
Tk(pk)∇'gk(pk). For this we

need an intermediate result.

Lemma 52. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence obtained in Lemma 49 and let (n, p,D) be the respective limit. Then it holds that#

Tk(nk) 'g′k(nk) → nG′(n), strongly in L2(0, T ;L2q/(q+2)(Ω)) ∩ L∞−(0, T ;L5/3−(Ω)),#
Tk(pk) 'g′k(pk) → pG′(p), strongly in L2(0, T ;L2q/(q+2)(Ω)) ∩ L∞−(0, T ;L5/3−(Ω)).

(4.37)

Proof. We prove the convergence in L∞−(0, T ;L5/3−(Ω)). To this end, let 1 ≤ r < ∞ and
let 1 ≤ s < 5/3. Then we compute***#Tk(nk) 'g′k(nk) −nG′(n)

**
Lr(0,T ;Ls(Ω))

≤
***#Tk(nk) 'g′k(nk)− nkG

′(nk)
***
Lr(0,T ;Ls(Ω))

+
**nkG

′(nk)− nG′(n)
**
Lr(0,T ;Ls(Ω))

=

�� T

0

��
Ω

+++#Tk(nk) 'g′k(nk)− nkG
′(nk)

+++s dx

�r/s

dt

�1/r

+

�� T

0

��
Ω

++nkG
′(nk)− nG′(n)

++s dx

�r/s

dt

�1/r

.
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Using the definitions of 'g′k and Tk and combining them with the asymptotics from Corollary 74,
we can estimate the first integrand (note that on {nk ≤ k} it vanishes)+++#Tk(nk) 'g′k(nk)− nkG

′(nk)
+++s 1(nk≥k) =

+++n1/3
k G′(nk)

�
n
2/3
k − k2/3

�+++s 1(nk≥k)

≤ ++nkG
′(nk)

++s 1(nk≥k) ≤
+++++n

1+1/3
k G′(nk)

k1/3

+++++
s

1(nk≥k)

≲
+++++nk + n

1/3
k

k1/3

+++++
s

1(nk≥k) ≲
+++ nk

k1/3

+++s 1(nk≥k)

=
|nk|s
ks/3

1(nk≥k).

We use Lemma 78 to estimate the second integrand

++nkG
′(nk)− nG′(n)

++s = ++++� n

nk

(zG′(z))′ dz
++++s ≤ ++++� n

nk

|(zG′(z))′| dz
++++s ≲ ++++� n

nk

1 dz

++++s = |n− nk|s.

We combine both estimates and, using that nk is uniformly bounded in L∞(0, T ;L5/3(Ω)) due
to (4.30) together with the strong convergence nk → n in L∞−(0, T ;L5/3−(Ω)) from (4.34), we
obtain for the limit k → ∞
***#Tk(nk) 'g′k(nk)− nG′(n)

***
Lr(0,T ;Ls(Ω))

≤
�� T

0

��
Ω

|nk|s
ks/3

dx

�r/s

dt

�1/r

+

�� T

0

��
Ω
|nk − n|s dx

�r/s

dt

�1/r

= k−1/3 ∥nk∥Lr(0,T ;Ls(Ω)) + ∥nk − n∥Lr(0,T ;Ls(Ω)) → 0.

The strong convergence in L2(0, T ;L2q/(q+2)(Ω)) is proven in exactly the same way. The
computations to show the bounds for pk are identical, hence we skip them. This concludes the
proof.

We will now show that the terms nG′(n)∇n and pG′(p)∇p are well defined and identify them
as the limits of

#
Tk(nk)∇'gk(nk) and

#
Tk(pk)∇'gk(pk). To do so, we still need to improve on

the regularity of nG′(n) and pG′(p).

Lemma 53. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence obtained in Lemma 49, let (n, p,D) be the respective limit and let d ≤ 4. Then there
hold the convergences#

Tk(nk)
�
∇'gk(nk)−

#
Tk(nk)∇Vk

�
⇀ nG′(n)∇n− n∇V,#

Tk(pk)
�
∇'gk(pk) +#

Tk(pk)∇Vk

�
⇀ pG′(p)∇p+ p∇V,

(4.38)

both weakly in L1(0, T ;L2q/(q+2)(Ω)) ∩ L2(0, T ;L5/4(Ω)).
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Proof. First, we have to improve the regularity of nG′(n). From the definition of 'g′k and by
Corollary 74 we directly see that#

Tk(nk) 'g′k(nk) ≤ nkG
′(nk) ≲ 1 + n

2/3
k .

Using the Gagliardo-Nirenberg inequality together with the uniform bound on∇nk from (4.31),
which also holds for ∇n, we obtain

∥nk∥L2(0,T ;Lr(Ω)) ≤ C ∥∇nk∥L2(0,T ;L2q/(q+2)(Ω)) + C ∥nk∥L2(0,T ;L2q/(q+2)(Ω)) ≤ C,

where r =
�
1
2 + 1

q − 1
d

�−1
. The same estimate also holds for n, which yields***n2/3
k

***
L3(0,T ;L3r/2(Ω))

+
***n2/3

***
L3(0,T ;L3r/2(Ω))

≤ C.

Together with (4.37) we conclude that#
Tk(nk) 'g′k(nk) → nG′(n), strongly in L2(0, T ;L3r/2−(Ω)).

Combining this with the weak convergence of ∇nk ⇀ ∇n in L2(0, T ;L2q/(q+2)(Ω)) shows that#
Tk(nk)∇'gk(nk) =

#
Tk(nk) 'g′k(nk)∇nk ⇀ nG′(n)∇n, weakly in L1(QT ).

Observe that this requires
1

q
+

1

2
+

2

3

�
1

q
+

1

2
− 1

d

�
< 1,

which is the case for d ≤ 4. From (4.35) and (4.36) we get#
Tk(nk)

#
Tk(nk)∇Vk ⇀

√
n
√
n∇V, weakly in L1(0, T ;Lq/2−(Ω)),

and we have that#
Tk(nk)

�
∇'gk(nk)−

#
Tk(nk)∇Vk

�
⇀ nG′(n)∇n− n∇V, weakly in L1(QT ).

From (4.28), (4.30) and (4.31) it follows that
#
Tk(nk)(∇'gk(nk)−

#
Tk(nk)∇Vk) is uniformly

bounded in L1(0, T ;L2q/(q+2)(Ω)) ∩ L2(0, T ;L5/4(Ω)), which finishes the proof.

The next lemma deals with the limit of the terms ∇'gk(nk),∇'gk(pk) in the energy inequal-
ity (4.27).

Lemma 54. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence obtained in Lemma 49, let (n, p,D) be the limit and d ≤ 4. Then there hold the weak
convergences

∇√
nk ⇀ ∇√

n, weakly in L2(0, T ;L2q/(q+2)(Ω)),

∇√
pk ⇀ ∇√

p, weakly in L2(0, T ;L2q/(q+2)(Ω)),
(4.39)

as well as
∇'gk(nk) ⇀ 2nG′(n)∇√

n, weakly in L1(QT ),

∇'gk(pk) ⇀ 2pG′(p)∇√
p, weakly in L1(QT ),

(4.40)

for k → ∞.
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Proof. From the definition of 'g′k(s), (4.23), together with Corollary 74 we have that

'g′k(s) ≳ s−1/2,

and from the uniform bounds in (4.31) we readily see that

∥∇√
nk∥L2(0,T ;L2q/(q+2)(Ω)) ≤ C.

This shows the weak convergence in (4.39). Repeating the computations from the proofs of
Lemma 52 and Lemma 53, but with

√
nk instead of

#
Tk(nk) shows that

√
nk 'g′k(nk) → nG′(n), strongly in L2(0, T ;L3r/2−(Ω)).

We combine this with the weak convergence of ∇√
nk ⇀ ∇√

n and obtain

∇'gk(nk) = 2
√
nk 'g′k(nk)∇√

nk ⇀ 2nG′(n)∇√
n, weakly in L1(QT ),

which finishes the proof.

It remains to show the convergence of the terms in the equation for Dk. More specifically,
we have to prove the convergence of

"
T k

k+1
(Dk)'h′k(Dk)∇Dk and of T k

k+1
(Dk)∇Vk and show

that DH ′(D)∇D is well defined. Showing the convergence of
"
T k

k+1
(Dk)'h′k(Dk)∇Dk requires

some intermediate results. To this end, let us define

L(s) := − log(1− s),

Lk(s) :=

�
− log(1− s), 0 ≤ s ≤ k

k+1 ,

(k + 1)s− k + log(k + 1), k
k+1 < s,

L′
k(s) =

�
1

1−s , 0 ≤ s ≤ k
k+1 ,

k + 1, k
k+1 < s.

(4.41)

Observe that the functions Lk are designed in such a way that they are continuous and that
it holds that

L′
k(s) =

"
T k

k+1
(s)'h′k(s).

Furthermore, Lk(s) ≤ Lk+1(s) for all s ∈ [0, 1), Lk is monotonically increasing for all k ∈ N
and Lk → L locally uniformly on [0, 1), hence Lk ↗ L. We proceed by deriving uniform
bounds for Lk(Dk).

Lemma 55. Let the assumptions (A1)–(A4) hold and let (nk, pk, Dk) be the convergent subse-
quence obtained in Lemma 49. Then there exists a constant C > 0 independent of k ∈ N, such
that

∥Lk(Dk)∥L2(0,T ;H1(Ω)) ≤ C. (4.42)

Proof. We first show the uniform bound on ∇Lk(Dk). To this end, we note that s ≤ k
k+1

implies 1√
s
> 1 and we have

L′
k(s) <

'h′k(s), for 0 < s ≤ k

k + 1
.
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From
"

k+1
k > 1 it also directly follows that

L′
k(s) <

'h′k(s), for
k

k + 1
< s,

and together this shows that

|∇Lk(Dk)| =
++L′

k(Dk)∇Dk

++ < +++'h′k(Dk)∇Dk

+++ = +++∇'hk(Dk)
+++ .

From the uniform bound in (4.30) we deduce

∥∇Lk(Dk)∥L2(QT ) ≤
***∇'hk(Dk)

***
L2(QT )

≤ C.

To show the uniform bound on Lk(Dk) in L2(QT ), we follow the proof of [25, Lemma 4.1]. We
define

D̂ :=
1 +DI

Ω

2
> DI

Ω,

and note that it holds that

Lk(Dk) ≤ (Lk(Dk)− Lk(D̂))+ + Lk(D̂),

where (.)+ denotes the positive part. Using the elemental inequality (a+ b)2 ≤ 2a2 + 2b2, we
estimate� T

0

�
Ω
|Lk(Dk)|2 dx dt ≤ 2

� T

0

�
Ω
|(Lk(Dk)− Lk(D̂))+|2 dx dt+ 2

� T

0

�
Ω
|Lk(D̂)|2 dx dt.

Since D̂ < 1 is constant, we can directly estimate the second integral by

2

� T

0

�
Ω
|Lk(D̂)|2 dx dt ≤ 2T m(Ω)Lk(D̂)2 ≤ 2T m(Ω) log(1− D̂)2 < +∞.

To estimate the first integral, we define

ak := (Lk(Dk)− Lk(D̂))+,

and show that it is uniformly bounded in L2(QT ) with respect to k. Note that for better
readability we dropped the dependence on time t, i.e. ak = ak(t). With

ak,Ω :=
1

m(Ω)

�
Ω
ak dx,

we compute�
Ω
|ak − ak,Ω|2 dx =

�
{ak=0}

|ak,Ω|2 dx+

�
Ω\{ak=0}

|ak − ak,Ω|2 dx ≥ m({ak = 0})|ak,Ω|2.

By the Poincaré-Wirtinger inequality, we obtain�
Ω
|ak − ak,Ω|2 dx ≤ C2

P ∥∇ak∥2L2(Ω) ≤ C2
P ∥∇Lk(Dk)∥2L2(Ω) .
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If we can derive a lower bound on m({ak = 0}), the previous two inequalities yield an upper
bound on ak,Ω. By the definition of ak, we have that ak = 0 if and only if Dk ≤ D̂. Therefore,
and by conservation of mass (4.16),

D̂ (m(Ω)−m({ak = 0})) =
�
{Dk>D̂}

D̂ dx ≤
�
Ω
Dk dx =

�
Ω
DI dx = m(Ω)DI

Ω.

Replacing D̂ by its definition, we see that

1 +DI
Ω

2
(m(Ω)−m({ak = 0})) ≤ m(Ω)DI

Ω,

and rearranging terms yields

m(Ω)
1−DI

Ω

1 +DI
Ω

≤ m({ak = 0}).

Combining the derived bounds we compute�
Ω
|ak|2 dx ≤ 2

�
Ω
|ak − ak,Ω|2 dx+ 2

�
Ω
|ak,Ω|2 dx ≤ C ∥∇Lk(Dk)∥2L2(Ω) .

Integrating over time, combining the estimates and recalling that ak = (Lk(Dk) − Lk(D̂))+

this yields � T

0

�
Ω
|Lk(Dk)|2 dx dt ≤ C

� T

0

�
Ω
|∇Lk(Dk)|2 dx dt+ C ≤ C̃,

where C̃ > 0 is a constant independent of k. Thus we have shown that Lk(Dk) is uniformly
bounded in L2(0, T ;H1(Ω)), which finishes the proof.

The uniform bound in Lemma 55 shows that there exists L∗ ∈ L2(QT ) such that

Lk(Dk) ⇀ L∗, weakly in L2(QT ). (4.43)

The next lemmata are concerned with the identification of L∗ = L(D), where D = limk∈NDk

is the limit obtained in Lemma 49.

Lemma 56. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence obtained in Lemma 49 and (n, p,D) its limit. Then it holds that L(D) ∈ L2(QT ) and
in particular D < 1 almost everywhere in QT .

Proof. For k ∈ N fixed we have that Lk is continuous on [0,+∞) and monotonically increasing
(by definition), hence

Lk(D) = lim
ℓ→∞

Lk(Dℓ), at least QT − a.e.

Using that (L2
k)k∈N is an increasing, convex, nonnegative sequence of functions and applying

Fatou’s lemma [49, Lemma D.11] we estimate
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� T

0

�
Ω
Lk(D)2 dx dt =

� T

0

�
Ω

lim
ℓ→∞

Lk(Dℓ)
2 dx dt =

� T

0

�
Ω
lim inf
ℓ→∞

Lk(Dℓ)
2 dx dt

≤
� T

0

�
Ω
lim inf
ℓ→∞

Lℓ(Dℓ)
2 dx dt ≤ lim inf

ℓ→∞

� T

0

�
Ω
Lℓ(Dℓ)

2 dx dt ≤ C,

where the first inequality is due to Lk ≤ Lk+1 pointwise, the second inequality comes from
Fatou’s lemma and the constant C > 0 does not depend on k (thanks to the uniform bound
from Lemma 55). Again using Fatou’s lemma, the above inequality allows us to conclude that� T

0

�
Ω
L(D)2 dx dt ≤ lim inf

k→∞

� T

0

�
Ω
Lk(D)2 dx dt ≤ C < +∞,

hence L(D) ∈ L2(QT ) and D < 1 almost everywhere in QT . This finishes the proof.

Next, we define for 0 < η < 1 and for all k ∈ N

Dη := (1− η)D + η,

Dk,η := (1− η)Dk + η.
(4.44)

Observe that Dk,η → Dη strongly in L2(QT ) for all 0 < η < 1.

Lemma 57. Let the assumptions (A1)–(A4) hold and let (nk, pk, Dk) be the convergent sub-
sequence from Lemma 49. Then there exists a constant C > 0 that is independent of k ∈ N
and 0 < η < 1

4 such that

∥Lk(Dk,η)∥L2(0,T ;H1(Ω)) ≤ C. (4.45)

Proof. The proof is analogue to the proof of Lemma 55.

Let us remark that the uniform bound in Lemma 57 yields for all 0 < η < 1
4 the existence

of L∗
η ∈ L2(QT ) such that

Lk(Dk,η) ⇀ L∗
η, weakly in L2(QT ). (4.46)

Next, we show some regularity for L(Dη).

Lemma 58. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence obtained in Lemma 49 and let (n, p,D) be its limit. Then it holds that L(Dη) ∈ L2(QT )
for all 0 < η < 1

4 and in particular Dη < 1 almost everywhere in QT . Furthermore, there exists
a constant C > 0 independent of η such that

∥L(Dη)∥L2(QT ) ≤ C. (4.47)

Proof. The proof is identical to the proof of Lemma 56.

Now we are ready to identify L∗ = L(D).
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Lemma 59 (Minty-type Trick). Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the
convergent subsequence from Lemma 49 and let (n, p,D) its limit. Then it holds that L(D) = L∗

almost everywhere in QT and for k → ∞ we have the convergences

Lk(Dk) ⇀ L(D), weakly in L2(QT ),

∇Lk(Dk) ⇀ ∇L(D), weakly in L2(QT ).
(4.48)

In particular, this means that DH ′(D)∇D ∈ L2(QT ) and"
T k

k+1
(Dk)∇'hk(Dk) ⇀ −∇ log(1−D), weakly in L2(QT ). (4.49)

Proof. Due to the monotonicity of Lk we have� T

0

�
Ω
(Lk(Dη)− Lk(Dk))(Dη −Dk) dx dt ≥ 0,

for all k ∈ N and 0 < η < 1
4 . Now we take the limit k → ∞ by expanding the expression on

the left-hand side and inspecting each of the four terms. Then, a combination of monotone
convergence, weak convergence of Lk(Dk) ⇀ L∗ in L2(QT ) and strong convergence of Dk → D
from (4.34) shows that � T

0

�
Ω
(L(Dη)− L∗)(Dη −D) dx dt ≥ 0.

Using the definition of Dη = (1− η)D + η, we get that for all 0 < η < 1
4� T

0

�
Ω
(L(Dη)− L∗)(1−D) dx dt ≥ 0.

Taking the limit η → 0 (dominated convergence) we get that� T

0

�
Ω
(L(D)− L∗)(1−D) dx dt ≥ 0.

Next, we show the inverse inequality. Using the monotonicity of the Lk, i.e. Lk ≤ Lk+1

pointwise, the weak convergence of Lk(Dk) and Fatou’s lemma, we estimate� T

0

�
Ω
(1−D)Lk(D) dx dt =

� T

0

�
Ω
(1−D) lim

ℓ→∞
Lk(Dℓ) dx dt

≤
� T

0

�
Ω
(1−D) lim inf

ℓ→∞
Lℓ(Dℓ) dx dt

≤ lim inf
ℓ→∞

� T

0

�
Ω
(1−D)Lℓ(Dℓ) dx dt

≤
� T

0

�
Ω
(1−D)L∗ dx dt < +∞.
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Again, by dominated convergence, we can take the limit k → ∞ to see� T

0

�
Ω
(1−D)L(D) dx dt ≤

� T

0

�
Ω
(1−D)L∗ dx dt,

or equivalently � T

0

�
Ω
(L(D)− L∗)(1−D) dx dt ≤ 0.

Combining these two inequalities, together with the fact that D < 1 almost everywhere in QT

yields the desired identification of L∗,

L∗ = L(D), almost everywhere in QT .

By (4.43) this means
Lk(Dk) ⇀ L(D), weakly in L2(QT ),

∇Lk(Dk) ⇀ ∇L(D), weakly in L2(QT ),

and consequently, since

∇Lk(Dk) =
"
T k

k+1
(Dk)∇'hk(Dk)

and
DH ′(D)∇D = −∇ log(1−D) = ∇L(D),

we have shown that DH ′(D)∇D ∈ L2(QT ) and identified the limit"
T k

k+1
(Dk)∇'hk(Dk) ⇀ −∇ log(1−D), weakly in L2(QT ),

which finishes the proof.

It remains to show the convergence of T k
k+1

(Dk)∇Vk and to identify its limit.

Lemma 60. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence from Lemma 49 and (n, p,D) its limit. Then it holds that

T k
k+1

(Dk)∇Vk ⇀ D∇V, weakly* in L∞(0, T ;L2(Ω)). (4.50)

Moreover, there holds the weak convergence"
T k

k+1
(Dk)

�
∇'hk(Dk) +

"
T k

k+1
(Dk)∇Vk

�
⇀ −∇ log(1−D) +D∇V, weakly in L2(QT ).

(4.51)

Proof. We recall the definition of T k
k+1

(s) and define T (s):

T k
k+1

(s) =

�
s, 0 ≤ s ≤ k

k+1 ,
k

k+1 ,
k

k+1 < s

T (s) := max(0,min(s, 1)).
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From the definition of T (s) we readily see that T k
k+1

→ T uniformly on [0,+∞), due to

|T (s)− Tk(s)| ≤ 1

k + 1
, ∀ s ≥ 0.

This allows us to compute

|T k
k+1

(Dk)− T (D)| = |T k
k+1

(Dk)− T k
k+1

(D) + T k
k+1

(D)− T (D)|

≤ |T k
k+1

(Dk)− T k
k+1

(D)|+ |T k
k+1

(D)− T (D)| ≤ |Dk −D|+ 1

k + 1
.

By the strong convergence Dk → D in L2(QT ) we can conclude that� T

0

�
Ω
|T k

k+1
(Dk)− T (D)|2 dx dt ≤ 2

� T

0

�
Ω
|Dk −D|2 dx dt+ 2T m(Ω)

(k + 1)2
→ 0, as k → ∞.

Thanks to Lemma 56 we have that D < 1 QT -a.e., which implies that T (D) = D almost
everywhere in QT , and consequently

T k
k+1

(Dk) → D, strongly in L2(QT ),

and due to the uniform bounds on T k
k+1

(Dk) in L∞(QT ), we even have that

T k
k+1

(Dk) → D, strongly in Lr(QT ), ∀ r < ∞.

We combine this with the convergence ∇Vk ⇀ ∇V weakly* in L∞(0, T ;L2(Ω)), which is due
to (4.28), and obtain that

T k
k+1

(Dk)∇Vk ⇀ D∇V, weakly in Lr(0, T ;L2r/(r+2)(Ω)), ∀ r < ∞.

Thanks to the uniform bounds, we even get that

T k
k+1

(Dk)∇Vk ⇀ D∇V, weakly* in L∞(0, T ;L2(Ω)).

Combining this convergence with (4.49) yields the desired result"
T k

k+1
(Dk)

�
∇'hk(Dk) +

"
T k

k+1
(Dk)∇Vk

�
⇀ −∇ log(1−D) +D∇V, weakly in L2(QT ),

which finishes the proof.

The next lemma is concerned with the identification of the limit of ∇'hk(Dk) in the energy
inequality (4.27).

Lemma 61. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence obtained in Lemma 49, let (n, p,D) be the limit and d ≤ 4. Then there holds the weak
convergence

∇'hk(Dk) ⇀ 2∇ tanh−1(
√
D), weakly in L2(QT ). (4.52)
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Proof. We will follow the proofs of Lemmas 55, 56, 57, 58 and 59. Since the computations are
almost identical, we will only sketch the parts where they differ. We define 'h and recall the
definition of 'hk:'h(s) := 2 tanh−1(

√
s),

'hk(s) =
�
2 tanh−1(s), 0 ≤ s ≤ k

k+1 ,

(k + 1)
"

k+1
k s−#

k(k + 1) + 2 tanh−1(
#
k/(k + 1)), k

k+1 < s.

(4.53)

From (4.30) we obtain that ∥∇'hk(Dk)∥L2(QT ) ≤ C and repeating the proof of Lemma 55 shows

that ∥'hk(Dk)∥L2(QT ) ≤ C. Together, this shows that ∥'hk(Dk)∥L2(0,T ;H1(Ω)) ≤ C and following

the proof of Lemma 56 shows 'h(D) ∈ L2(QT ).
Defining

Dη := (1− η)D + η,

Dk,η := (1− η)Dk + η,

we follow the proof of Lemma 57 to obtain a uniform bound on ∇'hk(Dk,η). A straightforward
computation shows that

∇'hk(Dk,η) = (1− η)'h′k(Dk,η)∇Dk =


1−η

(1−Dk,η)
√

Dk,η
∇Dk, Dk,η ≤ k

k+1 ,

(1− η)(k + 1)
"

k+1
k ∇Dk,

k
k+1 < Dk,η.

Observe that Dk ≤ Dk,η if Dk,η ≤ 1 and therefore Dk,η ≤ k/(k+1) implies 1/
#

Dk,η ≤ 1/
√
Dk.

Using the definition of Dk,η and
#
(k + 1)/k ≤ √

2 shows

|∇'hk(Dk,η)|
�
≤ |∇'hk(Dk)|, Dk,η ≤ k

k+1 ,

<
√
2|∇Lk(Dk,η)|, k

k+1 < Dk,η.

This allows us to conclude that ∥∇'hk(Dk,η)∥L2(QT ) ≤ C. Following the proof of Lemma 57 we

can show that ∥'hk(Dk,η)∥L2(QT ) ≤ C. Together, this proves that ∥'hk(Dk,η)∥L2(0,T ;H1(Ω)) ≤ C,

and as in Lemma 58 we get that ∥'h(Dη)∥L2(QT ) ≤ C. Lastly, proceeding as in the proof of
Lemma 59 (Minty-type Trick) shows the weak convergences'hk(Dk) ⇀ 2 tanh−1(

√
D), weakly in L2(QT ),

∇'hk(Dk) ⇀ 2∇ tanh−1(
√
D), weakly in L2(QT ),

which finishes the proof.

We are now ready to identify the limits of ∂tnk, ∂tpk, ∂tDk. This is done in the following
result.

Lemma 62. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence from Lemma 49 and (n, p,D) its limit. Then it holds for k → ∞ that

∂tnk ⇀ ∂tn, weakly in L1(0, T ;W
1,2q/(q−2)
D (Ω)′) ∩ L2(0, T ;W 1,5

D (Ω)′),

∂tpk ⇀ ∂tp, weakly in L1(0, T ;W
1,2q/(q−2)
D (Ω)′) ∩ L2(0, T ;W 1,5

D (Ω)′),

∂tDk ⇀ ∂tD, weakly in L2(0, T ;H1(Ω)′).

(4.54)

112



4.2 Proof of Theorem 35

Proof. We start by proving the convergence of ∂tnk and ∂tpk. The arguments are exactly the
same, so we only show this for ∂tnk. Due to the convergence in (4.38) we have that for all test

functions φ ∈ L∞(0, T ;W
1,2q/(q−2)
D (Ω)) ∪ L2(0, T ;W 1,5

D (Ω)) it holds that

� T

0
⟨∂tnk, φ⟩ dt = −

� T

0

�
Ω

#
Tk(nk)

�
∇'gk(nk)−

#
Tk(nk)∇Vk

�
· ∇φdx dt

→ −
� T

0

�
Ω

�
nG′(n)∇n− n∇V

� · ∇φdx dt.

Since W
1,2q/(q−2)
D (Ω) and W 1,5

D (Ω) are reflexive spaces, so are their dual spaces and thus we
can apply [34, Lemma 3.2] to conclude that there holds the convergence of ∂tnk ⇀ ξ weakly

in L1(0, T ;W
1,2q/(q−2)
D (Ω)′) ∩ L2(0, T ;W 1,5

D (Ω)′). The strong convergence of nk → n in at
leat L1(QT ) allows us to identify ξ = ∂tn and we obtain that ∂tnk ⇀ ∂tn converges weakly

in L1(0, T ;W
1,2q/(q−2)
D (Ω)′) ∩ L2(0, T ;W 1,5

D (Ω)′). Taking the limit k → ∞ in the weak formu-
lation � T

0
⟨∂tnk, φ⟩ dt+

� T

0

�
Ω

#
Tk(nk)

�
∇'gk(nk)−

#
Tk(nk)∇Vk

�
· ∇φdx dt = 0,

now leads to � T

0
⟨∂tn, φ⟩ dt+

� T

0

�
Ω

�
nG′(n)∇n− n∇V

� · ∇φdx dt = 0,

for all φ ∈ L∞(0, T ;W
1,2q/(q−2)
D (Ω))∪L2(0, T ;W 1,5

D (Ω)). The convergence of ∂tDk is essentially
the same. Thanks to (4.49) and Lemma 60, we have that for all φ ∈ L2(0, T ;H1(Ω)) it holds
that� T

0
⟨∂tDk, φ⟩ dt = −

� T

0

�
Ω

"
T k

k+1
(Dk)

�
∇'hk(Dk) +

"
T k

k+1
(Dk)∇Vk

�
· ∇φdx dt

→ −
� T

0

�
Ω
(−∇ log(1−D) +D∇V ) · ∇φdx dt.

Since H1(Ω) is reflexive, we obtain that ∂tDk ⇀ ζ weakly in L2(0, T ;H1(Ω)′). The strong
convergence Dk → D in L2(QT ) now allows us to identify ζ = ∂tD and we see that ∂tDk ⇀ ∂tD
weakly in L2(0, T ;H1(Ω)′). Again taking the limit in the weak formulation� T

0
⟨∂tDk, φ⟩ dx dt+

� T

0

�
Ω

"
T k

k+1
(Dk)

�
∇'hk(Dk) +

"
T k

k+1
(Dk)∇Vk

�
· ∇φdx dt = 0,

now leads to � T

0
⟨∂tD,φ⟩ dx dt+

� T

0

�
Ω
(−∇ log(1−D) +D∇V ) · ∇φdx dt = 0,

for all φ ∈ L2(0, T ;H1(Ω)). This shows (4.54) and finishes the proof.

It remains to show in which sense the intial data and the boundary conditions are fulfilled.
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4 Analysis of a charge transport system with Fermi-Dirac statistics for memristive devices

Lemma 63. Let the assumptions (A1)–(A4) hold, let (nk, pk, Dk) be the convergent subse-
quence from Lemma 49 and (n, p,D) its limit. Then, for t > 0 and in the sense of the trace
operator tr : W 1,2q/(q+2)(Ω) → L2q/(q+2)(∂Ω), it holds that n = 'n and p = 'p on ΓD for t > 0.
The initial data are fulfilled in the sense

n(t, .) → nI , p(t, .) → pI , strongly in W
1,2q/(q−2)
D (Ω)′ ∩W 1,5

D (Ω)′,

D(t, .) → DI , strongly in H1(Ω)′,
(4.55)

as t → 0.

Proof. Since n, p ∈ L2(0, T ;W 1,2q/(q+2)(Ω)) we directly see that n = 'n and p = 'p on ΓD holds
for t > 0 in the claimed sense. The regularity of n, p, ∂tn, ∂tp shows that

n, p ∈ W 1,1(0, T ;W
1,2q/(q−2)
D (Ω)′) �→ C([0, T ];W

1,2q/(q−2)
D (Ω)′),

n, p ∈ W 1,2(0, T ;W 1,5
D (Ω)′) �→ C([0, T ];∩W 1,5

D (Ω)′).

Hence, we have that

n(t, .) → nI , p(t, .) → pI strongly in W
1,2q/(q−2)
D (Ω)′ ∩W 1,5

D (Ω)′, as t → 0.

In the same way one shows that

D(t, .) → DI , strongly in H1(Ω)′, as t → 0.

This finishes the proof and also concludes the proof of Theorem 35.

4.3 Proof of Theorem 36

In this section we prove the boundedness of weak solutions to (1.25)–(1.26) & (4.4). First, we
improve the regularity on the level of the approximate system by redoing the bootstrapping
argument from the proof of Lemma 47. This will allow us, after passing to the limit k → ∞,
to use the solution n − 'n and p − 'p as a test function in the original system and following
up with another bootstrapping argument we prove bounds for n and p in L∞(0, T ;Lq(Ω))
for all 1 ≤ q < ∞. These bounds will depend on q, so as a final step we will then do an
Alikakos-type iteration to establish the second statement of Theorem 36.

Since the computations in this section are identical for n and p, we will formulate all state-
ments for both n and p, but do the computations only for n.

4.3.1 Improved regularity of solutions to the approximate system (4.11)–(4.12)

We start by improving the regularity of the uniform bounds for the solutions nk and pk to the
approximate system.

Lemma 64. Let the assumptions (A1)–(A5) hold with r = 3, let d = 3 and (nk, pk, Dk, Vk) be
the solution to (4.11)–(4.12). Then there exists a constant C > 0 independent of k ∈ N such
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that the following improved regularity holds:***#Tk(nk)
***
L14/3(0,T ;L14(Ω))

+
***#Tk(pk)

***
L14/3(0,T ;L14(Ω))

≤ C,

∥Tk(nk)∥L7/3(0,T ;L7(Ω)) + ∥Tk(pk)∥L7/3(0,T ;L7(Ω)) ≤ C,

∥∇'gk(nk)∥L2(QT ) + ∥∇'gk(pk)∥L2(QT ) ≤ C,

∥'gk(nk)∥L2(0,T ;L6(Ω)) + ∥'gk(pk)∥L2(0,T ;L6(Ω)) ≤ C,

∥∇nk∥L2(QT ) + ∥∇pk∥L2(QT ) ≤ C,

∥nk∥L2(0,T ;L6(Ω)) + ∥pk∥L2(0,T ;L6(Ω)) ≤ C.

(4.56)

Proof. Let us recall the uniform bound from (4.30),

∥nk∥L∞(0,T ;L5/3(Ω)) ≤ C,

which by assumption (A5) allows us to directly conclude that

∥Vk∥L∞(0,T ;W 1,3(Ω)) ≤ C, for all k ∈ N.

With this improved regularity we redo the bootstrapping from the proof of Lemma 47. For
the convenience of the reader, let us also recall that

∇'gk(nk) = ∇'gk(nk)−
#

Tk(nk)∇Vk +
#
Tk(nk)∇Vk,

and thanks to (4.27) and (4.30) we have the bounds***∇'gk(nk)−
#
Tk(nk)∇Vk

***
L2(QT )

+
***#Tk(nk)∇Vk

***
L∞(0,T ;L5/4(Ω))

≤ C,***#Tk(nk)
***
L∞(0,T ;L10/3(Ω))

≤ C.

Denoting the spatial regularity exponent of
#
Tk(nk) by q0 := 10/3, we obtain the following

spatial exponents: #
Tk(nk) ←→ q0,#

Tk(nk)∇Vk ←→
�

1

q0
+

1

3

�−1

,

∇'gk(nk) ←→
�

1

q0
+

1

3

�−1

.

Using the Gagliardo-Nirenberg inequality with θ = 1, we can improve the spatial regularity
of 'gk(nk) to 'gk(nk) ←→

�
1

q0
+

1

3
− 1

3

�−1

= q0

and by (4.29) we obtain as improved spatial exponent for
#

Tk(nk)#
Tk(nk) ←→ 7

3
q0 = 70/9 =: q1.
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Iterating this argument would yield that qk = (7/3)kq0 and consequently
#

Tk(nk) ∈ Lq(Ω) for
all 1 ≤ q < ∞. However, we cannot improve the spatial regularity of ∇'gk(nk) beyond L2(Ω).
Therefore, plugging in q = 6 as spatial regularity for

#
Tk(nk) we obtain

1

6
+

1

3
=

1

2
=⇒ ∥∇'gk(nk)∥L2(QT ) ≤ C.

Consequently,

∥'gk(nk)∥L2(0,T ;L6(Ω)) ≤ C,

and by (4.29) we conclude that***Tk(nk)
7/6

***2
L6(Ω)

≤ C ∥'gk(nk)∥2L6(Ω) .

Thanks to***Tk(nk)
7/6

***2
L6(Ω)

= ∥Tk(nk)∥7/3L7(Ω)
,

***#Tk(nk)
7/3

***2
L6(Ω)

=
***#Tk(nk)

***14/3
L14(Ω)

,

we obtain ***#Tk(nk)
***
L14/3(0,T ;L14(Ω))

+ ∥Tk(nk)∥L7/3(0,T ;L7(Ω)) ≤ C.

Lastly, as |∇'gk(nk)| ≥ C|∇nk| we get

∥∇nk∥L2(QT ) ≤ C,

and again by the Gagliardo-Nirenberg inequality

∥nk∥L2(0,T ;L6(Ω)) ≤ C,

which finishes the proof.

As a direct result, we obtain the following improved regularity of the solution n and p.

Corollary 65. Let the assumptions (A1)–(A5) hold with r = 3, let d = 3 and (n, p,D, V ) be
the obtained weak solution to (1.25)–(1.26) & (4.4). Then it holds that

n, p ∈ L7/3(0, T ;L7(Ω)),

∇n,∇p ∈ L2(QT ),

V ∈ L∞(0, T ;W 1,3(Ω)).

(4.57)

4.3.2 Proving bounds in L∞(0, T ;Lq(Ω)) for 1 ≤ q < ∞
Having obtained enough regularity to use n− 'n as a test function in the weak formulation, we
will prove the first part of Theorem 36 in this subsection, i.e. we will show (4.8). The crucial
part will be estimating the terms n∇V ·∇n, which requires the improved regularity of n and p.
We start with an auxiliary result.
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4.3 Proof of Theorem 36

Lemma 66. Let the assumptions from Theorem 36 hold with r = 3. Then it holds that

n, p ∈ L∞(0, T ;L2(Ω)),

∇n4/3,∇p4/3 ∈ L2(QT ),

n, p ∈ L8/3(0, T ;L8(Ω)).

(4.58)

Proof. We use n− 'n as a test function in the weak formulation and obtain� T

0
⟨∂tn, n− 'n⟩ dt+ � T

0

�
Ω
nG′(n)∇n · ∇(n− 'n) dx dt = � T

0

�
Ω
n∇V · ∇(n− 'n) dx dt.

Since 'n is independent of time t, we can rewrite the first integral as� T

0
⟨∂tn, n− 'n⟩ dt = � T

0

1

2

d

dt
∥n− 'n∥2L2(Ω) dt =

1

2
∥n(T )− 'n∥2L2(Ω) −

1

2
∥nI − 'n∥2L2(Ω).

We split the second integral into two parts� T

0

�
Ω
nG′(n)∇n · ∇(n− 'n) dx dt = I1 − I2,

with

I1 :=

� T

0

�
Ω
nG′(n)∇n · ∇ndx dt,

I2 :=

� T

0

�
Ω
nG′(n)∇n · ∇'ndx dt.

Using nG′(n) ∼ 1 + n2/3 from Corollary 74, we can estimate as follows:

I1 ≥ C

� T

0

�
Ω
n2/3|∇n|2 dx dt = C

�
3

4

�2 � T

0

�
Ω
|∇n4/3|2 dx dt,

I2 ≤ C

� T

0

�
Ω
(1 + n2/3)|∇n||∇'n| dx dt

≤ C∥∇n∥L2(QT )∥∇'n∥L2(QT ) + C∥n2/3∥L7/2(0,T ;L21/2(Ω))∥∇n∥L2(QT )∥∇'n∥L∞(QT ) < +∞.

The last integral is estimated as� T

0

�
Ω
n∇V · ∇(n− 'n) dx dt ≤ C∥n∥L7/3(0,T ;L7(Ω))∥∇V ∥L∞(0,T ;L3(Ω))∥∇(n− 'n)∥L2(QT ) < +∞.

Putting the estimates together shows that

1

2
∥n(T )− 'n∥2L2(Ω) + C

�
3

4

�2 � T

0

�
Ω
|∇n4/3|2 dx dt

≤ 1

2
∥nI − 'n∥2L2(Ω) + C∥∇n∥L2(QT )∥∇'n∥L2(QT )

+ C∥n2/3∥L7/2(0,T ;L21/2(Ω))∥∇n∥L2(QT )∥∇'n∥L∞(QT )

+ C∥n∥L7/3(0,T ;L7(Ω))∥∇V ∥L∞(0,T ;L3(Ω))∥∇(n− 'n)∥L2(QT ),
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and we obtain that (n − 'n) ∈ L∞(0, T ;L2(Ω)) and ∇n4/3 ∈ L2(QT ). Since 'n ∈ L∞(Ω), we
directly see that n ∈ L∞(0, T ;L2(Ω)). Using the Gagliardo-Nirenberg inequality (with θ = 1),
we estimate

∥n∥8/3
L8(Ω)

= ∥n4/3∥2L6(Ω) ≤ C∥∇n4/3∥2L2(Ω) + C∥n4/3∥2L1(Ω).

Thanks to the regularities ∇n4/3 ∈ L2(QT ) and n ∈ L∞(0, T ;L2(Ω)), we are able to conclude
that n ∈ L8/3(0, T ;L8(Ω)), which finishes the proof.

Lemma 67. Let the assumptions from Theorem 36 hold with r = 3. Then for all q ∈ N≥2 it
holds that

n, p ∈ L∞(0, T ;Lq(Ω)),

∇nα,∇pα ∈ L2(QT ), for all 1 ≤ α < ∞.
(4.59)

In particular, this means that (4.8) holds.

Proof. The proof is done by induction. Motivated by the result of Lemma 66, let us assume
that n ∈ L∞(0, T ;Lq(Ω)) ∩ L(3q+2)/3(0, T ;L3q+2(Ω)) and ∇n(3q+2)/6 ∈ L2(QT ). For q = 2 this
holds thanks to Lemma 66. Using nq − 'nq as a test function we have� T

0
⟨∂tn, nq − 'nq⟩ dt+

� T

0

�
Ω
nG′(n)∇n · ∇(nq − 'nq) dx dt =

� T

0

�
Ω
n∇V · ∇(nq − 'nq) dx dt.

To estimate the integrals we introduce the following notation:

I1 :=

� T

0
⟨∂tn, nq⟩ dt, 'I1 := � T

0
⟨∂tn, 'nq⟩ dt,

I2 :=

� T

0

�
Ω
nG′(n)∇n · ∇nq dx dt, 'I2 := � T

0

�
Ω
nG′(n)∇n · ∇'nq dx dt,

I3 :=

� T

0

�
Ω
n∇V · ∇nq dx dt, 'I3 := � T

0

�
Ω
n∇V · ∇'nq dx dt.

Let us start by estimating the integrals 'I1, 'I2 and 'I3. The first integral gives

'I1 = � T

0
⟨∂tn, 'nq⟩ dt ≤ C∥∂tn∥L6/5(0,T ;(W 1,6(Ω)∩H1

D(Ω))′)∥'n∥qL∞(Ω) ≤ C(q, 'n, T ).
For the second integral, using Corollary 74, we compute

'I2 = � T

0

�
Ω
nG′(n)∇n · ∇'nq dx dt = q

� T

0

�
Ω
nG′(n)'nq−1∇n · ∇'ndx dt

≤ Cq∥'n∥q−1
L∞(Ω)∥∇'n∥L∞(Ω)

� T

0

�
Ω
(1 + n2/3)|∇n| dx dt

≤ Cq∥'n∥q−1
L∞(Ω)∥∇'n∥L∞(Ω)∥∇n∥L2(QT )∥1 + n2/3∥L2(QT )

≤ C(q, T, 'n).
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Estimating 'I3 is straightforward:

'I3 = � T

0

�
Ω
n∇V · ∇'nq dx dt = q

� T

0

�
Ω
n'nq−1∇V · ∇'ndx dt

≤ Cq∥'n∥q−1
L∞(Ω)∥∇'n∥L∞(Ω)∥∇V ∥L∞(0,T ;L3(Ω))∥n∥L∞(0,T ;L5/3(Ω))

≤ C(q, T, 'n).
Let us now turn to the integrals I1, I2 and I3. I1 can be rewritten as

I1 =

� T

0
⟨∂tn, nq⟩ dt = 1

q + 1

� T

0

d

dt
∥n∥q+1

Lq+1(Ω)
dt =

1

q + 1
∥n(T )∥q+1

Lq+1(Ω)
− 1

q + 1
∥nI∥q+1

Lq+1(Ω)
.

To estimate I2 we again use Corollary 74 and get

I2 =

� T

0

�
Ω
nG′(n)∇n · ∇nq dx dt = q

� T

0

�
Ω
nG′(n)nq−1∇n · ∇ndx dt

≥ Cq

� T

0

�
Ω
n2/3nq−1|∇n|2 dx dt

= Cq

� T

0

�
Ω
|n(q−1)/2+1/3∇n|2 dx dt

= Cq

�
6

3q + 5

�2 � T

0

�
Ω

+++∇n(3q+5)/6
+++2 dx dt.

We rewrite I3 and use Young’s inequality to estimate

I3 =

� T

0

�
Ω
n∇V · ∇nq dx dt = q

� T

0

�
Ω
n∇V · nq−1∇ndx dt

= q

� T

0

�
Ω
n∇V · n(3q−5)/6n(3q−1)/6∇ndx dt

= q
6

3q + 5

� T

0

�
Ω
n1+(3q−5)/6∇V · ∇n(3q+5)/6 dx dt

≤ δ

2
q

�
6

3q + 5

�2 � T

0

�
Ω

+++∇n(3q+5)/6
+++2 dx dt

+
q

2δ

� T

0

�
Ω
n2+(3q−5)/3|∇V |2 dx dt.

Choosing δ = C, where C > 0 is the constant from the estimate of I2, we can absorb the first
term into I2. It remains to estimate the second term. By our induction assumption, we have

n2+(3q−5)/3 = n(3q+1)/3 ∈ L(3q+2)/(3q+1)(0, T ;L3(3q+2)/(3q+1)(Ω)).

Using Hölder’s inequality we get

q

2C

� T

0

�
Ω
n2+(3q−5)/3|∇V |2 dx dt
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≤ C(q, T,G′)∥n(3q+1)/3∥
L

3q+2
3q+1 (0,T ;L

3(3q+2)
3q+1 (Ω))

∥∇V ∥L∞(0,T ;L3(Ω)) < +∞.

Combining all the estimates, we obtain

1

q + 1
∥n(T )∥q+1

Lq+1(Ω)
+

Cq

2

�
6

3q + 5

�2 � T

0

�
Ω

+++∇n(3q+5)/6
+++2 dx dt

≤ 1

q + 1
∥nI∥q+1

Lq+1(Ω)
+ C(q, T, 'n)

+ C(q, T,G′)∥n(3q+1)/3∥
L

3q+2
3q+1 (0,T ;L

3(3q+2)
3q+1 (Ω))

∥∇V ∥L∞(0,T ;L3(Ω))

< +∞.

This shows that
n ∈ L∞(0, T ;Lq+1(Ω)),

∇n(3(q+1)+2)/6 ∈ L2(QT ),

and by the Gagliardo-Nirenberg inequality

n ∈ L(3(q+1)+2)/3(0, T ;L3(q+1)+2(Ω)).

To finalize the proof, we note that for α ∈ [1, 4/3] there holds

|∇nα| ≤ |∇n|+ |∇n4/3|

and for α > 4/3 there exists a unique q ∈ N≥2 such that 3q + 2 ≤ 6α ≤ 3(q + 1) + 2. As a
result nα−1 ≤ n(3q+2)/6−1 + n(3(q+1)+2)/6−1 and consequently

|∇nα| ≤ |∇n(3q+2)/6|+ |∇n(3(q+1)+2)/6|,

which finishes the proof.

4.3.3 Bounded solutions

Let us remark that the constants from the bounds obtained in Lemma 67 depend on q and
hence might blow up as q → ∞. The final step therefore is to derive bounds on the solution
in the spaces L∞(0, T ;Lq(Ω)), which are uniform in q ∈ N. This will then allow us to take
the limit q → ∞. We follow the proof of [77, Lemma 16], where an Alikakos-type iteration
was detailed for pure Neumann boundary conditions to simplify the presentation. Since we
have the case of mixed Dirichlet-Neumann boundary conditions, we will nonetheless detail the
rather technical computations.

Lemma 68. Let the assumptions from Theorem 36 hold with some r > 3. Then it holds that

n, p,D ∈ L∞(0, T ;L∞(Ω)), V ∈ L∞(0, T ;W 1,r(Ω)). (4.60)

Proof. Thanks to assumption (A5) and the regularity n, p ∈ L∞(0, T ;L5/3(Ω)) we have that

∥V ∥L∞(0,T ;W 1,3+ϱ(Ω)) ≤ C∥n− p−D +A∥L∞(0,T ;L5/3(Ω)) + C < ∞,
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4.3 Proof of Theorem 36

for some 0 < ϱ ≤ 3/4. We use nq−'nq for some q > 1 as a test function in the weak formulation,
but do not integrate over time yet. Repeating the estimates from the proof of Lemma 67 and
using Corollary 74 yields

1

q + 1

d

dt
∥n∥q+1

Lq+1(Ω)
+ C(G′)q

�
6

3q + 5

�2

∥∇n(3q+5)/6∥2L2(Ω)

≤ q

�
Ω
n∇V · nq−1∇ndx+ C∥'n∥qL∞(Ω) + Cq∥'n∥q−1

L∞(Ω).

We rewrite

3q + 5

6
=

q + 5
3

2

and estimate the integral on the right-hand side with Hölder’s inequality

q

�
Ω
n∇V · nq−1∇ndx = q

�
Ω
n(q+1/3)/2∇V · n(q−1/3)/2∇ndt

=
2q

q + 5
3

�
Ω
n(q+1/3)/2∇V · ∇n(q+5/3)/2 dx

≤ 2∥n(q+1/3)/2∥L6−β(Ω)∥∇V ∥L3+ϱ(Ω)∥∇n(q+5/3)/2∥L2(Ω),

where β = 4ϱ
1+ϱ . Plugging this estimate in, we obtain

1

q + 1

d

dt
∥n∥q+1

Lq+1(Ω)
+

4qC(G′)
(q + 5/3)2

∥∇n(q+5/3)/2∥2L2(Ω)

≤ C(q + 1)(∥'n∥qL∞(Ω) + 1) + C∥n(q+1/3)/2∥L6−β(Ω)∥∇n(q+5/3)/2∥L2(Ω).

(4.61)
Using (q+1/3)/(q+5/3) < 1, we estimate the first factor in the second term on the right-hand
side as

∥n(q+1/3)/2∥L6−β(Ω) = ∥n(q+5/3)/2∥
q+1/3
q+5/3

L
(6−β)

q+1/3
q+5/3 (Ω)

≤ C(Ω)∥n(q+5/3)/2∥
q+1/3
q+5/3

L6−β(Ω)
≤ C(1 + ∥n(q+5/3)/2∥L6−β(Ω)).

We use the Gagliardo-Nirenberg inequality to estimate ∥n(q+5/3)/2∥L6−β(Ω),

∥n(q+5/3)/2∥L6−β(Ω) ≤ C∥∇n(q+5/3)/2∥θL2(Ω)∥n(q+5/3)/2∥1−θ
L1(Ω)

+ C∥n(q+5/3)/2∥L1(Ω),

where θ = 30−6β
30−5β ∈ (0, 1). At this point we need that ϱ > 0, as we require θ ∈ (0, 1). Otherwise

we will not be able to absorb the gradient term(s) into the left-hand side of (4.61) later.
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4 Analysis of a charge transport system with Fermi-Dirac statistics for memristive devices

Combining the estimates, we bound the term on the right-hand side of (4.61) by

C∥n(q+1/3)/2∥L6−β(Ω)∥∇n(q+5/3)/2∥L2(Ω)

≤ C∥∇n(q+5/3)/2∥L2(Ω)

×
�
1 + ∥∇n(q+5/3)/2∥θL2(Ω)∥n(q+5/3)/2∥1−θ

L1(Ω)
+ ∥n(q+5/3)/2∥L1(Ω)

�
≤ C∥∇n(q+5/3)/2∥L2(Ω)

+ C∥∇n(q+5/3)/2∥1+θ
L2(Ω)

∥n(q+5/3)/2∥1−θ
L1(Ω)

+ C∥∇n(q+5/3)/2∥L2(Ω)∥n(q+5/3)/2∥L1(Ω).

The goal is to absorb all gradient terms into the left-hand side of (4.61), hence we use Young’s
inequality in the following two forms (for all a, b ≥ 0):

ab ≤ δar +
bs

srs/rδs/r
, (4.62)

ab ≤ δa2 +
b2

4δ
, (4.63)

with

δ =
1

3

4qC(G′)
(q + 5/3)2

.

Using (4.63), we estimate the first term

C∥∇n(q+5/3)/2∥L2(Ω) ≤
4qC(G′)

3(q + 5/3)2
∥∇n(q+5/3)/2∥2L2(Ω) +

C2

4

3(q + 5/3)2

4qC(G′)

≤ 4qC(G′)
3(q + 5/3)2

∥∇n(q+5/3)/2∥2L2(Ω) + Cq.

Using (4.62) with r = 2/(1 + θ) and s = 2/(1− θ), we can estimate the second term

C∥∇n(q+5/3)/2∥1+θ
L2(Ω)

∥n(q+5/3)/2∥1−θ
L1(Ω)

≤ 4qC(G′)
3(q + 5/3)2

∥∇n(q+5/3)/2∥2L2(Ω)

+ C2/(1−θ)∥n(q+5/3)/2∥2L1(Ω)

× 1− θ

2

�
1 + θ

2

� 1+θ
1−θ

�
3(q + 5/3)2

4qC(G′)

� 1+θ
1−θ

.

Again, using (4.63), we estimate the third term

C∥∇n(q+5/3)/2∥L2(Ω)∥n(q+5/3)/2∥L1(Ω) ≤
4qC(G′)

3(q + 5/3)2
∥∇n(q+5/3)/2∥2L2(Ω)

+
C2

4

3(q + 5/3)2

4qC(G′)
∥n(q+5/3)/2∥2L1(Ω).
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We combine all estimates so far and plug them into (4.61), absorb the gradient terms into the
left-hand side and obtain

1

q + 1

d

dt
∥n∥q+1

Lq+1(Ω)
≤ C(q + 1)(∥'n∥qL∞(Ω) + 1)

+
C2

4

3(q + 5/3)2

4qC(G′)
+

C2

4

3(q + 5/3)2

4qC(G′)
∥n(q+5/3)/2∥2L1(Ω)

+ C
2

1−θ
1− θ

2

�
1 + θ

2

� 1+θ
1−θ

�
3(q + 5/3)2

4qC(G′)

� 1+θ
1−θ

∥n(q+5/3)/2∥2L1(Ω).

Now there exists a constant C(ϱ,G′) > 0 independent of q such that

3C2(q + 5/3)2

16qC(G′)
≤ C(ϱ,G′)q

and together with
1 + θ

1− θ
=

60− 11β

β

we see that there also exists a constant C(ϱ,G′) > 0 such that

C
2

1−θ
1− θ

2

�
1 + θ

2

� 1+θ
1−θ

�
3(q + 5/3)2

4qC(G′)

� 1+θ
1−θ

≤ C(ϱ,G′)q
60−11β

β .

As a result we obtain

1

q + 1

d

dt
∥n∥q+1

Lq+1(Ω)
≤ C(q + 1)∥'n∥qL∞(Ω) + C(ϱ,G′)(q

60−11β
β + q)(1 + ∥n(q+5/3)/2∥2L1(Ω)).

Let us note that

∥n(q+5/3)/2∥2L1(Ω) = ∥n∥q+5/3

L(q+5/3)/2(Ω)
,

so together with (60− 11β)/β > 1 (note that β < 4) we rewrite our estimate to

1

q + 1

d

dt
∥n∥q+1

Lq+1(Ω)
≤ C(q + 1)∥'n∥qL∞(Ω) + C(ϱ,G′)q

60−11β
β (1 + ∥n∥q+5/3

L(q+5/3)/2(Ω)
).

We integrate this inequality over t ∈ (0, τ), set γ := (60− 11β)/β + 1 and get

∥n(τ)∥q+1
Lq+1(Ω)

≤ ∥nI∥q+1
Lq+1(Ω)

+ Cτ(q + 1)2∥'n∥qL∞(Ω) + C(ϱ,G′)qγ
� τ

0
1 + ∥n∥q+5/3

L(q+5/3)/2(Ω)
dt

≤ C(Ω)Tq2(∥nI∥q+1
L∞(Ω) + ∥'n∥q+1

L∞(Ω))

+ C(ϱ,G′, T )qγ(1 + ∥n∥q+5/3

L∞(0,T ;L(q+5/3)/2(Ω))
).

Taking the supremum over τ ∈ (0, T ) yields

∥n∥q+1
L∞(0,T ;Lq+1(Ω))

≤ Cq2(∥nI∥q+1
L∞(Ω) + ∥'n∥q+1

L∞(Ω)) + Cqγ(1 + ∥n∥q+5/3

L∞(0,T ;L(q+5/3)/2(Ω))
).
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Since this inequality holds for arbitrary q > 1, we can set

qk := q + 1; qk−1 :=
q + 5/3

2
,

which defines the recursion

qk−1 =
qk + 2/3

2
, or qk = 2(qk−1 − 1/3).

Solving this explicitly we obtain

qk = 2k(q0 − 2/3) + 2/3, k ∈ N,

where q0 > 1 can be arbitrary, but fixed. Furthermore, we define

bk := ∥n∥qkL∞(0,T ;Lqk (Ω)) + ∥nI∥qkL∞(Ω) + ∥'n∥qkL∞(Ω) + 1.

Thanks to the estimates above and using qk ≤ 2qk−1, we deduce

bk ≤ (Cq2 + 1)(∥nI∥qkL∞(Ω) + ∥'n∥qkL∞(Ω)) + C(qk − 1)γ(1 + ∥n∥2qk−1

L∞(0,T ;Lqk−1 (Ω))
) + 1

≤ Cqγk

�
∥nI∥2qk−1

L∞(Ω) + ∥'n∥2qk−1

L∞(Ω) + ∥n∥2qk−1

L∞(0,T ;Lqk−1 (Ω))
+ 1

�
≤ Cqγkb

2
k−1

≤ Ckqγkb
2
k−1.

Since qk ≤ 3k for k sufficiently large, and setting M := C3γ , we get the recursive estimate

bk ≤ Ck3kγb2k−1 = Mkb2k−1.

To solve this, we introduce ck := Mk+2bk and get

ck ≤ M2(k+1)b2k−1 = (Mk+1bk−1)
2 = c2k−1,

hence
ck ≤ c2

k

0 .

Thus, we obtain for bk

bk = M−(k+2)ck ≤ M−(k+2)c2
k

0 = M−(k+2)(M2b0)
2k = M2k+1−(k+2)b2

k

0 .

We recall the definition of bk and see

∥n∥qkL∞(0,T ;Lqk (Ω)) ≤ bk ≤ M2k+1−(k+2)
�
∥n∥q0L∞(0,T ;Lq0 (Ω)) + ∥nI∥q0L∞(Ω) + ∥'n∥q0L∞(Ω) + 1

�2k

,

or, after taking the qk-th root

∥n∥L∞(0,T ;Lqk (Ω)) ≤ M (2k+1−(k+2))/qk
�
∥n∥q0L∞(0,T ;Lq0 (Ω)) + ∥nI∥q0L∞(Ω) + ∥'n∥q0L∞(Ω) + 1

�2k/qk
.

It remains to bound the exponents independent of k ∈ N:
2k+1 − (k + 2)

qk
=

2k+1 − (k + 2)

2k(q0 − 2/3) + 2/3
≤ 2k+1

2k(q0 − 2/3)
=

2

q0 − 2/3
,

2k

qk
=

2k

2k(q0 − 2/3) + 2/3
≤ 2k

2k(q0 − 2/3)
=

1

q0 − 2/3
.

These bounds allow us to take the limit k → ∞ in the above estimate. Hence, we conclude
that n ∈ L∞(0, T ;L∞(Ω)), which finishes the proof of Lemma 68 and proves Theorem 36.
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4.4 Auxiliary results on Fermi-Dirac statistics

In this section we recall the definition of the Fermi-Dirac integral Fj of order j > −1. We
will then derive important properties, including asymptotic behaviour of Fj and G, which are
needed in the proofs throughout this chapter. The order j > −1 is kept general because we
need estimates on F ′

1/2 = F−1/2.
We recall that

Fj(η) =
1

Γ(1 + j)

� ∞

0

ξj

1 + eξ−η
dξ, for j > −1,

G(z) = F−1
1/2(z),

and that there holds the well known identity

F ′
j = Fj−1, for all j > 0. (4.64)

Let us also recall the following notation, which we introduced in Section 4.1:

Notation. Given terms A and B, we write A ≲ B if there exists a constant C > 0, such that
it holds that A ≤ CB. If A ≲ B ≲ A holds, we write A ∼ B. Furthermore, if there exist two
constants C1, C2 > 0, such that A ≤ C1B + C2 is true, we write A ≲ B + 1.

First, we give a bound on the Fermi-Dirac integral.

Lemma 69. For all j > −1 and all η ∈ R it holds that

Fj(η) ∼ eη1(η≤0) +
�
ηj+1 + 1

�
1(η>0). (4.65)

More specifically, for all η ≤ 0, there hold the bounds

1

2
eη ≤ Fj(η) ≤ eη. (4.66)

Proof. We first prove (4.66), which also shows (4.65) for η ≤ 0. To this end let η ≤ 0, then for
all ξ ≥ 0 it holds that

eξ−η ≤ 1 + eξ−η ≤ 2eξ−η,

and reordering terms shows
1

2eξ−η
≤ 1

1 + eξ−η
≤ 1

eξ−η
.

This allows to directly compute

eη

2
=

eη

2Γ(j + 1)

� ∞

0

ξj

eξ
dξ =

1

Γ(j + 1)

� ∞

0

ξj

2eξ−η
dξ ≤ 1

Γ(j + 1)

� ∞

0

ξj

1 + eξ−η
dξ = Fj(η),

and

Fj(η) =
1

Γ(j + 1)

� ∞

0

ξj

1 + eξ−η
dξ ≤ 1

Γ(j + 1)

� ∞

0

ξj

eξ−η
dξ =

eη

Γ(j + 1)

� ∞

0

ξj

eξ
dξ = eη,

which shows (4.66).
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Proving the inequalities for η > 0 is a bit more involved. We first split Fj into two parts as
follows:

Fj(η) =
1

Γ(j + 1)

�� η

0
+

� ∞

η

�
ξj

1 + eξ−η
dξ = IF1 + IF2.

Now we estimate each term separately. Using eξ−η ≤ 1 for ξ ≤ η we get

IF1 =
1

Γ(j + 1)

� η

0

ξj

1 + eξ−η
dξ ≥ 1

2Γ(j + 1)

� η

0
ξj dξ =

ηj+1

2(j + 1)Γ(j + 1)
=

ηj+1

2Γ(j + 2)
,

and using 1 + eξ−η ≥ 1 for all ξ, η we get

IF1 =
1

Γ(j + 1)

� η

0

ξj

1 + eξ−η
dξ ≤ 1

Γ(j + 1)

� η

0
ξj dξ =

ηj+1

(j + 1)Γ(j + 1)
=

ηj+1

Γ(j + 2)
.

It remains to estimate IF2. We first prove the bounds for j ≥ 0 and afterwards for j < 0.
Using the transformation ξ �→ ξ + η, together with the estimates (ξ + η)j ≥ ξj for all η, ξ ≥ 0
and 1 + eξ ≤ 2eξ for all ξ ≥ 0, we obtain

IF2 =
1

Γ(j + 1)

� ∞

η

ξj

1 + eξ−η
dξ =

1

Γ(j + 1)

� ∞

0

(ξ + η)j

1 + eξ
dξ

≥ 1

Γ(j + 1)

� ∞

0

ξj

1 + eξ
dξ ≥ 1

2Γ(j + 1)

� ∞

0

ξj

eξ
dξ =

Γ(j + 1)

2Γ(j + 1)
=

1

2
.

For the upper bound on IF2 we again use the transformation ξ �→ ξ + η, together with the
inequalities (ξ + η)j ≤ (2η)j for ξ ≤ η and (ξ + η)j ≤ (2ξ)j for η ≤ ξ as well as 1 ≤ 1 + eξ

and eξ ≤ 1 + eξ for all ξ ∈ R, and obtain

IF2 =
1

Γ(j + 1)

� ∞

η

ξj

1 + eξ−η
dξ =

1

Γ(j + 1)

� ∞

0

(ξ + η)j

1 + eξ
dξ

=
1

Γ(j + 1)

�� η

0
+

� ∞

η

�
(ξ + η)j

1 + eξ
dξ

≤ (2η)j

Γ(j + 1)

� η

0

1

1 + eξ
dξ +

2j

Γ(j + 1)

� ∞

η

ξj

1 + eξ
dξ

≤ (2η)j

Γ(j + 1)

� η

0
e−ξ dξ +

2j

Γ(j + 1)

� ∞

η

ξj

eξ
dξ

≤ (2η)j(1− e−η)

Γ(j + 1)
+

2j

Γ(j + 1)

� ∞

0

ξj

eξ
dξ

=
(2η)j(1− e−η)

Γ(j + 1)
+ 2j

≤ (2η)j

Γ(j + 1)
+ 2j .

This shows that

Fj(η) ≤ ηj+1

Γ(j + 2)
+

(2η)j

Γ(j + 1)
+ 2j ,
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Fj(η) ≥ ηj+1

2Γ(j + 2)
+

1

2
,

which shows that for j ≥ 0 it holds that

Fj(η)1(η>0) ∼ (ηj+1 + 1)1(η>0).

It now remains to prove the claim for j < 0. To derive the estimate from above, we again use
the transformation ξ �→ ξ + η, together with the estimates (ξ + η)j ≤ ξj and 1 + eξ ≥ ξ, and
obtain

IF2 =
1

Γ(j + 1)

� ∞

η

ξj

1 + eξ−η
dξ =

1

Γ(j + 1)

� ∞

0

(ξ + η)j

1 + eξ
dξ

≤ 1

Γ(j + 1)

� ∞

0

ξj

eξ
dξ

=
Γ(j + 1)

Γ(j + 1)

= 1.

This shows the estimate from above

Fj(η) ≤ ηj+1

Γ(j + 2)
+ 1.

To obtain the estimate from below, we need a more careful estimate on IF1 first. Let us assume
that η ≥ 1. Then it holds that

ξj

1 + eξ−η
≥ ξj

2
, for all ξ ≤ η,

ξj ≥ 1

2

�
ξj + η−1

�
, for all ξ ∈ [1, η].

Using this, we estimate

IF1 =
1

Γ(j + 1)

� η

0

ξj

1 + eξ−η
dξ =

1

Γ(j + 1)

�� 1

0
+

� η

1

�
ξj

1 + eξ−η
dξ

≥ 1

2Γ(j + 1)

� 1

0
ξj dξ +

1

4Γ(j + 1)

� η

1
ξj + η−1 dξ

=
1

4Γ(j + 1)

� η

0
ξj dξ +

1

4Γ(j + 1)

� 1

0
ξj dξ +

1

4Γ(j + 1)

� η

1
η−1 dξ

=
ηj+1

4(j + 1)Γ(j + 1)
+

1

4Γ(j + 1)

�
1

j + 1
+ 1− η−1

�
>

ηj+1

4Γ(j + 2)
+

1

4Γ(j + 1)
.

Estimating IF2 is now simple and straightforward:

IF2 =
1

Γ(j + 1)

� ∞

η

ξj

1 + eξ−η
dξ ≥ 0.
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Thus, we have shown that

Fj(η) ≳ ηj+1 + 1, for all η ≥ 1.

Now assume that η ∈ [0, 1]. Since Fj(η) is continuous and strictly monotonically increasing,
we have that Fj(0) is its minimum on [0, 1] and we estimate

Fj(0) =
1

Γ(j + 1)

� ∞

0

ξj

1 + eξ
dξ >

1

2Γ(j + 1)

� ∞

0

ξj

eξ
dξ =

1

2
.

Hence, there exists a constant C > 0, in fact C = 1
4 suffices, such that

Fj(η) ≥ C(ηj+1 + 1), for all η ∈ [0, 1].

This shows all necessary estimates on Fj(η) and we conclude that for j < 0 it also holds that

Fj(η)1(η>0) ∼ (ηj+1 + 1)1(η>0),

which finishes the proof.

The next corollary is a direct consequence of Lemma 69.

Corollary 70. For j > 0 it holds that

F ′
j(η) = Fj−1(η) ∼ Fj(η)1(η≤0) + Fj(η)

j
j+11(η>0),

F ′
1
2

(η) = F− 1
2
(η) ∼ F 1

2
(η)1(η≤0) + F 1

2
(η)

1
31(η>0),

(4.67)

where the second line is the special case j = 1
2 .

Next, we improve the lower bound on Fj(η) for η ≤ η0 < 0 to obtain bounds on its inverse.

Lemma 71. Let j > −1 and let η0 < 0 be fixed. Then it holds for all η ≤ η0 and all ξ ≥ 0
that

eη

1 + eη0
≤ Fj(η) ≤ eη. (4.68)

Proof. The upper bound is a consequence of Lemma 69. For the lower bound we compute

1 + eξ−η ≤ eξeη0−η + eξ−η = (1 + eη0)eξ−η,

from which we conclude

eη

1 + eη0
=

eη

1 + eη0
1

Γ(j + 1)

� ∞

0

ξj

eξ
dξ =

1

Γ(j + 1)

� ∞

0

ξj

(1 + eη0)
eξ−η dξ

≤ 1

Γ(j + 1)

� ∞

0

ξj

1 + eξ−η
dξ = Fj(η).

This finishes the proof.

As a direct consequence we can give bounds on the inverse of Fj .

128



4.4 Auxiliary results on Fermi-Dirac statistics

Corollary 72. Let j > −1 and let z0 > 0 such that F−1
j (z0) < 0. Then for all 0 < z ≤ z0 it

holds that
log z ≤ F−1

j (z) ≤ log z + log
�
1 + eF

−1
j (z0)

�
. (4.69)

Proof. We define η0 := F−1
j (z0) and η := F−1

j (z). By applying the logarithm to (4.68) we
obtain

log

�
eη

1 + eη0

�
≤ logFj(η) ≤ η.

Simplifying this expression leads to

η − log(1 + eη0) ≤ logFj(η) ≤ η,

and rewriting η = F−1
j (z) yields

F−1
j (z)− log(1 + eF

−1
j (z0)) ≤ log z ≤ F−1

j (z).

Rearranging terms proves (4.69).

Let us recall the definition of G and compute its derivative:

G(z) = F−1
1/2(z),

G′(z) =
1

F ′
1/2(F−1

1/2(z))
=

1

F−1/2(F−1
1/2(z))

=
1

F−1/2(G(z))
.

The next lemma gives an estimate on the behaviour of G′.

Lemma 73. For z ∈ (0,∞) it holds that

G′(z) ∼ z−1 + z−1/3. (4.70)

Proof. From the computation of G′ and by Corollary 70 we directly obtain

G′(z) =
�
F−1/2(F−1

1/2(z))
�−1 ∼

�
F1/2(F−1

1/2(z))1(F−1
1/2

(z)≤0) + F1/2(F−1
1/2(z))

1/31(F−1
1/2

(z)>0)

�−1

=

�
z1(F−1

1/2
(z)≤0) + z1/31(F−1

1/2
(z)>0)

�−1

= z−11(F−1
1/2

(z)≤0) + z−1/31(F−1
1/2

(z)>0).

This clearly shows the upper bound

G′(z) ≲ z−1 + z−1/3, z ∈ (0,∞).

For the lower bound we distinct the two cases z ∈ (0,F1/2(0)] and z > F1/2(0). In the case

of z ≤ F1/2(0) < 1 it immediately follows that z−1 < z−1/3, and therefore

z−1 >
1

2
(z−1 + z−1/3).
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In the case z > F1/2(0) it holds that z
−1/3 ≥ z−1 for z ≥ 1, and for z ∈ (F1/2(0), 1) it is easy

to see that z−1/3 > F1/2(0)z
−1, which shows

z−1/3 >
F1/2(0)

2
(z−1 + z−1/3).

Combining the cases shows the estimate

G′(z) ≳ z−1 + z−1/3,

which finishes the proof.

The next corollary is a direct consequence of Lemma 73

Corollary 74. For z ∈ (0,∞) it holds that

z1/3G′(z) ∼ 1 + z−2/3,

z1/2G′(z) ∼ z1/6 + z−1/2,

zG′(z) ∼ 1 + z2/3.

(4.71)

The next lemma is a preparation to compute the limit of zG′(z) as z → 0+.

Lemma 75. For all 0 < z0 < F1/2(0) it holds that�
1 + eG(z0)

�−1 ≤ lim
z→0+

zG′(z) ≤ lim
z→0+

zG′(z) ≤ 1 + eG(z0). (4.72)

Proof. We define η := G(z) and η0 := G(z0). Now let 0 < z1 ≤ z0 such that

log z + log
�
1 + eG(z0)

�
≤ G(z0), ∀z ≤ z1

holds. Applying F ′
1/2 to (4.69) yields

F−1/2(log z) = F ′
1/2(log z) ≤ F ′

1/2(G(z)) ≤ F−1/2(log z + log(1 + eG(z0)))

and using the estimate from (4.68) we get

elog z

1 + eη0
≤ F ′

1/2(G(z)) ≤ elog zelog(1+eG(z0)).

Simplifying terms, recalling that G′(z) = (F ′
1/2(G(z)))−1 and rewriting η0 = G(z0) we obtain

(1 + eG(z0))−1 ≤ zG′(z) ≤ 1 + eG(z0).

Since this inequality holds for all 0 < z ≤ z1 < z0, we have proven (4.72).

As a direct consequence we can compute the limit of zG′(z).
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Corollary 76. The limit of zG′(z) for z → 0+ exists and is

lim
z→0+

zG′(z) = 1. (4.73)

Proof. We note that

lim
z0→0

G(z0) = lim
z0→0

F−1
1/2(z0) = −∞,

therefore

lim
z0→0+

1 + eG(z0) = 1.

Hence, by (4.72) we have

1 ≤ lim
z→0+

zG′(z) ≤ lim
z→0+

zG′(z) ≤ 1.

We also need a reformulation of Lemma 69 in order to obtain estimates on G = F−1
1/2.

Lemma 77. For z ∈ (0,∞) it holds that

F−1
1/2(z) ≲ (log z + log 2)1(z≤F1/2(0)) + (z − 1)2/31(z>F1/2(0)),

F−1
1/2(z) ≳ (log z)1(z≤F1/2(0)) + (z − 1)2/31(z>F1/2(0)).

(4.74)

For z ≤ F1/2(0) the estimates hold with constants C = 1.

Proof. The result is a direct consequence of Lemma 69. Setting z = F1/2(η), restricting η ≤ 0
and taking the logarithm in (4.66) (with j = 1/2), we immediately obtain

log z ≤ F−1
1/2(z),

F−1
1/2(z) ≤ log z + log 2.

To show the second part, we take (4.65) with η > 0, which gives

C1η
3/2 + C2 ≤ F1/2(η) ≤ C3η

3/2 + C4,

for some constants C1, C2, C3, C4 > 0. Again, setting z = F1/2(η), a direct computation shows
that �

C−1
3 (z − C4)

�2/3 ≤ F−1
1/2(z) ≤

�
C−1
1 (z − C2)

�2/3
.

Reformulating this, we get

(z − 1)2/3 ≲ F−1
1/2(z) ≲ (z − 1)2/3 ⇔ F−1

1/2(z) ∼ (z − 1)2/3.

This shows the claim and finishes the proof.

Additionally to Corollary 74 we also need an estimate on (zG′(z))′.
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Lemma 78. For z ∈ (0,∞) it holds that

(zG′(z))′ ≲ 1(z<F1/2(0)) + z−1/31(z≥F1/2(0)). (4.75)

Proof. We first prove the part for z < F1/2(0). Using the chain rule we compute

(zG′(z))′ = G′(z) + zG′′(z)

=
1

F ′
1/2(F−1

1/2(z))
−

zF ′′
1/2(F−1

1/2(z))

F ′
1/2(F−1

1/2(z))
3

=
F ′
1/2(F−1

1/2z)
2 − zF ′′

1/2(F−1
1/2(z))

F ′
1/2(F−1

1/2(z))
3

.

We again write η = F−1
1/2(z) and define the auxiliary functions

f(η) :=
F ′
1/2(η)

2 −F1/2(η)F ′′
1/2(η)

F ′
1/2(η)

3
,

g(η) := F ′
1/2(η)

2 −F1/2(η)F ′′
1/2(η).

To prove the asymptotic behaviour for z < F1/2(0) or as z → 0, we equivalently prove the
behaviour for η < 0 or as η → −∞. To this end, we compute the derivative of F1/2(η)
by exchanging the derivative (with respect to η) with the integral (with respect to ξ) in the
definition of F1/2(η) and obtain (setting C1/2 := Γ(1 + 1/2)−1)

F1/2(η) = C1/2

� ∞

0

√
ξ

1 + eξ−η
dξ,

F ′
1/2(η) = C1/2

� ∞

0

√
ξeξ−η

(1 + eξ−η)2
dξ,

F ′′
1/2(η) = C1/2

� ∞

0

√
ξeξ−η(eξ−η − 1)

(1 + eξ−η)3
dξ.

Using these integral representations with different integration variables and by applying Fu-
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bini’s theorem, we compute the auxiliary function as follows:

g(η) = C2
1/2

� ∞

0

� ∞

0

√
ξνeξ−ηeν−η

(1 + eξ−η)2(1 + eν−η)2
dξ dν

− C2
1/2

� ∞

0

� ∞

0

√
ξνeξ−η(eξ−η − 1)

(1 + eξ−η)3(1 + eν−η)
dξ dν

= C2
1/2

� ∞

0

� ∞

0

#
ξν

eξ−ηeν−η(1 + eξ−η)− eξ−η(eξ−η − 1)(1 + eν−η)

(1 + eξ−η)3(1 + eν−η)2
dξ dν

= C2
1/2

� ∞

0

� ∞

0

#
ξνeξ−η e

ν−η + eν−ηeξ−η − eξ−η − eν−ηeξ−η + 1 + eν−η

(1 + eξ−η)3(1 + eν−η)2
dξ dν

= C2
1/2

� ∞

0

� ∞

0

#
ξνeξ−η 2eν−η − eξ−η + 1

(1 + eξ−η)3(1 + eν−η)2
dξ dν

= C2
1/2

� ∞

0

� ∞

0
eξ−η

#
ξν

�
2

(1 + eξ−η)3(1 + eν−η)
− 1

(1 + eξ−η)2(1 + eν−η)2

�
dξ dν

= 2F1/2(η)C1/2

� ∞

0

√
ξeξ−η

(1 + eξ−η)3
dξ −F ′

1/2(η)C1/2

� ∞

0

√
ν

(1 + eν−η)2
dν.

We estimate the two remaining integrals. Using

1

1 + eξ−η
≤ eη, for ξ ∈ (0,∞),

we can estimate

C1/2

� ∞

0

√
ξeξ−η

(1 + eξ−η)3
dξ ≤ eηC1/2

� ∞

0

√
ξeξ−η

(1 + eξ−η)2
dξ = eηF ′

1/2(η)

and in the same way

C1/2

� ∞

0

√
ν

(1 + eν−η)2
dν ≤ eηF1/2(η).

Combining these estimates with the previous computations and using (4.65) we obtain

g(η) ≤ 2eηF1/2(η)F ′
1/2(η) + eηF1/2(η)F ′

1/2(η) = 3eηF1/2(η)F ′
1/2(η) ≲ e3η

and hence, by again using (4.65)

f(η) =
g(η)

F ′
1/2(η)

3
≲ 1, for η < 0.

This proves the first part of (4.75), i.e.

(zG′(z))′ ≲ 1, for z < F1/2(0).

To show the second part, let us quickly recall that

(zG′(z))′ = G′(z) + zG′′(z), and G′(z) ∼ z−1 + z−1/3.
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Therefore, we only have to show that

zG′′(z) = −
zF ′′

1/2(F−1
1/2(z))

F ′
1/2(F−1

1/2(z))
3
≲ z−1/3, for z ≥ F1/2(0).

Again, we use the representation

F ′′
1/2(η) = C1/2

� ∞

0

√
ξeξ−η(eξ−η − 1)

(1 + eξ−η)3
dξ.

Now let η0 ≫ 0 and 0 < ε < η0 arbitrary. For η > η0 we split the integral of F ′′
1/2 at ε and

obtain

−F ′′
1/2(η) = −C1/2

� ε

0

√
ξeξ−η(eξ−η − 1)

(1 + eξ−η)3
dξ − C1/2

� ∞

ε

√
ξeξ−η(eξ−η − 1)

(1 + eξ−η)3
dξ =: I1 + I2.

Estimating I1 is straightforward:

I1 = −C1/2

� ε

0

√
ξeξ−η(eξ−η − 1)

(1 + eξ−η)3
dξ

= C1/2

� ε

0

√
ξeξ−η(1− eξ−η)

(1 + eξ−η)3
dξ

≤ C1/2e
ε−η

� ε

0

#
ξ dξ

=
2C1/2

3
eε−ηε3/2.

Next, we want to integrate by parts twice in I2, therefore we first compute

∂ξ
1

1 + eξ−η
= − eξ−η

(1 + eξ−η)2

∂2
ξ

1

1 + eξ−η
=

eξ−η(eξ−η − 1)

(1 + eξ−η)3
.

Thus, integrating by parts twice in I2 and splitting the resulting integral then at η yields

I2 = −C1/2

� ∞

ε

√
ξeξ−η(eξ−η − 1)

(1 + eξ−η)3
dξ

= −C1/2

�
−
#

ξ
eξ−η

(1 + eξ−η)2

++++∞
ε

−
� ∞

ε

−ξ−1/2eξ−η

2(1 + eξ−η)2
dξ

�

= −C1/2

� √
εeε−η

(1 + eε−η)2
−
�

ξ−1/2

2(1 + eξ−η)

++++∞
ε

−
� ∞

ε

−ξ−3/2

4(1 + eξ−η)
dξ

��

= −C1/2

� √
εeε−η

(1 + eε−η)2
−
�
− ε−1/2

2(1 + eξ−η)
+

� ∞

ε

ξ−3/2

4(1 + eξ−η)
dξ

��

= −C1/2

� √
εeε−η

(1 + eε−η)2
+

ε−1/2

2(1 + eξ−η)

�
+ C1/2

�� η

ε
+

� ∞

η

�
ξ−3/2

4(1 + eξ−η)
dξ

= −C1/2

� √
εeε−η

(1 + eε−η)2
+

ε−1/2

2(1 + eξ−η)

�
+ C1/2(I3 + I4).
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It is now straightforward to estimate I3,

I3 =

� η

ε

ξ−3/2

4(1 + eξ−η)
dξ ≤ 1

4(1 + eε−η)

� η

ε
ξ−3/2 dξ = − 2ξ−1/2

4(1 + eε−η)

++++η
ε

=
ε−1/2 − η−1/2

2(1 + eε−η)
,

and the term I4,

I4 =

� ∞

η

ξ−3/2

4(1 + eξ−η)
dξ ≤ 2

4

� ∞

η
ξ−3/2 dξ = −ξ−1/2

++++∞
η

= η−1/2.

Collecting all estimates we find that

−F ′′
1/2(η) ≤ C1/2

�
2ε3/2eε−η

3
−

√
εeε−η

(1 + eε−η)2
− ε−1/2

2(1 + eε−η)
+

ε−1/2 − η−1/2

2(1 + eε−η)
+ η−1/2

�

= C1/2

�
1 + 2eε−η

2(1 + eε−η)
η−1/2 +

2ε3/2eε−η

3
−

√
εeε−η

(1 + eε−η)2

�
.

Since ε > 0 was arbitrary, we find in the limit ε → 0 that

−F ′′
1/2(η) ≤ C1/2

1 + 2e−η

2(1 + e−η)
η−1/2 ≤ 3

4
η−1/2, for all η ≥ 0.

Using (4.67) to estimate the denominator and (4.74) to estimate F−1
1/2(z), this allows us to

provide the needed estimate

−
zF ′′

1/2(F−1
1/2(z))

F ′
1/2(F−1

1/2(z))
≲

zF−1
1/2(z)

−1/2

F1/2(F−1
1/2(z))

3/3
= F−1

1/2(z)
−1/2 ≲ (z− 1)(−1/2)(2/3) = (z− 1)−1/3 ≲ z−1/3.

Hence, we obtain
(zG′(z))′ ≲ z−1/3 + z−1 ≲ z−1/3, for z ≥ F1/2(0).

This shows the second part of (4.75) and finishes the proof.
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We briefly summarise our results and give an outlook over possible extensions and open prob-
lems connected to this thesis.

5.1 Nonlocal cross-diffusion systems

We have proven the global existence of weak solutions for a class of nonlocal cross-diffusion
systems, imposing only “minimal” conditions on the interaction kernels Kij . Furthermore, we
showed a weak-strong uniqueness result for the solutions, the boundedness of solutions given
that the kernels are twice differentiable with bounded second derivatives, and the localization
limit of the system.

While these results extend the existing literature, there is of course room for further research.
The existence of bounded solutions to the local system remains an open question. The authors
of [61] gave a partial answer to that question, listing conditions for the parameters aij which
will lead to a blow-up of solutions. However, these conditions do not cover our assumptions of
a detailed balance and positive stability, cf. Theorem 17.

Furthermore, the case of bounded domains Ω ⊂ Rd with Lipschitz boundary ∂Ω remains
open. It seems that for essentially bounded interaction kernels Kij and sufficiently small initial
conditions u0j one might be able to obtain a result (cf. Remark 9), but this leaves room for
improvement.

Last but not least, we observe that the uniqueness of solutions is a delicate topic in cross-
diffusion systems. We have proven weak-strong uniqueness of solutions under the assumption
that the strong solution is bounded away from zero as well as from above. A next step could
be to improve this result to nonnegative bounded strong solutions, since the positive lower
bound is due to our use of a relative entropy method and therefore seems to be a technical
assumption.

5.2 A finite-volume scheme for nonlocal cross-diffusion systems

We have designed and analysed an implicit Euler finite-volume scheme for a class of nonlocal
cross-diffusion systems and proved existence of discrete solutions as well as their convergence
to weak solutions of the system when the mesh size is refined.

Additionally, we did some numerical experiments and observed segregation of species, given
that the initial data are segregated. For the local system and two species, this was proven
in [17]. However, for more than two species and for nonlocal cross-diffusion systems in general,
this remains an open question. Our observations hint that a segregation result is also plausible
in this more general setting but to our knowledge no analytical result exists yet.
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Furthermore, the data we obtained in our numerical experiments also suggest that solutions
stay bounded. Due to the convergence of the scheme, obtaining bounds on the solutions, which
for example only depend on the L1-norms of the kernels Kij , could be a way to also prove the
existence of bounded solutions to the continuous system studied in Chapter 2.

5.3 A charge transport system with Fermi-Dirac statistics for
memristors

We have shown the global existence and, under additional assumptions, the uniform bound-
edness in time of weak solutions to a nonlinear drift-diffusion system modelling memristive
devices. Fermi-Dirac statistics of order 1/2 and Blakemore statistics were used to govern the
nonlinear diffusion of the different charge carriers.
An interesting question to investigate would be the existence of periodic solutions. Neurons

exhibit a switch-like behaviour followed by a refractory period. Combining one or more resistive
switching random access memory devices together with a parallel capacitor in a circuit, one
can model these relaxation oscillations in a controlled fashion, see [69] and the references
therein. However, the need for the use of an integrated capacitor limits the scalability of such
devices, hence studying memristor models for the existence of relaxation oscillations provides
an interesting question.
Moreover, the results in [71] and [77] suggest that a weak-strong uniqueness result should

also hold for the system we studied in Chapter 4, but this is still subject to investigation.
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Roadmap on organic-inorganic hybrid perovskite semiconductors and devices. APL Mater.
9 (2021), 109202.

[92] C. Shannon. A mathematical theory of communication. Bell System Tech. J. 27 (1948),
379–423.

[93] J. Simon. Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl. (4) 146 (1986),
65-96.

[94] J. Sirignano and K. Spiliopoulos. Mean field analysis of neural networks: a law of large
numbers. SIAM J. Appl. Math. 80 (2020), 725–752.

[95] C. Sogge. Fourier Integrals in Classical Analysis. Cambridge University Press, Cambridge,
1993.

[96] D. B. Strukov, J. L. Borghetti, and R. S. Williams. Coupled ionic and electronic transport
model of thin-film semiconductor memristive behavior. Small 5 (2009), 1058-1063.

[97] S. M. Sze and K. K. Ng. Physics of Semiconductor Devices. Third Edition, John Wiley &
Sons, Inc., Hoboken, New Jersey, 2007.

[98] N. Tessler and Y. Vaynzof. Insights from device modeling of perovskite solar cells. ACS
Energy Lett. 5 (2020), 1260–1270.

[99] E. Zeidler. Nonlinear Functional Analysis and its Applications II/A: Linear Monotone
Operators. Springer, New York, 1990.

[100] E. Zeidler. Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone
Operators. Springer, New York, 1990.

145


