


Abstract

Modeling and simulation are a crucial aid for reducing development cycle time and costs
in modern semiconductor technology. New modeling concepts increasingly require long-
term research performed in an interdisciplinary manner, and new numerical methods
and algorithms are needed to implement these concepts.

The three-dimensional interconnect structure in the integrated circuits represents a diffi-
cult electromagnetic system. It includes many metalization layers with links for typically
more than one million transistors, which are characterized by resistance, capacitance,
and inductance parameters governing the electric signal behavior and supply. To extract
these parameters an electromagnetic analysis is performed which is actually a problem
of solving a set of Maxwell equations in the domain of interest with given boundary con-
ditions. Unfortunately such boundary-value problems can be solved analytically only for
a few special cases. In general, for arbitrary shaped domains numerical approximation
methods like the finite element method are used.

The presented thesis treats the numerical calculation of three-dimensional electromag-
netic fields using the finite element method based on vector and scalar shape functions
followed by consequent parameter extraction. It begins with an explanation of the
boundary value problems, weighted residual and Galerkin’s method. The Galerkin’s
method belongs to the classical methods forming the basis of modern finite element
analysis. Subsequently the vector finite elements are introduced, which are particular
suitable for the description of the electric field and the magnetic field vector functions.
The formulated edge based triangular elements for two-dimensional applications and the
edge based tetrahedral elements for the three-dimensional ones are the foundation for all
calculations in this thesis derived and explained in detail. A special focus is the careful
definition and analysis of the numerical schemes describing the dominant magnetic field
case. The following complex diffusion models are handled by a partial differential equa-
tion system which is numerically calculated using a combination of vector and scalar
shape functions.

The developed models are implemented in the three-dimensional finite element simu-
lation software SAP (Smart Analysis Programs). The simulation results demonstrate
the physical plausibility of the applied models and numerical methods as well as the
necessity of three-dimensional simulations.
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Kurzfassung

Modellbildung und Simulation sind kritische Werkzeuge für die Minimierung von Ent-
wicklungszeit und -kosten. Neue Modellierungskonzepte brauchen immer mehr langfri-
stige fächerübergreifende Untersuchungen, die auf neuen numerischen Methoden und
Algorithmen basieren.

Die dreidimensionale Verdrahtungsstruktur in integrierten Schaltkreisen stellt ein kom-
plexes elektromagnetisches System dar. Sie enthält mehrere Metallisierungsschichten mit
Verbindungen zu typisch mehr als einer Million Transistoren und ist charakterisiert
durch Widerstands-, Kapazitäts- und Induktivitätsparameter, die das elektrische Signal-
verhalten und die elektrische Versorgung bestimmen. Die Extraktion dieser Parameter
wird durch eine elektromagnetische Analyse durchgeführt, die schließlich zur Lösung der
Maxwell-Gleichungen im interessierenden Gebiet bei vordefinierten Randbedingungen
führt. Leider können solche Randwertaufgaben nur selten analytisch berechnet werden.
Im Allgemeinen, wenn beliebige Geometrien berücksichtigt werden müssen, sollte man
Approximationsmethoden wie z. B. die finite Elemente-Methode verwenden.

In der vorliegenden Arbeit wird die numerische Berechnung von dreidimensionalen elek-
tromagnetischen Feldern unter der besonderen Verwendung von Vektorformfunkionen
und der daraus resultierenden Parameterextraktion beschrieben. Zu Beginn werden die
Randwertaufgabe, die Methode der gewichteten Residuen und die Methode von Galer-
kin eingeführt. Die Methode von Galerkin gehört zu den klassischen Methoden, die die
Grundlage für die moderne finite Elemente-Analyse bilden. Anschließend werden die vek-
toriellen finiten Elemente eingeführt, die genau auf die Beschreibung von magnetischen
und elektrischen Feldern im Definitionsbereich zugeschnitten sind. Die so formulierten
Kantendreieckelemente für den zweidimensionalen und die Kantentetraederelemente für
den dreidimensionalen Fall stellen die Grundlage für alle Berechnungen in dieser Ar-
beit dar und werden im Detail erklärt. Spezieller Wert wird auf die sorgsame Definition
und Analyse der numerischen Schemata gelegt, die den Fall des dominant magnetischen
Feldes beschreiben. Das davon resultierende komplexe Diffusionsmodell wird durch ein
System von partiellen Differentialgleichungen beschrieben. Das System wird durch die
finite Elemente-Methode mit einer Kombination aus vektoriellen und skalaren Form-
funktionen gelöst.

Die entwickelten Modelle sind in das dreidimensionale Simulationspaket SAP (Smart
Analysis Programs) implementiert. Die Simulationsergebnisse zeigen nicht nur die Plau-
sibilität der verwendeten physikalischen Modelle und der numerischen Methoden, son-
dern auch die Notwendigkeit von dreidimensionalen Simulationen.
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Chapter 1

Preface

In modern microelectronics the interconnects represent a complicated electromagnetic
system which is essentially characterized by parameters like capacitance, resistance, and
inductance at different frequencies. These parameters are extracted from the electric and
magnetic fields after solving the Maxwell equations. This is usually based on numerical
methods like finite element analysis which is probably one of the most superior simula-
tion techniques in electromagnetics. Inductive effects have been neglected in integrated
circuit design for a long time. That is on one side, because they become noticeable only
with very high frequencies, and on the other side probably, because its computation is
much more complex than those of the capacitances or direct current (DC) resistances.
Usually capacitance and DC resistance are obtained by finite element analysis with
scalar interpolation functions. For three-dimensional inductance and high frequency re-
sistance calculation another kind of interpolation functions, the so called edge or vector
interpolation functions have to be introduced.

The procedures presented in this work bear mostly on the computation of inductance
and resistance of arbitrarily shaped three-dimensional interconnect structures in mi-
croelectronics at frequencies at which skin effect can be observed. The extreme small
dimensions of modern microelectronics topology give the opportunity to use the quasi-
magnetostatic case, assuming the so-called dominant magnetic field model. The resulting
partial differential equation system arising from the Maxwell equations is solved in the
frequency domain and provides the time-harmonic magnetic field distribution and the
current density distribution in the domain of interest at the given frequency. Thereby
induction, skin effect, and proximity effect are taken into account. As a consequence
the inductance and the resistance of the interconnect structure in the simulation domain
at a specific frequency is extracted from the numerically calculated fields’ distributions.
Working in the frequency domain gives no disadvantage as it appears. Each time depen-
dent function can be expressed in terms of time-harmonic parts using Fourier analysis.

In Chapter 3 a brief introduction to the finite element method is given. The basic
principle is illustrated by the weighted residual and by Galerkin’s method. Since the
mathematical models in this work contain scalar and vector fields, both, the scalar and
the vector finite element interpolation is addressed. A detailed explanation of the finite
element assembling is discussed in Chapter 4, where the concept for scalar finite elements
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is presented. The governing mathematical expressions are derived and given for the two-
and three-dimensional case. Chapter 5 is devoted to the formulation of vector finite
element analysis. Some basic applications of electromagnetics for the vector interpolation
are presented. Again the corresponding general algorithms and formulas for two- and
three-dimensional assembling are explained. The simulation domain discretization is
discussed to interfere the importance of the properties of the generated mesh for further
analysis steps.

Typical three-dimensional applications occurring in microelectronics for vector and scalar
finite element techniques are presented in Chapter 6. The theory from the previous chap-
ters is used for magnetic field and current density or electrostatic potential distribution
calculation in different regions for given electromagnetic problems. Consequently the
parameters of interest are extracted. The fields are visualized to demonstrate the proper-
ness of the numerical analysis. This chapter starts with an inductance and resistance
extraction example for a specific structure, which also provides analytical formulas for
the parameters calculation. Thus the method is evaluated (at least for this structure) by
comparison between the numerically simulated and analytically calculated results. This
example addresses also the parameter extraction from the numerically calculated fields
by the power in the simulation domain. After that an on-chip spiral inductor as typically
used in microelectronics is analyzed. Another interesting application is the simulation of
periodic structures. In such cases by applying so-called periodic boundary conditions it
is possible to simulate only small substructures which represent the geometrical period
of the entire structure. Thus the simulation resources and the computation time can be
significantly optimized.

Related topics are covered in the appendices. In Appendix A the integration domain
transformation is explained, which is commonly used for the derivation of the finite
element assembling expressions. Appendix B and Appendix C describe a possible dis-
cretization of the Neumann boundary term naturally arising after the so called weak
formulation in the finite element analysis. It corresponds with the Neumann boundary
condition given on the Neumann boundary. Normally the Neumann boundary is a part
of or the entire outer closure of the simulation domain and the corresponding Neumann
condition is assumed to be zero — homogeneous Neumann boundary condition. This is
almost legitimate also for open or infinite regions considering the fact that the field quan-
tities decrease to zero with increasing distance to the source. However as discussed in
Subsection 4.1.5 applying the homogeneous Neumann boundary to open regions distorts
the results. In such cases hybrid techniques like a combination of finite elements and
boundary integral methods can be addressed, where the discretization of the Neumann
boundary term is required.
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Chapter 2

Overview of Tools for Numerical

Analysis of Electromagnetic

Fields in Microelectronics

Over the past decades a large number of simulation tools for numerical analysis of the
electromagnetic fields and for the subsequent parameter extraction has been developed.
Parameter extraction based on the field calculation by the finite element method has
a long tradition also in the Institute for Microelectronics at the Technical University
in Vienna. In this chapter some of the most important commercial software packages
for numerical analysis are discussed. At the end the interconnect simulation software
package Smart Analysis Programs is introduced.

2.1 Ansoft

Ansoft [1] tools integrate electromagnetic, circuit, and system engineering in a complete
design environment. Some of the most interesting applications are the following:

HFSS is a three-dimensional full-wave electromagnetic simulation tool for S-parameter,
SPICE extraction, and field computation of high-frequency and high-speed components.
It models on-chip embedded passive components, integrated circuit packages, printed
circuit board interconnects, antennas, radio frequency and microwave components, and
biomedical devices. It uses higher-order hierarchical shape functions and an iterative
solver, which provides efficient and accurate field solutions at coarser meshes. A high-
quality finite element mesher supports discretization of complex geometries.

Q3D Extractor provides high-performance three-dimensional and two-dimensional par-
asitic extraction of electronic components based on quasi-static electromagnetic-field
simulation. The method of moments and the finite element method are used to obtain
three-dimensional RLC and two-dimensional RLCG values. An equivalent SPICE circuit
model can be automatically generated.
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TPA (Turbo Package Analyzer) provides automated parasitic extraction for integrated
circuit packages. Lumped or distributed RLC parameters in integrated circuit packages
for analog radio frequency and high-speed digital applications are obtained automati-
cally.

2.2 The COMSOL Group

The COMSOL Group [2] is an engineering software company providing solutions for
multiphysics modeling.

COMSOL Multiphysics is a versatile simulation environment providing geometry model-
ing, physics specification, mesh generation, solving, and results post-processing. Prede-
fined modeling modules and templates for a large number of applications like fluid flow
and heat transfer, structural mechanics, and electromagnetic analyses guarantee quick
problem description and solving. Excitation terms, boundary conditions, and material
properties can be given by arbitrary functions. The researchers can define their own
partial differential equations and interdependencies. The functionality can be extended
by many auxiliary add-on interfaces. One of them is the AC/DC Module coupling elec-
trostatics, magnetostatics, and quasi electro- and magnetostatics with different physical
phenomenons, like thermal effects. Its SPICE interface allows to model circuit compo-
nents for subsequent finite element analysis. The CAD import module provides easy
handling of CAD formats. The radio frequency module is utilized in radio frequency,
microwave and optical engineering simulations for easily modeling of antennas, waveg-
uides, microwave and optical components.

COMSOL SCRIPT provides access to all COMSOL Multiphysics modeling capabilities.

2.3 CST

CST (Computer Simulation Technology) [3] offers solutions for static, stationary, low
and high frequency problems.

CST MWS (CST MICROWAVE STUDIO) is an accurate and fast three-dimensional high fre-
quency simulator for electromagnetic problems. Its frequency domain solver performs
on tetrahedral as well as on hexahedral meshes. CST MWS can be linked with external
simulators to a larger design environment through the open architecture CST DESIGN

STUDIO. It can extract parameters ready for further SPICE analysis and provides filters
for specific CAD input.

CST DS (CST DESIGN STUDIO) divides complex systems into smaller system parts, each
described by its S-matrix. The particularly best suited simulator to each sub-system is
applied. Thus the behaviour of the entire system is analysed more efficiently within a
few seconds. Analytical models or measured components (e.g. transmission lines) can
also be considered.

CST EMS (CST EM STUDIO) facilitates static and low frequency device simulation. CST

EMS offers different solver techniques for electrostatics, magnetostatics, current flow, low
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frequency, and stationary temperature problems. In order to analyze coupled problems,
the results obtained by one of the solvers can be transferred to another. The same
three-dimensional electromagnetic simulator supports both, orthogonal and tetrahedral
meshing. It chooses automatically the method (method on demand) and the mesh
(mesh on demand) best suited to a particular problem and structure, respectively. If
desired, different simulation technologies can be applied to a problem for cross-checking
the results.

The electrostatic solver is utilized for static or quasi-static problems (for example to
calculate the field between the electrodes of a capacitor). When eddy currents are
negligible or when nonlinear materials are used, the magnetostatics solver is mostly used.
Additionally it provides automated impedance extraction. Magnetostatic computation
like current distributions in lossy materials are provided by the stationary current solver.
The quasi-electrostatics solver applies for slowly varying fields in the presence of low
conductivity materials. The low-frequency frequency domain solver has been developed
for lossy low-frequency applications to calculate eddy currents, loss densities, and energy
densities. Thereby, the wave propagation in a device can be also considered, because
the displacement current is taken into account. For the thermal problems the thermal
solver is used. Most solvers can be switched from orthogrid generation to tetrahedral
meshing.

2.4 Magwel

Magwel [4] offers simulation software for designing integrated circuits.

EditEM is a very intuitive and versatile design editor. It can read CAD files, it is
capable to check three-dimensional structures and the corresponding mesh. Layer based
geometries are investigated layer-wise.

SolvEM is a powerful three-dimensional solver for electromagnetic problems. Its capa-
bilities include Maxwell equations computation at high frequencies and drift-diffusion
equations in semiconductor domains. Thereby skin effect, current crowding effect, eddy
currents, and semiconductor junction space charges can be computed. It provides a
coupling between interconnect simulation in conductors, insulators and semiconductors.

ExtractEM provides lumped or S-parameter extraction of the investigated structure. The
researcher can inspect the computed field results and use the extracted parameters for
further investigation as input for SPICE simulation.

2.5 Remcom

Remcom provides a large number of simulation software packages for electromagnetic
analysis [5]. One of these products provided by Remcom is XFdtd. XFdtd is a full wave
three-dimensional finite difference time domain electromagnetic solver. Models described
by different CAD file formats can be easily imported, edited, and then exported to CAD
format again. XFdtd offers a fast meshing algorithm and mesh preview before calcula-
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tion. It can model complex nonlinear and frequency-dependent electric and magnetic
materials, nonlinear devices, and anisotropic materials. Due to its parallelization capa-
bility huge applications can use computer clusters. XFdtd supports XStream hardware
FDTD (another product of Remcom), which utilizes high speed graphics processors for
increased calculation speed.

2.6 Synopsys

Synopsys [6] delivers software for semiconductor modeling, intellectual property, and
design for manufacturing solutions. It provides professional tools for development of
on-chip and electronic systems. Some of the very interesting extraction tools from the
TCAD tool suite are Raphael, Star-RCXT, and Raphael NXT.

Raphael is a two-dimensional and three-dimensional field solvers collection for intercon-
nect design and analysis. It calculates the electrical and thermal phenomena in complex
on-chip interconnect structures. The graphical user interface allows process data to be
easily incorporated and the critical interconnect geometries to be automatically gener-
ated. Raphael extracts capacitance, resistance, and inductance for optimizing multi-level
interconnects and on-chip parasitics using its industry-standard field solvers and inter-
faces. It considers the effect of process variation by investigation of complex interconnect
geometries and administrates a database to investigate the effect of design-rule changes.
Its features include two- and three-dimensional capacitance and resistance extraction of
interconnect structures by the finite difference method, two- and three-dimensional inter-
connect capacitance computation by the boundary element method, three-dimensional
inductance and resistance calculation under consideration of skin effect, electric field and
potential calculation, temperature and current density distribution simulation consider-
ing floating conductors and conformal dielectric layers with anisotropic permittivity.

Star-RCXT is accurate parasitic extraction tool, providing solution for ASIC, on-chip
systems, digital and analog designs. Some of its features include three-dimensional
parasitic computation with accurate process variation modeling, substrate extraction,
automatic field solver flow, chemical-mechanical polishing simulation and litho-aware
extraction.

Raphael NXT complements Star-RCXT by three-dimensional capacitance extraction of
critical nets, cells, or blocks on the full-chip level. It considers conformal dielectrics,
trapezoidal conductor cross sections, metal fill, and lithography effects to model ac-
curately the complex interconnect geometries. Raphael NXT makes use of the floating
random-walk method [7, 8], which allows parameter extraction in domains with a size
well beyond the reach of mesh-based simulators. Usually Raphael NXT applies a 0 V
Dirichlet boundary condition at the outer bounds of the simulation domain. However,
reflecting Neumann boundary conditions and periodic boundary conditions for struc-
tures with repeated cells can be also specified explicitly. Due to the floating random-
walk method Raphael NXT provides distributed computation even with different loads
on different processors.
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2.7 Institute for Microelectronics at the TU Wien

The scientists of the Institute for Microelectronics at the TU Wien develop software for
device, process and interconnect simulation.

Smart Analysis Programs is a collection of tools for numerical simulations of electric,
magnetic, and thermal phenomena occurring in interconnect lines of integrated circuits.
It has been developed by Robert Bauer [9], Rainer Sabelka [10], and Christian Har-
lander [11]. The package contains preprocessing tools, a finite element simulator, and
visualization software. The two- and three-dimensional finite element analysis program
STAP is utilized for electric and magnetic field calculation and consequent RLC ex-
traction. It can perform transient and static thermal analysis of interconnects under
electrical stress. A transient electric or electro-quasistatic mode is supported for the
simulation of delay times or crosstalk.

CUTGRID is the preprocessing tool for two-dimensional solid modeling and a mesh gen-
eration, well suited for cross-sectional two-dimensional planes. Its output is a triangular
mesh which is used by the finite element simulator STAP as input. Another preprocess-
ing software is the three-dimensional geometry specification and mesh generation tool
LAYGRID. The interconnect lines in the integrated circuits build a layered structure.
This allows the cumbersome problem of three-dimensional geometry description to be
reduced to flat mask definitions and planar or non-planar layers. Thereby, the masks
can easily be extracted from a layout description and layers can be derived from cross
sections. LAYGRID generates a tetrahedral mesh suitable for further investigations with
STAP.

For capacitance extraction STAP solves the Laplace equation for the electric potential
in the simulation domain. It is assumed that the electrodes of the capacitor are ideal
conductors and the dielectric is an ideal insulator. The surfaces of the electrodes rep-
resent Dirichlet boundary conditions. The capacitance is extracted from the electric
field energy. STAP provides global grid refinement and quadratic shape scalar functions
in order to increase the accuracy of the simulation. The finite element discretization
leads often to a large linear equation system, which is solved by a preconditioned con-
jugate gradient method. Thereby a compressed matrix format for the sparsely occupied
stiffness matrix is used in order to achieve an efficient utilization of computer memory.

For simulation of periodic structures STAP uses the so-called periodic boundary condi-
tions. In this case the simulation is performed only in the geometrical period, which
is usually much smaller than the entire structure. The periodic boundaries capability
of the preprocessing tools CUTGRID and LAYGRID were developed and implemented by
Wilfried Wessner [12].

The generated mesh and the resulting two- and three-dimensional distributions can be
inspected with the visualisation tool SV.
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Chapter 3

Introduction to the Finite

Element Method

Normally the problems arising from mathematical physics are described by partial dif-
ferential equation systems [13, 14, 15, 16] defined in a given domain of interest. These
boundary value problems represent the models of specific problems for further simulation
and analysis [17] and are usually approximately solved by numerical procedures. One of
these procedures is the finite element method. Originally this method has been success-
fully applied to mechanical problems [18, 19]. Today, the finite element method is the
general technique widely used for mathematical and engineering numeric analysis. A lot
of books and scripts have been issued to help understanding and applying this interest-
ing and useful topic [20, 21, 22, 23, 24, 25, 26, 27, 28]. The method is also well suited for
object-oriented treatment [29], which is essential for software implementation. Further
enhancement of the finite element method can be achieved by formulating self-adapting
procedures and techniques to solve open region problems [30] and by the analysis of
the error in the computed finite element solution [31, 32]. There are two most widely
used classical methods for approximation of boundary-value problems. One is the Ritz
Method and the other is Galerkin’s method [33, 34]. The Ritz method1 is a variational
method. It formulates the boundary value problem in terms of a variational expression,
called functional. Galerkin’s method belongs to the family of weighted residual methods.
These two methods build the foundation of modern finite element analysis. In this work
Galerkin’s approach is preferred for the introduction of the finite element method.

In general an area A is enclosed in its boundary ∂A which usually consists of several
closed curves. Closed surfaces have no boundary (∂A = 0). Analogously the boundary
∂V of a three-dimensional domain V can be represented by one or more closed surfaces.
The unit normal vector to the boundary curve ∂A for the two-dimensional case or to
the boundary surface ∂V for the three-dimensional case, respectively, is denoted as ?n.
It has the characteristic length one and points outward.

1The Ritz method is also known as Rayleigh-Ritz Method.
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3.1 Boundary-Value Problems

The boundary-value problems can be described by the expression

L [u (?r)] = f(?r) (3.1)

in a domain V and by the boundary conditions applied on the boundary ∂V enclosing
the domain V . In (3.1) L is a differential operator, u is the unknown function, and f is
the excitation or forcing term. The differential equations used in this thesis are linear.
Therefore, L is assumed to be a linear differential operator.

Depending on the type of fields to be solved there are different kinds of linear differential
operators L. In this thesis the linear differential operator appears as scalar operator

L[u] = ?∇ · (
˜
a · ?∇u) + bu (3.2)

or as vector operator

?L[?u] = ?∇×
�
˜
a · (?∇× ?u)

�
+

˜
b · ?u. (3.3)

In (3.2) and (3.3)
˜
a =

˜
a(?r) and

˜
b =

˜
b(?r) are position dependent second order symmetric

tensors and b = b(?r) is a position dependent scalar factor. The operator ?∇ is the in the
vector analysis widely used differential operator nabla. In Cartesian coordinates in the
three-dimensional space ?∇ has the following representation:

?∇ = ?ex∂x + ?ey∂y + ?ez∂z.

The partial derivative, for example with respect to the variable x, is abbreviated as ∂x

instead of ∂
∂x

. The expressions (3.2) and (3.3) represent linear differential operators. In
(3.2) L is a scalar differential operator which operates on the scalar function u. In (3.3)
?L is a vector differential operator which operates on the vector function ?u.

The boundary ∂V is divided as in [35] into a Dirichlet boundary AD and a Neumann
boundary AN , where

∂V = AD + AN .

For elliptical partial differential equations, like the Helmholtz equation ?∇·?∇u+bu = f(?r),
the Dirichlet boundary condition (or the boundary condition of the first kind)

u(?r) = ud on AD

is given by the values of u on the Dirichlet boundary AD and the Neumann boundary
condition (or the boundary condition of the second kind)

?n · ?∇u(?r) = un on AN .

9



by the normal derivative of u on the Neumann boundary AN , respectively [36]. For
the more general case (3.2) the Neumann boundary condition has to be specified by the
conormal derivative

?n ·
˜
a · ?∇u(?r) = un on AN . (3.4)

instead of the normal derivative [37].

The same can be written for two-dimensional problems. In this case the domain is an
area denoted as A with the boundary ∂A

∂A = CD + CN .

3.2 The Weighted Residual Method

The weighted residual method is demonstrated for the scalar function u and can be
applied analogously to the vector one ?u. Usually the unknown function u of (3.1) cannot
be found analytically, therefore, it is approximated by

ũ(?r) =

n-
j=1

cjNj(?r) + v(?r) ≃ u(?r). (3.5)

In (3.5) v(?r) is a known function which fulfills exactly the Dirichlet boundary condition
on AD

v(?r) = u(?r) on AD. (3.6)

The basis (also called form or shape) functions Nj(?r), j ∈ [1; n] build a set of linear
independent known functions which vanish on the Dirichlet boundary AD. Thus (3.6)
is satisfied for each arbitrary set of coefficients cj , j ∈ [1; n]. The coefficients cj must
be determined in such a way that the function ũ approximates the solution of (3.1) as
exactly as possible. The basis functions should be formulated in such way that each
solution can be approximated with arbitrary accuracy, if a sufficiently large number
of basis functions is used. After substitution of ũ for u in (3.1) a nonzero residual is
obtained in general

R(?r) = L [ũ(?r)] − f(?r) �= 0. (3.7)

To find a good approximation ũ for u it is required to minimize the residual (3.7). The
weighted residual method finds the unknown coefficients cj by weighting the residual
(3.7). This is performed by choosing a set of linear independent weighting (called test
or trial) functions Wi(?r), i ∈ [1; n] and by enforcing the condition

�
V

Wi(?r)R(?r) dV = 0. (3.8)
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Insertion of (3.7) in (3.8) gives

�
V

Wi(?r) {L [ũ(?r)] − f(?r)} dV = 0, i ∈ [1; n], (3.9)

which leads to the following expression to obtain the coefficients cj

�
V

Wi(?r)


L


 n-

j=1

cjNj(?r) + v(?r)


 − f(?r)


 dV = 0, i ∈ [1; n]. (3.10)

Since L is a linear differential operator (3.10) becomes

cj

n-
j=1

�
V

Wi(?r)L [Nj(?r)] dV =

�
V

Wi {f(?r) − L [v(?r)]} dV, i ∈ [1; n], (3.11)

which corresponds to a linear equation system

[K] {c} = {d} . (3.12)

The Matrix [K] and the right hand side vector {d} are given by the expressions

Kij =

�
V

Wi(?r)L [Nj(?r)] dV

di =

�
V

Wi(?r) {f(?r) − L [v(?r)]} dV, i ∈ [1; n], j ∈ [1; n].

(3.13)

3.3 Galerkin’s Method

If the weighting functions Wi are chosen to be the same as those applied in the sum of the
approximation ( Wi(?r) = Ni(?r) ), the weighted residual method merges into Galerkin’s
method. If L is self-adjoint, the matrix from (3.12) is symmetric and Galerkin’s method
leads to the same linear equation system as those given by the Ritz method [38].
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3.3.1 Galerkin’s Method for the Scalar Differential Operator

Equation (3.9) is written as

�
V

Ni

�
?∇ · (

˜
a · ?∇ũ) + bũ

�
dV −

�
V

Nif dV = 0, i ∈ [1; n], (3.14)

where Galerkin’s method (Wi = Ni) and the scalar differential operator (3.2) are used.
After applying the first scalar Green’s theorem

�
V

W
�
?∇ · (

˜
a · ?u)

�
dV =

�
∂V

W ?n ·
˜
a · ?u dA −

�
V

?∇W ·
˜
a · ?u dV (3.15)

(3.14) is modified to read

�
∂V

Ni ?n ·
˜
a · ?∇ũ dA−

�
V

?∇Ni ·
˜
a · ?∇ũ dV +

�
V

bNiũdV −

�
V

Nif dV = 0, i ∈ [1; n]. (3.16)

Since Ni vanishes on AD for i ∈ [1; n] the boundary integral from (3.16) reads

�
∂V

Ni ?n ·
˜
a · ?∇ũ dA =

�
AN

Ni ?n ·
˜
a · ?∇ũ dA ≃

�
AN

Ni un dA. (3.17)

In (3.17) the conormal derivative ?n ·
˜
a · ?∇ũ corresponds with the Neumann boundary

condition on AN (3.4) [35, 37]

?n ·
˜
a · ?∇ũ ≃ un = ?n ·

˜
a · ?∇u on AN . (3.18)

Equation (3.16) leads with (3.5) and (3.17) to the linear equation system (3.12), where
[K] and {d} are given by

Kij = −

�
V

?∇Ni ·
˜
a · ?∇Nj dV +

�
V

bNi Nj dV

di =

�
V

Ni (f − L [v]) dV −

�
AN

Ni un dA, i ∈ [1; n], j ∈ [1; n],
(3.19)

with L[v] from (3.2).
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3.3.2 Galerkin’s Method for the Vector Differential Operator

If the vector differential operator ?L from (3.3) is used the corresponding excitation
function in (3.1) must be a vector function as well which is written as ?f (?r).

?L [?u (?r)] = ?f (?r) . (3.20)

The approximation (3.5) corresponds to

?̃u(?r) =
n-

j=1

cj
?Nj(?r) + ?v(?r) ≃ ?u(?r), (3.21)

where ?v(?r) is a known function which exactly fulfills the Dirichlet boundary condition
on AD. The basis functions ?Nj(?r), j ∈ [1; n] build a set of linear independent known
functions. Their tangential components vanish on the Dirichlet boundary AD. The
residual is given analogously to (3.7) by

?R(?r) = ?L
�
?̃u (?r)

�
− ?f(?r) �= 0 (3.22)

and does not vanish in general. In this case the weighting functions in Section 3.2 must
also be merged into vector functions ?Wi and the dot product must be used instead of
scalar multiplication.

�
V

?Wi(?r) · ?R(?r) =

�
V

?Wi(?r) ·
�

?L
�
?̃u(?r)

�
− ?f(?r)

�
dV = 0, i ∈ [1; n] (3.23)

or

�
V

?Wi(?r) · ?L
�
?̃u(?r)

�
dV −

�
V

?Wi(?r) · ?f(?r) dV = 0, i ∈ [1; n]. (3.24)

With these considerations the weighted residual method described in section 3.2 will
also lead to the linear equation system (3.12) where the matrix [K] and the right hand
side {d} are given by

Kij =

�
V

?Wi(?r) · ?L
�

?Nj(?r)
�

dV

di =

�
V

?Wi(?r) ·
�

?f(?r) − ?L [?v(?r)]
�

dV, i ∈ [1; n], j ∈ [1; n].

(3.25)
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After using the Galerkin approach ?Wi(?r) = ?Ni(?r), substituting the vector differential
operator [ ?L] from (3.3), and applying the first vector theorem of Green

�
V

?W ·
�

?∇×
�
˜
a · (?∇× ?u)

��
dV =

=

�
V

(?∇× ?W ) ·
˜
a · (?∇× ?u) dV −

�
∂V

?n ·
�

?W ×
�
˜
a · (?∇× ?u)

��
dA

(3.26)

to the first integral from the left hand side of (3.24), the following is obtained:

�
V

?Wi · ?L
�
?̃u
�

dV =

�
V

?Ni ·
�

?∇×
�
˜
a · (?∇× ?̃u)

�
+

˜
b · ?̃u

�
dV =

=

�
V

(?∇× ?Ni) ·
˜
a · (?∇× ?̃u) dV −

�
∂V

?n ·
�

?Ni ×
�
˜
a · (?∇× ?̃u)

��
dA +

+

�
V

?Ni ·
˜
b · ?̃u dV.

(3.27)

Since the tangential component of ?Ni on the Dirichlet boundary AD is zero the boundary
integral of (3.27) can be written as

−

�
∂V

?n ·
�

?Ni ×
�
˜
a · (?∇× ?̃u)

��
dA = −

�
∂V

 
?n × ?Ni

&
·
�
˜
a · (?∇× ?̃u)

�
dA =

= −

�
AN

 
?n × ?Ni

&
·
�
˜
a · (?∇× ?̃u)

�
dA =

�
AN

?Ni ·
�
?n ×

�
˜
a · (?∇× ?̃u)

��
dA.

(3.28)

Similarly to (3.18) for the scalar function u and its approximation ũ, the expression

?n ×
�
˜
a · (?∇× ?̃u)

�
corresponds with the boundary condition ?un on AN [35, 39, 40]

?n ×
�
˜
a · (?∇× ?̃u)

�
≃ ?un = ?n ×

�
˜
a · (?∇× ?u)

�
on AN . (3.29)

Consequently for [K] and {d} it can be written

Kij =

�
V

(?∇× ?Ni) ·
˜
a · (?∇× ?Nj) dV +

�
V

?Ni ·
˜
b · ?Nj dV

di =

�
V

?Ni ·
�

?f − ?L [?v]
�

dV −

�
AN

?Ni · ?un dA, i ∈ [1; n], j ∈ [1; n],
(3.30)
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where ?L is given by (3.3). For both, the scalar case (3.19) and the vector one (3.30), the
matrix [K] is symmetric.

The previous considerations are based on a three-dimensional domain. For the two-
dimensional case similar formulas can be written. This will be explained by an example
using Gauß’s law:

�
V

?∇ · ?u dV =

�
∂V

?n · ?u dA. (3.31)

Let the three-dimensional domain V be a cylinder with an arbitrary basal plane A (with
boundary ∂A) and the height h.

The function ?u is only defined in the two-dimensional domain of the cylinder basal plane.
Thus it has no normal component to the cylinder basal plane and does not depend on
the height. Taking these considerations into account the left and the right hand side of
(3.31) can be written as

�
V

?∇ · ?u dV = h

�
A

?∇ · ?u dA

�
∂V

?n · ?u dA =

�
A

?n · ?u dA

� �� �
=0

+

�
Ashell

?n · ?u dA +

�
A

?n · ?u dA

� �� �
=0

= h

�
∂A

?n · ?u ds,

which leads to Gauß’s law for the two-dimensional case

�
A

?∇ · ?u dA =

�
∂A

?n · ?u ds.

In a similar way the formulas for the three-dimensional case used in this work can be
easily rewritten for two-dimensional regions. Thereby the three-dimensional domains V
are replaced by two-dimensional ones A. The boundaries ∂V of the three-dimensional
regions are replaced by the boundaries ∂A of the corresponding two-dimensional ones.
The integration variable must also be changed accordingly.
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Chapter 4

The Scalar Finite Element

Method

One typical application of the scalar finite element method is the numerical solution of
a Poisson equation. Thus it is used for a detailed explanation of the basic concept of
this method.

The Poisson equation is derived from the Maxwell equations [41, 42] for the static case
— the field quantities do not vary with time. The differential form of the four Maxwell
equations is usually given as

?∇× ?E = −∂t
?B (Faraday′s law) (4.1)

?∇ · ?B = 0 (Gauß′s law for magnetism) (4.2)

?∇× ?H = ?J + ∂t
?D (Maxwell−Ampère law) (4.3)

?∇ · ?D = ρ (Gauß′s law), (4.4)

where each variable has the following meaning and unit:

?E electric field intensity V
m

?H magnetic field intensity A
m

?D electric flux density As
m2

?B magnetic flux density Vs
m2

?J electric current density A
m2

q electric charge density As
m3 .

In this work ?E and ?H will be also referred to as electric field and magnetic field, respec-
tively. Applying the divergence operator to (4.3) and substitution by (4.4) give

?∇ · ?J = −∂tρ (equation of continuity). (4.5)
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The macroscopic properties of the medium are described in terms of permittivity ǫ,
permeability µ, and conductivity γ. These parameters are used for specifying the con-
stitutive relations between the field quantities

?D = ǫ ?E (4.6)

?B = µ ?H (4.7)

?J = γ ?E. (4.8)

In general it is not necessary that the constitutive parameters ǫ, µ, and γ are simple
constants. For example the relationship between ?B and ?H in (4.7) may by highly non-
linear for ferromagnetic materials. In this case µ depends on the field. For anisotropic
media the directions of the flux densities differ from the directions of the correspond-
ing field intensities and the constitutive parameters must be described by tensors. In
inhomogeneous regions ǫ, µ, and γ are functions of position.

If the field values are invariant in time, the field is static. In this case the magnetic field
and the electric field do not interact. For instance, the electrostatic case is given by (4.4)
and

?∇× ?E = 0. (4.9)

Equation (4.9) is satisfied by

?E = −?∇ϕ. (4.10)

After substituting (4.10) in (4.6) and insertion in (4.4), the following second order partial
differential equation for the electrostatic potential ϕ is obtained

?∇ ·
�
˜
ǫ(?r) · ?∇ϕ(?r)

�
= f(?r), with f(?r) = −ρ. (4.11)

If assumed that
˜
ǫ(?r) is a constant scalar, the expression (4.11) turns into the well known

Poisson equation. If the charge density is zero allover the domain, (4.11) leads to

?∇ ·
�
˜
ǫ(?r) · ?∇ϕ(?r)

�
= 0, (4.12)

which corresponds for constant scalar permittivity ǫ to the Laplace equation. The most
general presentation for the permittivity, which can be handled by the finite element
method in the frequency domain is a position dependent tensor

˜
ǫ(?r).

4.1 Two-Dimensional Scalar Finite Element Method

In this section the principle of the finite element method is demonstrated by solving
the Poisson equation (4.11) in the two-dimensional domain A. One part of the do-
main boundary ∂A represents the Dirichlet boundary CD and the remaining part — the
Neumann boundary CN , respectively (∂A = CD + CN ).
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As discussed in Chapter 3 the unknown function ϕ is approximated by ϕ̃ as in (3.5).
The known basis functions will be notated with λj instead of Nj . The reason for this
will became clear in the vector finite element chapter, where systems of partial differ-
ential equations appear, which require a combination of vector and scalar interpolation
functions.

ϕ(?r) ≃ ϕ̃(?r) =

n-
j=1

cjλj(?r) + v(?r). (4.13)

The function v(?r) complies with the Dirichlet boundary function on CD. The set of
known functions λi, i ∈ [1, n] builds a fundamental function system vanishing on the
Dirichlet boundary CD. To find the numerically approximated solution of (4.11) for ϕ̃
it is necessary to determine the unknown multiplier coefficients ci. This is performed
by substituting ϕ in (4.11) by its approximation (4.13) and then weighting the resulting
residual of (4.11) with the set of functions λi in the domain A

�
A

[?∇ · (
˜
ǫ · ?∇ϕ̃)] λi dA =

�
A

f(?r) λi dA, i ∈ [1; n]. (4.14)

Equation (4.14), using the first scalar theorem of Green (3.15) analogously to (3.16),
leads to

�
∂A

λi ?n ·
˜
ǫ · ?∇ϕ̃ ds −

�
A

?∇λi ·
˜
ǫ · ?∇ϕ̃(?r) dA =

�
A

f(?r) λi dA, i ∈ [1; n], (4.15)

with the fact that all functions λi (i ∈ [1; n]) vanish on CD to

�
CN

λi ?n ·
˜
ǫ · ?∇ϕ̃ ds −

�
A

?∇λi ·
˜
ǫ · ?∇ϕ̃(?r) dA =

�
A

f(?r) λi dA, i ∈ [1; n]. (4.16)

The Neumann boundary condition on CN can be written analogously to (3.18) as

−Dn(?r) = −?n · ?D(?r) = ?n ·
˜
ǫ · ?∇ϕ̃(?r) (4.17)

using ?∇ϕ̃ = − ?E and ?D =
˜
ǫ · ?E. After substitution of ϕ̃ in (4.16) by the approximation

(4.13) and using the Neumann boundary condition (4.17) the following linear equation
system for the unknown coefficients ci (i ∈ [1; n]) is obtained

�
A

?∇λi ·
˜
ǫ · ?∇


 n-

j=1

cjλj(?r) + v(?r)


 dA = −

�
A

f(?r) λi dA−

�
CN

λiDn ds, i ∈ [1; n]. (4.18)
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The above equation can be converted to

n-
j=1

cj

�
A

?∇λi ·
˜
ǫ · ?∇λj dA = −

�
A

?∇λi ·
˜
ǫ · ?∇v(?r) dA −

−

�
A

f(?r) λi dA −

�
CN

λiDn ds, i ∈ [1; n],

(4.19)

which complies with the following linear equation system

[K]{c} = {d}. (4.20)

The matrix [K] and the right hand side vector {d} are given by the expressions

Kij =

�
A

?∇λi ·
˜
ǫ · ?∇λj dA

di = −

�
A

?∇λi ·
˜
ǫ · ?∇v(?r) dA −

�
A

f(?r) λi dA −

�
CN

λiDn ds,

i ∈ [1; n], j ∈ [1; n].

(4.21)

Let assume that CN is a part of the outer boundary of the two-dimensional domain A.
Furthermore A is assumed sufficiently large to allow that Dn can be neglected on CN .
Since the corresponding simulations are performed in finite domains, this assumption
will lead to systematic error which became smaller with increasing domain size. This
issue will be discussed in Subsection 4.1.5. It is also assumed that there is no electric
charge density distribution ρ in the domain of interest. Thus the Neumann boundary
term and the source term in (4.21) are set to zero. Otherwise, if ?D is perpendicular to ?n
on CN , the boundary condition on CN will be zero independently from the domain size.

The function v(?r), which satisfies the Dirichlet boundary CD can be analogously to
the solution approximation (4.13) written as a sum of known functions multiplied with
coefficients

v(?r) =
m-

j=n+1

cjλj . (4.22)

Now the coefficients cj in (4.22) where j ∈ [n+1; m] are known values. They are obtained
easily from v(?r) for m−n points on the Dirichlet boundary CD by the following linear
equation system

v(?ri) =
m-

j=n+1

cjλj(?ri), i ∈ [1; m−n], ?ri ∈ CD. (4.23)
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With (4.22) the right hand side vector {d} from (4.21) can be rewritten as

di = −

�
A

?∇λi ·
˜
ǫ · ?∇v(?r) dA = −

�
A

?∇λi ·
˜
ǫ · ?∇


 m-

j=n+1

cjλj


 dA =

= −

m-
j=n+1

cj

�
A

?∇λi ·
˜
ǫ · ?∇λj dA = −

m-
j=n+1

Kijcj , i ∈ [1; n].

(4.24)

In general the form functions λi can be defined in the entire simulation domain. For
example, this is the case by the weighted residual method. In the case of the finite
element method the domain A is divided into smaller sub-domains Ae. This process is
known as domain discretization and the resulting sub-domains Ae are called elements.
The index e or e will be used in this work generally for quantities, which comply with
an element. It can be considered as a numbering index. The shape functions λi are
non-zero only in a few neighboring elements and vanish in the remaining simulation
area. λi is a global shape function. Its local representation in each element, in which it
is non-zero is termed as element shape function λe

i . Now e is written as a superscript
index, because there is already another numbering index available — the subscript index

i. In each element usually many element shape functions are defined, which are part
of different global shape functions. As it will be shown later for this purpose low order
polynomials are used. It is very important to notice the difference in the indexing (index
i) between the global and the element basis functions. In the global basis function λi i
complies with the number of global functions in the whole region and with the number
of unknown coefficients ci, respectively. By the element basis function λe

i the index i
corresponds to the number of the element basis functions in the element. In practice at
first the element form functions are defined for each element in the domain and then the
global ones are constructed by them.

In this work the area of interest is discretized on triangular elements. On these elements
linear triangular element functions are employed.

4.1.1 Domain Discretization

As already mentioned the finite element method requires a discretized domain. By
the discretization the two-dimensional domain A is divided into elements. Often the
subdivision is treated as a preprocessing task to the finite element technique provided
automatically for different and arbitrary shaped simulation regions [43, 44] from specific
software. In this work the elements are triangles. The elements must not overlap and
there must not be any gaps between them. A proper discretization avoids elements,
which have a small inner angle (narrow elements). Such elements usually cause a larger
simulation error. It can be shown that the relative deviation of the simulation result
from the exact solution is inversely proportional to the sine of the smallest angle in the
triangular element [45]. Thus, the best case will be, if all generated triangles were equi-
lateral. Another important property of the discretization is the element size. Generally,
smaller elements lead to higher precision of the numerical results. Otherwise, generation
of smaller elements means generation of more elements, which gives more unknowns
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a, b and c are determined by the system

φ1 = a + bx1 + cy1

φ2 = a + bx2 + cy2

φ3 = a + bx3 + cy3,

(4.26)

where xi and yi are the coordinates of the i-th node in the element. Solving (4.26) for
a, b, and c leads to

a =
1

J

......
φ1 x1 y1

φ2 x2 y2

φ3 x3 y3

...... =
(x2y3 − x3y2)φ1 + (x3y1 − x1y3)φ2 + (x1y2 − x2y1)φ3

J

b =
1

J

......
1 φ1 y1

1 φ2 y2

1 φ3 y3

...... =
(y2 − y3)φ1 + (y3 − y1)φ2 + (y1 − y2)φ3

J

c =
1

J

......
1 x1 φ1

1 x2 φ2

1 x3 φ3

...... =
(x3 − x2)φ1 + (x1 − x3)φ2 + (x2 − x1)φ3

J
.

(4.27)

J is the so called Jacobi determinant

J =

......
1 x1 y1

1 x2 y2

1 x3 y3

...... = (?r12 × ?r23) · ?ez = (?r23 × ?r31) · ?ez = (?r31 × ?r12) · ?ez = 2Fe, (4.28)

where Fe is the area of the triangular element and ?rij = ?rj − ?ri with ?ri = xi?ex + yi?ey.
With back substituting of a, b, and c from (4.27) into (4.25) φ is written in the form

φ(x, y) =
x2y3 − x3y2 + (y2 − y3)x + (x3 − x2)y

J
φ1 +

+
x3y1 − x1y3 + (y3 − y1)x + (x1 − x3)y

J
φ2 +

+
x1y2 − x2y1 + (y1 − y2)x + (x2 − x1)y

J
φ3 =

3-
i=1

λe
i (x, y) φi,

(4.29)

which gives the element shape functions λe
i .

4.1.3 Introduction of Triangle Barycentric Coordinates

For the following explanation of edge elements exclusively barycentric coordinates will be
used, because they offer advantages in understanding the following calculations. A point
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P inside the triangle 123 (Fig. <4.1>) divides this triangle into three sub triangles, namely
P12, P23, and P31, with the corresponding areas of these sub triangles F3, F1 and F2.
The barycentric coordinate λe

i is the ratio of the area Fi of the sub-face opposite to
the i-th node to the whole area F . Thus the barycentric coordinates are given by the
following definitions (see Fig. <4.1>)

λe
1(?r) =

F1

Fe
=

(?r23 × ?r3P ) · ?ez

J
=

(?r23 × (?r3B + ?rBP )) · ?ez

J
=

=
(?r23 × ?r3B) · ?ez

J
+

(?r23 × ?rBP ) · ?ez

J
=

=
1

3
− (?r − ?rB) ·

?r23 × ?ez

J
=

1

3
− (?r − ?rB) ·

l23 · ?n1

J

(4.30)

λe
2(?r) =

F2

Fe
=

1

3
− (?r − ?rB) ·

?r31 × ?ez

J
=

1

3
− (?r − ?rB) ·

l31 · ?n2

J
(4.31)

λe
3(?r) =

F3

Fe
=

1

3
− (?r − ?rB) ·

?r12 × ?ez

J
=

1

3
− (?r − ?rB) ·

l12 · ?n3

J
, (4.32)

where the following expressions have been used

?rB =
1

3
(?r1 + ?r2 + ?r3) (4.33)

|?r12| = l12, |?r23| = l23, |?r31| = l31 (4.34)

?r = ?r(x, y) = x?ex + y ?ey. (4.35)

F1, F2 and F3 are the areas of the triangles P23, P31 and P12, respectively

F1 = FP23, F2 = FP31, F3 = FP12. (4.36)

This definition is very helpful for understanding of some of the following properties of
the barycentric coordinates or linear element form functions, respectively.

The reason for the introduction of the barycentric coordinates at this place is, that
they are identical to the linear triangular element shape functions. For instance, the
expression for the barycentric coordinate λe

1 is given by

λe
1(?r) =

F1

F
=

(?r23 × ?r3P ) · ?ez

J
=

=
{[(x3 − x2)?ex + (y3 − y2)?ey] × [(x − x3)?ex + (y − y3)?ey]} · ?ez

J
=

=
[(x3 − x2)(y − y3) − (y3 − y2)(x − x3)]?ez · ?ez

J
=

=
x2y3 − x3y2 + (y2 − y3)x + (x3 − x2)y

J
,

(4.37)
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which complies with the first linear triangular element form function in (4.29). Thus
the linear triangular barycentric coordinates and element shape functions use the same
notation λe

i .

The barycentric coordinate λe
i is constant along a line parallel to the element edge

opposite to the i-th node and is zero on the opposite edge. Two barycentric coordinates
are sufficient to determine the position of the point P inside the triangle (see Fig. <4.1>).
However, a third barycentric coordinate is introduced such that

3-
i=1

λe
i = 1. (4.38)

Only two of the three linear element form functions are independent.

For the points inside the element and on the element edges it holds

0 ≤ λe
1 ≤ 1, 0 ≤ λe

2 ≤ 1, 0 ≤ λe
3 ≤ 1. (4.39)

For points outside the element the barycentric coordinates can take arbitrary values. Of
coarse (4.38) must be fulfilled. At least one and at most two barycentric coordinates
must have negative values. This is illustrated in the example (Fig. <4.2>), where λe

1 and
λe

2 are negative and λe
3 is greater than one. For instance, this relation can be used to

determine, if a point lies inside or outside a given element. If there is at least one negative
barycentric coordinate, the point lies outside. If one or two barycentric coordinates are
zero, the point lies on the corresponding one or two edges of the element. Otherwise, if
all are positive the point is inside.

Points located at a vertex of the element satisfy

λe
i (xj , yj) = δij =

�
1 i = j
0 i �= j

. (4.40)

In the calculation of the finite elements also the gradients are needed. In barycentric
coordinates the gradients are constant and expressed as

?∇λe
1(?r) = −

?r23 × ?ez

J
= −

l23 · ?n1

J
= const

?∇λe
2(?r) = −

?r31 × ?ez

J
= −

l31 · ?n2

J
= const

?∇λe
3(?r) = −

?r12 × ?ez

J
= −

l12 · ?n3

J
= const.

(4.41)

3-
i=1

?∇λe
i (?r) = ?0. (4.42)
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and λ10 (Fig. <4.4>) are given by

λ1 = λe=A1

3 + λe=A8

2

λ10 = λe=A1

2 + λe=A2

3 + λe=A9

3 + λe=A10

1 + λe=A7

1 + λe=A8

3 .

The plus operators must be treated as union operators, because the element form func-
tions must not overlap. Taking into account the continuity of the solution across the
element edges, it can be seen, that the coefficients cj , j ∈ [1; n] comply with the values

of the field approximation ϕ̃(?rj) (in the global node j). The notation λe=Ai

j means the
j-th local (element) function λj in the i-th triangular element Ai. The subscript index
of the element form function (superscript expression e = Ai) complies with the local
node number in the i-th element. The corresponding global node number is taken from
the connectivity array and is equal to the global trial function number. The global trial
function λi is non-zero only in the elements which are attached to the node with global
number i. As a consequence λi is non-zero in a very narrow area. With these consider-
ations the matrix entry Kij can be build piece wise in the elements sharing the global
i-th and j-th nodes from the corresponding element form functions. For example the
matrix element K1,10 is given by

K1,10 =

�
A

?∇λ1 ·
˜
ǫ · ?∇λ10 dA =

�
Ae

1

?∇λe
3 ·

˜
ǫ · ?∇λe

2 dA +

�
Ae

8

?∇λe
2 ·

˜
ǫ · ?∇λe

3 dA. (4.47)

Analogously the remaining matrix entries are built. Most of the matrix entries corre-
spond to global nodes, which do not belong to common elements and are zero for this
reason. For instance, K10,5 is such an entry. Thus [K] is a sparse matrix.

Assembling [K] like in (4.47) needs information of the neighbor nodes and the corre-
sponding common elements. This information is contained in the connectivity array,
unfortunately it cannot be obtained directly. Thus the assembling is performed in a
different, reverse way. If the assembling of [K] is performed as in (4.47), it can be seen
that all possible variations of the element form functions

Ke
ij =

�
Ae

?∇λe
i ·

˜
ǫ · ?∇λe

j dA, i ∈ [1; 3], j ∈ [1; 3] (4.48)

in all elements can be found as a summand in an expression for a matrix entry Kij . The
assembling proceeds element by element. For each element all possible variations (4.48)
are calculated and added to the corresponding global matrix entry Kij . Instead of e=Ai

now the superscript index e is used, since by the element wise assembling the current
element number is known implicitly. Thus the superscript index e refers to the current
element and notes that the indexes i and j are element (local) indexes. Otherwise, if
no superscript index e is written, i and j are global indexes. The local indexes are
transformed to the corresponding global ones by the connectivity array. The global
matrix [K] is built from the element matrices [K]e on a very efficient way. Thus the
finite element formulation for a given problem is mostly solved by giving the general
expressions for the entries of the element matrices [48, 49].
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Let the permittivity
˜
ǫ be scalar (

˜
ǫ → ǫ) and element wise constant for the further

calculations. Thus using (4.41), the element matrix for the current problem is given by

Ke
11 =

�
Ae

ǫ ?∇λe
1·?∇λe

1 dA = ǫ ?∇λe
1·?∇λe

1

�
Ae

dA = ǫ
?r23 × ?ez

2Fe
·
?r23 × ?ez

2Fe
Fe =

=
ǫ

4Fe
(?r23 × ?ez) · (?r23 × ?ez) =

ǫ

4Fe
?r23 · ?r23

Ke
12 = Ke

21 =

�
Ae

ǫ ?∇λe
1·?∇λe

2 dA =
ǫ

4Fe
?r23 · ?r31

Ke
13 = Ke

31 =

�
Ae

ǫ ?∇λe
1·?∇λe

3 dA =
ǫ

4Fe
?r23 · ?r12

Ke
22 =

�
Ae

ǫ ?∇λe
2·?∇λe

2 dA =
ǫ

4Fe
?r31 · ?r31

Ke
23 = Ke

32 =

�
Ae

ǫ ?∇λe
2·?∇λe

3 dA =
ǫ

4Fe
?r31 · ?r12

Ke
33 =

�
Ae

ǫ ?∇λe
3·?∇λe

3 dA =
ǫ

4Fe
?r12 · ?r12.

(4.49)

The Dirichlet boundary is considered by the coefficients cj for j ∈ [n+1; m], which are
easily obtained from (4.23) taking (4.46) into account

cj = v(?rj).

The contributions of the Dirichlet boundary to the right hand side vector {d} are as-
sembled mutually with the global matrix [K] using (4.24). The region A is proceeded
element by element. For each element the element matrix (4.49) is calculated, the local
indexes i and j of the element matrix entry Ke

ij are converted to the corresponding
global indexes i and j of the global matrix entry Kij by the connectivity array. The
superscript e provides the distinction between i and j used as local or global nodes. By
the global index j it is recognized, if Ke

ij is added to Kij as a contribution to the matrix
on the left side or if Ke

ij is multiplied by the known Dirichlet coefficient cj and added to
di, to the right hand side vector.

4.1.5 Neumann Boundary Condition

For the previous examination the Neumann boundary condition (4.17) on CN is assumed
to be zero (homogeneous Neumann boundary condition). This subsection discusses
which consequences are drown from this assumption. Furthermore, it presents specific
models which require inhomogeneous (or non-zero) Neumann boundary conditions to be
assigned to define the field quantities or even to preserve the physical consistence.
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For the electrostatic case using (4.5), (4.8), and (4.10) it is written

?∇ ·
 
˜
γ · ?∇ϕ

&
= 0. (4.50)

Considering (3.18) the Neumann boundary condition is given by the conormal derivative
of the electrostatic potential ϕ or by the normal component of the current density,
respectively

Jn = ?n · ?J = −?n ·
 
˜
γ · ?∇ϕ

&
on CN . (4.51)

Thus, for a boundary value problems like (4.50) the normal current density or the corre-
sponding total current forced in the simulation domain can be given by applying inho-
mogeneous Neumann boundary condition on CN [50]. The same holds true for thermic
problems. External sources impressing a normal heat flux density on an outer boundary
part represent inhomogeneous Neumann boundary conditions [10].

However, the Neumann boundary condition cannot be arbitrarily chosen. For example,
in the electrostatic case given by (4.11), Gauß’s law (4.4) requires that the total electric
flow through the boundaries must be equal to the electric charge inside the domain. For
the two-dimensional case this is given by the expression

�
A

?∇ · ?D dA =

�
∂A

?n · ?D ds = −

�
∂A

?n ·
 
˜
ǫ · ?∇ϕ

&
ds =

�
A

ρ dA. (4.52)

According to (3.18) the Neumann boundary condition of (4.11) is (4.52). In this case,
if the surface electric charge in the entire domain A does not vanish, physically it
doesn’t make sense to apply homogeneous Neumann boundary conditions allover the
entire boundary ∂A.

In this work for the approximation of the inhomogeneous Neumann boundary condition
an extension of the sum (4.13) with (4.22) from Section 4.1 is used

ϕ̃(?r) =
l-

j=m+1

cjλj . (4.53)

The coefficients are indexed in the following way: The entire discretized domain contains
m nodes. The unknown coefficients numbered from 1 to n correspond to the nodes which
do not lie on the Dirichlet boundary (the non-Dirichlet nodes). The known coefficients
numbered from n+1 to m (n < m) correspond to the nodes on the Dirichlet boundary
(the Dirichlet nodes). The coefficients cj from (4.53) (m < l) must be obtained from the

Neumann boundary condition (4.17) on the Neumann boundary CN . Thus, if ?E on the
Neumann boundary is given

?E = −?∇ϕ̃ = −

l-
j=m+1

cj
?∇λj on CN . (4.54)
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In an element (Fig. <4.1>), from which one or more edges are part of the Neumann
boundary CN

?E is given by

?Ee = −?∇ϕe = −

3-
j=1

cj
?∇λe

j = ce
1

?r23 × ?ez

2F e
+ ce

2

?r31 × ?ez

2F e
+ ce

3

?r12 × ?ez

2F e
=

=
1

2F e
(ce

1 l23 ?n1 + ce
2 l31 ?n2 + ce

3 l12 ?n3) .

(4.55)

To express a given ?E on CN some of the coefficients ce
1, ce

2 and ce
3 can be set to zero. Let

the Edge 23 in the element from Fig. <4.1> be part of the Neumann boundary. If ?E is
normal to the Edge 23, then ce

2 and ce
3 can be set to zero. Otherwise ce

1 can be set to
zero and ce

2 and ce
3 are calculated from ?E on CN .

Now the Neumann boundary integral from (4.21) is given by

�
CN

λiDn ds =
l-

j=m+1

cj

�
CN

λi

 
?n ·

˜
ǫ · ?∇λj

&
ds =

l-
j=m+1

cjMij , i ∈ [1; n]. (4.56)

The corresponding element matrix [M ]e for ǫ assumed as a constant scalar in each
element, is given in the appendix in Subsection B.2.1, which also refers to the magnetic
scalar potential and instead of ǫ and ϕ the tokens µ and ψ are used.

The acceptance of homogeneous Neumann boundary conditions is only an approxima-
tion, which is not generally valid. This will be demonstrated by an example. Let us
consider the field generated by two electrodes with different electrostatic potential ap-
plied. Let there be no other potential or charge density distributions close to these
electrodes to disturb this field. On the first electrode 0V and on the second one 1V is
impressed as shown in Fig. <4.5>, which is given by Dirichlet boundary conditions for
the boundaries CD1 and CD2 between the simulation domain A and the electrodes. The
Laplace equation (4.12) for the electric potential is solved in A. As usual, homogeneous
Neumann boundary conditions are set to the outer boundary CN . This will not influence
the result, if the Neumann boundary is infinitely far away from the electrodes and the
corresponding Neumann boundary conditions can be neglected. In practice it is sim-
ulated with finite lengths which normally results in simulation error. To demonstrate
this behavior the same electrode configuration is analyzed in a domain nine times larger
than the domain in Fig. <4.5>. Then the domain is cut off to the same region size as in
Fig. <4.5>. The corresponding electrostatic potential distribution is shown by equipo-
tential lines in Fig. <4.6>. This is compared to the field in Fig. <4.5>. In contrast to
Fig. <4.5> the field on Fig. <4.6> corresponds to the expected one for the given configu-
ration. The homogeneous Neumann boundaries have distorted the simulation result in
the small area on Fig. <4.5>. Of coarse this is a systematic error, it gets smaller with
growing simulation domains. For simulation of open regions the finite element method
can be combined with the boundary element method [51, 52, 53]. This can also be
performed with the so called edge elements [54] introduced in Chapter 5.
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0 V 1 VCD1
CD2

CN

A

Figure 4.5: Homogeneous Neumann boundary conditions on the outer boundary CN .

0 V 1 VCD1
CD2

CN

A

Figure 4.6: The outer region is cut off at CN .
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4.2 Three-Dimensional Scalar Finite Element Method

Equation (4.11) is used again. The three-dimensional finite element method is very
similar to the two-dimensional formulation. Now the analysis is performed in the three-
dimensional domain V with its boundary ∂V . It leads again to the linear equation system
(4.20). The solution is approximated by (4.13). The global matrix [K] and the right
hand side vector {d} are given analogously to (4.21) by

Kij =

�
V

?∇λi ·
˜
ǫ · ?∇λj dV

di = −

�
V

?∇λi ·
˜
ǫ · ?∇v(?r) dV −

�
V

f(?r) λi dV −

�
AN

λiDn dA,

i ∈ [1; n], j ∈ [1; n].

(4.57)

The expression (4.22) for v(?r) is governed by the Dirichlet boundary condition and Dn as
in (4.17) complies with the Neumann boundary condition on AN . The global functions
λi are constructed similarly as in the two-dimensional case from local ones λe defined
only in a few neighbor elements.

As usual, the finite element procedure starts with the domain discretization. The three-
dimensional volume V is broken into small tetrahedral elements Ve. As a consequence
the boundary ∂V is subdivided into triangular elements. This kind of elements are very
well suited for discretizing of arbitrarily or irregularly shaped regions.

4.2.1 Linear Shape Functions on Tetrahedral Elements

The unknown field in the tetrahedral element (Fig. <4.7>) is approximated by the linear
function

φ(x, y, z) = a + bx + cy + dz. (4.58)

Analogously to the two-dimensional case the four coefficients a, b, c and d are obtained
assuming that the field values φ1, φ2, φ3 and φ4 on the four vertexes of the tetrahedron
are known.

φ1 = a + bx1 + cy1 + dz1

φ2 = a + bx2 + cy2 + dz2

φ3 = a + bx3 + cy3 + dz3

φ4 = a + bx4 + cy4 + dz4.

(4.59)
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c =
1

J

........
1 x1 φ1 z1

1 x2 φ2 z2

1 x3 φ3 z3

1 x4 φ4 z4

........ =
1

J

......
1 x2 z2

1 x3 z3

1 x4 z4

...... φ1 −
1

J

......
1 x1 z1

1 x3 z3

1 x4 z4

...... φ2 +

+
1

J

......
1 x1 z1

1 x2 z2

1 x4 z4

...... φ3 −
1

J

......
1 x1 z1

1 x2 z2

1 x3 z3

...... φ4 =

= c1φ1 + c2φ2 + c3φ3 + c4φ4

(4.62)

d =
1

J

........
1 x1 y1 φ1

1 x2 y2 φ2

1 x3 y3 φ3

1 x4 y4 φ4

........ = −
1

J

......
1 x2 y2

1 x3 y3

1 x4 y4

...... φ1 +
1

J

......
1 x1 y1

1 x3 y3

1 x4 y4

...... φ2 −

−
1

J

......
1 x1 y1

1 x2 y2

1 x4 y4

...... φ3 +
1

J

......
1 x1 y1

1 x2 y2

1 x3 y3

...... φ4 =

= d1φ1 + d2φ2 + d3φ3 + d4φ4.

(4.63)

The Jacoby determinant for the three-dimensional case is given by

J =

........
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

........ = (?r1 × ?r2) · ?r3 = 6Ve, (4.64)

where Ve is the volume of the tetrahedron. Equations (4.60) to (4.63) define the auxiliary
coefficients ai, bi, ci and di (i ∈ [1; 4]), which are used to write (4.58) as

φ(x, y, z) = (a1 + b1x + c1y + d1z)φ1 + (a2 + b2x + c2y + d2z)φ2 +

+ (a3 + b3x + c3y + d3z)φ3 + (a4 + b4x + c4y + d4z)φ4 =

4-
i=1

λe
i φi

(4.65)

to introduce the element shape functions λe
i .

4.2.2 Tetrahedron Barycentric Coordinates

Let P be a point inside the tetrahedral element as shown in Fig. <4.7>. It divides the
tetrahedron in four sub-tetrahedrons

V1 = VP234, V2 = VP134, V3 = VP124, V4 = VP123.
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The barycentric coordinates of the point P are given by

λe
1(?r) =

V1

Ve
=

1

4
+ (?r − ?rB) ·

(?r4 × ?r5)

J
=

1

4
− (?r − ?rB) ·

F1 ?n1

3Ve
(4.66)

λe
2(?r) =

V2

Ve
=

?r1P · (?r2 × ?r3)

J
=

(?r1B + ?rBP ) · (?r2 × ?r3)

J
=

=
?r1B · (?r2 × ?r3)

J
+

?rBP · (?r2 × ?r3)

J
=

=
1

4
+ (?r − ?rB) ·

(?r2 × ?r3)

J
=

1

4
− (?r − ?rB) ·

F2 ?n2

3Ve

(4.67)

λe
3(?r) =

V3

Ve
=

1

4
+ (?r − ?rB) ·

(?r3 × ?r1)

J
=

1

4
− (?r − ?rB) ·

F3 ?n3

3Ve
(4.68)

λe
4(?r) =

V4

Ve
=

1

4
+ (?r − ?rB) ·

(?r1 × ?r2)

J
=

1

4
− (?r − ?rB) ·

F4 ?n4

3Ve
, (4.69)

where Fi (i ∈ [1; 4]) is the area of the triangular face of the tetrahedron opposite to the
vertex i

F1 = F234, F2 = F134, F3 = F124, F4 = F123.

The vector ?ni (i ∈ [1; 4]) is normal to its according face, has the length 1 and points
outwards. The position vector is written as

?r = ?r(x, y, z) = x?ex + y ?ey + z ?ez (4.70)

and ?ri is the position of the vertex i.

Analogously to the two-dimensional case it can be shown that the barycentric coordinates
are equal to the linear element shape functions in (4.65). Thus the same notation λe

i is
used.

The gradient of the barycentric coordinates is a constant vector

?∇λe
1(?r) =

(?r4 × ?r5)

J
= −

F1 ?n1

3Ve
(4.71)

?∇λe
2(?r) =

(?r2 × ?r3)

J
= −

F2 ?n2

3Ve
(4.72)

?∇λe
3(?r) =

(?r3 × ?r1)

J
= −

F3 ?n3

3Ve
(4.73)

?∇λe
4(?r) =

(?r1 × ?r2)

J
= −

F4 ?n4

3Ve
. (4.74)
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Analogously to the two-dimensional case it is valid

λe
i (xj , yj , zj) = δij =

�
1 i = j
0 i �= j

. (4.75)

The barycentric coordinate λe
i is constant on a plane parallel to the element facet opposite

to the i-th node and it is zero on this opposite facet, which ensures the inter-element
continuity of the element interpolation function (4.58).

Only three of the four linear element form functions are independent

4-
i=1

λe
i = 1. (4.76)

For points inside the element and on the element facets

0 ≤ λe
1 ≤ 1, 0 ≤ λe

2 ≤ 1, 0 ≤ λe
3 ≤ 1, 0 ≤ λe

4 ≤ 1 (4.77)

is satisfied. Similar to the two-dimensional case some of the barycentric coordinates of
a point outside the element can be negative or greater than 1.

Otherwise, the barycentric coordinates can be used to represent the coordinates of each
point inside the tetrahedral element

?r =
4-

i=1

λe
i?ri. (4.78)

Using (4.76), equation (4.78) leads to

x = (x1 − x4)λ
e
1 + (x2 − x4)λ

e
2 + (x3 − x4)λ

e
3 + x4

y = (y1 − y4)λ
e
1 + (y2 − y4)λ

e
2 + (y3 − y4)λ

e
3 + y4

z = (z1 − z4)λ
e
1 + (z2 − z4)λ

e
2 + (z3 − z4)λ

e
3 + z4,

(4.79)

which gives the coordinate transformation as shown in Fig. <4.8>.

4.2.3 Assembling

The assembling of the global matrix [K] and the right hand side vector {d} is done
similarly to the two-dimensional method. The entire region is processed element wise.
In each tetrahedron the element matrix [K]e is calculated. The local matrix entries Ke

ij

are added to the global entries Kij or are multiplied by the known coefficient cj (obtained
from the Dirichlet boundary condition) and added to the right hand side vector element
di depending on the global index j, by which it is distinguished between Dirichlet or
unknown node coefficients. The superscript e indicates that the indexes ij are local
element indexes, which are converted to global ij indexes (without superscript e) by the
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connectivity array. In the three-dimensional case the connectivity array has four row
entries for the four element nodes.

For the assembling of the element matrix it is assumed that the permittivity
˜
ǫ is a scalar

and element wise constant. This assumption is not an essential restriction. It allows ǫ
to change from one element to the next. Thus inhomogeneous materials (with respect
to ǫ) can be easily simulated. The regions, in which ǫ changes substantially, must be
discretized in appropriately small elements. Using the expressions for the gradient of
the barycentric coordinates (4.71) to (4.74) the element matrix for the Laplace term is
given by

Ke
11 =

�
Ve

?∇λe
1 ·

˜
ǫ · ?∇λe

1 dV = ǫ ?∇λe
1 · ?∇λe

1

�
Ve

dV = ǫVe
?∇λe

1 · ?∇λe
1 =

= ǫVe
?r4 × ?r5

6Ve
·
?r4 × ?r5

6Ve
=

ǫ

36Ve
[(?r4 · ?r4)(?r5 · ?r5) − (?r4 · ?r5)(?r4 · ?r5)] (4.80)

Ke
12 = Ke

21 =
ǫ

36Ve
[(?r2 · ?r6)(?r4 · ?r6) − (?r2 · ?r4)(?r6 · ?r6)] (4.81)

Ke
13 = Ke

31 =
ǫ

36Ve
[(?r3 · ?r4)(?r5 · ?r5) − (?r3 · ?r5)(?r4 · ?r5)] (4.82)

Ke
14 = Ke

41 =
ǫ

36Ve
[(?r1 · ?r6)(?r4 · ?r4) − (?r1 · ?r4)(?r4 · ?r6)] (4.83)

Ke
22 =

ǫ

36Ve
[(?r2 · ?r2)(?r3 · ?r3) − (?r2 · ?r3)(?r2 · ?r3)] (4.84)

Ke
23 = Ke

32 =
ǫ

36Ve
[(?r1 · ?r6)(?r3 · ?r3) − (?r1 · ?r3)(?r3 · ?r6)] (4.85)

Ke
24 = Ke

42 =
ǫ

36Ve
[(?r1 · ?r3)(?r4 · ?r6) − (?r1 · ?r6)(?r3 · ?r4)] (4.86)

Ke
33 =

ǫ

36Ve
[(?r1 · ?r1)(?r3 · ?r3) − (?r1 · ?r3)(?r1 · ?r3)] (4.87)

Ke
34 = Ke

43 =
ǫ

36Ve
[(?r1 · ?r3)(?r1 · ?r4) − (?r1 · ?r1)(?r3 · ?r4)] (4.88)

Ke
44 =

ǫ

36Ve
[(?r1 · ?r1)(?r4 · ?r4) − (?r1 · ?r4)(?r1 · ?r4)]. (4.89)

If inhomogeneous Neumann boundary conditions are used, the corresponding element
matrix is depicted in Section C.2.1, which is also used for the quasi magnetostatic case.
Thus the magnetic scalar potential ψ and the permeability

˜
µ are used instead ϕ and

˜
ǫ.

Additionally it is assumed that the permeability is a scalar and element wise constant
(
˜
µ → µ).
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Chapter 5

The Vector Finite Element

Method

Originally only the so called node finite element analysis has been used. By the node
finite elements the unknown field values are assigned to the element vertexes. It is obvi-
ous that vector field quantities can be described with their components on the vertexes.
Thus node elements can be used also for vector field calculations. In this case two or
three scalars must be assigned to each vertex for the two- or three-dimensional case,
respectively. Unfortunately using the coordinates of the vector gives problems. For ex-
ample, the continuity requirements for the approximated vector fields cannot be easily
fulfilled and also applying of the boundary conditions is very cumbersome [55]. To over-
come these obstacles the so-called edge elements are used by the vector finite element
analysis [56]. They are assigned to the edges of an element and are excellently suited
for numerical solution of partial differential equations for the field intensities derived
from the Maxwell equations (4.1) to (4.4). However the popular believe, that edge ele-
ments eliminate the problems with the so-called spurious modes is erroneous. Spurious
solutions are avoided only by a proper finite element formulation [57].

In Chapter 4 at first the two-dimensional case is discussed, where the finite element
assembling mechanism is explained in detail. In the three-dimensional case the method
works analogously, actually only the element matrix is different. There is also no differ-
ence in the way of assembling between scalar and vector finite element analysis. Using
the vector elements the assembling is performed in the same manner, namely element
wise. The building of the element matrix is different and is discussed comprehensively.
Since it is no longer necessary to explain the assembling process in detail, this chapter
handles the three-dimensional case before the two-dimensional one. It starts with some
typical applications for the edge elements.

Furthermore, it is assumed that the constitutive parameters are time invariant and
scalars (

˜
ǫ→ǫ,

˜
µ→µ, and

˜
γ→γ). If it is required that the constitutive parameters are ten-

sors, just replace for example, (ǫ ?E) by (
˜
ǫ· ?E), (ǫ?∇ϕ) by (

˜
ǫ·?∇ϕ), or [a ?∇×?b] by [

˜
a·(?∇×?b)].
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5.1 Edge Elements Applications

In this chapter the emphasis is on reviewing of various differential equations and bound-
ary conditions which define boundary-value problems to be numerically solved by finite
element analysis with edge elements. Some basic methods and equations arising from
the theory of electromagnetism are presented. A detailed explanation can be found
in [58, 59, 60, 61, 62, 63, 64, 65, 66].

5.1.1 The Wave Equation for the Electric Field

Differentiation of (4.3) with respect to time and substituting ?J from (4.8) and ?H from
(4.7) gives

?∇×
1

µ
∂t

?B = γ ∂t
?E + ǫ ∂tt

?E. (5.1)

With ?B from (4.1) the wave equation for ?E in the frequency domain is given by the
expression

?∇× (
1

µ
?∇× ?E) + (ωγ − ω2ǫ) ?E = 0, (5.2)

where ω is the angular frequency. The time convention eωt is used and suppressed.

5.1.2 Equations for the Electrodynamic Potentials

Equation (4.2) is satisfied by the expression

?B = ?∇× ?A. (5.3)

Thus (4.1) becomes

?∇×
 

?E + ∂t
?A
&

= ?0 ⇔ ?E + ∂t
?A = −?∇ϕ (5.4)

and the electric field ?E can be given by the electrodynamic potentials — the magnetic
vector potential ?A and the electric scalar potential ϕ

?E = −∂t
?A − ?∇ϕ. (5.5)

Using (4.7) and (5.3) the left hand side of (4.3) is expressed as

?∇× ?H = ?∇×
1

µ
?B = ?∇× (

1

µ
?∇× ?A). (5.6)

With (4.6), (4.8), and (5.5) the right hand side of (4.3) is given by

?J + ∂t
?D = γ ?E + ǫ∂t

?E = −γ∂t
?A − γ?∇ϕ − ǫ∂tt

?A − ǫ∂t
?∇ϕ. (5.7)
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Substituting (5.6) and (5.7) in (4.3) the following equation for ?A and ϕ in the frequency
domain is obtained

?∇× (
1

µ
?∇× ?A) = (ω2ǫ − ωγ) ?A − (γ + ωǫ)?∇ϕ. (5.8)

Analogously after partial differentiation of (4.4) with respect to time and using (4.5),
(4.6), and (4.8) it can be written

?∇ · ǫ∂t
?E = ∂tρ = −?∇ ·

 
γ ?E

&
, (5.9)

which leads with (5.5) to

?∇ ·
�

(ω2ǫ − ωγ) ?A − (γ + ωǫ)?∇ϕ
�

= 0. (5.10)

Equation (5.10) can also be obtained by applying the divergence operator to (5.8). The
unknown fields ?A and ϕ are obtained from the boundary value problem given by the
partial differential equation system (5.8) and (5.10). A similar strategy can be found
in [67, 68], where ?B = ?∇ × ( ?A + ?∇χ) and the auxiliary arbitrary scalar field χ is
conveniently termed as a ghost field.

5.1.3 Quasi-Magnetostatics

If the characteristic lengths of the analyzed structures are much smaller than the con-
sidered wave lengths and for conducting areas ǫ/γ ≪ T , the displacement current can
be neglected [40, 69]. T is the characteristic period of the time change rate. In this
case the Maxwell equations (4.1) to (4.4) can be simplified and the so called dominant
magnetic field model is achieved:

?∇× ?E = −µ∂t
?H (5.11)

?∇ · ?B = 0 (5.12)

?∇× ?H = ?J. (5.13)

After transforming (5.13)

?∇× ?H = ?J = γ ?E ⇒
1

γ
?∇× ?H = ?E (5.14)

the rotor operator is applied and the right hand side is substituted by (5.11)

?∇×

"
1

γ
?∇× ?H

(
= ?∇× ?E = −∂t

?B = −µ∂t
?H. (5.15)

Thus, in the frequency domain the quasi-magnetostatic case is described by the following
partial differential equation for the magnetic field ?H

?∇×

"
1

γ
?∇× ?H

(
+ ωµ ?H = ?0. (5.16)
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5.2 Three-Dimensional Vector Finite Element Method

The vector finite element analysis will be demonstrated using the quasi magnetostatic
case as described in Subsection 5.1.3. The Galerkin method is applied to (5.15) and the
weak formulation for the vector differential operator, as discussed in Section 3.3, is used.
This gives the following expression

�
V

 
?∇× ?Ni

&
·

"
1

γ
?∇× ?H

(
dV −

−

�
∂V

?n ·

�
?Ni ×

"
1

γ
?∇× ?H

(�
dA + ω

�
V

µ ?Ni · ?H dV = 0.

(5.17)

Adding an arbitrary gradient field (i. e. ?∇ψ) to the magnetic field ?H does not alter
(5.17), since the rotor operator of a gradient field is zero (?∇× ?∇ψ=0). The solution will
remain unchanged like

�
V

 
?∇× ?Ni

&
·

�
1

γ
?∇× ( ?H + ?∇ψ)

�
dV −

−

�
∂V

?n ·

�
?Ni ×

�
1

γ
?∇× ( ?H + ?∇ψ)

��
dA + ω

�
V

µ ?Ni · ?H dV = 0.

(5.18)

Applying the substitution

?H + ?∇ψ = ?H1 (5.19)

in (5.18) leads to the following equation

�
V

 
?∇× ?Ni

&
·

"
1

γ
?∇× ?H1

(
dV −

−

�
∂V

?n ·

�
?Ni ×

"
1

γ
?∇× ?H1

(�
dA + ω

�
V

µ ?Ni · ( ?H1 − ?∇ψ) dV = 0.

(5.20)

In the literature the vector potential ?H1 of the current density ?J is often denoted as T

and the auxiliary scalar field ψ is denoted as Ω or φ, respectively. This gives the widely
used names of the numerical procedure for handling the quasi-static method — T-Ω or
T-φ method [70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. Using this technique the finite element
method can be combined with the boundary integral method to diminish the number
of unknowns taking into account the unbounded regions [80]. Of coarse, the dominant
magnetic field model can be also considered from the equations for the electrodynamic
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potentials from Subsection 5.1.2 to obtain expressions for the magnetic vector potential
?A and the electric scalar potential ϕ for the quasi-magnetostatic case [81].

In this chapter the finite element analysis with vector shape functions for the approxima-
tion of ?H1 and with scalar shape functions for the approximation of ψ is comprehensively
explained. The same can be applied for the electric field ?E from Subsection 5.1.1 or for
the electrodynamic potentials ?A and ϕ from Subsection 5.1.2.

De facto (5.20) corresponds to the partial differential equation

?∇×

"
1

γ
?∇× ?H1

(
+ ωµ( ?H1 − ?∇ψ) = ?0. (5.21)

Since there are two unknowns in (5.21) — the vector field ?H1 and the scalar field ψ,
an additional relation between these two fields is required. Equation (5.20) (or the
equivalent one (5.21)) is derived from (5.11) and (5.13), but (5.12) has not been used.
With (4.7) it leads to

?∇ ·
�
µ( ?H1 − ?∇ψ)

�
= 0. (5.22)

Equation (5.22) provides the additional relation between ?H1 and ψ. Thus the mag-
netic field ?H is obtained by solving the boundary value problem, given by the partial
differential equation system consisting of (5.21) and (5.22) for ?H1 and ψ

?H = ?H1 − ?∇ψ. (5.23)

In ideal dielectric regions (5.21) cannot be used, because γ = 0. In such regions the
current density is zero and ?H can be expressed as gradient field like

?∇× ?H = ?0 ⇒ ?H = ?∇ψ. (5.24)

Thus for the numerical analysis (5.24) can be used in the dielectric part of the simulation
domain and (5.21), (5.22), and (5.23) can be applied in the remaining parts, respectively.
However (5.24) is valid only for simply connected regions. For non-contiguous regions
specific cutting algorithms have to be addressed [82, 83, 84, 85]. Unfortunately, these
algorithms are quite expensive pre-processing steps for complex structures. In this work
it is preferred to assume low conductivity of the dielectrics and to use (5.21), (5.22), and
(5.23) in the entire simulation domain. The conductivity in the dielectric regions should
be sufficiently low with respect to the conductivity of the conducting areas. However, it
should not be very low, because the first summand of the right hand side of (5.21) would
increase dramatically and would lead to an extremely ill conditioned linear equation
system.

The boundary ∂V of the calculation domain V is divided into a Dirichlet boundary AD1

for ?H1 and a Neumann boundary AN1 for (5.21) and into a Dirichlet boundary AD2 for
ψ and a Neumann boundary AN2 for (5.21).

∂V = AD1 + AN1 and ∂V = AD2 + AN2.
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The weighting of the residual of (5.21) and the following weak formulation for the finite
element analysis has been already dealt with (5.20). The same must be done for (5.22)
as well. For this purpose the residual of (5.22) is weighted by a set of scalar functions λi�

V

?∇ ·
�
µ( ?H1 − ?∇ψ)

�
λi dV = 0 (5.25)

and then the first scalar Green’s theorem is applied similarly as shown in Section 3.3 for
the scalar differential operator. This leads to the equation

�
∂V

?n ·
�

λi

�
µ( ?H1 − ?∇ψ)

��
dA −

�
V

?∇λi ·
�
µ( ?H1 − ?∇ψ)

�
dV = 0. (5.26)

As usual for the finite element analysis the unknown vector function ?H1 is approximated
by a sum of known vector functions multiplied by coefficients

?H1 ≃
m-

j=1

cj
?Nj + ?v, with ?v =

M-
j=n+1

cj
?Nj . (5.27)

The same is done for the scalar function ψ

ψ ≃
n-

j=m+1

cjλj + v, with v =
N-

j=M+1

cjλj . (5.28)

The functions ?v and v comply with the Dirichlet boundary conditions for ?H1 and ψ,
respectively. The tilde sign written over the approximated field quantity is not used any
more. Of coarse it will be kept in mind that the sums (5.27) and (5.28) are approx-
imations. As already mentioned the coefficients cj in the scalar approximation (5.28)
correspond to the scalar field values in the nodes of the discretized domain. It will
be shown in Subsection 5.2.2 that the coefficient cj in the vector approximation (5.27)

complies with the tangential component of the field ?H along the global edge j of the
discretized domain. Similarly to the nodes, the edges are numbered globally for the
entire domain and locally in each element. Again there is a connectivity array which
binds the local (element) edge index with the corresponding global one. The coefficients
for both, nodes and edges lying at the Dirichlet boundary, can be obtained from the
Dirichlet boundary condition and are arranged behind the unknown coefficients in the
following way

j =

unknown edges� �� �
1........................................m

unknown nodes� �� �
............................n� �� �

unknown coefficients

Dirichlet edges� �� �
.......................M

Dirichlet nodes� �� �
..................N� �� �

known coefficients

The unknown coefficients associated with the edges are numbered from 1 to m and the
unknown ones associated with the nodes count from m+1 to n, respectively. The known
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coefficients for the edges given by the Dirichlet boundary of (5.27) are numbered from
n+1 till M and the known coefficients for the nodes on the Dirichlet boundary of (5.28)
are numbered from M+1 to N . Thus the first n coefficients are unknown and are the
solution of the finite element calculation and the remaining coefficients numbered from
n+1 to N are given by the Dirichlet boundaries.

Each global vector function ?Nj corresponds to the global edge j and is constructed from

element functions ?N e
j similarly with the scalar functions λj . In Subsection 5.2.2 it will

be demonstrated that ?Nj has no tangential component along other edges except edge j.
Thus the boundary term in (5.20) can be given in a different form as

�
∂V

?n ·

�
?Ni ×

"
1

γ
?∇× ?H1

(�
dA =

�
∂V

?n ·
 

?Ni × ?E
&

dA =

=

�
AN1

?E ·
 
?n × ?Ni

&
dA =

�
AN1

?Ni ·
 

?E × ?n
&

dA

(5.29)

with
?E =

1

γ
?J =

1

γ
?∇× ?H1.

Since the global edge functions ?Ni with i ∈ [1; m] have no tangential component on
the edges lying on the Dirichlet boundary AD1, they must be perpendicular to AD1 (or
parallel to ?n). As clearly shown by the third member of (5.29) the boundary integral
in (5.20) has a contribution only for the Neumann boundary AN1. Furthermore the
following is assumed: The electric field ?E is either perpendicular to AN1, which means
that ?E×?n is zero in the last term of (5.29), or the simulation domain is sufficiently large
and allows that ?E × ?n can be neglected on AN1. Accepting this, the boundary term in
(5.20) vanishes

�
∂V

?n ·

�
?Ni ×

"
1

γ
?∇× ?H1

(�
dA =

�
∂V

?Ni ·
 

?E × ?n
&

dA = 0. (5.30)

The boundary integral of (5.26) can be written in the following way

�
∂V

?n ·
�

λi

�
µ( ?H1 − ?∇ψ)

��
dA =

�
AN2

λi ?n · ?B dA (5.31)

with
µ( ?H1 − ?∇ψ) = µ ?H = ?B.

The global node functions λi are non-zero only in the neighbor elements of the unknown
nodes, which do not belong to the Dirichlet boundary AD2 and are indexed by i ∈
[m+1; n]. On the Dirichlet boundary AD2 the global functions λi are defined to zero.
Thus the boundary integral (5.31) vanishes at the Dirichlet boundary AD2 and the
integration domain is restricted to the Neumann boundary AN2. Additionally it is
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assumed that the magnetic flux ?B is perpendicular to ?n on the surface AN2 or that it
can be neglected on this surface. Thus the boundary integral of (5.26) is also set to zero

�
∂V

?n ·
�

λi

�
µ( ?H1 − ?∇ψ)

��
dA =

�
∂V

λi ?n · ?B dA = 0. (5.32)

In such case it is often spoken of a homogeneous or zero Neumann boundary conditions.
It will be shown in the application section that this is not a substantial restriction. Of
coarse, it is important to use a suitable model which fulfills the assumed criteria as well as
possible. For the sake of completeness a possible discretization of the element matrices
arising from the boundary integrals over AN1 and AN2 are given in the appendix in
Chapter B and Chapter C.

With the above considerations about the boundary integral terms the base equations
used for the further finite element assembling can be written

�
V

 
?∇× ?Ni

&
·

"
1

γ
?∇× ?H1

(
dV + ω

�
V

µ ?Ni · ?H1 dV − ω

�
V

µ ?Ni · ?∇ψ dV = 0 (5.33)

�
V

?∇λi ·
 
µ ?H1

&
dV −

�
V

?∇λi ·
 
µ?∇ψ

&
dV = 0. (5.34)

?H1 and ψ are substituted by their approximations (5.27) and (5.28) in (5.33) and (5.34)

m-
j=1

cj

�
V

 
?∇× ?Ni

&
·

"
1

γ
?∇× ?Nj

(
dV + ω

m-
j=1

cj

�
V

µ ?Ni · ?Nj dV − (5.35)

− ω
n-

j=m+1

cj

�
V

µ ?Ni · ?∇λj dV =

= −

M-
j=n+1

cj

�
V

 
?∇× ?Ni

&
·

"
1

γ
?∇× ?Nj

(
dV − ω

M-
j=n+1

cj

�
V

µ ?Ni · ?Nj dV +

+ ω
N-

j=M+1

cj

�
V

µ ?Ni · ?∇λj dV , i ∈ [1; m]

m-
j=1

cj

�
V

?∇λi ·
 
µ ?Nj

&
dV −

n-
j=m+1

cj

�
V

?∇λi ·
 
µ?∇λj

&
dV = (5.36)

= −
M-

j=n+1

cj

�
V

?∇λi ·
 
µ ?Nj

&
dV +

N-
j=M+1

cj

�
V

?∇λi ·
 
µ?∇λj

&
dV , i ∈ [m+1; n].
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The linear equation system consisting of (5.35) and (5.36) is written more conveniently
in matrix form

�
[A] [B]

[B]T [C]

�
{c} = {b} , (5.37)

where (5.36) is multiplied by −ω to obtain a symmetric matrix. Thus, [A], [B], [C] and
[b] are given by the expressions

Aij =

�
V

 
?∇× ?Ni

&
·

"
1

γ
?∇× ?Nj

(
dV + ω

�
V

µ ?Ni · ?Nj dV, i ∈ [1; m], j ∈ [1; m] (5.38)

Bij = −ω

�
V

µ ?Ni · ?∇λj dV, i ∈ [1; m], j ∈ [m+1; n] (5.39)

Cij = ω

�
V

?∇λi ·
 
µ?∇λj

&
dV, i ∈ [m+1; n], j ∈ [m+1; n] (5.40)

bi = −
M-

j=n+1

cj

�
V

 
?∇× ?Ni

&
·

"
1

γ
?∇× ?Nj

(
dV − ω

M-
j=n+1

cj

�
V

µ ?Ni · ?Nj dV + (5.41)

+ ω
N-

j=M+1

cj

�
V

µ ?Ni · ?∇λj dV , i ∈ [1; m]

bi = ω
M-

j=n+1

cj

�
V

?∇λi ·
 
µ ?Nj

&
dV − (5.42)

− ω

N-
j=M+1

cj

�
V

?∇λi ·
 
µ?∇λj

&
dV , i ∈ [m+1; n].

Obviously the right hand side vector {b} can be calculated by (5.37) where [A], [B], and
[C] are expressed as in (5.38), (5.39), and (5.40) and the corresponding ranges for the
global indexes i and j are taken from (5.41) and (5.42).

5.2.1 Domain Discretization

The three-dimensional simulation domain is discretized in the same way as for the scalar
finite element method on tetrahedrons. Unfortunately this is not a simple problem, espe-
cially for arbitrary shaped regions and complicated field distributions [86, 87]. The mesh
properties have considerable impact on the finite element analysis and strongly affect the
solution quality and the calculation duration time. Generally these properties include
geometry conformity, mesh density, and element quality. The geometry conformity re-
quires that the area defined by the mesh elements should sufficiently good approximate
the domain of the problem. As already mentioned in Subsection 4.1.1 the mesh density
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must be sufficiently high and the mesh size sufficiently small, respectively, to minimize
the discretization error and to achieve accurate solutions. A good idea is to use denser
mesh, which means smaller elements only in those regions, where a high spacial varia-
tion of the investigated fields is anticipated. Of course this can be realized only with
unstructured meshes used in this work. Automatic mesh adaptation and improvement
based on refinement in the regions presenting the highest error in the approximation pro-
cedure [88, 89, 90, 91] or on user expertise on the specific problem [92] are often used.
Parallel mesh refinement algorithms can be applied to speed up this process [93, 94].
The finite element method leads to a linear equation system solved iteratively. As dis-
cussed in [95, 96] large element dihedral angles increase the discretization error in the
finite element solution [97] and for a good condition number of the system matrix the
discretization should avoid the generation of elements with a small inner solid angle or
narrow elements [98, 99]. Unfortunately, if there are small solid angles predefined in the
domain, the mesh generation software will likely produce bad elements at this place.

As an example a conducting inductor (Fig. <5.1>) placed in an insulating rectangular
brick domain (Fig. <5.2>) is discretized and visualized. Similar structures will be used
in the application part of this work, where the simulation results of the vector finite
element algorithm are demonstrated. The inductor is colored bright and the insulator
dark. Normally the inductance and the resistance of the inductor at different frequencies
must be calculated, which requires the extraction of the magnetic field distribution and
the current density distribution in the simulation domain. If the operating frequency
is sufficiently high for the dimensions of the corresponding domain parts, skin effect is
observed. The current is forced to flow only on or near the surface of the inductor wire.
There is no current flow inside of the inductor wire. In such cases it is convenient to
produce the finest mesh on the surface of the wire and in the area close to the boundary
between the inductor and the insulating environment. Deep inside and far outside the
wire coarser mesh elements can be used as shown in Fig. <5.3> and Fig. <5.4>.

5.2.2 Linear Vector Shape Functions on Tetrahedral Elements

Refer to the tetrahedron from Fig. <4.7>. The vector field in the tetrahedral element is
interpolated by means of the Whitney 1-form basis function W e

i associated to the element
edge i [100]. For example along Edge 1 between Node 1 and Node 2 this function is
given by

?W e
1 = ?W e

12 = λe
1
?∇λe

2 − λe
2
?∇λe

1.

This approach was introduced first by Whitney [101]. The functions λe
i are the barycen-

tric coordinates from Subsection 4.2.2. If only one subscript index is used for the vector
basis functions (for example ?W e

1 ), this index means an edge number (for example Edge
1). If two subscript indexes are used (for example ?W e

12), these indexes comply with the
corresponding node numbers (for example Edge 1 belongs to the node pair Node 1 and
Node 2). The edge indexes are associated to node pairs in Table 5.1.
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Figure 5.1: The inductor inside the simulation domain in Fig. <5.2>.

Furthermore the following notation is used

?r1 = ?r12, ?r2 = ?r13, ?r3 = ?r14, ?r4 = ?r23, ?r5 = ?r42, ?r6 = ?r34

and
l1 = |?r1|, l2 = |?r2|, l3 = |?r3|, l4 = |?r4|, l5 = |?r5|, l6 = |?r6|.

Since λe
1 vanishes on the facet defined by (2, 3, 4) and ?∇λe

1 is perpendicular to that
facet, ?W e

1 has no tangential component on this facet. Analogously it can be stated
that ?W e

1 has no tangential component on the facet defined by (1, 3, 4). Thus the edge
function ?W e

1 has no tangential component along the edges different from the Edge 1
and it contributes only to their normal components. This is also valid for the Whitney
vector basis functions ?W e

i on the remaining element edges.

For the divergence and for the rotor of the Whitney function ?W e
i it is written

?∇ · ?W e
1 = ?∇λe

1 ·
?∇λe

2 −
?∇λe

2 ·
?∇λe

1 = 0

?∇× ?W e
1 = ?∇λe

1 × ?∇λ2
e − ?∇λe

2 × ?∇λe
1 = 2?∇λe

1 × ?∇λe
2.

50



Figure 5.2: The entire simulation domain.

Along the direction of Edge i the Whitney function ?W e
i has a constant tangential com-

ponent. This will be demonstrated for ?W e
1 .

?W1 ·
?r1

l1
=

1

l1

"
λ1

?r2 × ?r3

6V e
· ?r1 − λ2

?r4 × ?r5

6V e
· ?r1

(
=

1

l1

"
λ1

6V e

6V e
− λ2

−6V e

6V e

(
=

λ1 + λ2

l1
.

In direction parallel to Edge 1 λ3 and λ4 are constant. On Edge 1 λ3 and λ4 are zero.
With (4.76) λ1 + λ2 are also constant parallel to the edge 1. On Edge 1 λ1 + λ2 = 1.
Consequently parallel to Edge 1

?W1 ·
?r1

l1
=

λ1 + λ2

l1
= const (5.43)

and on Edge 1

?W1 ·
?r1

l1
=

1

l1
. (5.44)
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Figure 5.3: Inside view of the simulation domain in Fig. <5.2>.

Thus, the continuity of the tangential component along the element edge across the ele-
ments is guaranteed. Otherwise the normal component must not be continuous. Exactly
this behavior is required for the fields ?E and ?H (if no surface current is available) and for
the magnetic vector potential ?A. Thus, the element vector basis functions for the field
associated with the edges are given by the very well suited 1-form Whitney functions ?W e

i

?N e
1 = l1 ?W e

1 = l1(λ
e
1
?∇λe

2 − λe
2
?∇λe

1) (5.45)

?N e
2 = l2 ?W e

2 = l2(λ
e
1
?∇λe

3 − λe
3
?∇λe

1) (5.46)

?N e
3 = l3 ?W e

3 = l3(λ
e
1
?∇λe

4 − λe
4
?∇λe

1) (5.47)

?N e
4 = l4 ?W e

4 = l4(λ
e
2
?∇λe

3 − λe
3
?∇λe

2) (5.48)

?N e
5 = l5 ?W e

5 = l5(λ
e
4
?∇λe

2 − λe
2
?∇λe

4) (5.49)

?N e
6 = l6 ?W e

6 = l6(λ
e
3
?∇λe

4 − λe
4
?∇λe

2). (5.50)
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Figure 5.4: The conductor entry.

The performed multiplication with li delivers the normalized and dimensionless edge
functions Ni.

The edge functions ?N e
1 and ?N e

6 are visualized in Fig. <5.5> and Fig. <5.6>, respectively.

If the field in the tetrahedral element (for instance the magnetic field ?He) is given by

?He =
6-

i=1

ci
?N e

i , (5.51)

the coefficient ci corresponds to the tangential component of the field ?He on the Edge
i. An example of the field in the element is depicted in Fig. <5.7> where all coefficients
are set to 1.

5.2.3 Assembling

Similarly as presented in Section 4.1 the matrices [A], [B] and [C] and the right hand side
vector {b} are assembled from the corresponding element matrices for each tetrahedron
Fig. <4.7>. For the first term on the right hand side of (5.38) the rotor operator must
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Table 5.1: Tetrahedral Element Edge Definition.

Edge Node 1 Node 2

1 1 2

2 1 3

3 1 4

4 2 3

5 4 2

6 3 4

be applied to the element edge functions ?N e
i . For the first one, ?N e

1 , it can be written

?∇× ?N e
1 = 2l1?∇λe

1 × ?∇λe
2 =

= 2l1
?r5 × ?r6

6Ve
×

?r3 × ?r6

6Ve
=

2l1

36Ve
2?r6 [?r3 · (?r6 × ?r5)] =

2l1

36Ve
2?r66Ve =

l1
3Ve

?r6.

Analogously the rotor operator of all element edge functions can be expressed by

?∇× ?N e
i =

li
3Ve

?r7−i, i ∈ [1; 6]. (5.52)

Thus the element matrix of the first term on the right hand side of (5.38) can be given
by the expression

Se
ij =

�
Ve

 
?∇× ?N e

i

&
·

"
1

γ
?∇× ?N e

j

(
dV =

=
1

γ

 
?∇× ?N e

i

&
·
 

?∇× ?N e
j

&
Ve =

li lj
9γVe

?r7−i · ?r7−j , i ∈ [1; 6], j ∈ [1; 6].

(5.53)

In (5.53) it is assumed that γ is scalar and constant at each element. A constant
elemental γ is not an essential restriction, since the simulation domain is discretized
sufficiently fine, which is anyway necessary for an accurate result. In regions, in which it
is expected that 1/γ will seriously change, it can be required that a finer mesh is used.

For the second term of (5.38) the following elemental matrix is regarded

M e
ij =

�
Ve

µ ?N e
i · ?N e

j dV. (5.54)
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M e
22 =

µ l22
360 Ve

(f11 − f13 + f33)

M e
32 = M e

23 =
µ l2 l3
720 Ve

(2f34 − f13 − f14 + f11)

M e
42 = M e

24 =
µ l2 l4
720 Ve

(f33 − f23 − f13 + 2f12)

M e
52 = M e

25 =
µ l2 l5
720 Ve

(f23 − f34 − f12 + f14)

M e
62 = M e

26 =
µ l2 l6
720 Ve

(f34 − f33 − 2f14 + f13)

(5.61)

M e
33 =

µ l23
360 Ve

(f11 − f14 + f44)

M e
43 = M e

34 =
µ l3 l4
720 Ve

(f34 − f24 − f13 + f12)

M e
53 = M e

35 =
µ l3 l5
720 Ve

(f24 − f44 − 2f12 + f14)

M e
63 = M e

36 =
µ l3 l6
720 Ve

(f44 − f34 − f14 + 2f13)

(5.62)

M e
44 =

µ l24
360 Ve

(f22 − f23 + f33)

M e
54 = M e

45 =
µ l4 l5
720 Ve

(f23 − 2f34 − f22 + f24)

M e
64 = M e

46 =
µ l4 l6
720 Ve

(f34 − f33 − 2f24 + f23)

(5.63)

M e
55 =

µ l25
360 Ve

(f22 − f24 + f44)

M e
65 = M e

56 =
µ l5 l6
720 Ve

(f24 − 2f23 − f44 + f34)

(5.64)

M e
66 =

µ l26
360 Ve

(f33 − f34 + f44) (5.65)

with
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f11 = ?r4
2 ?r6

2 − (?r4 · ?r6)
2

f21 = f12 = (?r3 · ?r6)(?r4 · ?r6) − (?r3 · ?r4)?r6
2

f31 = f13 = (?r1 · ?r4)(?r3 · ?r6) − (?r3 · ?r4)(?r1 · ?r6)

f41 = f14 = (?r1 · ?r6)?r4
2 − (?r1 · ?r4)(?r4 · ?r6)

f22 = ?r3
2 ?r6

2 − (?r3 · ?r6)
2

f32 = f23 = (?r1 · ?r6)?r3
2 − (?r1 · ?r3)(?r3 · ?r6)

f42 = f24 = (?r1 · ?r3)(?r4 · ?r6) − (?r3 · ?r4)(?r1 · ?r6)

f33 = ?r1
2 ?r3

2 − (?r1 · ?r3)
2

f43 = f34 = (?r1 · ?r3)(?r1 · ?r4) − ?r1
2(?r3 · ?r4)

f44 = ?r1
2 ?r4

2 − (?r1 · ?r4)
2.

(5.66)

Thus the entries of the matrix [A] are given by

Aij = Sij + ωMij . (5.67)

The matrix with the partial derivatives is usually called stiffness matrix and is notated
with [S]. The matrix which does not contain any derivatives is the mass matrix [M ].
However, the designations [S] and [M ] come from the field of mechanics and bear on
scalar fields. Analogously in (5.67) the same notations [S] and [M ] are used for the
derivative and non-derivative matrix, this time for the vector field ?H.

For element wise assembling of the matrix [B] from (5.39), it is also assumed that the
magnetic permeability µ is constant in each element. The first entry is calculated in the
following way

Be
11 = µ

�
Ve

?N e
1 · ?∇λe

1 dV = µ

�
Ve

l1(λ
e
1
?∇λe

2 − λe
2
?∇λe

1) · ?∇λe
1 dV =

= µ l1


?∇λe

1 · ?∇λe
2

�
Ve

λe
1 dV −

 
?∇λe

1

&2
�
Ve

λe
2 dV


 .

(5.68)

The remaining entries are obtained analogously. The integral expressions in (5.68) are
computed using the integral domain transformation (A.9) and (A.10) from Appendix A,
where the Jacobi matrix is calculated from (4.79) and given by (5.57)

�
Ve

λe
i dV = 6Ve

1�
0

1−λe

1�
0

1−λe

1
−λe

2�
0

λe
i dλe

3 dλe
2 dλe

1 =
Ve

4
, i ∈ [1; 4]. (5.69)
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Now the entries of the element matrix Be
ij can be expressed as

Be
1j =

µ l1
144 Ve

(f2j − f1j)

Be
2j =

µ l2
144 Ve

(f3j − f1j)

Be
3j =

µ l3
144 Ve

(f4j − f1j)

Be
4j =

µ l4
144 Ve

(f3j − f2j)

Be
5j =

µ l5
144 Ve

(f2j − f4j)

Be
6j =

µ l6
144 Ve

(f4j − f3j), j ∈ [1; 4],

(5.70)

where fij are given by (5.66).

The matrix [C] from (5.40) is assembled from the element matrix [C]e. The entries of
the element matrix Ce

ij are obtained from (5.40)

Ce
ij = ωµ ?∇λe

i · ?∇λe
j Ve =

ωµ

36 Ve
fij , i ∈ [1; 4], j ∈ [1; 4]. (5.71)

5.3 Two-Dimensional Vector Finite Element Method

The two-dimensional case is, of course, very similar to the three-dimensional one. Equa-
tions (5.35) and (5.36) correspond to

�
A

 
?∇× ?Ni

&
·

"
1

γ
?∇× ?H1

(
dA + ω

�
A

µ ?Ni · ?H1 dA − ω

�
A

µ ?Ni · ?∇ψ dA = 0 (5.72)

�
A

?∇λi ·
 
µ ?H1

&
dA −

�
A

?∇λi ·
 
µ?∇ψ

&
dA = 0. (5.73)

The boundary ∂A of the two-dimensional domain A is divided into a Dirichlet boundary
CD1 and a Neumann boundary CN1 for (5.72) and into a Dirichlet boundary CD2 and a
Neumann boundary CN2 for (5.73)

∂A = CD1 + CN1, ∂A = CD2 + CN2.

The Dirichlet boundary conditions define values for ψ on the nodes belonging to the
Dirichlet boundary CD2 or for the tangential component of ?H1 on the edges belonging
to the Dirichlet boundary CD1. The finite element analysis is performed as for the
three-dimensional case: The unknown functions in (5.72) and (5.73) are substituted by
their approximations, the corresponding residua are weighted by vector and scalar trial
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functions, and the weak formulation (the law of Gauß) is applied. Thereby the boundary
conditions on CN1 and CN2 arise analogously to (5.29) and (5.31) and read

fN1 =

�
CN1

?n ·

�
?Ni ×

"
1

γ
?∇× ?H1

(�
ds =

�
CN1

?Ni ·
 

?E × ?n
&

ds and (5.74)

fN2 =

�
CN2

?n ·
�

λi

�
µ( ?H1 − ?∇ψ)

��
ds =

�
CN2

λi ?n · ?B ds. (5.75)

Often the shape and the dimensions of the simulation domain are chosen to assume the
boundary conditions fN1 and fN2 are zero. For example this is the case, if the electric
field ?E is normal to the Neumann boundary CN1 or if the magnetic flux ?B has no normal
component to the Neumann boundary CN2, or if the simulation domain is sufficiently
large to assume that ?E × ?n is zero on CN1 and ?n · ?B is zero on CN2. If the boundary
conditions fN1 and fN2 have to be considered, for example to combine the finite element
analysis with the boundary element method, the corresponding element matrices are
calculated in the Appendix in Section B.1, Subsection B.2.1 and Subsection B.2.2.

The domain is discretized in triangular elements and the boundary in curves, respectively.

5.3.1 Linear Vector Shape Functions on a Triangular Elements

The following in this subsection refers to the triangular element from (Fig. <4.1>). The
field in the element is interpolated similarly as for the three-dimensional case by edge
functions. Since there are three edges in the triangular element three interpolation
functions are given

?N e
12 = l12(λ

e
1
?∇λe

2 − λe
2
?∇λe

1) (5.76)

?N e
23 = l23(λ

e
2
?∇λe

3 − λe
3
?∇λe

2) (5.77)

?N e
31 = l31(λ

e
3
?∇λe

1 − λe
1
?∇λe

3). (5.78)

The same properties as for the three-dimensional vector element functions can be proved
for the two-dimensional ones. Without loss of generality Edge 12 is used to prove the
properties of the edge functions. The divergence of a vector edge function is zero, i.e.

?∇ · ?N e
12 = l12(?∇λe

1 · ?∇λe
2 − ?∇λe

2 · ?∇λe
1) = 0. (5.79)

For the rotor of a vector edge function it can be written

?∇× ?N e
12 = l12(?∇λe

1 × ?∇λe
2 − ?∇λe

2 × ?∇λe
1) = 2l12?∇λe

1 × ?∇λe
2. (5.80)
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The tangential component of ?N e
12 on Edge 23 can be obtained from

?N e
12 · ?r23 = (λe

1?r23) · ?∇λe
2 − λe

2(?r23 · ?∇λe
1). (5.81)

Since λe
1 vanishes on the Edge 23 and ?∇λe

1 is perpendicular to ?r23, the two terms on the
right hand side of (5.81) are zero and ?N e

12 has no tangential component on the Edge 23:

?N e
12 ·

?r23

l23
= 0.

Analogously it can be shown that ?N e
12 has no tangential component on Edge 31 as well.

For ?N e
12 along the direction of Edge 12 the following expression is applied

?N e
12 ·

?r12

l12
= λe

1?r12 · ?∇λe
2 − λe

2?r12 · ?∇λe
1 = −λe

1?r12 ·
?r31 × ?ez

J
+ λe

2?r12 ·
?r23 × ?ez

J
=

= −λe
1

?r12 × ?r31

J
· ?ez + λe

2

?r12 × ?r23

J
· ?ez = λe

1 + λe
2.

Since λe
3 is zero and therefore λe

1+λe
2 is one on Edge 12, the tangential component of

?N e
12 on Edge 12 is one. The vector function ?H12 has a constant tangential component

λe
1+λe

2 only along its corresponding Edge 12. Along the remaining edges this function
does not have a tangential component. Similarly this characteristics applies also to the
remaining functions ?H23 and ?H31. Hence it follows that in an approach of the kind

?f(r) = c1
?N e

12 + c2
?N e

23 + c3
?N e

31

the arbitrary coefficients c1, c2 and c3 are to be regarded as values of the projection
of ?f(r) in the possible edge directions, respectively. This fact justifies the name edge
function or edge element.

It is not simple to imagine, how the edge functions look like. The edge function ?N e
12 is

visualized in Fig. <5.8>. Fig. <5.9> depicts function ?f(r) for all coefficients set to one.

5.3.2 Assembling

The two-dimensioanl case leads to a linear equation system similar to (5.37). The sub-
matrix [A] is written in the form (5.67). With γ constant in each element [S]e is given by

Se
ij =

1

γ

�
Ae

 
?∇× ?N e

i

&
·
 

?∇× ?N e
j

&
dA =

1

γ

 
?∇× ?N e

i

&
·
 

?∇× ?N e
j

& �
Ae

dA =

=
1

γ

 
?∇× ?N e

i

&
·
 

?∇× ?N e
j

&
Fe, i ∈ [1; 3], j ∈ [1; 3],

(5.82)
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�
Ae

λe
1λ

e
2 dA = 2Fe

1�
0

1−λe

1�
0

λe
1λ

e
2 dλe

2 dλe
1 = 2Fe

1�
0

λe
1

1−λe

1�
0

λe
2 dλe

2 dλe
1 =

= 2Fe

1�
0

λe
1

(1 − λe
1)

2

2
dλe

1 =
Fe

12
,

(5.93)

using the integral domain transformation Appendix A. Generally it can be written

�
Ae

λe
iλ

e
j dA =

�
Fe

6 for i = j
Fe

12 for i �= j
j ∈ [1; 3], j ∈ [1; 3]. (5.94)

In a similar manner all entries of [M ]e are given

M e
11 =

µ l212
24 Fe

(?r23 · ?r23 − ?r23 · ?r31 + ?r31 · ?r31) (5.95)

M e
21 = M e

12 =
µ l12 l23
48 Fe

(?r31 · ?r12 − ?r31 · ?r31 − 2?r23 · ?r12 + ?r23 · ?r31) (5.96)

M e
31 = M e

13 =
µ l12 l31
48 Fe

(?r23 · ?r31 − 2?r31 · ?r12 − ?r23 · ?r23 + ?r23 · ?r12) (5.97)

M e
22 =

µ l223
24 Fe

(?r12 · ?r12 − ?r12 · ?r31 + ?r31 · ?r31) (5.98)

M e
32 = M e

23 =
µ l23 l31
48 Fe

(?r23 · ?r12 − ?r12 · ?r12 − 2?r23 · ?r31 + ?r31 · ?r12) (5.99)

M e
33 =

µ l231
24 Fe

(?r12 · ?r12 − ?r12 · ?r23 + ?r23 · ?r23) . (5.100)

The entries of [B] are expressed as

Be
ij = −ωµ

�
Ae

?N e
i · ?∇λe

j dA, i ∈ [1; 3], j ∈ [1; 3]. (5.101)

The entry Be
11 is calculated in detail as

Be
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
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(5.102)
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For the integral terms the integral domain transformation from Appendix A is used
again to obtain

�
Ae

λe
i dA =

Fe

3
, i ∈ [1; 3]. (5.103)

Thus [B]e is given by

Be
11 = −ωµl12

"
?r23 × ?ez

2Fe
·
?r31 × ?ez

2Fe
−

?r23 × ?ez

2Fe
·
?r23 × ?ez

2Fe

(
Fe

3
= (5.104)

= −ω
µl12
12Fe

(?r23 · ?r31 − ?r23 · ?r23)

Be
12 = −ω

µl12
12Fe

(?r31 · ?r31 − ?r31 · ?r23) (5.105)

Be
13 = −ω

µl12
12Fe

(?r12 · ?r31 − ?r12 · ?r23) (5.106)

Be
21 = −ω

µl23
12Fe

(?r23 · ?r12 − ?r23 · ?r31) (5.107)

Be
22 = −ω

µl23
12Fe

(?r31 · ?r12 − ?r31 · ?r31) (5.108)

Be
23 = −ω

µl23
12Fe

(?r12 · ?r12 − ?r12 · ?r31) (5.109)

Be
31 = −ω

µl31
12Fe

(?r23 · ?r23 − ?r23 · ?r12) (5.110)

Be
32 = −ω

µl31
12Fe

(?r31 · ?r23 − ?r31 · ?r12) (5.111)

Be
33 = −ω

µl31
12Fe

(?r12 · ?r23 − ?r12 · ?r12) . (5.112)

Analogously to (4.49) for the element matrix [C]e one obtains:

Ce
11 = −ω

µ

4Fe
?r23 · ?r23 (5.113)

Ce
12 = Ce

21 = −µ
µ

4Fe
?r23 · ?r31 (5.114)

Ce
13 = Ce

31 = −µ
µ

4Fe
?r23 · ?r12 (5.115)

Ce
22 = −ω

µ

4Fe
?r31 · ?r31 (5.116)

Ce
23 = Ce

32 = −ω
ǫ

4Fe
?r31 · ?r12 (5.117)

Ce
33 = −ω

µ

4Fe
?r12 · ?r12. (5.118)
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Chapter 6

Applications

In this chapter different applications using scalar and vector finite element methods are
presented. The first application is used to evaluate the numerical analysis performed
by the combination of a vector and scalar finite element method from Section 5.2. The
magnetic field and the current density distribution in a coaxial structure are numeri-
cally calculated for the quasi-magnetostatic case as discussed in Subsection (5.1.3). As
consequence the inductance and the resistance of the structure are obtained. These pa-
rameters are calculated also analytically, since the intentionally chosen coaxial structure
provides analytical solutions for them. The analytical results agree very precisely with
the numerical ones.

The second application handles a structure, for which no analytical or only rough for-
mulas can be given, an on-chip spiral inductor. Its main properties for further electro-
magnetical analysis, the resistance and the inductance, are obtained numerically. The
field distributions are visualized to show the plausibility of the used method.

The third application shows the simplification of the simulation of periodic structures
by applying the so called periodic boundary conditions.

6.1 Inductance and Resistance of a Coaxial Structure

The quasi-magnetostatic case from Section 5.2 is well suited for extraction of inductance
and resistance of a given structure. Distributed phenomena like proximity and skin ef-
fect can also be analyzed. The finite element method on unstructured meshes allows to
obtain these parameters in arbitrary regions with complex shape, for which no analytical
procedures exist. This section handles intentionally a coaxial structure, for which ana-
lytical solutions for the inductance and for the resistance exist. It is interesting to obtain
these parameters numerically and compare the results with the analytical calculations,
or to evaluate the method from Section 5.2 at least for this special case.

The simulated coaxial structure is shown in Fig. <6.1>. The radius r of the inner
conductor is a. The outer conductor has an inner radius b and an outer radius c. The
conductor is assumed with µr = 1 and γ = 38·106 [Ωm]−1. The dielectric material
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between the inner and the outer conductor (a < r < b) and outside the outer conductor
(r > c) has µr = 1 and γ = 10−4 [Ωm]−1. On the curve Cin around the inner conductor
the magnetic field Hin is applied. This is managed by applying ?Hin to each edge which
belongs to Cin and causes a current I in the inner inductor

I =

�
Cin

?H1 d?r =

�
Cin

 
?H + ?∇ψ

&
d?r =

�
Cin

?H d?r = Hin

-
i

li. (6.1)

In (6.1) li is the length of the i-th edge, which belongs to Cin and the sum applies
to all edge lengths building Cin. Along Cout (Fig. <6.1>) the magnetic field Hout is set
consistently to zero. This requires that the current I in the inner conductor given by Hin

on Cin flows back in the outer conductor. The resulting current density distribution is
shown in Fig. <6.2> by directed cones placed in the nodes of the simulation domain. The
size and the darkness of the cones correspond to the magnitude of the current density.
Note that the current density in the inner conductor is not equal to the one in the
outer one, because of the different cross sections of the conductors. The corresponding
magnetic field distribution is similarly illustrated in Fig. <6.3>. It is not difficult to see
that the curves Cin and Cout represent the Dirichlet boundary for ?H1. The magnetic field
on the edges which belong to Cin is Hi and zero on Cout, respectively. For the ψ field it
is sufficient that a value of ψ is given on one node of the simulation domain. Since the
gradient of ψ is determining and not ψ itself, this value can be chosen arbitrarily.

Such a coaxial structure is well suited for the comparison between simulation and ana-
lytical results, because analytical formulas can be given. Just homogeneous Neumann
boundary conditions (5.30) and (5.32) are exactly satisfied also for finite dimensions
(Refer to Fig. <6.3>). The field ?H has no normal component to the outer surface of the
simulation domain. For isotropic materials in terms of the relative permeability µr the
magnetic flux ?B will have the same direction as ?H and the Neumann boundary condition
(5.30) is satisfied independently of the size of the simulation domain. Analogously the
same can be considered for the electric field ?E. Related to the electric conductivity γ the
materials in the simulation domain are assumed isotropic. Because of the finite conduc-
tivity γ in the conducting parts the corresponding electric field ?E cannot be neglected.
This is the reason why the dielectric layer (its thickness can be chosen arbitrarily) out-
side of the outer conductor is used. For the outer boundary, which lies on the dielectric,
?E is zero. For the remaining part of the outer boundary the current density distribution
?J is normal to the outer faces of the conducting regions, as demonstrated in Fig. <6.2>.

�
Cin

?H1 d?r =

�
A

?n ·
 

?∇× ?H
&

dA =

�
A

J

γ
dA =

-
i

Ji

γi
Ai. (6.2)

A is the outer face enclosed from Cin and Ai is the i-th area of the triangular elements,
in which this face is discretized. Thus ?E is either zero or perpendicular to the outer face
and the homogeneous Neumann boundary condition (5.32) is satisfied, also for finite
domain size.
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Figure 6.2: Current density distribution.

The current I flows along the inner conductor. The same current returns along the outer
conductor flowing in the opposite direction. Similarly to (6.4), for V3 where r ∈ [b; c],
only the current through the circle inside the integration loop must be considered

I −
I

!
πr2 − πb2

'
πc2 − πb2

= I
c2 − r2

c2 − b2
and B =

µI

2πr

c2 − r2

c2 − b2
. (6.6)

�
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µ
dV =

c�
b

µI2

"
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(2
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4π2r2
l2πr dr =
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I2l

2π (c2 − b2)2

�
c4 ln

c

b
−

1

4

!
c2 − b2

' !
3c2 − b2
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.

(6.7)
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Figure 6.3: Magnetic field.

Now the inductance can be obtained from the integral over the entire domain

L =
µl

2π

�
1

4π
+ ln

b

a
+

1

(c2 − b2)2

�
c4 ln

c

b
−

1

4

!
c2 − b2

' !
3c2 − b2

'��
. (6.8)

The resistance R of the conductors is given by

R = Rin + Rout, where Rin =
l

γπa2
and Rout =

l

γπ (c2 − b2)
. (6.9)

Equations (6.8) and (6.9) are obtained assuming a constant current density distribution
in the conductors. This is true only for low frequencies. The distinction between low
and high frequency is in terms of the skin effect. Thus, whether an operating frequency
is considered as low or high depends also on the dimensions of the geometries, not only
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on the frequency itself. At high frequencies for which skin effect is not negligible L and
R are modified to read [102]

L =
µl

2π
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δ

2a
+ ln

b
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+

δ
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(6.10)

R =
a

2δ
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d
�
sinh

!
2d

δ

'
+ sin

!
2d

δ

'�
δ
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δ

'
− cos

!
2d

δ

'�Rout, (6.11)

where Rin and Rout are taken from (6.9), d is the thickness of the outer conductor
(d = c − b), and the skin depth δ is given by the expression

δ =

,
2

µγω
. (6.12)

Notice that (6.10) and (6.11) are valid only, if d is reasonably small compared to b (d≪b).

6.1.2 Numerical Inductance and Resistance Extraction

The electro-magnetic power in the domain V can be expressed in two different ways.
The first one is by volume integration over the power density distribution [103] in the
region V . The second one is by the current flowing trough the resulting resistance and
inductance. As aforementioned, the quasi-magnetostatic case is considered

�
V

 
?J · ?E + ?H · ∂t

?B
&

dV = LI
dI

dt
+ RI2. (6.13)

In the frequency domain using the constitutive relations (4.7) and (4.8) one obtains

�
V

"
J2

γ
+ ωµH2

(
dV = ωLI2 + RI2. (6.14)

The left hand side of (6.14) can be denoted in the following way:

P1 =

�
V

J2

γ
dV, P2 = ω

�
V

µH2 dV, and P = P1 + P2. (6.15)

Consequently the resistance R and the inductance L arising in the domain V are calcu-
lated by

R =
Re{P}

I2
, L =

Im{P}

ωI2
. (6.16)

The domain V is discretized and the linear equation system (5.37) is assembled as de-
scribed in Section 5.2 and solved to obtain the solution vector {c}. The indexes j of the
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coefficients cj are arranged as shown in Section 5.2. The fields ?H1 and ψ are constructed

as in (5.27) and (5.28). ?H is obtained by (5.23). These quantities are used to determine
P . Inserting (5.13) in the expression for P1 from (6.15) gives

P1 =

�
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1

γ
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dV =
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(6.17)

or

P1 =
m-

i=1

ci

m-
j=1

�
V

1

γ

 
?∇× ?Ni

&  
?∇× ?Nj

&
dV cj +

+ 2


 m-

i=1

ci

M-
j=n+1

�
V

1

γ

 
?∇× ?Ni

&  
?∇× ?Nj

&
dV cj


 +

+
M-

i=n+1

ci

M-
j=n+1

�
V

1

γ

 
?∇× ?Ni

&  
?∇× ?Nj

&
dV cj .

(6.18)

With (5.23) P2 is modified to read

P2 = ω

�
V

µ
 

?H1 − ?∇ψ
&2

dV. (6.19)

Expressing ?H1 from (5.27) and ψ from (5.28) one obtains
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which is written in the more convenient form
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(6.21)

Using (6.18) and (6.21) for P1 and P2 the very suitable form for the power P in the
simulation domain is derived

P = P1 + P2 = {c}T




A1 B1 A2 B2

BT
1 C1 BT

2 C2

A2 B2 A3 B3

BT
2 C2 BT

3 C3


 {c} , (6.22)

where the sub-matrices Ak, Bk and Ck with k ∈ [1; 3] are calculated using the math-
ematical expressions given in (5.38), (5.39), and (5.40), respectively. The indexes k of
Ak, Bk and Ck indicate the different ranges of the sub-matrix entries global indexes i
and j. The associated global index ranges are specified in (6.18) and (6.21) and can be
given more clearly as follows:

i ∈ [1; m] i ∈ [m+1; n] i ∈ [n+1; M ] i ∈ [M+1; N ]

j ∈ [1; m] A1 B1 A2 B2

j ∈ [m+1; n] BT
1 C1 BT

2 C2

j ∈ [n+1; M ] A2 B2 A3 B3

j ∈ [M+1; N ] BT
2 C2 BT

3 C3

In (5.37) only the n × n part of the matrix for the unknowns is used. The remaining
part is assembled with the known Dirichlet values directly to right hand side vector {b}.
For the power calculation (6.22) the whole N ×N matrix is used. Expression (6.22) can
be simplified by involving (5.37)

P = {cn+1 ... cN}
A2 B2 A3 B3

BT
2 C2 BT

3 C3
{c} . (6.23)
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Figure 6.4: Current density distribution
at low frequency.

Figure 6.5: Current density distribution
at 3 GHz.

Figure 6.6: Current density distribution
at 30 GHz.

Figure 6.7: Current density distribution
at 300 GHz.

6.1.3 Simulated Fields Visualization and Results Comparison

Now the simulation results are compared with the solutions of the analytical formulas
(6.8) and (6.9) for low frequencies and (6.10) and (6.11) for high frequencies. The
coaxial structure used is very well suited. It satisfies exactly the homogeneous Neumann
boundary conditions.

The following dimensions are used: a = 3µm, b = 6µm, c = 9µm, and l = 3µm.
These dimensions are typical for microelectronics applications. For these dimensions
skin effect is observable at frequencies over 3 GHz. Of course it is a question of scaling,
because, if larger dimensions are used, the same effects arise at lower frequencies. The
outer dielectric layer is needed only for low frequencies, since for high frequencies there
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Figure 6.8: Magnetic field distribution at
low frequency.

Figure 6.9: Magnetic field distribution at
3 GHz.

Figure 6.10: Magnetic field distribution at
30 GHz.

Figure 6.11: Magnetic field distribution at
300 GHz.

is no current density distribution on the outer face of the outer conductor. Then the
homogeneous Neumann boundary conditions are also fulfilled without the outer dielectric
layer. However, for low frequencies the homogeneous Neumann boundary conditions are
fulfilled on the outer shell surface only using the outer dielectric cylinder. Its thickness
can be chosen arbitrarily.

Numerical and analytical calculations are performed for different frequencies between
3 MHz and 300 GHz. The related results and skin depths are shown in Table 6.1.
The field densities distributions in the region of interest are depicted in Fig. <6.4> –
Fig. <6.11>. A remarkable short skin depth is observed at 300 GHz, which is a high
frequency for the given dimensions. For 3 MHz the skin depth is much larger than the
thickness of the conductors. For the given structure this is a low frequency case de-
scribed analytically by (6.8) and (6.9). For this frequency the numerical results agree
quite well with the analytical ones. For the remaining frequencies skin effect is observed
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Table 6.1: Numerically simulated and analytically calculated R and L.

f [GHz] δ [µm] L [pH] L [pH] R [Ω] R [Ω]

numeric analytic numeric analytic

0.003 47.14 0.664398 0.664112 0.00335153 0.00335063

3 1.491 0.623599 0.639796 0.00479862 0.00387773

30 0.471 0.487201 0.486669 0.0137691 0.0128489

300 0.149 0.43899 0.438291 0.0426505 0.0416856

and the low frequency analytical formulas (6.8) and (6.9) are wrong. In this case (6.10)
and (6.11) should be used. However the requirement d≪b, which must be fulfilled for
(6.10) and (6.11), is approximately provided only for the highest frequency at 300 GHz.
At this frequency d is set to 3δ in (6.10) and (6.11) and the analytical results match
the numerical ones very well. For 3 GHz and 30 GHz the condition d≪b is not satisfied
and the numerical results differ strongerly from the analytical ones. In such cases the
numerical method has to be used.

6.2 Inductance and Resistance of On-Chip Inductors

High frequencies in an integrated circuit (IC) affect both, the resistance and the induc-
tance of the on-chip interconnects. These often as parasitics treated parameters cause
longer signal rise, fall, and delay times and limit the maximum allowed frequency of mod-
ern ICs. However, as the operating frequencies increase, small inductors of high speed
circuits can be also actively used. They can be even constructed on the chip. Thus the
inductance of an on-chip interconnect line can be a disadvantage or very useful depend-
ing on the application. Of course the collateral resistance must also be considered. In
each case it is necessary to investigate the structure of interest to obtain its inductance
and resistance in order to estimate the impact on the entire electric circuit [104]. In
the case of applications in radio frequency (RF) ICs such as voltage controlled oscilla-
tors or low noise amplifiers the inductance and the resistance of the on-chip inductors
must be extensively investigated for the RF circuit design, performance optimization,
and inductor quality factor. The frequency dependent inductance and resistance of wide
on-chip interconnects must be captured to obtain the impact on power supply stability
and signal delay.

Currently there are two major techniques for modeling of on-chip inductors: analytical
compact modeling and numerical field calculation based modeling. In the case of a spiral
inductor, where the models can be restricted to specific geometry classes, closed-form
analytical models are very well suited for fast designs typical for the very early stage
of the developing process [105, 106]. However, analytical modeling of arbitrarily shaped
three-dimensional structures is very complicated, if possible at all. Thus, analytical
parameter extraction methods have only limited applicability. For final analysis prior to
fabrication and for irregular inductor geometries numerical simulation methods normally
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based on solving the Maxwell equations provide the most accurate characterization.
Moreover, the investigated interconnect structure can often be embedded in a small
simulation region for which the optimized model of the dominant magnetic field can be
used even at very high frequencies. The distributed vector and scalar fields must be
extracted in structures which may consist of different inhomogeneous complex shaped
three-dimensional regions, like splittings, widenings, and vertical connections. As a
consequence, the vector and scalar finite element method for the qusi-magnetostatic case
in the frequency domain on unstructured tetrahedral meshes [107, 108] as described in
Section 5.2 needs to be addressed.

In this application an optimized model for inductance and resistance analysis of an on-
chip inductor at different frequencies is proposed. The model describes the proximity
effect and the skin effect typically arising at higher frequencies as well. The three-
dimensional finite element simulation software SAP (Smart Analysis Programs) [109]
was extended to implement the developed model. Simulation results demonstrate the
physical plausibility of the applied model and numerical methods, as well as the necessity
of three-dimensional simulations.

6.2.1 Boundary Conditions

The supplied total current in the inductor wire is considered by the following condition
for ?H1:

I =

�
∂A

?H1· d?r =

�
∂A

?H· d?r ≃ Ht

p-
i=1

li, (6.24)

where ∂A is an arbitrary closed loop around the conducting wire, p is the number of
edges, which build this loop, and li is the length of the i-th loop edge. The Dirichlet
boundary part from (5.27) is expressed as

?v =
M-

j=n+1

cj
?Nj with cj = Ht for j ∈ [n+1; M ] and p = M − n.

Only the supply parts of the wire, which are used to force the electric current, lie
directly on the outer bound of the simulation domain. The remaining parts of the wire
are surrounded by dielectric material. The loop ∂A is chosen to lie on the outer face of
the simulation domain. The Neumann boundary AN1 consists of all edges lying on the
outer boundary of the simulation domain excluding the edges building ∂A. In this work
the dielectric environment enclosing the wire is assumed to be sufficiently thick so that
?E can be neglected on the dielectric part of AN1. On the other hand the electric current
density is forced in a direction perpendicular to the conductor boundary faces. Thus,
for isotropic materials with respect to σ, ?E will be also perpendicular to these faces and
the homogeneous Neumann boundary condition (5.30) is used for the conductor surface
parts.
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For the calculations of ψ it is sufficient that one node of the simulation domain is set to
an arbitrary value. Thus, the Dirichlet boundary part of (5.27) is modified to read

v = cM+1λM+1 with N = M + 1. (6.25)

The Neumann boundary AN2 consists of all edges lying on the outer boundary of the
simulation domain. The simulation domain is constructed sufficiently large to allow
that the magnetic flux ?B can be neglected on the outer boundary AN2. Thus the
homogeneous Neumann boundary condition (5.32) is applied.

6.2.2 Domain Discretization

The example inductor geometry presented in the next subsection and the coaxial ge-
ometry from Section 6.1 are discretized with the three-dimensional tetrahedron mesh
generation software Netgen [110]. Netgen is able to combine the generation of very
small elements in regions, where high resolution is needed with large elements, where
the field does not change strongly. This advantage of Netgen makes high frequency
simulations with pronounced skin effect possible at all. In the skin effect area a feasible
field approximation can be guaranteed only if a very fine mesh is generated. Generating
such a mesh in the entire simulation domain will push unnecessarily the memory limits.
Thus it is very efficient to generate a coarse mesh in the remaining area.

Netgen uses different different geometry description formats. For the applications in this
work the constructive solid geometry (CSG) format is preferred. It is very convenient
for the description of small or medium size structures like the coaxial structure or the
spiral inductor presented in the example section. The geometry is defined by Eulerian
operations (union, intersection, and complement) from primitives. The primitives are
generic volume elements like cubes, cylinders, spheres, or even half-spaces defined by
an arbitrary point in the boundary plane and an outward normal vector. If CSG input
is used, Netgen starts with the computation of the corner points. Then the edges are
defined and meshed into segments. Next, the faces are generated by an advancing front
algorithm [111]. After optimization of the surface mesh the volume inside is filled with
tetrahedrons by a fast Delaunay algorithm [112]. Finally the volume mesh is optimized.

6.2.3 Examples and Results

As example a typical on-chip spiral inductor structure as discussed in [113] is investi-
gated. The simulation domain consists of a transparent insulating rectangular brick over
an opaque substrate brick as shown in Fig. <6.12>. The aluminum inductor is placed
in the insulating environment about 5µm above the substrate area. The substrate is
modelled as region with a constant relative low resistivity of 10 Ω cm. Thus the induced
electric voltage in this region causes relative law electric current. The cross-section of
the conductor is 20µm× 1.2 µm. The horizontal distance between the winding wires
is 10 µm. The outer dimensions of the inductor are 300µm× 300 µm. The inductor is
completely surrounded by the dielectric environment, except of the two small delimiting
faces which lie directly in the boundary planes of the simulation domain. The conductor
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Table 6.2: Calculated inductance and resistance.

f [GHz] L [nH] without L [nH] with R [Ω]

substrate substrate

0.001 2.6887 2.6881 3.127

0.01 2.6887 2.6877 3.127

0.1 2.688 2.688 3.132

1 2.6516 2.6514 3.463

10 2.5501 2.5493 5.396

100 2.5458 2.5457 13.156

area, the dielectric, and the substrate area close to the conductor are discretized much
finer then the remaining simulation domain. This is shown in Fig. <6.13> where a part of
the dielectric environment is removed to visualize in detail the generated mesh inside the
simulation domain. The variation of the fields in the finer discretized areas is expected
to be much higher than in the coarser discretized domain. This special discretization
reduces the number of generated nodes and edges, and the number of the linear equa-
tions respectively, even for big simulation environments which have to be used to satisfy
the assumption of homogeneous Neumann boundary conditions (the tangential compo-
nent of ?E on AN1 and normal component of ?B on AN2 are zero). Of coarse such a
discretization is only possible, if an unstructured mesh is used.

The current density distribution depends heavily on the operating frequency in the ana-
lyzed frequency domain. It is unknown and arises from the simulation. At the beginning
of the simulation only the total current in the inductor is known. As mentioned above it
is set by the Dirichlet boundary condition for ?H1 which is given by the tangential com-
ponent of the magnetic field Ht on the element edges, surrounding one of the conductor
faces lying on the outer bound of the simulation domain.

The resistance and inductance values of the structure of interest are calculated nu-
merically at different frequencies with and without the substrate influence. The corre-
sponding results are presented in Table 6.2. While the inductance decreases slowly with
increasing operating frequency, the resistance rises dramatically, which matches well the
observed current density distribution and the skin effect, respectively. A surface view of
the current density distribution in the conductor is shown in Fig. <6.14> and Fig. <6.15>
for 100 MHz and 10 GHz, respectively. At 100 MHz the skin depth is about 6 µm and
nearly the whole conductor cross-section is filled up by the current. At 10 GHz the
skin depth is about 0.6 µm and the current is concentrated at the vertical side walls
of the conductor. Fig. <6.16> shows the spatial current density distribution at 1 GHz
as directed cones placed in the discretization nodes inside of the conductor area. The
cone’s size and darkness are proportional to the field strength. Fig. <6.17> depicts the
corresponding spatial distribution of the magnetic field inside the dielectric environment
around the inductor. Fig. <6.18> and Fig. <6.19> show the very different current density
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distribution close to the small via for 100 MHz and 10 GHz, respectively. Fig. <6.20> and
Fig. <6.21> show the current density distribution and the corresponding magnetic field
in the substrate at 1 GHz. The underlying substrate does not influence the inductance
and the resistance of the inductor, because of the relative high substrate resistivity. The
values of the current density in the substrate (Fig. <6.20>) differ vastly to those in the
inductor (Fig. <6.14> and Fig. <6.15>). As shown in Table 6.2 the calculated inductance
taking into account the influence of the substrate does not differ from the inductance
without substrate influence.

As the Q-factor of an inductor is inversely proportional to its resistance, making the
inductor wire thicker might decrease the resistance and increase the Q-factor. However,
as the examples show this is not the case for high frequencies at which the skin effect
is noticeable. In these cases the current flows only in the area very close to the vertical
surface and a wider transversal conductor cross section would not change the situation.
For the visualization VTK [114, 115] is used.

Figure 6.12: The simulation domain. Figure 6.13: The generated mesh.

Figure 6.14: Surface view of the current
density [A/m2] distribution at 100 MHz.

Figure 6.15: Surface view of the current
density [A/m2] distribution at 10 GHz.
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Figure 6.16: Current density distribution
at 1 GHz.

Figure 6.17: Magnetic field distribution
[A/m] at 1 GHz.

Figure 6.18: Current density distribution
in the via at 100 MHz.

Figure 6.19: Current density distribution
in the via at 10 GHz.

Figure 6.20: Current density [A/m2]
distribution in the substrate at 1 GHz.

Figure 6.21: Magnetic field [A/m] in the
substrate at 1 GHz.
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6.3 Periodic Boundaries

Certain elements of integrated circuits like busses or memory cells make use of periodic
structures [116, 117]. As example a part of an interconnect bus is shown in Fig. <6.22>.
Often the capacitance between the wires must be extracted which requires the calcula-
tion of the electric field, where the wires are connected alternately to 0 V and to 1 V [118].
An appropriately fine resolution of the simulation area is important for the accuracy and
leads unfortunately for such domains as in Fig. <6.22> to the generation of a huge num-
ber of nodes. Therefore the simulation process will demand a lot of memory, and the
simulation duration can be unacceptably long. Considering the periodicity of the struc-
ture of Fig. <6.22> in direction of the x axis there is a smart way to solve the problem
by investigating only one geometrical period of the structure. A possible geometrical
period is the area shown in Fig. <6.23>. The electrodes for the capacitance extraction
consist of one interconnect line connected to 1 V and two parts of the neighbor lines
connected to 0 V, respectively, which can be seen in the top view in Fig. <6.24>. The
interconnect bus of Fig. <6.22> can be created by periodic spatial continuation of the
area of Fig. <6.23> along the x axis. Therefore it is not necessary to simulate the whole
area of Fig. <6.22>. It is sufficient to simulate a single cell of periodicity as in Fig. <6.23>.
The simulation has been performed by our software Smart Analysis Programs [119]. It
is based on the finite element method using tetrahedral meshes. The algorithm for the
linear algebraic equations arising from the finite element discretization is based on the
iterative conjugate gradient method which uses an incomplete Cholesky pre-conditioning
technique to speed up the iteration process [120, 121, 122, 123]. This application is a
typical electro-static problem described by the Laplace equation (4.12) for the electric
potential ϕ. The corresponding numerical analysis is based on scalar finite elements
and was discussed in Chapter 4. The solution of the Laplace equation in the dielectric
is completely extracted from the data defined on the dielectric boundary. Usually the
electrodes are modeled by Dirichlet boundary conditions for the electrostatic potential
and the outer boundary of the simulation domain by homogeneous Neumann conditions
which can be implemented with the finite element method in a quite natural way. Homo-
geneous Neumann conditions on a planer surface effect the field in the simulation area
in such way, as if the simulation area would be mirrored at the respective boundary face.
Such “mirroring conditions” can be exploited for the simulation of symmetric structures
and periodic structures which exhibit symmetry. However for general periodic structures
proper boundary conditions must be implemented which require special treatment.

In this application two faces A1p ⊂ ∂V and A2p ⊂ ∂V are defined as periodic boundary, if:

• Each node from A1p is uniquely mapped to another node from A2p and vice versa.

• If ?r1i is the position pointer to a simulation point of A1p and ?r2i is the position
pointer to the corresponding simulation point of A2p then ϕ(?r1i) = ϕ(?r2i) for each
point of A1p and A2p.

• Each node of A1p has its own neighbor nodes and the neighbor nodes of the cor-
responding node from A2p.
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Although each two corresponding periodic points are separated in the space, due to the
periodic condition, they should behave as if they were attached to each other.

If due to the discretization m points are created, the electric potential ϕ in dielectric VD

is approximated as (4.13) with (4.22) by the sum

ϕ ≈ ϕ̃ =
n-

j=1

cjλj(?r) +
m-

j=n+1

cjλj(?r). (6.26)

In (6.26) the unknown nodes are numbered from 1 to n. The Dirichlet (known) nodes
are numbered from n+1 to m. Thus the finite element method leads to a linear equation
system for the first n coefficients cj (the unknown ones with j ∈ [1; n]).

In general the mesh generation software does not order the simulation nodes as in (6.26).
To implement the desired node ordering a supplemental auxiliary index array with the
length m is allocated. This additional index array is used by the assembling proce-
dure. The first n entries of this index array refer to the nodes in VD without the nodes
on the Dirichlet boundary. The remaining entries refer to the nodes on the Dirichlet
boundary (from n+1 to m). The additional index assignment of the simulation nodes
gives advantages to the implementation of the periodic boundary conditions. Each two
corresponding points of the plains A1p and A2p get the same index in the additional
index array. Thus, they are assembled to the same row in the linear equation system.
Due to the element-by-element processing of the simulation volume each periodic point
has not only its neighbor nodes but it is also connected to the neighbor nodes of the
corresponding periodic point.

6.3.1 Mesh Generation

Although periodic boundary conditions can be applied to an arbitrary pair of faces with
unique bidirectional node mapping, we will restrict this paragraph to parallelepiped
structures for the sake of clarity. The periodic boundary conditions are applied at two
opposite parallel faces. The mesh generated has to guarantee that the surface meshes on
these faces are identical. Our interconnect simulation software Smart Analysis Programs
uses two different three-dimensional mesh generation approaches. The first one is a lay-
ered approach which extends two-dimensional meshes [124] into the third dimension by
means of linear extrusion. The second approach is a fully unstructured mesh generation
method based on the program delink [107, 108]. Both approaches do not fulfill the above
mentioned requirements for periodic boundaries a priori. To extend the mesh generation
for periodic boundaries we use an iterative approach. In the first step the simulation
domain is meshed without any special treatment for periodic boundaries. Afterwards
the periodic boundary faces are checked for conformity. If they are not conform, they
are merged and the newly generated points are fed into the mesh generator as additional
input. After re-meshing of the geometry the periodic boundaries are again checked for
conformity. These steps are repeated until conformity is reached. In the layer based
meshing approach this iteration procedure must only be applied to the two-dimensional
mesh generation process. The additional extrusion step preserves the conformity of the
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side walls. In the fully unstructured meshing method the conformity of the nodes on the
periodic faces is not sufficient, because the same set of boundary nodes can lead to dif-
ferent boundary meshes (at least for cospherical points). Therefore also edge conformity
has to be guaranteed during the iteration. Because of these additional difficulties the
layer based mesh generation method is preferred for problems with periodic boundaries.
Unfortunately, we were not able to prove theoretically that the iteration process nec-
essary for fully unstructured meshes will always terminate, however we have not found
any example so far, which took more than 11 iterations.

6.3.2 Simulation Results

The simulation results are evaluated by visualization of the electric field using VTK. In
the presented example the simulation area consists of a SiO2 rectangular parallelepiped
with the conductors inside as shown in Fig. <6.23>. The faces parallel to the yz plane
are defined as periodic boundary. At the remaining outer faces homogeneous Neumann
boundary conditions for the electrostatic potential are applied. The simulated poten-
tial and the corresponding iso faces with periodic boundary conditions are shown in
Fig. <6.25> and Fig. <6.26>. The electric field is equivalent to the electric field in an
inner single cell of the original interconnect bus structure. That is as if the simulation
domain would be copied repeatedly in x and −x direction by the length of its x dimen-
sion. The electric field looks like as if one boundary parallel to yz plane would be directly
connected to the opposite one. The stamp of the electrodes which are lying on the one of
the periodic faces can be seen on the other periodic face. In order to visualize the effect
of the periodic boundary conditions, the same structure has been simulated with homo-
geneous Neumann boundary conditions (natural boundary conditions) for comparison.
The obtained electric potential distribution is displayed in Fig. <6.27> and Fig. <6.28>.
In this case the effect of the opposite electrodes is no longer seen on the side walls and
the iso surfaces are now perpendicular to the boundary. The field in the simulation area
is as if the simulation area would be mirrored with respect to these boundaries.

Originally the z dimension of the simulation region is longer than this one shown in the
figures. For visualization the simulation area is cut off perpendicularly to the z axis and
closely to the electrodes to minimize the mirronig effect of the homogeneous Neumann
boundary conditions at the cutting planes, similarly to Subsection 4.1.5.

As expected the calculated capacitance between the electrodes in the small area from
Fig. <6.23> is different for the different boundary conditions applied. The capacitance
with the periodic boundary is 1.33 times the capacitance with homogeneous Neumann
boundary. The capacitance of the whole area from Fig. <6.22> is the capacitance of
the small simulation domain multiplied by the number of all small simulation domains
needed to construct the complete structure.
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Figure 6.22:
An interconnect bus.

Figure 6.23:
The simulation area.

Figure 6.24: The electrodes
in the simulation area.

Figure 6.25: The electric potential
distribution with x periodicity.

Figure 6.26: The iso faces of the electric
potential distribution with x periodicity.

Figure 6.27: The electric potential
distribution without periodicity.

Figure 6.28: The iso faces of the electric
potential distribution without periodicity.
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Chapter 7

Outlook

This thesis elaborates electromagnetic numerical simulations in microelectronics for field
calculations and parameter extraction in interconnect structures based on the finite
element analysis with the special usage of edge elements. The method is demonstrated
by the quasi-magnetostatic case, which is well suited for the small simulation domains
typical for the interconnects in modern integrated circuits even at very high frequencies.
In a similar way the proposed approach can be applied to the wave equation for the
electric field or to the equations for the electrodynamic potentials in the frequency
domain. It is not difficult to see, that the assembling formulas for the element matrices
proposed can be used without any modifications, just the notation of the field variables
and the constitutive parameters taking part are different. Of coarse, the way how to
apply the boundary conditions and how to extract the corresponding parameters must
be reconsidered.

The assembling of the approximation of the Neumann boundary conditions is given
in the appendix for further implementation. This will allow inhomogeneous Neumann
boundary conditions to be taken into account. It can be also used as a foundation
for future integration of a combination of the finite element method with a boundary
integral method for the analysis of open domains.

Another interesting area for further development and implementation represents the
treatment of higher order vector finite elements to achieve efficiently better accuracy of
the simulation results. In this case the efficiency bears on the computation, the research
and adaptation of the method is much more difficult.

In spite of the fact that the simulation in the frequency domain meets the requirements
for a large amount of applications, it is not sufficient, if nonlinear (field dependent)
parameters are used. In such a case time domain edge finite element techniques must be
addressed and the parameters have to be updated with each computational time step.
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The two-dimensional domain A′ is transformed to A by the expressions

x = x(ξ, η)

y = y(ξ, η).
(A.1)

If (xi, yi) is a point in Ai, (ξi, ηi) is a point in A′
i : xi = x(ξi, ηi), yi = y(ξi, ηi),

and A =
n-

i=1

Ai, A′ =
n-

i=1

A′
i.

E′F ′G′H ′ → EFGH :

E′(ξ, η), F ′(ξ + h, η), G′(ξ + h, η + k), H ′(ξ, η + k),

E( x(ξ, η), y(ξ, η) ), F ( x(ξ + h, η), y(ξ + h, η) ),

G( x(ξ + h, η + k), y(ξ + h, η + k) ), H( x(ξ, η + k), y(ξ, η + k) ).

(A.2)

The area Ai of the i-th element EFGH is approximately related by the vector product

?EF

�
x(ξ + h, η) − x(ξ, η) = xξ(ξ̃, η) h

y(ξ + h, η) − y(ξ, η) = yξ(
˜̃
ξ, η) h

(A.3)

and

?EH

�
x(ξ, η + k) − x(ξ, η) = xη(ξ, η̃) k

y(ξ, η + k) − y(ξ, η) = yη(ξ, ˜̃η) k
, (A.4)

where

ξ̃ ∈ [ξ; ξ + h],
˜̃
ξ ∈ [ξ; ξ + h], η̃ ∈ [η; η + k], ˜̃η ∈ [η; η + k]. (A.5)

For sufficiently small h and k the face Ai is expressed as

Ai = | ?EF × ?EH| = [xξ(ξ̃, η)yη(ξ, ˜̃η) − xη(ξ, η̃)yξ(
˜̃
ξ, η)]|hk| =

= [xξ(ξ, η)yη(ξ, η) − xη(ξ, η)yξ(ξ, η)]|hk| = J(ξ, η) A′
i

(A.6)

with

J(ξ, η) =

.... xξ xη

yξ yη

.... , A′
i = |hk| (A.7)
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and an integral is given by the Riemann sum

�
A

f(x, y) dA =
n-

i=1

f(xi, yi)Ai =
n-

i=1

f(x(ξi, ηi), y(ξi, ηi))J(ξi, ηi)A
′
i =

=

�
A′

f(x(ξ, η), y(ξ, η))J(ξ, η) dA′.

(A.8)

Analogously the transformation for the three-dimensional case can be expressed by:

�
A

f(x, y, z) dA =

�
A′

f(x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ))J(ξ, η, ζ) dA′ (A.9)

with

J(ξ, η, ζ) =

......
xξ xη xζ

yξ yη yζ

zξ zη zζ

...... . (A.10)
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Appendix B

Two-Dimensional Neumann

Boundary Term

As usual for the finite element method the assembling is performed element wise. Refer
to the triangular element and its corresponding notations from Fig. <4.1>. Only elements
which lie on the Neumann boundary (triangles with one or more edges as part of the
Neumann boundary) are considered. The three edges in the triangle refer to as Ce

12, C
e
23

and Ce
31, where the subscript indexes 1, 2, and 3 are the element nodes or to Ce

1, C
e
2 and

Ce
3, where the subscript indexes 1, 2, and 3 are the element edges.

B.1 Neumann Boundary for the Rotor-Rotor-Operator

The Neumann boundary integral from (5.74) is modified to read

�
CN1

?n ·

�
?Ni ×

"
1

γ
?∇× ?H1

(�
ds =

-
j

cj

�
CN1

?n ·

�
?Ni ×

"
1

γ
?∇× ?Nj

(�
ds =

= [D] {c} .

(B.1)

Three different cases for each of the three edges of every triangular element must be
considered. γ is assumed to be a constant scalar in each element.

For the computation of the element matrix

De
ij =

�
Ce

k

?nk ·

�
?N e

i ×

"
1

γ
?∇× ?N e

j

(�
ds =

�
Ce

k

 
?nk × ?N e

i

&
·

"
1

γ
?∇× ?N e

j

(
=

=


 �

Ce

k

 
?nk × ?N e

i

&
ds


 ·

"
1

γ
?∇× ?N e

j

(
, i ∈ [1; 3], j ∈ [1; 3], k ∈ [1; 3]

(B.2)
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the following expressions must be calculated

(l23?n1) × ?∇λe
1 = − (l23?n1) ×

l23?n1

2Fe
= ?0 (B.3)

(l23?n1) × ?∇λe
2 = − (?r23 × ?ez) ×

?r31 × ?ez

2Fe
=

?ez

2Fe
?r31 · (?r23 × ?ez) =

=
?ez

2Fe
?ez · (?r31 × ?r23)� �� �

−2Fe

= −?ez

(B.4)

(l23?n1) × ?∇λe
3 =

?ez

2Fe
?ez · (?r12 × ?r23)� �� �

2Fe

= ?ez (B.5)

(l31?n2) × ?∇λe
1 = ?ez (l31?n2) × ?∇λe

2 = ?0 (l31?n2) × ?∇λe
3 = −?ez (B.6)

(l12?n3) × ?∇λe
1 = −?ez (l12?n3) × ?∇λe

2 = ?ez (l12?n3) × ?∇λe
3 = ?0 (B.7)

?∇× ?N e
1 = 2l12

 
?∇λe

1 × ?∇λe
2

&
= 2l12

"
?r23 × ?ez

2Fe
×

?r31 × ?ez

2Fe

(
=

= −2l12
?ez [?r31 · ( ?r23 × ?ez)]

4F 2
e

=
l12
2F 2

e

?ez [?ez · ( ?r23 × ?r31)]� �� �
2Fe

=
l12
Fe

?ez

(B.8)

?∇× ?N e
2 =

l23
Fe

?ez (B.9)

?∇× ?N e
3 =

l31
Fe

?ez. (B.10)

Along Edge 12:

λe
3 = 0

λe
2 = 1 − λe

1

�
⇒ ?r =

n-
i=1

λe
i?ri = (?r1 − ?r2)λ

e
1 + ?r2 = ?r21λ

e
1 + ?r2 (B.11)

s = ?r · ?e21 ⇒ ds = ?r21 · ?e21 dλe
1 = l12 dλe

1 (B.12)

or for λe
2

λe
3 = 0

λe
1 = 1 − λe

2

�
⇒ ?r =

n-
i=1

λe
i?ri = (?r2 − ?r1)λ

e
2 + ?r1 = ?r12λ

e
2 + ?r2 (B.13)

s = ?r · ?e12 ⇒ ds = ?r12 · ?e12 dλe
2 = l12 dλe

2 (B.14)
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De
ij =

1

γ

�
Ce

12

?n3 ·
�

?N e
i ×

 
?∇× ?N e

j

&�
ds =

1

γ

�
Ce

12

 
?n3 × ?N e

i

&
·
 

?∇× ?N e
j

&
=

=
1

γ


 �

Ce

12

 
?n3 × ?N e

i

&
ds


 ·

 
?∇× ?N e

j

&
, i ∈ [1; 3], j ∈ [1; 3]

(B.15)

�
Ce

12

 
?n3 × ?N e

1

&
ds =

�
Ce

12

�
?n3 ×

�
l12

 
λe

1
?∇λe

2 − λe
2
?∇λe

1

&��
ds =

= l12




�
(l12?n3) × ?∇λe

2

� 1�
0

λe
1 dλe

1 −
�
(l12?n3) × ?∇λe

1

� 1�
0

λe
2 dλe

2


 =

= l12?ez

(B.16)

�
Ce

12

 
?n3 × ?N e

2

&
ds =

�
Ce

12

�
?n3 ×

�
l23

 
λe

2
?∇λe

3 − λe
3
?∇λe

2

&��
ds =

= l23

�����
�����

�
(l12?n3) × ?∇λe

3

�
� �� �

0

1�
0

λe
2 dλe

2 −
 
?n3 × ?∇λe

2

& �
Ce

12

λe
3 ds

� �� �
0

�����
�����

=

= ?0

(B.17)

�
Ce

12

 
?n3 × ?N e

3

&
ds =

�
Ce

12

�
?n3 ×

�
l31

 
λe

3
?∇λe

1 − λe
1
?∇λe

3

&��
ds =

= l31

�����
�����

 
?n3 × ?∇λe

1

& �
Ce

12

λe
3 ds

� �� �
0

−
�
(l12?n3) × ?∇λe

3

�
� �� �

0

1�
0

λe
1 dλe

1

�����
�����

=

= ?0

(B.18)

[D]e =
1

γ Fe


 l12l12 l12l23 l12l31

0 0 0
0 0 0


 . (B.19)
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Analogously the element matrices for the remaining edges are obtained.

Along Edge 23:

[D]e =
1

γ Fe


 0 0 0

l23l12 l23l23 l23l31
0 0 0


 . (B.20)

Along Edge 31:

[D]e =
1

γ Fe


 0 0 0

0 0 0
l31l12 l31l23 l31l31


 . (B.21)

B.2 Neumann Boundary for Gauß’s Law of Magnetism

B.2.1 For the Scalar Function

The Neumann boundary integral for ψ from (5.75) is modified to read

�
CN2

λi?n ·
 
˜
µ · ?∇ψ

&
ds =

-
j

cj

�
CN2

λi?n ·
 
˜
µ · ?∇λj

&
ds =

= [D] {c}

(B.22)

De
ij = µ


$�

Ce

k

λe
i ds


*?nk · ?∇λe

j , i ∈ [1; 3], j ∈ [1; 3], k ∈ [1; 3]. (B.23)

For the computation of [D] the following expressions are obtained:

(l12?n3) · ?∇λe
1 = − (?r12 × ?ez) ·

?r23 × ?ez

2Fe
= −

?r12 · ?r23

2Fe
(B.24)

and analogously

(l12?n3) · ?∇λe
2 = −

?r12 · ?r31

2Fe
(l12?n3) · ?∇λe

3 = −
?r12 · ?r12

2Fe
(B.25)

(l23?n1) · ?∇λe
2 = −

?r23 · ?r31

2Fe
(l23?n1) · ?∇λe

3 = −
?r23 · ?r12

2Fe

(l23?n1) · ?∇λe
3 = −

?r23 · ?r12

2Fe

(B.26)
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(l31?n2) · ?∇λe
2 = −

?r31 · ?r31

2Fe
(l31?n2) · ?∇λe

3 = −
?r31 · ?r12

2Fe

(l31?n2) · ?∇λe
3 = −

?r31 · ?r12

2Fe
.

(B.27)

Along Edge 12:

De
1j = µ


$ �

Ce

1

λe
1 ds


*?n3 · ?∇λe

j = µ


 1�

0

λe
1 dλ1


 (l12?n3) · ?∇λe

j =
µ

2
(l12?n3) · ?∇λe

j (B.28)

De
2j = µ


$ �

Ce

1

λe
2 ds


*?n3 · ?∇λe

j = µ


 1�

0

λe
2 dλ2


 (l12?n3) · ?∇λe

j =
µ

2
(l12?n3) · ?∇λe

j (B.29)

De
3j = µ


$ �

Ce

1

λe
3 ds


*?n3 · ?∇λe

j = 0, λe
3 = 0 on Edge 12 (B.30)

[D]e = −
µ

4Fe


 ?r12 · ?r23 ?r12 · ?r31 ?r12 · ?r12

?r12 · ?r23 ?r12 · ?r31 ?r12 · ?r12

0 0 0


 . (B.31)

Analogously for the remaining edges the following is calculated.

Along Edge 23:

[D]e = −
µ

4Fe


 0 0 0

?r23 · ?r23 ?r23 · ?r31 ?r23 · ?r12

?r23 · ?r23 ?r23 · ?r31 ?r23 · ?r12


 . (B.32)

Along Edge 31:

[D]e = −
µ

4Fe


 ?r31 · ?r23 ?r31 · ?r31 ?r31 · ?r12

0 0 0
?r31 · ?r23 ?r31 · ?r31 ?r31 · ?r12


 . (B.33)
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B.2.2 For the Vector Function

The Neumann boundary integral for ?H1 from (5.75) is written in the form

�
CN2

λi?n ·
 
˜
µ · ?H1

&
ds =

-
j

cj

�
CN2

λi?n ·
 
˜
µ · ?Nj

&
ds =

= [D] {c}

(B.34)

De
ij = µ

�
Ce

k

λe
i?nk · ?N e

j ds, i ∈ [1; 3], j ∈ [1; 3], k ∈ [1; 3]. (B.35)

Along Edge 12:

De
11 = µ

�
Ce

1

λe
1?n3 · ?N e

1 ds = µ

�
Ce

1

λe
1?n3 ·

�
l12

 
λe

1
?∇λe

2 − λe
2
?∇λe

1

&�
ds =

= µl12


$?n3 · ?∇λe

2

�
Ce

1

λe
1λ

e
1 ds − ?n3 · ?∇λe

1

�
Ce

1

λe
1λ

e
2 ds


* =

= µl12


?n3 · ?∇λe

2

�
Ce

1

λe
1λ

e
1 ds − ?n3 · ?∇λe

1

�
Ce

1

λe
1 (1 − λe

1) ds


 =

= µl12


(l12?n3) · ?∇λe

2

1�
0

(λe
1)

2 dλe
1 − (l12?n3) · ?∇λe

1

1�
0

�
λe

1 − (λe
1)

2
�

dλe
1


 =

= −
µl12
12Fe

(2?r12 · ?r31 − ?r12 · ?r23)

(B.36)

De
12 = µ

�
Ce

1

λe
1?n3 · ?N e

2 ds = µ

�
Ce

1

λe
1?n3 ·

�
l23

 
λe

2
?∇λe

3 − λe
3
?∇λe

2

&�
ds =

= µl23


$$$$$?n3 · ?∇λe

3

�
Ce

1

λe
1λ

e
2 ds − ?n3 · ?∇λe

2

�
Ce

1

λe
1λ

e
3 ds

� �� �
0


***** =

= µl23 ?n3 · ?∇λe
3

�
Ce

1

λe
1λ

e
2 ds = µl23 (l12?n3) · ?∇λe

3

1�
0

λe
1λ

e
2 dλe

1 =

= −
µl23
12Fe

?r12 · ?r12

(B.37)
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De
13 = µ

�
Ce

1

λe
1?n3 · ?N e

3 ds = µ

�
Ce

1

λe
1?n3 ·

�
l31

 
λe

3
?∇λe

1 − λe
1
?∇λe

3

&�
ds =

= µl31


$$$$$?n3 · ?∇λe

1

�
Ce

1

λe
1λ

e
3 ds

� �� �
0

−?n3 · ?∇λe
3

�
Ce

1

λe
1λ

e
1 ds


***** =

= −µl31 ?n3 · ?∇λe
3

�
Ce

1

λe
1λ

e
1 ds = −µl31 (l12?n3) · ?∇λe

3

1�
0

(λe
1)

2 dλe
1 =

=
µl31
6Fe

?r12 · ?r12

(B.38)

De
21 = −

µl12
12Fe

(?r12 · ?r31 − 2?r12 · ?r23) (B.39)

De
22 = −

µl23
6Fe

?r12 · ?r12 (B.40)

De
23 =

µl31
12Fe

?r12 · ?r12 (B.41)

De
3j = µ

�
Ce

1

λe
3 ?n3 · ?N e

j ds = 0, λe
3 = 0 on Edge 12. (B.42)

Along Edge 23:

De
1j = µ

�
Ce

2

λe
1 ?n1 · ?N e

j ds = 0, λe
1 = 0 on Edge 23 (B.43)
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De
21 = µ

�
Ce

2

λe
2?n1 · ?N e

1 ds = µ

�
Ce

2

λe
2?n1 ·

�
l12

 
λe

1
?∇λe

2 − λe
2
?∇λe

1

&�
ds =

= µl12


$$$$$?n1 · ?∇λe

2

�
Ce

2

λe
2λ

e
1 ds

� �� �
0

−?n1 · ?∇λe
1

�
Ce

2

λe
2λ

e
2 ds


***** =

= −µl12 ?n1 · ?∇λe
1

�
Ce

2

λe
2λ

e
2 ds = −µl12 (l23?n1) · ?∇λe

1

1�
0

(λe
2)

2 dλe
2 =

=
µl12
6Fe

?r23 · ?r23

(B.44)

De
22 = µ

�
Ce

2

λe
2?n1 · ?N e

2 ds = µ

�
Ce

2

λe
2?n1 ·

�
l23

 
λe

2
?∇λe

3 − λe
3
?∇λe

2

&�
ds =

= µl23


$?n1 · ?∇λe

3

�
Ce

2

λe
2λ

e
2 ds − ?n1 · ?∇λe

2

�
Ce

2

λe
2λ

e
3 ds


* =

= µl23


?n1 · ?∇λe

3

�
Ce

2

λe
2λ

e
2 ds − ?n1 · ?∇λe

2

�
Ce

2

λe
2 (1 − λe

2) ds


 =

= µl23


(l23?n1) · ?∇λe

3

1�
0

(λe
2)

2 dλe
2 − (l23?n1) · ?∇λe

2

1�
0

�
λe

2 − (λe
2)

2
�

dλe
2


 =

= −
µl23
12Fe

(2?r23 · ?r12 − ?r23 · ?r31)

(B.45)
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De
23 = µ

�
Ce

2

λe
2?n1 · ?N e

3 ds = µ

�
Ce

2

λe
2?n1 ·

�
l31

 
λe

3
?∇λe

1 − λe
1
?∇λe

3

&�
ds =

= µl31


$$$$$?n1 · ?∇λe

1

�
Ce

2

λe
2λ

e
3 ds − ?n1 · ?∇λe

3

�
Ce

2

λe
2λ

e
1 ds

� �� �
0


***** =

= µl31 ?n1 · ?∇λe
1

�
Ce

2

λe
2λ

e
3 ds = µl31 (l23?n1) · ?∇λe

1

1�
0

λe
2 (1 − λe

2) dλe
2 =

= −
µl31
12Fe

?r23 · ?r23

(B.46)

De
31 =

µl12
12Fe

?r23 · ?r23 (B.47)

De
32 = −

µl23
12Fe

(?r23 · ?r12 − 2?r23 · ?r31) (B.48)

De
33 = −

µl31
6Fe

?r23 · ?r23. (B.49)

Along Edge 31:

De
11 = µ

�
Ce

3

λe
1?n2 · ?N e

1 ds = µ

�
Ce

3

λe
1?n2 ·

�
l12

 
λe

1
?∇λe

2 − λe
2
?∇λe

1

&�
ds =

= µl12


$$$$$?n2 · ?∇λe

2

�
Ce

3

λe
1λ

e
1 ds − ?n2 · ?∇λe

1

�
Ce

3

λe
1λ

e
2 ds

� �� �
0


***** =

= µl12 ?n2 · ?∇λe
2

�
Ce

3

λe
1λ

e
1 ds = µl12 (l31?n2) · ?∇λe

2

1�
0

(λe
1)

2 dλe
3 =

= −
µl12
6Fe

?r31 · ?r31

(B.50)
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De
12 = µ

�
Ce

3

λe
1?n2 · ?N e

2 ds = µ

�
Ce

3

λe
1?n2 ·

�
l23

 
λe

2
?∇λe

3 − λe
3
?∇λe

2

&�
ds =

= µl23


$$$$$?n2 · ?∇λe

3

�
Ce

3

λe
1λ

e
2 ds

� �� �
0

−?n2 · ?∇λe
2

�
Ce

3

λe
1λ

e
3 ds


***** =

= −µl23 ?n2 · ?∇λe
2

�
Ce

3

λe
1λ

e
3 ds = −µl23 (l31?n2) · ?∇λe

2

1�
0

(1 − λe
3) λe

3 dλe
3 =

=
µl23
12Fe

?r31 · ?r31

(B.51)

De
13 = µ

�
Ce

3

λe
1?n2 · ?N e

3 ds = µ

�
Ce

3

λe
1?n1 ·

�
l31

 
λe

3
?∇λe

1 − λe
1
?∇λe

3

&�
ds =

= µl31


$?n2 · ?∇λe

1

�
Ce

3

λe
1λ

e
3 ds − ?n2 · ?∇λe

3

�
Ce

3

λe
1λ

e
1 ds


* =

= µl31


?n2 · ?∇λe

1

�
Ce

3

λe
1 (1 − λe

1) ds − ?n2 · ?∇λe
3

�
Ce

3

λe
1λ

e
1 ds


 =

= µl31


(l31?n2) · ?∇λe

1

1�
0

�
λe

1 − (λe
1)

2
�

dλe
1 − (l31?n2) · ?∇λe

3

1�
0

(λe
1)

2 dλe
1


 =

= −
µl31
12Fe

(?r31 · ?r23 − 2?r31 · ?r12)

(B.52)

De
2j = µ

�
Ce

3

λe
2 ?n2 · ?N e

j ds = 0, λe
2 = 0 on Edge 31 (B.53)

De
31 = −

µl12
12Fe

?r31 · ?r31 (B.54)

De
32 =

µl23
6Fe

?r31 · ?r31 (B.55)

De
33 = −

µl31
12Fe

(2?r31 · ?r23 − ?r31 · ?r12) . (B.56)
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Appendix C

Three-Dimensional Neumann

Boundary Term Assembling

C.1 The Neumann Boundary for the Rotor-Rotor-Operator

The Neumann boundary integral (5.29) becomes

�
AN1

?n ·

�
?Ni ×

"
1

γ
?∇× ?H

(�
dA =

-
j

cj

�
AN1

?n ·

�
?Ni ×

"
1

γ
?∇× ?Nj

(�
dA = [D]{c}. (C.1)

The assembly of the matrix [D] with entries

Dij =

�
AN1

?n ·

�
?Ni ×

"
1

γ
?∇× ?Nj

(�
dA (C.2)

is performed element by element, whereby only the elements lying on the Neumann
boundary are considered. The elements are tetrahedra and in each element ?Ni is repre-
sented by the vector edge functions (5.45) to (5.50).

The integral domain transformation for an arbitrary surface in the three-dimensional
space is the same as in Appendix A and is derived in a similar manner. The integral is
represented as a sum

lim
max(Ai)→0

-
i

f(?ri)Ai =

�
A

f(?r) dA. (C.3)

The surface A is subdivided into pieces Ai with areas Ai. ?ri is point inside Ai. The
transformation is given by

?r = ?r (x(ξ, η), y(ξ, η), z(ξ, η)) . (C.4)
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An area Ai is calculated as

Ai = |[?r(ξ + h, η) − ?r(ξ, η)] × [?r(ξ, η + k) − ?r(ξ, η)]| =

=
...�?rξ(ξ̃, η)h

�
× [?rη(ξ, η̃)k]

... → |[?rξ(ξ, η) × ?rη(ξ, η)] hk| ,
(C.5)

which leads again to (A.8) and (A.7).

Now the element matrix [D]e can be computed. As there are four outer triangular faces
on each tetrahedral element, there will be four different element matrices for each face
which lies on the Neumann boundary

De
ij =

�
Ae

k

?nk ·

�
?N e

i ×

"
1

γ
?∇× ?N e

j

(�
dA =

�
Ae

k

 
?nk × ?N e

i

&
·

"
1

γ
?∇× ?N e

j

(
dA =

=


$?nk ×

�
Ae

k

?N e
i dA


* ·

"
1

γ
?∇× ?N e

j

(
, k ∈ [1; 4]

(C.6)

and using (5.52)

De
ij =

1

3γ Ve


$?nk ×

�
Ae

k

?N e
i dA


* · (lj ?r7−j) , k ∈ [1; 4]. (C.7)

Ae
k is the face opposite to the node k. ?nk is a constant vector with the characteristic

length 1, perpendicular to Ae
k and points outwards. γ is assumed to be constant in each

element. Only the three ?N e
i functions for the edges in the Ae

k plane are not perpendicular
to Ae

k. The remaining three vector functions are perpendicular to Ae
k. Consequently

these vectors are parallel to ?nk and the corresponding vector product ?nk × ?N e
i becomes

zero.

For the element face Ae
1 the element matrix is given as follows

De
1j = De

2j = De
3j = 0 (C.8)

De
4j =

1

3γ Ve


$?n1 ×

�
Ae

1

?N e
4 dA


* · (lj ?r7−j) , k ∈ [1; 4]. (C.9)

The integral is computed using the integral domain transformation discussed above.

�
Ae

1

?N e
4 dA = 2A1

1�
0

1−λe

2�
0

l4

 
λe

2
?∇λe

3 − λe
3
?∇λe

2

&
dλe

3 dλe
2 =

l4
6

2A1

 
?∇λe

3 − ?∇λe
2

&
(C.10)
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?n1 ×

�
Ae

1

?N e
4 dA =

l4
6

(2A1 ?n1) ×
 

?∇λe
3 − ?∇λe

2

&
=

=
l4
6

(?r6 × ?r5) ×

"
?r3 × ?r5

6Ve
−

?r3 × ?r6

6Ve

(
=

=
l4
6

1

6Ve

�
�−?r5 [(?r6 × ?r5) · ?r3]� �� �

6Ve

+?r6 [(?r6 × ?r5) · ?r3]� �� �
6Ve

�
� =

=
l4
6

(?r6 − ?r5) .

(C.11)

Thus the final solution for the fourth edge (i = 4) is given by the expression

De
4j =

l4 lj
18γ Ve

(?r6 − ?r5) · ?r7−j . (C.12)

The same procedure is used for remaining edges (with index i):

De
5j =

l4 lj
18γ Ve

(?r4 − ?r6) · ?r7−j (C.13)

De
6j =

l4 lj
18γ Ve

(?r5 − ?r4) · ?r7−j . (C.14)

Analogously it is proceeded for the remaining faces.

For the face Ae
2:

De
1j = De

4j = De
5j = 0 (C.15)

De
2j = −

l2 lj
18γ Ve

(?r6 + ?r3) · ?r7−j (C.16)

De
3j =

l3 lj
18γ Ve

(?r2 − ?r6) · ?r7−j (C.17)

De
6j =

l6 lj
18γ Ve

(?r2 + ?r3) · ?r7−j . (C.18)

For the face Ae
3:

De
2j = De

4j = De
6j = 0 (C.19)

De
1j =

l1 lj
18γ Ve

(?r3 − ?r5) · ?r7−j (C.20)
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De
3j = −

l3 lj
18γ Ve

(?r1 + ?r5) · ?r7−j (C.21)

De
5j =

l5 lj
18γ Ve

(?r1 + ?r3) · ?r7−j . (C.22)

For the face Ae
4:

De
3j = De

5j = De
6j = 0 (C.23)

De
1j = −

l1 lj
18γ Ve

(?r2 + ?r4) · ?r7−j (C.24)

De
2j =

l2 lj
18γ Ve

(?r1 − ?r4) · ?r7−j (C.25)

De
4j =

l4 lj
18γ Ve

(?r1 + ?r2) · ?r7−j . (C.26)

C.2 Neumann Boundary for Gauß’s Law of Magnetism

The goal in this section is to assemble the Neumann boundary term (5.31). The assembly
could be made in one step for the vector edge functions ?N e

i and for the scalar functions
λe

i . However for the sake of clarity it is performed separately for the vector and for the
scalar functions.

C.2.1 For the Scalar Function

Considering only the scalar functions ψ the Neumann boundary term (5.31) is written

�
AN2

λi?n · (
˜
µ · ?∇ψ) dA =

-
j

cj

�
AN2

λi?n · (
˜
µ · ?∇λj) dA = [D]{c}. (C.27)

The matrix [D] can be constructed by the element matrix [D]e with entries

De
ij = µ

�
∂Ae

k

λe
i ?nk · ?∇λe

j dA, k ∈ [i; 4], i ∈ [1; 4], j ∈ [1; 4]. (C.28)

Ae
k is the element face lying on the Neumann boundary AN2 and ?nk is the corresponding

normal vector pointing outwards. µ is assumed as constant scalar in each element. Again
the element matrix is constructed for the four triangular faces (from Ae

1 to Ae
4) of the

tetrahedron.
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For Ae
1:

Since λe
1 is 0 on Ae

1 ⇒

De
1j = µ

�
∂Ae

1

λe
1 ?n1 · ?∇λe

j dA = 0. (C.29)

For the second row the following expression is obtained

De
2j = µ

�
∂Ae

1

λe
2 ?n1 · ?∇λe

j dA = µ?n1 · ?∇λe
j

�
∂Ae

1

λe
2 dA =

= µ (2A1?n1) · ?∇λe
j

1�
0

1−λe

2�
0

λe
2 dλe

3 dλe
2 =

µ

6
(?r5 × ?r4) · ?∇λe

j = −
µ

36Ve
f1j .

(C.30)

Analogously the entries of the next rows are calculated

De
2j = De

3j = De
4j = −

µ

36Ve
f1j . (C.31)

The non-zero entries do not depend on the row index but on the face and column index.
Consequently the non-zero rows are identical.

Similarly it is proceeded for the remaining element faces.

For Ae
2:

De
2j = 0, De

1j = De
3j = De

4j = −
µ

36Ve
f2j . (C.32)

For Ae
3:

De
3j = 0, De

1j = De
2j = De

4j = −
µ

36Ve
f3j . (C.33)

For Ae
4:

De
4j = 0, De

1j = De
2j = De

3j = −
µ

36Ve
f4j . (C.34)

C.2.2 For the Vector Function

For the vector functions ?H1 the Neumann boundary term (5.31) is given by

�
AN2

λi?n · (
˜
µ · ?H1) dA =

-
j

cj

�
AN2

λi ?n · (
˜
µ · ?Nj) dA = [D]{c}. (C.35)
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Assuming that µ is a constant scalar in each element the corresponding element matrix
is given by

De
ij = µ

�
Ae

k

λe
i ?nk · ?N e

j dA, k ∈ [1; 4], i ∈ [1; 4], j ∈ [1; 6]. (C.36)

For the face Ae
1 opposite to the node 1 (k = 1):

The element function λe
1 is 0 on the element face Ae

1. Thus the first row of the element
matrix is zero.

De
1j = µ

�
Ae

1

λe
1 ?n1 · ?N e

j dA = 0. (C.37)

The remaining entries can be calculated as follows

De
21 = µ

�
Ae

1

λe
2 ?n1 · ?N e

1 dA = µ

�
Ae

1

λe
2 ?n1 ·

�
l1

 
λe

1
?∇λe

2 − λe
2
?∇λe

1

&�
dA =

= µl1


?n1 · ?∇λe

2

�
Ae

1

λe
1λ

e
2 dA

� �� �
0

−?n1 · ?∇λe
1

�
Ae

1

(λe
2)

2 dA


 =

= −µl1 ?n1 · ?∇λe
1

�
Ae

1

(λe
2)

2 dA = −µl1 (2A1?n1) · ?∇λe
1

1�
0

1−λe

2�
0

(λe
2)

2 dλe
3 dλe

2 =

= −
µl1
12

(?r5 × ?r4) · ?∇λe
1 =

µl1
72Ve

f11

(C.38)

De
22 = µ

�
Ae

1

λe
2 ?n1 · ?N e

2 dA = µ

�
Ae

1

λe
2 ?n1 ·

�
l2

 
λe

1
?∇λe

3 − λe
3
?∇λe

1

&�
dA =

= µl2


$$$$$?n1 · ?∇λe

3

�
Ae

1

λe
1λ

e
2 dA

� �� �
0

−?n1 · ?∇λe
1

�
Ae

1
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