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Kurzfassung

Die Lösung partieller Differentialgleichungen mittels Diskretisierungsschemen und al-

gebraischen Methoden bildet einen breiten Forschungszweig im Bereich des Scientific

Computing. Gemeinsame Schnittstellen für die Beschreibung einzelner Gleichungen

sind jedoch in ihrer Allgemeinheit ebenso wenig angedacht wie generelle Methoden für

die Assemblierung von Gleichungssystemen. Trotz zahlreicher Versuche eine Allzweck-

Simulationsumgebung zu schaffen, gibt es keine einheitliche Methodik, mit der ver-

schiedene Diskretisierungsschemen austauschbar verwendet werden können. Weiters ver-

langt das Aufstellen von Gleichungssystemen viele untergeordnete Schritte, die im einzel-

nen schwierig und mühsam durchzuführen sind und eine hohe Fehlerrate nach sich ziehen.

In vielen Fällen sind die daraus resultierenden Fehler schwer zu entdecken und zu beheben.

Das wesentliche Ziel dieser Arbeit ist es, die eingangs genannten Probleme zu lösen und

eine Methodik zu entwickeln, mit welcher die Spezifikation diskretisierter Differentialglei-

chungen durchgeführt werden kann, sowie Strukturen zur Behandlung von Gleichungen

und für das Aufstellen von Gleichungssystemen bereitzustellen.

Ein allgemeines topologiebasiertes Konzept zur Beschreibung verschiedener Diskreti-

sierungsschemen sowie eine gemeinsame Beschreibungssprache für die funktionale Beschrei-

bung von diskreten Zusammenhängen wird entwickelt. Verschiedene Differentialgleichun-

gen können mittels unterschiedlicher Diskretisierungsschemen mit demselben Formalis-

mus beschrieben werden, welcher von der funktionalen Programmbibliothek Phoenix2

abgeleitet und im funktionalen Teil von GSSE implementiert ist. Darüber hinaus werden

funktionale Operatoren zur Durchführung der Akkumulation von Summanden bereit-

gestellt, welche die Summanden in benachbarten topologischen Elementen auswerten.

Die Gesamtheit dieser Funktionen kann in beliebiger Kombination mittels einer in C++

eingebetten Sprache abgerufen und verwendet werden.
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Für das Aufstellen von Gleichungen wird das Konzept von linearisierten Ausdrücken ver-

wendet, welches einfach in den oben beschriebenen Formalismus eingebettet werden kann.

Es werden Datenstrukturen verwendet, welche neben einem numerischen Wert die linearen

Abhängigkeiten eines entsprechenden Ausdrucks nach einzelnen Variablen angeben. Dies

ist sowohl für lineare als auch für nichtlineare Verfahren von Vorteil, wobei die Berechnung

von Ableitungen, die bei der Linearisierung zwangsläufig ist, automatisch durchgeführt

wird. Bei der Lösung von nichtlinearen Gleichungen können residuenbasierte und gra-

dientenbasierte Verfahren verwendet werden. Eine weitere Schnittstelle für Eigenwert-

gleichungen kann analog verwendet werden.



Abstract

The solution of partial differential equations using discretization schemes and algebraic

methods is a very important topic of scientific computing, which lacks common interfaces

for the description and the assembly of discretized differential equations. Even though

many approaches towards a general purpose simulation environment have been imple-

mented, an environment which enables the use of different discretization schemes is still

lacking. Furthermore, the assembly of such equations requires many subsequent tasks

which are error prone and cumbersome. Such errors are often hard to detect and only

occur under certain circumstances.

The main aims of this thesis is to overcome the described difficulties and provide a method

for the specification of discretized differential equations as well as structures for the as-

sembly of algebraic equation systems.

A common topologically based framework for the specification of different discretization

schemes is developed and a description of the functional specification layer for discrete and

discretized equations is shown. Commonly used differential equations can be discretized

using the provided framework. The basic features of the discrete formalism are derived

from a given functional library Phoenix2 as well as the GSSE topological layer GDL. Fur-

thermore, accumulation operations are introduced which enable the developer to calculate

sums over, e.g. neighboring elements which fulfill a topological property. In contrast to

available functional frameworks, non-local formulae can be evaluated. Therefore traversal

operations can be used freely by the implementer and are not implicitly assumed by the

functional framework. Due to a C++ domain specific embedded language, the formulation

is concise and short.

For the assembly, a framework of linearized expressions is provided, that can be easily

combined with the specification framework mentioned above. These data structures store
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linear dependences of the residual expressions specified for the discretization schemes.

Therefore, the specification of the residuum with its linear dependences offers the possi-

bility to assemble an equation system automatically, without calculating the derivatives

of the residuum with respect to the single solution variables by hand. For the solution

of nonlinear equation systems, gradient based methods can be employed easily and the

linearization for each step is performed automatically. An interface for the treatment of

eigenvalue equations can be used analogously.
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Ich danke Herrn Professor Tibor Grasser für zahlreiche Anregungen, Hinweise und Diskus-

sionen.
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Chapter 1

Introduction

In the field of scientific computing which includes a large variety of different disciplines,

it has turned out to be of utmost importance to find a concise and broadly accepted

formalism which provides means for different, commonly used structures.

This is essential in order to obtain reproducible results, because in some cases the simu-

lation process as well as the results are provided in a manner that the external observer

is not able to redo the respective simulation experiments. The steps which lead to the so-

lution of the problem are not sufficiently disclosed. As a first step, a classification scheme

for scientific computing simulation processes is introduced with which simulation tools

can be categorized.

Many implementations and software packages comprise algorithms for the solution of prob-

lems from many different disciplines. Each software project is focused on a very special

method which is implemented in a highly optimized manner, whereas the implementa-

tion of the remaining tasks is often neglected. A large number of scientists is involved in

the development of new algorithms, data structures, algebraic methods, or discretization

schemes used for the solution of partial differential equations. In many cases these efforts

lead to an improvement regarding one of these topics, whereas for the other fields methods

and implementations of state-of-the-art approaches or even approaches of worse quality

are used, often due to ignorance of the neighboring fields.

Even though there are several approaches of supporting large software packages [1], com-

mon interfaces are not available that would assist a scientist skilled in one special field to

use the power of libraries in order to fulfill high standards in all of the mentioned fields.

1
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Currently, each kind of software introduces new interfaces, which are designed especially

for a certain purpose and can not be used for comparable methods due to interfacing

problems, so that the implementation of similar tasks often requires a complete re-design

of the software and interfaces. This of course worsens the situation of a scientist, who is

trying to implement a special method that inevitably depends on the use of third party

software. In order to circumvent these difficulties it is common practice to use scripting

languages to write the “gluing code” between the single parts of code, which quickly solves

the problem at first glance.

However, there is a lot of software already glued together and even though scripting lan-

guages of high performance are used [2] to manage the bottleneck of bringing data from

one application to another, these scripts become more and more cumbersome to man-

age. The implementation is highly specific gluework which is more difficult to handle and

therefore often software has to be re-designed, when more external software components

are required. Especially problematic is the change of external software components by

newly developed software of higher performance, because neither the developers of the

software, nor the developers of the used respective library have designed interfaces in-

dependent from the actual data structures. Therefore the lack of interoperability and

substitutability of libraries causes suboptimal simulation software.

In order to identify missing features, a classification scheme is introduced in Section 1.1,

which shows the general steps of a scientific computing application. This classification

also gives a practical orientation on how to separate software into parts and how to cat-

egorize existing parts of code. Interfaces are addressed and the main problems regarding

inappropriate use of these interfaces are described. In Section 1.2 known frameworks com-

monly used for the solution of scientific problems are compared and analyzed with respect

to this classification. Finally it will be shown, that most parts of scientific computing are

well solved as standalone problems such as the solution of algebraic equation systems.

However, the specification of discretized differential equations as well as the interfacing

still lacks proper specification methods. Based on this analysis, Section 1.3 formulates

the aims of this thesis, namely a proper specification layer for differential equations as

well as discretized algebraic equations.
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1.1 Classification of Simulation Processes

There exists a vast number of computer programs as well as programming frameworks

which can be used in order to perform computer simulation. Programs use different kinds

of approaches, solve different physical problems, various types of mathematical processes,

and use a large variety of available algorithms and data structures.

The first step towards a rigorous specification and classification for the different kinds

of programs used for computer aided engineering is to provide a layer model of abstract

steps which are performed in a computer simulation. It is not necessary to make use of

all of the layers provided in this layer model for all situations. In this section an approach

towards a layered model is presented, which provides a clear separation of different steps

which have to be performed, when designing a simulation program.

Another aspect of this model is to share workload within a group of scientists who have

different expertise in various kinds of scientific computing. The reason for this separation

using clearly defined interfaces is to establish a concise method of interaction between

different scientists. Even though the mutual understanding is often very poor, the use of

such interfaces enables scientists to establish proper computational methods.

For one person - in contrast - scientific computing is hardly overlookable and the devel-

opment of methods in all different fields involved in the simulation is time consuming

and does, therefore, not lead to optimal results. For this reason a sensible separation of

competences has to be established in order to balance the workload.

The fields covered by scientific computing are modeling, discretization, algebraic meth-

ods, and program design, where program design can be considered as necessary for the

implementation of methods of all other fields, which form the theoretical background.

Program and data structural design is primarily required to define clear and concise in-

terfaces between the single theoretical fields. For this reason a data structural interface

is found for modeling, discretization and algebraic methods.

Modeling is required to find a mathematical model for a physical phenomenon of interest.

It is typically carried out by physicists and engineers, who have a concrete question in

mind. As an example for modeling the Schrödinger equation can be considered, which
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perfectly describes the behavior of particle systems with very in small scales under the

influence of a potential.

Discretization is a general term for methods which make continuous problems solvable

for the computer. Typical methods are the finite element method or the finite volume

method. The solution of a linear or a nonlinear equation system as well as the solution

of an eigenvalue problem is a typical representative of an algebraic method.

Even though the formulation of the problem in a programming language and the design

of data structures which represent the mathematical structures used are relevant for the

implementation of software, the layers show the abstract steps which have to be performed,

but not how they have to be implemented.

Once these fields of scientific computing are separated, the layers can be easily defined.

The original question is posed to the engineer or physicist who uses modeling in order to

provide a continuously formulated problem which is discretized and solved by a computer

aided mechanism. After the solution is obtained by the computer it is often checked

for validity in a mathematical manner. This means that the solution fulfills the given

mathematical equation. Furthermore the physical accuracy has to be checked, which

means that the physical model is used within its boundaries of validity.

Most of the available models inherently have restrictions which have to be considered

before the solution can be validated. In the following the main focus is put on the

abstract methods rather than the implementation. Even though the use of computers is

an essential aid when solving large equation systems and software is an essential means

for making the problems concise and easy to formulate, the mathematical and physical

problems can be also performed in an abstract manner or - in some cases - even by hand.

The main focus is put on the separation of the single stages, where each of the stages can

be simplified by the computer.

It has to be considered that all these mental steps can be carried out independently from

each other. While some steps naturally induce a special treatment in the underlying

layers, a premature restriction on some methods unnecessarily restricts the variety of

possible solution approaches. Fig. 1.1 shows the single steps of the simulation as well as

the layers of the classification.
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• How do I earn most money with it?

It is clear that such an engineering problem cannot be answered by a state-of-the-art

computer program, because the computer lacks an intrinsic in-depth knowledge of the

specific scientific field. Moreover, automated answering of these questions is only possible

for a very small range of specified problems.

1.1.2 Modeling

The solution of each engineering problem requires knowledge in a field such as applied

physics, chemistry, process technology, civil engineering, construction, medicine, or any

other. Modeling is required in order to describe the physical effects relevant for answer-

ing the engineering problem. All effects which have to be taken into consideration are

comprised by the model chosen. A typical result of the modeling process is the mathe-

matical formulation of the desired physical phenomena, for instance as partial differential

equation.

In general, many different models are available for the solution of a problem which differ in

fidelity and complexity, each of them offering a tradeoff between complexity and fidelity of

the solution obtained by the model. For this reason different levels of detail are employed

depending on the phenomena that are interesting to the preceding engineering problem.

The implications of mathematical considerations on the model have to be kept to a mini-

mum and should only affect aspects such as overall solvability and perhaps uniqueness of

the problem. At this stage it is not necessary to define the discretization scheme as well

as the required algebraic solution methods. A premature restriction to a discretization

and an algebraic method unnecessarily leads to limitations of usability and applicability,

and other mathematical methods which are developed later on cannot be incorporated

into the original program.

Example: It can be shown that (non-relativistic) electrostatic problems (engineering) in

general result in diagonally dominant symmetric matrix problems. In fact two different

problems have been solved in one step, namely the modeling of the physical behavior of

a given configuration using electrostatic equations and the subsequent discretization of
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the resulting differential equations (elliptic self-adjoint equations). Between these steps

an interface is used, namely the continuous problem formulation. At this interface a

separation between modeling and the further processing of the model equation(s) can be

established. The advantage of this separation is that the details of the model and the

further processing steps can be considered as black-boxes.

1.1.3 Continuous Problems

A possible interface for the specification of the model obtained is given by continuous

physics. Even though there are other approaches possible, most engineering problems can

be transformed into continuous problems. In continuous problems a domain D is defined

and some physical quantities such as velocity or temperature are given as field on the

domain D. Even though unknown, the solution quantity is assumed to be a field over the

continuous domain D.

In order to obtain the solution from given quantities some governing relation is given. This

can be a simple point-wise operation, a differential equation, or an integral operation such

as a convolution.

Continuous problems as they appear in modeling form an interface between modeling and

mathematical treatment. In many cases these continuous formulations are used as an

interface between two scientists or an interface between a human and a computer, e.g.

for the case when mathematical software is used. In each case clearly defined and easily

understandable formalisms have to be provided in order to avoid unneccessary overhead

and insufficient information at the interface.

Another aspect of interfaces is that information which is passed through (e.g. between an

engineer and a mathematician) inevitably changes its semantics. While modelers have a

clear idea of the physical behavior of the investigated system, this usually does not hold

to a mathematician and is perhaps not even relevant. Moreover, it is necessary to find a

discretization scheme which works for the posed equation and yields correct solutions.
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1.1.4 Discretization

Discretization is required for obtaining an appropriate solution of a mathematical problem.

It is used to transform the initially continuous problem which has an infinite number of

degrees of freedom (e.g. eigenfunctions, Green’s functions) into a discrete problem where

the degree of freedom is inevitably limited. This limitation is necessary due to the finite

nature of the subsequent calculation process.

Function spaces, required to form all possible solutions when applying arbitrary initial as

well as boundary conditions, have an infinite dimension. Accordingly, the representation

of a solution vector is not possible within the computer. The step of discretization is

used to find a function space with a reasonable finite number of base functions, which

comprises a proper approximation of the analytical solution.

In many cases base functions or shape functions with a local support are used. In this

case the rather abstract task of finding shape functions can be reduced to the simpler

task of finding a finite tesselation of the simulation domain.

At this point the physical origin of the mathematical formulation is neglected. The fol-

lowing steps do only rely on the posed mathematical model of the physical problem. This

avoids post-implementation fittings which are not based on the continuous mathematical

formulation but on the intuition of the engineer.

The following examples show alterations of mathematical and physical methods which are

valid within the layer structure, because they origin from the mathematical formulation

only.

Example 1: The use of a functional expression, which characterizes the physical behavior,

for instance the mobility carrier of a material, is a purely physical adaption and results

in changes of the posed differential equation and is a modeling approach.

Example 2: The Scharfetter Gummel Discretization [3] is a typical mathematical adaption

of a discretization scheme with respect to the mathematical character of the functions n,

p and ψ. Even though the intentions initially did have physical nature, the method itself

is formulated only by relying on the underlying differential equations. Further physical

effects are not introduced.
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All changes of the final discretization formulae due to physical reasons, which cannot be

directly derived from the underlying physical model and its mathematical formulation

are doubtful in their physical as well as mathematical meaning, because this is neither

implied by a concise modeling approach, nor do such methods use a proper mathematical

solution procedure. Of course, there is a certain chance to obtain acceptable results for

special cases, but the overall credibility of such a system is corrupted due to the fact, that

neither the mathematical methods nor the model can be benchmarked for validity and

reproducibility of the results is not given.

It has to be stated that many approaches have combined the discretization (including

assembly) of differential equations and the solution of the resulting algebraic problems.

Even though at first glance it seems to be straight-forward to combine these two steps,

one must remark that the implementation of all combinations, for instance for testing the

optimum method, results in a growing implementation overhead.

1.1.5 Discrete Problems

After the discretization of a differential equation has been performed, the equation is

reduced to a system of algebraic equations. In general, there are three main classes of

discrete problems which are commonly known in scientific computing:

• Linear equation systems

• Nonlinear equation systems

• Eigenvalue equation systems

Apart from finiteness, discrete problems which are the result of discretization in general

have the same algebraic structure of their associated problems. This means that in most

cases a linear problem (e.g. a linear differential equation) results in a linear equation

system and a continuous eigenvalue problem becomes discrete but remains an eigenvalue

problem.

The discrete problem formulation is an interface between the discretization scheme and the

algebraic method used for further processing. The layer model avoids to pass parameters
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from the discretization methods to the algebraic methods. If a discretization scheme

provides solution parameters to a certain kind of algebraic solution method, the software

products for discretization and solution can be only used in this very special combination.

Once a new algebraic method is more apt to deal with the discrete problem, the specially

determined parameters become obsolete or other parameters are required which implies

additional implementation overhead. If a number of discretization schemes is thus bound

to one solver interface, the use of another solver interface or even the use of an update

of the solver interface with new interfaces might require an updating of all discretization

methods.

1.1.6 Algebraic Methods

In order to solve algebraic problems, for instance a linear algebraic equation system or an

eigenvalue problem, special algebraic methods have to be used. For the solution of discrete

problems, a large variety of such solution methods are available. One such software

package is Trilinos [4], which covers many different methods and offers high flexibility

of solution mechanisms as long as Trilinos internal methods are used. Perhaps the most

annoying fact related to these environments is that all algebraic environments use different

software interfaces and a large effort has to be spent on making the single environments

compatible with each other.

For this reason it is impossible to separate the discrete algebraic problem from the al-

gebraic methods used. As some simulation environments even combine discretization

schemes with algebraic methods, it is nearly impossible to separate the discretization, the

data storage of the discrete problem, and the algebraic methods.

In the layered model the origin of the mathematical problem does not have any impact

on the method used. Instead, only the discrete problem has to be taken into account.

1.1.7 Discrete Solution

With the aid of algebraic methods the discrete solution of a problem is obtained from

the discrete problem. At this layer the solution consists of a vector of numbers which

has to fulfill the requirements of the given algebraic equation system. When eigenvalue
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equations are solved, a number of different eigenvalues and the associated eigenvectors

are provided. This vector is returned to the discretization layer where the solution vector

is considered as weighting vector for basis functions.

If discrete modeling is used, the discrete solution itself becomes relevant. In this special

case of a discrete model, which is often used in industrial simulation or electrical cir-

cuit simulation, for instance for finding an optimum workload balance for a facility, the

model does only contain discretized data and does not have any functional information

on distributed quantities.

1.1.8 Mathematical Solution

The coefficients of this solution vector are multiplied with the basis functions and the sum

of the weighted basis functions is the appropriate solution of the discretized problem. If

functions with local support with a maximum value 1 are used, the stored numbers can

be interpreted as function values in the points where the respective shape function has

its maximum. However, many methods such as the boundary element method show that

this is not the case in general. Many methods exist which do not use function spaces with

this special property and therefore, cannot be interpreted in this way.

It has to be stated that once the function space is determined in the process of functional

discretization, there is no way of changing the shape of the base functions due to e.g.

physical or mathematical reasons after the calculation is performed.

Even though this seems to be clear from the mathematical point of view, many post-

processing tools, which are not directly involved in the discretization process, provide

different means of obtaining the original function by different interpolation methods. In

order to obtain the correct function the interpolation method has to be used which also

was used in the discretization step. This is of special relevance, if differential terms such

as gradients have to be evaluated in “non-grid” points.

1.1.9 Mathematical Error Estimation

The step of mathematical error estimation has two main purposes: First and most

straight-forward, the error in the total simulation result shall be estimated and – if pos-
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sible – reduced. Second and more relevant, the error can be localized and assigned to

separate shape functions. This implies that these functions are inappropriate for forming

the solution of a given problem and in general have to be altered. In terms of functions

with local support the regions of support are divided into subregions where new functions

are generated, which are used for a subsequent discretization and solution of the problem.

The measures which are taken for measuring the error are so-called a-posteriori [5, 6, 7,

8, 9] error estimation methods. These methods are proven to work on a class of linear

problems whereas their correctness cannot be proven in general. Despite this fact these

methods are commonly used in order to have a heuristic method for refining and fitting

shape functions.

1.1.10 Physical Interpretation

After the mathematical solution is obtained and proven or assumed to be adequate for the

posed problem, the mathematical solution may be interpreted in a physical manner. Here,

all purely mathematical values gain a physical meaning. As an example, vector functions

or vector fields [10] may be interpreted as velocity fields. The physical solution can be

compared to an experiment which is carried out, e.g. to verify or refine the simulation.

Mathematical solutions are typically free of physical units and perhaps scaled with respect

to a given system of units, for instance the SI. Constants which occur in physical problems

have to be scaled to a special system of units, e.g. the vacuum dielectricity constant ε0

has to be scaled with respect to the scaling of the occurring voltages, distances, time

steps, and currents.

For this reason, simulations results where no such special constants occur explicitly, e.g.

the Laplace equation (in its mathematical interpretation), may be valid for various simula-

tion problems. However, it has to be remarked that derived quantities, e.g. field strength,

depend on the scaling used. The physical interpretation can result in scaling the complete

simulation result due to a re-scaling of all stored values.
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1.1.11 Physical Model Validation

All physical models have a range of validity where models are designed to obtain a sim-

plified description of some physical mechanism under certain circumstances. If these

assumptions are incorrect, the solution of the model might be wrong. Typical examples

for physical assumptions are listed below.

• Low masses or energies for non-relativistic models

• Lattice temperature equals carrier temperature for isothermal models. Otherwise

higher order models [11] must be used.

Several measures might be taken in order to avoid problems with physical models becom-

ing invalid. In most cases the model is replaced by a refined and perhaps more elaborate

or detailed model with extended range of validity. Sometimes it is possible to use refined

models only in regions where extended parameter ranges are required.

1.1.12 Answering the Initial Engineering Question

As a last step the initial engineering question has to be answered. In many cases the

visualization of the mathematical or physical solution is sufficient to give a correct answer.

Some questions, e.g. the detection of thermal breakdown, can be answered by looking at

the heating curve. In some cases the answer is not trivial to find or more simulations have

to be performed, which makes answering the question cumbersome or even impossible.

In many cases engineering questions seek to find some optimum configurations of devices

or methods. In this case, many simulations have to be performed and their results have

to be post-processed. From these results further simulations have to be started and an

optimization loop is run. After a certain criterion for accuracy is reached, the loop is

terminated and the final solution is retrieved.

There is a large variety of optimization processes available which are partly integrated

into simulation environments [12] or available as stand-alone optimization framework [13],

which can be used for arbitrary underlying simulation tools.
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1.2 Related Work

As the main objective of this thesis is the convergence of scientific computing and simu-

lation mechanisms, this work aims to combine many different topics.

First, functional programming and general purpose lambda implementations are treated.

Available implementations have several difficulties and disadvantages with respect to topo-

logical data structures.

Second, topological implementations are considered. In many cases the topological im-

plementation relates to one particular incidence relation and can, therefore, be seen as

implementation of one type of discretization.

Algebraic solution mechanisms are relevant for this thesis as they are immanently neces-

sary for the implementation of scientific simulation software. Even though the actually

used methods can be seen as a black-box method from the discretization point of view

(except for optimization), the interfaces for accessing the matrices are considered.

As related topic highly automatic solution frameworks such as FEMLab [14] can be con-

sidered. Even though these frameworks have a high flexibility at the modeling level and

a large variety of differential equations can be formulated, the discretization is performed

by one scheme only, so that many solution methods for special equations can not be

investigated.

MATLAB is very a powerful general purpose environment with a large number of imple-

mented functions. It can be used for a large variety of mathematical problems and pro-

vides comfortable features [15]. Additionally, many software packages or libraries that

are programmed using MATLAB are available to tackle single specific tasks such as the

solution of different kinds of differential equations based on physical phenomena, for in-

stance hydrodynamics or thermodynamics. Furthermore, discrete simulation models can

be used, for instance neural networks [16], electrical circuit analysis [17] (e.g. for signal

processing), or image processing tools [18].

However, it has to be stated that the MATLAB-language itself only provides imperative

programming methods and rudimentary object related methods. The specification of the

formulae is directly written into the program code. Compared to the generic programming
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approach [19] which is typically used for C++ and STL [20] applications the flexibility is

rather limited. The functions used require special memory layouts of the passed arguments

and further development for data types with higher performance are prohibited.

The last section comprises the framework GSSE [21, 22] which is an implementation of the

mathematical concepts presented in this thesis. Moreover, GSSE forms a software basis

for the considerations of Chapter 3 and Chapter 4 as it allows an abstract topological

treatment of arbitrary cell complexes.

1.2.1 Functional Languages for Formula Specification

Functional programming is a technique which enables the formulation of functions which

can be combined in order to form compound functions. Finally, one of these functions

is applied to the desired data structure. This function contains all relevant information

required to determine, e.g., a discretized equation. A formalism can be obtained with

which discretization operations can be carried out.

In C++ [23] different libraries have been developed which use object-oriented and generic

programming [24] methods in order to emulate functional programming. The basic con-

cept which makes functional programming possible in C++ is the function object [23]

or functor. The standard template library [25] which is an integral part of C++ offers

very basic methods for the implementation of function objects, such as binders and higher

order functions. The lack of operator overloading makes the use of the functional parts

of the STL rather cumbersome and inconcise for the specification.

The Boost Lambda library [26, 27] offers basic functionality like operator overloading,

partial function evaluation, higher order functions, and unnamed variables. The FC++

library [28] offers the treatment of functions of arbitrary order.

The Boost Phoenix 2 library [29] which is used for the implementation of frameworks

offers explicitly named variables which extremely eases the implementation of accumu-

lation operations required for the discretization and assembly of differential equations.

Furthermore, it offers access to arbitrary containers, the implicit use of C++ loops, and

conditional expressions.
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1.2.2 Structures Handling Topological Data

First, the frameworks are discussed which deal with discretized differential equations using

distinct discretization schemes on a given topological framework.

One of the main inspirations for the development is the GrAL framework [30, 31]. In

this work the main ideas of topological traversal as well as treating the underlying cell

complex with topological methods are given. Implementations exist for many different

problems regarding scientific computing.

SGFramework [32] is a mathematical framework especially designed for the solution of

partial differential equations using the finite volume method. Various differential equa-

tions can be specified whose discretization can be formulated using finite volume schemes

as described in Section 2.3. A similar framework which is intended and designed for the

solution of drift-diffusion [33] semiconductor equations is Prophet [34].

Roxie [12] is a design environment for the electromagnetic optimization of accelerator

magnets. Many optimization features are treated which allow to solve a (quite restricted)

engineering problem, namely how to obtain a magnetic field which is possibly identical

with that of a given multipole in a large field of an accelerator magnet.

A topological framework for treating triangular and tetrahedral meshes is the wafer-state

server (WSS) [35]. This framework offers the possibility of treating quantities which are

related to vertices as well as a very generalized approach towards segmentation and the

use of subsets of the given cell complex. The topology treatment is reduced to cells and

vertices and the only incidence relation available is to obtain all vertices which are incident

with a common cell. For these reasons the application to methods which do not use cell

based element matrix assembly is complicated and requires various workarounds.

The smart analysis programs (SAP) [36] are implemented which provide a high perfor-

mance solution of a small number of equations such as the Laplace equation or diffusion

equations.

There are several special purpose environments for the solution of very special kinds of

differential equations, especially the Navier Stokes equations for fluid mechanics [37, 38].

These environments typically do not offer many different configuration features and are
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specially optimized for this single purpose. The topological cell complex implementation

is often directly integrated into the assembly process which makes these tools apt for this

special purpose. For general studies on discretization schemes such environments are not

intended.

Other tools which also involve geometrical features of the respective cell complex are mesh

generators and computer geometry algorithms [39]. In contrast to the generic scientific

simulation environment (GSSE) [40], which is designed for flexible topological operations

and quantity treatment, these environments offer flexible methods for changing the ge-

ometry as well as re-meshing given domains.

The simulation environment dealII [41, 42, 43] is intended as a rapid prototyping tool

for finite element simulation and offers methods for mesh refinement and error estimation.

The specification of discretization schemes is usually done by writing the local element

matrices for finite elements of arbitrary order. dealII provides own mesh refinement

strategies, different topological elements, and shape functions of different order.

Especially for the use of graphs the Boost Graph library [44, 45] is developed. This library

contains various algorithms for graphs and implements STL concepts of accessing data

which are associated with vertices and edges. Functional structures can be defined in

order to formulate local expressions on single nodes.

1.2.3 Algebraic Solvers

Software for the solution of algebraic equations is required after the discretization of a

given differential equation has been assembled. The typical and mostly explored field is

the solution of linear equation systems. For such systems various implementations are

available. An established standard for the treatment of linear equations is LAPACK [46],

which defines a set of interaction functions at different levels.

PETSC [47, 48] and Trilinos [4] solvers have a general purpose interface for accessing and

solving linear equation systems and eigenvalue equation systems. Many different opera-

tions for assembly are possible and various solution methods can be used and exchanged

without great effort, for instance, by changing a parameter.
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Even though the diversity of different methods used for the solution of eigenvalue problems

is considerable and special methods are used for special problems, there are approaches for

an intelligent and highly automatized approach towards the solution of algebraic problems.

First, the large variety of methods of PETSc and Trilinos allows to test and evaluate

different solution methods and parameter settings. In addition, special expert systems

like EigAdept [49] have been developed to automatically solve algebraic equations using

the best available method. Such environments enable to use an algebraic solver as a black

box, while the user does not necessarily need to specify the solution method.

1.2.4 Automatic Environments

For the solution of partial differential equations, which often also interacts with modeling

of physical and engineering processes highly automatized environments are widely used.

For the solution of physical problems only the respective differential equations with the

respective parameters have to be given and a geometry has to be specified.

Ansys [50] is a professional approach which offers an unexperienced user approved nu-

merical methods and discretization schemes for the solution of simulation problems at a

physical level. Standard simulations can be carried out without deeper knowledge of the

process of discretization and solution of the respective equations, whereas the main focus

is put on user-interoperability. It can be integrated directly in a computer aided design

and engineering process and offers methods which are generally approved and tested under

a large number of circumstances.

For the development of new models and discretization methods these methods are gener-

ally not appropriate, because many settings which would have to be set are at a low level

which requires deep insight into the numerical details of the simulation. This, however,

contradicts the initial aim of providing a high level simulation tool.

General purpose computer algebra programs like FEMLab [14] offer different methods of

high level access to differential equations. In contrast to Ansys, these frameworks are

intended to solve the respective problems at mathematical layers, even though physical

interpretations and add-ons exist.
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1.2.5 Conclusion

It has been shown that the introduced frameworks have different focuses with respect to

the classification shown in Section 1.1. Fig. 1.2 shows the flexibility of related software

tools within the single layers introduced in the former section.

It can be seen that none of the investigated tools provides high flexibility in the discretiza-

tion layer as well as in the interfaces to the discretization layer. One of the main reasons

is that the discretization strongly relies on the underlying topological structure which is

often restricted to special access methods. The following section shows an appropriate

topological framework with which these operations are possible and the discretization can

be carried out.

1.2.6 GSSE

This work is based on the implementation of the Generic Scientific Simulation Environ-

ment [40, 51, 22], which contains methods for handling the underlying topological data

structures as well as storing quantities with respect to these structures. Furthermore,

a functional layer is provided with which one is allowed to formulate functional expres-

sions based on the quantities associated with the topological elements as will be shown in

Section 2.3.

The implementation of the topology handling is shown in detail in [21] and forms the

base of the considerations of Section 2.3. The main advantages of this library over other

libraries is that arbitrary topological elements can be used and quantities can be associ-

ated with any topological element. Such a framework is necessary in order to provide a

functional calculus as will be shown in Section 2.5.

The second major part is a functional programming layer as discussed in Chapter 5. The

main idea behind this layer is to provide a mathematical description language to formulate

expressions, especially for discretization schemes. Furthermore, an additional indirection

allows to formulate residual expressions and to implicitly obtain all derivatives necessary

in order to assembly the required system matrix.
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1.3 Aims

Tools regarding the discrete specification of scientific problems as well as an abstract

treatment of interfaces to both, discretization schemes as well as algebraic solution meth-

ods (solvers), are required. In special cases all of these tasks can be implemented in

an appropriate manner, however, the flexibility of the implemented code is rather low.

Even though a high flexibility can be obtained with single solvers and the handling of

discrete topological complexes, an appropriate framework for interfacing these features is

still missing.

The aim of this work is to provide a mathematical framework for the discretization,

linearization, and matrix interfacing, which closes the gap between flexible and highly

performant algebra tools and topological tools for the handling of discrete structures with

which discretization schemes can be realized.

For the discretization or the formulation of discrete problems, a functional calculus is

provided, with the main aim to preserve the topological opportunities which are offered

by the topological structure implemented in the GSSE library. Furthermore, one of the

design goals is that with the aid of this calculus it has to be possible to implement different

kinds of discretization schemes. As a consequence different methods can be compared,

while the implementation effort is kept to a minimum.

By storing the expressions for different discretized differential operators in a library it is

easy to use pre-formulated expressions in order to solve one’s own differential equations.

Within such a library different methods regarding modeling, discretization, and algebraic

solution of the respective problem can be tested and optimized.

The next aim is to ease the effort for the specification of derivatives with respect to single

solution variables for the assembly of a discrete algebraic equation which is, especially for

the implementation of finite volumes, most cumbersome and error prone. Additionally, the

formulation of the respective formulae shall remain as simple as possible and no separate

framework for the specification shall be required. Furthermore, the assembly of matrices

should be treated in a manner that the solver used and its respective matrix format can

be used in combination of the other methods.
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The overall goal is an arbitrary combination of methods explained in the above listed

aims. If combined with an abstract solver interface, a large variety of different problems

can be approached using such a framework.



Chapter 2

Discrete Problems and

Discretization

Methods designed to transform continuous mathematical problems - in most cases partial

differential equations – into algebraic problems are called discretization methods. Such

a continuous problem is usually given by a model for the governing physical processes

which are determined by the physical reality to be investigated. The problem is given

on a continuous space which is usually a subset of R,R2,R3, . . .. This means that one

is faced with at least an ordinary differential equation (ODE) or a partial differential

equation (PDE) that optionally contains temporal derivatives.

Discretization considers the fact that analytical methods which are known from functional

analysis cannot be directly applied to functions stored in a computer, and an assumption

on the functional structure of the single elements has to be made.

One main aspect of this chapter is the development of a formalism which is designed for

writing expressions in the context of discretization. It is shown that such a formalism can

be used for a concise definition of the topological as well as the functional structure of

the respective discretization formulae. This formalism can be used for the specification of

computer programs, when such a formalism contains sufficient information to carry out

all operations which are required for the evaluation of the formulae.

23
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2.1 Numerical Discretization

The result of floating point numerical operations inevitably leads to a certain error, namely

the numerical discretization error or truncation error. This error affects all calculations

that are carried out with floating point arithmetic.

A necessary restriction on computational data types is that only a finite memory space

can be used in order to represent a numeric value. This implies that only a finite number

of numeric values can be represented while most of the numeric values of the solution can

only be approximated. After a set X of real numeric values is defined each real value that

has to be treated numerically has to be approximated by members of the set X . This

inevitably results in a numerical truncation error which is made when the real values are

replaced by members of the set X .

2.1.1 Numerical Discretization Error

In most cases floating point data types are used which have the drawback that each single

operation imposes a numerical error. Under some circumstances such a behavior can

result in an accumulation or in an extinction of numerical errors. An introduction into

the effects of numerical calculations and the difficulties can be found in [52].

There exist data types which try to imitate the behavior of rational numbers [53], they

generally represent the numerator and the denominator of a fraction and use adaptive

integer numbers. By the determination of the greatest common divisor, for instance by

the Euclidian algorithm, a cancellation can be performed and the adaptive integers can

be kept small.

Even though these calculations are possible in principle, adaptive integer arithmetic oper-

ations are slow compared to the highly optimized floating point operations. Moreover, it

has to be stated that the closedness of the operation is limited to the memory consump-

tion. There are some numbers, whose sum or product can not be stored due to memory

limitations.

In contrast, computational data types typically used are not dense and do have some

given granularity g. The granularity is the size of an interval in which no number of the
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given data type is located. When using floating point arithmetic numbers, this interval

also depends on the size of the numbers within which the interval is searched.

The numerical error which is made by choosing a discrete representation of a number

instead of the “real” number can be estimated by 1/4g, where the error is equally dis-

tributed from −1/2g . . .+1/2g. For each operation which does not exactly lead to a value

within the set X of data type numbers, an approximation within the set X has to be

determiend.

2.1.2 Errors of a Numerically Discrete System

When performing numerical operations on one input variable, the error can be estimated

a in straight forward manner. In contrast, the handling of a system of equations is

more difficult to estimate. Methods which are used to solve algebraic problems have to

be considered with respect to their behavior when dealing with truncated or rounded

numerical values. For the following considerations the equation system

A · x = b (2.1)

is used, where A is the matrix, x is the solution vector and b is the right-hand-side vector.

The typical measure to describe an equation system is the so-called condition number [54].

κ := cond(A) = �A� �A−1� (2.2)

This condition number states the deviation of the solution vector of a linear equation

system measured by its norm with respect to the right hand side vector of the equation

system [54].

�Δx�

�x�
< κ

�Δb�

�b�
(2.3)

Such an estimation is useful, if the right hand side is added a numerical error, e.g. noise

caused by discretization. If numerical noise is added to the matrix, which is typically the

case when material parameters or geometrical coefficients for discretization schemes have
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to be determined via floating point computations including all occurring errors, another

consideration can be used [54]:

�Δx�

�x�
<

κ

1− �ΔA� �A−1�

�Δb�

�b�
(2.4)

Errors of this kind are considered in the numerical treatment of algebraic methods as

shown in detail in [54]. In the following considerations, the numerical error is not further

considered, because the main focus of this work is the specification of formulae rather

than the numerical treatment or the solution of special problems.

2.2 Functional Discretization

While in the former section the problems with the representation of a number have been

discussed, this section considers the treatment of functions in a computer. The main idea

of this section is that a function space with a given number of basis functions is used.

Each function is defined as linear combination of basis functions. In general, the basis

functions fulfill some basic properties such as continuity, smoothness, etc., which is also

preserved by the linear combination.

When these functions are stored in the computer, a function space comprising a finite

number of basis vectors is introduced. Each function of this function space can be de-

scribed as weighted sum of basis functions, fi where the weighting coefficients wi are

stored as a vector-like data structure w, while the basis functions of the function space

are assumed implicitly. Therefore, the function space covers all different functions which

can be written as a linear combination of the following form

f (P) =

N�
i=1

wi · fi (P) . (2.5)

The function space therefore represents the multitude of all possible functions which can

be treated in the computer. From this point of view it is clear, that once the function

and a special basis space are defined, only the coefficients need to be stored, whereas the

shape of the basis functions is implicitly assumed.
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In many cases the function space is defined in the following suggestive manner which is

typical for finite difference schemes: Given a set of points Pi, each of the base functions

fj of the function space F is associated to one of the points Pi in a way that the following

equation holds true, where δi,j denotes the Kronecker symbol.

fj (Pi) = δi,j , (2.6)

For this reason, each weighting factor can be directly associated with the value of the

function and the vector of these factors is understood as the set of points and their

associated function values. Such an interpretation is very suggestive, because the rather

abstract view on shape functions is replaced by direct function values, where the main

problem is, however, that the information of the functional behavior between the points

is lost. Differentiation, quadrature or the calculation of functionals is not possible from

this point of view, because the information on the basis functions is ignored.

Finite element schemes [55] as well as boundary element schemes [56] define the underlying

shape functions and then use form functionals, namely integrals, in order to determine

the respective discrete dependences between the weighting factors of the functions. Even

though the method can be written as an equation of weighting factors, the coupling of

weighting coefficients strongly depends on the shape of the basis functions.

In contrast, finite difference schemes [57] and to some extent also finite volume schemes

[33, 58] do not explicitly define the underlying function space. They mainly rely on the

discrete function values which are defined point-wise. Care has to be taken that for each

discretization step the same interpolation scheme is used.

2.2.1 Functions and Discrete Representations

Each function which can be represented in a computer can also be written as linear

combination of basis functions of a function space. A weighting vector is given which

comprises the single weighting coefficients for the basis functions.

As any other function, such a function has to provide a function value, in general a scalar

or a vector value when a point of the simulation domain consisting of coordinates is passed
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function are not always compatible with the initial assumptions about the functions used

for the discretization.

In analogy, the two- or three-dimensional extension of the Scharfetter Gummel scheme [3]

can be seen for the discretization of the drift-diffusion equations . The Scharfetter Gummel

method uses a re-formulation of the functional behavior of the carrier concentration n on

an edge in a multi-dimensional space. It can be described as a specialization of the finite

difference method which is characterized by a special assumption on the carrier density n

related to the potential ψ.

If this method is generalized to two or more dimensions using finite volumes - as it is

done in several scientific simulation environments [59] - the values of the function are only

defined on the connection lines between two points and it is assumed that the function

values do not vary in a direction orthogonal to the connection line. It can be easily shown

that such a method does not provide a solution for the complete simulation domain but

a function which is defined only on the edges [59].

Finite element schemes typically define shape functions and use these functions in order

to evaluate functionals. From this point of view at each stage of the calculation it is clear

which basis functions are used and how they have to be evaluated. A set of coefficients

in the computer to identify the function is used within the context of a sum of functions

weighted by some stored coefficients. It is therefore clear that also for post-processing

steps the same basis functions are chosen and the function is defined consistently with

the simulation.

In function spaces which use functions with local support the question of finding basis

functions can be reduced to finding an appropriate tesselation of the simulation domain.

The elements of the tesselation are used as local support for the respective basis functions.

Once an appropriate tesselation is found for a given simulation domain, the function space

can be defined in a straight forward manner by defining functions locally on single element

of the tesselation.

In order to find an element of the tesselation covering a certain point from this given point,

“point location” methods [60] using jump and walk algorithms [61] or binary trees like

oct-trees and quad-trees [62, 63] have to be used. Such a method is required in order to
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determine which basis functions have to be evaluated in order to determine the function

value of a certain point within the simulation domain.

2.2.2 Spatial Resolution of a Simulation Domain

In order to find simple basis functions of a simulation domain, the simulation domain is

tessellated into elements of a simple geometrical archetype [31], for instance into triangles,

where single shape functions can be defined. In this section the tesselation of the sim-

ulation domain is considered, while the next section shows the construction of the basis

functions on the tesselation.

The process of tesselation of a continuous domain, which is usually a partial set of R2

or R3 with a finite volume is usually performed by methods which are referred to as

meshing or gridding. The main aim of these methods is to tessellate the given simulation

domain into a number of subdomains. In most cases, the subdomains of the tesselation

are simplices [64].

Such methods are also used in other fields of computer science such as visualization or

computer games. In both fields, the main focus is put on the optimization of the visual

appearance. In many cases only the surfaces of the respective objects are required.

It has to be stated that this field suffers from many unsolved problems and the tesselation

of some simple domains as well as local refinement [65] turns out to be difficult and

impossible in some cases. However, these problems mainly occur in three-dimensional

simulation domains, whereas for two-dimensional domains the tesselation is rather straight

forward.

2.2.3 Shape Functions and Basis Functions

In scientific computing the main aim of the tesselation is to provide a number of pairwise

disjoint sets. Shape functions are transformed to single archetypical elements of the

tesselation and basis functions for the function space are obtained. Each of these basis

functions is non-zero on the given set (local support) whereas it is zero otherwise. The

shape of these functions is typically the same for all sets of the tesselation.
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These functions are applied to the standard triangle and this triangle is back-transformed

in its original position. Of course, such a transformation can be applied on many different

archetypes of elements and also the local shape functions can be altered. From this point

of view the shape of these functions f l
i can be chosen arbitrarily.

For the triangle example, the three shape functions are transformed to each triangular

element. One obtains a function space with linear basis functions defined on local elements

of the tesselation. However, it has to be mentioned that for such a function space even

very essential properties such as continuity are not given.

In order to guarantee continuity it is necessary to use a subspace of the original function

space defined by the local shape functions. The main aim is to search for a subspace

in which the base function and therewith all functions are continuous. To form such a

function space, some weighting coefficients have to be coupled in a predefined way. In

this case it turns out that the collocation of functions and points as described above is

convenient, because in the corner points, where several triangles intersect, the function

values have to be identical in all triangles. For this reason the function space is restricted

so that each shape function which is collocated with the same point has the same weighting

factor. Of course, the coupling of the weighting factors restricts the possible functions of

the function space and forms a subspace F ′ of the initial space F . The basis functions f ′

of the newly defined subspace F ′ of the original base space can be written in the following

manner, where the points of the intersection of the triangles are denoted as Qi.

f ′
i(P) =

�
j:fj(Qj)�=0

fj(P)

fj(Qj)
(2.11)

If the values of the shape functions in the collocation points are identically unity, the

definition of F ′ can be simplified to (see Fig. 2.3)

f ′
i(P) =

�
j:fj(Qi)�=0

fj(P) (2.12)
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coercive, other local shape functions imply further equations in the final equation system

and, therefore, an unnecessary use of memory and computation time.

In analogy to the measures which have been taken to derive the global shape functions

of the local linear shape functions the third order local shape functions yield the global

shape functions g′
i of the function space G ′ by

g′
i(P) =

�
j:gj(Qi)�=0

gj(P) . (2.13)

It has to be mentioned that in this case the collocation points Qj are the corner points,

points on the edges and points in the interior of the triangles. The functions which are

collocated with the interior of the triangle have their local support only on the respective

triangle. The functions which are collocated with an edge point of a triangle have their

local support on both triangles which are supersets of the common edge. As already

mentioned, the functions which are collocated with the corner points of the triangle have

their local support on all triangles which cover the respective point.

It should be noted that the method which has been shown for triangles can also be used

on many other archetypes such as tetrahedra, squares, prisms, and pyramides as long as

a transformation into a standard element and local element functions are given.

2.3 Topological Structures

In the last section it was shown that different collocation points result in different local

support of basis functions of a function space F ′ which are constructed via tesselation in

archetypical elements and a subsequent attaching of local shape functions.

The question arises if such a behavior can be specified independently from the geometrical

properties, because relying on geometrical features is inefficient and also inaccurate. For

instance, it is not possible to determine, if a point is on an edge or within a triangle, by

methods of floating point comparison. It is inefficient to search all triangles which are

within the neighborhood of a point or an edge, because a list or a tree has to be searched

and it has to be checked, if the respective elements are incident.
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The rule for the collocation of functions and their local support is briefly reviewed in

order to show the requirements on the underlying topological structure: Functions which

are collocated with the interior of triangle have their local support only on the respective

triangle, functions which are collocated with an edge point of a triangle have their local

support on both triangles which are supersets of the common edge, and functions which

are collocated with the corner points of the triangle have their local support on all triangles

which cover the respective point.

The properties which are required in all of these rules are of pure topological nature. This

means, that only properties of sets such as unions, intersections, subsets, and supersets

are relevant, whereas the geometrical properties such as coordinates and distances are

irrelevant for the execution of this rule.

In the following a structure is introduced which covers all the topological properties of

the initially described geometrical structure without describing its geometrical properties

comprising coordinates, distances, and angles. A method is briefly introduced which

provides proper means for handling the topological operations, e.g. unions, intersections

and operations for finding the local neighborhood of a given element. Furthermore an

association of basis functions basis on the topological space is given.

2.3.1 Finite Cell Complexes

For the definition of the underlying topological structure the definition of a topological

space is used [64]. A topological space consists of a base set D as well as a topology T

which is a set of subsets of D. The topology contains the empty set ∅ and the base set

D. Furthermore, the intersection of a finite number of elements of the topology as well as

the union of an arbitrary number of elements of the topology is contained in the topology.

The definition can be formalized in the following manner [64] and is called the open set

definition of a topological space:
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∅ ∈ T (2.14)

D ∈ T (2.15)

∀N
i=1ti ∈ T ⇒

N�
i=1

ti ∈ T (2.16)

∀∞i=1ti ∈ T ⇒
∞�
i=1

ti ∈ T (2.17)

First, it has to be stated that the number of possible sets within the topological space has

to be finite due to the limitations of the computer when associatively storing coefficients

on the elements. Secondly, in most cases the use of sets is cumbersome, because one is

actually interested in single elements of the tesselation, whereas sets containing different

unconnected elements of the tesselation are rather seldomly used. In analogy with vector

spaces, one can find a basis of elements from which the topological space can be composed

using union operations.

A set of subsets of a set H on which a topological space T is formed is called a basis, if

each set contained in the topology can be written as

∀t ∈ T ⇒ t =

N�
i=1

hi ∧ ∀ihi ∈ H . (2.18)

However, each set which is an element of the tesselation is the result of an intersection

of (a finite number of) such elements. If the underlying topological space is derived from

a finite cell complex which usually results from a tesselation, the basis of the respective

space contains all open cells, edges, faces, and vertices (or points).

If the information about the cells and their mutual intersection and union operations is

available, the information of the elements of lower dimension can be obtained by inter-

section of the (closed) cells. The set of the closed cells is said to form a subbasis, namely

a set from which all elements of the topological space T can be obtained by a union of

arbitrarily (but finitely) many sets of the subbasis S.
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∀t ∈ T ⇒ t =
�
i

�
j

si,j ∧ ∀i, jsi,j ∈ S (2.19)

The main advantage of such a subbasis is that there is only the restriction that ∪N
i=0si = D

for the subbasis S. (when using a finite number of elements).

In order to specify the construction of the topological space, the notion of a CW complex

is introduced [64]. A CW complex is a structure which additionally fulfills the so-called

weak-topology property. This means, that the boundary of each element of dimension

n is formed by one or more elements of the dimension n − 1. As a consequence, an

n-dimensional complex consists of at least one element for each dimension 0 . . . n.

The second property which has to be fulfilled by a CW complex, namely the closure-

finiteness, is trivially fulfilled by finite cell complexes which are directly implied by the

use of a computer.

2.3.2 Incidence and Traversal

In connection with the construction of a function space on a tesselation, it has to be

determined, which cells cover an edge or a vertex or which vertices are covered by an

edge. In general, it is not necessary to discriminate which of the sets is the subset and

which is the superset but one only defines the property of incidence ∼ between two

elements of which one is a subset of the other.

a ∼ c⇔ a ⊂ c ∨ c ⊃ a (2.20)

Once the property of incidence is defined, one aims to find all elements which are incident

with an initial element. Such a formulation is obtained, if the local support of a basis

function is required. As an example, the local support of a shape function which is

collocated with an edge point, is the set of all cells which are incident with the edge on

which the point is located. Therefore, the following definition of such sets of incident

elements turns out to be fruitful.

I∼,k(a) = {x : c ∼ a ∧ dimc = k} (2.21)
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O(e,v1) = 1 (2.25)

O(e,v2) = −1 (2.26)

This orientation function can be used in any simulation which makes use of a graph

comprising oriented edges. It is important that it can be determined in which direction

edge-related quantities, such as voltages in electronic circuits, are measured. It can be

observed that the actual direction itself usually does not play any role, i.e. that the

methods are independent from the orientation of the edges. However, once an edge

orientation is chosen for all edges, the results are only valid with respect to this orientation.

Other edge orientations result in another vector of solutions, whereas the obtained result

remains unchanged. The orientation function is also available for elements of higher

dimension as far as the dimension of two passed elements differs by one.

2.4 Topological Mappings of Shape Functions

In this section the function space introducted in the former sections is founded on the

definition of the cell complex C. Once the cell complex is established and available within

the framework of the computer, weighting coefficients can be stored in association with

the underlying cell complex and a function (which is an element of a predefined function

space) is established.

Again, it has to be stated that such an interpretation of a function stored in a computer

completely differs from the function by point interpretation, which is used in most methods

based on finite differences [57] or finite volumes [58].

A basic data structural requirement for the specification of the function space based on

a cell complex is that data can be associated with single elements of the cell complex. In

general, one or more mappings between elements of the basis H of the cell complex C and

some numeric data are used. Such a function might be defined as follows:

∀e ∈ H : f (e) is defined (2.27)
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c(p) = x1 + (x2 − x1) · p + a · (p2 − p) · →ex + b · (p2 − p) · →ey (2.30)

The parameters a and b denote the actual shape of the edge. If both are zero, the

formulation yields a straight edge between the points x1 and x2.

The parameters used in the definition are associated to the lowest-dimensional element

for whose definition they are relevant. A set of all incident lower dimensional elements

can be obtained via traversal.

The information regarding the position of a point is stored in the respective vertex. If

a parametric (geometrical) formulation of an edge, which is incident to the vertex is re-

quired, one can obtain the required information from the underlying vertex. However, the

geometrical formulation used implicitly has to guarantee, that the topological properties

of the elements are preserved under the geometrical transformation.

For this reason it has to be checked, if a higher dimensional element can be based on lower

dimensional elements. If, for instance, two points are congruent, the construction of an

edge based on these points is obviously not possible. This also implies that the curvature

coefficients of curved edges of a triangle must not be too large, in order not to degenerate

the triangle. In such a case there is no proper mapping between the topological elements

and their geometrical representation.

However, if the information of vertices is given explicitly and the necessary geometrical

information to construct a higher-dimensional element from its incident lower dimensional

boundary is stored in this element, a consistent geometrical definition of all cells can be

given. The information to construct higher-dimensional elements from lower dimensional

elements can therefore either be given globally by using straight bounded elements only

or by locally defining curvature coefficients.

2.4.2 Association of Functions and Topological Elements

Once the simulation domain is tessellated, the topological structure of a finite cell complex

is established, and a geometrical meaning is added to the cell complex, it has to be

clarified, if such a structure is useful for the representation of functions. It is considered

that all these elements can be handled in the computer and various values can be stored on
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different elements of the finite cell complex. In the following a method for the construction

of a function space based on an existing cell complex is given.

First, the function is defined by choosing shape functions and what is further defined by

the choice of weighting coefficients. It is clear that a tradeoff has to be found, because a

too small number of shape functions leads to a bad representation of the solution function

within the chosen function space and accordingly to a discretization error. Choosing too

many shape functions makes the calculations consume too many resources and too much

time.

A typical tradeoff is the choice of linear shape functions. The values which are obtained

on the common points of the complex are defined explicitly (by value) whereas the shape

of the functions is defined implicitly as linear on the single geometrical elements.

In the following it is assumed that each local shape function is transformed onto each cell

which gives N = l · c basis functions of a function space, where l denotes the number

of local shape functions and c denotes the number of cells in the cell complex. Each

basis function returns the value of the transformed local shape function within its cell of

definition whereas it returns zero otherwise. Using this method, one obtains a function

space F spaned by shape functions which are defined on the simulation domain.

In order to exactly address one of the basis functions it is necessary to specify the cell

where the basis function is defined. Moreover, the local shape function has to be given in

order to uniquely specify a basis function. At this point it is convenient not to number

the shape functions but to use the elements covering the collocation points of the basis

function, which are called collocation elements and named e.

As an example, the function space F of cell-wise linear basis functions is considered.

Each basis function of the function space F can be specified by giving a cell as well as

the collocation element. Each basis function f of the function space F can be written as

f(c, e).

Each shape function is directly assigned a weighting function that is associated with

the same topological element as the respective shape function. For the function spaces

with higher-order polynomial shape functions, the association of functions to topological

elements can be performed in analogy. However, it has to be considered that if on single
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topological elements more shape functions f ′ are collocated, quantity vectors have to be

used instead of scalar quantities.

In the following the question is discussed how the value of a function given as shown in

the former section can be evaluated at a certain position. For storing a function within a

computer, the following definitions, assumptions, and stored data have to be available as

explained in the former sections.

• Topological cell complex

• Geometrical base shapes (implicit)

• Geometrical coefficients (explicit)

• Shape functions (implicit)

• Weighting coefficients (explicit)

Each function given as a linear combination of basis functions of the a function space F

can be written in the following manner.

f(x) =
�
c∈C

�
e∈c

f(e, c)(x)w(e) (2.31)

When carrying out the summation by iterating all cells c and all incident collocation

elements e almost all elements are identically zero whereas only functions of the cell

which holds the given point yield non-zero values.

A simplification can be obtained by determining the cell that holds the argument point

x. For this purpose several point search or point location algorithms [61] can be used.

Both topological as well as geometrical properties have to be considered in order to find

the cell c which holds the given point. After the respective element has been found, the

function has to be determined.

f(x) =
�
e∈cx

f(e, cx)(x)w(e, cx) (2.32)
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where cx is the cell that holds x. The summation is carried out for all collocation elements.

The basis function f(e, cx) is evaluated with the given point x as argument and is weighted

with the function weight w(e, cx).

Alternatively, the weight function can be used independently of the cell c which restricts

the function space and couples the weights that are associated with the same collocation

element e. It can be seen easily that the resulting function space is identical to the

function space F .

Finally, it can be stated that the definition of a function, comprises information about

the weighting coefficients and the shape of the base functions. Information about the

weighting coefficients requires memory for each single collocation element.

Information about the basis functions comprises the geometrical shape of the elements,

the shape functions locally defined on the elements as well as the coefficients for the

geometrical representation of the elements such as coordinates and curvature information.

If the number of collocation elements is increased by h-refinement [5], for instance doubled,

the required memory for the weighting coefficients as well as the memory for storing the

geometrical coefficients is doubled. Each newly added collocation element is assigned a

weighting coefficient and, if necessary, geometrical information.

Adding a new function on the same topological structure (p-refinement) the memory

required for weighting coefficients is increased by the number of elements, whereas memory

usage for the geometrical coefficients remains unchanged.

2.5 Formulation of Discrete Problems

In the former section the topological base operations were defined in order to retrieve

elements which are incident with a given base element. As an example, all vertices in-

cident with a given face can be determined. A second feature resulting from topological

considerations is defined in this section, namely orientation. For each two elements of

dimension n and n − 1, an orientation function is defined that returns if these elements

are consistently oriented.
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Furthermore the method of association of topological data and numerical values allows

to store data on elements of the underlying cell complex. These numerical values can

contain geometrical information such as coordinate as well as curvature information.

In order to perform operations on functions which are based on the construction shown

in the former section, a framework of base operations has to be defined, with which all

necessary calculations can be carried out.

2.5.1 Basis Operations

In the following, a basic calculus of operations is defined which is required to formulate

a discrete problem in a functional manner: The calculation is defined exactly and can be

carried out by a computer. At a first glance, such a formalism seems to be trivial due to

the fact that each programming language defines basic arithmetic features. However, the

handling of the underlying topological structures is not supported at all so that additional

features have to be provided.

The most essential element of a description formalism is the access to a function which

is defined on the cell complex. Due to data structural considerations, the domain of this

function can be restricted to a certain skeleton of the underlying complex. However, this

does not affect the concept of the function. In this context the definition of a quantity is

employed in order to obtain the respective value for a given topological element. In the

formalism such a function can be formulated as q(e), where q and q′ denote the quantities

and e denotes the element on which the quantities are evaluated.
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In the next step basic arithmetic operations are introduced. Based on the rules which hold

for the underlying numerical data types, the operations are introduced in the following

manner:

q(e) + q′(e) =: [q ⊕ q′](e) (2.33)

q(e)− q′(e) =: [q ⊖ q′](e) (2.34)

q(e) · q′(e) =: [q ⊙ q′](e) (2.35)

q(e)

q′(e)
=: [q/q′](e) (2.36)

It can be seen that the functional component and the argument can be separated so that

larger expressions can be formulated using compact formulations. After the structural

difference between, for instance ⊕ and +, is observed, it can be easily seen that using the

same symbol, namely + for both notions does not introduce any ambiguity. In order to

discriminate between the first order binary operator which is applied on two real or rational

numbers and the second order operation which forms a function out of two given functions,

the context of the operator symbol has to be considered. If written between values, writing

q(e) + q′(e) the symbol has the meaning of the well known addition operation. When

applied like [q + q′](e) the sign has the meaning of ⊕ as introduced in 2.33.

The same holds true for the ⊖, . . . notation which compromises the readability of the

notation, while no additional information is added.

2.5.2 Constants and Second Order Functions

In order to provide the use of simple numerical constants, constant functions are intro-

duced which return a constant value independently from the actual argument.

q(e) + 2 = q(e) + 2(e) =: [q ⊕ 2](e) (2.37)

It is obvious that the numerical value 2 is structurally different from the constant function

2. However, the final formalism has to be defined in a programming language and,
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therefore, a discrimination of 2 and 2 would lead to an unnecessary complication of the

notation. In analogy to the basis operator symbols, the structure of the given functional

entities is clear and depends on the context in which it is used.

Next, function application is introduced in the following way, where the functional part

is strictly separated from the argument part.

sin(q(e)) = [sin ◦q](e) =: [Sin[q]](e) (2.38)

The application of the function sin() on the evaluation term q(e) may also be interpreted

as the application of the compound function Sin[q]() on the element e. In the following

the functions Sin[]() and sin() have a different meaning. Whereas sin() is the typical

sine function which is applied on numerical values and results in a numerical value, the

second-order function Sin[]() is a function which is applied to a functional expression.

Again, it can be determined from the context, if sin() or Sin[]() is meant.

Large expressions can be formed from the base operations. These operations have in

common that all quantities which are employed are implicitly evaluated on the common

element of evaluation, for instance a vertex, an edge or a cell. In the following section,

methods are introduced which perform operations on topologically different elements while

using traversal mechanisms as described in Section 2.3.

2.5.3 Accumulation

In many cases it is important to obtain the result of a sum of all values of a certain

function (or quantity), which are incident to an element e. For the sake of explicitness,

the topological element v denotes the traversed element and fulfills the condition e ∼ v,

where ∼ denotes the incidence relation. It is clear that a method for finding all elements

of fulfilling the condition e ∼ d has to be given by the topological framework. Usually

the underlying framework provides traversal for incidence and adjacency relations as well

as the traversal of all elements in a cell complex.
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�
v∈C:v∼e

q(v) =: [
�
∼

](e) (2.39)

It has to be stated that the functional character of the
�

symbol is different. On the left

hand side of (2.39) the
�

symbol denotes a summation in the commonly used sense, which

is passed an expression (here q(v)) as well as a summation range, namely all elements

for which e ∼ v holds true. On the right hand side, the
�

symbol denotes a function

which is passed the base element of the traversal as well as a function which is applied

to all elements to be traversed. The sum of the respective function results is returned as

function value of the summation function.

In this notation there is no explicit use of the traversed element v, whose explicit naming

is not necessary, because it is clear that all evaluations of the function q are performed

for which the relation v ∼ e holds true. In many cases the summation is not used on the

very general incidence relation but on a restricted version which can be written in terms

of the traversal function.

�
v∈EV (e)

q(v) =: [
�
EV

q](e) (2.40)

The main advantage of this functional formulation is that the formulation of the expression

is free from the given argument. This eases the effort of specification when coding the

formulae and makes the resulting code less error prone.

2.5.4 Accumulation Methods

It is also obvious that the summation can be generalized to an accumulation function.

In such a case the underlying numerical data type has to fulfill the requirements of a

commutative monoid [66] in order to retrieve sensible results, because the sum requires

the existence of a neutral element (in the case of the summation over an empty sum) as

well as a binary operation (the accumulation operation). Additionally it has to be noted

that the set of elements on which the summation is based does not imply any natural
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order. For this reason the binary operation has to yield identical results independently

from the order of the elements. In order to fulfill this requirement, it is sufficient that the

operation is associative and commutative.

Under these circumstances, the following accumulation operations can be formed. The

set, the binary operation, and the neutral element are given as well.

• Sum,
�

(R, +, 0)

• Product Π, (R, ·, 1)

• Exist ∃, ({0, 1},∨, 0)

• All ∀, ({0, 1},∧, 1)

• Union
 

, (T ,∪, ∅)

• Intersection
�

, (T ,∩, X)

• Maximum Max, (T , max(·, ·),−∞)

• Minimum Min, (T , min(·, ·), +∞)

The union and the intersection operation show that the operations are not necessarily

numerical. Indeed, a structure T which is a topology on a set D fulfills the requirements

of a semigroup. It is also possible to characterize the minimum as well as a maximum of a

function via this mechanism. It can be seen easily that the max function, which returns the

maximum of two given arguments is commutative as well as associative. Furthermore an

arbitrary neutral element is given so that max(−∞, x) = x and due to the commutativity

max(x,−∞) = x. Analogously, the minimum function can be introduced, where the

neutral element is +∞.

When traversal functions are used, the results are presented as sets. When using a com-

puter, these sets are given as a certain sequence that covers additional information of

the order of the elements. In order to eliminate the influence of the ordering of the
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elements, only accumulation associative and commutative accumulation methods are al-

lowable. Commutative monoids exactly provide these features and the results are (at least

with exact numerics) independent of the special order.

In addition, the number of topological elements within a traversal set can be directly

written as
�

. The result of counting the elements is independent from the order of the

elements.

An alternative accumulation method is to form a vector from the given elements. It is

clear that such a method strongly depends on the order of the elements. In some cases,

however, such a formulation can be of favor, especially, if only properties of a vector or a

matrix are required, which are invariant with respect to permutations of the lines, e.g., the

absolute value of the determinant. The symbol, which is used to denote this vectorization

is
�

.

2.5.5 Multi-Argument Functions

Hitherto, the argument which is passed to a function was treated in a straight forward

manner. Functions pass the argument given to the compound functions, these functions

are evaluated and afterwards, an operation is performed using the result of the single

evaluation of the compound functions, for instance an addition. For the summation an

equivalent problem occurs. As a first example, which shall introduce the use of unnamed

functions, a binary function f(x, y) is given. A compound function shall be written which

yields the following result: g(x, y) = f(y, x).

Due to the possibility of altering the argument of the quantity functions, functions are

not restricted to the evaluation of one single argument. As a consequence it can also be

sensible to use a binary second order function. Here, the unnamed functions u1 and u2

represent the following dependences:

u1(x1, . . .) := x1, u2(x1, x2, . . .) := x2 (2.41)

This can be generalized in the following manner:

un(x1, . . . , xn, . . .) := xn, (2.42)
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In order to specify the required commutation function, one can write the following func-

tional expression:

g(x, y) := [f(u2, u1)](x, y) = f(u2(x, y), u1(x, y)) = f(y, x) (2.43)

In order not to complicate the already introduced one-argument formalisms, it is generally

assumed that all arguments are passed to the respective function in the correct order.

Quantities can therefore be evaluated with respect to one of the passed arguments. In

this case, the respective second order quantity function (for the sake of explicitness, the

second order function is written as Q) can be evaluated.

If the second-order quantity function Q is evaluated with respect to the first argument it

can be written shortly as Q1 or only as Q. An evaluation with the second-order function

is written by the abbreviation Q2. Using this notation, the following expressions hold

true:

[Q(u1)](v, w) = Q1(v, w) = Q(v, w) = q(v) (2.44)

[Q(u2)](v, w) = Q2(v, w) = q(w) (2.45)

If quantities functions are evaluated within the scope of a binary function, expressions

can be formed in the following manner:

[F (Q(u2), Q
′(u1)](v, w) = F (Q2, Q

′)](v, w) = F (q(w), q′(v)) (2.46)

If higher order functions are used with unnamed functions as arguments in the natural

order such as F (u1, u2, . . .), the notation can be replaced by writing bullets • instead of

the unnamed functions. This abbreviation leads to the following formalisms

[F (u1, u3)](v, w, x) = [F (•, u3)](v, w, x) = f(v, x) , (2.47)

[F (u1, u2)](v, w, x) = [F (•, •)](v, w, x)) = f(v, w) . (2.48)

It can be seen that the consequent passing of arguments to a function is used as default,

whereas deviations from this standard have to be specified explicitly. The following binary
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function shows the determination of the number of common vertices of two simplicial cells,

for instance tetrahedra. This can be necessary, whether it has to be determined, if two cells

have a common edge (two common vertices), a common facet (three common vertices), or

they are identical (all four vertices are identical). As an auxiliary function, the Kronecker

symbol δ function is used. If two elements are identical, this function returns unity,

otherwise zero. The respective second order function is called δ.

cmv(v,w) := [
�
V C

[
�
V C2

δ(•, •)]](v,w) (2.49)

As for all other elements of this calculus, also the summations are second order functions.

Hitherto, it has been implicitly assumed, that the base element of the summation is

the argument passed to the sum function. As two arguments are available, it has to

be specified which argument is used. In order to treat sums as any other second order

function, a function is passed to the summation function, which determines the base

element of the summation from the arguments passed.

2.5.6 Accumulation in Depth

In the following section a summation is considered in which different traversed elements

are required in the summand function in order to evaluate quantities. A quantity q has to

be evaluated in a traversed vertex v whereas a quantity q′ is evaluated in the base element

c of the traversal. The non-functional description of the summation can be written as

follows:

�
c∈V C(v)

q(v) · q′(c) (2.50)

Using the methods from Section 2.5.3 the expression can not be transformed into a func-

tion that can be written as unary function to be evaluated in the vertex v. The main

reason for this problem is that only the cell c is passed to the inner function, whereas the

vertex v is not available and, therefore, can not be passed to the summand function.
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A simple method with which the argument value of the outside argument can be preserved

when changing the argument list is based on named variables. Before the summation is

carried out, a named variable, in this case v is assigned the (vertex) value of the argument

passed. When the summands are evaluated, the function argument is the traversed cell

incident to the initial vertex. However, the named variable v can be accessed in analogy

to an unnamed variable. A formulation of (2.50) using only functional expressions and

named variables is

v:=u1� �
V C

q(v) · q′(u1) =

v� �
V C

qv · q
′ (2.51)

The
�

operator is used in order to explicitly assign the named variable v the value

that is currently provided in the function argument. In analogy to unnamed functions,

named functions can be written as underlined indices when quantities are applied on

them. Furthermore, the definition of the named variable as the first argument (v := u1)

can be simplified, because it is generally assumed that the first argument is preserved in

order not to be overwritten or discarded in the summation. Therefore, the assignment

can be neglected and only the name is written. Furthermore, the convention is introduced

that named variables are underlined in order to distinguish them from other terms.

Compared to the lambda function which is known from the lambda calculus [67, 68], the

order of the function remains unchanged, whereas named variables obtain a certain value.

An appropriate formulation can also be obtained by the lambda function, where the use

of named variables can be avoided. For the sake of clarity and conciseness it turned out

to be more appropriate to use this formulation.

The summation can be further simplified by collapsing the
� �

formalism to a common

summation symbol. The notation can be written shorter, without loss of generality. This

reasoning can of course be applied to all accumulation mechanisms.

v��
V C

qv · q
′ =

v�
V C

qv · q
′ (2.52)

Using schemes of this type, arbitrary formulae which especially contain summations with

function evaluation on different topological entities can be obtained. For simple equations,
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the formalisms can be specified easily and no specification overhead is required. For more

complicated expressions a concise and explicit manner of specification is provided.

2.6 Examples

In the last section a calculus has been introduced which offers a large variety of different

methods for the discrete specification of formulae. The following section provides examples

in order to show the advantages of this calculus in comparison to the standard formulation,

especially when using computers for the implementation.

The main aim of the following examples is to show the required steps. Even though some

methods only use features of the calculus, they are all formulated in a discrete manner.

Methods are shown which are of discrete nature and are not results of a discretization

process of a continuous problem, but which are modeled in a discrete manner.

In the following examples different underlying features are combined in order to calculate

the required data. In the first example only topological properties are necessary to deter-

mine the solution. In the second example the considerations rely on quantities and the

topological structure. The third example shows how geometrical problems can be solved.

In general the geometrical treatment relies on quantities, however, implicit information

about the geometrical structure of the cells is used. The same holds true for the fourth

example which uses implicit information on both, geometry of the cells and the shape of

the functions.

Even though also algebraic methods can be described via this formalism, the introduction

requires the use of linearized equations. An example for algebraic methods is therefore

shown in Chapter 4.

2.6.1 Topological Calculations

The first calculations are only of topological nature and are not based on engineering

problems at all. Only topological properties of the cell complex are used. Even though

such methods are not engineering problems, many engineering problems use these methods
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in order to improve the quality of the underlying data structures or ease the decision which

method to choose.

Number of Neighboring Edges of a Vertex

In order to estimate the number of diagonals of a multi-diagonal system matrix for instance

for an equation system, it has to be determined how many vertices are connected to a

vertex via an edge. As generally assumed, an edge is bounded by exactly two vertices.

The number of incident edges and the number of vertices which are connected via an edge

to a given vertex is identical. For this reason it is only necessary to count the edges which

are incident with a vertex. The formula expressing this fact can be written as follows:

N(e) =
�
VE

(e) (2.53)

In order to estimate the number of matrix diagonals, the maximum of neighboring edges

within the cell complex has to be determined.

diag(C) = MaxCV

�
VE

(C) (2.54)

In some applications it is necessary to obtain global information of the underlying cell

complex. This mostly depends on the fact whether such a complex features a hole or

consists of two non-connected subregions. These cases have to be discriminated before a

sensible mathematical consideration is possible. The Euler number [64] is determined in

the following manner from the number of cells, edges and vertices of a cell complex. This

can be easily achieved by the following operation:

[
�
CC

−
�
CF

+
�
CV

](C) (2.55)

One main advantage compared to the standard formulation is that this is an explicit and

unambiguous definition, which is directly executable by a computer.
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2.6.2 Discrete Solution Methods

A further step of complexity is the evaluation of quantities, namely functions which are

defined on elements of at least one type of topological elements of the cell complex. For

the following examples the cell complex considered is of dimension one, namely a graph.

In all of the considered models the modeling directly results in a discrete problem. The

main reason for the use of a discrete model is that the continuous problem is cumbersome

to describe and does not introduce any improvements on the accuracy of the results. Often

discrete simulation models are used, if the exact physical behavior is not sufficiently known

or if the physical behavior is too complicated to model.

In the following, simulation methods for electrical and mechanical circuits [69, 70], meth-

ods for supply chain networks [71, 72] are shown. Furthermore, a large variety of graph

based problems can be investigated using the same topological framework, for instance

neural networks [73], the simulation of telecommunication networks [74], or control net-

works [75].

The underlying topological structure for all these simulation methods is a directed graph

[76] (Fig. 2.9). Various implementations of graph data structures are currently available,

mainly coupled with simulation tools for the branches mentioned above and only few of

frameworks allow a data-structure independent implementation such as the Boost Graph

Library [44].

Typical applications require the summation of all incident edges of a vertex with different

weighting of ingoing and outgoing edges. In some cases, for instance for electrical or

mechanical circuit simulation it is required to weight ingoing edges with the factor +1

and outgoing edges with the factor −1 or vice versa. In other cases, for instance supply

chain simulation, only ingoing edges are considered, whereas outgoing edges are neglected.

In terms of the topological framework of the GSSE, the direction information of the edges

can be used in formulations by the orientation function. For the application of electrical

networks this formulation is quite convenient. The first Kirchhoff Law can be written as

follows
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v�
V E

O(•, v)I = 0 . (2.56)

Many other simulation applications provide an inherent flow direction, for instance supply

chain simulation. While for the simulation of electrical circuits the orientation of edges

and vertices has to be defined arbitrarily (see Fig. 2.10), the orientation of edges and

vertices in a supply chain has to be adapted to the special supply chain or a control

network (see Fig. 2.11).

In supply chain simulation, a processing facility, a machine, a transport lane, or a human

is associated with a node or vertex. For a control network, a control element such as a

control path or a controller associated to a vertex. If the output of one element associated

with a vertex is required as input of another element, an edge incident with both vertices

is introduced.

Typically, each element associated with a vertex fulfills a typical behavior, namely it

takes its input as well as its internal state and processes one or more output values. In

order to specify this behavior with the means shown in the previous section, the following

formulation can be introduced

q =

v�
V E

O′(•, v)

e�
EV

O′(•, e)f(q) , (2.57)

where q denotes the output quantity of a vertex. The processing of the input quantity is

specified by the function f . The modified orientation function O is defined as follows:

O′(v, e) :=

�
O(v, e) = 1 : 1
O(v, e) = −1 : 0

It can be seen easily that a number of output quantities is calculated and subsequently

multiplied with zero. Even though this leads to a correct result, the performance of the

calculation is unnecessarily worsened. For this reason a traversal method IE can be used

which only considers the vertices which are located on the ingoing edges of a given vertex.
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The traversal method IV returns the source vertex of an edge. Using this formulation

(2.57) can be simplified as follows:

q =
�
IE

�
IV

f(q) , (2.58)

Such a method can be excellently applied to neural networks [77]. Each input is weighted

with a predefined value w defined on the respective connection edge and the sum of all

weighted input quantities is formed. Afterwards a threshold function T is applied to the

weighted sum.

q = T (
�
IE

w
�
IV

q) , (2.59)

It can be seen that graph based discrete models can be easily written in the specification

language proposed in the previous section. Graph based simulation methods can be

formulated using the traversal methods introduced in this section.

2.6.3 Geometric Examples

In some cases it is necessary to determine the volume of a cell. For instance, many

formulae for distinct integrals lead to a formulation which contains the original volume.

In the following case the calculation of the volume is shown for a tetrahedron. A typical

formulation of the volume of a general simplex can be defined as follows.

!!!det
	 x4 − x1 y4 − y1 z4 − z1

x3 − x1 y3 − y1 z3 − z1

x2 − x1 y2 − y1 z2 − z1

�!!!
3!

(2.60)

For the determination of this determinant value it is necessary to obtain one definite

vertex from the set of incident vertices CV . This can be easily provided by a first vertex

function FCV which returns only one vertex of the cell. Furthermore, it is necessary to

remove the respective vertex from the set of vertices CV . Using the
�

operator, a matrix

can be provided. The vector value quantity x contains the coordinate of the vertices.
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V(c) =

v:=FCV (•)� | det[
�

CV \v[xv − x]] |

[
�

CV ]!
(2.61)

The expression xv evaluates the coordinate of the first of the incident vertices passed by

the FCV function. The accumulation
�

CV \v forms a vector in which the resulting vectors

of the subtractions xn − x1 are inserted.

2.6.4 Quadrature of Discretized Functions

The field of numerical quadrature can be divided into the integration of known analytical

functions, and the quadrature of element-wise given functions. Both are used in different

cases. The first method is commonly used for functions, which are not integrable by

analytical means. The main question is to find an accurate approximation of the inte-

gral value, usually by point-wise evaluation of the function value or the derivative. An

archetypical method for such an integration is the Gauß-integration method [52]. Such

methods inherently exhibit a discretization error, which usually depends on the accuracy

of the resolution of the tesselation. Finer resolutions lead to more accurate approximations

of the integral.

In the second case the functions are defined explicitly, for instance as a member of the

function space F . In this case all integrals can be determined explicitly. The quadrature

can be carried out without a discretization error caused by the interpolation of the point-

wise given function. In many cases this kind of quadrature is not used for the purpose of

obtaining the integral itself but for the specification of differential equations, for instance,

in finite element methods.

In this section a method to calculate the integral of a certain subdomain of the simulation

domain is shown. Such an integration domain is typically tessellated into several elements,

on which typically the same shape functions are defined and coefficients are stored. The

function can be retrieved by inserting the coefficients into the weighting coefficients of the

function.

In order to determine the integral over the integration domain, it is necessary to calculate

the integral on one cell, which depends on values stored either on the respective cell itself
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or on subsets of the cell such as edges or vertices. The following integration is carried

out for linearly bounded triangles. This method shall show the general methodology

and is applicable for different shapes of elements and different shape functions, as long

as the integration can be performed analytically. In other cases, methods of numerical

integration have to be used for each single element. The analytical result of the integration

leads to the following results

I(f) :=

�
c

f(x) dV =
(q(v1) + q(v2) + q(v3))

3
· V =


�
CV [q]

3
· V

�
(c) , (2.62)

where V denotes the volume of the cell. Combined with the formula for the value of the

simplices, the formula can be generalized to simplices of arbitrary dimension.

I(f) :=

�

CV [f ]�
CV

·

v:=FCV (•)� | det[
�v

CV \v[xv − x]] |

[
�

CV ]!

�
(c) (2.63)

The integration of the cell complex or a subset of the cell complex, which represents the

integration domain D can be obtained by the following formula:

�
D

f(x) dV =

�
CC

[

�
CV [f ]�

CV

·

v:=FCV (•)� | det[
�v

CV \v[xv − x]] |

[
�

CV ]!
]
�
(D) (2.64)

This formula yields the integral of a piecewise-linear function, where the subdomains, on

which linear functions are defined, are simplices. This holds true for arbitrary dimensions

and, therefore, represents a functional formulation of a general n-dimensional algorithm.

As such, it can be directly used in a program, only syntactical changes are necessary due

to the restrictions of the programming language.



Chapter 3

Differential Equations

In this chapter discretization schemes for differential equations are discussed in the context

of the formalism introduced in the previous chapter. By now it was shown how functions

are introduced to the computer, how functions can be evaluated, added and transformed

to other bases. The main focus of the following sections is to show that all discretization

schemes which are used for the discretization of differential equations can be formalized

in the same manner using the formalusm presented in the previous chapter.

As will be discussed in Chapter 4, the outcome of a discretization scheme is an equation

system, where the number of equations equals the dimension of the used function space.

In order to fulfill this requirement an association scheme for equations and unknown

variables is introduced. This association is based on the consideration that each basis

function has one equation on which the coefficient of the respective function has the most

influence. Such considerations are also referred to as control functions.

In the following sections the methods of formula specification of Chapter 2 are used in

order to form expressions according to the respective discretization scheme. It shall be

shown that typical discretization schemes can be specified using the formalism intro-

duced. Moreover, the formalism implies a view on how the discretization scheme directly

influences the underlying data structure. Each discretization scheme imposes different

requirements on the underlying data structures with respect to traversal and storage of

the quantities. A discussion on how the data structures can be chosen in an appropriate

manner can be seen in Section 2.5.

65
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In each of the sections the Laplace equation on a two-dimensional triangularly tessellated

simulation domain is investigated and formulated.

3.1 Finite Element Schemes

Many methods employed in scientific computing are based on a finite element approach.

The Galerkin method [55] for finite elements is discussed, however, other schemes can be

implemented as well. The approach of using Galerkin schemes on a topologically based

function spaces is shown. In the following, it is implicitly assumed that the differential

operators used are linear. Due to the usual solution mechanisms comprising discretiza-

tion and linearization this does not prohibit the proposed methods from being used for

arbitrary problems.

3.1.1 Weak Formulation and Galerkin Schemes

The method is based on the notion of the weak formulation or weak solution, which is

defined in the following manner: A function u is a weak solution of a differential equation

L(u) = 0 within the domain D, iff for each function w the following condition holds true:

�
D

L(u) w dV = �L(u), w� = 0 (3.1)

This condition can not hold true for arbitrary functions w, because the underlying function

space does not necessarily provide a weak solution. Consequently, one attempts to fulfill

such a condition as well as possible. For this reason, a space W of special weighting

functions w1 . . . wn is introduced, which is used to measure the deficiency of the numerical

solution.

A widely used approach, which uses the shape functions as weighting functions is the

Galerkin approach. It has been shown that such an approach has many advantages such

as providing a symmetric equation system or system matrix.

The typical formulation of a differential equation using the Galerkin finite element method

is written as

Rj :=
�

i

�
D

qiL(f ′
i) f ′

j dV =
�

i

�uiL(f ′
i), f

′
j� = 0 . (3.2)
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The coefficients qi denote the weighting coefficients for the shape functions. The solution

function can be written in terms of the shape functions in the following manner

u =
�

i

qif
′
i . (3.3)

It is assumed that the space of possible solution functions F ′ is derived from a given

tesselation of the simulation domain as shown in Chapter 2. For the sake of simplicity

linear shape functions are used, where single shape functions f ′ collocate with vertices of

the tesselation of the simulation domain.

3.1.2 Re-Formulation on Topological Properties

The indices i and j from (3.2) and (3.3) refer to the system matrix or to the numbering

of the degrees of freedom in the function space F ′. In this derivation, instead of indices,

topological entities, in this simple case vertices, are used. Therefore, each function of the

function space F ′ can be directly associated with its corresponding vertex so that one can

write f ′(v) instead of f ′
i , where v is the vertex with index i. In analogy, a function of the

function space F can be written as restriction of a function corresponding to a vertex v

restricted on a cell c, namely f(v, c). It has to be assured that the vertex v and the cell

c are incident in order to retrieve a valid, non-zero basis function of F . As can be seen

easily, these considerations can be used analogously for other topological entities on which

quantities are stored. The substitution of the notation leads to the following formulation

R(w, C) :=

 v�

2

�qL(f ′), f ′
v�

�
(w, C) (3.4)

Next, the shape functions as well as the weighting functions, both from the function

space F ′ are written as functions of the function space F . This can only be applied, if

the function space is derived from a tesselation of the underlying simulation domain and

yields

f ′ =

v�
V C

f(•, v) (3.5)
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3.1.3 Integration Example

In the implementation of the finite element scheme the actual differential operator is not

relevant for algebraic structure of the formalism. This section shows the application of

the finite element method to the Laplace equation

Δu = 0 . (3.10)

For such an equation functions are required which are twice differentiable. The usual

method to reduce this requirement is to apply the Green integral identity where one

obtains the following expression

K(c,v,w) =

�
T

Δf(v)f(w)dV =

�
T

�gradf(v), gradf(w)�dV . (3.11)

T denotes the local integration region. Using a geometrical transformation, simplicial

elements can be transformed into unity simplices. For other elements, e.g. cuboids, it is

also possible to transform the integration domain in order to simplify the calculation. The

following considerations concern the standard method of simplicial (triangular) elements

and linear shape functions. Methods in which the integrals can be solved analytically can

be treated in the same manner.

In most cases the quadrature can be performed analytically, which implies that most of

the calculations are carried out before the simulation is started. During the simulation

process predetermined numbers are inserted. In many cases, e.g. more complicated differ-

ential equations, irregular shapes of the elements, or when using higher order polynomial

approaches, it might be of favor to use alternative quadrature methods, mostly numer-

ical quadrature means. In such a case the evaluation of the function K invokes e.g. a

Gauß quadrature method. Moreover, it can be stated that a quadrature method for the

determination of the integral function K does only require information which is associ-

ated with one of the arguments passed. In some special cases it might be desirable to

use incidence traversal methods, e.g., to determine values which are associated to edges

of the respective cell.

In the following considerations the integrals are not evaluated as a complete matrix but

separately for each two vertices on a given triangular cell. The integral is evaluated using
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the typical geometrical transformation to a standard triangular element with corner points

in (0, 0), (1, 0) and (0, 1). The local coordinates of the transformation are denoted as η

and ξ. The associated shape function for the single vertices are η, ξ and 1 − η − ξ. A

transformation function can be found in the following way:

x = ξ(x2 − x1) + η(x3 − x1) (3.12)

y = ξ(y2 − y1) + η(y3 − y1) , (3.13)

where xn and yn denote the vertices of the triangle in any ordering. The derivatives of

the variables in the standard range η, ξ with respect to the original variables x, y are:

∂xξ =
y3 − y1

J
, ∂yξ =

y2 − y1

J
, ∂xη =

x3 − x1

J
, ∂yη =

x2 − x1

J
. (3.14)

Here, J denotes the determinant of the transformation matrix. Together with this deter-

minant the differentials can be transformed. The determinant is defined with respect to

the cell. For the calculation the coordinate values of the vertices are required.

J = (x2 − x1)(y3 − x1)− (x3 − x1)(y2 − y1), dxdy = Jdηdξ . (3.15)

In the first case of the evaluation of the function K, the vertices w and v coincide and

the point (0, 0) is used as point of the common vertex. The common shape function is

denoted as f(v) = f(w) = f(c) = 1− ξ − η.

K(c,w,v) =
�
T
(gradf(v), gradf(v))dxdy =

� 1

0

� 1−η

0
(∂xf

l(v))2 + (∂yf
l(v))2Jdηdξ =

� 1

0

� 1−η

0
(∂ξf

l(v))∂xξ� �� �
(y(v3)−y(v))/J

+ ∂ηf
l(v))∂xη� �� �

(y(v)−yy(v2))/J

)2 + (∂ξf
l(v))∂yξ� �� �

(x(v2)−x(v))/J

+ ∂ηf
l(v))∂yη� �� �

(x(v)−x(v3))/J

)2Jdηdξ =

� 1

0

� 1−η

0
(y3 − y2)

2 + (x3 − x2)
2/Jdηdξ = 
x(v3)−x(v2)


2J
= l(edge(v3,v2))

2J
(3.16)

It can be seen that the value of the integral depends on the volume of the cell as well

as on the length of the edge opposing the common edge (see Fig. 3.3). For this reason

a topological function opp(c,v) can be introduced which returns the edge opposing a
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3.2 Finite Volume Schemes

Finite volume methods are often used for the simulation of systems which inherently

involve the property of continuity, e.g. the conservation of fluxes or currents. Problems

of computational fluid dynamics as well as semiconductor device simulation [33, 58] are

typically implemented in finite volume schemes.

3.2.1 Secondary Graph Method - Gauß Integral Theorem

As a first step a function space F ′ is defined on the tessellated simulation domain. Typi-

cally, linear shape functions are assumed, however, it only has to be assured that all shape

functions are continuous [58]. For the secondary graph simulation method only vertices

and edges of the cell complex are used. Furthermore, the cell complex is associated its

dual graph comprising the cells of the Voronoi tesselation as well as the boundary surfaces

of these boxes. Dual elements of vertices are cells which cover the set of points closer to

the respective vertex than to any other vertex [78]. Each edge is assigned a part of the

boundary surface of the dual cell. If the original tesselation fulfills the Delauney prop-

erty, a dual graph can be constructed in a unique manner and the cells are disjoint and

bounded by the surfaces. If the Delauney property holds true for a cell complex, each

vertex v is assigned a dual cell c = dual(v). Consequently, an edge incident with the

vertex v bounds the cell c.

Each local shape function is defined with respect to a vertex and is non-zero on all cells

incident with this vertex. In the finite volume method, the governing differential operator

L has the form

�
T

LfdV =

�
T

divφ(f) + G(f)dV = 0 , (3.21)

where φ is a vector valued and depends on f and G is an ordinary function. The equation

is re-written under the Gauß integral theorem and yields

�
T

LfdV =

�
∂T

φn(f)dA +

�
T

G(f)dV = 0 , (3.22)
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where φn denotes the normal component of the resulting vector of the functional φ. A

first approach for the formulation of finite volume schemes is based on the assumption

that for each vertex the local shape function defined on the incident cells is evaluated by

calculating an integral on the surface of the dual cell. The part of the boundary of the

dual cell of the vertex v which is in a cell c is used as integration domain.

R =

�
T

LfdV (3.23)

R(v) = [

v�
V C

c�
CV

K(•, c, v)](v) , (3.24)

where K denotes the following integral formula. The function value within the cell (and

therefore also on the dual surface) depends on all quantity q values associated with a

vertex incident to the respective cell.

Φ(v, c,w) :=

�
∂dual(v)∩C

φn(f(c))dA (3.25)

f(c) :=

c�
CV

q · f(•, c) (3.26)

The function f(c) denotes the value of the solution function within the respective cell of

evaluation, f(w, c) denote the cell based shape functions of the function space F .

3.2.2 Edge-Based Boundary Integrals

In the former section the integration domain of the dual cell of the vertex was separated

cell-wise by

∂dual(v) = [
�
V C

∂dual(•) ∩ u1](v) . (3.27)

As a simplification of this method, the boundary surface can be written in the following

manner:

∂dual(v) =
�
V E

dual(•) . (3.28)
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This means that the surface can be written in terms of edges incident to a given vertex.

The boundary integral can therefore be written as follows:

Lf(v) =

v�
V E

w�
EC

K(v, e, •) , (3.29)

Even though more traversal methods are required, the evaluation of the inner integral can

be simplified, because the integration domain (surface) is a subset of a plane.

Φ(v, e, c) :=

�
dual(e)∩c

φn(f(c))dA (3.30)

Under the assumption that there is no change of the normal derivative throughout the

surface element or – the weaker assumption – that the integral mean of the normal deriva-

tive throughout the surface element can be calculated by a point-to-point interpolation

along the edge, shape functions only need to be explicitly defined on the edges whereas

the function value on the cells themselves is not relevant for the calculations.

As a consequence, the integration of the functional φn does not need to be performed

explicitly for each part of the boundary of the dual cell of a vertex. In such a case only

one mean value for the flux functional φn has to be determined and multiplied with the

area of the surface part A associated to the edge.

R(v) = [Lf ](v) = [

v�
V E

Φ(v, •)](v) (3.31)

In this case the integral is evaluated on the complete surface part dual to the edge e.

Φ(v, e) :=

�
dual(•)

φn(f(•))dA (3.32)

Accordingly, the function passed to the functional φn does not depend on the actual

position on the surface and is therefore multiplied with the area of the surface in order to

determine the flux. The integral can be cancelled and J yields

Φ(v, e) := φn(f(e))A(e) , (3.33)
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where φn(f(e)) is evaluated on the point at the intersection of the edge and the surface

element dual to the edge. This point is - due to the Delauney property - usually located

in the middle between the bounding points of the edge.

This formula is based on the assumption that the flux at the edge is representative for

the whole surface and does not vary along the surface or the integral at the surface only

depends on the flux at the edge. It is clear that this assumption can not be fulfilled for

different kinds of shape functions, but for most of the cases such a condition is fulfilled

approximately. For linear shape functions the condition is fulfilled exactly, because the

tangential derivative between two neighboring elements is identical and the derivatives

are constant throughout the cells.

In some cases, e.g. the shape functions for the Scharfetter Gummel discretization scheme

[3] on a two-dimensional simulation domain, the shape functions are not defined at all

for the elements. Moreover, it is assumed that there are sufficiently well behaved shape

functions (which are not explicitly given) that fulfill the required properties approximately.

3.2.3 Topological Structure of the Finite Volume Scheme

The finite volume scheme shown in Section 3.2.1 requires the following topological op-

erations: from a vertex all incident cells are required (determination of the integration

domain) and for these cells all incident vertices have to be traversed (determination of

the function values). Such a traversal scheme is identical to the traversal scheme of finite

elements which only have vertex-based shape functions.

The method described in Section 3.2.2 requires all incident edges of the initial vertex

for the determination of the integration domain. This integration domain is covered by

the union of two cells which are incident with the edge. In order to determine the shape

functions given on these cells, the function coefficients associated with the incident vertices

of the cell have to be determined.

If further requirements of Section 3.2.2 are given or assumed, the evaluation of the finite

volume differential operator is obtained by traversing all incident edges of the vertex and
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vertex. In the following it is assumed that for the integration the functional g has the

form of a (n-dimensional) Dirac pulse which is located in the geometrical point of the

vertex.

Another method is to assume that the variable value is distributed uniformly on the cell.

Even though such an interpretation of the quantity value is possible, it inevitably leads

to an inconsistence: Given the Poisson equation, the functional g is the cell-wise constant

right hand side of the equation and does not depend on the function f . If g(f) is constant,

the assumption of linear shape functions as chosen for the Laplace equation is inconsistent,

because the Laplace operator applied to the shape function always yields zero.

Therefore, the integral is evaluated by multiplying the function value associated with the

vertex with the volume of the dual cell of the vertex. If the functional g depends on f ,

e.g. g = sin(f), the evaluation of the cell is more complicated and not further discussed

here. In most of the cases it is appropriate to approximate f = f(v) throughout the dual

cell of v. Therefore, the following approximation can be derived:

�
dual(v)

g(F )dV = g(f(v)) ·m(dual(v)) = g(f(v)) ·m(dual(v)) , (3.37)

where the function m denotes the volume of a given dual cell. For the sake of brevity,

these two functions can be combined and one obtains the final formulation.

The distribution of quantities can be obtained from the topological view on the discretiza-

tion scheme. All solution quantities which are required to form the solution function are

associated with vertices. Furthermore, all quantities which are required to specify the

function g are associated with the vertex.

Geometrical quantities are associated with the topological elements or their dual elements

for which they are required. As an example, the volume of a cell (finite volume) is assigned

to the vertex which is dual to the respective cell. The area of the dual surface of an edge

is stored as an edge-based quantity. The length of an edge is also stored as edge-based

quantity.
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3.2.6 Drift-Diffusion Semiconductor Equations

For the discretization of the drift-diffusion semiconductor equations the flux terms have to

be considered. In a divergence formulation, the stationary drift-diffusion semiconductor

equations [33] can be specified as

div
→
φ = e0(n− p + C) ,

div
−→
Jn = e0R ,

div
→
Jp = −e0R . (3.38)

The associated flux terms
→
D ,
→
Jn and

→
Jp are usually defined in the following way

−→
φn = −εgradψ

→
Jn = e0nµngradψ + e0Dngradn

→
Jn = e0pµpgradψ − e0Dpgradp (3.39)

The solution functions are the carrier concentrations n and p and the electrostatic poten-

tial ψ. Here, ε denotes the permittivity coefficient, µ denotes the mobility of the carriers,

R denotes the generation/recombination rate for the carriers, and N denotes the net

doping.

For the sake of simplicity, only the electron carrier density is considered. By replacing the

respective signs, the calculations can also be performed for the hole continuity equation.

However, the final result will also be given for holes.

First, the Poisson equation is discretized in analogy to the Laplace equation. The respec-

tive flux relation for the dielectric displacement can be written in as expression evaluated
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on an edge. For this evaluation, the function values of the potential are evaluated on the

bounding vertices of the edge.

φn = ε · grad(n)ψ

φn(e) = [ε ·

e�
EV

O(e, •)ψ] (3.40)

The application of the finite volume scheme on this flux operator yields the following

discretization scheme. In addition, the right hand side is approximated by multiplying

with the cell volume.

Rψ(v) := [

v�
V E

Aε

d

e�
EV

O(e, •)ψ −me0(n− p + C)](v) (3.41)

It is reasonable to associate the flux related quantity ε with the edge so as to obtain a

straight-forward formulation. If the dependence of the electric field and displacement is

modeled in a non-linear manner, all coefficients which are related to the determination of

the displacement from the field strength can be associated to the respective edge.

Secondly, the continuity equation for electrons is considered. In contrast to the linear

interpolation for the potential along a connecting edge of two vertices, the carrier concen-

tration is interpolated using the Scharfetter-Gummel discretization [3]. The interpolation

does hereby depend on the potential which is given on the boundary nodes of the respec-

tive edge.

Even though the Scharfetter Gummel discretization was usually defined for one-dimensional

discretization, many simulation tools [59] use the interpolation along the edges for two-

dimensional or three-dimensional simulation. In its original formulation the Scharfetter

Gummel discretization of the electron flux can be written as

φn := Uthµn(niB(−Δψ)− njB(Δψ)) (3.42)

where ni and nj denote the carrier concentration in the boundary vertices indiced by i

and j. B denotes the Bernoulli function

B(x) =
x

e−x − 1
. (3.43)
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In analogy to the permittivity coefficient, the mobility for carriers can be stored on the

edges. Furthermore, coefficients describing the dependence of the mobility on carrier

concentration and potential can be associated with the respective edge. In the following

model, Uth is assumed to be a constant or a model-dependent global variable which is not

associated to topological elements.

φn := Uthµn

e�
EV

O(e, •)(nB(−O(e, •)Δψe) (3.44)

The potential dependent term in the Scharfetter Gummel scheme Δψ denotes the potential

difference between two bounding vertices of an edge, ψj − ψi. Based on the edge the

formulation can be written in the following manner:

Δψ =

e�
EV

O(•, e)ψ . (3.45)

3.2.7 Conclusion

The formulation of the discretized differential operators is aided by the topological oper-

ations and the functional means of specification.

The underlying topological framework needs to provide edges and vertices (actually no

cells) and for the sake of simplicity, even graph data structures providing incidence re-

lations and traversal functions can be employed for the implementation. Furthermore, a

geometrical algorithm for the determination of the areas and volumes of the dual surfaces

and cells is required. Another requirement is that an orientation function O is available

which determines, if a vertex is a source or a sink of an edge. For the use within a for-

mula the explicit orientation of the single edges is not relevant. The formula is said to be

invariant with respect to changes of the topological orientation. There are containers to

provide storage means for both, quantities on vertices as well as quantities on edges.

In contrast to the initial formulation of the Scharfetter Gummel scheme, an algorithm for

the implementation of the discretization scheme can be directly derived from the given

formula.
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3.3 Boundary Element Method

In finite simulation problems the boundary of the simulation domain is treated separately

and has to be considered. The actual simulation domain is chosen in a manner that all

irregularities such as non-linearities and inhomogeneities are covered. Physical phenomena

beyond the boundary are usually not of great importance and are therefore neglected. The

boundary conditions which are assumed at the boundaries of the simulation domain are

artificially defined by the shape of the considered simulation domain. As a consequence, it

may occur, e.g., that for wave equations, waves are reflected at the artificial boundaries so

that artefacts occur in the simulation result, which compromise the quality of the results.

Less remarkable but still evident is a behavior that can be observed when applying homo-

geneous Neumann boundary conditions on the solution of the Laplace equation. If more

space is between the boundary and the relevant configurations, the solution can eventually

become more precise, when the infinity of the surrounding space is of relevance.

Boundary element methods [56, 80] circumvent these difficulties, because the tesselation of

the underlying space is only required on the boundaries. The surrounding of the boundary

is assumed to be linear, homogeneous, and isotropic. In this case it is not necessary to

tessellate the domain far distant from the actual places of interest, but only the boundary

has to be tessellated. Therefore, quantities are only stored on topological elements on the

boundary.

A feature which makes the application of boundary elements attractive to simulation is

that boundary elements and finite elements can be coupled in a simple manner. A practical

example of the boundary element method is shown in [12], where a superconductive

quadrapole coil is simulated and the effects of the surroundings are explicitly considered.

3.3.1 Standard Formulation

In contrast to finite elements or finite volumes, shape functions do not have local support

but they are non-zero throughout the simulation domain. Normally, basis functions are

defined in a manner that they are defined by functions having boundary facets as local
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support. These facets are incident with a common vertex. In the two-dimensional case,

the facets are (boundary) edges incident with a boundary vertex.

The typical formulation of a boundary element scheme can be written in the following

manner (Galerkin formulation)

Ri :=

�
∂D

�
∂D

Mfi(s)fj(s
′)G(s, s′)dsds′ = 0 , (3.46)

where i and j are indices of vertices. For each vertex an equation Ri = 0 is assembled.

The fundamental solution [81] function G denotes a fundamental solution of the respective

differential operator L(f):

L(G(r, r′)) = δ(r− r′) (3.47)

The parameters s and s′ denote the position at the boundary surface or curve. The linear

boundary operator M can be written as linear combination in the following manner.

M(f) := αf + β∂nf (3.48)

3.3.2 Implementation-Based Formulation

The outer integral along the boundary of the simulation domain can be simplified in the

following manner by assuming the local support of the basis function:

R(v) :=

v�
BV

q

�
∂D

�
∂D

M(f(•))(s)f(v)(s′)G(s, s′)dsds′ =

v�
BV

qK(v, •) . (3.49)

The double integral is evaluated over the boundary of the simulation domain D. M

denotes the boundary operator, G denotes the fundamental solution. The basis function

f is defined by the vertex and stands for the function which equals unity in the argument

vertex. The quantity q defines the weighting coefficient for the respective basis function.

The integral expression depends on the type of weighting functions and the shape func-

tions. In this case the Galerkin method is used which means that the shape functions and

the weighting functions are equal. Furthermore, the integral expression depends on the
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choice of the boundary conditions used. Figure 3.9 shows the topological dependences

and requirements for the implementation of the boundary element discretization scheme.

For the implementation the topological incidence function BV is required. Due to the

linearity of the boundary condition, the formulation can be re-written in the following

form, where the coefficients α and β can be extracted by treating the expressions αf and

β∂nf of (3.48) separately.

K = αK ′(•, •) + βK ′′(•, •) (3.50)

It can be seen that the coefficients of the boundary condition are associated with the

respective boundary vertices. The evaluation of the integral terms K depends on the

shape of the boundary facets or edges as well as on the shape of the basis functions and

the weighting functions.

3.3.3 Conclusion

Due to the formulation according to (3.50) the topological structure of the discretization

scheme becomes clear. The formal representation eases the view on the underlying data

structures and it is shown that couplings between all boundary elements exist. Further-

more it can be seen directly that the resulting system matrix from this discretization

scheme is nonzero in all elements.

3.4 Finite Difference Schemes

Finite difference schemes differ from the other mentioned schemes, because it does not

rely on a functional discretization, but only represents the functions used for the solution

of the governing equations by a mapping of points and values. Even though this does not

lead to a solution function, it can be shown that for many cases that such a method is

consistent and convergent and produces adequate solutions. Especially for time-stepping,

finite difference schemes are often used in combination with other discretization schemes

so that the results obtained by the simulation are defined as continuous functions on single

time slices.
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Finite difference schemes is very flexibly employable and a common basis for all operations

cannot be defined by introducing a function space and treating the results of the finite

difference scheme in the same manner as, e.g., the result of a finite element solution

function. Finite difference schemes treat functions as defined by argument-value pairs

and form interpolation functions ad-hoc for the special field of application.

The aim of this section is to find a formulation based on the systematics according to

Section 2.5 and investigate the differences of the topological base operations.

3.4.1 Conventional Method

Again, the Laplace operator is considered for the specification of a finite difference scheme.

A typical formula for a finite difference scheme may have the following shape:

(∂xx + ∂yy)u =
ui−1,j + ui,j−1 − 4ui,j + ui+1,j + ui,j+1

h2
(3.51)

From this formulation the following implicit assumptions are taken: Firstly, a quantity

u is defined on a grid which is located by two independent indices i and j indicating

discrete values on the x as well as the y axis. Furthermore, finite difference schemes are

restricted to grids, namely to topological structures in which each vertex is implicitly

assigned neighboring vertices by the structure of the grid.

If the distance between two neighboring vertices, here denoted as h is equal for all vertices,

independently from the direction, the formulae can be written in a very simple manner.

Otherwise, the distance between the single vertices has to be calculated separately either

by using the length of the edges or alternatively by explicitly using the vertex coordinates.

3.4.2 Topological Neighborhood Considerations

The first step of a finite difference simulation is the determination of the neighborhood.

In a very simple two-dimensional case, the neighborhood of a vertex is defined by the

four vertices which are covered by the edges incident with the original vertex. It is also

assumed that the respective vertex has to fulfill some geometric criterion to be considered

as neighboring. In order to obtain all neighboring vertices of a given basis vertex, the
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larger number of vertices (neighborhood) is required to solve the equation and determine

the dependence of the position of the vertices on the value of the derivatives determined.

Moreover, it is possible to determine higher-order derivatives of a function by using a

higher-order Taylor expansion. This implies that the use of higher-order derivatives nec-

essarily increases the number of vertices (neighborhood) used for the Taylor expansion.

One obtains a local equation system which can be solved analytically in special cases,

especially under the assumption that the local grid intervals are equal (which shall be

assumed in the following). One obtains the following equation system

u(w) = G(w) · [∂](w)(+[O(hN )])

[∂](w) = G(w)−1 · u(w)(+[O(hN)]) , (3.53)

where the vector of function values u(w) is denoted as u(w). The vector [u, ∂xu, ∂yu, . . .]

is denoted as [∂] evaluated on the vertex (w). The matrix containing the geometrical

coefficients is referred to as G. By inverting the geometrical coefficient matrix G, one

obtains the vector of derivatives. The matrix G can be written as follows:

G =

v�
V NV

[1; x− xv; y − yv; (x− xv)
2/2; (x− xv)(y − yv); (x− xv)

2/2; . . .]T . (3.54)

The vector u can be written as the vector of quantities within the neighborhood

u =
�

V NV

q = (q1, . . . , qn)T . (3.55)

A linear differential operator R = L can be written as inner product of a given vector d

and the vector of derivatives [∂].

R = L = �d, [∂]�(= 0) (3.56)

By extending the term of canonic partial differential operators [∂], one obtains the residual

expression R. It has to be assured that the order of elements that are passed to the
�

V NV
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operation is the same for the evaluation of the matrix G and the vector of function values

u.

R = d · G−1 · u (3.57)

Inserting (3.54) without the second order terms and (3.55) into (3.56) yields the following

expression.

R = d · [

v�
V NV

[1; x− xv; y − yv; . . .]
T ]−1 ·

�
V NV

q (3.58)

If the geometric constants are known explicitly, the inverse of the matrix G can be derived

directly. In this case the matrix G can be written as:

G =




1 0 0 0 0
1 h 0 h2/2 0
1 −h 0 h2/2 0
1 0 h 0 h2/2
1 0 −h 0 h2/2




The inverse G−1 of the matrix Gcan be obtained as follows:

G−1 =




1 0 0 0 0
0 1/(2h) 1/(2h) 0 0
0 0 0 1/(2h) 1/(2h)

−2/h2 1/h2 1/h2 0 h2/2
−2/h2 0 0 1/h2 1/h2




The standard finite difference formulae can be obtained easily from the coefficients of

the matrix. By the specification of d, a linear combination of lines of the matrix G−1 is

obtained by multiplication. The line vector k = d·G−1 denotes the coefficients with which

the values of the single neighboring vertices are coupling. It is associated with a vertex

and contains coupling coefficients, each of which is directly associated with a neighboring

vertex. Alternatively, the vector k(w) can be written element-wise, where the elements

are written as K(w,v). In this case w denotes the vertex and v denotes a vertex in the

neighborhood of w. By evaluating the inner product of k with the function values of the
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single vertices stored in the vector u, the residual expression is obtained. The evaluation

of the inner product finally yields

R = [k ·
�

V NV

q] = [

w�
V NV

K(w, •) ·
�

V NV

q] = [

w�
V NV

K(w, •)q] (3.59)

It can be seen easily that the algebraic structure of (3.59) is similar to other discretiza-

tion schemes. While other discretization schemes use topologically specified double sums

with topological traversal in order to obtain the couplings between solution quantities, the

definition of the neighborhood can be defined more freely. While in one case the neighbor-

hood is defined topologically like for finite elements or finite volumes, the neighborhood

can also be determined by geometrical considerations.

3.4.3 Laplace Operator

In the special case of the Laplace operator the vector d has the following form

d = [0, 0, 1, 0, 1, 0, . . .] (3.60)

For a grid with a regular distance h between neighboring vertices, the geometrical coeffi-

cient matrix G yields for five and nine neighboring points:

G5 =




1 0 0 0 0
1 h 0 h2/2 0
1 −h 0 h2/2 0
1 0 h 0 h2/2
1 0 −h 0 h2/2




G9 =




1 0 0 0 0 0 0 0 0
1 h 0 h2/2 0 h3/6 0 h4/24 0
1 −h 0 h2/2 0 −h3/6 0 h4/24 0
1 0 h 0 h2/2 0 h3/6 0 h4/24
1 0 −h 0 h2/2 0 −h3/6 0 h4/24
1 2h 0 2h2 0 3h3/2 0 8h4/3 0
1 −2h 0 2h2 0 −3h3/2 0 8h4/3 0
1 0 2h 0 h2 0 3h3/2 0 8h4/3
1 0 −2h 0 h2 0 −3h3/2 0 8h4/3



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After eliminating derivatives which do not appear in the series expansion of the single

points, the matrices can be re-written. The derivative vector [∂] is written as:

[∂] = [u, ∂xu, ∂yu, ∂xxu, ∂yyu, ∂xxxu, ∂yyyu, ∂xxxxu, ∂yyyyu . . .] . (3.61)

The vector d is reduced to the following form:

d = [0, 0, 1, 1, 0, . . .] (3.62)

Inserting into the formula (3.58) yields the well known expressions. The function K(v,w)

can be written as

K(w,v) :=

�
v = w −4h−2

v .= w h−2

For nine points the following formula is obtained:

K(w,v) :=




v = w −5h−2

d(w,v) = h 4/3h−2

d(w,v) = 2h −1/12h−2

3.4.4 Conclusion

The only topological requirement on the finite difference method is that a neighborhood

of vertices can be found for each single vertex. This topological function for retrieving all

neighboring vertices of a given vertex is denoted as traversal function V NV .

It also has to be mentioned that the neighboring vertices of a given vertex can be found

much easier, if a structured grid is given. However, a finite difference method can also be

applied, if no further topological information is available. For instance, the neighborhood

can be defined by the closest n points of a given point.

If the topological information is given, one can chose to find the neighborhood by finding

all incident points which are covered by an edge or a cell incident to the original vertex. It

is also possible to use more vertices by choosing more neighboring cells by further applying

the incidence relation such as for higher order finite difference schemes on structured grids

[82].
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3.5 Final Considerations

The following remarks are common for all discretization schemes for differential equations

and show their structural similarity, when written in the formalism according to Chapter 2.

Even if two or more solution variables are available on a topological element, the neigh-

borhood is usually the same for all solution quantities, so that the considerations can be

restricted to one solution quantity. In order to obtain the internal couplings within the

system matrix, all quantities as well as their couplings have to be considered.

The first common feature which is fulfilled by all discretization schemes is that the solution

quantity is located on topological elements. These elements are mostly vertices. For

higher-order arrangements, especially for finite elements also other topological elements

such as edges can be used.

Each of the discussed discretization schemes establishes a topology defined by neighbor-

hoods [64], where each element is assigned a neighborhood of elements. The neighborhood

can be either directly retrieved from the underlying cell complex or derived from geomet-

rical properties, e.g. for the finite difference method. In the following, the discretized

differential operator is written as weighted sum of quantity values in the neighborhood of

a topological element.

The process of obtaining neighboring elements is defined by two steps: firstly, the neigh-

borhood b of the initial element a is retrieved by the traversal method AB. Secondly, all

elements c of the neighborhood elements b, on which relevant quantities are stored, are

retrieved by the traversal methods BC.

a�
AB

K(a, •)

b�
BC

qK ′(a, b, •) , (3.63)

Here AB and BC denote the topological functions, of incident elements. It can be seen

that for all discretization schemes coupling functions K and K ′ are required which yield

coupling coefficients that finally are entered into the system matrix of the final equation

system.



CHAPTER 3. DIFFERENTIAL EQUATIONS 98

Discr. Scheme Neighborhood Neighb. Elem.

FEM (linear)
 

V C [
 

V C

 
CV ]

FVM (linear)
 

V E [
 

V E

 
EV ]

BEM (linear) The cell complex all vertices
B

 
BV

FDM (linear)
 

V N

 
V NV

For finite elements the neighborhood consists of the cells which are incident to the initial

element. For finite volumes the neighborhood comprises all edges which are incident with

the initial vertex. Boundary elements have a global neighborhood, i.e. each vertex is in the

neighborhood of any other vertex. Finite differences do not explicitly give a neighborhood

definition. It can be either derived from topological or from geometrical features.



Chapter 4

Algebraic Systems

In Chapter 3 the most commonly used discretization schemes were presented using the

topological formulation derived in Chapter 2. Further steps have to be accomplished in

order to obtain an equation system and consequently an appropriate solution.

Firstly, it has to be remarked that the given formulation of the discretized differential

equations only concerns the residua of the respective discretized operations and not the

dependences of the unknown variables as required for linear equation systems. For this

reason a data structure which is compatible with the specification methods of Section 2.5

is introduced, which stores values as well as the linearized dependences for given variables.

A method is shown which automatically derives the linear dependences on the unknown

variables and assembles the linearized equations line-wise.

One commonly used method which is especially employed for finite elements, namely the

assembly via local shape matrices, is discussed and compared to the line-wise assembly

method. Furthermore, difficulties and advantages of these methods are compared to line-

wise assembly with a focus on boundaries and interface conditions.

In most cases methods for the solution of nonlinear equation systems rely on linear or

linearized equation systems. These systems result from the nonlinear system by a lin-

earization (first order multi-variable Taylor approximation) around a given vector x0 of

linearization. Thus, for each variable xi a value for the linearization is defined. In the

neighborhood of the linearization vector, the respective function can be approximated via

the linear (affine) function f(x0) + �c,x� using an appropriately chosen initial vector x0.

99
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In order to obtain a solution, the resulting equation system has to be solved. This means

that the equations have to be assembled into a system matrix and/or a right-hand-side

vector.

4.1 Line-Wise Assembly

The assembly method which was implicitly presented in Chapter 2 was line-wise assembly,

where one equation (e.g. setting zero a residuum) relates to one matrix line and one or

more right-hand-side vector entries. In the following it is assumed that only one right-

hand-side vector is available, the generalization to more right-hand-side vectors can be

achieved easily. For eigenvalue problems only the matrices can be specified.

4.1.1 Algebra of Linearized Equations

One equation, comprising a matrix line and one right-hand-side vector entry is considered

a mathematical entity. It can be viewed as an equation which depends on a number of

unknown variables on which the equation linearly depends.

�
i

ci · xi = r0 , (4.1)

where r0 denotes the right hand side entry, ci denotes the coefficients with which the

solution variables xi are weighted. Alternatively, the entity can be seen as residuum R

that implicitly has to be zero.

R =
�

i

ci · xi − r0(= 0) (4.2)

This view is perhaps more illustrative, because addition, multiplication, function appli-

cation, and so forth of residual expression seems to be more natural than the respective

application of operations on equations. If the operations are applied to residual expres-

sions, it is always assumed that the expression is followed by a (= 0). For the sake of

simplicity, the matrix line can be seen as line vector and can be written in a matrix

formalism:

R = �c,x� − r0(= 0) , (4.3)
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where c denotes the vector of coefficients ci and and x denotes the solution variables xi.

Furthermore, the operations used have to provide an algebraic structure. The first and

most important requirement on such a structure is closedness. This means, that the result

of applying operations on one or more expressions still remains an expression of the same

type. Note, if linear (residual) expressions depending on one or more variables are applied

to a function the result is still a linear expression.

It can be seen easily that the application of arbitrary functions on linear expressions

does not necessarily lead to linearized expressions. Only very few operations (i.e. linear

operations) preserve the algebraic structure of a linear equation. This especially holds

true for addition and scalar multiplication by which an affine linear algebra is created. Of

course, in general, especially when solving non-linear equations such an algebraic structure

cannot be preserved.

This problem can be easily fixed, if after each nonlinear operation a subsequent lin-

earization step is performed. It can be shown easily that the number of intermediate

linearization steps is not relevant as long as removable discontinuities are avoided.

In the following sections the basic operations are shown. As an example, the method is

demonstrated on a simple nonlinear discretized differential equation system. Afterwards

the assembly of the system matrix is shown. In a second example, the same calculations

are carried out for an eigenvalue equation system.

4.1.2 Constants

One basic element of the algebraic structure a constant linear equation. It has to be

noted that a constant symbol without any variable dependence does not have any sense,

if interpreted as function, because, if the respective constant is non-zero, the equation

always leads to a contradiction, e.g. R = 3(= 0). As a constant which is added to a linear

or linearized residuum gives an expression which is sensible e.g. R1 + R2 = 2 + x1(= 0),

where it is possible to retrieve a proper solution. With respect to the matrix formulation,

an additive constant expression influences the right hand side entry of the respective line

or the equation system.
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4.1.3 Basic Operations

Firstly, basic linear operations such as addition and inversion are discussed. These op-

erations directly lead to linear expressions and do not require subsequent linearization.

According to the linearity of the operations, addition, subtraction, and negation are ap-

plied in the following manner:

(�c1,x�+ r1) + (�c2,x�+ r2) = �c1 + c2,x�+ (r1 + r2) (4.4)

(�c1,x�+ r1)− (�c2,x� − r2) = �c1 − c2,x�+ (r1 + r2) (4.5)

−(�c,x�+ r) = �−c,x� − r . (4.6)

If the multiplication of two linearized expressions is performed, higher order terms con-

sisting of bilinear expressions are neglected and truncated.

(�a,x�+ ra) · (�b,x�+ rb) = ra · rb + ra�b,x�+ rb�a,v�+ �b,x��a,x�� �� �
→֒0

=

ra · rb + �ra · b,x�+ �rb · a,x� (4.7)

Functions can be applied to a linearized expression as follows. First, the function as well

as its derivative have to be known. This function is denoted as f , its derivative is referred

to as f ′. The application of the function on the linearized expression yields

f(�c,x�+ r) = f(r) + �f ′(r) · c,x�. (4.8)

The verification can be easily performed by using the chain rule of differentiation. Fur-

thermore, it has to be mentioned that division can be considered a binary function, the

application of which on linearized expressions is straight forward. However, it has to be

mentioned, that the occurrence of solution variables as divisors is often avoided by proper

multiplication.

In the following a linearized expression will be written shortly as follows:

�c,x�+ r =: [c1, c2, . . . , cn; r] (4.9)



CHAPTER 4. ALGEBRAIC SYSTEMS 103

Accordingly, the rules for addition, multiplication, and function application are written

as

[c1, . . . ; r] + [d1, . . . ; s] = [c1 + d1, . . . , r + s]

[c1, . . . ; r] · [d1, . . . ; s] = [s · c1 + r · d1, . . . , r · s]

f([c1, . . . ; r]) = [f ′(r) · c1, . . . , f(r)] (4.10)

If two linearized expressions are divided, the case might occur that both, numerator and

denominator are identically zero and Bernoulli’s (del Hospital’s) rule has to be applied to

obtain the correct result. This is numerically unstable and accordingly leads to various

problems regarding the evaluation of the quotient rule of differentiation. Inserting the

values leads to divisions by zero or – even worse – to a division by a very small floating

point number. Furthermore, for the correct evaluation of the fully linearized result com-

prising the coefficients for the variables, higher order terms (which are not available then)

of the linearized expressions has to be considered.

For this reason, a critical function with a removable discontinuity, for instance f(x) =

sin(x)/x is implemented with a Taylor series expansion in order to avoid the division.

The application of the function f does not cause problems because the function as well

as its derivative are continuous and can be determined in a straight forward manner.

4.1.4 Linear Expressions and Functional Description

In the following sections the linear dependence of equations on different solution variables

xi is discussed. Typically, a solution variable is defined as a quantity on the underlying

cell complex. Furthermore, each quantity value that is a solution value requires to be

assigned a definite position i in the solution vector.

In order to determine the position of the quantity associated with a given topological

element v, an index function i(v) is introduced. If more solution quantities are required,

the function defermining the position of the solution within the vector can be obtained

by different index functions (in and iψ for the quantities n and ψ).
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In the following the residual expressions of discretized differential equations are formulated

with linearized expressions. A residual expression is formulated and defines a dependence

between single quantity values

R = f(q(v1), q(v2))(= 0) . (4.11)

Initially the quantity q may have any value and can not be neglected. The equation

system may depend on the quantity q which is evaluated on many different topological

elements. For each of these elements an index function i is available that assigns each

topological element a position in the solution vector. The formulation of the residual

equation (4.11) can be written as follows:

R(v) = q(v) + 1 · x(i(v)) . (4.12)

This expression can be written using the lin() function as

R(v) = [lin(q, i)](v) , (4.13)

where lin() is defined in the following way:

Q := lin(q, j) = q + xj = [ . . . , 1, . . .� �� �
j−th position

; q] . (4.14)

In the following examples, the residual expressions q are replaced by their linearized

analoga Q, which implies that each quantity is added an increment xj , where j is the

position, given by the index function i. This function i represents the position of the

matrix column which is relevant for the quantity q on the given element. If the residual

equations are given in this manner, the solution consists of a vector of solution variables

xj which are added to the quantities q in order to obtain the final solution.

4.1.5 Linear Example - Poisson Equation

This example shows the application of the Poisson equation in a thermodynamic simu-

lation. The equation system consists of four points from which two are boundary points
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Before the linear equation system is solved, the quantity is set to an arbitrary value, for

instance zero. For the equations (4.16) one obtains

R(v1) = −2Q(v1) + Q(v2)− 1 = [−2, 1;−2q(v1) + q(v2)− 1]

R(v2) = −2Q(v2) + Q(v1)− 1 = [1,−2;−2q(v2) + q(v1)− 1] (4.18)

It can be seen that the two linear expressions R(v1) and R(v2) contain the information

of the system matrix. The assembly of the matrix from the linear expressions is straight

forward, once the linear expressions are obtained.

The solution vector x contains the single solution elements xi. These elements are applied

to the quantities according to (4.12). This means, that the solution xi is added to the

respective solution quantity q. If the initial value of the quantity is zero, the solution

quantity xi has the same value of the solution of the initially given problem. Otherwise,

the solution contains an update vector which has to be added in order to obtain the

correct solution. This is equivalent to the Newton method, however, since the equation

is linear, the solution is obtained in a single step.

4.1.6 Example - Nonlinear Conductivity

In the following section it is assumed that the thermal capacitance ρ depends on the

temperature of the respective material. In analogy a nonlinear dependence of the thermal

conductance κ with respect to the temperature can be specified. However, for the sake of

simplicity the heat conductance κ is assumed to be constant in the following example.

div κ gradT = ρ(T ) . (4.19)

A finite volume discretization yields for the same four-point geometry as in the linear

example of the last section:

R :=

v�
V NV

κQK(•, v)− ρ(Q)

(4.20)
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convergence and sometimes solutions can not be found at all [82]. Nevertheless, the pre-

sented method with linearized expressions can be used for the formulation of all kinds

of nonlinear problems, the solution of these problems can be treated separately from the

assembly.

4.1.7 Derivative Considerations

The discussed equations form a linear equation system whose solution vector gives an

increment or update for the respective solution quantities. In the Newton scheme an

equation system E is linearized in the neighborhood of a vector x0 of quantity values for

q.

E(x) = E(x0)� �� �
b

+ E ′(x0)� �� �
A

(x− x0) + O(�x− x0�
2) , (4.24)

where A denotes the system matrix and b denotes the right hand side vector. All terms of

higher than second order are neglected. An extension of the linearized expressions might

also contain second order expressions, however, the memory consumption is raised from

N to N2 in the worst case, where N is the number of unknown variables.

For the first order case, the evaluation of the residuum in the respective linearization

vector x0 results in the (inverse) right hand side. The evaluation of the derivatives ∂xi
Ej

in the linearization vector x0 yields the entries of the system matrix.

From this point of view, it can be stated that forming the derivatives from the discretized

expression is performed implicitly when using linearized expressions. This is of course

evident, when the Taylor expansion is considered, however, a lot of work for the differ-

entiation of the respective equations can be saved. It also has to be stated that using

this method for forming the derivatives only determines the derivative only for a given

linearization vector x0 and not an analytic expression. This implies that such a method

is not apt for the differentiation of general algebraic formulae, however, it performs well

for the specific matter.
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4.1.8 Refinement of Models

A method which is typically used in scientific computing is the refinement of formulae

which have been proven to work. As an example one begins with a linear differential

equation for instance the Poisson equation. Then one adds the isothermal drift diffusion

current relations and performs the necessary testing. Afterwards, the temperature is

added using another solution quantity and the non-isothermal drift-diffusion model is

implemented.

In all stages of the implementation additional derivatives of residua with respect to other

values have to be considered. If many different solution variables are involved, this re-

quires an effort which approximately depends quadratically on the number of the solution

variables. Even if done aided by computational algebra tools, this is very cumbersome

and often results in oversights and flaws which are difficult to find.

The use of linearized equations offers the advantage that all derivatives are implicitly

calculated and adding further solution functions does not imply further efforts, except

the formulation of the residuum of the new governing equation. All derivatives with

respect to the other variables are implicitly determined.

4.1.9 Eigenvalue Problems

The use of linearized expressions can also be generalized so as to be employed for the

specification of eigenvalue equations. In this case, expressions of the form Ax = λBx the

linearized expression can be specified. The Schrödinger equation which is typically used

for the solution of quantum mechanical problems is a basic example for the treatment of

eigenvalue equations using linear expressions.

Δψ + V ψ = λψ . (4.25)

The eigenvalue equation system can be written in the following line-wise form:

Ek =
�

i

ci,kvi + λ
�

j

dj,kvj(= 0) . (4.26)
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The following discretization is obtained in a one-dimensional simulation domain according

to Figure 4.1 comprising four vertices when using finite differences. The solution is referred

to as ψ which is stored in the quantity q. In analogy to (4.12), the term Q is introduced.

R(v1) = −2Q(v1) + Q(v2) + V (v1)Q(v1)− λQ(v1) = 0

R(v2) = −2Q(v2) + Q(v1) + V (v2)Q(v2)− λQ(v2) = 0 . (4.34)

The potential is assigned constant values V1 = V2 = 1. For the probability function ψi

the following term is inserted

Q(v1) = [1, 0; 0, 0]

Q(v2) = [0, 1; 0, 0] . (4.35)

Accordingly, one obtains the following eigenvalue expressions:

R(v1) = −2[1, 0; 0, 0] + [0, 1; 0, 0] + [1, 0; 0, 0]− λ[1, 0; 0, 0]

R(v1) = [−1, 1; 1, 0]

R(v2) = [1,−1; 0, 1] (4.36)

In analogy to linearized expressions, linear eigenvalue expressions can be used in order

to fill the eigenvalue matrices. One often observes that the matrix B is the unit matrix.

Often it is necessary to change the order of the equations in order to maintain the unit

matrix for B.

4.2 Element-Wise Assembly

An alternative to the line-wise assembly as shown above is the assembly via small local

sub-matrices or stencil matrices. The major advantage of this method over the line-wise

assembly is that normally only one incidence relation is required. The method of element-

wise assembly typically used for finite element and finite volume simulation tools.

In contrast to the line-wise assembly, element-wise assembly considers the influence of the

topological elements of highest order used in the topological neighborhood, mostly cells,



CHAPTER 4. ALGEBRAIC SYSTEMS 112

on the final equation system. If used for the solution of a differential equation with one

solution function, each cell influences a set of n× n matrix entries where n is the number

of incident of the element.

4.2.1 Comparison to Line-Wise Assembly

In many cases element-wise assembly requires less numerical costs to assemble, because

cell-related quantities can be calculated together and need not be re-calculated in each

step. However, most of the cell-wise calculations can be stored into the cells as a pre-

processing step.

Another feature which makes the element-wise assembly faster than line-wise assembly is

that the number of operations which have to be performed for a cell is better to prede-

termine, because cells usually have the same topological shape throughout the simulation

domain. If the number of operations is constant, the compiler can perform various opti-

mizations, e.g. perform parallel execution or handle this as a loop of fixed iterations.

For the parallel treatment of big equation systems the parallel assembly can be easier

performed via line-wise application, because matrix insertions are performed line-wise

and therefore no concurrent access methods are required.

Compared to element-wise assembly, line-wise assembly imposes higher requirements on

the underlying data structures, while the matrix assembly is straight forward. For the im-

plementation typically two traversal functions have to be available, for instance a function

that yields all vertices incident to a given cell and another function that yields all cells

incident to a given vertex. The assembly of the system matrix is rather simple, because

the system matrix is separated into disjoint regions, namely lines, where each line can be

assembled separately, especially using parallel computing mechanisms.

In contrast, element-wise assembly only requires one traversal function which provides

all elements incident subsets of a given element, for instance the set of all vertices which

are incident to a given cell. Therefore requires the possibility of inserting element sub-

matrices or local matrices into the system matrix. In this case it is possible that two

local matrices overlap. When using parallel processes for the assembly it is possible that
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two or more processes require access to the same matrix element which imposes various

difficulties of synchronization and ressource management.

These different models of assembly lead to completely different matrix interfaces: Whereas

for line-wise assembly it is only required to access each non-zero matrix element at most

once, the element-wise access requires different operations, even deleting single matrix

rows [83]. Other solver interfaces require to add single matrix elements into the system

matrix, where each matrix element can be accessed for several times [84, 36, 85]. For the

sake of completeness, it has to be said, that the frameworks investigated for element-wise

assembly do not require the topological operations which are needed for line-wise assembly.

Figure 4.4 shows the application of line-wise assembly for a finite volume method with an

initial vertex v and five neighboring vertices w. The assembly method yields one matrix

line which is directly inserted into the system matrix.

Linear solver environments such as Trilinos [4] and PetSC [48] support element-wise ac-

cess to single matrix entries. A matrix entry can either be added a given value or is

overwritten. Furthermore, it is possible to insert local sub-matrices for optimized finite

element assembly.

4.2.2 Applications on Finite Element Schemes

For finite elements the element-wise assembly is carried out by the quadrature of all

integral expressions which are related to a common cell c. In the case of a triangular cell

which contains three vertex values, nine integrals have to be calculated. When Galerkin

schemes are used, the calculation can be reduced to six integrals, because of the symmetry

of the local matrix. The matrix can be written in the following manner, where the vertices

of the cell c are denoted as v1, v2 and v3

K =


 K(v1, c,v1) K(v1, c,v2) K(v1, c,v3)

K(v2, c,v1) K(v2, c,v2) K(v2, c,v3)
K(v3, c,v1) K(v3, c,v2) K(v3, c,v3)



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In the notation according to Chapter 2, such a local element matrix can be assembled

using the vectorization command
�

in order to retrieve a matrix.

K(c) =

c�
CV

v�
CVc

K(•, c, v) (4.37)

As can be seen in Figure 4.5, the matrix is assembled by local element matrices which

are added to the system matrix. With the formalism introduced in Chapter 2 the local

system matrix can be formulated.

4.3 Boundaries and Interfaces

From the line-wise point of view it is easy to define an equation for a boundary vertex.

If, for instance, Dirichlet boundary conditions are employed, a respective residuum is

formulated and a new equation for the vertex is inserted into the system matrix.

Especially element-wise formulation methods have difficulties with the specification of

boundary conditions, because a special treatment for a boundary equation in a distinct

vertex has to be considered in the calculation of all sub-matrices which are incident to

the given vertex.

As a consequence, many equations for boundary points are treated algebraically which

causes severe difficulties when introducing non-conventional boundary conditions, inter-

face conditions, or conditions at triple points.

Every differential equation has to be specified appropriate boundary conditions in order

to yield a valid solution. Without specifying a boundary condition, differential equations

do not deliver a unique solution but offer a large function space of possible solutions.

In some cases it can be appropriate to have different sections, where interface condi-

tions are given. This often turns out to be problematic for element-wise implementation

approaches and various efforts have been spent on workarounds to handle this problem

[83].
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4.3.1 Boundary Conditions

Boundary conditions typically set the function at the boundary (Dirichlet boundary con-

dition) or its normal derivative (Neumann boundary condition) to a certain value . For

differential equations of higher than second-order, e.g. the BiLaplace equation ΔΔu = 0,

higher order derivatives can be given.

With an identical formulation but with a modified functional meaning, the discretized

differential equation can be applied to a boundary vertex or another boundary element.

Using finite elements for the Poisson equation, the application of the discretization formula

for the interior to a boundary point implicitly yields zero Neumann boundary conditions.

This property of finite element methods is called natural boundary condition. The same

holds true for the discretization of the Poisson equation using finite volume schemes.

In combination with the boundary conditions some problems occur which can be handled

using the method of line-wise assembly rather than the method of element-wise assembly.

For the application of boundary conditions two different methods are available. The

first and easiest method is to assign the respective function which is collocated with a

boundary point a given value qB(v) . In line-wise assembly, this can be carried out easily

by inserting a (trivial) boundary expression or equation

R(v) := q(v)− qB(v) = [. . . , 1, . . . ;−qB(v)](= 0) . (4.38)

In order to reduce the numerical effort, simple boundary conditions such as zero Neumann

and Dirichlet conditions are eliminated and directly inserted in the interior equations. In

simple cases this can speed up the calculations and reduce the size required for storing

matrix coefficients.

For Dirichlet boundary conditions the solution variables xi(v) for boundary points are

replaced by the boundary value qB(v) so that x(v) → [0, . . . ; qB(v)]. Other boundary

conditions can only be eliminated in special cases, for instance, if natural boundary con-

ditions are applied.
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Finite differences allow to eliminate all boundary conditions. These conditions are derived

using the same scheme as shown in Section 3.4.

M(u) = αu + β∂nu + γ = 0 (4.39)

A (linearized) expression in the following manner is retrieved, where for each boundary

vertex vB exactly one interior vertex vI = BI(vB) can be obtained. The boundary

functional M is specified by the following equation:

R(vB) = k(α, β)Q + γ + k′(α, β)Q[BI] = 0 , (4.40)

where the affine residual expression R for the boundary condition contains the boundary

variable as well as unknown variables from the interior of the equation system. For the

determination of the normal derivative at the boundary no other boundary vertices are

required. One obtains

xi(vB) = −
k′Q[BI] + γ

k
, (4.41)

The Dirichlet boundary condition and the natural boundary condition are most simple to

treat, because either a point can be eliminated or no special treatment has to be performed

at all.

In many cases, such as in device simulation, a constant flux or current is required through

a certain boundary region. In such a case it is assumed that the connection between

the circuit and the device is ideal (i.e. all contacts are at the same potential). In order

to obtain the boundary equations for all elements (in general vertices), first all elements

at the boundary have the same value - in this case - for the potential. From the set of

boundary conditions one element is chosen. This can be accomplished by a topological

function that assigns each vertex v a vertex V BV (v) = vF . For all boundary vertices v

but one first vertex vF the following equation is given:

R = Q−Q[V BV ] (4.42)

For the boundary vertex vF the flux boundary condition is given. In finite volumes, this

can be specified in the following manner:

R(vF ) = [−ΦB +
�
BV

�
V E

Φ](vF ) = 0 , (4.43)
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where B is the respective boundary region and the function BV determines all vertices

incident to the boundary region B. ΦB denotes the given current which flows through the

boundary region.

When assembling this system, the variables corresponding to the boundary vertices can

be reduced to one variable which contains the potential of the boundary vertex vF (and

of course the potential of all other points).

4.3.2 Interfaces and Triple-Points

Interfaces and especially triple points, namely points which are at the intersection of three

or more regions of different governing equations are problematic for many programming

environments. Problems occur when the simulation domain is initially segmented and the

equations are assembled for the single topological elements for each segment separately.

In such a case it is very cumbersome to fill in the respective matrix entries into a com-

mon system matrix and manage the couplings between single interface points of different

segments which coincide. In [83] methods are shown which are numerically stable for

combining two system matrices each of which is the result of discretizing segments with

a common boundary.

The line-wise assembly method using underlying segmentation and incidence information

provides proper means for the specification of the governing equations of an interface

point or a point incident to three segments, namely a triple point. For instance, for a

triple point the finite volume discretization the divergence of the flux Φ is set zero.

R =

v�
V S

ε
�

V E(v)

Φ (4.44)

The simulation domain is segmented into three or more segments S. Three segments

incide in the triplepoint-vertex. In the different segments different permittivities ε(S) are

given. The flux Φ is defined on an edge and describes the edge parallel component of a

given vector field multiplied with the respective boundary area.



CHAPTER 4. ALGEBRAIC SYSTEMS 120

4.4 Solution of Algebraic Problems

This section gives a brief overview of methods for the solution of linear equation systems,

nonlinear equation systems, and eigenvalue problems, as they occur as the result of a

discretization scheme. The intention of this section is to show the common features which

are required for the solution of these algebraic problems. Firstly, a problem regarding the

numbering of the single elements and equations is discussed.

4.4.1 Numbering of Elements

The association of the elements with actual positions in the system matrix is quite infor-

mal. A numbering of the elements may be given as the result of data structural treatment,

e.g. in order to discriminate elements, however, this shall not be used in order to associate

the single elements with a matrix row. The same shall also be avoided for the associa-

tion with a residual expression assembled with respect to a topological element and the

respective matrix line.

However, for the sake of simplicity, it can be arranged that the row association for a

quantity can be identical with the line association of the residual expression with respect

to the topological element. The element-wise assembly, e.g. of finite elements, implicitly

forces this identity of row-association and line-association, because otherwise the local

element matrix can not be entered into the system matrix appropriately.

Many solvers for linear equation systems or eigenvalue systems have their own optimized

matrix restructuring mechanisms. Even though there are methods which assign elements a

certain line or row within the respective system matrix, e.g. the Cuthill McKee algorithm

[86], the use of multiple quantities on the same simulation domain makes the vertex

ordering mechanism difficult and an appropriate association of a vertex with a matrix row

or line can not be given. Furthermore, the Cuthill McKee algorithm is intended for the use

of vertices only. Although the topological structure can be written as incidence graph,

the application of such an algorithm becomes quite cumbersome. Similar approaches,

however, can be used at a matrix level to order the equations as well as the unknown

variables.
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Once an each matrix column is associated with a topological element (and a quantity),

the elements of the matrix can be inserted. Further optimization mechanisms, for in-

stance the pre-elimination of variables, can be performed as a pre-processing step of the

linear/eigenvalue solver mechanism.

4.4.2 Algebraic Equation Systems

There are many algebraic environments or frameworks available [4, 47] which can deal

with a large variety of different algebraic problems. These frameworks offer different

algorithms for the solution of the same algebraic equation, while maintaining the same

data interface for writing as well as retrieving coefficient data. Therefore, it is simple

to adapt and optimize the solution procedure to the special algebraic problem and chose

parameters in order to obtain an optimal solution behavior. This is especially desirable,

when high accuracy results are required or the solution has to be found with resource

constraints such as time and memory consumption.

4.4.3 Re-Writing the Solution

After the algebraic solution has been found the solution has to be written back to the

quantities. First, the solution vector has to be re-inserted into the solution quantity, in

many cases the elements of the solution vector are added to the quantity values. In case

of eigenvalue systems, each eigenvalue is assigned one quantity.

For nonlinear systems using a gradient formulation, line-wise assembly methods offer the

advantage that the equations have to be specified only once with respect to the (initially

preset) solution vector. The solution vector is used as linearization vector for the next

linearization process, while the calculation is performed in the same manner based on

the values stored in the solution quantity. This quantity is therefore updated non-linear

solution method precedes iteratively.



Chapter 5

Software and Implementation

The framework of discretized expressions which have been established in Chapter 2 and

applied to differential equations is mainly intended for a simple and concise way of imple-

mentation, which is of course required in order to implement such a scheme on a computer.

Furthermore, the discrete formulation scheme is also designed to be implementable using

the high level programming language C++ [23].

As topological basis of this framework the Generic Scientific Simulation Environment

(GSSE) [40, 21, 22] is taken which implements the required topological functionality for

the functional structures. It is required for the implementation of the topological functions

shown in Section 2.4 as well as for quantity handling. The implementation is based on the

cursor/property map concept as shown in [87], where for more complex data structures

different iteration mechanisms are provided.

The functional layer introduces a functional programming implementation based on the

Phoenix 2 library [29]. This library provides overloading of operators and gives the oppor-

tunity to implement higher order functions as shown in Section 2.2. One major advantage

of the Phoenix 2 library is the use of explicitly named variables which is required for nam-

ing accumulation variables according to Section 2.5. Consequently, the Phoenix 2 library

provides appropriate means for the creation of a domain specific embedded language [88]

(DSEL) within C++ as shown in Section 5.1. A possible implementation of linearized

expressions is shown in Section 5.2 .

122
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5.1 A Language for the Specification of Discretized

Expressions

A DSEL is presented which forms a unique mapping for discrete expressions according to

Chapter 2 into the C++ programming language. Before details on the actual implemen-

tation of the single expressions are given, the notation is explained. This code is valid

within the C++ syntax. Using the respective functional library for accessing the topo-

logical structure, these expressions serve as basis for the implementation of the respective

discretization formulae.

5.1.1 The Equations

For the sake of simplicity the treatment of the Laplace operator using the discretization

schemes from Chapter 3 is discussed. For the first implementation only residual expres-

sions are determined, however, the linearized expressions are shown in Setion 5.2. The

expressions to be discretized are briefly reviewed:

RFEM :=

v�
V C

c�
CV

qK(c, v, •) , (5.1)

RFVM :=

v�
V E

O(•, v)
A

l

e�
EV

O(e, •)q , (5.2)

RBEM :=

v�
BV

qK(v, •) , (5.3)

RFDM :=

v�
V NV

q ·K(v, •) . (5.4)

In the following implementation the coupling coefficients are determined locally with

respect to geometric of physical quantities on the respective topological elements and

are denoted as higher order functions K. For finite volumes the discretization formula is

explicitly written.
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R_FEM = sum<VC>(_v)[sum<CV>(_c)[ q * K(_c, _v, _1) ]];

R_FVM = sum<VE>(_v)[O(_1, _v)*A/d*sum<EV>(_e)[O(_e, _1) * q]];

R_BEM = sum<CxV>(_v)[q * K(_v, _1)];

R_FDM = sum<VNV>(_v)[q * K(_v, _1)];

It can be seen that the summation symbols
�

are replaced by sum. The different kinds

of traversal methods are written within angles, for instance the vertex on cell function

CV is referred to as <CV>. The named variables can be directly transformed into the

DSEL by replacing v by the similar and suggestive symbol v. This notation was taken

from the Phoenix2 library [29] that intrinsically provides these symbols. Furthermore,

the development of Phoenix2 was the main inspiration for choosing this special notation.

The let-symbol is also taken from the Phoenix2 library and given the symbol ∨ within the

functional calculus. Even though, the lambda function is also introduced in the Phoenix2

environment and can be directly introduced for creating higher order functions, its use

was not required for the specification of discretized differential expressions. Furthermore,

its use lead to a more complicated notation and drastically worsened the readability.

Higher order functions such as the quantities as well as the coupling functions can be

taken directly from the Phoenix2 library, where a simple interfacing to the underlying

topological and quantity structures is possible.

Within the syntax of C++ an own language (DSEL) can be defined with which different

expressions can be specified in a straight-forward manner. For the specification of these

objects, object generators [88] as well as template expressions [89, 90] are used.

5.1.2 GSSE

A detailed view on the implementation of the topological data structures is given in

[40]. The discussed environment comprises a topology library (GTL) that is based on

the properties of a single cell and on the properties of a the cell complex. By single

cell properties the internal structure of one single cell can be determined. For instance,

a triangle consists of three bounding edges and three bounding vertices. Typically, the

cell topological properties for all cells are identical within a cell complex. The complex
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properties, however, contain the incidence information of topological elements of different

cells, for instance the set of all cells incident to a vertex. Once cell and complex properties

are obtained, all different traversal mechanisms can be obtained.

Next, methods for the storage of quantities (data access) are introduced. This container

provides associative data access with two different keys, namely with topological elements,

such as vertices and cells, and with quantity keys. One quantity (section) is defined on

various topological elements of the same quantity key. Furthermore, it is possible to access

all quantity values which are associated with the same topological element.

Benchmarks of the topological library are given that show that the performance of the

provided libraries is in the same order of magnitude as comparable conventionally designed

special purpose libraries. A comparison of incidence traversal operations to the boost

graph library shows that on most platforms the GTL yields higher performance than an

equivalent implementation of the boost graph library. The functional library is compared

to the imperative specification of the respective expression. This library is comparable to

state of the art highly specialized libraries [40].

5.1.3 Quantity Accessors

In order to introduce the principles of designing classes for the use in combination with the

Phoenix 2 library, a quantity accessor which provides access to the underlying quantity

is shown. The Phoenix style function classes have to provide an evaluation method eval.

In this method an environment env containing all function arguments (externally written

as 1 . . .) as well as all named variables ( a . . . z) are passed. During the construction of

an instance of the class, the topological complex of the class as well as the quantity name

is passed. Schematically, the class can be written as follows:

template <class Complex>

struct accessor

{

accessor(Complex & C, Complex::quan_name_t name)

: C(C), name(name) {}
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...

template<Env>

eval(Env & env)

{

return C.retrieve_quantity(at<0>(env.args), name);

}

};

5.1.4 Accumulation

Defining the cell complex as constant within the class, it is possible to implicitly avoid

writing quantity access. In the following the implementation of an accumulation function

sum using the Phoenix2 library is briefly shown. In this case the function for the evaluation

has to be passed a function object containing the summand function. The evaluation

function can be written as follows:

eval(Env & env, Summand & sum)

{

base_elem = at<0>(env.args);

Iterator iter(base_elem);

result = 0;

while (iter.valid())

{

result += summand.eval(newenv(env, *iter));

++iter;

}

}

The first element of the passed environment is used to construct an iterator which tra-

verses, for instance, all incident neighboring elements of a given dimension. For the

evaluation of the summand, the value of the iterator has to be passed to the evaluation

function. For this reason a new environment comprising arguments and named variables

is created, which contains all elements of the old environment as well as the traversed
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element which implicitly stands for the first argument. This means that for all function

evaluations of the summand the first argument is the element passed.

5.1.5 Application

The application of the discretization statements on the respective elements such as vertices

can be written in the following manner:

R_FVM = sum<VE>(_v)[O(_1, _v)*A/d*sum<EV>(_e)[O(_e, _1) * q]];

vertex_iterator vit = C.vertex_begin();

while (vit.valid())

{

R = R_FVM(*vit);

std::cout << *vit << R << std::endl;

}

Using an iterator, all vertices of a given cell complex can be traversed. The traversal loop,

terminates because the iterator becomes invalid. The residual expression R is calculated

for each vertex. Afterwards, the vertex and the respective residuum are listed.

5.2 Linearized Expressions as Data Types

The implementation of linearized expressions as data types can be performed via operator

overloading. The class comprises an associative data structure, e.g. a map which is used

to assign each solution variable a coefficient. If the matrix is sparse, the use of a map

seems to be more appropriate, because only few values have to be stored. It is also possible

to integrate line-wise compressed data structures of a matrix data type into the linearized

equation interface. If full matrices are used, the appropriate data structure for the linear

expression is a simple vector or an array. However, for the following considerations the

map related implementation is preferred.
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5.2.1 Class Layout

Usually the coefficients are floating point numbers. In order to offer the choice of the

data type to the user, templating is used. For this reason, the class can be schematically

written in the following way:

template<typename NumericT>

class linearized_expression

{

typedef linearized_expression<NumericT> self;

typedef std::map<int, NumericT>::iterator map_iter_t;

std::map<int, NumericT> coefficients;

std::map<int, NumericT> lambda_coefficients;

... or ...

NumericT right_hand_side;

};

This snippet shows the implementation for both, the eigenvalue expression as well as the

linear (affine) expression. In one case all λ multiplied variables are stored in a separate

map.

5.2.2 Addition

The addition of the maps can be implemented for the affine expression as follows:

self operator+=(self& s)

{

map_iter_t iter = coefficients.begin();

while (iter != coefficients.end())

s.coefficients[(*iter).first] += (*iter).second;

s.right_hand_side += right_hand_side;

}
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Other operations such as subtraction or multiplication can be implemented in the same

manner.

5.2.3 Function Application

For the application of a function on a linear expression, the function as well as its derivative

is required. For this reason, the following functional structure is required in order to apply

a function on the linear expression:

class sine_on_linear_expression

{

double operator()(double x) const {return sin(x);}

class derivative

{

double operator()(double x) const {return cos(x);}

}

};

It can be seen that the class is written as function object which yields the respective

function value and which additionally comprises a nested class called derivative. This

nested class again is a function object which implements the operator(). The application

of this operator yields the derivative of the function.

The application of the function to a linear expression can be treated as follows:

template<typename Func, typename NumericT>

apply_func(linearized_expression<NumericT> & expr)

{

linearized_expression<NumericT> result;

Func f;

Func::derivative f_;

double deriv = f_(expr.RHS);

result.RHS = f(expr.RHS);
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map_iter_t iter = coefficients.begin();

while (iter != coefficients.end())

{

expr.coefficients[(*iter).first] =

(*iter).second * deriv;

}

}

Using further beautifications, typically object generators [88], explicit function objects

can be constructed from the sine on linear expression class so that the application of

the expression can be written as follows

func<sine_on_linear_expression> Sin;

linearized_expression<double> expr1;

linearized_expression<double> expr2;

...

expr2 = Sin(expr1);

5.2.4 Linearized Expressions and Discrete Expressions

The next step is to provide a function for the functional calculus of Section 5.1, where

linearized equations are treated. For this reason the function lin() is introduced as higher

order function in the context of the proposed DSEL.

In analogy to (5.1) the term Q is replaced by the functional expression lin(q, i), where

the quantity i is the index function (Section 4.1.4), which yields the respective matrix

column associated to the solution quantity. All further calculations are performed using

the following notation:

quantity_accessor i("i");

quantity_accessor q("i");

Q = lin(q, i)
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R_FEM = sum<VC>(_v)[sum<CV>(_c)[ Q * K(_v, _c, _1) ]];

vertex v;

linearized_equation<> eqn = R_FEM(v);

It can be seen that the function object Q is defined which yields a linearized expression for

the solution quantity. Furthermore, the discretized differential operator R FEM is specified

as shown in Section 5.1. The function is evaluated on a vertex v and yields a linearized

equation eqn.

This method can be repeated for all vertices and a set of linearized equations is retrieved.

Then, each of the linearized expressions is inserted into the system matrix and the equation

system is solved. Afterwards the solution is written back to the solution quantity as

specified in Section 4.4.3.

5.3 Outlook

Linearized expressions or in analogy the eigenvalue expressions have been assembled and

were transferred to the system matrix. In the simplest case an interface provides access

to single elements of the system matrix so that all elements, including the right hand side

can be copied into the matrix.

It has to be mentioned that copying data which are completely assembled is not efficient,

because new memory has to be allocated and time is wasted. For these reasons linear

solvers can be designed to provide access to internal data structures which can be directly

interfaced by the linearized function.

Consequently, it might be advantageous to use the linearized equation as interface only

which is wrapped on each internal matrix data structure. In many cases all relevant data

(e.g. which elements are non-zero) are already available in these structures and only few

adaptions to the common interface have to be made.



Chapter 6

Summary and Outlook

The main achievements in which the proposed methods differ from state-of-the-art frame-

works are, that arbitrary discretization schemes and different kinds of algebraic equations

(linear, nonlinear, eigenvalue) can be treated using the same mechanisms.

At the level of discretizing differential equations enormous flexibility can be obtained,

because different discretization schemes can be tested at the same time. Furthermore,

the formulation of single discretized equations using topological incidence functions for

traversing the respective elements makes the formulation independent of the dimension

and the archetype of the used elements, even if different mechanisms for the calculation

of the geometry related factors have to be used.

At the level of assembly, the use of linearized equations eases filling the matrices and

implicitly couples a basis function with a governing equation (which is mainly evaluated

in the neighborhood of the local support of the basis function). Furthermore, the use

of linearized equations implicitly forms the derivatives required for the use of gradient

methods for the solution of nonlinear equation systems. Therefore, gradient based schemes

such as the Newton scheme can be implemented straightforwardly.

6.1 Discretization Formalisms

The initial intention on which the discrete calculations of Chapter 2 is based is a common

framework for the specification of different discretization schemes. It could be shown in
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Chapter 3 that the commonly used differential equations can be discretized using the

provided framework of functional expressions.

The basic features of the discrete formalism is the use of accumulation operations. As a

consequence, not only local formulae can be evaluated but values within the neighborhood

of a given topological element can be accessed and used for the evaluation of the differential

operator in that topological element. While in other environments the use of traversal

operations is strictly reduced to a set of base operations, the provided framework relies

on the underlying topological environment which provides different kinds of traversal

operations as well as topological functions.

The main advantage is that discrete expressions can be directly transformed into code

which eases the implementation and reduces the possibility of flaws and oversights. Fur-

thermore, the absence of iteration variables within the traversal operations makes the

code easier to adapt and maintain.

6.2 Linearized Expressions

The main aim of the linearized expression approach is to ease the specification of dis-

cretized differential expressions for numerical computation. During the implementation

of a specific physical model, the most error prone as well as time consuming part is the

linearization of the expression which is required to obtain the system matrix. For this

reason, many different derivatives of the discretized expression have to be calculated and

implemented.

One of the major advantages of the linearized expressions is that they can be directly

used for discretization schemes. While the abstract formulation of the equation presented

in Chapter 3 shows the principles of calculating derivatives of functions which are based

on topological complexes, the use of linearized expressions enables the calculation of the

respective system matrices for the given problems.

One overcomes these problems by implementing only one linear functional data structure

which comprises the linear functional dependence of the discretized expressions on the

solution variables in the neighborhood of a linearization point or vector. Such an algebraic
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structure can be easily implemented by explicitly defining basic arithmetic operations such

as addition, multiplication and function application.

As a result, equation systems and system matrices can be derived automatically only

by the specification and evaluation of a discretized residual expression. Derivatives with

respect to the independent variables are implicitly available and do not have to be calcu-

lated explicitly by hand. Therefore, the implementation effort can be reduced enormously

and testing and validation of a model can be simplified drastically.

The approach for linearized expressions can of course be used for arbitrary expansions

with respect to many different variables. As an example, one can use this approach to

specify higher-order Taylor series and explicitly store second order derivatives, or use other

than polynomial functions. As long as the formulation describes a linear function space,

and special operations preserve the structure (e.g. differentiation for Fourier series), the

obtained data structure can be used for many different purposes.

By the possibility to formulate linearized expressions in a functional manner one can spec-

ify discretized differential equations in a straightforward manner, while the effort for the

specification is reduced to a minimum. Consequently, expressions can be written concisely

and are expanded and differentiated automatically via the specification environment.
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