


Abstract

Organic semiconductors in general are a family of electronic materials that are based

on π-conjugated carbon atoms. In the last three decades electronic devices based on

this family of materials, such as field-effect transistors and light emitting diodes, have

attracted much attention as possible inexpensive and flexible alternatives to inorganic

devices. Although we witnessed considerable progress in the introduction of new com-

mercial applications that are based on these materials, the nature of charge transport in

these organic materials and devices has not been understood very well. The main goal

of this thesis is to theoretically investigate the charge transport properties of organic

semiconductor materials and devices.

Charge transport properties presented here are investigated in the framework of vari-

able range hopping theory. In a previously published paper by Vissenberg, a percolation

model has been developed in order to explain the temperature dependence of hopping

mobility in organic semiconductors. One of our main theoretical goals is to develop dif-

ferent models that can explain the dependence of the mobility in organic semiconductors

on electric field, temperature, carrier concentration, and doping and trap concentration.

A both temperature and electric field dependent mobility model is developed based on

a modified Miller-Abrahams rate equation. The carrier concentration dependent mo-

bility is formulated assuming a Gaussian density of states. A unified mobility model

is presented which can explain the temperature, electric field and carrier concentration

dependence. The doping and trap dependent mobility model is obtained by assuming a

superposition of two exponential density of states functions.

The charge injection process between metal and organic semiconductor is examined for

organic light-emitting diodes. For this goal we develop both a diffusion-controlled and a

master equation based injection model. These two models can explain the dependence

of the injection current on the temperature, electric field and barrier height. Good

agreement between calculation and experimental data is found.

We examine closely the space charge limited current (SCLC) and the effect of the Fermi-

Dirac statistics on the transport energy. It is found that the SCLC due to a Gaussian

density of states is similar to SCLC controlled by shallow traps in regular semiconductors.
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The Fermi-Dirac statistics plays an important role for transport energy, even at low

temperature.

Finally, analytical models applicable to organic thin film transistors and to unbipolar

organic light-emitting diodes are presented.
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Kurzfassung

Organische Halbleiter gehören zu einer speziellen Klasse von Kunststoffen, die sich

durch ein konjugiertes Bindungssystem auszeichnen. In den vergangenen drei Jahrzehn-

ten wurde der Entwicklung von Kunststoff-basierten, mikroelektronischen Bauelementen

stets wachsende Aufmerksamkeit gewidmet. Insbesondere Anwendungen wie organische

Dünnfilmtransistoren und organische Leuchtdioden versprechen vielfältige und vor allem

kostengünstige Alternativen zu Silizium-basierten Bauelementen. Trotz zahlreicher wis-

senschaftlicher Bemühungen und Fortschritten in der Einführung neuer kommerzieller

Anwendungen wirft der Ladungstransport in polymeren Halbleiterbauelementen sowohl

in der Praxis als auch in theoretischer Hinsicht immer noch zahlreiche offene Fragen auf.

Das Ziel dieser Arbeit ist die theoretische Untersuchung des Ladungsträger-Transports

in organischen Halbleitern und Halbleiterbauelementen.

Das in der Arbeit verwendete theoretische Modell des variable range hopping basiert

auf Vissenbergs Perkolationsmodell, welches zur Erklärung der Temperaturabhängigkeit

der Beweglichkeit in organischen Halbleitern entwickelt wurde. Es werden verschiedene

Modelle entwickelt, die den funktionalen Abhängigkeiten der Beweglichkeit vom elek-

trischen Feld, der Temperatur, sowie der Konzentration von Ladungsträgern, Dopanten

und Haftstellen Rechnung tragen. Anhand des klassischen Ratenausdruckes von Miller

und Abrahams wurde ein Modell für die Beweglichkeit entwickelt, welches simultan den

Einfluss der Temperatur und der elektrischen Feldsträrke berücksichtigt.

Der Zusammenhang zwischen Beweglichkeit und Trägerkonzentration wurde im Rahmen

des Gaussischen Unordnungsmodells untersucht und mündete in ein Modell, welches den

Einfluss der Temperatur, der Trägerkonzentration und des elektrischen Feldes auf die

Beweglichkeit in einer Formel vereint. Der Einfluss von Haftstellen und Dopanten auf die

elektrische Leitfähigkeit eines organischen Halbleiters konnte mittels einer Überlagerung

zweier exponentieller Zustandsdichten modelliert werden.

Die Injektion von Ladungsträgern mittels Metallkontakten wurde für den Fall orga-

nischer Leuchtdioden untersucht. Zu diesem Zweck wurden sowohl ein diffusionsbe-

grenztes Modell als auch ein Modell basierend auf einer Mastergleichung hergeleitet.

Diese Modelle beschreiben die Abhängigkeit des Injektionsstromes von der Temperatur,
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dem elektrischen Feld und der Barrierenhöhe an der Grenzfläche zwischen Halbleiter und

Kontakt. Die Übereinstimmung zwischen Theorie und Experiment kann als durchaus

zufriedenstellend bezeichnet werden.

Des weiteren wurden raumladungsbegrenzte Ströme sowie der Einfluss der Fermi-Dirac

Verteilung auf die Transportenergie einer eingehenden Betrachtung unterzogen. Wie

sich dabei herausstellte, verhalten sich raumladungsbegrenzte elektrische Ströme in nor-

malverteilten Zustandsdichten ähnlich wie Ströme in klassischen Halbleitern in Gegen-

wart seichter Haftstellen. Der Einfluss der Fermi-Dirac Verteilung auf die Transport-

energie ist vor allem bei niedriger Temperatur sehr stark ausgeprägt.

Schließlich werden in dieser Arbeit Kompaktmodelle für Dünnfilmtransistoren und orga-

nische Leuchtdioden präsentiert.
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Chapter 1

Introduction

1.1 Organic Semiconductors: History and Applications

For the past fifty years, inorganic semiconductors such as silicon and gallium arsenide sil-

icon dioxide insulators, and metals such as aluminum and copper have been the backbone

of the semiconductor industry. However, in 1977 the first highly conducting polymer,

chemically doped polyacetylene [1] was discovered, which demonstrated that polymers

could be used as electrically active materials as well. This discovery resulted in a huge

research effort on conjugated organic materials. In the earlier time, the performance

and stability of organic semiconductors were very poor. However, with drastic improve-

ments in synthesis and processing of new classes of molecular materials such as conju-

gated polythiophenes in the past two decades [2], the prospects of commercially using

organic semiconductors in applications such as organic light-emitting diodes (OLEDs),

field-effect transistors (OFETs) and solar cells are now greater than ever [3, 4, 5]. In fact,

in 2002 Philips introduced the Sensotec Philishave [6] as the first product in the market

featuring a display panel based on OLED technology, and following that, Kodak has

introduced [6] the Kodak EasyShare LS633 digital zoom camera with an award-winning

OLED display technology. Sony produced 27-inch protype OLED TV with a contrast

ratio of greater than 106 and NTSC color reproduction ≥ 100 (Fig 1.1). Simplicity in

manufacturing and lower costs of organic devices have been the primary reasons driving

these devices towards commercialization.

1.2 Organic Semiconductor Physics

In inorganic semiconductor crystals such as silicon or germanium, the strong coupling

between the constituting atoms and the long-range order lead to the delocalization of the
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Figure 1.1: Two examples of use of OLEDs in commercial products. The image on the

left shows a new Philips shave introduced to the market in 2002. The image on the right

shows the OLED TV produced by Sony recently. Images were taken from [6].

electronic states and the formation of allowed valence and conduction bands, separated

by a forbidden gap. By thermal activation or photo-excitation, free carriers are generated

in the conduction band, leaving behind positively charged holes in the valence band.

The transport of these free carriers is described in quantum mechanical terms by Bloch

functions, wave vector-space and dispersion relations.

However, because of structural or chemical defects in organic semiconductors, the mo-

tion of carriers is typically described by hopping transport, which is a phonon-assisted

tunneling mechanism from site to site (Fig 1.2). Many hopping models are based on the

Miller-Abrahams equation [7]. In this model hopping from a localized state i to a state

j takes place at frequency ν0, corrected for a tunneling probability and the probability

to absorb a phonon for hops upwards in energy:

ωij = ν0


 exp

�
−2αRij − Ej−Ei

kBT

�
: Ej − Ei ≥ 0

exp (−2αRij) : Ej − Ei ≤ 0
(1.1)

Here α is the inverse localization length, Rij the distance between the localized states,

Ei the energy at the state i, and ν0 the attempt-to-escape frequency.

Since the hopping probability depends on both the spatial and energetic difference

between the hopping sites, it is natural to describe the hopping processes in a four-

dimensional hopping space, which is spanned by three spacial and one energy coordinate.

In organic solids, interactions are mainly covalent, but intermolecular interactions are

due to much weaker van der Waals and London forces. These organic semiconductors

typically have narrow energy bands, the highest occupied molecular orbital (HOMO)

and the lowest unoccupied molecular orbital (LUMO), which can be easily disrupted
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Figure 1.2: Charge transport mechanism in solids. The left image describes the band

transport. In a perfect crystal, depicted as a straight line, free carriers are delocal-

ized. There are always lattice vibrations that disrupt the crystal symmetry. Carriers

are scattered at these phonons, which limit the carriers mobility. The image on the

right describes hopping transport. If a carrier is localized due to defects, disorder or

selflocalization, the lattice vibrations are essential for a carrier to move from one site to

another. The figure is from [8].

by disorder. Thus, even in molecule crystals, the concepts of allowed energy band is

of limited validity and excitations and interactions localized on individual molecules

play a predominant role. The charge transport sites have a Gaussian distribution of

energies and are localized [8]. The shape of the density of states (DOS) is suggested to

be Gaussian based on the observed Gaussian shape of the optical spectra [9].

Transport energy [10] is a useful concept for the analysis of hopping transport in organic

semiconductors. Importance of the transport energy stems from the fact that this is the

energy that maximizes the probability for a carrier to hop upward in energy. It does not

depended on the carrier initial energy, thus serving as an analog to the mobility edge.

For polycrystalline organic semiconductor layers, the temperature dependent transport

data is often interpreted in terms of a multiple trapping and release model [11, 12]. In

this model the organic semiconductor film consists of crystallites which are separated

from each other by amorphous grain boundaries. In the crystallites the carriers are

delocalized, while the carriers in the grain boundaries become trapped in localized states.

The transport description in terms of trapped carriers that can be thermally activated

to transport level, is very similar to hopping transport as discussed above.
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1.3 Theoretical Concepts

The incoherent dynamics of carriers as well as excitons can be described by a master

equation,

dfi (t)

dt
= fi (t) (1 − fj (t)) ωij − fj (t) (1 − fi (t)) ωji + λifi (t) . (1.2)

with fi denoting the occupation probability of state i and ωij the electron or hole transi-

tion rate of the hopping process between the occupied state i to empty state j. Defining

µi as the chemical potential at the position of state i and Ei as the energy of state i,

the occupation probability is given by the Fermi-Dirac distribution function

fi =
1

1 + exp
�

Ei−µi

kBT

� . (1.3)

Assuming no correlations between the occupation probability of different localized states,

the steady-state current between these two sites is given by

Iij = q [fi (t) (1 − fj (t)) ωij − fj (t) (1 − fi (t)) ωji] . (1.4)

Substituting the Miller-Abrahams rate (1.1) in (1.4) the current becomes

Iij =
qν0 exp

�
−2αRij − |Ei−Ej |

2kBT

�
sinh

�
µi−µj

2kBT



cosh

�
Ei−µi

2kBT



cosh

�
Ej−µj

2kBT


 . (1.5)

In the case of low electric field, resulting in a small voltage drop over a single hopping

distance (Δµ = µj − µi ≪ kBT ), the following conductance is obtained

σij =
Iij

Δµ
∝ exp

	
−2α | Rij | −| Ei − µ | + | Ej − µ | + | Ei − Ej |

2kBT

�
. (1.6)

Here µi ≈ µj ≈ µ. This expression was introduced in 1960 by Miller and Abrahams

[7] and is often referred as the Miller-Abrahams conductance. Equation (1.6) has an

important implication. Even if the energies are moderately distributed, the exponential

dependence of σij on these energies makes them enormously broadly distributed. This

can be used to reduce the computations of the effective properties of the network, since

the broadness of the distribution of σij implies that there are many small conductances

that can be removed from the network. This resulting network is called the reduced

network [13].

Miller and Abrahams [7] were the first to calculate the hopping conductivity G of semi-

conductors using reduced networks. They assumed that the statistical distribution of

the resistances depends only on Rij and not on the site energies. This was justified

because the experimental data for some semiconductors indicated that the impurity
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conduction exhibits a well-defined activation energy. But Mott [16] pointed out that the

exponential dependence of the resistances on the site energies can not be ignored in most

cases. When a carrier close to the Fermi energy hops away over a distance R with an

energy ΔE, it has 4
3πR3ρΔE sites to choose from, where ρ is the site density function.

In general, the carrier will jump to a site for which ΔE is as small as possible. The

constraint to find a site within a range (R,ΔE) is given by 4
3πR3ρΔE ≈ 1. Substituting

this relation into (1.6) yields

G ∝ exp

	
−2αR − 1

kBT (4/3) πR3ρ

�
. (1.7)

The optimum conductance is obtained by maximizing G with respect to the hopping

distance R as

G ∝ exp

�
−

�
T1

T

�1/4
�

, (1.8)

with kBT1 ∝ γ3/ρ.

1.3.1 Gaussian Disorder Model (GDM)

Much theoretical work has been done by investigating the mobilities of organic semicon-

ductors within the framework of GDM [9]. Non-crystalline organic solids, such as molec-

ularly doped crystals, molecular glasses, and conjugated polymers, are characterized by

small mean free paths for the carriers, as a result of the high degree of disorder present

in the organic system. Therefore, the elementary transport step is the charge transfer

between adjacent elements, which can either be molecules participating in transport

or segments of a polymer separated by topological defects. These charge transporting

elements are identified as sites whose energy are subjected to a Gaussian distribution

g (E) =
Nt√
2πσ

exp

�
− E2

2σ2

�
,

where E is the energy measured relative to the center of the density of states and σ is the

standard deviation of the Gaussian distribution. Within this distribution, all the states

are localized. The choice of such distribution was based on the Gaussian profile of the

excitonic absorption band, as well as on the recognition that the polarization energy is

determined by a large number of internal coordinates, which vary randomly by a small

amount, so the central limit theorem of statistics holds.

The Gaussian disorder model has been treated by the Monte Carlo simulation technique

based on the Miller Abraham equation [9]. In this simulation charge transport is de-

scribed as an incoherent random walk. The carriers start their motion from randomly

chosen sites at one of the boundaries of the system sample. Their trajectories are speci-

fied from the constraint that the probability for a carrier to jump between two transport
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sites is

pij =
ωij%
i�=j ωij

.

With this technique, TOF measurements can be simulated [9], in which mobility is

derived from the mean arrival time of the carrier at the end of the sample and from

their mean displacement. The predictions made concern the temperature and electric

field dependence of the mobility.

In the Gaussian disorder model, the strength of electronic coupling among sites is split

into separate contributions from the relevant sites, each obtained from a Gaussian proba-

bility density. However, the choice for the off-diagonal disorder of a Gaussian distribution

is not theoretically sustained unlike in the case of energy disorder, and a more realistic

way of representing geometric disorder has been pursued. One of such attempt is de-

scribed in [14], in which an alternative approach comprising positional and orientation

disorder is introduced via fluctuations in the bonds adjoining the various transport sites

rather than site fluctuations. This model gets rid of the unnecessary corrections between

hops and results in overestimating the contribution of the log hops.

In particular, Gartstein and Conwell’s [14] Monte Carlo simulations of hopping with the

elementary jump rate described by 1.1, but in which

ωij = exp (ςij) exp (−2αRij) ,

where ςij is a uniformly distributed random variable. In this way, the different bonds of

a given site with its neighbors are uncorrelated.

Another approach for the description of positional disorder was presented by Hartenstein

[15], and was also based on Monte Carlo simulations of transport in a dilute lattice. This

treatment employs the GDM, but without the need for defining a distribution function for

the electronic coupling between different sites. In this case the hopping sites having the

nearest neighbors were grouped in clusters whose size depends on the random intercluster

distances, but ignores any contribution from the random orientation of the transporting

elements. Nevertheless, the model is adequate for low dopant concentrations for which

there are large fluctuations in the intersite distances.

1.3.2 Percolation Theory

Ambegaokar and coworkers argued that an accurate estimate of G is the critical per-

colation conductance Gc [17], which is the largest value of the conductance such that

the subnet of the network with Gij ≥ Gc still contains a conducting sample-spanning

cluster. They divided the network into three parts. First, a set of isolated clusters of

high conductivity where each cluster consists of a group of sites connected together by

conductances Gij ≫ Gc; Second, a small number of resistors with Gij of order Gc, which
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connect together a subset of high conductance clusters to form the sample-spanning

cluster, called the critical subnetwork, essentially the same as the static limit of the

reduced network discussed above; and third, the remaining resistors with Gij ≪ Gc.

The resistors in the second part dominate the overall conductance of the network. The

critical conductance Gc is calculated as follows.

The percolation subnetwork consists of conductances with Gij ≥ Gc. Using (1.6), this

condition can be written as

Rij

Rmax
+

| Ei − µ | + | Ej − µ | + | Ei − Ej |
2Emax

≤ 1, (1.9)

with

Rmax =
1

2α
ln

�
GckBT

eν0

�
, (1.10)

Emax = kBT ln

�
GckBT

eν0

�
. (1.11)

Rmax is the maximum distance between any two sites between which a hop can occur,

and Emax is the maximum energy that any initial or final state can have. Thus the

density of states that can be part of the percolating subnetwork is given by

Ns = 2ρEmax. (1.12)

Since the sites in the subnetwork are linked only to sites within a range Rmax, this

criterion has the form

NsR
3
max = νc, (1.13)

with νc being a dimensionless constant. A combination of (1.9) to (1.11) yields Mott’s

law (1.8), with kBT1 = 4νcγ
3/ρ.

1.3.3 Transport Energy

According to the Miller Abraham equation (1.1) we can roughly calculate the nearest-

neighbor distance for an upward hop from an initial site with energy Ei to a finial site

with energy Ef ≥ Ei from the equations below [10]

4π

3
R3 (Ef )

� Ef

−∞
g (E) dE ≈ 1. (1.14)

Here g (E) is the DOS function. The hopping distance can be calculated as

R (Ef ) =

	
4π

3

� Ef

−∞
g (E) dE

�−1/3

. (1.15)

So the corresponding hopping rate is

ν = ν0 exp

�
−2αR (Ef ) − Ef − Ei

kBT

�
. (1.16)
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Maximization of (1.16) over energy Ef gives the equation

g (Ef )

	� Ef

∞
g (E) dE

�−4/3

=
1

γkBT

�
9π

2

�1/3

. (1.17)

The finial energy Ef that maximizes the hopping probability does not depend on the

initial energy Ei. This particular energy is called transport energy Etr [10].

Arkhipov extended this theory to the effective transport energy [18]. In this theory, the

Miller Abrahams equation is rewritten as

ν = ν0 exp (−µ (Rij , Ei, Ej)) = ν0 exp

	
−2αRij − θ (Ej − Ei)

kBT

�
, (1.18)

with the hopping parameter µ and the unity step function θ. The average number n (Ei)

of target sites for a starting site with energy Ei, whose hopping parameters are not larger

than µ can be calculated as

n (Ei, µ) = 4π

� µ/2α

0
R2

ijdRij

� Ei+kBT (µ−2γRij )

−∞
g (Et) dEt. (1.19)

Neglecting the downward jumps and defining

Etr = Ei + kBTµ (1.20)

transform (1.19) into

n (Ei, µ) =
π

6
(αkBT )−3

� Etr

Ei

g (Et) (Etr − Et)
3 dEt. (1.21)

According to variable range hopping theory [19], a hop is possible if there is at least one

such hopping neighbor, i.e. n = 1. This leads to the following equation� Etr

Ei

g (Et) (Etr − Et)
3 dEt =

6

π
(αkBT )3 . (1.22)

If the DOS distribution decreases with energy faster than E−4 then the integral on

the left-hand side of (1.22) depends weakly upon the lower bound of integration for

sufficiently deep starting sites, and (1.22) is reduced to

� Etr

−∞
g (Et) (Etr − Et)

3 dEt =
6

π
(αkBT )3 , (1.23)

where Etr is the effective transport energy.
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1.3.4 Multiple Trapping Theory

To investigate charge transport and charge buildup in SiO2 films, an analysis of hole

transport has been presented which is predicated on a model involving stochastic hop-

ping transport. This description, based on the work of Scher and Montroll [20], accounts

for many of the features of hole conduction in SiO2 and has been termed the continuous-

time random walk (CTRW) model. A wide range of experimental observation can be

understood on this basis [20, 21, 22]. However, there has been some reticence to ac-

cept the CTRW model completely because of observations that the apparent activation

energy for the charge collection process depends on the fraction of charge collected

[23]. This observation is at odds with the CTRW model as it has been presented,

since that model predicts universality, i.e., charge transport curves obtained at different

temperature should superimpose with a simple shift in the time axis [24]. Although

charge collection curves curves obtained at different temperature do superimpose ap-

proximately, there is some deviation, and this deviation is in the direction predicted by

the multiple-trapping model.

The multiple-trapping model for unipolar conduction is defined by the following equa-

tions [12]
∂ρ (x, t)

∂t
= g (x, t) −▽ · f (x, t) , (1.24)

where

ρ (x, t) = p (x, t) +
$

i

pi (x, t) (1.25)

and
∂pi (x, t)

∂t
= p (x, t) ωi − pi (x, t) γi (1.26)

Here g (x, t) is the local photogeneration rate, f is the flux of mobile charge carriers, the

total carrier concentration is ρ (x, t), p (x, t) is concentration of mobile carriers, pi (x, t)

is the carrier concentration temporarily immobilized in the ith trap, ωi is the capture

rate by the ith trap and γi is the release rate.

Later multiple trapping theory was extended for disordered organic semiconductors as:

p = pc +

�
ρ (E) dE. (1.27)

Here p is the total hole concentration, pc is the hole concentration in extended states

and ρ (E) is the energy distribution of localized (immobile) holes. Since carrier trapping

does not change the total carrier concentration p, the continuity equation can be written

as
∂p

∂t
+ µcF

∂pc

∂x
− Dc

∂2pc

∂x2
= 0, (1.28)
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with the mobility µc and the diffusion coefficient Dc. This equation assumes two sim-

plifications: no carrier recombination and constant electric field (no space charge). Sub-

stituting the trapping rate
pc

τ0

g (E)

Nt
(1.29)

and release rate

ν0 exp

�
− E

kBT

�
ρ (E) (1.30)

gives the following equation

∂ρ (E)

∂t
=

1

τ0Nt
g (E) − ν0 exp

�
− E

kBT

�
ρ (E) (1.31)

In equilibrium the energy distribution of localized carriers is established, and the function

ρ (E) does not depend upon time

∂ρ (E)

∂t
= 0. (1.32)

1.4 Organic Light-Emitting Diodes (OLED)

A major breakthrough in the field of organic semiconductors was the discovery of light

emission from an electrically active polymer [25]. The ease of processing, combined by

pure colors make it an ideal candidate for lighting applications [26, 27]. Especially the

display industry is highly interested in organic semiconductors, as these have advantages

over liquid crystal displays such as high switching speed, wide viewing angle, pure color,

and also over cathode ray tubes such as low energy consumption, flat screen, and light

weight. These properties stimulated the research on organic semiconductors strongly.

Basically, a OLED consists of a thin layer of a polymer sandwiched between two elec-

trodes on top of glass substrate (see Fig 1.3). On top of this bottom contact, a thin

organic semiconductor layer is deposited. Layer thicknesses of this active layer are typi-

cally only of the order of 100nm, because of the low carrier mobility. Under forward bias

electrons and holes are injected into the organic semiconductor from the cathode and

the anode, respectively. Driven by the applied electric field, the carriers move through

the organic semiconductors in opposite direction until recombination takes place. The

device operation of an OLED is thus determined by four processes: charge injection,

transport, recombination and phonon emission.

The transport and injection properties of holes can be investigated by choosing a special

contact material. In these hole-only devices, the workfunction of both electrodes are

very close to the HOMOs of the organic semiconductor, preventing electron injection

from the cathod.
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Figure 1.3: Left: device layout of a typical organic light-emitting diode (OLED). It

consists of a glass substrate with an indium-tin-oxide (ITO) coating functioning as anode,

a spin-coated layer of an organic semiconductor as the active layer, and an evaporated

metal cathode. Right: working principle of an OLED. Four important processes are

shown: (1) Charge injection (2) Transport (3) Exciton formation (4) Photon emission.

The last two steps form the recombination process.

1.5 Thin Film Organic Field-Effect Transistors (OTFT)

A field-effect transistor is a three-terminal device configured like a parallel plate capaci-

tor, where one conduction electrode, the gate electrode, is electrically insulated from the

organic semiconductor layer (see Fig 1.4) [28, 29]. Two electrodes, the source and the

drain, are connected to the organic semiconductor layer. By controlling the voltage on

the gate, a charge can be induced. These charges are injected from the source electrode

and cross the conducting channel towards the drain by applying voltage between the two

electrodes. Silicon has been the most widely used semiconductor material in field-effect

transistors, because these devices exhibit fast switching speeds and are therefore suit-

able for use in modern processors. However, there are many applications for field-effect

devices where fast switching speed is not a requirement, such as, for example, large-area

coverage, mechanically flexible and low cost integrated circuits. With the successful

synthesis of the first organic transistors in 1986 [30], the prospect of replacing costly

and labor-intensive inorganic devices with cheaper and more flexible organic electronic

materials entered a new era.

Despite considerable improvement in the fabrication and characterization of thin-film

organic field-effect transistors, the physics of charge injection and transport in these

devices is not well understood.
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emission and absorption spectra do not overlap.

1.8 Organic Memory

Electrical bistability has been demonstrated in organic materials. Bistability means

that the material shows two different states of conductivity at the same applied voltage,

typically a highly conductive on-state and poorly conductive off-state. These states

are stable, and a transition between them can occur when a defined criterion such as

a high voltage bias is met. This property is ideal for rewritable memory applications.

Organic memory devices are generally realized by interposing thin layers containing

organic materials between two electrodes. Such devices have the potential advantages of

flexibility, easy processing, low cost, and large area fabrication by printing techniques.

1.9 Scope and Outline of this Thesis

The chapters of this thesis are related in the following manner. In Chapter 2, we study

the electric field, temperature and carrier concentration dependence of the mobility.

In Chapter 3, the effect of Fermi-Dirac statistics on transport energy is discussed. In

Chapter 4, a doping and trap concentration dependent conductivity model is presented.

In Chapter 5 and 6 we investigate the charge injection model and space charge limited

current in organic light-emitting diodes. Device models are presented in Chapter 7.
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Chapter 2

Mobility Models for Organic

Semiconductors

2.1 Introduction

The carrier mobility of organic semiconductors has improved tremendously over the past

few years. A field-effect mobility as high as 0.1cm2/Vs has recently been measured in

region-regular poly(thiophenes) [32, 33, 34]. Because the structure of the polymer de-

pends on the processing conditions, it is not uncommon to find in the literature widely

differing mobility values obtained for the same polymer. In particular, the dielectric

surface energy prior to the deposition of the polymer [35, 36, 37, 38], the solvent evap-

oration rate [33], the molecular weight of the polymer [39] and thermal post-processing

of the film [40] all influence the carrier mobility.

There is no general consensus on the mechanism of charge transport in these amor-

phous organic materials. A complete model of the electrical properties should include

a description of the energy distribution of carriers and how the conduction varies as

a function of carrier energy. Disorder-induced localized states are also important for

the transport, and the essential problem is the relation between temperature, electric

field, carrier concentration and the transport properties. Generally, charge transport

in disordered materials is described either as hopping between localized states, or as

trapping and release from localized states into higher energy mobile states. The degree

of structural disorder may change the mechanism even within the same class of polymer.

Because the electronic structure of polymer films is not known exactly, a simplified model

has to be assumed. The model was proposed by Bassler [9] assuming that the energy

distribution is Gaussian due to the random disorder in the material. The standard

deviation of Gaussian is around 0.1eV and increases with increasing disorder of the
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material. To simplify the calculations, an electronic structure comprising an exponential

tail in the bandgap is often used as well.

In this chapter, we present three different models to describe the carrier concentration

dependence of the mobility, the temperature and electric field dependence, and a unified

mobility model that can explain the temperature, electric field and carrier concentration

characteristics together.

2.2 Carrier Concentration Dependence of Mobility

Recently it has been realized that the carrier concentration plays an important role for

the mobility. Experiments show that for a hole-only diode and a FET fabricated from the

same conjugated polymer, the mobility could differ up to three orders of the magnitude

[41]. This difference can only be explained by taking into account the dependence of

mobility on the carrier concentration. Rubel [42] analyzed this problem with the concept

of a transport energy Et, but there is no direct proof for the existence of such transport

energy in organic systems. In this work we will focus on extending the percolation

model based on VRH theory by Vissenberg [43] to explain the discrepancy of mobilities

measured in OLEDs and OFETs.

In this section, an analytical mobility model with a Gaussian DOS function has been

obtained. It can explain the relation between the mobility and carrier concentration.

Results are in good agreement with experimental data.

2.2.1 Theory

To calculate the mobility of an organic semiconductor, one can use percolation theory,

regarding such system as a random resistor network (network of Miller and Abrahams)

[7, 44]. The current flows through the bonds connecting the sites in the network. The

conductance between the states m and m′ can be described as

Z−1
mm′ =

Z−1
0 exp (−2α | Rm − Rm′ |) exp

�
−| Em − EF | + | Em′ − EF | + | Em′ − Em |

2kBT

�
,

where Z−1
0 is a prefactor, α−1 is the Bohr radius of the localized wave functions, T is

the temperature, Rm and Em denote the position and energy of site m. In theory the

value of Zmm′ is determined by the threshold or critical conductance Zc, at which the

first infinite cluster will form, given by the relation

σ = σ0Z
−1
c . (2.1)
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Here σ0 is a prefactor. To describe the field-effect mobility in organic transistors, Vis-

senberg assumed an exponential density of localized states [43].

g (E) =
Nt

kBT0
exp

�
E

kBT0

�
(E ≤ 0) (2.2)

Nt is the number of states per unit volume and T0 specifies the width of the exponential

distribution. Connecting (2.1) and (2.2), the conductivity can be described as [43]

σ (δ, T ) = σ0

�
πδNt (T0/T )3

(2α)3 BcΓ (1 − T0/T ) Γ (1 + T0/T )

�T0/T

. (2.3)

Here Bc is the critical number of bonds per site and δ is the fraction of occupied states,

defined as

δ ∼= exp

�
ǫF

kBT0

�
Γ (1 − T/T0) Γ (1 + T/T0) ,

Γ is the gamma function. Then an expression for the mobility as a function of the carrier

concentration n can be obtained.

µ (n, T ) =
σ0

q

�
(T0/T )4 sin (πT/T0)

(2α)3 Bc

�T0/T

nT0/T−1. (2.4)

However, this expression can not account for the carrier concentration independent mo-

bility when the carrier concentration is very low (LED regime). To overcome this prob-

lem, we derive another mobility model assuming a Gaussian DOS [9] and VRH theory.

In this model, the DOS function is given as

g (E) =
Nt√

πkBTσ
exp

�
−

�
E

kBTσ

�2
�

. (2.5)

Here E is the energy measured relative to the center of the DOS and Tσ indicates the

width of the DOS. The value of the Fermi energy EF can be determined by the equation

for the carrier concentration n.

n =

� ∞

−∞

g(E)dE

1 + exp ((E − EF ) /kBT )
. (2.6)

At low concentration, the exponential function is large compared to one (the nondegen-

erate case) [45], and we obtain the Fermi energy as

EF = −kBT 2
σ

4T
+ kBT ln δ. (2.7)

According to percolation theory [17], at the onset of percolation, the critical number Bc

can be written as

Bc =
Nb

Ns
. (2.8)
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Bc = 2.8 for a three-dimensional amorphous system, Nb and Ns are, respectively, the

density of bonds and density of sites in a percolation system, which can be calculated

as [43, 46]

Nb =

�
dRijdEidEjg (Ei) g (Ej) θ (sc − sij)

and

Ns =

�
dEg (E) θ (sckBT− | E − EF |) .

Here Rij denotes the distance vector between sites i and j, sc is the exponent of the

conductance given by the relation σ = σ0e
−sc [13] and θ is step function.

Substituting (2.5) and (2.7) into (2.8), we obtain a new percolation criterion for an

organic system as

Bc ≈
2Nt

�√
2 + 1

�√
π

(2αT/Tσ)3

�
EF + kBTsc

kBTσ

�2

exp

�
−

	
EF + kBTsc

kBTσ

�2
�

.

This equation has to be solved for sc and an expression for mobility can be obtained.

µ =
σ0

qNt
exp (η), (2.9)

where

η = −Tσ

T

"##!−W

�
− Bc (2αT/Tσ)3

2πNt

�
1 +

√
2
�
�
− T 2

σ

4T 2

W is the Lambert function [47]. Equation (2.9) is obtained assuming

• that the site positions are random,

• the energy barrier for the critical hop is large,

• and the charge carrier concentration is very low.

2.2.2 Results and Discussion

So far, much attention has been devoted to explain the temperature dependence of the

mobility [48, 49, 50]. As shown in Fig 2.1, the model (2.9) gives a non-Arrhenius-type

temperature dependence of the form µ ∝ exp
�
− (Cσ/kBT )2

�
, which has also been

supported by numerical simulations [51] and analytical calculations [53]. The model

(2.9) shows good agreement for a value C ≈ 0.71. This value is close to C ≈ 0.69 given

in [52] and 0.64 in [53].
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Figure 2.1: Comparison between the analytical model (2.9) and empirical model µ ≈
exp

�
− (Cσ/kBT )2

�
for different temperature.

In Fig 2.2, the mobility is plotted as a function of (Tσ/T )1/3. When plotted in this way,

there exists the regime with a linear relation between µ and T−1/3. This indicates that

the variable-range hopping effect has to be taken into account [54, 55].

To obtain (2.7), a Boltzmann distribution function has been used. The degenerate limit

of organic semiconductors has been studied in [56, 57]. In Fig 2.3 (a) we show the Fermi

energy for Boltzmann and Fermi-Dirac distributions assuming some typical values of

the parameter Tσ/T as 1.5, 3.5 and 6.0 [48]. Fig 2.3 (b) is a comparison especially

for the higher carrier occupation regime. The analytical result (2.7) agrees well with

the numerically calculated result for decreasing carrier occupation and increasing Tσ/T .

Therefore, for the LED regime with low charge carrier concentration, (2.7) is a good

approximation of the solution of (2.6).

The mobility as a function of the carrier concentration is presented in Fig 2.4, where Tσ/T

is in the range 1.5−9.0, corresponding to some typical values for organic semiconductors.

The mobility stays constant until a certain threshold value of the carrier occupation.

Above this threshold, the mobility can increase about four orders of magnitude at Tσ/T=

9. These effects have also been observed experimentally [41, 58].

However, (2.9) is valid only in the LED regime with very low carrier concentration. As it

is difficult to get an analytical expression for the mobility at higher carrier concentration,
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occupation bigger than 10−10.
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we use (2.4) as the mobility model for the higher carrier concentration. The combined

model can explain the experimental data in [41, 58], as shown in Fig 2.5.

2.3 Temperature and Electric Field Dependence of the

Mobility

VRH theory has been applied successfully to describe the temperature dependence of

conductivity in organic materials [17, 43, 59]. However, it is more difficult to obtain the

experimentally observed electric field dependence. In this section, we extend the VRH

theory to get a temperature and electric field dependent conductivity model.

For a disordered organic semiconductor we assumed that localized states are randomly

distributed in both energy and space coordinates, and that they form a discrete array of

sites. The presented theoretical calculations are applied to explain recent experiment.

A good agreement between theory and experiment is observed.

2.3.1 Theory

When an electric field F exists, the transition rate of a carrier hopping from site i to

site j is described as [60]

ωij = ν0


 exp

�
−

�
2α + qF

kBT cos θ
�

Rij − Ej−Ei

kBT



: Ej − Ei ≥ qFRij cos θ

exp (−2αRij) : Ej − Ei ≤ qFRij cos θ
(2.10)

where θ is the angle between E and Rij. Assuming no correlation between the occupation

probabilities of different localized states, the current between the two sites is given by

Iij = ν0 exp

	
−2αRij − | Ej − Ei + qF cos θRij |

2kBT

�
sinh

�
µj − µi

2kBT

�
(2.11)

×
	
cosh

�
Ei − µi

2kBT

�
cosh

�
Ej − µj

2kBT

��−1

,

where µi and µj are the chemical potentials of sites i and j, respectively [64].

2.3.2 Low Electric Field Regime

To determine the conductivity of an organic system, one can use percolation theory,

regarding the system as a random resistor network [61, 62]. In the case of low electric

field, the resulting voltage drop over a single hopping distance (Δµ ≪ kBT ) is small.
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The conductance between sites i and j can be simplified from (2.12) to the form

σij = σ0 exp

�
−2αRij +

| Ei − EF | + | Ej − EF | + | Ej − Ei + qF cos θRij |
2kBT

�
.

(2.12)

Using the same derivation discussed in the previous section, we obtain as a result the

percolation criterion for an organic system as

Bc ≈ Nt
πkBT

2qF

�
T0

T

�3

exp

�
EF + sckBT

kBT0

�
ζ (F, T ) , (2.13)

with

ζ =

�
2α − qF

kBT

�−2

−
�

2α +
qF

kBT

�−2

This yields the expression for the conductivity as

σ = σ0

�
πkBTδNt

2qFBc

�
T0

T

�3 1

Γ(1 − T/T0)Γ(1 + T/T0)
ζ (F, T )

�T0/T

. (2.14)

Equation (2.14) is obtained assuming

• that the site positions are random,

• the energy barrier for the critical hop is large compared to kBT ,

• and the charge carrier concentration is very low.

To describe the mobility, we use the mobility definition given by

[63]

µ = σ(δ, T )
T0

T

1

qδNt
. (2.15)

Results and Discussion

Using expression (2.14), the conductivity has been calculated as a function of T at an

electric field of 100V/cm, as shown in Fig 2.6. One can see the linear dependence of

conductivity on T−1/4 (the dashed line is a guide to the eye). We also use the presented

model to calculate the temperature and electric field dependences of the conductivity

and mobility of ZnPc (Zinc phthalocyanine). In Fig 2.7, the results are obtained from

(2.14) using σ0 = 12.5 × 105S/m, T0 = 485K and α−1 = 0.3Å. The experimental data

is from [63].
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Figure 2.6: Plot of log σ versus T−1/4 at the electric field 100V/cm.
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Figure 2.7: Conductivity and mobility versus temperature for ZnPc as obtained from

the model (2.14) and (2.15) in comparison with experimental data (symbols).
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Figure 2.9: The same data as in Fig 2.8 plotted versus T−2.
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Fig 2.8 and Fig 2.9 show the mobility plotted semilogarithmically versus T−1 and T−2,

respectively. Symbols are TOF (time of flight) experimental data for ZnPc from [65]

and the solid lines are the results of the analytical model. The dashed line is to guide

the eye. In both presentations a good fit is observed. But when plotted as log µ versus

T−2, the slope is reduced when temperature is lower than the transition temperature

Tc ≈ 210K. This transition has also been observed by Monte-Carlo simulation [48].
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Figure 2.10: Plot of log σ versus F 1/2 at T = 204 K.

The field dependence of the conductivity is presented in Fig 2.10. The conductivity is

approximately constant for very low fields, and increases as we increase the field. This is

the result of the fact that the field can decrease the activation energy for forward jumps,

enabling the motion of carriers. In Fig 2.11 we also compare the mobility (2.15) to the

Monte-Carlo result reported in [49].

2.3.3 High Electric Field Regime

With increasing electric field, the voltage drop over a single hopping distance increases.

If this voltage drop is of the order of kBT or larger, the approximate expression (2.14)

for conductivity does not longer hold. The current between the two sites depends on the

chemical potential of the sites, which in turn depends on the strength and direction of
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Figure 2.11: Electric field dependence of the mobility at 290K. Symbols represent Monte

Carlo results [49], the line represents our work with parameter T0=852K.

the electric field. Therefore, a percolation model is usually adopted, assuming site-to-site

hopping currents instead of conductance [64].

However, in this case, a conductivity model for the high electric field regime can only

be obtained after some approximations. According to percolation theory, the critical

percolation cluster of sites would comprise a current carrying backbone with at least

one site-to-site current equal to the threshold value. Since a steady-state situation

would prescribe a constant current throughout the whole current carrying backbone, the

charge will redistribute itself along the path, thus changing the chemical potentials of

sites. Hapert omitted this rearrangement by optimization of the current with tunneling

[64]. Potentially, the redistribution of charge would change the tunneling current, but

this effect seems negligible compared to large spread Iij. As a result, the conductivity

between two sites is given by

σij ≈ exp (−sij) , (2.16)

with

sij = 2αRij + ln

�
qF

2kBT
Rij

�
. (2.17)

Combining (2.2), (2.8) and (2.17), the following expression for the percolation criterion
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Figure 2.13: Temperature dependence of the conductivity at different electric fields.

2.4 Unified Mobility Model

Most existing models are only valid for either very low [43, 68, 69] or very high electric

fields [60, 73]. Another common simplification stems from the transport energy concept

[68, 69, 70], where exothermic, i.e. non-activated jumps, and jumps against the field are

neglected.

The following is based on Apsley’s work [19]. We will derive a formula for both the

conductivity’s temperature as well as its field dependence in the case of a Gaussian

density of states mirroring the molecular disorder. We assume that (i) the localized

states are distributed randomly in both space and energy, (ii) the states are occupied

according to the Fermi-Dirac statistics, (iii) both hops upwards and hops downwards are

regarded, (iv) the state energies are uncorrelated, and (v) the electric field may assume

any value. Finally, the mobility’s concentration dependence is discussed.

2.4.1 Theory

The amorphous structure of organic semiconductors is mirrored in localized states, which

are distributed randomly in space and energy. The carrier transport between them is

described as hopping, i.e. as a series of incoherent, thermally activated tunneling events.
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We can define the hopping range R as

Pij = exp(R). (2.21)

where Pij is the Miller Abrahams rate. In the presence of an electric field F , the actual

energy differences will be modified from Ej − Ei to (Ej − Ei) − qERij cos θ, where θ is

the angle enclosed by the jump and the field direction. Using the reduced coordinates

Rij
′ = 2Rijα and ǫ = E/kBT , the hopping range may be re-written to

R =


 (1 + β cos θ)Rij

′ + ǫj − ǫi : ǫj > ǫi,

R ′
ij : ǫj < ǫi.

(2.22)

where β = Fqα/(2kBT ). Since the hopping probability depends on both the spacial and

the energetic difference between the hopping sites, it is natural to describe the hopping

processes in a four-dimensional hopping space, which is spanned by three spacial and

one energy coordinate. The hopping range R, as given by (2.22), defines a metric on

this space.

In various disordered systems, a Gaussian density of states has been used to describe

the hopping transport in band tails.

g (ǫ) =
Nt√
2πa

exp

�
−

�
ǫ − ǫ0√

2a

�2
�

, (2.23)

where E0 is the center of Gaussian function and a = σ0/kT .

Let F (E, ξ) be the normalized Fermi-Dirac distribution function. Then the carrier

concentration can be written as

n (ξ) =

� ∞

−∞
g (ǫ) F (ǫ, ξ) dǫ. (2.24)

with ξ denoting the normalized chemical potential. The conductivity can be written as

σ (T, β) = −eν0

F

� ∞

−∞
dE ′

ig
�
E ′

i

�
F

�
E ′

i

�
Xf exp (−Rnn) . (2.25)

Here Xf is the forward hopping distance in the direction of the electric field and, Rnn

stands for the nearest neighbor hopping range in the hopping space. To calculate the

conductivity, we need to calculate Rnn. First, the number of unoccupied states N within

a radius R in the hopping space is calculated [19].

N (T, β,R, ǫi) =

� π

0

� R

0

� Kf

−∞
g (ǫj) [1 − F (ǫj, ξ)]

1

8α3
2πR

′2 sin θdǫjdR ′dθ

Here Kf = R + ǫi − R ′ (1 + β cos θ). The factor kTα3/8 arises from the reduced coor-

dinate system.
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According to Mott, Rnn will be the value of the radius in the hopping space for which

only one available vacant site is enclosed [72]. In other words, Rnn can be obtained by

solving the equation

N (R, ǫi, T, ǫ) |R=Rnn= 1. (2.26)

Similarly, the expression for Xf can be calculated as [19]

Xf =
I1 + I2

I3 + I4
, (2.27)

where

I1 =

� π

0
sin θ cos θdθ

� ǫj+Rnn

ǫj−Rnnβ cos θ
g (ǫi) [1 − F (ǫi, ξ)]

	
Rnn − ǫi + ǫj

1 + β cos θ

�3

dǫi

I2 =

� π

0
sin θ cos θdθ

� ǫj−Rnnβ cos θ

−∞
g (ǫi)R3

nn [1 − F (ǫi, ξ)] dǫi

I3 =

� π

0
sin θ dθ

� ǫj+Rnn

ǫj−Rnnβ cos θ
g (ǫi) [1 − F (ǫi, ξ)]

	
Rnn − ǫi + ǫj

1 + β cos θ

�2

dǫi

I4 =

� π

0
sin θdθ

� ǫj−Rnnβ cos θ

−∞
g (ǫi) [1 − F (ǫi, ξ)] R

2
nndǫi

Rnn depends only weakly on ǫj [19]. Therefore, for ǫj = 0, we can obtain the value for

Rnn by solving (2.26) numerically. Then the mobility for electrons at energy ǫi amounts

to

µ (ǫi, T, β) =
ν0

F
Xf exp (−Rnn) . (2.28)

Finally, the total conductivity for the organic semiconductor can be calculated numeri-

cally according to (2.25). The mobility can be determined from

µ =
σ

nq
. (2.29)

2.4.2 Results and Discussion

We investigated the mobility’s temperature dependence in a three-dimensional hopping

lattice. The crucial system parameters were set to the following values: α−1 = 0.5Å,

E0 = 0, Nt = 1 × 1021cm−3, F = 1 × 103V/cm and ξ = 30kT . Fig 2.14 depicts the

mobility as a function of the lattice temperature σ/kT . A linear dependence is observed

between σ/kT = 3 and 8. Fig 2.15 displays the mobility as a function of (σ/kT )2. The

range with linear dependence of mobility on (σ/kT )2 is not as broad as the one for the

dependence of mobility on σ/kT . This can be used to test the validity of Arrhenius law

µ ∝ exp (−EA/kBT ) and the empirical model µ ∝ exp
�
− (2σ/3)2

�
, where EA is the

activation energy.
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Figure 2.14: The calculated mobility (symbols) as a function of σ/kT .
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Figure 2.15: The calculated mobility (symbols) as a function of (σ/kT )2.
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These results are in accordance with the measurements reorted in [79]. As the presented

model expresses, only in the regime (σ/kT )2 ≤ 50 an approximately linear relation can

be observed.

The mobility versus electric field characteristics predicted by the presented model is

shown in Fig 2.16. The parameters are α−1 = 1Å, E0 = 20kT , Nt = 1 × 1021cm−3 and

σ/kT = 4. β1/2 ≤ 0.3, where β = Feα/2kBT = F
F0

, F0 ≈ 1 × 108V/m, the mobility

remains constant. At higher fields, it increases with the field. Therefore, the simple

empirical relation between mobility and electric field of the form µ ∝ F 1/2 is not valid

for all electric fields.
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Figure 2.16: The conductivity as a function of the scaled electric field, β = F/F0.

In addition to the temperature and electric field dependence, mobility also depends

on the carrier concentration. Experiments show that for a hole-only diode and a field

effect transistor fabricated from the same π-conjugated polymer, the mobility can differ

up to three orders of magnitude [79]. Empirically, the mobility’s dependence on the

concentration N of localized states is written in the form

µ ∝ exp
�
−C

�
Nα−3

�−p



(2.30)

with constant C and p = 1/3 [59, 69, 74, 75].

With the parameter α−1 = 0.178Å, we compare the presented mobility model and this

empirical formula, as shown in Fig 2.17. The agreement is quite good when we use
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Figure 2.17: Comparison between our mobility model and analytical expression (2.30)

with p = 1/3 and C = 0.7.

parameters C = 0.75 and p = 1/3. We notice that the value of C is different from C = 2

given in [69] and C = 3 given in [76]. Baranovskii [69] has stated that the parameters p

and C are temperature dependent. In Fig 2.18, we also show the values of parameters

p and C that provide the best fit for the solution of our model with the empirical

expression (2.29). The input parameters are β = 1 × 10−5, Nt = 1 × 1021cm−3, E0 = 0

and α−1 = 1Å. As illustrated in Fig 2.18, the parameter value of p is less than 1/3 for

temperatures low enough. The value of C is decreasing with increasing temperature, a

result which coincides with [10]. Here p is not constant, since the variable range hopping

(VRH) transport mechanism is based on the interplay between the spacial and energy

factors in the exponent of transition probability, as given by (2.22). However, assuming

nearest neighbor-hopping (NNH) regime, which does not consider the effect of energy

dependent terms in (2.22) [69], leads to the values p = 1/3.

Next, we discuss the effect of the electric field on the parameters values p and C. The

results are shown in Fig 2.19 and Fig 2.20. Input parameters are α−1 = 1Å, E0 = 20kT,

Nt = 1 × 1021cm−3 and ξ = 30. From these figures we can see that the values p and C

are nearly constant in the low electric field regime (β ≤ 1 × 10−2).

We have shown that, as expected in the variable range hopping picture, (2.25) with

p = 1/3 is only approximately valid for restricted ranges of temperature and electric field
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Figure 2.18: Temperature dependences of parameters C and p extracted from the ana-

lytical model.

strength. So we consider the effect of the material parameter α on the values of p and C

in Fig 2.21. The input parameters are β = 1× 10−5, σ/kT = 2 and Nt = 1× 1021cm−3.

Remarkably, both parameter values p and C are not constant in the given range of α.

With increasing α, the values of p will decrease and the ones of C will increase.
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Chapter 3

The Effect of Fermi-Dirac

Statistics on the Transport

Energy

3.1 Introduction

Organic semiconductors can be considered as hopping networks and are characterized

by strong disorder in both energy and space [8, 9]. This makes it very difficult to solve

the problem analytically or simulate the carrier transport and recombination in such

a system by starting from a one-particle master equation. Consequently, an analytical

approach to this problem is normally based on a specific set of assumptions and simplifi-

cations [20, 68]. The concept of transport energy is a very useful tool for the analysis of

charge hopping transport in organic semiconductors. The importance of the transport

energy stems from the fact that it maximizes the probability for a carrier to hop upward.

It does not depend on the initial energy of the carrier and serves as an analog of the

mobility edge [10].

The transport energy concept is based on the Miller-Abrahams expression [7, 71]. This

equation can be written as

ωif = ν0 exp

�
−2αRit − Et − Ei+ | Et − Ei |

2kBT

�
(3.1)

For a particular density of states g (E), the transport energy can be obtained in the

following way [10]. For an electron with energy Ei, the median rate of a upward hop to

a neighboring localized state with energy Ef > Ei is

ω↑ = ν0 exp

�
−2αR (Et) − Et − Ei

kBT

�
. (3.2)
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where

R (Et) =

	
4π

3

� Et

−∞
g (E) dE

�−1/3

The transport energy can be calculated by maximizing the rate (3.2) with respect to the

final energy Et
∂ω↑ (Ei, Et)

∂Et
= 0. (3.3)

After some calculation we obtain

g (Et)

	� Et

∞
g (E) dE

�−4/3

=
1

αkBT

�
9π

2

�1/3

. (3.4)

Here we can see that the transport energy Et does not depend on the initial energy Ei.

The transport energy has been extended to an exponential DOS in [10] and later to a

Gaussian DOS in [77].

3.2 Theory

In the original transport energy model [10], the downward hopping transport and the

effect of degenerate statistics were neglected. An electron with energy ǫi, can only hop

to a free localized state. In variable range hopping (VRH) theory, the numbers of empty

sites enclosed by the contour R can be determined by the following equation [19].

N
�
T, β,R, ǫ′i

�
=

� π

0

� R

0

� R+ǫ′i−R′(1+β cos θ)

−∞
g

�
ǫ′j

� �
1 − F

�
ǫ′j

�� 1

8α3
2πR

′2 sin θdǫ′jdR′dθ

Here F is the Fermi-Dirac distribution function, and 1 − F is the probability that the

finial site is empty. The Gaussian DOS is rewritten as

g (ǫ) =
Nt√
2π · a exp

�
−

�
ǫ − ǫ0√

2 · a

�2
�

, (3.5)

where ǫ is the normalized energy ǫ = E/kT , ǫ0 is the Gaussian center, Nt is the effective

DOS and a is defined as a = σ0/kT , where σ0 is the standard deviation of the Gaussian

distribution. If we let f (ǫ, ξ) be the normalized Fermi-Dirac distribution function, then

the carrier concentration can be written as

n (ξ) =

� ∞

−∞
g (ǫ) f (ǫ, ξ) dǫ (3.6)

Considering the distribution function, R (ǫt) will be calculated as

R (Et) =

	
4π

3

� ǫt

−∞
g (E) (1 − f (ǫ, ξ)) dǫ

�−1/3

. (3.7)
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Substituting (3.7) into (3.3), we obtain

2α

3

�
4π

3

�−1/3 �
Nt√
2πa

�−1/3

= η exp

�
1

2

�ǫtr

a

�2
�

(1 + exp (− (ǫ + ξ))) , (3.8)

where

η =


� ǫt

−∞

exp
�
−1

2

�
ǫ
a

�2
�

dǫ

1 + exp (− (ǫ + ξ))




4/3

. (3.9)

ǫt is the new transport energy and can be calculated by solving (3.9) numerically.

3.3 Results and Discussion

In Fig 3.1 we compare our work with Baranovskii’s model for the temperature character-

istics of the transport energy. The input parameters are Nt = 1× 1022cm−3, E0 = 0eV,

ξ = 30kT , α−1 = 1Å. The two models agree very well when the temperature is high

enough, but differ in the low temperature range.

Calculation of transport energy versus the normalized chemical potential ξ is given for

different DOS standard deviation in Fig 3.2 with parameters
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Figure 3.1: Comparison between the model (3.8) and Baranovskii’s model for the tem-

perature characteristics of Etr.
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Figure 3.2: The transport energy versus the chemical potential for different standard

deviations a of the DOS.

E0 = 0eV, Nt = 1 × 1022cm−3, α−1 = 2Å and σ0 = 0.05eV.

As expected, for a very low chemical potential level (very low carrier concentration),

the two models agree very well. However, when the chemical potential goes up and

thus the concentration increases, the transport energy considering Fermi statistics will

increase as well, while in the Baranovskii model the transport energy is independent on

the chemical potential. Baranovskii’s model of the transport energy can only be used

when the carrier concentration is low enough.

The dependence of the transport energy on the relative carrier concentration (n/Nt) can

be seen in Fig 3.3. The transport energy increases at a relative carrier concentration of

about 1 × 10−2.

For the calculation of the hopping mobility [78], the relaxation time τrel is important,

which can be calculated as

τrel = ν−1
0 exp

�
2αR (Etr) +

(Et − E∞)

kBT

�
. (3.10)

E∞ is the thermal equilibrium energy of hopping carriers, defined as

E∞ = − σ2

kBT
.
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Figure 3.3: The transport energy versus the relative carrier concentration for different

standard deviations a of the DOS.

We plot the relation between τrel and the carrier concentration in Fig 3.4 with parameters

Nt = 1×1022cm−3 and α−1 = 1Å. We can see that the relaxation time is constant when

the chemical potential is low enough, but it increases for ξ ≥ −5 for our case.

We apply the calculated transport energy to the problem of charge mobility in organic

semiconductors. Using the Einstein relation we obtain [78]

µ ∝
�

q

kBT

�
R (Etr)

2 �t�, (3.11)

the average hopping time is determined as

�t� =

�� Etr

−∞ PdE
�

� Etr

−∞ g (E) dE
(3.12)

with

P = ν0 exp

�
2αR (Etr) +

(Etr − E)

kBT

�
g (E) .

Fig 3.5 compares the temperature dependence of the carrier mobility as obtained from

our model and Baranovskii’s model. The input parameters are Nt = 1 × 1022cm−3,
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Figure 3.4: Dependence of the relaxation time on the chemical potential for different

standard deviations a of the DOS .

α−1 = 1Å and ξ = 30 kBT. The graph log µ versus T−1 and log µ versus T−2 are plotted

in Fig 3.5 (a) and (b). Our model can describe a deviation from straight. In fact, at

higher temperature, the mobility is controlled by jumps of carriers that occupy intrinsic

sites, so that the occurrence of the traps does not change the linear relation between

log µ versus T−2. At lower temperature, the traps in organic semiconductors play a

more important role for charge transport [68].

In Fig 3.6 we plot the relation between the mobility and the carrier concentration. The

input parameters are Nt = 1 × 1022 cm−3, γ = 1 × 1015s−1 and α = 1Å.

It is illustrated that the mobility remains constant when the carrier concentration is very

low. However, it will increase when the carrier concentration is above a critical value.

This result coincides with experimental data given in [79] and recent work given in [80].
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Figure 3.5: Temperature dependence of the carrier mobility in organic semiconductors.

In (a) the data are plotted versus T−1, in (b) the same data are plotted versus T−2.
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Chapter 4

Doping and Trapping Model for

Organic Semiconductors

4.1 Introduction

Despite decades of research progress, some rather ubiquitous features of the charge

transport in organic semiconductors are still far from being well understood. One such

example is the relation between conductivity and doping [81, 82]. The doping of organic

semiconductors is just beginning to be quantitatively studied [83, 84, 85, 86, 87]. Early

studies have shown that the doping of organic semiconductors (partially oxidizing or

reducing them) can increase their conductivity by many orders of magnitude. There

are also early studies of the effect of adding molecular dopant to thin films of organic

semiconductors in an attempt to improve their photovoltaic behavior [88, 89]. Although

the doping process of organic semiconductors can largely be depicted by a standard

model used for crystalline inorganic semiconductors [90], a general doping model for

organic semiconductors still remains a challenge. Because of the weak intermolecular

forces, doping of organic semiconductors is quite difficult compared to the doping of

common semiconductors. In common semiconductors, the strong covalent or covalent-

ionic bonds ease doping [91]. Bending or breaking the high energy interatomic bonds at

crystal defects and grain boundaries, or incorporating impurities of a valence different

than the valence of the host, often produce electronic states near enough to the band

edge to generate free carriers. For these reasons, it is difficult to produce truly intrinsic

common semiconductors. On the other hand, organic semiconductors are van der Waals

solids. Bending or breaking these low energy intermolecular bonds, or adding different

molecular (PPEEB or F4-TCNQ) into the lattice, only inefficiently produce free carriers.

At the same time, the mobile charge in organic semiconductors can be trapped by some
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states. These charge traps are known as deep traps, and they are not well understood.

In this chapter, we present an analytical model for hopping transport in doped, dis-

ordered organic semiconductors based on the VRH and the percolation theory. This

model can successfully explain the superliner increase of conductivity with doping ob-

served in several experimental data sets. It can also be used to describe the trapping

characteristics of organic semiconductors.

4.2 Theory

For a disordered organic semiconductor system, we assume that localized states are

randomly distributed in both the energy and the coordinate space, and that they form

a discrete array of sites. Conduction proceeds via hopping between these sites. In the

case of low electric field, the conductivity between site i and site j can be calculated as

[17, 44]

σij ≈ γ exp

�
−2αRij − | Ei − EF | + | Ej − EF | + | Ei − Ej |

2kBT

�
(4.1)

where Ei and Ej are the energies at the sites i and j, respectively, EF is the Fermi-

energy, Rij is the distance between sites i and j, and α−1 is the Bohr radius of the

localized wave function. The first term 2αRij is a tunneling term, and the second one

is a thermal activation term (Boltzman term).

For organic semiconductors, the manifolds of both the lowest unoccupied molecular

orbitals (LUMO) and the highest occupied molecular orbitals (HOMO) are characterized

by random positional and energetic disorder. Being embedded into a random medium,

similarly, dopant atoms and molecules are inevitably subjected to the positional and

energetic disorder, too. Since the HOMO level in most organic semiconductors is deep

and the gap separating LUMO and HOMO states is wide, energies of donor and acceptor

molecules are normally well below LUMO and above HOMO. So we assume a double

exponential density of states

g (E) =
Nt

kBT0
exp

�
E

kBT0

�
+

Nd

kBT1
exp

�
E + Ed

kBT1

�
(E ≤ 0) , (4.2)

where Nt and Nd are the concentrations of the intrinsic and the dopant states, respec-

tively, T0 and T1 are parameters indicating the widths of the intrinsic and the dopant

distributions, respectively, and Ed is the Coulomb trap energy [92]. Vissenberg and

Matters [43] pointed out that they do not expect the results to be qualitatively different

for a different choice of g (E), as long as g (E) increases strongly with E. Therefore, we

assume that transport takes place in the tail of the exponential distribution.
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The equilibrium distribution of carriers ρ (E) is determined by the Fermi-Dirac distri-

bution f (E) as follows

ρ (ǫ) = g (E) f (E) =
g (E)

1 + exp [(E − EF ) /kBT ]
.

The Fermi-energy of this system is fixed by the equation for the carrier concentration n,

n =

�
dǫg (E)

1 + exp
�

E−EF

kBT

� = nt + nd (4.3)

where

nt = Nt exp

�
ǫF

KBT0

�
Γ (1 − T/T0) Γ (1 + T/T0)

nd = Nd exp

�
ǫF − Ed

KBT1

�
Γ (1 − T/T1) Γ (1 + T/T1)

Here, Γ is the gamma function. According to the classical percolation theory [17],

the current will flow through the bonds connecting the sites in a random Miller and

Abrahams network [9]. The conductivity of this system is determined when the first

infinite cluster occurs. At the onset of percolation, the critical number Bc can be written

as

Bc =
Nb

Ns
, (4.4)

where Bc = 2.8 for a three-dimensional amorphous system, Nb and Ns are, respectively,

the density of bonds and the density of sites in this percolation system, which can be

calculated by [43, 93, 94].

Nb =

�
dRijdEidEjg (Ei) g (Ej) θ (sc − sij) , (4.5)

Ns =

�
dEg (E) θ (sckBT− | E − EF |) . (4.6)

Here Rij denotes the distance vector between sites i and j, θ is the unit step function,

and sc is the exponent of the conductance given by the relation [19]

σ = σ0 exp (−sc) . (4.7)

Substituting (4.2), (4.5) and (4.6) into (4.4), we obtain the expression,

Bc =
κ + p

Nt exp (η) + Nd exp (γ)
, (4.8)

where

κ = πN2
t ψ3 exp (2η) + πN2

d ξ3 exp (2γ) ,
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p =
π

4
NtNd exp (η + γ)

�
ψ−1 + ξ−1

�−3
,

η =
EF + kBTsc

kBT0
, γ =

EF − Ed + kBTsc

kBT1
,

ψ =
T0

4αT
, ξ =

T1

4αT
.

Equation (4.8) has been obtained under the following conditions:

• the site positions are random,

• the energy barrier for the critical hop is large compared with kBT ,

• and the carrier concentration is very low.

The exponent sc is obtained by a numerical solution of (4.8) and the conductivity can

be calculated using (4.7).

4.3 Doping Characteristics

Fig 4.1 illustrates the temperature dependence of the carrier conductivity for different

doping concentrations. Parameters are α−1 = 0.37Å, Ed = 0.5eV, T0 = 800K and

T1 = 400K. An Arrhenius-like temperature dependence

log σ ∝ −EA/kBT

can be observed clearly in Fig 4.1. In Fig 4.2, we plot log σ versus T−2, which is

observed to deviate slightly from a straight line (dashed in Fig 4.2). This is because

at higher temperatures almost all the carriers occupy the intrinsic states such that the

dopants do not change the trap-free hopping relation log σ ∝ T−2 [95]. The doping

process is quite efficient for ZnPc with dopant F4-TCNQ [63]. In Fig 4.3, we compare

the measured conductivity at room temperature and the theoretical model (4.7). The

agreement is quite satisfactory. The fit parameters are the same as those used in Fig

4.1, and have been chosen according to [63]. From Fig 4.1 and Fig 4.3 we can see that

the conductivity increases considerably with the dopant concentration, especially in the

lower temperature regime.

The superlinear dependence of conductivity on the doping concentration has been in-

vestigated extensively by several groups [81, 91, 96, 97], where the empirical formula

σ ∝ Nγ
d
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Figure 4.1: Temperature dependence of the conductivity in a disordered hopping system

at different doping concentrations.
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Figure 4.2: Temperature dependence of the conductivity in an organic semiconductor

plotted as log σ versus T−2. The dashed line is to guide the eye.
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perature. The lines represent the analytical model, experiments (symbols) are from
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Figure 4.4: Conductivity as a function of the dopant concentration with temperature as

a parameter.
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Figure 4.5: Conductivity of PPEEB films versus the dopant concentration. The line

represents the analytical model. Experiments (symbols) are from [139].

is used to describe this dependence. Using our model, such superlinear increase of the

conductivity upon doping can be predicted successfully. We show this in Fig 4.4, where

the parameters are the same as in Fig 4.1. Our model gives γ = 4.9 for T = 250K,

and γ = 3.9 for T = 200K. Note that these choices are consistent with those in [81],

where the γ is chosen in the range [3, 5]. In Fig 4.5, we compare the predictions of our

model with the experimental data of doped PPEEB [91]. The parameters are α−1 = 6Å,

Ed = 0.6eV, T0 = 1000K and T1 = 500K. The predictions fit the experimental data very

well.

In Fig 4.6 we plot the relation between the conductivity and the doping ratio, defined

as

Nd

Nt + Nd
,

for different temperatures with parameters T0 = 1000K, T1 = 500K, Ed = 0.5eV and

σ0 = 1×107S/cm. We can see that the conductivity increases with both temperature and

doping ratio. More specifically, there is a transition in the increase of the conductivity of

an organic semiconductor upon doping, which is manifested by a change in the slope of

the curve as shown in Fig 4.7. The conductivity increases linearly for low doping levels,

and superlinerly for high doping levels. This transition has been interpreted in [92] in

terms of the broadening of the transport manifold due to the enhanced disorder from
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the dopant. Assuming a simple Arrhenius law
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Figure 4.6: Conductivity as a function of the doping ratio with temperature as a pa-

rameter.

σ ∝ exp

�−EA

kBT

�
,

we can obtain the relation between activation energy EA and doping ratio, as shown

in Fig 4.8. EA decreases with the doping ratio, indicating that less and less energy

will be required for a carrier activated jump to neighboring sites when the doping ratio

increases. Similar to Fig 4.7, we can also observe a transition between the two doping

regimes visible as a change in the slope.
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Figure 4.7: Conductivity at T=200K as a function of the doping ratio. The dashed line

is to guide the eye.
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4.4 Trapping Characteristics

Fig 4.9 and 4.10 illustrate the temperature dependence of the carrier conductivity for

different trap concentrations. The parameters are Nt = 1022 cm−3, Ed = −0.67eV,

T0 = 800K, T1 = 400K, α−1 = 2Å and σ0 = 1 × 104 S/cm. Despite the effect of the

traps, we can see an almost perfect Arrhenius-type temperature dependence in Fig 4.9,

with the slope affected by the trap concentration. Increasing the latter, the activation

energy decreases. In Fig 4.10, log σ versus T−2 is plotted . The deviation from a

straight line occurs at higher temperature, where nearly all carriers occupy the intrinsic

states, and the filled extrinsic trap states do not change the trap-free hopping relation

log σ ∝ T−2 [98]. However, at lower temperature, the carrier distribution will be pinned

near the peak of trap DOS [68].

In Fig 4.11 we compare the analytical model with experimental data reported in [99].

Parameters are the relative trap concentration ct = Nd/Nt = 1 × 10−2, T0 = 1200K,

T1 = 400K, Ed = −0.15eV, α−1 = 1.6Å and σ0 = 4.2784 × 108 S/m. The data are for

TTA with doping DAT.

The relation between conductivity and T1 is shown in Fig 4.12. Parameters are Nt =

1×22 cm−3, Nd = 1×19 cm−3, T0 = 1200 K, T = 150 K, Ed = −0.5 eV, α−1 = 3Åand
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Figure 4.9: Conductivity of an organic semiconductor versus T−1 for different trap

concentrations.
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Figure 4.10: Conductivity of an organic semiconductor versus T−2 for different trap

concentrations.

σ0 = 100 S/m. For the exponential DOS function of the traps, the parameter T1 is a

characteristicstic temperature, where kBT1 represents the activation energy [100] and

defines the width of the distribution [101]. Fig 4.12 confirms that the conductivity

decreases with T1 almost linearly.

The relation between conductivity and trap concentration is shown in Fig 4.13. The

parameters are Nt = 1022 cm−3, α−1 = 1.6Å, T0 = 1000K, T1 = 500K, Ed = −0.2 eV,

the temperature is T = 400K and σ0 = 1 × 104 S/m.

At a critical trap concentration the conductivity has a minimum. This has been verified

by experiments [102] and Monte Carlo simulation [103]. The minimum is due to the

onset of inter-trap transfer that alleviates thermal detrapping of carriers, which is a

necessary step for charge transport [103]. We can also see that a small trap concentration

has virtually no effect on the conductivity. At higher trap concentration, however, the

activation energy for the conductivity decreases. The traps themselves can serve as an

effective hopping transport band, so the effect of traps on the charge conductivity is

qualitatively similar to that caused by a high carrier concentration. It is interesting

that such transition has also been observed in thermally stimulated luminescence (TSL)

measurements [104].

The relation between the conductivity and the trap energy Et is shown in Fig 4.14.
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Figure 4.11: Temperature dependence of the zero-field mobility for TTA doped with

DAT. Symbols represent experimental data from [99].

Parameters are T0 = 600K, T1 = 300K, Nt = 1 × 1022 cm−3, Nd = 1 × 1019 cm−3,

α−1 = 2.5Å, T = 200K and σ0 = 1 × 104 S/m. From Fig 4.14 we can conclude that

the conductivity increases approximately exponentially for | Ed | below a certain critical

value and saturates for larger | Ed |.
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Figure 4.13: The dependence of the conductivity on the trap concentration.

58



0.1 0.2 0.3 0.4 0.5
10

−8

10
−7

10
−6

10
−5

10
−4

−E
d
 ( eV )

C
on

du
ct

iv
ity

 ( 
S

/c
m

 )

Figure 4.14: The dependence of the conductivity on the Coulombic trap energy.
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Chapter 5

Charge Injection Models for

Organic Light-emitting Diodes

5.1 Introduction

Over the past fifteen years, there has been a surge of interest in the development and ap-

plication of organic semiconductors, such as organic light-emitting diodes (OLED) and

organic field effect transistors [25, 105]. The processes of charge injection and transport

play an extremely important role for OLED. Metal electrodes inject electrons and holes

into opposite sides of the emissive organic layer(s), and this injection process, in most

cases, governs the overall efficiency of the device. However, on the theoretical side there

is still a lack of satisfactory description of the physical process underlying the charge in-

jection in organic light-emitting diodes. One difficulty in extending our knowledge from

crystalline to amorphous organic semiconductors arises because charge transport occurs

no longer by free propagation in extended states, but rather by hopping in a manifold of

localized states. This is reflected in the fact that there is little theoretical work that gives

the electrical current at the interface in terms of experimentally obtainable parameters.

Another difficulty arises from the fact that the nature of the interface in terms of com-

position and structure is not always understood. The sample preparation conditions, for

example, have been shown to have a dramatic influence on charge injection.

The barrier height that controls hole or electron injection plays an important role in

determining a measured current to be injection limited or transport limited, such as

trapped charge limited transport [106, 107] or space-charge-limited (SCL) transport

with a field and temperature-dependent mobility [108]. The SCL transport needs the

injection barrier to be Ohmic, i.e. it must be able to supply more carriers per unit time

than the sample can transport [109], which requires the injection barrier to be small
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enough. The bulk-limited model predicts a dependence of the current density J on the

thickness d following J ∝ 1/dx (x ≤ 1) at a constant field, where x = 1 in the absence of

deep trap (Child’s law). In the presence of an exponential distribution of traps, x = 5

[110].

The present work is concerned with injection-limited conduction at high electric field.

The text book models to describe injection into a semiconductor are the Fowler-Nordheim

(FN) model for tunneling injection and the Richardson-Schottky (RS) model for thermionic

emission [111]. The FN model ignores image charge effect and invokes tunneling of elec-

trons from a metal through a triangular barrier into unbound continuum states. It

predicts a current independent of temperature.

J (F ) = BF 2 exp

�
−4 (2meff )1/2 Δ3/2

3h̄qF

�
.

Here Δ is the barrier height in the absence of both the external field and the image effect,

F is the external field and meff is the effective mass of the carriers in the semiconductor.

The RS model is based on the assumption that an electron from the metal can be injected

once it has acquired a thermal energy sufficient to cross the potential maximum that

results from the superposition of the external and the image charge potential. The J (F )

characteristic is predicted as

J (F ) = CT 2 exp


−

�
Δ −

�
q3F

4πǫrǫ0

�1/2
�

kBT


 ,

where ǫr is the relative dielectric constant . These two models, however, are insufficient

to handle disordered organic materials, where the density of states is a Gaussian dis-

tribution, with localized carriers and discrete hopping within a distribution of energy

states [9]. Arkhipov presented an analytical model based on hopping theory [112] and

Wolf performed detailed Monte Carlo simulations of charge injection from a metal to an

organic semiconductor layer [113]. In this chapter we will present two injection models,

one is based on drift-diffusion theory and the other on a master equation.

5.2 Diffusion Controlled Injection Model for OLEDS

Due to the low mobility in organic semiconductors
�
µ ≪ 10−3cm2/V s

�
, the diffusion

transport is important for the charge injection process. Therefore, the aim of this section

is to develop an analytical, diffusion-controlled charge injection model particularly suited

for organic light-emitting diodes (OLED). This model is based on drift-diffusion and

multiple trapping theory. The latter can be used to describe hopping transport in
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organic semiconductors [114]. The presented model can explain the dependence of the

injection current on the temperature, the electric field and the energy barrier height.

The theoretical predictions agree well with experimental data.

5.2.1 Theory

The potential barrier qϕ (x) formed at the metal semiconductor interface is a superposi-

tion of an external electric field and a Coulomb field binding the carrier on the electrode

[115, 116],

qϕ (x) = Δ − q2

16πǫ0ǫrx
− qFx. (5.1)

Here, x is the distance to the metal-organic layer interface. Since the rapid variation of

the potential 5.1 takes place within xd (about 50Å [117]) in front of the cathode, the

field F can be regarded as being nearly constant.

Using the drift-diffusion theory, the hole current J can be written as

J = −kBTµ

	
q

kBT
pe (x)

dϕ (x)

dx
+

dpe (x)

dx

�
, (5.2)

where µ is the mobility. On taking J and µ as constant, and solving for n, we obtain

pe (x) =

	
N − J

kBTµ

� x

0
exp

�
qϕ (x′)

kBT

�
dx′

�
exp

�
−qϕ (x)

kBT

�
(5.3)

where N is the hole concentration at x = 0. In multiple trapping theory [118], the total

carrier concentration is given by a sum of the carrier concentrations in the extended

states pe (x) and the localized states,

p (x) = pe (x) +

� ∞

0
g (E, x) f (E,EF ) dE. (5.4)

Here, g (E) is the density of the localized states, f (E,EF ) is the Fermi Dirac distribution,

and the quasi-Fermi energy EF can be written as [118]

EF (x) = kBT ln

	
ν0τ0Nt

pe (x)

�
,

where Nt is the total concentration of localized states, τ0 is the lifetime of carriers, and

ν0 is the attempt-to-escape frequency.

In the injection regime, very close to the contact all the traps are filled. Moreover, the

carrier concentration in the extended states is much higher than that in the trapped

states. At large distance from the injection contact, the main contribution to the total

carrier concentration comes from the occupied localized states [112]. So we propose here
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the concept of a critical distance xd, where the carrier concentration in the extended

states equals the carrier concentration in localized states, i.e.,

pe (xd) =

� ∞

0
g (E, xd) f (E,EF ) dE. (5.5)

Substituting (5.1),(5.4) and (5.5) into the Poisson equation,

d2 (qϕ)

dx2
= − q

ǫ0ǫ
p (x) , (5.6)

then the critical distance xd can be calculated as

1 =

� ∞

0

16πx3
dg (E − qϕ (xd))

1 + 16πx3
dν0τ0Nt exp (−E/kBT )

. (5.7)

Solving (5.7) with a Gaussian DOS numerically, we can obtain the critical distance xd.

The free carrier concentration at xd is calculated by (5.5). Finally, the injection current

can be calculated as

J = kBTµ

�
N − pe (xd) exp

�
qϕ(xd)
kBT

�

� xd

0 exp
�

ϕ(x)
kBT

�
dx

. (5.8)

5.2.2 Results and Discussion

The barrier height Δ plays an important role for the injection efficiency. We calculate

the relation between the injection current and the electric field for different Δ, as shown

in Fig 5.1. The parameters are Nt = 1 × 1018cm−3, σ = 0.1656eV, ν0 = 1011s−1,

τ0 = 10−11s, T = 300K and µ = 1×10−9cm2/Vs. The injection current increases with the

electric field, and the lower the Δ, the higher the injection current as intuitively expected.

But the slope of log J versus log F is not constant. Fig 5.2 shows the temperature

dependence of the injection current for Δ = 0.3eV , where the other parameters are

the same as in Fig 5.1. The temperature coefficient decreases strongly with increasing

electric field. The coefficient reverses sign at high electric field, which has also been

observed in [115] theoretically. A comparison between the model and experimental data

[112] is shown in Fig 5.3. The fitting parameters are Nt = 1×1017cm−3, µ = 2.56×10−11

cm2/Vs for PPV-ether and 2.51 × 10−9 cm2/Vs for PPV-imine, respectively. The other

parameters are the same as in Fig 5.1. The mobility in organic materials depends on

the local electric field F as [119]

µ (F ) = µ0 exp
�
γ
√

F
�

. (5.9)

Here µ0 denotes the mobility of carriers at zero field and γ is the parameter describing the

field dependence. We first substitute (5.9) into (5.2) to obtain the carrier concentration,

pe (x) =


N − J

kBTµ0 exp
�
γ
√

F
� � x

0
exp

�
qϕ (x′)

kBT

�
dx′


 exp

�
−qϕ (x)

kBT

�
. (5.10)
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Figure 5.1: Dependence of the injection current on the barrier height.
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Figure 5.2: Temperature dependencies of the injection current.
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Figure 5.3: Comparison between the model and experimental data.

Then, by combining (5.7), (5.10), Gaussian DOS and (5.8), we obtain the injection

current with the field-dependent mobility. Fig 5.4 illustrates the relation between in-

jection current and electric field with field dependent mobility. Parameters are µ0 =

7.3 × 10−6cm2/Vs, γ = 1 × 10−4 (m/V)1/2 and Δ = 0.3eV . For comparison, the injec-

tion current with constant mobility is plotted as well.

5.3 Charge Injection Model for OLED Based on Master

Equation

The steady-state injection current in an OLED is the difference between the injection

current from the electrode towards the organic semiconductor, Iinj, and the recombina-

tion current, Irec, from the organic semiconductor back to the electrode. The first one

is traditionally described by classical injection expressions, either FN or RS expression.

In this work Iinj and Irec enter of a master equation that describes the transport at the

interface by a rate equation. This model yields the injection current as a function of

electric field, temperature, energy barrier between metal and organic layer, and energetic

width of the distribution of hopping sites. Good agreement with experimental data is

found.
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Figure 5.4: Comparison between injection currents for field dependent mobility and

constant mobility.

5.3.1 Theory

The system to be considered here is an energetically and positionally random hopping

system in contact with a metallic electrode. At an arbitrary distance x away from the

metal-organic layer interface, located at x = 0, the electrostatic potential is given by

the sum of the image charge potential and the applied potential described by electric

field F as (5.1). Since the rapid variation of potential (5.1) takes place in front of the

cathode, and space-charge effects can be ignored altogether in the calculation of the

cathode characteristics [112, 117], the field F may be regarded as being nearly constant.

Assuming no correlations between the occupation probabilities of different localized

sates, the net electron flow between two states is given as

Iij = fi (1 − fj) ωij − fj (1 − fi)ωji, (5.11)

with fi denoting the occupation probability of site i and ωij the electron transition rate of

the hopping process between the occupied state i to the empty state j. The probabilities

(5.11) are then employed in a master equation for describing charge transport. With

the electrochemical potential µ′
i at the position of state i the occupation probability is
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described by a Fermi-Dirac distribution as

fi =
1

1 + exp
�

E′

i−µ′

i

kBT

� . (5.12)

For the metal electrode we assume a fixed electron concentration P0 and a Fermi-level

of zero. All injected carriers are assumed to hop from the metal Fermi-level. Under the

effect of a constant electric field F and the Coulomb field binding the carrier with its

image charge on the electrode the energy and the electrochemical potential of a localized

state are given by

E′
j = Ej + Δ − qϕ (Rj , θ) ,

µ′
j = Δ − qϕ (Rj, θ)

ϕ (Rj , θ) = FRj cos θ +
q

16πǫRj cos θ

where Rj denotes the distance of state j from the interface, θ the angle between F and

Rj, Δ the barrier height, and Ej the energy at state j without electric field. According

to Mott’s formalism [44], the transition rate ωj from the metal Fermi-level to state j

reads as

ωj ∝



exp
�
−2αRj − E′

j

kBT



: E′

j ≥ 0

exp (−2αRj) : E′
j ≤ 0

(5.13)

Connecting with a Gaussian DOS, the net current across the metal-organic contact can

be written as

I = Iinj − Irec = eν0 (I1 + I2 − I3 − I4) (5.14)

where ν0 is the attempt-to-jump frequency and

I1 =

� +∞

1
dr

� ∞

β
dRj

� 0

−∞
dEj

P0 (1 − fj)√
2πσ

exp

�
−2γRj − (Ej − (Δ − eϕ (Rj , r)))

2

2σ2

�

I2 =

� +∞

1
dr

� ∞

β
dRj

� ∞

0
dEj

P0 (1 − fj)√
2πσ

exp

�
−2γRj − Ej − (Ej − (Δ − eϕ (Rj , r)))

2

2σ2

�

I3 =

� +∞

1
dr

� ∞

β
dRj

� ∞

0
dEj

Ntfj√
2πσ

exp

�
−2γRj − (Ej − (Δ − eϕ (Rj , r)))

2

2σ2

�

I4 =

� +∞

1
dr

� ∞

β
dRj

� 0

−∞
dEj

Ntfj√
2πσ

exp

�
Ej − 2γRj − (Ej − (Δ − eϕ (Rj, r)))

2

2σ2

�

where r = 1/ cos θ, β is the distance from the electrode to the first hopping site in

the bulk and fj =
�
1 + exp

�
Ej−µj

kBT

��−1
. I1 and I2 describe the charge injection from

the electrode downwards and upwards, respectively. I3 and I4 describe the backflow of

charge to the electrode. The net current can be calculated by evaluating I1, I2, I3 and

I4 numerically.
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5.3.2 Results and Discussion

With the model presented we calculate the field dependence of the net, injection and

backflow current. The parameters are Δ = 0.3eV, Nt = 1× 1022cm−3, T = 300K, ǫr=3,

β = 0.6nm, γ = 2 × 108cm−1, σ = 0.08eV and ν0 = 1 × 1011s−1. Fig 5.5 shows that

with electric field the injection current increases and the backflow current decreases, as

intuitively expected. As a result, the net current increases with electric field quickly in

the low field regime.

Fig 5.6 shows a semilogarithmic plot of the current versus F 1/2 with the same parameters

as used in Fig 5.5. This presentation is appropriate for testing RS behavior as j ∝
exp

��
qF/4πǫǫ0

�
. Since the dependence of log j versus F 1/2 is not linear, a deviation

from the RS characteristics is observed.

Fig 5.7 shows the current-field characteristics for different Δ and ν0 = 9 × 1011s−1,

the other parameters are the same as in Fig 5.5. The injection current increases with

decreasing barrier height Δ and with electric field. The comparison between calculation

and experimental data of DASMB sandwiched between ITO and Al electrodes [112] is

given in Fig 5.8. The parameters are Δ = 0.4eV and T = 123K, the other parameters

are the same as in Fig 5.5. The agreements is quite good at low electric fields. The

discrepancy between calculation and experimental data comes from the resistance of the

ITO contact at high electric field [112].
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Figure 5.5: Field dependence of the net, injection, and backflow currents.
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Figure 5.6: Relation between injection current and F 1/2.
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Chapter 6

Space Charge Limited Current in

Organic Light-emitting Diodes

6.1 Introduction

The carrier mobilities in organic semiconductors are typically low. If the injection barrier

between the metal and the semiconductor is small and carriers can be efficiently injected

into the device, charge transport in such devices can be described using the theory of

space charge limited current (SCLC), which plays an important role in investigating

the efficiency of charge injection in OLEDs and estimating parameters such as mobility

and trap concentration in organic semiconductors [120, 121]. The theory of SCLC in a

trap-free dielectric was formulated by Mott and Gurney [122]. Later it was extended

to account for SCLC controlled by shallow traps with exponential energy distribution

[123]. However, it is generally accepted that the DOS is a Gaussian distribution, and

the states in the tail act as trapped states [124].

In the following, we extend Campbell’s work [124] to derive a single-carrier SCLC model

for organic semiconductors with a Gaussian DOS distribution. A single carrier diode can

be easily fabricated by choosing metals with appropriate work functions for the contact.

6.2 Theory

The SCLC problem in dielectrics can be described by the following equations [107]

dF

dx
=

q

ǫrǫ0
(nf + nt) , (6.1)

j = qnfµF, (6.2)
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where F is the electric field intensity, ǫr is the relative dielectric permittivity, nf and nt

are the concentrations of the mobile and trapped carriers, respectively, j is the current

density, and µ is the drift mobility of carriers.

In this model, a Gaussian DOS function is assumed. Analysis of the optical adsorbtion

spectrum and mobility for PPV indicates that the DOS can be fitted well to a Gaussian

distribution with σ ≈ 0.1eV. In other disordered molecular materials σ typically lies

between 0.07 and 0.13eV [9].
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Figure 6.1: Gaussian density of states with zero mean energy. The vertical axis corre-

sponds to energy, the horizontal axis reflects the site density. The center of the Gaussian

DOS is at zero energy.

A schematic representation of the Gaussian DOS is shown in Fig 6.1. In the tail of the

distribution few sites are available for hopping and their nearest neighbors are many kT

away in energy, so that they serve as trap centers. Site-selective fluorescence of PPV has

also shown that the sites in the tail of the distribution act as traps [125]. While the sites

towards the center of DOS more neighbors are accessible and the energy between them

is very close. So they provide the mobile carriers. Here we define a conduction edge

[126] at about 2σ below the Gaussian center. We do not rigorously justify such edge

position and it is done only for illustration purpose, though it is similar to the method

applied to absorption spectrum or STM measurements [127]. So the concentrations of
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mobile and trapped carriers can be calculated as

nf =

� ∞

−2σ
g (E) f (E) dE, (6.3)

nt =

� −2σ

−∞
g (E) f (E) dE, (6.4)

with g (E) being the DOS function and f (E) = (1 + exp [E − EF ])−1 the Fremi-Dirac

distribution. Substituting (6.3) and (6.4) into (6.1) and (6.2), we obtain

dF

dx
=

q

ǫ0ǫr

� ∞

∞
g (E) f (E) dE. (6.5)

F =
j

qµ

�� ∞

−2σ
g (E) f (E) dE

�−1

. (6.6)

Then differentiate (6.6) with respect to x to obtain the equation

dF

dx
=

j

eµ

� ∞
−2σ g (ǫ) (1 + exp (ǫ − ǫF ))−2 exp (ǫ − ǫF ) dǫ�� ∞

−2σ g (ǫ) (1 + exp (ǫ − ǫF ))−1 dǫ
�2 , (6.7)

where ǫ = E/kBT and ǫF = EF /kBT . Substituting (6.7) into (6.5), we obtain the

differential equation for quasi Fermi-energy as

dǫF

dx
= −q2µN2

t exp (ǫF )

2jπǫ0ǫrσ2
0

� ∞

−∞

exp
�−ǫ2/2σ2

0

�
1 + exp (ǫ − ǫF )

dǫ

�� ∞

−2σ0

exp
�−ǫ2/2σ2

0

�
1 + exp (ǫ − ǫF )

dǫ

�2

×
�� ∞

−2σ0

exp
�
ǫ − ǫ2/2σ2

0

�
[1 + exp (ǫ − ǫF )]2

dǫ

�−1

. (6.8)

where σ0 = σ/kT . Combing (6.6) and (6.8), we obtain the position-dependent elec-

tric field. the j/V characteristics can be calculated by integrating the field over the

coordinate.

6.3 Results and Discussion

First we solve (6.8) numerically. The position dependence of the quasi Fermi energy is

shown in Fig 6.2. The parameters are Nt = 1× 1022cm−3, j = 0.4A/cm2, µ = 1cm2/Vs,

ǫr = 3, σ/kT = 4 and the sample thickness L = 100nm. It can be seen that the

quasi Fermi-energy decreases with position and increases with current density. Near the

contact, the quasi Fermi energy decreases very quickly. We treat the metal electrode

as site 0 with Fermi energy as EF = −Em, where Em is the metal work function. The

Ohmic contact at x = 0 implies that the field must drop to zero at this coordinate, so
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Figure 6.2: Spatial distribution of the quasi Fermi energy for different current densities.

that F (0) = 0. Fig 6.3 shows that the carrier concentration decreases from the contact.

Fig 6.4 shows the field distribution in OLED with the same parameters as in Fig 6.2.

The j/V characteristics are plotted in Fig 6.5 for different σ/kT , where the parameters

are the same as Fig 6.2. As we can see, at low voltages and current densities, the

current follows a j ∝ V 2 characteristics, which may suggest either the trap-free case or

the shallow-trap case. At higher voltages, the space charge is formed mainly by carriers

occupying states above Fermi energy and the current increases with voltage faster than

V 2. This behavior is also predicted by a SCLC model based on an exponential DOS

distribution [124], where

j ∝ V m+1

L2m+1
.

The parameter m = Et/kT varies between about 1 and 4, Et is the characteristic energy

of the exponential DOS and L is the layer thickness of LED.

The available models for SCLC transport assume constant mobility, and include or ne-

glect traps. However, it was found that the mobility in organic semiconductors depends

on the local electric field [119].

Integrating (6.5) yields

F =
q

ǫ0ǫr

� x

0

� ∞

∞
g (E) f (E) dE, (6.9)
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Figure 6.3: Spatial distribution of the carrier concentration near the contact for j =

0.4A/cm2.

(6.6) is rewritten as

Fµ0 exp
�
γ
√

F
�

=
j

q

�� ∞

−2σ
g (E) f (E) dE

�−1

. (6.10)

Substituting (6.10) into (6.9), we can obtain a new equation for quasi Fermi-energy as

µ0q
2

ǫ0ǫrj

�� x

0

� ∞

∞
g (E) f (E) dE

�
exp

�
γ

�� x

0

� ∞

∞
g (E) f (E) dE

�
=

�� ∞

−2σ
g (E) f (E) dE

�−1

. (6.11)

The quasi Fermi energy and electric field distribution can be obtained by solving (6.11)

numerically. Fig 6.6 illustrates the effect of electric field dependent mobility on SCLC

with γ = 1 × 10−3(m/V)1/2 and µ0 = 1cm2/Vs. Other parameters are the same as in

Fig 6.3. For comparison, SCLC with constant mobility and the standard SCLC model

j ∝ V 2 are also plotted as well. It should be observed that our model departs slightly

from the standard one at high current densities.

For light emitting diodes, it is important to distinguish if the device is controlled by

injection at the contact or by currents in the bulk of the organic layer. To determine the
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Figure 6.4: Spatial distribution of the electric field at different current densities.

dominant mechanism, an understanding of the thickness scaling is required [128, 129].

The thickness dependent SCLC in Child’s law model is given as [122]

j =
9

8
eǫ0ǫrµ

V 2

L3
. (6.12)

The relation between layer thickness and SCLC in our model is shown in Fig 6.7 assuming

the same parameters as in Fig 6.2. The thickness dependence of the current is also of

the form j ∝ 1/Lk with k = 3.2264 for the constant mobility case and k = 3.8 for the

field dependent mobility case. In both cases k is slightly bigger than 3 as in the standard

model.
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Chapter 7

Organic Semiconductor Device

Models

7.1 Introduction

In recent years, organic devices including OTFT and OLED have found important ap-

plication in large-area, low performance and low-cost integrated circuits. Such appli-

cations include driving devices for active matrix flat panel displays, light identification

tags, sensors, etc. The key traits distinguishing devices with organic active layer from

conventional FETs are their potential for low-cost and low-temperature processing, and

their compatibility with flexible substrates. As organic device applications increase, a

more accurate and yet simple model of device characteristics is necessary for under-

standing, improving, and applying these devices. Up to now, many of the numerical

or analytical organic device models available in commercial devices simulators use the

same expressions as used for crystalline devices. However, organic devices show sev-

eral differences with respect to crystalline devices because of the low conductivity of

organic semiconductors. Furthermore, OTFTs are primarily operated as accumulation

field effect transistors as opposed to the usual inversion mode of crystalline MOSFETs.

OTFTs are normally conducting at zero gate voltage, and the field-effect mobility usually

increases with the gate voltage [130].

At the same time, different parameters such as barrier height, mobility and device length

affect the current of OLEDs, so it is useful to consider organic diode structures in which

single carrier type dominates the current flow in order to clarify the device operation in a

relatively simple situation. Such unbipolar devices can be easily fabricated by choosing

the contact so that the energy barrier for one carrier type is much larger than that for

the other.
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7.2 Analytical Model for Organic Thin Film Transistors

In this section we derive a basic expression for the sheet conductance based on the vari-

able range hopping (VRH) theory. This theory describes thermally activated tunneling

of carriers between localized states around the Fermi level in the tail of a Gaussian dis-

tribution. It has been used to calculate the mobility of OTFTs successfully. After some

simplification for the surface potential, simple and efficient analytical expressions for the

transfer characteristics and output characteristics are obtained. The model does not re-

quire as input parameters the explicit definition of the threshold and saturation voltage,

which are rather difficult to evaluate for this kind of device. The obtained results are in

good agreement with experimental data.

7.2.1 Variable Range Hopping Transport in Organic Semiconductors

Because most organic films have an amorphous structure and disorder is dominating the

charge transport, variable-range-hopping in positionally and energetically disordered

systems of localized states is widely accepted as the conductivity mechanism in organic

semiconductors. Different from hopping, where the charge transport is governed by the

thermally activated tunneling of carriers between localized states rather than by the

activation of carriers to the extended-state transport level, the concept of variable range

hopping means that a carrier may either hop over a small distance with high activation

energy or hop over a long distance with a low activation energy. In an organic thin

film transistor with a typical structure shown in Fig 7.1, an applied gate voltage gives

rise to an accumulation of carriers in the region of the organic semiconductors close to

Source Drain

Insulator

Organic

Gate

y

x

Figure 7.1: Schematic structure of an organic thin film transistor.
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the insulator. As the carriers in the accumulation layer fill the low-energy states of the

organic semiconductor, any additional carrier in the accumulation layer will require less

activation energy to hop to a neighboring site. This results in a higher mobility with

increasing gate voltage. In combination with percolation theory, Vissenberg studied the

influence of temperature and the influence of the filled states on the conductivity based

on the variable range hopping theory. The expression for the conductivity as a function of

the temperature and carrier concentration is given by [43] where σ0 is a prefactor, α is an

effective overlap parameter, which governs the tunneling process between two localized

states, and Bc
∼= 2.8 is the critical number of bonds per site in the percolating network

[131], T0 is the effective temperature, Nt is the number of states per unit volume and

δ is the fraction of the localized states occupied by a carrier. The carrier concentration

δNt can be expressed in equilibrium as

ρ(V ) = Ntδ(V ) = Ntδ0 exp

�
qΦ

kBT0

�
, (7.1)

where Φ is the electrostatic potential, and the δ0 is the carrier occupation far from the

organic-insulator interface.

7.2.2 Sheet Conductance of the OTFT

For an amorphous TFT the drain current ID can be expressed as

ID =
W

L

� VG−VF B

VG−VF B−VD

GS(V )dV, (7.2)

where W is the channel width, L is the channel length, VFB is the flat-band voltage,

and GS is the sheet conductance of the channel at VD = 0V. The potential V is defined

as V = VG − VFB − V0(y), where V0(y) is the potential at the edge of the space-charge

layer where there is no band bending. The basic definition of the channel configuration

and the variables for the OTFT investigated are illustrated in Fig 7.2.

σ(δ, T ) = σ0

	
πNtδ(T0/T )3

(2α)3BcΓ(1 − T/T0)Γ(1 + T/T0)

�T0/T

, (7.3)

The electrostatic potential in the space charge layer at the point (x, y) in the channel

is expressed as V (x, y) = V0(y) + Φ(x, y), where the Φ(x, y) is the amount of the band

bending in the channel. The conductance for an element of channel length Δy and the

width W can be written as

Gs =
W

Δy

� t

0
σdx =

W

Δy

σ(δ0, T )

σ0

� t

0
exp

�
qΦ

kBT

�
dx (7.4)

where t is the thickness of the organic layer. Changing the variable of integration yields

Gs = A

� Φs(y)

Φ(t(y))

exp(qΦ/kBT )

∂Φ/∂x
dΦ, (7.5)
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where Vi is the voltage drop across the insulator,

Vi =
Qs

Ci
(7.11)

where Ci = ǫi/di is the insulator capacitance per unit area. From the equations above,

an expression for Φs is obtained

VG − VFB − Φs = γ exp

�
qΦs

2kBT0

�
(7.12)

For an accumulation mode OTFT, the surface potential is negative, Φs ≤ 0, correspond-

ing to VG ≤ 0.

VG = VFB + Φs −
√

2kBT0δ0Ntǫ0ǫs

Ci
exp

�
− qΦs

2kBT0

�
. (7.13)

In order to reduce computation time, an explicit yet accurate relation between surface

potential and gate voltage is preferable. In (7.13) we can get Φs using a numerical

approach. However, in the accumulation mode, it holds exp(−Φs) ≫ Φs, so that an

approximate expression of surface potential can be obtained as

Φs = −2kBT0

q
ln

	
(VFB − VG)Ci√
2KbT0δ0Ntǫ0ǫs

�
. (7.14)

A comparison between numerical calculation and approximate calculation is shown in

Fig 7.3 and Fig 7.4. As can be seen, the agreement is very satisfactory. Parameters are

from [132, 133].

With the simplified surface potential and (7.8) we can get the simplified sheet conduc-

tance as

Gs = β

��
VG − VFB

̺

�2T0/T−1

− 1

�
(7.15)

For a thick organic semiconductor layer, Φ(t) = 0 and the coefficient β is

β = σ0

 
2ǫ0ǫsKBT0

δ0Nt

kBT

q(T − 2T0)

̺ =
(2α)3Bc2kBT0ǫ0ǫs

C2
i (T0/T )3 sin(πT/T0)
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Figure 7.3: The electrostatic surface potential as a function of gate voltage obtained by

the implicit relation (7.13) and the approximation (7.14) (solid line).
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Figure 7.4: Sheet conductance from numerical calculation (symbols) and the approxi-
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7.2.3 Drain Current

The drain current can be calculated by substituting the expression for Gs into (7.2). We

obtain

ID = β
W

L

��
VG − VFB

̺

�2T0/T

−
�

VG − VFB − VD

̺

�2T0/T
�

(7.16)

in the triode region (VGS − VFB ≥ VDS) and

ID = β
W

L

�
VGS − VFB

̺

�2T0/T

(7.17)

in saturation (VGS − VFB ≤ VDS).

7.2.4 Results and Discussion

This model has been confirmed by comparisons between experimental data and simula-

tion results. Input parameters are taken from [132]: W = 20, 000µm, L = 10µm, ǫs = 3,

Ci = 17F/(µm)2, σ0 = 3.5S/m, α−1 = 3.1Å, T0 = 385K.

In Fig 7.5 and Fig 7.6 the transfer characteristics of a pentacene OTFT are given for

VFB = 1V at different drain voltage and different temperature. Both figures show a

good agreement between the analytical model and experimental data. Here we also

model the transfer characteristics of a PTV OTFT, where some parameters are different

from those for pentacence: T0 = 382K, σ0 = 5.6S/m, α−1 = 1.5Å, as shown in Fig 7.7.

The modeled output characteristics of the pentacene OTFT is shown in Fig 7.8.
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Figure 7.5: Measured (symbols) and calculated transfer characteristics of a pentacence

OTFT at room temperature.
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Figure 7.6: Measured (symbols) and calculated transfer characteristics of a pentacence

OTFT at different temperatures at VD = −2V .
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Figure 7.7: Measured (symbols) and calculated transfer characteristics of a PTV OTFT

at room temperature at VD = −2V .
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7.3 Device Model for Unbipolar OLEDs

In this section we present a unified device model for unbipolar OLEDs which includes

charge injection, transport, and space charge effects in the organic material.

7.3.1 Theory

In order to analyze the interplay between charge injection and bulk conductivity one

must use specific models for both injection and charge transport in bulk. Here we treat

the charge injection as diffusion controlled and the transport within multiple trapping

theory as presented in Chapter 5. By multiplying exp
�
− eϕ(x)

kBT

�
in both sides of (5.2)

and integrating x from 0 to xd, we obtain

−J

qDn

� xd

0
exp

�
−qϕ (x)

kBT

�
dx = f (xd) − f (0) , (7.18)

where Dn is the diffusion coefficient and

f (x) = ne (x) exp

�
−qϕ (x)

kBT

�
.

In the transport regime of the device, the potential expression (5.1) does not hold true

anymore, instead, the potential must be calculated from the Poisson equation

d2qϕ

dx2
= −dF

dx
= − q

ǫ0ǫ
p (x) . (7.19)

In the bulk regime, (5.2) is rewritten as

pe (x) =

	
pe (xd) − J

qDn

� ∞

0
dx exp

�
qϕ (x)

kBT

��

× exp

�
−pϕ (x)

kBT

�
. (7.20)

In order to calculate the J/V characteristics of OLEDs, one must solve (7.19) together

with (5.4) and (7.20) self-consistently. The injection boundary conditions are ϕ (0) =

ϕ (xd), J = Jinj (F0) and F (0) = F0.

7.3.2 Results and Discussion

With the device model presented above we calculate the device characteristics of one

carrier type at different barrier height Δ, as shown in Fig 7.9. The input parameters

are T = 300K, σ0 = 0.08eV, Nt = 1 × 1016cm−3, ν0 = 1011s−1, τ0 = 10−11s, µ =

1×10−4cm2/Vs and the device length is 100nm. The comparison between our work and
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experimental data of hole only ITO/NPB/Al [135] is plotted in Fig 7.10 with Δ = 0.1eV,

µ = 2.9 × 10−1cm2/Vs and device length 65nm. The other parameters are the same as

in Fig 7.9. The current is neither the pure injected limited current nor SCLC [135].

A single carrier OLED model including charge injection and transport is presented here.

This model is based on a Gaussian DOS and multiple trapping theory. It can explain

barrier height dependence of current/voltage characteristics and agrees with experimen-

tal data [135].
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Figure 7.9: Barrier height dependence of current/voltage characteristics for unbipolar

OLED.
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Chapter 8

Conclusion

In this thesis, we investigated a series of open problems related to charge injection

and transport in organic semiconductor devices such as OLEDs and OTFTs. This is a

relatively new area and even more work is needed to improve our understanding of the

nature of charge transport in these devices.

8.1 Current Progress

Our first contribution was the formulation of a charge transport mobility model, which is

one of the most important parameters in organic semiconductors. Using three different

analytical models, we separately explain the mobility’s dependence on carrier concen-

tration, electric field and temperature. We showed that the density of states function is

an important factor for the carrier concentration dependence of the mobility and the ex-

ponential DOS function is not entirely reliable for the low carrier concentration regime.

Furthermore, a physical model was developed to explain the Poole-Frenkel behavior of

the electric field dependent mobility.

In order to deal with the effect of Fermi-Dirac statistics on the transport energy, we

extended Baranovskii’s transport energy model. This model shows that the Fermi-Dirac

statistics plays an important role in transport energy when the temperature is low and

carrier concentration is higher.

Then, we developed analytical models to describe the doping and trap characteristics of

organic semiconductors. This model can successfully explain the superliner increase of

conductivity upon trap concentration and the relation between trap concentration and

conductivity.

Despite of the successful application of the Fowler-Nordheim and Richardson-Schottky

injection models to some experimental data of organic devices, it is very important to
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discuss the role of diffusion transport and backflow current in the charge injection process

for organic devices. For this goal, we have presented two different injection models for

organic light-emitting diodes, one is based on multiple trapping theory and the other on

a master equation.

In the next step we investigated the SCLC in organic devices within the frame work of

variable range hopping transport. It was shown that the SCLC controlled by a Gaussian

density of states distribution obeyed the j ∝ V 2 relation remarkably similar to SCLC

controlled by shallow traps in the low current density regime when the mobility was

constant, while field-dependent mobility would change this relation slightly in the high

current regime.

Up to now, many of the numerical or analytical organic device models available in

commercial device simulators use the same expressions as used for the crystalline devices.

However, organic devices present several differences with respect to crystalline devices.

In the final part of this thesis, we presented two analytical models that describe the DC

characteristics of organic thin film transistors and organic light-emitting diodes. Both

models are based on hopping transport theory and good agreement between calculation

and experimental data was found.

8.2 Future Work

Using the advances as the foundation for further study, we finally consider some possi-

bilities for future work. Of course, there is initial work on device models [136, 137, 138],

which, however, did not take into account the disorder in organic semiconductors or the

hopping transport effect on device characteristics. So the first extension would imple-

ment the mobility models and injection models into device simulators.

Another extension would be to consider the role of the limiting effect of the space charge

on the injection current. This can be incorporated into our injection model, either

diffusion model or master equation model through solving the Poisson equation.

Further, it may be important to consider the effect of Coulomb forces on the doping and

trapping model. It has been pointed out that doping in organic semiconductors produces

a random distribution of dopant ions [139], which electrostatically interact with carriers

localized in intrinsic hopping sites. This interaction further increases the energy disorder

and broadens the deep tail of the DOS distribution.

Finally, an improvement of Arkhipov’s transport [140] energy model may be developed.

This model should consider the effect of both downward and upward hops on trans-

port. It can be used to explain the electric field dependence of the mobility in organic

semiconductors.
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The framework provided by this thesis can be a starting point for these, and possibly

other, further investigations. By continuing to successively remove some of the more

restrictive assumptions of our work, significant progress may continue towards a better

understanding of these organic semiconductors materials and devices.

93



List of Figures

1.1 Two examples of use of OLEDs in commercial products. The image on

the left shows a new Philips shave introduced to the market in 2002.

The image on the right shows the OLED TV produced by Sony recently.

Images were taken from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Charge transport mechanism in solids. The left image describes the band

transport. In a perfect crystal, depicted as a straight line, free carriers

are delocalized. There are always lattice vibrations that disrupt the crys-

tal symmetry. Carriers are scattered at these phonons, which limit the

carriers mobility. The image on the right describes hopping transport. If

a carrier is localized due to defects, disorder or selflocalization, the lattice

vibrations are essential for a carrier to move from one site to another.

The figure is from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Left: device layout of a typical organic light-emitting diode (OLED).

It consists of a glass substrate with an indium-tin-oxide (ITO) coating

functioning as anode, a spin-coated layer of an organic semiconductor

as the active layer, and an evaporated metal cathode. Right: working

principle of an OLED. Four important processes are shown: (1) Charge

injection (2) Transport (3) Exciton formation (4) Photon emission. The

last two steps form the recombination process. . . . . . . . . . . . . . . . 11

1.4 Left: A schematic view of a bottom contact OFET. The source electrode

is grounded, while the drain and the gate are biased negatively. In this

mode, holes are injected from the source and collected at the drain. Right:

a top contact OFET with the electrodes patterned on top of the organic

semiconductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Comparison between the analytical model (2.9) and empirical model µ ≈
exp

�
− (Cσ/kBT )2

�
for different temperature. . . . . . . . . . . . . . . . . 18

2.2 The mobility as a function of (Tσ/T )1/3 for different α. . . . . . . . . . . . 19

94



2.3 Fermi-energy as a function of the carrier occupation probability. The

symbols represent Fermi-Dirac and the solid lines Boltzmann represent

statistics. Panel (a) shows the case of carrier occupation between 10−40

and 1. Panel (b) shows the case of carrier occupation bigger than 10−10. . 20

2.4 The calculated mobility versus carrier occupation at different temperature. 21

2.5 Comparison between calculation and typical experimental results [41]. . . 21

2.6 Plot of log σ versus T−1/4 at the electric field 100V/cm. . . . . . . . . . . 24

2.7 Conductivity and mobility versus temperature for ZnPc as obtained from

the model (2.14) and (2.15) in comparison with experimental data (sym-

bols). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Logarithm of the mobility versus T−1. The electric field is 105V/cm,

σ0 = 1.1 × 109S/cm, T0 = 340K, α−1 = 0.5 Å . . . . . . . . . . . . . . . . 25
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