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Abstract

The existence of dark matter is strongly supported by astrophysical and cosmological
evidence, yet its underlying nature remains one of the great unsolved mysteries in
physics. One promising approach to uncovering the nature of dark matter is through
direct detection, which aims to identify interactions between dark matter particles
and ordinary matter in Earth-based detectors. At the cutting edge of this research
is the CRESST experiment, designed to explore the sub-GeV mass region of dark
matter particles. COSINUS, a sodium iodide-based spin-off of CRESST, focuses on
cross-checking the controversial dark matter signal claim made by the DAMA/LIBRA
experiment. Both experiments employ cryogenic scintillating calorimeters with dual-
channel readout systems that measure phonon and scintillation light signals for
particle identification and background discrimination. A key challenge in operating
and calibrating these detectors is understanding the light quenching effect, where
the scintillation light output depends on the type of interacting particle. This thesis
presents a detailed study of light quenching in calcium tungstate and sodium iodide
crystals, conducted through dedicated measurements with CRESST and COSINUS
prototype dual-channel calorimeters. Quenching factors for various ionizing particles
were extracted using a maximum likelihood framework. The analysis tools employed
throughout this work are part of a comprehensive software package developed within
this thesis, which supports all high-level analysis steps necessary for dark matter direct
detection, including statistical inference for both setting limits and signal detection.
In addition to the quenching factor measurements, the analysis framework was applied
to data from the first COSINUS underground R&D measurements, demonstrating the
experiment’s working principle and potential sensitivity by calculating exclusion limits.
The detailed study of scintillation light quenching factors and the development of
a comprehensive analysis framework represent substantial advances not only for
the CRESST and COSINUS experiments but also for the broader field of rare
event searches.



Kurzfassung

Die Existenz von Dunkler Materie wird durch astrophysikalische und kosmologische
Beweise gestützt, doch ihre wahre Natur bleibt eines der größten ungelösten Rätsel
der Physik. Ein vielversprechender Ansatz zur Suche nach Dunkler Materie ist
die direkte Detektion, die anstrebt, Wechselwirkungen zwischen Dunklen Materie-
Teilchen und gewöhnlicher Materie in erdbasierten Detektoren zu identifizieren. Zu den
führenden Projekten in diesem Bereich zählt das CRESST-Experiment, das den sub-
GeV-Massenbereich potenzieller Dunkler Materie-Teilchen untersucht. COSINUS, ein
Natriumiodid-basiertes Spin-off von CRESST, verfolgt das Ziel, die umstrittenen Ergeb-
nisse des DAMA/LIBRA-Experiments zu überprüfen. Beide Experimente verwenden
kryogene, scintillierende Kalorimeter, die sowohl Phonon- als auch Scintillationslichtsig-
nale messen. Die Kombination dieser Signale ermöglicht Teilchenidentifizierung und
Hintergrunddiskriminierung. Eine zentrale Herausforderung beim Betrieb und der
Kalibrierung dieser Detektoren ist das Verständnis des Licht-Quenchings, eines Effekts,
bei dem die Scintillationslichtausbeute von der Art der wechselwirkenden Teilchen
abhängt. In dieser Arbeit wurde das Licht-Quenching in Calciumwolframat- und
Natriumiodid-Kristallen durch spezielle Messungen mit Prototypen von CRESST- und
COSINUS-Kalorimetern untersucht. Quenching-Faktoren für verschiedene ionisierende
Teilchen wurden mit einem Maximum-Likelihood-Ansatz aus den Messdaten bestimmt.
Die dabei verwendeten Analysetools sind Teil eines umfassenden Softwarepakets,
das im Rahmen dieser Arbeit entwickelt wurde und alle notwendigen Schritte zur
Analyse der direkten Dunkle-Materie-Detektion unterstützt, einschließlich statistischer
Inferenz sowohl zur Festlegung von Ausschlussgrenzen als auch zur Signaldetektion.
Neben den Quenching-Faktor-Messungen wurde das Analyseframework auf Daten
der ersten COSINUS-Untergrund-Testmessung angewandt, um das Funktionsprinzip
des Experiments und dessen potenzielle Sensitivität durch die Berechnung von Auss-
chlussgrenzen zu demonstrieren. Die detaillierte Studie der Quenching-Faktoren und
die Entwicklung eines umfassenden Analyseframeworks leisten wesentliche Fortschritte
nicht nur für die CRESST- und COSINUS-Experimente, sondern auch für das gesamte
Feld der "Rare Event Searches".
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1
Dark Matter

In the 1930s, Swiss astronomer Fritz Zwicky was the first to propose the notion
of dark matter ("Dunkle Materie") to describe the missing, non-luminous matter
inferred from his study of rotational velocities in the Coma cluster [1]. Although
initially met with skepticism, dark matter (DM) has since become a well-established
and widely accepted concept in the physics community. Over the past decades,
substantial evidence supporting the existence of DM has emerged, spanning both
small astrophysical and much larger cosmological scales.

This chapter begins with a brief introduction to cosmology, followed by a pre-
sentation of conclusive evidence for DM across various scales. We will then discuss
a range of DM candidates whose masses extend from below one eV to several solar
masses. Subsequently, we will explore different methodologies for particle DM searches,
emphasizing the specifics of DM direct detection, which constitutes the experimental
framework of this thesis. Finally, we derive an expression for the differential event
rate of particle DM scattering off nuclei in an Earth-bound detector.

1.1 Introduction to cosmology

Most evidence for the existence of DM stems from astronomical and cosmological
observations. Therefore, it is logical to begin this thesis with a brief review of our
current understanding of the Universe and its formation. For this section, we adhere
to DM-oriented introductions to cosmology, such as the one found in [2], and refer
the reader to standard works like Ryden [3] for more comprehensive details.

When we step back from the complex structures in Earth’s immediate surroundings
and view the Universe on a scale of approximately 100 Mpc, we observe a homogeneous
distribution of mass and energy. Additionally, there is no preferred direction. Such a

1



2 1.1. Introduction to cosmology

homogeneous and isotropic universe can be described by the Friedmann-Robertson-
Walker (FRW) metric with infinitesimal line element

ds2 = dt2 − a(t)2
(︃

dr2

1− kr2
+ r2(dθ2 + sin2 θ dϕ2)

)︃
, (1.1)

in comoving spherical coordinates (r, θ, ϕ). The scaling factor a(t) describes the
expansion of the universe and is most prominently known from its appearance
in Hubble’s law:

v = H0d =
ȧ

a

⃓⃓⃓⃓
t0

d , t0 = today (1.2)

Hubble’s law relates the velocity v with which a galaxy moves away from us to
its distance d. The time-dependent function H(t) = ȧ(t)/a(t) denotes the Hubble
parameter and H0 = h 100 km

sMpc is its value today with h measured to h ∼ 0.7

[4]. The second characteristic parameter of the FRW metric is k, a measure of
a universe’s curvature:

k =

⎧⎪⎨⎪⎩
0, flat
−1, negative curvature (hyperbolic paraboloid)
+1, positive curvature (sphere)

(1.3)

The FRW spacetime metric gµν and its corresponding Ricci tensor Rµν and Ricci
scalar R can be related to the stress-energy tensor Tµν of any object via Einstein’s
equation of gravity

Rµν − 1

2
gµνR = 8πGNTµν + Λgµν , (1.4)

with Newton’s constant GN and the cosmological constant Λ.
In standard cosmology and general relativity calculations, any matter or energy
content in the Universe is usually approximated by a perfect fluid of density ρ and
pressure p. The respective stress-energy tensor is

Tµν = (ρ+ p) uµuν − pgµν , (1.5)

with uµ the four-velocity of the fluid. If the fluid is at rest with respect to its
own comoving frame, then uµ = (1 0 0 0) and we find a simple expression for
the stress-energy tensor

Tµν =

⎛⎜⎜⎜⎜⎝
ρ 0 0 0

0 −pg11 0 0

0 0 −pg22 0

0 0 0 −pg33

⎞⎟⎟⎟⎟⎠ . (1.6)
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To preserve energy-momentum conservation, we demand ∇µT
µν = 0, which, under

the condition of an expanding universe, results in the following continuity equation:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (1.7)

The (00)-component of the Einstein equation for a perfect fluid gives the first1

Friedmann equation

H2 =

(︃
ȧ

a

)︃2

=
8πGN

3
ρ− k

a2
+

Λ

3
, (1.8)

describing how the universe’s energy density and geometry govern its expansion.
We note that in eq. (1.8) and much of the subsequent notation, we omit the time-
dependence of H, a, and ρ. We write the Friedmann equation as

H2 =
8πGN

3
ρtot − k

a2
, (1.9)

with ρtot = ρ + ρΛ = ρ + Λ
3πGN

. This definition identifies the cosmological constant
as a part of the universe’s energy density referred to as dark energy. We define
the notion of critical density

ρc =
3H2

8πGN

, (1.10)

which is only equal to the total density ρtot in a flat "Friedmann universe" (k = 0).
Via the critical density, we further define the density parameter Ωx = ρx/ρc for each
component x of the universe’s energy content. Measurements of the cosmic microwave
background (CMB) by the Planck collaboration [4] give the following numbers for
the energy budget in our Universe as of today2:

Ωm ≈ 0.321 , Ωr < 10−12, ΩΛ ≈ 0.679 (1.11)

Here, the density ρ is split in a radiation part ρr (photons, relativistic particles like
neutrinos) and a matter part ρm (all massive, non-relativistic particles). We note that
Ω =

∑︁
x Ωx ≈ 1 implies that the universe is flat. Our Universe today is dominated by

dark energy (the cosmological constant term), while the contribution from radiation
is almost negligible.

1There is also a second Friedmann equation which can be derived from the trace of the spatial
components of the Einstein equation:

ä

a
= −4πGN

3
(ρ+ 3p) +

Λ

3

The second Friedmann equation does not add any additional information beyond the information
content of the first Friedmann equation and the continuity equation.

2These values are strongly correlated with the measured values of h.
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Figure 1.1: Sketch of the evolution of the Universe’s energy budget as a function of the
scale factor, which is, in turn, a function of time.

To conclude this introduction, we will examine the correlation between the
composition of a universe’s energy content and the scale factor a(t). First, we
consider a flat universe where the energy content consists entirely of relativistic
particles, implying Ω = Ωr. Radiation pressure is directly proportional to the energy
density, with p = 1

3
ρ. From the continuity equation, we find

ρ ∝ a−4 . (1.12)

If we instead assume a homogeneous, flat universe filled only with matter, we have
p = 0, leading to

ρ ∝ a−3 . (1.13)

This relationship is conceptually sound, as we expect the density in a matter-filled
space to decrease with increasing volume ∝ a3. The same logic applies to a radiation-
filled space, but additionally, the wavelength of relativistic particles scales with a.
This redshift adds another factor of a−1 in an expanding space. Conversely, for the
cosmological constant, we set p = −ρ3, leading to:

ρ ∝ const. (1.14)

Observations from Typ Ia supernovae suggest that the scale factor a(t) is an
increasing function of time, indicating accelerated expansion. This implies that the
energy budget of the early Universe must have been very different from what we
observe today. The evolution of the energy budget as a function of the scale factor (and
consequently of time) is illustrated in Fig. 1.1, starting with a radiation-dominated era.
3This implies that dark energy has negative pressure and can counteract gravitational pull. The
relation p ∝ −ρ can be extracted from the second Friedmann equation in the Λ-dominated limit.
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1.2 Evidence for dark matter from cosmology

To find evidence for the existence of DM in cosmological observations, we examine the
early, radiation-dominated Universe. Minutes after the Big Bang, quarks combined to
form protons and neutrons, but high-energy photons prevented the formation of nuclei.
As the Universe expanded and cooled, light nuclei up to 7Li were produced. This
process, known as Big Bang nucleosynthesis (BBN), occurred approximately 20 minutes
after the Big Bang. Since heavier elements are formed from lighter nuclei later in stars
or supernovae, BBN can be used to estimate the final abundances of baryonic matter4.

To form nuclei heavier than hydrogen, neutrons and protons combine via the weak
interaction to form deuterium nuclei. This mechanism becomes possible only once
dissociation by photons has ceased and, therefore, depends on the baryon-to-photon
ratio η. Estimates of η from BBN analysis suggest that Ωb ≈ 0.06 [4], which agrees well
with the observed abundances of baryonic matter today. Comparison with eq. (1.11),
however, reveals Ωb/Ωm ∼ 1/5, implying that only 20 % of the matter in the Universe
is baryonic. These observations provide evidence for a massive, non-baryonic matter
component in the universe - namely DM. Additionally, the BBN result gives an
estimate of DM’s contribution to the Universe’s energy content.

After BBN, nuclei had formed, but electrons were still freely moving throughout the
Universe due to photons immediately ionizing any neutral atoms. The free electrons
and the photons were in kinetic equilibrium through continued Compton scattering5

e− + γ → e− + γ . (1.15)

This process filled the early universe with almost perfect black-body radiation.
Approximately 370 000 years after the Big Bang, the universe had expanded

enough for Compton scattering of photons and electrons to become ineffective. By
this time, the radiation-dominated phase had long ended, and the Universe was filled
primarily with non-relativistic matter (compare with Fig. 1.1). A period known
as recombination occurred, during which electrons combined with nuclei to form
neutral atoms. Consequently, shortly after, photons decoupled from matter and
began to freely propagate through the Universe at a temperature of ∼ 2.7 K. This
residual radiation is referred to as CMB and was first observed – by accident – in
1965 by Arno Penzias and Robert Wilson [5].

More recent measurements of the CMB revealed that its temperature distribution
is not homogeneous but subject to small fluctuations of ∆T/T̄ ∼ 10−5. In Fig.
1.2, the CMB, as measured by the Planck space observatory, is shown and exhibits
4Baryons are particles composed of an odd number of quarks (e.g., protons). All visible matter, such
as stars, planets, and gas clouds, consists mainly of baryons, thus referred to as baryonic matter.

5Note that in comparison to electrons, Compton scattering off protons is suppressed by a factor of
(me/mp)

2 ∼ 10−6.
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Figure 1.2: Temperature map of the CMB as measured by the Planck space observatory. The
different colors mark fluctuations from the average temperature (Credit: Planck Observatory
[6]).

the characteristic inhomogeneities. The distribution of temperature fluctuations in
direction (θ, ϕ) can be expanded in spherical harmonics Y m

l (θ, ϕ):

∆T (θ, ϕ)

T̄
=

∞∑︂
l=1

l∑︂
m=−l

almY
m
l (θ, ϕ) (1.16)

The values of alm are the coefficients of the expansion, which are used to calculate
the angular power spectrum Cl as a function of multipole moment l

Cl = ⟨|alm|2⟩ . (1.17)

The multipole moment can be interpreted as an inverse measure of the angular
separation of temperature fluctuations (in other words, the space between hot and
cold spots). In Fig. 1.3, we show an example of such an angular power spectrum,
representing temperature fluctuations observed in our Universe. The peaks at
intermediate l, marked as acoustic peaks in Fig. 1.3, are those most relevant for
a DM analysis. The amplitudes of these peaks are related to oscillations in the photon
fluid at times of photon decoupling. In turn, these oscillations are related to both
the contribution of baryonic matter, as well as all matter contributions competing
gravitationally with the radiation pressure. From the peaks’ amplitudes, one can
thus estimate Ωm and Ωb, finding values compatible with the BBN results and the
existence of non-baryonic DM.
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Figure 1.3: Exemplary, theoretical angular power spectrum as a function of the multipole
moment. The spectrum was calculated with the CAMB web interface [7] using standard
parameters resembling our Universe. The light blue region marks the acoustic peaks, which
are of interest for deriving the baryon content of the Universe at photon decoupling.

The CMB provides insight into density perturbations and the evolution of small
structures in the early Universe. However, evidence for DM can also be found in the
large-scale structures of today’s Universe. Through extensive computational studies,
such as the Millenium Simulation [8], the formation of structures like galaxy clusters
or filaments from small fluctuations in the early Universe can be retraced. Comparing
simulation results with observations reveals that the large-scale structures we see
today could only have formed if additional gravitationally interacting matter, beyond
the visible baryonic matter, had been present in the Universe from early times.

Furthermore, comparing observations of smaller structures with simulation results
indicates that DM must have been non-relativistic at the time of structure formation.
If DM had been relativistic, small-scale structures such as galaxies would have been
"washed out" by the fast-moving DM. The currently accepted view is thus that our
Universe is filled with cold DM (CDM), and the preferred cosmological model is referred
to as ΛCDM. While ΛCDM has achieved many successes over the years, it also faces
several challenges, including inconsistencies in measurements of the Hubble constant
(the Hubble tension) and issues related directly to CDM (the core-cusp problem). For
an overview of these challenges, the reader is referred to [9] and references therein.
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1.3 Evidence for dark matter on the galactic scale

Historically, the need for DM has arisen not from cosmological observations but from
studies of much smaller structures in Earth’s cosmic backyard. Zwicky performed
the first such studies on the Coma cluster in the 1930s [1]. Galaxy clusters contain
O(1000) galaxies and form a gravitationally bound structure. Viewing clusters as
stable, stationary configurations, the virial theorem can be used to relate the total
averaged potential energy of the system ⟨V ⟩ to the averaged kinetic energy ⟨T ⟩:

2⟨T ⟩ = −⟨V ⟩ (1.18)

This allows calculating the total gravitational potential - and thus the total mass - of a
cluster from velocity measurements of the galaxies within. At the time, Zwicky found
his estimate for the amount of gravitationally interacting matter to be about 300
times larger than the estimate from luminosity measurements. This result provided
the first evidence for the existence of DM.

Recent studies estimate the total gravitational potential of galaxy clusters using
gravitational lensing. Massive objects, such as galaxy clusters, influence the path of
light from background objects along the line of sight. The degree of light bending
is a direct measure of the mass content of the cluster.

Beyond the study of individual galaxy clusters, the merging process of clusters
also provides evidence for DM. A prime example is the Bullet Cluster, consisting of
two galaxy clusters that collided approximately 150 million years ago [10]. Due to
the large distances between galaxies within the clusters (about 1 Mpc), the luminous
parts passed almost freely through each other in the collision. In contrast, the gas
contents, which constitute most of the baryonic matter in the clusters, interacted
strongly through friction. As a result, the gas clouds lost energy during the collision
and now "lag behind" the luminous parts. Although these hot gases do not emit
visible light, they can be observed via X-ray telescopes, as shown in Fig. 1.4 in pink for
the Bullet Cluster. Gravitational lensing studies have revealed that the gravitational
centers of the clusters are displaced relative to the gas (see blue shaded areas in Fig.
1.4). This observation suggests that the primary mass component of the clusters is
non-baryonic matter. Furthermore, the fact that the DM content was not slowed by
friction during the collision provides constraints on the strength of DM self-interaction
and its interaction with ordinary baryonic matter.

On a smaller scale, evidence for DM is found in the rotation curves of stars in galaxies.
One of the pioneering studies in this field was conducted by Vera Rubin and Kent
Ford [12]. They analyzed the behavior of stars in spiral galaxies, especially in the
Andromeda galaxy. According to Newton’s law of gravity, in a galaxy where the
visible mass is concentrated at the center, the circular velocities of stars should
decrease with 1/

√
R as the distance R from the center increases. However, Rubin,
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Figure 1.4: Composite illustration of the Bullet Cluster. The optical image is overlayed
with the Chandra Observatory’s X-ray image (pink). The blue-shaded region marks the bulk
of the gravitational potential as determined via gravitational lensing (figure credits see [11]).

Ford, and subsequent researchers observed that these velocities remain nearly constant
at large distances. This phenomenon is illustrated in Fig. 1.5, which shows the
rotational velocities of several stars in the spiral galaxy M33 as a function of their
distance from the galaxy’s center. A spherical DM halo extending far beyond the
visible galactic disc must be introduced to account for the observed rotation curves.
The contribution of such a DM halo to the rotational velocities of visible objects
is depicted as a dashed-dotted line in Fig. 1.5.

In addition to the DM distribution in neighboring galaxies, the DM content in
the Milky Way is of particular interest. However, measuring the rotational velocities
of stars within the Milky Way is significantly more challenging than for stars in
distant galaxies, leading to substantial uncertainties in the DM content and density
distribution of our galaxy. For particle DM studies, a simplified standard halo model
(SHM) is often used, modeling the DM distribution as an isotropic sphere with a
density profile ρ(R) ∝ R−2. At the Sun’s position in the Milky Way, the SHM
predicts a DM density of ρ(R⊙ = 8.2 kPc) = 0.3GeVcm−3 [13]. However, estimations
of the local DM density employing more direct methods converge towards values
of ρ(R⊙ = 8.2 kPc) = 0.4GeVcm−3 [14], suggesting that the SHM might not be a
suitable approximation.

To conclude, there is abundant evidence for the existence of DM from astronomical
and cosmological perspectives. Many of the above-listed studies have also revealed
properties of DM that aid in its characterization and identification. With these
features in mind, we will discuss various DM candidates in the next section.
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Figure 1.5: Rotational velocities of several stars in the galaxy M33 (points with error bars),
together with the best-fit model for the rotation curve (solid line). The contribution from
luminous matter in the galactic disc to the rotation curve is marked as a short dashed line.
The gas contribution is shown as a long dashed line, and the contribution from the DM halo
as a dashed-dotted line. Figure from [15].

1.4 Particle dark matter candidates

With substantial evidence supporting the existence of an additional matter component,
the nature of DM remains an open question. Following the observations of abnormal
rotation curves in galaxies, a popular hypothesis was that the missing matter comprised
non-luminous objects such as planets, brown dwarfs, or black holes. These DM
candidates, known as massive compact halo objects (MACHOs), span a mass range
from 10−8 M⊙ (∼ 0.3 lunar masses) to 100M⊙.

However, MACHOs consist primarily of baryonic matter and, therefore, cannot
account for the results from BBN and CMB analyses. Gravitational lensing studies
offer another method to investigate the presence of massive, dark objects in the Milky
Way and surrounding galaxies. These studies have shown that microlensing events,
which occur when a MACHO passes in front of a background star and temporarily
magnifies its light, are relatively rare. Consequently, MACHOs can account for at
most 20% of the DM if a roughly homogeneous universe is assumed [16].

A type of massive, non-particle object still considered a potential DM candidate are
primordial black holes (PBHs). PBHs are hypothesized to have formed in the early
Universe mere seconds after the Big Bang. Unlike stellar black holes resulting from the
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gravitational collapse of massive stars, PBHs could have originated from regions with
sufficient density contrast to overcome internal pressure forces, leading to gravitational
collapse. Through this production mechanism, PBHs can be non-baryonic and exist
early enough in the universe to be viable DM candidates [17].

The mass range of PBHs spans from 10−5 g to 100M⊙. However, only PBHs with
masses > 1015 g would not be affected by Hawking radiation and still exist today.
Although they have not yet been observed, recent studies suggest that PBHs with
masses between 20-100M⊙ could explain gravitational wave signatures observed by
the LIGO and Virgo experiments [18].

While PBHs are an interesting DM candidate, the prevailing opinion in the physics
community is that DM has some particle-like nature. Potential DM particles must
satisfy several critical properties to align with the astronomical and cosmological
observations mentioned in the previous section:

1. The DM particles must be electrically neutral. If they carried any electric
charge, they would interact with photons, making detection via electromagnetic
means possible, which contradicts the lack of such observations. Moreover,
DM particles must not possess color charge (the charge associated with the
strong nuclear force), as this would lead to strong interactions with ordinary
matter and the possible formation of hadronic or even baryonic structures. Such
interactions would alter the formation and distribution of large-scale structures
in ways that are not observed.

2. To explain the missing matter in BBN and CMB analyses, DM has to be
non-baryonic. This requirement excludes any composite structures formed by
quarks.

3. BBN studies also indicate that DM must have existed very early on in the
Universe, suggesting that DM is either a stable or a very long-lived particle.

4. For the Universe to have evolved as we observe it today, DM must have been
non-relativistic at the time of structure formation. In an expanding Universe,
DM particles should still be cold today.

Despite these strict criteria, the particle physics community has proposed a multitude
of potential new particles to explain DM. The following section will discuss some
of the most popular and well-motivated candidates.
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1.4.1 Sterile neutrinos

Before considering exotic particles, we want to evaluate the potential of known particles
as DM candidates. For this purpose, we turn to the well-established Standard Model
(SM) of particle physics. There is only one non-baryonic SM particle that is neutral
under both electric and color charge: the neutrino. However, neutrinos are extremely
light particles. Even with the highest mass still allowed by current experimental
bounds, the three known neutrino species (electron, muon, and tau) are not nearly
abundant enough to account for the entire DM energy density [19]. Additionally, their
small masses and thermal production in the early universe render neutrinos relativistic
particles. They are thus quantified as hot dark matter (HDM) and could not explain
the observed large-scale structure in our Universe.

To find a suitable DM particle, we must look beyond the SM to what is referred to
as the dark sector. The first candidate we want to discuss is the sterile neutrino, a
hypothetical fermion that is a total singlet under the SM gauge group [19]. This
property makes the sterile neutrino perfectly neutral, interacting with ordinary matter
only through gravity, which makes it a viable DM candidate. Moreover, the sterile
neutrino can have a mass that is not governed by the Higgs mechanism and is thus
practically unrestrained. As a DM candidate, a keV mass scale is favored based on
both theoretical considerations and observational restraints.

The sterile neutrino is an especially well-motivated DM candidate, as it can
also explain the non-zero active masses of SM neutrinos inferred from neutrino
oscillations. The relatively unrestrained mass of sterile neutrinos allows for both
a CDM and a warm dark matter (WDM) scenario, potentially resolving some of
the small-structure issues previously mentioned.

While the sterile neutrino would interact exclusively with SM matter through
gravity, it is expected to have small mixing with SM neutrinos. This mixing provides
a non-thermal production mechanism in the early universe and makes creation in
colliders, and thus the search for sterile neutrinos, possible. Other options to search for
sterile neutrinos are experiments studying SM neutrino oscillations. The existence of
an additional neutrino species would also impact the SM neutrino mixing parameters,
and to such deviations, oscillation experiments are sensitive. Observations of neutrino
disappearance (as seen at MiniBooNe [20]) and other anomalies in various neutrino
experiments (e.g., Gallium anomaly in BEST [21]) may suggest the presence of
sterile neutrinos. Although no conclusive evidence has been found so far, neutrino
physics remains a very active field, with numerous new experiments poised to begin
measurement campaigns in the near future.
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1.4.2 Axions and axion-like particles

The axion was introduced in an attempt to solve the strong CP problem, that is, the
apparent absence of charge-parity (CP) violation in strong interactions. To better
understand the origin of the axion and the underlying problem, we look to Quantum
Chromodynamics (QCD), the theory describing the strong interaction. The relevant
term in the QCD Lagrangian is the θ-term that violates CP symmetry:

Lθ = θ
αs

8π
Ga

µνG̃
µν
a (1.19)

The parameter αs can be viewed as the QCD-equivalent of the fine-structure constant,
and Ga

µν is the gluon field strength tensor with dual G̃µν
a . The scaling parameter

θ can be interpreted as the vacuum angle of the QCD vacuum [22]. The θ-term
can be neglected in perturbative calculations but impacts CP-violating observables,
most prominently the electric dipole moment of hadrons. The latest experimental
results put a stringent upper bound of |dn| < 1.8× 10−13 e fm on the electric dipole
moment of the neutron [23], imposing the restriction:

|θ| < 0.8× 10−10 (1.20)

The strong CP problem is thus the question of why θ is so small when expected to be of
O(1).

The most promising solution to the strong CP problem was proposed in 1977 by
Peccei and Quinn [24]. They postulated a new U(1) symmetry that is spontaneously
broken at a high energy scale fa and can dynamically drive θ to zero. Such a
spontaneously broken global symmetry implies the existence of a new pseudo-Nambu-
Goldstone (pNG) boson, the axion [25, 26]. The Peccei-Quinn (PQ) mechanism
absorbs θ into a dynamic axion field a(t, x) via

θ ↦→ θ(t, x) = a(t, x)/fa , (1.21)

where the potential of a has a minimum at the CP-conserving value.
Equations (1.19) and (1.21) imply an inherent coupling of the axion to the gluon

field with a strength of order 1/fa. As a result, mixing of the axion with mesons is
allowed, and the axion acquires a mass ma generated by QCD effects:

ma =
(5.70± 0.07)× 106

fa/GeV
eV (1.22)

This definition significantly restricts the mass range of the classic QCD axion due to
experimental bounds on fa (see yellow diagonal region in Fig. 1.6). One can look
to axion-like particles (ALPs) to avoid these restrictions. ALPs emerge as the pNG
boson of more generic U(1) symmetries spontaneously broken at high energy scales.
Since such U(1) symmetries can be found in various extensions of the SM, ALPs are
not necessarily bound by the restrictions of the PQ mechanism.
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Figure 1.6: Overview of current constraints from axion searches in the gaγ-ma plane.
Redish regions mark results from helioscopes, haloscopes, and other laboratory results. Blue
and green regions mark constraints from astrophysics and cosmological observations. The
diagonal yellow streak marks the region favored for the QCD axion. Figure taken from [27].

Even without the implications of the PQ mechanism, axions and ALPs are expected
to have light masses ≲1 eV, rendering them unsuitable as CDM at first glance. Indeed,
a thermal production of axions would have led to an HDM population, as discussed
for SM neutrinos. However, the PQ mechanism provides an alternative, non-thermal
production mechanism. In the early universe, at temperatures of order fa, the PQ
phase transition occurs in which the U(1) symmetry becomes spontaneously broken,
and the vacuum angle takes on some value θi. At these high temperatures, the effective
potential of the axion field is negligible, and the axion massless. As the Universe cools
and reaches the QCD critical temperature, non-perturbative QCD effects become
relevant, turning on the effective potential through which the axion obtains a mass.
Throughout this process, the axion field acquires a new minimum θmin corresponding
to the CP-conserving value. In general, θi ̸= θmin (misalignment) and the axions
start to oscillate in response to obtaining mass. These oscillations correspond to a
population of non-relativistic axions which can act as CDM. The same mechanism can
be applied to ALPs with more freedom in the temperature and energy scales [22].

Searches for axions and ALPs are made possible by the model-independent coupling
to photons with strength gaγ, which is a direct consequence of the mixing with
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mesons. There is a multitude of detection strategies, the majority of which rely on
Primakoff axion-photon conversion in a magnetic field. A substantial part of the
ma-gaγ parameter space has already been probed, so far unsuccessful. The current
status of ALP searches is visualized in Fig. 1.6, and the reader is referred to [28]
and the references within for more information.

1.4.3 Weakly interacting massive particles

A variety of particularly popular beyond-SM DM candidates are summarized as
weakly interacting massive particles (WIMPs). WIMP refers to a massive particle
that interacts with SM particles through the weak force but does not participate in
electromagnetic or strong interactions [29]. Such a particle is predicted by various
extensions to the SM, such as supersymmetry (SUSY), as well as more exotic constructs
like the Kaluza-Klein boson emerging from theories involving extra dimensions.

WIMPs are also motivated by cosmology through a remarkable coincidence called
the "WIMP miracle". A particle with weak-scale interactions and a mass at the
electroweak scale (∼100 GeV to a few TeV) naturally acquires a relic abundance in
the universe that matches the observed DM density [29]. To understand the WIMP
miracle, we need to understand the production mechanism of WIMPs. In the standard
scenario, WIMPs are assumed to be thermal relics of the Big Bang created in a simple
mechanism. In the early universe, all particles are in thermal equilibrium, and DM
is constantly produced from and annihilated to SM particles:

χχ̄ ←→ SMSM

As the universe cools to a temperature T < mχ, the production of DM becomes
ineffective. The number of DM particles becomes Boltzmann suppressed and decreases
with ∝ e−mχ/T . At the same time, the universe expands, less χχ̄ pairs find each other,
and annihilation is brought to a halt. The Hubble expansion causes the WIMPs
to freeze-out with a constant relic density.

The freeze-out process is visualized in Fig. 1.7 and can be quantitatively described
by the Boltzmann equation

dn

dt
= −3Hn− ⟨σv⟩(n2 − n2

eq) , (1.23)

where n is the time-dependent WIMP number density, neq the WIMP number
density at the time of thermal equilibrium, ⟨σv⟩ the thermally averaged DM-to-
SM annihilation cross section and H the Hubble parameter. The first term on the
right-hand side of the equation describes the dilution in density from expansion,
whereas the second term accounts for the interplay between creation and annihilation
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Figure 1.7: The behavior of the dark matter number density with decreasing temperature
(i.e., increasing age of the universe). The quantity Y = nχ/s is the DM number density
normalized to the entropy density s, with the resulting thermal relic density Ωχ marked on
the right side of the y-axis. The solid line marks the number density for an annihilation
cross section that produces the correct relic density after freeze-out. The shaded regions
represent cross sections that differ by 10, 102, and 103 from this value. If no expansion of
the universe takes place, DM would stay in thermal equilibrium, and the number density
would follow the dashed line. Figure taken from [29].

of DM. The Boltzmann equation can be solved numerically to find an expression
for the WIMP thermal relic density:

Ωχ =
mχn0

ρc
∼ (mχ/Tf )T

3
0

ρcMpl

⟨σv⟩−1 (1.24)

The index 0 denotes present-day quantities, the index f marks quantities at the time
of freeze-out, and Mpl the Planck mass. Through the scalable parameter Tf ∝ mχ,
Ωχ becomes highly insensitive to the DM mass. For an annihilation cross section
of the weak scale, we find ⟨σv⟩ ∼ 10−26 cm3s−1 [30], resulting in values for Ωχ

compatible with those observed.
While eq. (1.24) may not directly impose a dependence on the DM mass, in

many scenarios ⟨σv⟩ is determined via mχ and the mass of the particle Z mediating
the interaction:

⟨σv⟩ ∝ m4
Z

m2
χ

(1.25)

This connection is closely related to the Lee-Weinberg bound. In 1977, Lee and
Weinberg [31] published a lower mass bound of 2GeV for thermal relic neutrinos
based on cosmological observations. Less massive neutrinos would have gone out
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of equilibrium too early, leading to an overclosure of the universe. This bound can,
in principle, be applied to any weakly interacting particle produced in a freeze-out
mechanism and explains why the classic WIMP is defined with a mass >10GeV.

Throughout this work, we will see that current WIMP searches also focus on DM
masses on the MeV scale. How are such light, weakly interacting particles compatible
with the Lee-Weinberg bound? In the original derivation of the bound for the SM
neutrino [31], the mediating particle, whose mass enters in eq. (1.25), is the SM Z

boson with mZ ∼ 100GeV. However, mediation of the interaction via an SM weak
force carrier is not a necessity for a beyond-SM particle, and the Z boson can be
replaced by a new boson Z ′. If this new mediator is lighter, i.e., mZ′ < mZ , the
Lee-Weinberg bound is significantly relaxed, allowing for light DM particles (LDM).
Another way to circumvent the Lee-Weinberg bound is by proposing an alternative
production mechanism for DM. One of the most popular is the freeze-in scenario,
involving a Feebly Interacting Massive Particle (FIMP) that interacts so feebly with
the SM matter in the early universe, never reaches thermal equilibrium and is still
produced at a low rate today [32].

In this thesis, we will refer to all weakly interacting DM candidates as WIMPs,
irrespective of whether their mass lies in the classic WIMP mass range (thus including
LDM) or their production mechanism (thus including FIMPs). The shared character-
istic of all these particles – the weak interaction with SM particles – opens up the
possibility of multi-sided searches, which will be discussed in the next section. This
quality makes the WIMP an especially attractive DM candidate yet again, as of all
particles listed so far, it has the highest probability of being detected.

As a final remark for this section, we emphasize that some interaction with SM
matter beyond gravitation is assumed for all the DM candidates listed. However, such
interactions are not guaranteed, and DM might not have any SM gauge interactions
(or mixing) at all. If DM is indeed completely hidden from the SM, a portal to the
SM is necessary to make it detectable beyond its gravitational effects.

1.5 Particle dark matter searches

Regardless of whether WIMPs/FIMPs/LDM were produced in a freeze-out or a freeze-
in scenario, there is an underlying 4-point6 χ-χ-SM-SM interaction that makes DM
searches feasible. Depending on the direction of time in the corresponding Feynman
diagram of this interaction (shown in Fig. 1.8), different orthogonal search strategies
emerge: DM production at colliders, signals from present-day DM annihilation, or
scattering of DM particles off SM targets.

6Some freeze-out workarounds suggest a 3-to-2 annihilation of strongly interacting DM particles to
achieve the correct relic density [33].
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Figure 1.8: Schematic display of the orthogonal search channels for DM.

In the following section, all three detection channels will be briefly discussed, with
emphasis on DM-SM scattering, as this thesis is based on research conducted within
the CRESST and COSINUS direct detection experiments.

1.5.1 Searches at colliders

The coupling of WIMPs (and long-lived sterile neutrinos) to the SM enables the
production and controlled study of DM particles at colliders. Similar to neutrinos,
the produced DM particles would pass undetected through the collider, making their
primary experimental signature missing transverse energy ��E T [34]. In general, collider
DM search strategies can be divided into two categories: searches for the DM particles
themselves and searches for the mediating particles, which might also be part of the
dark sector.

Mono -X searches
Identifying particle production solely via missing transverse energy is challenging
and often ambiguous. In collider searches, the interaction is thus triggered and
characterized by the particle X radiated by the initial-state particles. At hadron
colliders, X is typically a hard photon or gluon as visualized in Fig. 1.9. The high
energies at the Large Hadron Collider (LHC) also allow for the production of a
Higgs boson or other heavy particles. Such collisions have a distinctive ��E T + X

signature, referred to as mono-X. Examples of mono-X searches at the ATLAS
and CMS experiments at the LHC include mono-photon [35, 36], mono-jet [37]
and mono-Higgs [38, 39].

If the mass of the expected mediator is significantly larger than the energy accessible
at the collider, an effective field theory (EFT) approach can be used to describe the
interaction. The EFT approach assumes a contact 4-point interaction, effectively
"integrating out" the mediating particle. However, modern colliders achieve interaction
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Figure 1.9: Example Feynman diagram of a mono-X process, here with a radiated gluon g.
The incoming particles ψ are SM particles, and Z ′ denotes an arbitrary mediator.

energies where the requirements of the EFT approach do not hold for most assumed
mediators. When EFT is not applicable, a more complete description that explicitly
includes the mediator is necessary.

A good compromise between EFT and full-fledged supersymmetric theories is
found in simplified models. These models explicitly consider the mediator as part of
the interaction, introducing parameters such as the mediator mass and its couplings
to both the SM and the dark sector. While this approach increases the complexity of
collider phenomenology calculations, it also complicates model-independent compar-
isons with results from direct and indirect DM searches due to the combination
of various couplings.

One of the main drawbacks of DM searches at colliders is that even if an invisible
particle is generated and observed, there is no guarantee that this particle is indeed
DM. Additionally, the maximum guaranteed lifetime of the detected particle is only
the time it takes the particle to exit the detector. The characteristic escape time in
the various LHC detectors is many orders of magnitude smaller than the required
lifetime of a DM particle candidate.

Mediator searches
If the mass of the mediator is smaller than 2mχ, collider searches are more sensitive
to final states without DM itself. In such cases, the primary particle of interest is
the mediator, and colliders often place more stringent bounds on mediator masses
than on the masses of potential DM candidates [34].

These searches aim to produce the mediator in a collision, after which it decays
into SM particles (the mediator does not need to be stable or long-lived). The two
resulting jets - dijets - of SM particles can then be analyzed to extract information
on the mediator. For high mediator masses, the LHC provides the most stringent
bounds. For light mediators with masses ≲ 10 GeV, low-energy lepton colliders offer
the best sensitivity (e.g., dark photon studies at Belle II [40]). Fixed target and beam
dump experiment can even extend their sensitivity to sub-GeV mediators [41].
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1.5.2 Indirect searches

Compared to the early universe, the annihilation rate of DM particles is highly
suppressed today. Nevertheless, it is assumed that DM annihilation still occurs
in dense regions of the universe and may be observable. WIMPs might thus be
detected indirectly via their annihilation or, if DM is not stable but just long-lived,
decay products. Additionally, if WIMP annihilation is s-wave (i.e., almost velocity
independent), the thermally averaged cross section ⟨σv⟩ predicted by the WIMP
miracle provides an ideal target for indirect detection searches. Various indirect
detection methods are being pursued and can be categorized based on the astrophysical
particles they seek: photons, charged particles, or neutrinos. For a more detailed
overview and references to all the experiments listed in the following, the reader is
referred to [42].

Gamma-ray photons
WIMPs do not couple directly to photons, but due to their significant mass, a
considerable amount of photons are expected to be produced as secondary anni-
hilation products. Continuum photon spectra arise from "soft" boson final states
(bb̄, W+W−, ...) or "hard" fermion final states (e+e−, µ+µ−, ...). The first type of final
states generates photons primarily through hadronization (decay of neutral pions),
while the second type does so through final state radiation. Photon line emissions may
result from γγ, Zγ, or hγ final states. Detecting a photon line would be compelling
evidence for DM, as no known standard astrophysical processes produce monoenergetic
emissions. However, such processes are loop-suppressed and thus significantly weaker
than continuum signals and harder to detect over backgrounds.

Due to their high energies, gamma rays travel through the Universe without
deflection, allowing for precise source localization. High-density regions like the galactic
center are particularly attractive targets for gamma-ray observatories. Incoming
photons scatter in the Earth’s atmosphere, so gamma-ray observatories are primarily
space-based, such as the Fermi-LAT telescope and the AMS observatory on the
International Space Station. Nevertheless, ground-based telescopes can detect and
characterize cosmic gamma rays through the Cherenkov light emitted from particle
showers produced in the Earth’s atmosphere. Imaging atmospheric Cherenkov
telescopes (IACTs), including H.E.S.S., MAGIC, and VERITAS, have placed strong
bounds on TeV DM particles.

Cosmic rays
Besides photons, DM annihilation may also lead to characteristic signatures in the
spectra of charged cosmic rays (e− and e+, protons and anti-protons, etc.). Charged
particles cannot propagate freely through the universe. During the diffusion process,
some of their energy is transferred to photons through inverse Compton scattering
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or synchrotron emission when passing through magnetic fields. Consequently, the
spectrum detected in an earth- or space-based detector or telescope is softer than
the spectrum initially emitted.

Both the initial cosmic rays and the indirect photon signal are detectable by most
gamma-ray observatories, both earth- and space-based. There are also specialized
observatories focusing on cosmic ray detection, specifically on the charge and sign of
the detected particles. Examples include the satellite-based PAMELA experiment
and the Pierre Auger Observatory in Argentina.

An especially interesting annihilation channel for indirect searches is that to anti-
matter: positrons, anti-protons, or even anti-nuclei. The expected rates from standard
astrophysics for anti-matter production are very low, providing an almost negligible
background for these searches.

Neutrinos
The last type of detectable DM annihilation product is the neutrino. Neutrinos have
the unique property of escaping unscattered from regions of extremely high density,
making the Sun an attractive target for neutrino telescopes.

WIMPs passing through the Solar System are expected to scatter off nucleons in
the Sun, slow down, and become gravitationally trapped inside the Sun. Over the
lifetime of our Solar System, the DM density in the Sun’s center should have increased,
leading to an enhanced DM annihilation rate. While most annihilation products are
immediately absorbed, neutrinos can travel to the surface of the sun and escape or
be converted into charged leptons. Through the capture mechanism in the Sun, the
neutrino flux depends not only on the DM annihilation cross section but also on the
DM-nucleon scattering cross section. Therefore, the results of neutrino-based DM
searches can often be directly compared with results from direct detection experiments.

Neutrinos pass freely through Earth’s atmosphere, allowing neutrino observatories
to be ground-based. To generate sufficient statistics, large targets are required
for neutrino-based DM searches. Extensive volumes of water or ice are typically
instrumented to detect the Cherenkov light produced by passing neutrinos. Notable
large-scale observatories include Super-Kamiokande in Japan, the ANTARES array in
the Mediterranean Sea, and the IceCube Observatory located at the South Pole.

1.5.3 Direct searches

The third possible detection channel is the scattering of DM particles off SM targets.
These searches are referred to as direct detection. Before discussing the various
experimental approaches, we want to evaluate whether detecting DM in an Earth-
bound detector is feasible. There are two crucial prerequisites: a sufficient interaction
rate and an interaction energy that is high enough to be accessible in existing detectors.
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The DM flux can be estimated from the DM density at Earth’s position in the
Milky Way ρ = 0.3 GeVcm−3. Assuming that DM particles in Earth’s vicinity have
a non-relativistic velocity vχ ∼ 300 kms−1,7 we find

Φχ ∼ 107 GeV
mχ

cm2s−1. (1.26)

This implies that for a WIMP of GeV-scale mass, ∼ 106 DM particles pass a thumbnail-
sized target every second. The interaction rate is suppressed on the order of the
typical weak interaction strength, reducing it to less than a single count per day; an
extremely low rate, but in principle, still detectable with enough exposure.

Next, we estimate the energy produced in the DM-SM scattering process. Under
the assumption that DM particles are non-relativistic, simple kinematics give an
expression for the maximum energy attainable in the recoil of DM off a target
particle with mass mT

Emax =
1

2
mχv

2 4mχmT

mχ +mT

2

=
2µ2

Tv
2

mT

, (1.27)

where µT is the reduced DM-target particle mass. In general, one differentiates
between DM-nucleus and DM-electron scattering. This work focuses on coherent
DM-nucleus scattering, but, as eq. (1.27) implies, scattering off the lighter electrons
can be of interest for detecting light DM particles.

Both the expected rate and recoil energies for a direct detection experiment can
be derived from the differential recoil spectrum of DM-nucleus scattering

dR

dE
(E) =

ρχ
mχmN

∫︂ vesc

vmin(E)

d3v f(v⃗)v
dσ(v⃗, E)

dE
. (1.28)

The above equation has contributions from both particle- and astrophysics, all of
which are subject to uncertainties. The first term introduces the local DM density
ρχ, the DM mass mχ, and the mass of the target nucleus mN . In the second term,
the product of DM velocity v and the differential DM-nucleus scattering cross section
dσ/dE is integrated over the WIMP velocity distribution f(v⃗). The DM velocities
are bound from below by the minimum speed vmin(E) a WIMP needs to produce
a recoil of energy E on the given nucleus:

vmin(E) =

(︃
EmN

2µ2
N

)︃− 1
2

(1.29)

The upper bound on the velocity distribution is given by the galactic escape velocity
vesc. The differential DM-nucleus scattering cross section is highly dependent on the
assumed DM interaction model. In section 1.6, we derive an expression for dσ/dE

under standard assumptions, and eq. (1.28) is evaluated as a whole.

7This estimate is based on the galactic rotational velocity at the Earth’s position in the galaxy.
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Independent of the specifics of eq. (1.28), the expected rate for DM-SM scattering is
very low for GeV and sub-GeV DM mass scales. Any other SM particle-scattering
process provides a problematic background that can obscure the signal of interest.
Most direct detection experiments are thus located deep underground to evade
cosmic radiation. In addition, passive and active shielding surrounds the targets
to suppress any environmental backgrounds and remaining cosmic radiation. To avoid
contamination from within, the detector targets and any surrounding components
are of leading standards in radiopurity.

Beyond the low background, low-threshold energy detectors are essential for direct
DM searches. Depending on the employed target material, there are three main
channels to detect particle recoils:

1. In most materials, scattering causes a temperature increase and a measurable
phonon signal.

2. Ionization charges induced by the recoil can be measured if an electric drift field
is applied to the target.

3. If a scintillator (organic or inorganic) is used as the target material, an ionizing
particle passing through produces a measurable light signal.

The first generation of direct detection experiments focused on single-channel detec-
tors, while more recent experimental efforts usually feature two detection channels.
The simultaneous measurement of two signals can give additional insight into the
signal production and consequently allows for some kind of background reduction or
discrimination. In the following, we will list some of the most common experimental
approaches to DM direct detection together with showcase experiments employing
them.

Noble liquid targets
The noble gases argon and xenon provide ideal target materials as they both scintillate
and can be easily ionized. When liquified, they additionally offer dense targets that
can be scaled up to tonne-scale volumes.

Single-phase liquid noble gas detectors, like DEAP-3600 [43], use photomultipliers
(PMTs) to measure the scintillation signal. However, the majority of detectors with
liquid noble gas targets are dual-phase, additionally measuring the ionization electrons.
The typical setup is a time projection chamber (TPC) as sketched in Fig. 1.10. If a
particle hits the detector, the produced scintillation light ("S1" signal) is recorded by
the PMT arrays placed on top and below the target volume. The ionization electrons
produced in the recoil are transported to the surface of the liquid gas by an electric
drift field. Once they reach the liquid-gas interface, a stronger extraction field pulls
the electrons into the gas, where they cause a secondary scintillation signal ("S2").



24 1.5. Particle dark matter searches

Figure 1.10: Sketch of a TPC filled with a noble gas. The liquid layer is depicted in
dark blue and the gaseous layer in light blue. The left figure shows the generation of the
S1 scintillation signal from an incoming dark matter particle. The right figure shows the
generation of the S2 scintillation signal from the ionization electrons, drifted to the gaseous
layer by the external field. The grey structures on top and bottom visualize the PMT arrays.

The combination of the spatial resolution of the PMTs and the drift time of the
ionization electrons allows for a very precise reconstruction of the interaction position
(see for example [44]). This spatial information can be used to identify multi-scatter
interactions and events close to the TPC walls (i.e., volume fidualization), both of which
have an increased probability of being background events. In xenon-based experiments,
the ratio S2/S1 is used to differentiate between nuclear and electron recoils. In the
standard DM-nucleus scattering scenario, the former is the interaction expected from a
WIMP, while the latter may be caused by electron or gamma backgrounds. The ratio
S2/S1 thus provides a measure for signal-background discrimination. In argon-based
experiments like DarkSide [45], the discrimination between nuclear and electron recoils
is performed via differences in the pulse shapes in the dual-channel signals.

Liquid noble gas detectors produce the leading limits on standard DM-nucleus
interaction for DM masses larger than 1GeV (for current limits, see Fig. 1.11).
Their tonne-scale targets enable experiments to achieve large exposures and probe
very small cross-sections, with upcoming generations being sensitive to coherent
elastic neutrino-nucleus scattering (CEνNS) of solar neutrinos [46, 47]. In July 2024,
the XENONnT collaboration announced the first measurement of such a CEνNS
signal ([48], publication pending). While there are science cases for studying low-
energetic solar neutrinos, they represent a signal-mimicking background with significant
systematic uncertainties for DM searches. The solar and astronomical neutrino
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background is thus referred to as neutrino floor or neutrino fog and often marked
in sensitivity plots like Fig. 1.11.

Future endeavors in liquid noble gas detectors for DM focus on significantly
increasing the target volume, with collaborations synergizing to achieve this goal [49].
Developing methods to address the neutrino fog is equally crucial, with direction-
dependent searches emerging as the most promising strategy [47].

Crystalline targets
The first direct detection experiment employed low-background germanium crystals
to detect recoil-induced charge signals [50]. This concept is still used in present-day
experiments, like CoGeNT [51] or CDEX [52], but with advanced p-type point contact
detectors (PPCs). In germanium and silicon, low energies of 2-3 eV suffice to generate
an electron-hole pair. These ionization charges are then collected in a small, point-like
p+ read-out contact. The specific geometry of the PPC allows for fidualization and
rejection of multi-scatter events based on the rise time of the pulse-shaped signal.

Another approach is to use scintillating crystals, like sodium iodide (DAMA/LIBRA
[53]), to detect an interaction via the emitted scintillation light. Similar to the liquid
equivalent, PMTs are used to record the photon signal. The rather simple detector
design enables stable operation over long periods and allows an array-like setup with
multiple crystals to increase the target mass. The downside of these detectors is that
the production of scintillation light depends on the type of interacting particle, a
process referred to as light quenching. Together with the incomplete understanding of
the process of scintillation light production, this can lead to issues in the calibration
and interpretation of the measurement. Light quenching will be discussed in more
detail in chapter 4.

In all crystalline media, a particle interaction of recoil energy E can also be detected
via the induced temperature increase. To make such a heat signal detectable, one
needs to decrease the material’s heat capacity since

∆T ∝ E

C
. (1.30)

This is most efficiently done by cooling the target to cryogenic temperatures, as the heat
capacity decreases with the temperature. The ideal operating temperature depends on
the target material and the technology used to measure the thermal signal. The two
most popular detection devices are neutron transmutation-doped thermistors (NTDs)
and transition edge sensors (TESs), but other quantum-based technologies are also on
the rise (see [54] for an overview). Both the CRESST and COSINUS experiments use
TESs, and so the reader is referred to the experiment-specific chapters 2 and 3 of this
work for more details on the working principle and specifics of these sensors.

The majority of experiments measuring heat signals employ an additional detection
channel: ionization in EDELWEISS [55] and SuperCDMS [56] and scintillation in
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CRESST and COSINUS. The dual-channel read-out brings significant advantages:
The combination with the ionization signal allows for better fidualization and, in
the case of the CDMSlite experiment, a signal amplification via the Neganov-Luke
effect [57]. The ratio between light and heat signal can be used for background
discrimination in scintillating cryogenic detectors.

The main selling point of cryogenic detectors is their excellent resolution and
the heat signal as an unquenched energy measure. The latest silicon-based detector
models from CRESST [58] and SuperCDMS [59] have reached detection thresholds
on the eV-scale. Cryogenic DM searches are sensitive to very light DM particles and
produce leading limits for mχ < 1GeV (for current limits, see Fig. 1.11). However,
due to the complex cryogenic environment, these detectors are significantly more
challenging to build and stably operate than other detectors discussed. In addition,
the best resolutions are achieved with small crystals on the gram scale [60], making it
difficult to up-scale cryogenic DM searches compared to their liquid counterparts.

CCD and DEPFET detectors
A relatively new innovation in DM direct detection is the charge-coupled device (CCD),
a technology initially used in the first digital cameras. The CCDs used in the DM
searches DAMIC [61] and SENSEI [62] consist of thick, pixelated n-type silicon wafers.
The detectors are fully depleted by applying an external field, allowing the use of
the whole silicon bulk as a target (usually of several grams).

The functional principle of CCDs for particle physics goes as follows: ionization
charges created in a particle recoil are transferred from the silicon bulk to the
pixelated read-out register where they are stored. After a certain exposure of O(hours)
the stored charges are read out by shifting the charges first row-by-row and then
column-by-column to one corner of the CCD where a low capacity output gate is
located. The resulting read-out noise for the charge collection is ∼ 2e−, corresponding
to ∼7 eV in a silicon detector.

An essential improvement to the performance of CCD detectors is the "skipper"
amplification. Skipper-CCDs can make multiple non-destructive measurements of
the stored charge distribution. Since the Nskip measurements are uncorrelated, the
read-out noise can be reduced by a factor

√︁
Nskip. With this technique, both DAMIC

and SENSEI have achieved levels of read-out noise below 1 eV.
Their high resolution makes CCD-based DM searches well-suited for very low-mass

DM detection in the sub-GeV range. Since ionization charge production is more
efficient for electron than nuclear scattering (ionization quenching), these searches
focus on DM-electron scattering. Limits for nuclear scattering are possible for DM
masses above 1GeV, as shown in Fig. for DAMIC. In principle, limits at lower DM
mass can be achieved by considering the Migdal effect, which allows experiments
utilizing ionization detectors to reach lower thresholds for nuclear scattering. However,
the Migdal effect has not yet been observed in dedicated experiments. For more
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Figure 1.11: Overview figure of the current status of searches for spin-independent elastic
DM-nucleus scattering under standard assumptions. The neutrino floor shown here is for
a xenon target as calculated in [66]. Dashed lines mark limits calculated using only the
one-dimensional data of a dual-channel experiment. Shown are results from CRESST-III
[58, 67], CDMSlite [57], DAMIC [61], DarkSide-50 [45], COSINE-100 [68], XENON1T and
XENONnT [69, 70], PandaX [71] and LUX-ZEPPELIN (LZ) [72]. The only remaining
positive result stems from DAMA/LIBRA [73] and will be discussed in more detail in
chapter 3.

information on the Migdal effect in DM searches, the reader is referred to [63, 64].
Another advantage of CCDs is the pixelation of the read-out that enables two- and
three-dimensional reconstruction of the interaction and allows for the identification and
rejection of background events based on the topology of the energy deposition. The
high spatial resolution of the CCDs also offers potential for directional DM searches.

The DEPFET (depleted p-channel field effect transistors) is an alternative to
the Skipper-CCD. The main advantage of DEPFETs over CCDs is on-pixel signal
amplification, offering potential increased sensitivity and real-time readout. The
DANAE [65] R&D is currently testing the application of DEPFETs in DM searches.
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1.6 Dark matter-nucleus scattering

In the final section of this introductory chapter, we will discuss the specifics of DM-SM
scattering - the process enabling direct detection. Focusing both on the particle-
and astrophysics aspects, we derive an expression for the differential recoil rate for
spin-independent (SI) elastic nuclear scattering under standard assumptions. Unless
otherwise stated, the derived expression will be used in rate calculations throughout
this thesis. In the derivation, we point out calculations that need to be altered for the
spin-dependent (SD) scenario. For DM-electron scattering rates, the reader is referred
to [74]. All calculations are based on those performed in [75], employing standard
notation as in the book by Peskin and Schroeder [76]. More detailed calculations
and intermediate steps can be found in [77, 78].

In the following calculations, the DM particle is assumed to be some Dirac fermion8

with a small coupling to ordinary SM matter (i.e., a WIMP, FIMP, etc.). The process
of elastic DM-nucleus scattering

χ+N → χ+N (1.31)

depends primarily on the assumed interaction between χ and the SM quarks in the
nucleus. The cross-section calculation is thus a three-step process: from the interaction
with quarks to nucleons and finally to the whole nucleus.

DM does not directly interact with the SM quarks but via some mediating particle
Z ′ (see Feynman diagram on the left in Fig. 1.12).9 As mentioned, the mediator can
be a SM particle or part of the dark sector. The main advantage of direct detection
over collider searches is that the low expected energies allow an EFT approach for the
majority of mediator models. Only very light mediators with masses m2

Z′ < q2, with
q = 2mNE the momentum transfer, require simplified models. In the EFT description,
the relevant interaction terms in the Lagrangian are replaced by a single effective
four-fermion interaction (see Feynman diagram on the right in Fig. 1.12):

L4f =
1

m2
Z′
gQZ′gχZ′χΓχχQΓQQ. (1.32)

Here mZ′ denotes the mass of the heavy mediator, gQZ′ and gχZ′ are couplings, and Q

represents the quarks. The choice of Γχ/Q is given by the type of mediator interaction,
with the most popular EFT operators listed in Tab. 1.1. SD operators containing γ5

matrices lead to an explicit dependence on the spin of the nucleus s⃗N . We assume
a scalar mediator with Γχ/Q = 1 for the subsequent calculations.

8A Majorana fermion requires an additional factor 2 at some point in calculating the matrix element.
This factor can, however, be absorbed in the coupling.

9We use Z ′ to denote an arbitrary mediator, not necessarily related to the SM Z boson. Moreover,
the capitalization does not imply a vector mediator.
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(a) (b)

Figure 1.12: Feynman diagrams for possible DM-quark scattering scenarios. In a), the
interaction is long-ranged and mediated by some particle Z ′. In b), the simplified contact
interaction is visualized, which can be described with an EFT approach.

EFT operator NR operator in
momentum space

NR operator in position
space

scalar × scalar (SI) χχQQ 1 δ3(r⃗)

axial scalar × scalar (SI) χγ5χQQ is⃗χ · q⃗ −s⃗χ · ∇⃗δ3(r⃗)

vector × vector (SI) χγµχQγµQ 1 δ3(r⃗)

axial vector × vector (SI) χγ5γµχQγµQ s⃗⊥χ · v⃗ (s⃗χ · v⃗+ i
2µN

s⃗χ · ∇⃗)δ3(r⃗)

scalar × axial scalar (SD) iχχQγ5Q is⃗N · q⃗ −s⃗N · ∇⃗δ3(r⃗)

axial scalar × axial
scalar (SD) iχγ5χQγ5Q (s⃗χ · q⃗)(s⃗N · q⃗) (s⃗χ · ∇⃗)(s⃗N · ∇⃗)δ3(r⃗)

Table 1.1: Leading NR operators for SI and SD DM-quark interaction together with their
matched field theory operators. Excerpt from the set of operators in [79].

1.6.1 From quarks to nuclei

To calculate the scattering cross section, the matrix element M of the interaction
is needed. We denote the incoming momenta of DM and nucleus by p and k, the
outgoing by p′ and k′, respectively. At tree level, we then find

Mδ(4)(p+ k − p′ − k′) = (1.33)

G(mZ′ , q)
∑︂
Q

gQZ′gχZ′ ⟨χf (p
′), Nf (k

′)|T
(︃∫︂

d4xχ(x)χ(x)Q(x)Q(x)

)︃
|χi(p), Ni(k)⟩ ,

where T () is the time-ordered product, and the sum is over all quark flavors. Applying
Wick’s theorem and solving the contractions in the non-relativistic (NR) limit yields

M = 2mχG(mZ′ , q)
∑︂
Q

gQZ′gχZ′⟨N |QQ|N⟩. (1.34)
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The expression ⟨N |QQ|N⟩ denotes the quarks in nuclear states at rest, a valid
simplification in the limit of small momentum transfer. In the matrix calculation of
an SD interaction, the γ5 matrices introduce terms of sχ in the contractions.

For the quark-nucleus term, one first evaluates the matrix elements of the quarks
in the nucleon states

⟨n|QQ|n⟩, (1.35)

where n is either a proton or a neutron. One then defines the quantities

fn,p ≡
∑︂
Q

gQZ′gχZ′⟨n|QQ|n⟩, (1.36)

which absorb the couplings gQZ′gχZ′ and are often denoted as the DM-neutron/proton
coupling. Over which quarks one needs to sum depends on the type of mediator. For a
scalar Z ′, all quark flavors need to be counted; for a vector mediator, only the valence
quarks (up and down quark). The SM-part of the constants fn,p can be estimated
from theory and measurements; a recent evaluation can be found in [80].

The final quark-nucleus term is calculated in the zero-momentum-transfer limit,
where one simply counts the nucleons in the nucleus. In the NR limit:

⟨N |QQ|N⟩ = 2mN

(︁
Z⟨p|QQ|p⟩+ (A− Z)⟨N |QQ|N⟩)︁ (1.37)

For non-zero momentum transfer, the size and structure of the nucleus can significantly
impact the interaction. These effects can be reintroduced using nuclear form factors.
The Helm form factor [81] is commonly used in the DM search context

F (q) = 3
j1(qR0)

qR0

exp

(︃
−1

2
q2s2

)︃
, (1.38)

where j1() is the first spherical Bessel function, R0 is the effective nuclear radius and
s the nuclear skin thickness. Values for R0 and s can be evaluated experimentally for
various nuclei or calculated using the approximation by Lewin and Smith [13]

R0 =

√︃
c2 +

7

3
π2a2 − 5s2 (1.39)

with

a = 0.52 fm, s = 0.9 fm, c = 1.23× A1/3 − 0.6 fm. (1.40)

The form factor is dimensionless and normalized to F (0) = 1 to be consistent in
the zero-momentum-transfer limit.
The final expression for the squared matrix element reads

|M|2 = 16m2
χm

2
N

1

m4
Z′
[Zfp + (A− Z)fn]

2F 2(q). (1.41)
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Under the common assumption that fn = fp (i.e., DM couples the same to protons
and neutrons), the dependence on the charge number vanishes. We define a new,
dimension-full, effective coupling g = fn,p/m

2
Z′ and write

|M|2 = 16m2
χm

2
Ng

2A2F 2(q). (1.42)

For the SD case, the calculation is significantly more involved and yields

|M|2 = 16m2
χm

2
N

JN + 1

JN
[ap⟨Sp⟩+ an⟨Sn⟩]2F 2

SD(q), (1.43)

with an,p the effective coupling of DM to neutrons/protons (different from fn,p),
⟨Sn,p⟩ the average spin contribution of the respective nucleon, and JN the angular
momentum of the whole nucleus N . The SD form factor FSD is often set to its
zero-momentum-transfer limit FSD(0) = 1.

1.6.2 Kinematics and cross sections

In the NR limit, we approximate the center of mass (COM) energy as ECOM ≈ mχ+mN

and find a simple expression for the differential, elastic scattering cross section

dσ

dE
=

mN

µ2
Nv

2

dσ

d cos θ
=

mN

µ2
Nv

2

|M|2
32πECOM

=
1

32πmNm2
χv

2
|M|2, (1.44)

where θ is the scattering angle.
Instead of writing dσ

dE
as a function of some model-specific coupling g, it is common

practice to define an SI reference cross section at zero momentum transfer:

σSI =

∫︂ Emax=
2µ2Nv2

mN

0

dE
dσ

dE
(E = 0) (1.45)

=
2µ2

Nv
2

mN

dσ

dE
(E = 0) (1.46)

Reintroducing the momentum transfer via the form factor then yields

dσ

dE
=

mN

2µ2
Nv

2
σSIF

2(q). (1.47)

However, the parameter σSI is dependent on the nucleus, making comparing rates
among different target materials challenging. We thus introduce the SI DM-nucleon
reference cross section σn

10 via

σn =
µ2
n

A2µ2
N

σSI, (1.48)

10In literature, this reference cross section is also sometimes denoted by σp. It is important to note
that with this definition, one assumes that DM couples equally to protons and neutrons.
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with the reduced DM-nucleon mass µn and write

dσ

dE
=

mN

2µ2
nv

2
A2σnF

2(q). (1.49)

We can also find an expression for σn in terms of the coupling g we have previously
defined by comparison with eq. (1.42) and eq. 1.44:

σn =
µ2
ng

2

π
(1.50)

For SD scattering, it is usually assumed that DM couples either primarily to
neutrons or protons. One then introduces the respective reference cross sections

σSD, n,p = σSI
µ2
n,p

µ2
N

3

4

1

⟨Sn,p⟩2
JN

JN + 1
, (1.51)

and finds for the differential cross section

dσ

dE
=

2

mN

µ2
nv

2⟨Sn,p⟩2JN + 1

3JN
σSD, n,p, (1.52)

in the zero-momentum-transfer limit.

1.6.3 Contributions from astrophysics

The above-derived expressions for the differential scattering cross section can be in-
serted in eq. (1.28) to find the following expression for the SI differential recoil spectrum

dR

dE
(E) =

ρχ
2µ2

nmχ

A2σnF
2(q = 2mNE)

∫︂ vesc

vmin(E)

d3v
f(v⃗)

v⏞ ⏟⏟ ⏞
=:I(vmin)

. (1.53)

The expression left to evaluate is the velocity integral I(vmin), which depends on the
DM velocity distribution function f(v⃗). In the standard scenario, an isotropic spherical
distribution of DM in the galaxy is assumed (SHM), resulting in a Maxwell-Boltzmann
distribution in the galactic rest frame for the DM particle velocities

fgal(vgal) = N
(︃

3

2πw2

)︃3/2

exp

(︃
−3v2gal

2w2

)︃
. (1.54)

Truncating the distribution at the galactic escape velocity vesc gives the normalization
factor

N =

[︃
erf(z)− 2√

π
z exp

(︁−z2
)︁]︃−1

(1.55)

z2 =
3v2esc
2w2

(1.56)
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where w denotes the root mean square velocity. The velocity w is related to the
asymptotic value v∞ of any rotational velocity via w =

√︁
3/2v∞.

For the application in DM direct detection, eq. (1.54) has to be transformed to
the rest frame of the Earth. In a first approximation, Earth’s velocity with respect
to the galactic rest frame is the measured rotational velocity of the local system at
the Sun’s position v⊙. However, the Earth moves around the Sun with velocity v⊕.
Neglecting the small eccentricity of Earth’s orbit around the Sun, we can approximate
Earth’s speed in the galactic rest frame as

vE(t) = v⊙ + v⊕b cos (ω(t− t0)) , (1.57)

with ω = 2π/yr, t0 = June 2nd ± 0.3 days, and b = cos 60◦ implied by the tilt of
the Earth’s orbit around the Sun with respect to the galactic plane [46]. We note
that eq. (1.57) introduces a time dependence to the expected DM recoil spectrum.
The entailed annual modulation of the DM signal will be discussed in more detail
in chapter 3 on the COSINUS experiment.

Under the assumptions of eq. (1.54) and a non-rotating DM halo, an analytical
solution for I(vmin) has been derived in [82]:

I(vmin) =
N
η

(︃
3

2πw2

)︃1/2

× (1.58)

⎧⎪⎪⎨⎪⎪⎩
τ(xmin − η, xmin + η)− 2η exp(−z2) xmin < z − η

τ(xmin − η, z)− exp(−z2)(z + η − xmin) z − η ≤ xmin < z + η

0 xmin ≥ z + η.

With z as defined in eq. (1.56), the function

τ(x, y) =

√
π

2
(erf(y)− erf(x)), (1.59)

and the normalized velocities

η2 =
3v2⊕
2w2

, x2
min =

3v2min

2w2
. (1.60)

For the values of the velocities, we use those recommended in the APPEC report [46]:

vesc = 544 kms−1, v∞ = 220 kms−1, v⊙ = 232 kms−1, v⊕ = 30 kms−1 (1.61)

The calculation of I(vmin) is identical in the standard SD scattering case. For more
exotic models with complex EFT operators, the matrix element may contain additional
dependencies on the momentum transfer and, thus, the DM velocity. These velocity
dependencies alter I(vmin), and one thus has to re-evaluate the integral. The same is
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Figure 1.13: DM-nucleus elastic scattering rate for different detector materials and DM
masses. Left: SI scattering on CaWO4. Right: SD, proton only scattering on LiAlO2. The
oxygen component is zero in the case of a SD interaction due to JO = 0.

true if another DM distribution model beyond the SHM is assumed. In the majority of
cases deviating from the standard assumptions, I(vmin) has to be evaluated numerically.

To conclude this chapter, we show differential recoil spectra for SI and SD DM-nucleus
scattering for various DM masses and target materials in Fig. 1.13. For composite
materials, like calcium tungstate (CaWO4), the recoil rate is calculated by summing
the contributions from the individual nuclei scaled to their molecular fraction. In
the case of SD scattering, nuclei with zero angular momentum do not contribute
to the total rate calculation (e.g., oxygen in LiAlO2). Both the materials shown in
Fig. 1.13 are employed as crystal targets in the CRESST experiment which will
be described in the next chapter.
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The CRESST experiment

The construction of the CRESST (Cryogenic Rare Event Search with Superconducting
Thermometers) experiment in Hall B of the Laboratori Nazionali del Gran Sasso
(LNGS) began in 1995. During the experiment’s first phase, four sapphire (Al2O3)
crystals of 262 g each were used as single-channel, cryogenic phonon detectors to
search for DM [83]. In the second phase of the experiment, the detector material
was changed to scintillating CaWO4. The change in material allowed CRESST-II to
introduce a secondary detection channel and enable the simultaneous measurement of
light and phonon signals [84]. Before the measurements of the second phase began,
the experimental setup was moved to Hall A at LNGS, where the experiment is
still located today.

The two-channel detection principle has been retained in the latest stage of the
experiment, CRESST-III. In addition to CaWO4 and Al2O3, CRESST-III also employs
other target materials like lithium aluminate (LiAlO2) and non-scintillating materials
such as silicon for phonon-only detectors. The primary objective of CRESST-III
is the detection of low-mass DM, and the R&D effort focuses on achieving low
thresholds on the eV scale. Recent CRESST-III runs have produced leading limits on
DM masses below 1 GeV for both SI (see Fig. 1.11) and SD DM-nucleus scattering [85].

This chapter first discusses the working principle and design of the current CRESST-
III detector modules. We then describe the experimental setup at LNGS, including the
active and passive shielding concept. The final section focuses on the current status
of the experiment, the challenges CRESST is facing, and the plans to overcome them.

35
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Figure 2.1: Visualization of the CRESST event-by-event background discrimination
principle. The figure shows the phonon and light energies in a simulated measurement
containing electron and gamma background events (grey dots) and a DM signal component
(pink crosses). The background region (grey-shaded) and signal region (blue-shaded) are
marked. Inside the signal region, CRESST defines the acceptance region (blue-hatched).

2.1 Detectors

CRESST’s detectors aim to measure the energy produced in a DM-nucleus recoil via
the generated heat (phonon) and light (photon) signals. For the heat measurement, the
target crystal is operated as a cryogenic calorimeter (or bolometer). The phonon signal
is unquenched and a precise measure of the total deposited energy. The scintillation
light, if present, is measured with a second external detector, which is also a cryogenic
calorimeter. Only a small amount of the recoil energy goes into the production of the
scintillation light. Nevertheless, the quenched photon signal can be used to identify
the type of underlying particle interaction. CRESST employs the ratio of light to the
unquenched phonon signal for event-by-event background discrimination.

This principle is visualized in Fig. 2.1, where the expected phonon and light energy
are shown for a simulated measurement. The data set contains electron and gamma
background events (black dots) and a SI DM-nucleus scattering signal under standard
assumption (pink crosses). The two types of events are spatially separated in the light
versus phonon energy plot such that a signal and a background region can be identified.
The signal and background region overlap at lower energies (i.e., close to the threshold).
Based on calibration measurements, CRESST defines an acceptance region (AR) for
the data analysis that is expected to contain maximal signal at minimal background
leakage (the hatched area in Fig. 2.1). The characterization of light quenching and the
specifics of background discrimination are two of the main topics covered in this thesis.
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2.1.1 Cryogenic calorimeters

Three main components are needed for a cryogenic detector: an absorber with a low
heat capacity, a thermometer, and a link to a heat bath such that the absorber can
thermalize after the energy deposition. In dielectric media, the heat capacity scales
with C ∝ T 3, so CRESST cools its detectors to O(10 mK) temperatures to maximize
the temperature increase ∆T for a given energy deposition.

Even in a cryogenic environment, the temperature increase from a keV particle
recoil is of the order O(µK), and extremely sensitive thermometers are needed to
measure ∆T . CRESST uses tungsten-film-based TESs (W-TES) that are directly
evaporated onto the absorber crystal. The superconducting film is operated close to
its critical temperature. Due to geometrical effects and potential impurities in the
W film, the transition between the superconducting and normal conducting state
is not instantaneous. Instead, it follows a steep curve, as visualized in Fig. 2.2. A
small change in the temperature of the absorber thus leads to a measurable change
of resistance of O(mΩ) in the TES.

The thermodynamic description in eq. (1.30) provides only a coarse approximation
of thermal signal creation. In practice, the production of the phonon signal is a time-
dependent, multistep process. A quantitative model of signal formation in cryogenic
detectors with TES readout was developed by Pröbst et al. in [86]. In a crystalline
medium, deposited recoil energy generates a high-frequency phonon population that
uniformly fills the entire absorber within approximately 100µs. These phonons have
high energies on the order of O(GHz) ∼ 1 meV, which is significantly higher than the
thermal energies at millikelvin temperatures. These high-energy phonons are referred
to as athermal phonons. They can then thermalize within the TES by interacting with
the free electrons in the tungsten film, leading to a rapid increase in the thermometer’s
temperature — this constitutes the athermal signal component. However, athermal
phonons may also thermalize in the absorber itself, resulting in a much slower secondary
signal in the TES, known as the thermal signal component. The athermal signal
component can be enhanced by incorporating phonon collectors next to the TES.

The TES’s signal is pulse-like and composed of the slow thermal and the fast
athermal components. Based on the thermal processes described above, a parametric
description of the pulse shape was derived in [86]. The TES pulses are read out
using a superconducting quantum interference device (SQUID): the phonon signal is
converted into a voltage pulse and recorded by the data acquisition system (DAQ). For
additional details on the readout process and the DAQ in CRESST, the reader
is referred to [87, 88].

For stable operation of the phonon detector, the TES must be maintained at the
correct operating point (OP) on the transition curve. A separate heater is positioned
adjacent to the TES on the crystal (or directly on the TES) to achieve this. Control
pulses of fixed amplitude applied through the heater are used to monitor the current
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Figure 2.2: Exemplary transition curve of a W-TES as employed in CRESST detectors.
The measure of resistance increase in the TES on the y-axis is defined as the ratio of the
resistance at temperature T over the resistance of the TES in the normal conducting state.

position of the TES’s OP on the transition curve. The continuous heating current is
adjusted based on the detector’s response to these control pulses. Additionally, smaller
pulses of varying energy are sent to the detector via the heater. These test pulses,
of known amplitude, are utilized in the analysis to account for minor changes in the
detector’s response over time and to assess potential non-linearities in the transition
curve of the TES. Both the generation of heater pulses (control and test) and the
regulation of the continuous heating current are managed by the DAQ.

2.1.2 Detector module design

A small portion of the recoil energy produced in the detector is converted into
scintillation light, which can escape the absorber crystal. In CRESST, the scintillation
light is detected using an external light absorber equipped with a TES, functioning as a
cryogenic calorimeter. This approach leverages the established cryogenic environment
and distinguishes CRESST from other experiments that use PMTs for light detection.
An additional benefit of this light detection method is that the light absorber itself
can be utilized as a single-channel DM detector. This idea was used in [58], resulting
in an unprecedented low threshold in a CRESST detector.

The light absorber typically consists of a thin silicon or silicon-on-sapphire (SOS)
wafer. During the most recent CRESST-III campaign, run 36, SOS wafers of size
(20×20×0.4)mm3 were predominantly used. The light detectors are mounted adjacent
to or on top of the main absorber crystal (see Fig. 2.3). In the standard design for
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(a) (b)

Figure 2.3: Detector design of CRESST-III modules in run 36. In a) a sketch of the inner
parts of the detector module. In b) a photograph of an open module.

run 36, both the wafer-like light absorber and the (20 × 20 × 10)mm3 main target
crystal are held in place by CaWO4 sticks, whereas earlier designs employed clamp-like
holding structures. The detectors are housed in an ultra-pure copper housing, lined
with reflective and scintillating foil on the interior to enhance light collection.

The design specifics of the CRESST detector modules have evolved through
the various iterations of the experiment. In CRESST-II runs, the target crystals
were mostly cylindrical and about ten times heavier than those used in run 36.
Reducing the absorber mass can significantly improve the detector threshold [60];
thus, in the current, ongoing CRESST run, the detector mass has been further
reduced. Detailed information on the latest CRESST detector design is provided
at the end of this chapter.

2.2 Experimental setup

CRESST’s experimental setup is located at the LNGS underground laboratory to
evade cosmic radiation. The Gran Sasso massif provides a rock overburden of 1400 m
in each direction, corresponding to 3800m water-equivalent [89]. Muons constitute
the main charged component of cosmic radiation. They are reduced to a flux of
(3.41±0.01)×10−4 m−2s−1 at LNGS, corresponding to a suppression factor of O(10−6)

compared to the flux at sea level [89]. To shield the remaining cosmic radiation and
any other external backgrounds, CRESST’s wet dilution refrigerator is embedded in
several layers of passive shielding as visualized in Fig. 2.4. In addition, CRESST is
equipped with a muon veto with a geometrical coverage of 98.6 %. The muon veto
comprises 20 plastic scintillator panels, each equipped with a PMT (pink in Fig. 2.4).

Muons themselves are very light, charged particles and thus not a dangerous
background for CRESST. However, they produce secondary particles like gammas,
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Figure 2.4: Schematic drawing of the CRESST cryostat and shielding setup at LNGS.
Figure adapted from [90].
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alphas, or neutrons when they scatter off the surrounding rock or experimental
components. Neutrons and alpha particles can mimic DM-nucleus scattering events and
can thus not be removed from the data with CRESST’s event-by-event discrimination.
To prevent neutrons from entering the experimental volume, the setup is surrounded by
a combination of ∼ 50 cm thick polyethylene (PE) shielding and water-filled elements.
An additional layer of PE is installed inside the cryostat close to the detectors.

Remaining cosmic radiation and natural radioactivity from the immediate sur-
roundings of the experiment cause a gamma background. A measurement of the
gamma flux close to the CRESST experiment reported a rate of 0.25 cm−2s−1 in
an energy range of (7.4 - 2734.2) keV [91]. The setup is surrounded by 20 cm of low-
background lead inside the PE shield (grey parts in Fig. 2.4) to be shielded from these
gammas. The lead shield itself introduces new radioactive isotopes, primarily lead 210
(210Pb), that are in turn shielded by 14 cm of ultra-pure copper. The inner copper layer
is also sufficient to shield the detectors from any alpha particles from external sources.

The isotope radon 220 (220R) is another source of natural radioactivity present at
LNGS. Radon gas can seep from the surrounding rock and decay, releasing alpha and
beta particles. To prevent radon from reaching the detectors, the lead and copper
shielding is enclosed in an airtight "radon box", which is continually flushed with
clean nitrogen and maintained at a slight overpressure.

Potential backgrounds stemming from the detector components themselves are
reduced by using ultra-pure materials wherever possible. This applies to the target
crystals themselves [92], as well as any surrounding detector parts. In addition, special
surface treatments (like electro-polishing) are used to reduce surface contamination.
To ensure minimal contamination during detector installation in the cryostat, the
lower part of the setup containing the detector carousel (see Fig. 2.4) is located
inside a clean room.

2.3 Status of the experiment

In the first underground measurement of CRESST-III phase 1, five of the ten mounted
CaWO4 detector modules reached thresholds below 100 eV. These low thresholds
enabled CRESST to probe DM masses below 0.5GeV for the first time. The best-
performing detector in this measurement was "Detector A", with a threshold of
30.1 eV [67], producing leading limits on SI DM-nucleus scattering as displayed in
Fig. 1.11 (orange, solid line).

All low-threshold detectors operated in this measurement exhibited an expo-
nentially falling signal in the previously inaccessible energy range below 200 eV. In
principle, such a signal matches the expected recoil spectrum in various DM models.
However, the DM hypothesis was quickly discarded due to the varying signal shape and
strength throughout the different detectors housing almost identical crystal targets.
Instead, the signal below 200 eV was attributed to some unknown, detector-specific
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threshold. CRESST published their observations on this low energy excess (LEE) in
2019, and since various other collaborations studying DM and CEνNS have reported
similar signals in their low-threshold detectors. LEEs have been observed in other
cryogenic searches such as EDELWEISS or SuperCDMS, as well as in the CCD-based
searches DAMIC and SENSEI. While it is unclear if all these signals have a common
origin, they introduce a sensitivity limiting factor in all these experiments. To better
understand and possibly overcome the problem of the LEE, the affected experiments
have synergized. The dedicated EXCESS workshop series offers a platform to present
and discuss recent results and possible origins of the LEE. Within the EXCESS effort,
a workshop summary paper was published in 2022 [93], showcasing and comparing
low-energy spectra of the partaking experiments.

For CRESST detectors, the LEE constitutes the main sensitivity-limiting back-
ground. The DM-mimicking signal has the most impact on the sensitivity compared
to any other external or internal background or the limited exposure achieved. This
statement is supported by Fig. 2.5, where various sensitivity projections are compared
to the 2019 Detector A limit. The goal of the current phase 2 of CRESST-III is thus
to perform tests to study the LEE, find its origin, and possible ways to mitigate it.

In run 36, various target crystals were used to study potential material dependencies
of the LEE, including CaWO4, Al2O3, LiAlO2, and fully non-scintillating Si-modules.
The LEE results of run 36 are summarized in [94]. No obvious dependencies on
the absorber material were found. Moreover, the LEE does not scale directly with
the target crystal weight, volume, or surface area. The observed energy spectra are
displayed in Fig. 2.6 for the energy region of the LEE, normalized with respect
to exposure (specific rates).

Besides the signal strength and spectral shape of the LEE, its temporal change
was also studied in run 36. An approximately exponential decay of the signal rate
was observed, starting right after the cooldown of the cryostat. In the energy range
of 60-120 eV, the decay time of the LEE in the various detectors was of the same
order, with an average value of 149± 40 days. The EDELWEISS experiment reported
a similar decay of an excess of background events in the context of an accidental
warm-up of the cryostat [95]. Following this observation, CRESST conducted several
"warm-up tests" and indeed observed a significant increase in LEE events if the
cryostat’s temperature was increased to more than ∼ 10K. The resurgence of the
LEE was observed to decay much faster on the order of 15 days [94].

The observations on the LEE in CRESST lead to the exclusion of several hy-
potheses regarding its origin. DM or any other external particle source can be
excluded due to the warm-up effect. The same argument speaks against external or
intrinsic radioactivity. As excess events were also observed in the silicon-only module,
scintillation light can be discarded as an origin of LEE. The currently most favored
hypotheses are solid-state and sensor/material effects. Examples are intrinsic stress
in the crystals, holder-induced stress, or effects related to the TES.
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Figure 2.5: Sensitivity projections for CRESST Detector A in comparison with the 2019
limit [67]. The background of Detector A is used as a starting point for the data simulated
for the projection. The data set is then scaled to the desired exposure under the assumption
of constant background (rose region). For the sensitivity studies without the LEE, the
respective portion of the background was identified for Detector A and then removed for the
data simulation (blue regions). Limits are 90% confidence level, and the confidence intervals
of the projection correspond to 2σ ≈ 95.45%. The neutrino floor for CaWO4 is shown in
grey as calculated in [66].

In spring 2024, the currently ongoing CRESST-III run was started. It features
detector modules developed to study the origin of the LEE, especially in the context
of stress-related hypotheses. Most of the installed CaWO4 detector modules employ a
new "gravity-assisted" holding scheme designed to minimize stress in the crystal
induced by the holder [96].

A favored hypothesis within CRESST is that low energy events are created directly
in the TES or the interface between TES and the crystal. To probe this possibility, in
some of the new CRESST modules, the absorber crystal is instrumented with two
identical W-TESs. If an event is generated in the TES itself or on the TES-detector
interface, it is expected to predominantly generate a stronger signal in the TES closer
to the interaction. On the contrary, if a particle hits the absorber, the generated
athermal phonon distribution fills the whole crystal in a matter of µs, leading to a
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Figure 2.6: Low energy spectra as measured by CRESST in run 36 for various detector
modules. The spectra are scaled by measuring time and detector mass. Figure from [94].

signal of approximately the same strength in both TESs. If the LEE is generated
in the sensors or close by, this design can discriminate it from particle events. The
"double-TES" design has been previously tested in above-ground measurements with
promising results [97].

To conclude, even in the presence of the sensitivity-limiting LEE, CRESST remains
one of the leading experiments for sub-GeV DM direct detection. While the search
for the origin of the LEE is ongoing, the collaboration is preparing for the upcoming
upgrade of the experimental setup. In the next stage of CRESST, the current 66-
channel SQUID readout circuit (with about half of the channels installed and active)
will be upgraded to 288 channels, allowing the experiment to operate more detector
modules in parallel and thus increase the exposure significantly while having the
advantage of employing small, low-threshold detectors.

Apart from the critical experimental effort to increase the sensitivity of CRESST,
the importance of a robust analysis framework cannot be overstated. Within the work
of this thesis, limitless was developed, a comprehensive Python package providing an
updated and rigorous framework for high-level analysis in low-threshold direct DM
searches like CRESST. The primary function of limitless is DM limit-calculations, but
it offers versatile tools to investigate detector properties such as light quenching or
various backgrounds present in the data. The mathematical and physical foundations
of limitless are detailed throughout this thesis, along with examples demonstrating
its application in various work cases like the sensitivity studies in Fig. 2.5.
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The COSINUS experiment

The cryogenic observatory for signatures seen in next-generation underground searches
(COSINUS) is a DM direct detection experiment currently under construction in hall
B at LNGS [98]. COSINUS will employ the same two-channel cryogenic detection
principle as CRESST, however, with a different physics case: the current landscape of
DM direct detection, as displayed in Fig. 1.11, features one remaining signal claim by
the DAMA/LIBRA experiment [99]. COSINUS aims to cross-check the DAMA/LIBRA
result, employing the same target material, NaI, as a cryogenic detector.

The DAMA/LIBRA signal claim is based on over 15 cycles of an annual modulation
signal observed in 250 kg of radiopure, thallium-doped NaI crystals equipped with
PMTs and operated at room temperature at LNGS [100]. As previously discussed,
a yearly variation in the DM scattering rate is expected due to Earth’s movement
around the Sun following from eq. (1.57). DAMA/LIBRA observes such a modulation
with period ω = 0.99834±0.00067 yr and phase t0 = 142.4±4.2 d compatible with the
DM hypothesis. Combined with the data from the precursory phase of the experiment,
DAMA/NAI, the statistical significance of the modulation signal has reached 13.7 σ

[99]. Various cycles of the modulation search are displayed in Fig. 3.1. The issue with
the DAMA/LIBRA result is that various other DM direct detection experiments have
excluded the region in the DM parameter space favored by the observed signal. This is
not only the case for the standard SI interaction as displayed in Fig. 1.11, but also for a
variety of more exotic models constructed to reconcile the various experimental results
(see [101] and references within for examples). Moreover, alternative modulating
particle signals (muons, neutrons, secondary particles from solar neutrinos) cannot
explain the signal due to too low rates or wrong phases [102].

It is near impossible to compare the DAMA/LIBRA signal with other experiments’
exclusion results without making several assumptions regarding the particle physics

45
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Figure 3.1: Residual rate of the single-hit scintillation events as measured by DAMA/LIBRA
in the 15 annual cycles of phase 1 and phase 2 in the (2–6) keVee energy intervals. In the
results published by DAMA/LIBRA, all energies are generally given in electron-equivalent
energy and not corrected for nuclear quenching (for more information, see text and Chap. 4).
The superimposed curve is a cosine with a period of 1 yr and a phase of 152.5 d (June 2nd).
The figure does not show the results of DAMA/NaI, the phase of the experiment preceding
DAMA/LIBRA phases 1 and 2. Figure from [99].

characteristics of DM and the underlying astrophysical properties. The recommended
way to reduce at least the particle physics assumptions is an independent test with
a NaI-based detector [46]. The experiments COSINE [103], ANAIS [104], SABRE
[105], and PICOLON [106] are currently pursuing this strategy with PMT-based
light detectors. What sets COSINUS apart from its competitors is the simultaneous
detection of light and phonon signals with cryogenic detectors. The two-channel
read-out brings two main advantages:

1. Detecting a particle recoil via the generated phonon signal has the advantage
that the resulting energy measurement is unquenched. In contrast, the fraction
of deposited energy going into the production of scintillation light depends
on the type of particle interaction – this is the previously mentioned effect of
light quenching. For DM scattering primarily off nuclei, the scinitllation light
production is expected to behave the same as for heavy ionizing particles (e.g.,
neutrons). However, scintillation light detectors are calibrated using gamma
sources, producing scintillation light in the target via secondary electrons.

NaI experiments detecting only scintillation light must, therefore, correct the
measured energies for the resulting difference in light quenching via the material-
dependent nuclear quenching factor. With experiments reporting varying values
for the quenching factors of sodium and iodine [53, 107–111], the quenching factor
introduces an additional assumption in any comparison with the DAMA/LIBRA
result. As COSINUS can detect the unquenched phonon signal, this issue does
not affect it. Moreover, by combining phonon and light channel information,
COSINUS can perform in-situ measurements of quenching factors down to low
energies.
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Figure 3.2: The bound on the total rate (left y-axis) or, alternatively, the total exposure with
zero observed events (right y-axis) that COSINUS must achieve to exclude the DAMA/LIBRA
signal claim as a function of the experiment’s assumed threshold. For each DM mass, three
different DM-nucleus scattering model assumptions were tested. The dependence on the DM
mass vanishes in the test of exclusion power for an arbitrary recoil spectrum. The red dot in
each panel indicates the design sensitivity goal of COSINUS phase 1 with Ethr = 1 keV and
an upper bound on the rate of 0.1 counts per kgd. Figure from [112], to which the reader is
referred for more information.

2. The second main advantage of the dual-channel detector design is the event-
by-event background discrimination, as discussed in the previous chapter for
CRESST. It allows COSINUS to study a potential DM modulation signal with
a significantly reduced background compared to its competitors. COSINUS can
thus reach the same sensitivity to a specific DM model with a much shorter
exposure. In addition, the expected low background rate enables COSINUS to
perform a model-independent cross-check as proposed in [112] that does not
require recording multiple annual cycles. The approach by Kahlhoefer et al. is
based on the simple observation that in a positive modulation signal

R(t) = R + Sm cosω(t− t0) ≥ 0, (3.1)

the mean rate R cannot exceed the modulation amplitude Sm. In the case of a
perfectly sinusoidal annual modulation, eq. (1.57) implies

R =
1

2

(︁
R(t = June 2nd) +R(t = December 1st)

)︁
(3.2)

Sm =
1

2

(︁
R(t = June 2nd)−R(t = December 1st)

)︁
(3.3)



48 3.1. Detectors

with the absolute rate R(t) the integral of the differential rate eq. (1.28) over
the desired energy range [Emin, Emax]:

R(t) =

∫︂ Emax

Emin

dE
dR

dE
(E, t) (3.4)

An overview figure of the results from [112] is shown in Fig. 3.2, indicating that
COSINUS can disprove the DAMA/LIBRA signal for an arbitrary DM model
hypothesis if a threshold below 1.8 keV is achieved and no events are observed
in the signal region during an exposure of ∼ 700 kgd.

Throughout this chapter, we will describe the detectors and experimental setup
COSINUS will utilize to accomplish a model-independent test of DAMA/LIBRA.
We will give an update on the current status of the ongoing R&D effort and the
construction of the experimental facility at LNGS. To conclude, we will provide a
short overview of the status and results of COSINUS’ competitors.

3.1 Detectors

To achieve simultaneous phonon and light signal detection, COSINUS operates NaI
crystals as cryogenic scintillating calorimeters in the style of the CRESST dual-channel
detector design (see Sec. 2.1). In CRESST detectors, the W-TES is directly deposited
on the various absorber crystals to ensure the ideal transmission of athermal phonons
into the tungsten film. However, absorber materials that are soft, hygroscopic, or
have a low melting point can generally not withstand the fabrication steps necessary
to deposit the tungsten film onto the crystal. Therefore, a variation of the standard
CRESST design is needed for delicate materials like NaI.

The first approach COSINUS took was an adapted version of the composite design
proposed in [113] by the CRESST collaboration. The design features a carrier crystal
(CaWO4, Al2O3 or similar) on which the TES is fabricated. The absorber and carrier
are connected via some amorphous interface layer (glue, oil, or grease). As a result,
phonons produced in the absorber must pass through this interface and the carrier
crystal to reach the TES. In CRESST’s composite design, the absorber and carrier
crystal were of the same material. However, in COSINUS, a material different from
NaI had to be used to carry the TES, further hindering the phonons traversing from
the absorber to the TES due to acoustic mismatch between the different materials.
The composite design was successfully implemented with COSINUS NaI crystals but
did not achieve the desired performance [114]. The COSINUS collaboration thus
developed an alternative design referred to as remoTES that will be described in the
following, together with the beaker-shaped light detector design.
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Figure 3.3: Annotated schematic of a remoTES phonon detector. The W-TES (dark grey)
is directly fabricated onto the wafer crystal (light blue, right) and connected to the absorber
crystal (darker blue, left) via a combination of gold pads and gold bonding wire.

3.1.1 remoTES detectors

The remoTES detector design is based on the idea of an easy-to-fabricate, reproducible
cryogenic detector proposed by M. Pyle et al. [115]. Similar to the composite design,
the TES is fabricated on an external, wafer-like substrate. The TES on the wafer is
then directly connected to the absorber crystal via a system of gold pads and gold
bonding wires, as displayed in Fig. 3.3. Phonons generated in a particle interaction
can directly couple to the electron system of the gold pad and propagate to the TES.
While the heat capacities of the gold pads and wire bonds reduce the overall phonon
signal, the high electron-phonon coupling in gold – which is ten times stronger than
in tungsten [115, 116] – is expected to offset this loss. The remoTES does thus not
suffer from any potential phonon barriers caused by the acoustic mismatch between
absorber, interface, and carrier expected for the composite design [117].

The remoTES design has been successfully tested on various absorber materials,
including several successful measurements with a NaI absorber [118, 119]. The
multiple components of a remoTES detector give room for performance improvement.
COSINUS is currently testing different design variations, modifying features such
as the size and thickness of the gold pad, the number of wire bonds, or the type
of bonding foot to optimize the design.

Another critical aspect of the detector design is the NaI crystal itself. To minimize
the internal background level to at least the radiopurity standard of DAMA/LIBRA
[100], extremely clean crystals are required. For the first planned COSINUS physics
run, 24 crystals of size (2.1× 2.1× 2.1) cm3 are currently being produced at SICCAS
[120] using ultra-pure Astro-Grade NaI powder from the Merck group [121]. In a
previously produced set of R&D crystals, inductively coupled mass spectrometry
performed at LNGS yielded internal contamination levels of 6-22 ppb for potassium
40 (40K), and < 1ppb for both thorium 208 (208Th) and uranium 238 (238U) [119].
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A crucial difference to all other NaI-based DM searches is that COSINUS uses
undoped NaI crystals. NaI must be doped with thallium (Tl) to produce scintillation
light at room temperature.1 However, in [123], it was demonstrated that undoped
NaI is an excellent scintillator at low temperatures. In fact, undoped NaI achieves
a higher scintillation efficiency than doped NaI at cryogenic temperatures, allowing
COSINUS to omit the Tl dopant in its crystals.

3.1.2 Beaker-shaped light detectors

Opposed to the wafer-like light detectors employed in the CRESST-III, COSINUS
modules detect the scintillation light with silicon beakers. The TES is directly
fabricated on the base of the beaker, framed by two superconducting aluminum phonon
collectors. In a current R&D effort, COSINUS is trying to identify the optimal phonon
collector size and thickness configuration for maximized light detector performance.

In the final COSINUS detector design, an instrumented silicon lid will be added
to the beaker light detector, on which the NaI crystal will be glued. The absorber
is fully encased in a 4π light detector, maximizing the scintillation light collection,
as visualized in Fig. 3.4. The lid will have a small feed-through so the TES wafer
can be placed outside the beaker. This design feature minimizes the possibility that
scintillation photons emitted by the absorber cause a signal in the TES when they hit
the wafer crystal.

In several test measurements, COSINUS has demonstrated that event-by-event
discrimination can be achieved by combining a NaI remoTES and a beaker-shaped
cryogenic light detector. A successful first underground run was conducted in summer
2022 at the CRESST test cryostat at LNGS [119]. Details and results of this run
are presented throughout the subsequent chapters of this thesis.

3.2 Experimental setup

The low rates required to perform a full model-independent test of DAMA/LIBRA
demand an extremely low background environment for COSINUS. As for CRESST, the
experimental site is thus located at LNGS and equipped with passive and active shield-
ing. For the various types of environmental background present in an underground
laboratory, the reader is referred to Sec. 2.2 on CRESST’s experimental setup.

The centerpiece of the COSINUS setup is the 7 m tall times 7 m diameter stainless
steel water tank that acts both as a neutron moderator [124] and an active muon
veto. The tank is filled with purified water and instrumented with 30 PMTs to tag
passing muons based on the produced Cherenkov light. A detailed simulation study
1The thallium content in the crystals used by NaI-based DM experiments is usually below 0.1%.
This small contribution is irrelevant in any DM analysis, as shown in [122].
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Figure 3.4: Annotated schematic of a COSINUS detector module. The NaI absorber
crystal (blue) is fixed onto the instrumented silicon lid and placed inside the beaker-shaped
silicon light detector (all silicon parts in dark blue). The wafer crystal holding the remoTES
(light blue) is placed outside the beaker and connected to the absorber by a bonding wire
threaded through a hole in the silicon lid.

was conducted to determine the optimal placement of the PMTs and the optical dead
layer [125]. To maximize the reflectivity inside the muon veto’s active volume, the
dead layer delineation is made of Tyvek [126], a robust and reflective material also
used in Super-Kamiokande. For neutrons produced by cosmic muons, the simulation
study reports a reduction to < 0.3± 0.2 events per kgyr for the current configuration
of PMTs and dead layer as displayed in Fig. 3.5.

COSINUS will operate a dry 3He/4He dilution refrigerator to cool the detector
modules below 20 mK. The advantage of a dry over a wet cryostat is that no handling
of cryogenic liquids is needed during the cooldown’s first stage and the cryostat’s
continued operation. Instead, the first cooling stage is conducted using a pulse tube
cooler. However, the pulse tube introduces vibrations that significantly impact the
detector’s performance. COSINUS thus features a dedicated, multi-stage decoupling
system to mitigate vibrations from the pulse tube and other noisy setup components
(e.g., pumps or ventilation systems).

The cryostat will be lowered into the water tank inside a stainless steel drywell.
The experimental volume in the cryostat is located below a custom extension to place
the detectors at the center of the water tank (see Fig. 3.5). An 8 cm thick layer of
radiopure copper lining the inside of the drywell provides additional shielding to the
setup. Inside the cryostat, a 30 cm thick array of copper plates is mounted above the
experimental volume to shield the detectors from contaminants in parts of the cryostat.

The experimental setup’s servicing level is located above the water tank. It features
an ISO 6 clean room for detector mounting and cryostat maintenance. The clean
room contains a custom-built lifting system to raise the cryostat in and out of the dry
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Figure 3.5: Rendering of the COSINUS experimental setup located in Hall B at LNGS.
The figure shows a side view of the building, featuring the water tank and the servicing
level containing the clean room. The current configuration of PMTs and the dead layer (the
Tyvek curtain is visualized as opaque white panels) for the muon veto are displayed in the
water tank. The white line and blue cone symbolize a muon passing through the water tank.

well with minimal disturbance. A glove box is provided for assembling and mounting
the delicate NaI detector modules in a controlled environment. The remainder of
the COSINUS building houses the electronics and gas-handling infrastructures and
offers workstations to supervise and control the experiment.

3.3 Status of the experiment and its competitors

The construction of the water tank, the clean room, and the auxiliary building was
completed in August 2023. The cryostat has been installed, commissioned, and
successfully cooled to 9mK in spring 2024. As of July 2024, the PMTs and Tyvek
dead layer have been installed, and the water tank is ready to be filled. Concerning
the experimental site, thus only a few finishing touches and the final commissioning
remain. In the meantime, detector optimization and extensive testing are ongoing
at the COSINUS above-ground laboratory at the Max Planck Institute for Physics
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(MPP) in Garching. Hardware and software for the data acquisition are being finalized
at the Institute for High Energy Physics (HEPHY) in Vienna [88].

The first run at the COSINUS underground setup will start in early 2025 and
feature eight detector modules with a total absorber mass of ∼ 250 g. An upgrade to
24 modules is planned for the near future. The goal of the experiment’s first phase is
to collect 100 kgd of data, which should suffice to exclude the DAMA/LIBRA DM
signal, at least in the standard SI scattering scenario.

To conclude this section, we give a short overview of the status of COSINUS’
competitors based on [127]. We begin with the SABRE and PICOLON experiments,
which are currently under construction. While PICOLON (located in Kamioka, Japan)
focuses on the development of ultra-pure NaI crystals [128], the SABRE collaboration
is taking a dual-site approach: One detector setup will be located at LNGS (SABRE
North) and one at the Stawell Underground Laboratory near Melbourne, Australia
(SABRE South). An experimental site in the southern hemisphere can help distinguish
a DM modulation signal from any seasonal effect. If DAMA/LIBRA sees a DM
signal, the observation should be reproducible everywhere on Earth with the same
period and phase, while any seasonal variation would present a reverse phase when
observed in the southern hemisphere.

The ANAIS experiment (Canfranc underground laboratory, Spain) and the COSINE-
100 experiment (Yangyang underground laboratory, South Korea) have already begun
measurements in 2017 and late 2016, respectively. Both experiments employ NaI(Tl)
crystals produced by Alpha Spectra with similar purity levels. The ANAIS experiment
operates a slightly larger active detector mass of 112.5 kg than COSINE-100. However,
COSINE has achieved a competitive sensitivity by immersing the crystals in a liquid-
scintillator active neutron veto [129].

ANAIS published the result of their annual modulation study with three years of
data in 2021 [130]. The measured data favors a no-modulation hypothesis and excludes
DAMA/LIBRA at up to 3.3σ depending on the considered energy range. COSINE
has also reported the results of their annual modulation search to be consistent with
no modulation [131]. However, both experiments require additional full annual data-
taking cycles to exclude the DAMA/LIBRA DM modulation signal. In addition to
the modulation search, COSINE has conducted various DM-model dependent studies
based on their absolute measured rate. In the standard SI DM-nucleus scattering
scenario, they can exclude the parameter space favored by the DAMA/LIBRA signal
with 1.7 years of data [68] (see also green limit in Fig. 1.11).

Another study published by the COSINE collaboration in 2022 generated significant
interest within the DM community. Based on the work by Butazzo et al. [132],
COSINE demonstrated that they can induce an artificial modulation signal in their
data by following DAMA/LIBRA’s analysis procedure [133]. If the overall measured
rate in an experiment is slowly decreasing over time – for example, due to a decaying
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radioactive isotope like 210Pb – subtracting a yearly average to determine the residual
variation can lead to a sawtooth-shaped modulation. This sawtooth behavior can
mimic a sinusoidal modulation, albeit with a phase opposite to that observed by
DAMA/LIBRA and expected for DM. DAMA/LIBRA highlighted this incorrect phase
in their responses to COSINE’s paper and emphasized that they do not observe a
time-dependent background in their data.

To fully resolve this issue, along with many other open questions regarding the
overall measured rate, insight into the complete DAMA/LIBRA dataset and analysis
procedure is needed. However, the DAMA/LIBRA collaboration has been unwilling
to provide this information to the public. Thus, the responsibility to resolve the
DAMA/LIBRA inconsistency lies all the more with COSINUS and its competitors.



4
Light quenching in inorganic scintillators

In both CRESST and COSINUS, the differentiation of signal from background in terms
of light output is essential to increase the experiments’ sensitivity to DM. The variation
of the scintillation light output depending on the type of incoming particle is known as
light quenching and is qualified by the quenching factor. As scintillators are one of the
most employed detectors in high energy and particle physics, quenching factors have
been the subject of many experimental and theoretical studies. The term quenching
factor, however, is somewhat misleading, as light quenching is an energy-dependent
process. In this work, we will thus use the following definition for the quenching factor
of particle type x as a function of the total energy E deposited in the crystal

QFx(E) =
Lx(E)

Le(E)
. (4.1)

Here Lx(E) (Le(E)) denotes the energy-dependent light output for an interaction
with particle x (electron), respectively. The light output of the electron interaction is
usually chosen as the quantity of comparison for two main reasons: energy calibration
in experiments is generally performed with sources emitting electromagnetic radiation
(like gammas or X-rays), which produce scintillation light via secondary electrons,
and electrons typically have the highest generated light output of all particle species.

To better understand the phenomenon of light quenching, this chapter will briefly
introduce the scintillation process in inorganic crystals and how it is related to the
energy loss of ionizing particles in matter. Moreover, we will look into modeling
the generated light output, most prominently with Birks’ law. Since an accurate
(yet simple) universal theory of light quenching is missing, a phenomenological
description for various ionizing particles is given in the last part of this chapter.
These phenomenological descriptions and equations are based primarily on previous
works by the CRESST collaboration [134, 135].
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4.1 Scintillation in inorganic crystals

Scintillation can be defined as luminescence in a crystalline medium caused by ionizing
radiation. Thus, for a crystal to produce scintillation light, it must contain luminescent
centers with energy level distances smaller than the band gap distances of the crystal
itself. Depending on whether these luminescent centers are externally induced (e.g.,
via dopping) or already present in the crystal (e.g., from crystal defects), we speak
of extrinsic or intrinsic luminescence, respectively. Opposite to photoluminescence,
scintillation occurs due to a chain of processes that result in the excitation of the
luminescent centers. These processes can become increasingly complex depending
on the crystal’s band structure. We will focus on a simplified description following
Fig. 4.1 and refer the reader to [136] for more details.

In the first step, the incident ionizing particles produce primary excitations
consisting of pairs of highly energetic electrons in the conduction band and "deep" holes
in the inner core bands. These e−-hole pairs rapidly relax and produce a multitude of
secondary excitations (or "excitons") through scattering and Auger processes. Once
all electrons have energies below the e−-e− scattering threshold and all holes occupy
the valence band (usually above the Auger process threshold), this multiplication stops.
The excitations then thermalize further by scattering off the crystal lattice phonons
until the electrons (holes) reach the bottom of the conductance band (top of the valence
band). In the next step, the relaxed excitons are trapped by defects or doped ions (i.e.,
the luminescent/trapping centers). The localized e−-hole pairs can then recombine
radiatively or non-radiatively, and the emission of scintillation light occurs. For later
context, it should be noted that the relaxed excitons can also interact with themselves,
causing light reduction through processes such as exciton-exciton annihilation.

At the end of this section, one question remains: How can DM, a supposedly
non-charged particle, cause scintillation? When a DM particle recoils off a nucleus, it
can ionize the target nucleus itself, causing indirect ionizing radiation. The same is
true for neutron radiation, which is used to calibrate and determine the nuclear
light quenching factors.

4.2 Energy loss and Birks’ law

The structure of the scintillation process suggests a relation between the energy loss of
the incoming ionizing particle and the amount of light produced. This connection was
first described in a semi-empirical approach by Birks [138], which will be discussed
later in this section. The energy loss of a primary particle in some medium is given
by the stopping power dE/dx, a measure of the energy deposition per path length.
In a solid and for the energy depositions relevant for DM searches, the total stopping
power combines nuclear (elastic) and electronic (inelastic) stopping. There are also
radiative contributions at higher energies, which will not be discussed here.



4. Light quenching in inorganic scintillators 57

Figure 4.1: Diagram of the various steps in the generation of scintillation light in a solid.
In this simplified version, only the atomic core band is shown, and the band structure of an
insulator is assumed. Trapping centers are labeled by c in the graphic, electrons by e, and
holes by h. Figure taken from [137], an adapted version of a graphic in [136].

In the case of nuclear stopping, the incoming particle scatters elastically off a
target’s nucleus and (depending on the particle’s energy) causes collision cascades,
leading to defects in the crystal structure. The energy loss through nuclear stopping is
thus non-ionizing. It depends on the collision’s underlying interatomic potential, which
is strongly dependent on the energy of the incoming particle. In [139], an overview of
relevant potentials and approaches is given; in summary, small energy transfers are
favored, and nuclear stopping is more relevant for heavier particles (compare Fig. 4.2).

In contrast, the interaction of incoming ions with target electrons does not cause
mere elastic scattering but can lead to a significant energy loss. At energies above
O(100 keV) per nucleon, electronic stopping is dominated by electronic excitations
and can be described by the Bethe-Bloch formula. For ions with velocities v ≤ Z2/3v0,
where v0 = 2.18 × 108 cm s−1 is the Bohr velocity, the electronic stopping power is
proportional to v. The energy loss is then dependent on the ever-changing charge
state of the moving ion and thus hard to model. The electronic stopping at low
energies is described by the formalism by Lindhard and Scharff [140] and has been
modeled in various approaches [141, 142].
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Figure 4.2: Contributions of electronic stopping and nuclear stopping to the total energy
loss in NaI, calculated using the web calculator implementation of the SRIM package [143,
144]. Left: Stopping power for electrons; the electronic component dominates at low energies.
Radiative stopping only contributes for energies higher than 1 MeV. Right: Stopping power
for Na ions; the nuclear component dominates at low energies.

4.2.1 Energy loss of different ionizing particles

The ratio between the nuclear and electronic components contributing to the total
stopping power depends heavily on the mass and charge of the incoming particle.
In the following, we will thus describe the ionizing particles relevant to this work
and calculate their stopping powers using a mostly data-driven approach. These
estimations will later give important input to modeling the respective quenching
factors.

Electrons
Due to the lepton’s light mass, nuclear stopping is generally negligible for electrons
traversing a crystal. As a result, the electron retains a significant portion of its energy,
leading to a higher scintillation light output. The energy loss can be described solely
by the electronic stopping component. Down to energies of 1 keV, the stopping power
can be calculated with the ESTAR package [145]. ESTAR is based on the Bethe-
Bloch formalism and suffers from increasing uncertainty towards lower energies. For
small deposited energies, data-driven approximations based on the Lindhard/Scharff
formalism can be employed, such as the one presented in [142]. The resulting stopping
powers for CaWO4 and NaI are displayed in Fig. 4.3 and Fig. 4.4, showing an
increase towards lower energies, peaking around a few hundred eV. Below 100 eV, the
stopping power decreases again. This effect can be, among other things, reasoned
by the unavailability of certain processes to low energetic particles, like inner shell
ionizations, or the fact that not all electrons associated with the atoms can be excited
anymore.
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Figure 4.3: Total stopping powers for electrons, α-particles and various ions in CaWO4.
The solid lines were calculated using the web calculator implementation of the SRIM package
[143, 144]. The dashed extension of the electron stopping power towards low energies was
calculated with the approximation described in [142].

Gammas and X-rays
Photons are electrically neutral particles, but they can cause ionizing radiation
by producing secondary electrons. When a photon enters a medium, secondary
electrons are produced through the photoelectric effect, Compton scattering, or
electron-positron pair production for very high energies. At higher energies, Compton
scattering produces a cascade of secondary electrons, but also for low energetic photons
(Eγ < mec), for which the photoelectric effect dominates, Auger processes can lead to
the production of multiple secondary electrons. The stopping power of γ-particles is
thus strongly related to the one of electrons with one exception: for each gamma of
energy E, several secondary electrons of energy Ee < E are produced. As the stopping
power increases towards lower energies for electrons, the total stopping power of a
photon is larger than the stopping power of an electron of the same energy

dE

dx γ
(E) =

∑︂
i

dE

dx e
(Ee,i) >

dE

dx e
(E). (4.2)

Heavier ions
Alpha particles are a well-known background in the CRESST experiment at low
and high energies. Like all heavier ions, they are subject to nuclear and electron
stopping. In this case, the theoretical description of the energy loss is complex and
often strongly target-dependent. Thus, one usually falls back to data-driven stopping
power tables, which are provided, for example, through the SRIM package (stopping
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Figure 4.4: Total stopping powers for electrons, α-particles, Na and I ions in NaI. The
solid lines were calculated using the web calculator implementation of the SRIM package
[143, 144]. The dashed extension of the electron stopping power towards low energies was
calculated with the approximation described in [142].

and range of ions in matter) [143]. The same applies to ions created in nuclear recoils
of potential DM particles or neutrons. The stopping powers of relevant ions are
displayed for CaWO4 and NaI in Fig. 4.3 and Fig. 4.4.

4.2.2 Birks’ Law

We can now connect this understanding of the stopping power of various ionizing
particles to the scintillation light output via Birks’ law. Birks originally proposed his
theory for organic scintillators, but due to its universality and simplicity, it can be
applied to inorganic scintillators. For an ion passing through a crystal, we assume
that AdE

dx
excitons (i.e., e−-hole pairs or other excited structures) are created. At

the same time, B dE
dx

molecules are damaged by the passing ions posing as quenching
agents for the created excitons. The light output per path length is then assumed to
be proportional to the effective number of excitons and can be described by

dL

dx
=

AdE
dx

1 + kB dE
dx

. (4.3)

Integrating over the path length yields an expression for the light output:

L(E) =

∫︂ E

0

dE
A

1 + kB dE
dx

(4.4)



4. Light quenching in inorganic scintillators 61

The constant k gives the probability that an exciton is captured by one of the damaged
molecules compared to an intact one. While the stopping powers can be evaluated
beforehand (e.g., with SRIM), the parameters A and Birks’ constant kB depend on
the nature of the crystalline medium and need to be determined experimentally for
each crystal individually. The parameters can vary strongly between two crystals of
the same material and even between two measurements performed with the same
crystal. In principle, A and kB should not depend on the incoming particle, and
Birks’ law thus has some predictive power once a calibration measurement with one
type of ionizing radiation (e.g., electrons) has been performed. However, in practice,
such predictions have not been proven successful.

There are also other inconsistencies between Birks’ law and experimental data. For
example, the light production can differ for two particles of the same stopping power
dE/dx [146]. Moreover, experiments showed a reduction in scintillation efficiency
at high energy loss, attributed (amongst other things) to the previously mentioned
exciton-exciton annihilation in regions of high energy deposition density [147]. Several
models for ion-induced luminescence were created to account for these phenomena, a
good overview of which is given in [147]. Still, all of these models lack the simplicity
of Birks’ law while facing the issue of differences between individual crystals.

4.3 Phenomenological description

The previous section shows that the process of light quenching is far from trivial and
not yet fully understood. While several theoretical models exist, a universal description
applicable to various scintillators is missing. In CRESST, a semi-empirical approach
employing Birks’ law has been tested in [135, 148]; however, it was only successful
to some degree. The standard approach in many experiments employing scintillators
is thus to model the expected light output using phenomenological descriptions and
calibration data. In the following, the phenomenological descriptions of light output
as a function of total deposited energy are given. These descriptions will be used
throughout this work to model data from CRESST and COSINUS measurement
campaigns.

Electrons
The description of the electrons’ scintillation light output is a good starting point, as
it gives the reference values for the light quenching factor. From the anti-correlation
between stopping power and light output in eq. (4.4), one expects a decrease in
scintillation light for electrons depositing lower energies in the crystal.1 This effect,
1In this description, we neglect that the stopping power tends to decrease again at very low particle
energies. If the production of scintillation light is indirectly proportional to the stopping power,
then the scintillation light yield should increase at energies below ∼ 100 eV. Such an increase has
not yet been observed.
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named the non-proportionality (NP) effect, has been studied for CRESST CaWO4

crystals in [148] and has more recently been observed in CRESST-III lithium crystals
[85]. An exponential description of the NP effect has been proven applicable to
different detectors:

Le(E) = (L0E + L1E
2)

(︃
1− NPa exp

(︃
− E

NPd

)︃)︃
(4.5)

The energy response of the light output is further modeled with the two parameters
L0 and L1, where the quadratic term can act as a buffer for detector-specific effects
or slight non-linearities in the calibration. As eq. (4.5) converges towards a linear
response in the limit of small L1 and NPa, it is also suitable to model detectors that
do not exhibit any non-proportionality. It has been shown that the NP effect varies
between different CRESST CaWO4 target crystals.

Gammas and X-rays
The scintillation light of a primary photon is generated by multiple secondary ionizing
electrons. Since the total stopping of many low-energy electrons is increased compared
to a single electron of higher energy, the expected light output is reduced [149]. We
model the quenched scintillation light output for γ-particles by applying eq. (4.5)
to a reduced energy

Ered = Q0E +Q1E
2. (4.6)

In principle, two photons of the same energy may cause a different amount of
scintillation light, depending on the composition of the cascade of secondary electrons.
However, considering the detectors’ finite resolution, this description is expected to
work reasonably well as an averaged approach.

Heavier ions
The light output for nuclear recoils resulting in ionized nuclei is found to be the most
quenched contribution. This observation matches the high stopping powers in Fig.
4.3. We define a light output function for each nucleus n present in the target crystal

Ln(E) = (L0E + L1E
2) ε QFn

(︃
1− an exp

(︃
−E

dn

)︃)︃
, (4.7)

where the first part stems from the parametrization of the electron band eq. (4.5).
The parameter QFn gives a quantitative description of the light quenching in the
energy range of linear behavior. The values for QFn for each n are often fixed to
literature values, amongst other things, to ensure a specific ordering of the quenching
(e.g., calcium recoils are quenched more than oxygen recoils in CaWO4). The ε

parameter then adds an overall scaling to all nuclear recoil events accounting for



4. Light quenching in inorganic scintillators 63

crystal-specific quenching effects caused, for example, by impurities. The second
half of eq. (4.7) models the energy-dependent behavior according to [134], where
an increased light output was observed towards low deposited energies for nuclear
recoils in CaWO4. This behavior can be reasoned to some extent with Birks’ law
and the relevant stopping powers. Comparing the energy losses of heavy ions for
CaWO4 (Fig. 4.3) and NaI (Fig. 4.4), one would expect to observe a similar energy
dependence of the nuclear recoil light output. In chapter 8, however, we will see that
this was not the case for measurements performed with the COSINUS prototype.
Nevertheless, with the right choice of parameters, eq. (4.7) is also suitable to model
the light output of nuclear recoils in NaI.

Using eq. (4.7) and eq. (4.5), we find an expression for the energy-dependent
quenching factor of nucleus n

QFn(E) = ε QFn

1− an exp
(︂
− E

dn

)︂
1− NPa exp

(︂
− E

NPd

)︂ . (4.8)

In the limit of large energies, this simplifies to

QFn(E → ∞) = ε QFn . (4.9)

For the description of the scintillation light produced by passing α-particles,
one can either use the general equation for heavy ions from eq. (4.7) above or
the formalism used in [135]:

Lα(E) = (L0E + L1E
2)

A0

1− A1 exp
(︂
− E

A2

)︂ (4.10)

Since all of the parametrizations mentioned above are purely phenomenological, they
are of limited use without appropriate calibration data to extract the parameters.
Some insights into the relevant parameters can be gained from calibration data
collected during physics runs in CRESST and future COSINUS experiments and from
existing literature. However, it can be advantageous to perform dedicated studies
of the light quenching to improve the parametric descriptions. In the next chapter,
three measurements are presented that were either specifically designed for a light
quenching analysis or reanalyzed to extract information on light quenching.
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5
Light quenching measurements

The previous chapter illustrated that a competitive model to describe the scintillation
light produced in scattering processes in an inorganic crystalline medium does not exist.
In CRESST and COSINUS, one can thus not know which precise light distribution to
expect before a measurement. For the calculation of physics results, however, it is
crucial to know the difference in light output for an electron, gamma or alpha
background event compared to a DM scattering event. The phenomenological
descriptions in section 4.3 and dedicated (calibration) measurements can usually
achieve reasonable estimates.

For this thesis, the data from three measurements dedicated to studying light
quenching in CaWO4 and NaI were analyzed. Care was taken in all measurements to
provide experimental conditions similar to CRESST (or future COSINUS) so that
the results can be applied to past and future physics runs. This chapter will first
motivate these three measurements and then give information on the experimental
setup and measurement conditions. The subsequent chapters will focus on the
processing of the data and the analysis and fitting performed to extract the relevant
information from the data.

5.1 Light quenching of α-particles in CaWO4

In CRESST-II Run 31 (2008) and Run 32 (2009-2011), degraded alpha particles were
one significant component of background events. The origin of these events could
be traced back to contamination (mainly from polonium 210, 210Po) in the bronze
clamps fixing the crystals inside their holders [84, 135]. In principle, α-particles from
the relevant decay chains have high energies (5 MeV for 210Po) far outside the energy
region of interest. However, if the alphas are produced inside the clamp, bulk effects
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can cause degradation and alphas with a continuous energy spectrum down to the
threshold. These background events can to some extend be disentangled from potential
DM events (for example, with a maximum likelihood fit), as their light output differs
from nuclear recoil events. If the energy-dependent light quenching of the various
ionizing particles is known, one can estimate the number of alpha background events
leaking into the signal region of the experiment. In subsequent CRESST runs, the
bronze clamps were replaced with other holding structures like the CaWO4 pillars in
Fig. 2.3. However, the leakage of degraded alphas is still of interest as this background
could, although at a lower rate, be produced in other detector components or within
the crystal itself. Moreover, the energy-dependent quenching factors of α-particles are
also of interest for other fields, for example, nuclear physics or radiation protection.

Unlike a neutron source, which can be placed outside the setup during an
ongoing physics run to estimate the light quenching of nuclear recoils, an α-source
needs to be placed inside the detector module for a sufficient rate. This implies
that no alpha-calibration can be performed on-site during a physics run. Instead,
dedicated measurements were performed with CRESST-like crystals to find the correct
phenomenological description of the alpha light quenching [135, 150]. One such
measurement, run 347, has been previously only partially studied and was analyzed
for this work within an upgraded analysis framework. However, knowledge of both
alpha and nuclear ion quenching is needed to estimate the number of alpha background
events that could leak into the DM signal region. Since quenching factors can vary
between individual crystals, it is necessary to quantify all light quenching effects in the
same crystal under the same measurement conditions. Within the scope of this thesis,
a measurement with a CaWO4 target crystal and both an α- and neutron source was
performed to estimate a potential leakage of degraded alpha events into the CRESST
AR. The setup details of this measurement (run 600) and run 347 are described below.

5.1.1 Experimental setup of run 347

This run, previously described in [150], was carried out in summer 2014 at the LNGS
underground laboratory in the CRESST test cryostat located in a side tunnel between
Hall A and Hall B. The wet dilution refrigerator is encased in a 100 mm thick external
lead shield, and the experimental volume is topped with an internal low-background
lead cylinder of the same thickness. The cryostat is equipped with two SQUIDs for
signal read-out and amplification. The data were read out with a hardware-triggered
DAQ (at 50 kS/s sampling rate).

Detectors
For this measurement, a standard cylindrical CRESST crystal ("Sabine") was used
with a height and diameter of 40 mm and a weight of 310 g. The crystal was wrapped
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Figure 5.1: The phonon detector Sabine (left) and the light detector Pierre (right) used in
run 347. The detectors were then mounted as a module facing each other.

in a reflective and scintillating foil1 on all sides but the one facing the light detector
(see the left side of Fig. 5.1). On the non-covered side, the crystal was equipped
with a W-TES that was directly fabricated onto the crystal’s surface. The TES
was covered and surrounded by a gold structure, providing a thermal link to the
surroundings. The gold structure was connected to a heater used to stabilize the TES.
An SOS wafer ("Piere") was used as a light detector, also equipped with a W-TES
for signal read-out and a heater (see right side of Fig. 5.1). Both detector parts
were mounted in low-background copper holders with aluminum-coated bronze clamps.

Sources
In this run, two different α-sources were used. For the first one, 238U (Eα = 4.27MeV)
in solution was applied to a Teflon sheet. The sheet was then mounted with the 238U-
covered side facing away from the CaWO4 crystal to ensure a continuous spectrum of
degraded alphas with energies down to the threshold. The second source was a raw
piece of samarium (Sm) with 15% natural abundance of 147Sm. Due to bulk effects in
the mixed Sm piece, this source emits a continuous spectrum of alphas with energies
up to Eα = 2.33MeV. In the decay process of 147Sm stable neodymium 143 (143Nd)
nuclei are produced with kinetic energies up to ∼ 80 keV (decay scheme in Fig. 5.2).

1In CRESST modules featuring clamps, the scintillating foil had an additional function besides
enhancement of light collection: Possible 210Po contamination on holder or crystal surfaces from
222Rn in the ambient air can lead to degraded 206Pb nuclei imitating a DM signal inside the crystal.
The α-particle produced in the decay of 210Po is emitted anti-parallel to the lead nucleus and carries
an energy of about 5MeV. If the alpha hits the scintillating foil in approximate coincidence with
the 206Pb hitting the crystal, the total light output is significantly increased, and the event has an
artificially increased light output that can be used as a veto.
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Figure 5.2: Decay scheme of 147Sm. Energies are in MeV, information from [151].

These nuclei can cause a nuclear recoil signal with a low light output comparable
to a tungsten ion. The Sm-piece was wrapped in gold foil of several hundred nm
thickness to shield the Nd nuclei. A thicker foil would ensure better shielding of the
Nd nuclei, but reduce the α-rate significantly at the same time.

For the energy calibration, an 241Am source emitting 59.5 keV gammas was installed
for 35 hours inside the external lead shield of the cryostat.

5.1.2 Experimental setup of run 600

While an ultra-low background environment is desirable, it is not essential for a
light quenching measurement. As the CRESST test cryostat was not available in
Spring 2023, the simultaneous measurement of light quenching with an alpha- and a
neutron source was instead performed in cryostat 2 of the CRESST group at MPP
Munich. This setup is located above-ground, but the wet dilution refrigerator can be
surrounded on demand by a 100 mm thick lead brick wall to reduce the background
from cosmic and ambient radiation. The cryostat is equipped with four SQUIDs read
out at 50 kS/s. A custom-made continuous DAQ can extend the standard hardware-
triggered DAQ of the setup. Due to some noise issues caused by the hardware-triggered
DAQ, the measurement was only recorded with the continuous DAQ. As the detector
stabilization in this setup is usually performed with the hardware-triggered DAQ,
the run had to be performed without active detector stabilization. This affected the
performance of the detectors but did not render the data unusable.

Detectors
Opposed to the large CaWO4 crystal in run 347, here a 2 mm thin wafer-like crystal
("Leonie") was used as a phonon detector. It was mounted with copper clamps
in a ring-shaped copper holder and covered with reflective and scintillating foil on
one side (Fig 5.3 left). The light detector "Obelix" used in this run is a COSINUS
prototype detector. It consists of a beaker-shaped Si crystal of 40 mm outer diameter,
40mm height, and 1mm thickness. The beaker is held inside a copper holder with
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Figure 5.3: Left: Phonon detector Leonie used in run 600. Below the crystal wafer, the
gold-coated Sm piece is visible, and the reflective foil to which the 55Fe source was fixed
with Kapton tape. Right: Light detector Obelix as used in run 600 mounted on top of the
phonon detector. The W-TES was evaporated onto the flat top side of the beaker. The
reflective foil on the inside of the holder can be seen.

six polyoxymethylene (POM) sticks, and its lateral area is wrapped in reflective and
scintillating foil. The wafer and beaker are equipped with an evaporated W-TES
surrounded by aluminum phonon collectors and heaters. The wafer is then mounted
with the side on which the TES was evaporated facing the interior of the beaker (Fig
5.3 right).

Sources
In this run, a solid piece of raw Sm was used as α-source. Approximately 200 nm
of gold was evaporated on the piece, and it was additionally wrapped in a 340 nm
thick gold foil. The source was then mounted between the CaWO4 wafer and the
reflective foil (see also Fig 5.3 left). This arrangement of foil, source, and crystal
can, in principle, lead to alpha events with a distorted light output if the crystal
and the foil are hit by two alphas simultaneously. This potential issue is discussed
in more detail in the analysis sections of this run.

For the energy calibration down to low energies, both phonon and light detectors
were equipped with iron 55 (55Fe) sources with a rate of ∼ 0.2 cpm.

5.2 Light quenching in NaI

In summer 2022, the COSINUS collaboration performed the first underground
measurement with a NaI remoTES prototype detector module [119]. The performance
of both light and phonon detectors in this run 376 was close to the COSINUS design
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goal, allowing for an analysis of the energy-dependent light quenching in NaI down to
low energies. This measurement was the first2 time that the light quenching in NaI
could be studied with sufficient precision from a direct comparison of scintillation
light produced and total energy deposited in the crystal for each event.

Studying the energy-dependent light output of electrons, gammas, and heavy ions
is essential not only for future COSINUS analyses but also for the community of NaI
experiments as a whole. As previously discussed in chapter 3, all other DM searches
employing NaI crystals measure the deposited energy only in terms of scintillation
light. Knowing the quenching factors of Na and I ions is essential for correctly
reconstructing the total deposited, unquenched energy in these experiments. For
recoils off Na nuclei, multiple measurements of the respective quenching factors exist
(see [107–109, 111, 152] and references within). However, the individual values differ,
and for low energies, information is scarce, and error bars are large. In the case of
the I quenching factor, measurements below 10 keV total deposited energy are not
available [108, 109]. The subject of quenching factors is also directly related to the
DAMA/LIBRA signal claim, as the quenching factors have a substantial impact on
the precise parameter region favored by the DAMA/LIBRA signal [110]. The reported
quenching factor values for DAMA’s crystals [53] are significantly higher than those
measured by other collaborations and experiments, making a cross-check with an
in-situ measurement by COSINUS even more interesting.

5.2.1 Experimental setup of run 376

The first NaI remoTES underground measurement was carried out using the test
cryostat at LNGS. The experimental setup was already described earlier for run 347.
The only difference in this run was that a continuous DAQ was used in addition to
the hardware-triggered DAQ.

Detectors
The NaI absorber crystal was a 1 cm3 cube produced by SICCAS [120] using the
same Astro-Grade powder produced by Merck [121] that will also be used in the
production of the final set of COSINUS crystals. The crystal had a Tl dopant level of
730± 73 ppm, which differs from the undoped crystals planned for the final COSINUS
setup. To fixate the crystal (blue cube in Fig 5.4 left) in its copper holder, Al2O3 balls
and POM sticks were used. The TES was evaporated onto a (10× 20× 1) mm3 Al2O3

wafer crystal, which was connected to the absorber via a combination of gold pads
and gold bonding wire in the fashion of the remoTES design. For the light detection,
the previously described Obelix Si-beaker was put over the remoTES structure (Fig

2There was an earlier above-ground measurement by COSINUS with a dual-channel remoTES
detector [118], which was, however, inferior in detector performance and did not allow for a proper
analysis of the light output.
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Figure 5.4: Left: The remoTES module used in run 376. For this picture, the NaI crystal
cube was irradiated with an ultraviolet light source. The Al2O3 wafer crystal (clear rectangle)
was mounted opposite the NaI crystal. Right: Light detector Obelix held by a single copper
pillar over the remoTES module.

5.4 right). Only the holder and the size of the phonon collectors differ for Obelix
between run 376 and run 600. More details on the setup can be found in [119].

Sources
Both detector holders were equipped with 55Fe sources for the energy calibration.
As it was unclear during the measurement if the 55Fe lines were above the phonon
detector threshold, an additional 16 hours of calibration data were taken with a
57Co γ-source (122 keV) placed inside the external lead shield of the cryostat. For
the neutron calibration, an americium beryllium (AmBe) source with an activity of
2000Bq was placed outside the external lead shield for a total of 26 hours.
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6
Raw data analysis

Before any comparison between experimental data and theory can occur, the informa-
tion on energy depositions in the detector must be extracted from the recorded sensor
signal. All steps from the raw data to the cleaned and calibrated energy spectra
are summarized as raw data analysis and the subject of this chapter. Since all data
used in this work stem from R&D campaigns and test measurements, the analysis
was not performed blind (as is common practice in physics) but individually tailored
to the specific setup and goal of the measurement.

The precise process and steps of the raw data analysis depend on the DAQ system
used in the measurement and the resulting data format. In early iterations of the
CRESST experiment, and for certain test measurements (run 347), a hardware trigger
was applied during data taking, and only the time windows around the triggered pulses
were stored. While efficient in terms of storage, this method does not allow for later
trigger threshold or algorithm corrections. For performance optimization, it is essential
to adjust the threshold at a later point; thus, in both CRESST and COSINUS, storing
the entire data stream is now standard practice. The data is then later triggered offline
by applying a software trigger. The first part of this chapter describes the components
necessary to perform the stream data-specific software triggering. All subsequently
described analysis steps apply to both hardware- and software-triggered data.

The main steps of triggering, data cleaning, and energy reconstruction were
performed with the Root-based CRESST-internal software package CAT. Analysis
steps differing from the CRESST standard procedure (e.g., the extended model
for the trigger threshold described below), parts of the energy calibration, and all
visualizations were implemented in customized Python scripts.
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6.1 Offline Triggering

The simplest version of a triggering algorithm selects single data frames of the stream
in which the voltage exceeds the averaged stream by a certain number of standard
deviations. However, this approach is not ideal, as it can result in numerous noise
triggers and/or the loss of small pulses. An Optimum Filter (OF) trigger was used
instead for the data analyzed in this work, a method widely utilized in low-threshold
experiments [153]. In this approach, a threshold trigger is applied to the filtered
stream. The OF takes into account the shape of the expected signal in terms of a
standard event (SEV), as well as the noise distribution in the detector in terms of a
noise power spectrum (NPS). In a two-channel detector, the triggering is performed
only on the dominant channel (usually the phonon detector for CRESST & COSINUS),
while the secondary channel (light) is read out in coincidence. As a direct result of
this triggering scheme, the secondary channel may contain data frames with overall
negative signal fluctuations (this explains the negative light signal in Fig. 2.1). In
the following, the required components of the OF trigger are described, while more
details on the inner workings of the filtering can be found in [154].

Standard event
The SEV is a detector-specific quantity generated by averaging O (100) pulses to
reduce noise fluctuations. Ideally, the pulses are chosen from a narrow energy region,
such as a peak in the spectrum, where the detector response is linear. Any residual
noise fluctuations in the SEV can be eliminated by fitting the averaged pulse with
a parametric description [86, 114]. However, the available pulse models may not be
able to reflect the pulses as seen in the detector, and the averaged SEV must suffice.
In Fig. 6.1, the SEVs for detectors Leonie and Obelix in run 600 are shown, together
with the parametric fit. The extended pulse model from [114] cannot describe the
slow rise in Obelix, and thus the averaged SEV was used in the OF creation.

Noise power spectrum
The NPS is generated from empty noise traces sampled at random times from the
continuous stream. After traces with accidental pulses are rejected, a Fourier transform
is applied, and the traces are averaged in Fourier space. This results in a frequency
histogram, where all characteristic noise frequencies are present. More information on
the generation of NPS and their interpretation in the context of detector performance
can be found in [54, 154].

Trigger threshold
An ideal trigger threshold should give a high detection efficiency at low energies
while keeping the number of accidental noise triggers to a minimum: In [155], an
analytical description of the noise trigger rate (NTR) in detectors with normally
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Figure 6.1: Averaged standard event (SEV) with parametric pulse model fit [114]. The left
figure shows the SEV for the phonon detector Leonie and the right for the light detector
Obelix, both employed in run 600. The inset in the right figure illustrates how the parametric
description of the pulse cannot characterize the slow rise time seen in pulses in Obelix.

distributed noise is derived. Once the NTR is determined for a detector, it can be
used to optimize the OF trigger threshold (in Volt). The authors of [155] obtain
the expected distribution of noise triggers from the probability that one sample in a
record window exceeds the value x while all other samples are smaller:

P (x; d, σ2) =

(︃
d

d− 1

)︃
N (x; σ2)

(︃∫︂ x

−∞
dx′N (x′; σ2)

)︃d−1

(6.1)

The parameter d is the number of statistically independent samples in the record
window and differs in general from the total of samples in the window (i.e., the
record window length). Thus d and σ2 have to be determined via a fit to the OF
maxima of a set of randomly chosen empty noise traces (e.g., the set from the
NPS generation). Once P (x|d, σ2) is found the total NTR above a threshold xthr

per kgday exposure is given by

NTR(xthr) =
1

twinmdet

∫︂ ∞

xthr

dxP (x; d, σ2), (6.2)

where twin is the length of the record window in days and mdet the detector mass
in kg. In Fig. 6.2, the distribution of OF noise maxima for the phonon detector
Leonie in run 600 is displayed together with a fit to eq. (6.1) (orange line). The
right panel of Fig. 6.2 shows the NTR of this detector (orange line) according to
eq. (6.2). It is clear that eq. (6.1) does not describe the noise distribution in run
600 well. The same is true for the underground run 376.

In this work, we thus propose to extend the formalism in [155] by exponentially
distributed noise samples. These samples can then account for any additional
exponential noise component or any non-SEV-like pollution increasing in incidence



76 6.1. Offline Triggering

0.00 0.01 0.02 0.03 0.04

OF maxima of empty noise traces (V)

0

200

400

600

800

1000

1200

1400

C
o
u
n
ts

Empty noise traces

Standard noise model

Extended noise model

100 101 102

Trigger threshold (mV)

10−3

10−2

10−1

100

101

102

103

104

105

N
T
R

(1
/
(k
g
d
ay
)

NTR standard

threshold 33.5 mV

NTR extended

threshold 61.7 mV

Figure 6.2: Determination of the ideal trigger threshold for run 600. Left: Distribution of
OF noise maxima for the phonon detector Leonie (light blue). The orange line shows a fit to
the distribution with the standard noise description eq. (6.1), the pink line shows a fit with
the extended noise description eq. (6.3). Right: The NTR per kg day exposure as a function
of the trigger threshold, determined via eq. (6.2). The orange line was evaluated from the fit
with the standard noise model in the left figure, the pink line from the fit with the extended
noise model. The thresholds equivalent to one noise trigger per kg day exposure are marked
in both cases.

towards low energies [54]. We assume that out of d independent samples, n follow an
exponential distribution and the rest a normal distribution. Then eq. (6.1) can
be extended to

P (x; d, n, λ, σ2) =

(︃
d− n

d− n− 1

)︃
N (x|σ2)

(︃∫︂ x

−∞
dx′N (x′|σ2)

)︃d−n−1 (︃∫︂ x

0

dx′λe−λx′
)︃n

+

(︃
n

n− 1

)︃
λe−λx′

(︃∫︂ x

−∞
dx′N (x′|σ2)

)︃d−n (︃∫︂ x

0

dx′λe−λx′
)︃n−1

.

(6.3)

Again, the parameters d, n, σ2 and λ are fixed by a fit. The comparison in Fig.
6.2 shows that the extended model (pink line) fits significantly better to the data.
However, the optimum trigger threshold for one noise trigger per kg day is a factor two
higher for the extended model. This forces the analyst to choose: set the threshold
at a lower value at the risk of polluting the data with noise triggers or eliminate
all noise at the cost of losing access to lower energies. Since the primary goal for
run 600 was not a low threshold, option two was chosen. For run 376, on the other
hand, the higher threshold derived from the extended model was not feasible, as
it was above the X-ray lines from the 55Fe calibration source. Fortunately, it was
possible to remove most of the so-caused noise triggers in the run 376 data with
a dedicated cut described in subsection 6.3.4.



6. Raw data analysis 77

6.2 Energy reconstruction

After triggering, a window of pre-defined length is stored for each pulse, with the onset
placed at one-quarter of the record window. The triggered pulses are then separated
into true particle pulses and triggers caused by injected test or control pulses. Pulses
from the heater can usually be identified either by their timestamps or, if the heater’s
output was recorded, from simultaneous triggers in the heater channel.

In the analysis, a corresponding energy deposition must be assigned to every
particle pulse in the light and phonon detector. To do this, first, the true amplitude of
the pulse is extracted, taking into account the time dependence of the detector response.
Then, these amplitudes are calibrated using lines of dedicated calibration sources in
the data. This section describes the various steps of the energy reconstruction.

6.2.1 Pulse height reconstruction

The first step in converting pulses to energy is to extract the pulse height. The most
trivial way is to calculate the difference between the maximum and the baseline level
for each record window. While this pulse height is a reasonable first estimate, there are
more accurate ways to extract a pulse’s amplitude, especially in the presence of noise.

One option to mitigate the noise is using an OF, as was done for the triggering.
The OF maximum is then a measure of the pulse’s amplitude, hereinafter referred
to as the filter or OF amplitude. The filtering approach works well at low energies
but starts to fail for high-energetic events outside the linear range of the detector. If
the energy deposited in the target is large enough, the TES can be driven close to
its normal conducting phase. As the transition curve flattens, the peak of the pulse
saturates, and an OF reconstruction is biased, as can be seen in Fig. 6.3.

The truncated fit gives a method to bypass this issue. In a common SEV fit, the
amplitude of a pulse is determined by matching the SEV to the record window, leaving
the relative shift of the onset in time and the scaling in height as free parameters.
In addition, a description of the underlying baseline should be fitted, where third-
order polynomials have been shown to yield the best results [87]. For the deformed
pulses, one assumes that below a certain voltage level (denoted truncation limit)
the pulses are still described correctly by the SEV. In the truncated fit, samples
above the truncation limit are thus discarded, while the fixed SEV is scaled to the
correct height using the remaining samples.

In CRESST and COSINUS detectors (and prototypes), the phonon channel is
typically the dominant channel for energy reconstruction, while the light information
is used for particle discrimination or the characterization of light quenching. As
we also expect pulses with low or no light output, in a light detector with finite
resolution, a statistically unbiased distribution of pulse height should include negative
amplitudes. However, both methods of pulse height reconstruction described are
biased to reproduce positive amplitudes from upward noise fluctuations. For the
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Figure 6.3: Example of a saturated pulse (black line). The OF (orange line) underestimates
the true height of the pulse. The amplitude of the pulse returned by the truncated fit (pink
line) gives an accurate measure of the energy deposited in the crystal.

SEV fit, this can be avoided by determining the onset shift for the fit in the light
channel correlated to the phonon channel fit’s onset. Similarly, for the OF, not
the maximum value of the filtered sample is used, but the value at the position
of the dominant channel’s maximum.

In addition to the pulse’s amplitude, both reconstruction methods yield a root
mean square (RMS) value for each pulse, which is a measure of the reconstruction’s
goodness and can later be used for data selection. For the truncated SEV fit, the
RMS is given by the mean squared fit error of samples below the truncation limit.
For the OF, it is defined as the RMS of the difference between the filtered pulse
and a filtered and scaled SEV.

6.2.2 Energy calibration

The determined pulse heights need to be translated to recoil energies. This is generally
done with a calibration source inducing a known energy deposition in the detector
(e.g., γ-lines). One can then define a linear conversion factor between pulse height
in V and respective energy via the position of the line in the measured spectrum.
This conversion factor is used for the energy calibration of single-value quantities
such as the detector threshold or baseline resolution. However, it is often unsuitable
for the calibration of a full energy spectrum,1 as it does not take into account any
1In run 600, this procedure of direct linear conversion from fitted amplitudes to energies was used
for the whole energy spectrum, as there was some issue with the test pulses generation during data
taking.
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non-linearity or time-dependent changes in the detector response. Thus, in CRESST
(and COSINUS), one uses the reconstructed amplitudes of the test pulses (TPs)
injected by the heater (see chapter 2) to fit a two-dimensional transfer function
which maps the timestamp t and fitted/filtered amplitude Afit/filter of an event to
a quantity denoted as test pulse equivalent (TPE)

ftrans : (t, Afit/filter) −→ TPE . (6.4)

For more information on the construction of the transfer function, the reader is referred
to [154]. The spectrum in TPE is then used to find the so-called CPE factor (historical
CRESST abbreviation for "Convert pulse height to energy"), defined as the ratio of the
calibration line’s true energy and the mean value of the line in TPE. Linear conversion
and CPE factors for all detectors used in this work are summarized in Tab. 6.1.

6.3 Data selection

Besides the pulse height and the RMS value from the reconstruction method, a
set of parameters is extracted from each triggered pulse. These "main parameters"
describe intrinsic properties of the pulses, such as their onset or the RMS of the
baseline, and can be used to discriminate pulses of interest from artifacts and pulses
unsuitable for energy reconstruction. Undesired events include – but are not limited
to – resets of the SQUIDs’ read-out electronics, spike-like noise, pulse pile-up, and
pulses recorded during times of unstable detector performance. If more than one
detector module is operated in a measurement, or the experimental setup features
an active muon veto, then events recorded in coincidence with a hit in the veto or
another detector will be discarded in a DM data analysis.

Before any cuts on the main parameters are applied, and usually even before
the energy reconstruction is performed, periods of unstable detector performance
are removed. During operation, the stability of the working point of a detector is
ensured and monitored via the control pulses. The height of these heater pulses can
then be used in the analysis to perform the stability cut. In run 600, the detector
stabilization was inactive during data-taking due to noise issues. Thus, the stability
cut was based on the highest, non-saturated TPs.

6.3.1 Quality cuts

All cuts based on the main parameters of the recorded pulse are summarized as
quality cuts. In two-channel detector modules, these cuts are generally only applied
to the primary (phonon) channel to avoid accidentally discarding events with no or
very little light output. If quality cuts are applied to the secondary channel, it is
essential to check if the cut influences the symmetric distribution of the recorded noise.
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Onset
Cutting on the onset of a pulse (or alternatively on the position of a pulse’s peak)
can eliminate events that are not correctly placed within the record window. Such
incorrect placement can, for example, be the case for pile-ups with small pulses or
triggered decaying baselines (i.e., the tail of a pulse in an earlier record window).

Baseline difference
If the record window is long enough, a pulse should fully decay within the window.
A difference in the baseline height at the start and end of a pulse can thus hint
towards an artifact such as a reset or a quantum loss of/in the SQUID. In some
detectors, especially remoTESs, pulses can have long tails, and a sufficiently large
record window might not always be compatible with the event/trigger rate. For large
energy depositions, pulses then have some intrinsic baseline difference. In these cases,
it can be helpful to define a two-dimensional cut on both pulse height and the baseline
difference simultaneously.

Minimum derivative
A high absolute voltage difference (derivative) between two consecutive samples in a
record window can identify spike-shaped electronic artifacts. The minimum derivative
is usually the better choice, as true particle pulses can have a rise time on the order
of a single sample but cannot decay instantly. For the cut, the minimum derivative is
compared to the RMS deviation of the window’s baseline to avoid discarding pulses
suitable for analysis but polluted with small spike- or square-shaped noise.

6.3.2 Pulse shape cuts

While quality cuts effectively remove artifacts, not all events surviving these cuts are
suitable for the energy reconstruction described in the previous chapter. A cut on
the RMS of the truncated fit and/or the OF RMS can be used to remove unsuitable
events. Since, in both the fit and filter case, the RMS is a measure of how compatible
a pulse is with the SEV, these cuts are also referred to as pulse-shape cuts. The fit
(filter) RMS is an energy-dependent quantity due to the signal-to-noise ratio varying
with energy and possible saturation effects in the detector. In [87], an automatic
procedure to perform an energy-dependent RMS cut is introduced. However, as none
of the analysis for the R&D data used in this work was performed blind, the cuts
were set by hand in the fit (filter) RMS vs. fit (filter) amplitude plane, respectively.
The fit RMS is the preferred discrimination parameter for higher energies above the
truncation limit. Conversely, the OF RMS is favored at low energies as it is less
sensitive to high noise relative to the signal.
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Figure 6.4: Two different SEVs observed in the data taken with a prototype remoTES
detector and a α-TeO2 target crystal. The pink line is the averaged and normalized event
stemming from hits in the absorber crystal; the orange line is the SEV from hits in the wafer
crystal carrying the TES.

6.3.3 remoTES-specific event types

In the standard phonon detector design used by CRESST and in CRESST-like
prototypes (run 347 and run 600), one expects to see only one type of events stemming
from recoils in the target crystal. The remoTES design features two crystals – the
target and the wafer – both connected to the TES. This introduces an additional
event class of pulses stemming from hits in the wafer crystal. These events can
indeed be observed in the data of run 376. However, they occur at a low rate due
to the small mass of the wafer compared to the absorber and only at low energies,
as the detector was optimized for absorber events.

To study these wafer events and gain some understanding of how they should
be treated in future remoTES analyses, we look into an earlier COSINUS R&D
campaign. In run 573, conducted at MPP Munich, a remoTES prototype with a
tellurium dioxide (α-TeO2) absorber was operated [117]. The data collected in this run
feature multiple types of events, the two most frequent of which could be assigned to
absorber and wafer events. The pulse shapes of these two event classes are significantly
different, which can be seen from a comparison of their SEVs in Fig. 6.4. A good
measure for a first discrimination between wafer and absorber events is given by the
rise time of the pulses as seen in the left panel of Fig. 6.5. The cluster of events
around 0.075V pulse height hints towards an additional event class. In [117], these
events with a medium-length rise time were related to hits from the collimated 55Fe
source irradiating the gold pad on the absorber.
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Figure 6.5: Exemplary methods to discriminate absorber from wafer events in remoTES
data (figure in the style of [117]). Left: Scatter plot of the pulses’ rise time versus the pulse
height in V. Wafer events have a significantly faster rise time, and the majority can thus be
selected with a simple cut. The distribution around 0.075 V suggests another class of events
that were associated with hits in the gold pad. Right: All pulses were fitted both with the
wafer and the absorber SEV. The difference in the respective fit RMS gives a good measure
of discrimination between the event types.

Once SEVs for all event types were generated, comparing the SEV fit RMS gives
another reliable separation method. In the right panel of Fig. 6.5, we show the
absolute difference between the wafer fit RMS and the absorber fit RMS, which
indicates good separation down to low energies. The suggested workflow for any
remoTES analysis is thus to identify all event types present in a data set and to
segregate the absorber events via a comparison of the fit RMS. However, in practice,
wafer events are in large parts already removed by quality cuts as rise and decay
time are strongly correlated with other main parameters.

6.3.4 Noise cut

As mentioned in section 6.1, the choice of a lower threshold in the OF triggering of run
376 caused a significant accumulation of noise events above the threshold, depicted in
Fig. 6.6. For true particle pulses, one expects that the pulse height reconstruction
with an OF or SEV fit should yield comparable results at energies far below the
saturation point. To discriminate true pulses from noise triggers near the threshold,
we thus compare the OF and SEV fit amplitudes for the phonon channel and discard
all events where these parameters differ by over 20 %. This cut effectively removes
noise triggers while leaving true recoil events in the iron line untouched, as shown in
Fig. 6.6. However, the noise cut might still remove pulses of interest. The efficiency
of this cut, and in fact of all data cleaning steps performed, is thus crucial in the
calculation of any physics result and will be the focus of the next chapter.
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Figure 6.6: Low energy events in the phonon remoTES detector of run 376. The light
blue histogram gives all events before the noise cut, and the dark blue distribution gives the
events surviving the cut. The solid black line gives the fit of the noise distribution according
to eq. (6.3) plus the double 55Fe line. The solid pink line gives a fit to the data after the cut
using only an expression for the double 55Fe line. The dashed black line marks the threshold
that was used in the OF trigger (2 mV).

6.3.5 Trigger and cut efficiency

While the cuts and data selection steps described in the previous section aim to
remove artifacts and non-suitable events, there is a non-zero probability that a proper
particle event will not survive the full analysis chain. To evaluate this survival
probability (cut efficiency), SEVs with heights drawn from a uniform distribution are
superimposed onto the continuous data stream at random but known times. This
method of simulating events on the stream, as opposed to on pre-selected empty noise
traces, was first introduced in CRESST-III and is described in [67].

After removing artificially created pile-ups of simulated events with real pulses,
the entire analysis chain is applied to the simulated data. In this way, every analysis
step’s energy- and time-dependent efficiency can be determined, particularly the
trigger efficiency, which can be used to decide on an analysis threshold (see below in
section 6.4). The injected energy equivalent, the reconstructed energy, and whether
the event survived the analysis chain are stored for each artificial event. More
information on how these data are used to calculate limits on the DM interaction
strength can be found in chapter 9.

To properly evaluate the trigger and cut efficiency, stream data of sufficient length
is needed for a high enough statistic of simulated events. Moreover, the stream should
not be too heavily populated with real particle events. Thus, in this work, the cut
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Figure 6.7: The dark blue line shows the trigger efficiency, and the light blue line shows
the trigger plus cut efficiency as determined from simulated pulses for run 376 data. The
inset shows a zoom-in to lower energies and a fit of the extended error function in eq. (6.8).
This fit was used to determine the detector threshold marked by the black dashed line. In
addition, the pink dashed line marks the threshold later used in the high-level analysis at
approximately 50% of the plateauing level of the cut efficiency. Figure in the style of [119].

efficiency was only evaluated for the underground run 376, for which a DM result was
also calculated. The length of usable stream data for run 376 was still relatively short
compared to the data used in CRESST or the future data recorded at the COSINUS
facility. Two simulations were performed to generate enough statistics at low energies,
where the efficiencies are of particular interest: one simulation for the whole accessible
energy range of the run and a second one only at lower energies up to 20 keV (this
is the value at which the cut efficiency approximately reaches its plateauing value).
Trigger and cut efficiency for run 376 are displayed in Fig. 6.7.

6.4 Detector resolution and threshold

Two more quantities should be determined for a detector in the raw data analysis:
the resolution and threshold. While one method to determine the threshold was
already discussed for stream data in section 6.1, we present alternative strategies
also suitable for hardware-triggered data.

The energy resolution is a measure of how well a detector can resolve an energy
deposition in the target. It is affected by the baseline noise and the shape of the
transition curve, as well as by the method of the pulse height reconstruction, and
is thus an energy-dependent quantity. As a comparable measure of a detector’s
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performance, one states the baseline resolution, i.e., the resolution at small energies
close to the threshold. There are various methods to determine the baseline resolution.
For a first estimate, one can look into the distribution of reconstructed pulse heights
for the smallest TPs. This distribution can be approximated by a normal distribution
for a single injected TP amplitude, the standard deviation of which gives a measure
of the energy resolution σ. The outcome of this approach depends on the method
used for the pulse height reconstruction, where the SEV fit usually gives a more
conservative estimate.

To avoid any impact from the shape or height of the TPs, the baseline resolution
can be extracted similarly from simulated pulses generated by superimposing SEVs of a
single amplitude upon empty noise traces. The result depends again on the pulse height
reconstruction and the cuts performed to clean the noise traces. For a conservative
approach, it is advisable to use cuts on the empty noise traces that are not stricter
than those applied to the set of particle pulses. The value of the baseline resolution is
usually determined by a binned or unbinned maximum likelihood fit of a Gaussian to
the pulse height distribution, and this methodology can be used to calculate an error
on σ. For large n we can approximate the maximum likelihood estimator

σ̂2 =
1

n

n∑︂
i=1

(xi − x̄)2, (6.5)

by the unbiased sample variance

ŝ2 =
1

n− 1

n∑︂
i=1

(xi − x̄)2, (6.6)

with expectation value E(s2) = σ2. For s2 we know the variance to be Var(s2) =

1σ2/(n−1) and using uncertainty propagation and bootstrapping, we find the variance
for the baseline resolution

Var(σ) = Var(s) ≈ σ2

2(n− 1)
. (6.7)

This value is generally compatible with the error returned directly by the fit (via
the Hesse matrix), shown, for example, in Fig. 6.8 for run 376. For the error on the
resolution in keV, Gaussian error propagation is used to combine the error on the
resolution and the error on the energy calibration factor. The relative uncertainty on
the resolution in keV is thus increased.

The detector threshold can be estimated via the baseline resolution, and a value of 5σ
to 7σ has been proven a reasonable estimate for CRESST and COSINUS detectors.
There is another method to simultaneously determine the threshold and baseline
resolution via the trigger efficiency. In an ideal detector, the trigger efficiency can
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be described by a step function at the threshold. For a detector with finite energy
resolution, the step function is smoothed out to an error function of width σ centered
around the threshold xthr. Due to pile-up, the trigger efficiency does not reach 100 %,
and an offset ϵ and a scaling factor c need to be added to the description:

efftrigger(x) = c

(︃
(1− ϵ)× 0.5 erf

(︃
(x− xthr)√

2σ

)︃
+ ϵ

)︃
(6.8)

The threshold and resolution can then be extracted from a fit of eq. (6.8) to the
histogrammed trigger efficiency (fit is displayed in Fig. 6.7).

The methods described above initially yield values in Volt and need to be transformed
to keV (or keVee for the light detector) with the linear conversion described in the
previous section. In some cases (e.g., for comparisons of detector performance), one is
also interested in the absolute performance of the light detector, unaffected by the
light collection efficiency of the whole module and scintillation light quenching. To
find the respective σ and xthr, the calibration has to be performed with the direct
hits in the light detector (events with no signal in the phonon channel). In Tab. 6.1,
values for thresholds and baseline resolutions for the runs described in this work are
displayed. The values vary between the different calculation methods.
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6.5 Results

In the last section of this chapter, we show exemplary results for each of the three
analyzed measurements. As a graphical representation of the results, we show a
two-dimensional histogram of light yield vs. energy for each run. The quantity of
light yield is defined as the quotient between recorded light L and phonon energy Ep:

LY :=
L

Ep

(6.9)

The light yield plot gives insight into the spectral shape of the data, showing, for
example, γ-calibration lines while illustrating the light quenching of the different
background and signal components. Characteristic values of the used detector
modules resulting from the raw data analysis are summarized in Tab. 6.1. We
note that all energies recorded with the unquenched phonon channel are in units
of keV. In contrast, the energies recorded in the light channel (subject to light
quenching and calibrated with a gamma source) are given in units of "electron-
equivalent energy" in units of keVee.

6.5.1 Run 347

In 2014, it was uncommon to use a continuous DAQ, and only hardware-triggered
data are available for this run. No empty baselines were recorded during the run, and
the full analysis was performed without using an OF. The baseline resolution was
instead found superimposing SEVs upon triggered, decaying baselines, accounting
for the baselines’ slope with an additional third-order polynomial in the fit of the
pulse height reconstruction. As previously mentioned, the threshold of the phonon
channel can then be estimated as five to seven times the resolution given in Tab.
6.1. However, the threshold for the high-level analysis was set to a more conservative
value of 2 keV to avoid the energy region supposedly most affected by the energy-
dependence of the cut efficiency (compare also with the error-function-like behavior
of the efficiencies in Fig. 6.7).

Fig. 6.9 shows 35 hours of data taken with the 241Am calibration source after data
cleaning and calibration. In the light-yield plot, the α-events form a band at a lower
light yield distinguishable from the more densely populated bands of the electron and
gamma events at a light yield of ∼ 1. Another population is visible at an even lower
light yield that can be attributed to 143Nd ions with energies up to 80 keV from the
147Sm decay, as well as a possible neutron background, for example from contamination
in the lead shield. The γ-line of the calibration source is visible at 59.54 keV, centered
around a light yield of one. Many other lines are visible within the electron/gamma
bands, stemming from contamination in the crystal and its surroundings. The origins
of these lines and their tilted shape are discussed in more detail in the next chapter.



88 6.5. Results

Figure 6.9: Two-dimensional histogram of light yield vs. phonon energy for the 241Am
calibration of run 347.

6.5.2 Run 600

This run suffered from two complications; the first was the previously mentioned noise
issue of the hardware-triggered DAQ, which entailed that the run had to be conducted
without active detector stabilization. The second issue was only discovered after
the completion of the run, namely that the amplitudes of the injected heater pulses
did not scale correctly. This issue made evaluating the detector response over time
impossible. Combined, these two issues decreased the performance of the detectors
below expectations. While the baseline resolutions are comparable to those of run
347, the resolution of the phonon detector was already significantly decreased at the
energies of the 55Fe calibration lines. The threshold for subsequent analysis steps
is thus set to a conservative value of 3 keV. The amplitude of the truncated SEV
fit was used for the energy reconstruction, as pulses equivalent to a 25 keV energy
deposition already began to saturate in the phonon detector.

In Fig. 6.10, the light yield plot from 54 hours of data taken only with the internal
sources (55Fe and 147Sm) is shown. The 55Fe lines are visible as a stripe-like population
at low energies in the electron/gamma band at a light yield of approximately one. The
α-band and the heavy ion bands are visible at lower light yields. The nuclear recoil
bands of CaWO4 (below the alpha band) are significantly more populated than in run
347. This is probably due to a higher neutron background rate in the above-ground
setup, especially in combination with possible activation through cosmic radiation
in the surrounding lead shield. Moreover, 143Nd events might be present, possibly
caused by holes in the gold foil wrapping of the 147Sm source.
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Figure 6.10: Two-dimensional histogram of light yield vs. phonon energy for run 600.
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Figure 6.11: Pile-up event in the light channel of run 600.

During the data cleaning of this run, an increased number of events with a pile-up
in the light channel (only a single pulse in the phonon channel) was observed. Often,
the second pulse, which is not in coincidence with the triggered phonon channel pulse,
had a significantly higher amplitude, as shown in the exemplary pulse in Fig. 6.11.
These pile-up events were most likely caused by two alphas hitting the CaWO4 crystal
and the scintillating foil in the module almost simultaneously. That the chosen source
configuration could cause such events was already mentioned during the description
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of the experimental setup in subsection 5.1.2. Most of these events could be removed
with an RMS cut, as their pulse shapes differ significantly from the SEV. If the hits in
crystal and foil have a timing difference of less than 2 ms, they can not be identified as
pile-up anymore. In this case, an α-event with an artificially increased light output is
recorded. These events then populate the electron or gamma bands or lie in between
the well-defined bands. While this does not affect the analysis significantly, as some
smearing of the bands is expected due to the finite light detector resolution, the effect
decreases the overall number of clearly identifiable α-events.

6.5.3 Run 376

In this COSINUS prototype run, both hardware-triggered and continuous DAQ were
working as expected, allowing for a complete raw data analysis procedure including,
for example, the use of a stability cut and an OF trigger. Fig. 6.12 shows 26 hours of
neutron calibration data, where a clear separation of the electron/gamma background
and the nuclear recoil events is visible. The calibration lines are located close to the
threshold, densely populated, and spread over a wide range of light yields.

The excellent performance of the detectors in this run also allowed for the
calculation of physics results from the data. The trigger- and cut efficiencies were
evaluated for this run to be later able to set meaningful limits on DM cross-section.
The efficiencies are displayed in Fig. 6.7 with a fit to the trigger efficiency to determine
the threshold at 1.656 ± 0.041 keV. For the subsequent analysis steps, the threshold
was set to the conservative value of 4 keV, where the trigger and cut efficiency has
reached approximately 50% of its plateauing value.
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Figure 6.12: Two-dimensional histogram showing light yield vs. phonon energy for the
neutron-calibration of run 376.
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7
Maximum likelihood estimation

After converting the raw pulses to cleaned phonon and light energy spectra, we want to
extract information on the light quenching and backgrounds from the data. Maximum
likelihood estimation (MLE) is an ideal choice for such an analysis, as it offers a
method to fit a (non-normalized) density function with an arbitrary number of free
parameters to n-dimensional data. The MLE framework utilized in this section is part
of the limitless Python package, which was developed within the work of this thesis.
Limitless incorporates multiple tools frequently used in statistical analyses, such as
fitting, hypothesis tests, and exclusion limit calculation. The package was initially
developed for CRESST and COSINUS but can, in principle, be used to analyze any
rare event search data set consisting of one- or two-dimensional energy data. Limitless
can also process three-dimensional data containing the timing information of events.

We begin this chapter with the mathematical framework of the MLE before
discussing the possible background components necessary to construct a semi-empirical
likelihood function suitable for rare event searches performed in low background
environments. The next chapter discusses the application of this MLE framework to
the three measurements described in the previous chapters and the respective results.

7.1 Mathematical framework of MLE

If not stated otherwise, for all statistical methods described in this work, we refer to
the introductory work by Cowan [156] and adopt its formalism and notation.

Consider an experiment measuring an n-dimensional random variable x. The
observable is distributed according to the probability density function (PDF) f(x;θ),
the functional form of which is known, but the value of at least one of the parameters
θi in θ = (θ1, . . . , θm) is not. Since f(x;θ) gives the probability to measure x for the

93
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underlying distribution, for a given x the PDF returns a higher value for a choice of θ
close to the true underlying set of parameters. Now assume the variable x was measured
N times with values X = {x1, . . . ,xN}. Under the assumption that all measurements
are statistically independent, the joint density at X is given by the real-valued function

L(θ) =
N∏︂
i=1

f(xi;θ) , (7.1)

defining the likelihood function. Employing the argumentation for the single measure-
ment, one can find a suitable estimator of θ by maximizing the likelihood function.
The maximum likelihood estimator of θ at X is thus defined as

θ̂ = argmax
θ∈Θ

L(θ;X) , (7.2)

with the parameter space Θ a finite-dimensional subset of Euclidean space.
For differentiable likelihood functions, eq. (7.2) can be solved analytically; however,

numerical optimization methods are used for non-trivial, high dimensional, or non-
differentiable functions. As the repeated numerical multiplication needed in the
evaluation of eq. (7.1) can suffer from the finite precision in the numerical representa-
tion of real numbers, the logarithmic likelihood is used instead. The logarithm reduces
the product in eq. (7.1) to a sum while keeping the function’s maximum intact. For
MLE with numerical minimizers, we define the negative log-likelihood function

− log L(θ) = −
N∑︂
i=1

log f(xi;θ) . (7.3)

7.1.1 Extended likelihood function

The above formalism is only valid if the number of measurements N is a fixed,
predetermined number. Otherwise, the likelihood function’s value could be increased
by simply performing an additional measurement and adding the result to the sum.
In many experiments (e.g., in CRESST and COSINUS), it is not a priori known how
many events x will be observed during a campaign. The expected number of events ν
is a function of the parameter set θ and subject to fluctuations according to a Poisson
distribution [157]. The fluctuation in the expected number of events can be taken
into account by employing the extended likelihood function, given by

L(θ) = ν(θ)N

N !
exp(−ν(θ))

N∏︂
i=1

f(xi;θ)

=
exp(−ν(θ))

N !

N∏︂
i=1

ν(θ)f(xi;θ) . (7.4)
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The extended likelihood framework is also advantageous when the underlying density
function has not yet been normalized. For the non-normalized PDF ρ(x;θ) we find

ν(θ) =

∫︂
V⊂Rn

dx ρ(x;θ) , (7.5)

where V is the subspace of Rn accessible in the measurement, and thus ν(θ)f(xi;θ) =

ρ(xi;θ). Further, one can find an expression for the negative log-likelihood

− logL(θ) = ν(θ) + log N !−
N∑︂
i=1

log ρ(xi;θ)

= ν(θ)−
N∑︂
i=1

log ρ(xi;θ) (7.6)

where the log N !-term was dropped as it does not affect the minimization in θ.

7.1.2 Numerical minimizers

In limitless, the minimization of the negative extended log-likelihood function is
performed numerically, utilizing several minimizers. As the likelihood functions
needed to model the signal distribution in CRESST and COSINUS are involved and
can feature over a hundred fitting parameters, a single minimization is generally
insufficient. The likelihood tends to have local minima, and adequate starting values
and bounds for the parameters are essential. From user experience with limitless
predecessor software, it has prevailed that "chi-by-eye" is often a good approach to
finding suitable starting values. Limitless thus has a built-in graphical fitting interface
that allows the user to adjust parameters by eye and hand. Another approach to
finding starting values with less human bias is given by global optimization routines
that do not require starting parameters, such as a black-box optimizer. This initial
minimization step is then followed by more classical methods, such as those provided
by the SciPy library [158] or the well-established MINUIT framework [159]. The
following briefly describes the three minimizers most frequently used within limitless.

RSM based black-box optimization
The term black-box optimizer refers to a group of optimization techniques developed
to work with expensive functions whose underlying analytical form is not necessarily
fully understood – thus the name black-box. While the density function, in our case,
is not per se a black-box, it is expensive, and it is desirable to find parameters close to
a global minimum in as few function evaluations as possible. The black-box algorithm
implemented in limitless is based on [160] and uses response surface methodology
(RSM) to reconstruct and subsequently optimize the given function.
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Figure 7.1: Different methods to sample points on a two-dimensional unit square. Left:
Points generated with a standard random number generator in two dimensions. Middle:
Points placed on a symmetrical geometric grid. Right: Points sampled using a Latin
hypercube algorithm.

The algorithm consists of two stages, first performing q initial and then p subsequent
steps. In the algorithm proposed in [160], the function of interest only needs to be
evaluated q times in the first stage. Before the evaluations are started, the allowed
parameter space (defined by the parameters’ bounds) is rescaled so that future steps
can be performed on an n-dimensional unit hypercube. A given amount of points q is
then chosen randomly within the cube using a Latin hypercube. The Latin hypercube
allows points to be placed at random positions while the available space is evenly
populated. An example in two dimensions is displayed in Fig. 7.1, and more details
on the construction of a Latin hypercube can be found in [161].

The objective function is then evaluated at each of the chosen q points, and
the function values are rescaled to the domain [0, 1]. From the sampled points
{θ1, . . . ,θq} and the respective function values a response surface sq can be modeled
using cubic radial basis functions (RBF)

sq(θ) =

q∑︂
i=1

λi ϕ(|θ − θi|) + b⊺θ + a , (7.7)

ϕ(r) = r3

The variables λi, b and a can be found analytically under the condition that the
response surface interpolates all points θi.

Once eq. (7.7) has been constructed, it can predict the function value at any
arbitrary θ and can be used for the subsequent sampling steps. A modified version of
constrained optimization using response surfaces (CORS) [162] is utilized to probe
the parameter space in the p subsequent steps. The inner workings of the precise
CORS implementation in the algorithm are described in detail in [160].
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Figure 7.2: The Nelder-Mead minimization algorithm visualized in a simplified way for
Himmelblau’s function. The upper left panel shows the initial simplex placed in the functional
plane based on some starting values. In the next step (upper right), the triangle is reflected,
such that the point corresponding to the highest functional value is replaced. As the new
vertex point after the reflection has a lower function value than the original point, the simplex
is expanded in the direction of the new point (lower left). In the last iteration shown (lower
right), the triangle is shrunk, and the final simplex encloses the minimum of the function.

Nelder-Mead
One of the most frequently used optimization routines was developed by Nelder
and Mead [163] and is also known as the downhill simplex method. It is a "direct
search" method relying on function comparison and does not need information on
the function’s gradient.

The minimization routine is based on scanning the parameter space with a simplex
– a polytope with n + 1 vertices in n-dimensional space (e.g., a triangle in two-
dimensional space). Depending on the function’s values at the vertices, the simplex
is then transformed based on four geometrical operations: reflection, contraction,
expansion, and shrinking. These steps are demonstrated for a minimum of the
two-dimensional Himmelblau function in Fig. 7.2. Each step replaces the vertex
with the highest functional value and thus moves the polygon toward the closest
minimum of the function.



98 7.2. Constructing the likelihood function

Since it was first proposed in 1965, many variations of the algorithm have been
presented, often on the subject of the scaling parameters governing the geometric
manipulations (e.g., how much should the triangle in Fig. 7.2 be shrunk in the last
step). In limitless, the downhill simplex algorithm available is the one from SciPy’s
optimization submodule. This downhill simplex method is based on the variation by
Gao and Han [164], which includes the dimension of the optimization problem in the
calculation of the parameters that govern the geometrical operations. The adaption
by Gao and Han makes the algorithm more efficient for high-dimensional problems.

MIGRAD - a variable metric method
Developed in the 1970s at CERN, the numerical minimization framework MINUIT
has established itself as one of the standard optimizers in the high-energy and particle
physics communities. Initially implemented in FORTRAN, it was transferred later
to C++ as MINUIT II, and a Python frontend iminuit [165] is available. Besides
multiple tools for function minimization, the framework also permits an analysis
of the parameter errors and correlations and systematic studies of the function
near a minimum.

The Python frontend is embedded in limitless with MIGRAD set as the default
minimizer. The MIGRAD technique is based on the variable-metric method (VMM)
proposed by Fletcher and Powell, more details on which can be found in [166, 167].
The VMM is convenient for functions where the gradient vector is available, but the
Hessian matrix is not. In each iteration, the Hessian is approximated, enabling the
algorithm to return errors and correlation of the final parameters. In MIGRAD one
can pass an analytical expression for the gradient along with the function, otherwise,
the gradient is evaluated numerically. If the numerical estimation of the gradient fails,
MIGRAD falls back to MINUIT’s implementation of the downhill simplex method,
which is based on the original algorithm by Nelder and Mead.

7.2 Constructing the likelihood function

In this section, we construct a likelihood function that can describe the data measured
within this work or in any CRESST/COSINUS measurement performed under similar
conditions. From literature and simulations [168], one can identify different background
components C present in the data. The most common components are summarized
in Tab. 7.1 and implemented in limitless to be included on demand.

For all components, except for the "excess light" (described later in this section),
we model the distribution of total deposited energy (dR/dE)C and the distribution of
the light output. In a simplified approach, we assume that the measured light energies
are distributed normally around a mean energy-dependent light output LC. The width
σC of the normal distribution can be calculated from the detector resolution and is
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C Background component

e Linear electron background (pure β-decay)

γ Peaks from γ-decays; peaks with shoulders

β/γ β-decays with simultaneous γ-emission

µ/n "muon-bump"; muon- and neutron-induced γ-backgrounds

α Degraded alphas

N Elastic recoils of neutrons off nuclei

iN Inelastic recoils of neutrons off nuclei

lee Low energy excess

el Excess light events

Table 7.1: Background components C commonly found in CRESST and COSINUS. More
information on the various components can be found in the main text.

energy-dependent. The non-normalized density function describing the distribution of
energy and light for background component C can then be written as

ρC(E,L;θ) = eff(E)
dR

dE C
(E;θ)

1√︂
2πσ2

C(E;θ)
exp

(︃
−(L− LC(E;θ))2

2σ2
C(E;θ)

)︃
, (7.8)

including also the energy-dependent trigger and cut efficiency eff(E), if available. The
expected number of events is needed for the extended likelihood function eq. (7.4). It
can be calculated by integrating the density function over a predefined two-dimensional
space in energy referred to as the region of interest (ROI):

νC(θ) =
∫︂

ROI⊂R2

dE dLρC(E,L;θ) . (7.9)

The ROI contains all events with phonon energies higher than the threshold and lower
than some fixed upper energy limit. Regarding the light channel, the ROI is restricted
via the respective light yield – usually, events with a LY ∈ [−10, 10] are included. In
eq. (7.9), the integral over light can be solved analytically while the integration over the
energy is performed numerically due to its complex nature and the non-analytical form
of the trigger and cut efficiency eff(E). For the full negative log-likelihood function,
the various background contributions are then summed in the following way:

− logL(θ) =
∑︂
C

νC(θ) −
∑︂

(E,L)∈ROI

(︄∑︂
C

ρC(E,L;θ)

)︄
(7.10)



100 7.2. Constructing the likelihood function

Multiple data sets recorded in the same measurement (e.g., background and calibration
data or data from different detector modules) can be combined by summing the
respective likelihood functions, which generally differ but may share some common
parameters. The same likelihood formalism can be employed if the measurement
was performed with a single-channel detector module (e.g., only a light or a phonon
detector). The description of the density in eq. (7.8) is then reduced to the parts
describing the energy spectrum and the efficiency.

The parametrizations described in the following subsections adopt, to a large
extent, the framework described for CRESST in [169]. However, some changes and
additions were made to increase the compatibility with underlying physics.

7.2.1 Description of energy spectra

If both background and calibration data were recorded in one measurement, one
expects to see all components present in the background data also in the calibration
files, scaled to exposure. The two likelihood functions thus usually share parameters
describing the shape of the background, while scaling parameters differ. Parameters
defined independently and specifically for each dataset are marked with index d ∈
{bck, γ-cal, n-cal, . . . }.

Linear electron background
In all cryogenic measurements performed by CRESST and COSINUS, the electron band
is populated by an approximately linear background in the energy region up to 500 keV.
This background can be attributed to the Compton continua of various internal and
external contaminations, most prominently from 234Th stemming from the 238U decay
chain [170]. We choose a parametrization in two variables to describe this background:

dR

dE e
(E) = p0,d + p1,dE (7.11)

X-ray and γ-lines
Besides the artificially induced calibration lines, multiple other peaks may be visible
in the collected energy spectra, stemming from gamma decays of internal and external
contaminants. Peaks are more present in data collected with larger crystals, as can
be seen by comparing Fig. 6.9 with Fig. 6.10. We model the different γ-lines in
a simplified approach where no intrinsic spread of the line is assumed. The width
of the peak is fully determined by the energy-dependent phonon detector resolution
σp(E)1 at the peak’s position Eγ. For any calibration data d ̸= bck, we assume that
the peak’s amplitude aγ is given by the amplitude of the peak in the background

1The parametrization of the energy-dependent detector resolution σp/l(E) for both the phonon and
light detectors are described in the next subsection.
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data, scaled to exposure ed, plus an additional component accounting for a possible
increase in the amplitude due to the added source aγ,d:

dR

dE γ
(E) = aγ

1√
2πσp(Eγ)

exp

(︃
−(E − Eγ)

2

2σ2
p(Eγ)

)︃
(7.12)

with aγ =

⎧⎨⎩aγ,d, for d = bck

aγ,bck
ed
ebck

+ aγ,d, else
(7.13)

The position of the peak Eγ is fixed within strict bounds according to the literature
value.

In a refined approach, we consider separately the case where the γ-emitter
was located outside of the detector module, for example, a calibration source or
contamination in the copper of the cryostat or the shielding material [170]. Some
gammas may degrade in energy before they hit the detector crystal by losing energy
in passing through materials surrounding the detector. This degradation causes the
γ-line to exhibit an additional shoulder-like structure extending towards lower energies.
We can model this shoulder of width ws and height as by constructing a function
f(Ē) as visualized in Fig. 7.3 and convolving it with a normal distribution to account
for the finite detector resolution. The detector resolution is considered constant in the
integration to solve the resulting integral analytically, and the energy dependence is
re-introduced in the final density function. In the following description Θ(x) describes
the Heaviside function and δ(x) the Dirac delta:

Ē := E − Eγ + ws ,

f(Ē) =
as
ws

Θ(Ē)Θ(ws − Ē)Ē + aγδ(ws − Ē) (7.14)

dR

dE γ
(Ē) =

as
ws

∫︂ ws

0

dε
ε√
2πσp

exp

(︃
−(Ē − ε)2

2σ2
p

)︃
+ aγ

∫︂ ∞

−∞
dε δ(ws − Ē)

1√
2πσp

exp

(︃
−(ws − Ē − ε)2

2σ2
p

)︃
=

as
ws

(︄
Ē

2

[︃
erf

(︃
ws − Ē√

2σp

)︃
− erf

(︃
− Ē√

2σp

)︃]︃
− σp√

2π

[︃
exp

(︃
−(ws − Ē)2

2σ2
p

)︃
− exp

(︃
−(Ē)2

2σ2
p

)︃]︃)︄

+
aγ√
2πσ

exp

(︃
−(ws − Ē)2

2σ2
p

)︃
(7.15)
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Figure 7.3: Sketches of the semi-empirical construction of the energy spectra of various
background components. The pink line shows the spectra without considering the detector’s
finite resolution. In contrast, the blue dashed line results from the convolution with a normal
distribution describing the detector resolution.

β/γ-spectra
For some isotopes, such as actinium 127 (227Ac) or 234Th, the beta decay leaves the
nucleus in an excited state. The emission of the β particle is then followed by a de-
excitation of the nucleus via the emission of a gamma [170]. Due to the slow response
of the detector, the pile-up caused by these consecutive events can be registered as
a single pulse. The resulting energy spectrum is edge-like, starting at the energy of
the emitted gamma Eγ and extending to the Q-value of the respective beta-decay.
We model this spectrum by a triangular function:

Ē := E −Q ,

wβ/γ := Q− Eγ ,

f(Ē) = − aβ/γ
wβ/γ

H(−Ē)H(Ē + wβ/γ)Ē (7.16)

The function f(Ē), as displayed in Fig. 7.3, is then convolved with a Gaussian to
model the resolution of the phonon detector. As for the γ-peaks with shoulders, we
assume that σp is constant during the integration to allow for an analytic solution:

dR

dE β/γ
(Ē) = − aβ/γ

wβ/γ

∫︂ 0

−wβ/γ

dε
ε√
2πσp

exp

(︃
−(Ē − ε)2

2σ2
p

)︃

= − aβ/γ
wβ/γ

(︄
Ē

2

[︃
erf

(︃ −Ē√
2σp

)︃
− erf

(︃−wβ/γ − Ē√
2σp

)︃]︃
− σp√

2π

[︃
exp

(︃
−(Ē)2

2σ2
p

)︃
− exp

(︃
−(wβ/γ + Ē)2

2σ2
p

)︃]︃)︄
(7.17)
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The Q-value is fixed, and strict bounds on Eγ are set according to the literature
values. The overall amplitude aβ/γ of the spectrum is defined in the same way as for
the γ-lines in eq. (7.13).

Muon- and neutron-induced γ-backgrounds
In above-ground measurements and measurements with reduced shielding (e.g.,
CRESST test cryostat versus the full CRESST setup), we observe a bump-like
structure in the γ-band peaking around 100 to 150 keV with a long tail towards
higher energies. These events can be attributed to Bremsstrahlung caused indirectly
by cosmic muons. The high-energetic muons can induce electromagnetic processes
in the materials surrounding the detector, most prominently δ-electrons (knock-on
electrons). These high-energetic electrons then radiate Bremsstrahlung [171, 172].
The Bremsstrahlung gives this γ-background its characteristic shape that we model
with a semi-empirical function mimicking a Landau distribution:

dR

dE µ/n
(E) =

⎧⎨⎩aµ/n
(︁
bµ/nE − cµ/n

E

)︁
exp

(︂
− E

dµ/n

)︂
, for bµ/nE − cµ/n

E
≥ 0

0, else
(7.18)

In the presence of a neutron or an α-source, the amplitude of the bump can be
significantly increased due to secondary γ-particles. We observe a double-bump
structure in the two measurements with an α-source discussed in this work, with the
two features exhibiting maxima at different energies.

Degraded alphas
For alphas, whether deliberately introduced through a source or from bulk contam-
ination, one expects single mono-energetic lines at very high energies outside the
ROI. If the α-particles are degraded by passing through materials surrounding the
detector or the crystals themselves as described in chapter 5, a flat spectrum from
zero to the maximal accessible energy of the initial α is expected. To account for
possible fluctuations, shielding effects, or loss in detector sensitivity at high energies,
we introduce an additional slope in the spectrum’s parametrization:

dR

dE α
(E) = cα,d +mα,dE , mα,d ≤ 0 (7.19)

Elastic neutron scattering
The elastic recoils off the target nucleus N caused by a neutron source are modeled
by a decaying exponential distribution. The strength of the decay is governed by the
atomic mass number AN of the nucleus (this can be reasoned with kinematics):

dR

dEN
(E) = aN,d exp

(︃
−AN

E

dN,d

)︃
, aN,d, dN,d ≥ 0 (7.20)



104 7.2. Constructing the likelihood function

In limitless, the user can choose between using a data set-dependent parameter dN,d or
using a shared decay parameter dN for all fitted data sets. Choosing the first option is
advisable if an additional neutron source was present during part of the data taking,
such that one would expect differently shaped elastic neutron scattering distributions
in the different data sets. On the other hand, if no sources that could alter the neutron
flux were present, we expect the elastic recoil spectrum corresponding to one nucleus
to have the same decay parameter throughout all data sets.

Inelastic neutron scattering
Neutrons can also scatter inelastically off nuclei, leaving the nucleus in an excited state.
As the de-excitation happens almost immediately after the recoil, both the energy
deposition of the nuclear recoil and the de-excitation are registered simultaneously
in the detector. Due to the nuclei’s various discrete energy levels, several inelastic
scattering components are possible for one nucleus in the target material. The nucleus’s
de-excitation can either occur via the emission of a gamma or, at higher energies,
the production of an Auger electron is possible. In limitless, the user can choose the
type of de-excitation for each implemented inelastic component. For simplicity, in the
description here, we assume that the emitted particle is always an electron.

The resulting energy spectrum is similar to the β/γ-events, starting at the energy Ee

released by the de-excitation. However, since the neutron sources used for calibration
are not monoenergetic, the endpoint of the energy spectrum is difficult to determine
(unlike the Q-value for β/γ-events). A different parametrization of the triangular
function was thus used, employing slope piN,1 and intercept piN,0, both parameters
that are not fixed in the fit. Using the following definitions

Ē := E − Ee +
piN,0

piN,1

,

wiN := −piN,0

piN,1

, aiN := piN,0 (7.21)

the formalism from eq. (7.17) can be applied. The difference in parameterization for
β/γ-events and inelastic neutron events is visualized in Fig. 7.3.

Low energy excess
As mentioned in the introduction to the experiment, the main limiting background
in CRESST-III is the low energy excess (LEE) visible at energies below 200 eV. As
a DM origin of this signal can be ruled out, one may include it in the background
model of the MLE. While it is irrelevant for any of the measurements described
in detail in this work (the thresholds are too high), we still describe it here for
completeness. Multiple parametrizations of the LEE distribution are in circulation
[93, 94] – in limitless, the user can thus choose from a variety of models or pass an



7. Maximum likelihood estimation 105

individually formulated parametrization. The most common models used in CRESST
are a simple exponential function

dR

dE lee
(E) = alee exp

(︃
− E

dlee

)︃
, (7.22)

and the combination of an exponential function with a power law [85, 94]

dR

dE lee
(E) = alee exp

(︃
− E

dlee

)︃
+ bleeE

−clee . (7.23)

7.2.2 Description of light output

To model the light distribution of each of the components listed in the previous section,
a description of the energy-dependent mean light output LC(E) and the width σC
of the normal distribution are needed. For C ∈ {e, γ, α,N} the parametrization of
the light output was already discussed in chapter 4 in equations (4.5)-(4.10). For
the low energy excess, one assumes a constant light output

Llee(E) = lleeE , (7.24)

where for most CRESST measurements llee is close to zero (i.e., the LEE consists
most probably of events with no light output). For a β/γ-event, the total energy of
the event is given by E = Eγ + Eβ, where Eγ is the energy of the escaped gamma.
The total mean light output can thus be modeled by

Lβ/γ(E) = Lγ(Eγ) + Le(E − Eγ) , (7.25)

with the light output of gammas Lγ from eq. (4.6) and Le from eq. (4.5). The
construction of the light output for inelastic scattering of neutrons off nuclei is
similar to the one for β/γ-events

LN,ie(E) = Le(Ee) + LN(E − Ee) , (7.26)

where Ee is the energy emitted in the nuclear de-excitation process. For simplicity,
we assume the light output of an electron for the emitted particle (a photon is
also possible) here.

In the last step, the width of the normal distribution needs to be modeled. As
the light distribution forms band-like structures in the light (or light-yield) versus
energy plane, this is also referred to as "the width of the bands". The resolution
of the light detector σl(L) governs the spread of the light output. Still, due to the
energy dependence of the light output, the resolution of the phonon energy detector
has to be considered. For background component C we find

σC(E) =

√︄
σ2
l (LC(E)) +

(︃
dLC
dE

(E)

)︃
σ2
p (E) (7.27)
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Figure 7.4: Left: Sketch of light versus energy plot of various background components.
The components are depicted by the energy-dependent mean light output (dashed lines)
and the limiting 0.1 and 0.9 percentile lines. For the figure’s legend, refer to the right plot.
Right: Sketch of light yield versus energy plot of various background components. As in
the left figure, the mean of the band and its limiting 0.1 and 0.9 percentile lines are shown
for each component.

with σp and σl the energy-dependent resolutions of the light and phonon detec-
tors, respectively:

σl(L) =
√︂

σ2
l,0 + σl,1L+ σl,2L2 (7.28)

σp(E) =
√︂

σ2
p,0 + σ2

p,1(E
2 − E2

thr) (7.29)

The parameters σ2
l,0 and σ2

p,0 are the baseline resolution of the light and phonon
detector, respectively, and are determined together with the energy threshold Ethr in
the raw data analysis. In theory, the scintillation light measured in the light detector
is a quantized measure proportional to the number of produced photons. As any
counting variable is distributed according to a Poisson distribution, this implies that
the description of the light output based on a normal distribution in eq. (7.8) is only
an approximation. The normal approximation should be sufficient since the light
detectors used in CRESST and COSINUS cannot resolve single photons. Nevertheless,
the term σl,1L in the description of the light detector resolution accounts for possible
Poisson fluctuations scaling with

√
# photons ∝ √

L. The parameters σl,2 and σp,1

account for any energy-dependent changes in the resolution.
In Fig. 7.4, we show examples of light (light yield) versus energy plots for NaI

(not based on any real, fitted data). The mean line of the light (light yield) output
and the 0.1 and 0.9 percentiles are shown for various background components. The
impact of the term dLC

dE
(E) in eq. (7.27) is visible, as bands with a steeper mean light

output (higher light yield value) are significantly broader.
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7.2.3 Excess light events

There is one additional background component that has to be considered in the
construction of the likelihood function. So-called excess light events have an increased
light yield compared to electron or gamma backgrounds and are distributed approx-
imately exponentially over the whole measured energy range. In the light-yield vs.
energy histogram of run 347 (Fig. 6.9), a population of such events is visible above the
241Am calibration line. Another example of a detector with a significant contribution
of excess light events to the overall background was TUM40 in CRESST-II [173]. The
origin of these background events is not yet fully understood. In [173, 174], it was
suggested that they are caused by external β-backgrounds, where the electrons pass
through the scintillating foil (or any other scintillating material) before hitting the
crystal, causing an additional light contribution. This idea is supported by the fact
that no excess light events were present in CRESST-II prototypes with a beaker-
shaped light detector. Similarly, no significant excess light events were observed in
the two measurements described in this work employing the beaker Obelix.

The excess light events do not follow a band-like distribution along the lines
of eq. (7.8). In limitless the parametrization proposed by Schmaler in [174] is
implemented, giving the non-normalized density as

ρel(E,L) = ael
1

2wel

exp

(︃
− E

del

)︃
· exp

(︄
− L̄(E,L)

wel

+
1

2

(︃
σγ(E)

wel

)︃2
)︄

·
[︃
1 + erf

(︃
1√
2π

(︃
L̄(E,L)

σγ(E)
− σγ(E)

wel

)︃)︃]︃
. (7.30)

The expression L̄(E,L) := L− Lγ(E) gives a shifted light output, wel the width of
the light distribution, and del is a measure of the decay in the energy plane. If both
background and calibration data are given, the scaling parameter ael is defined as in
eq. (7.13). The integral over light of eq. (7.30) can be solved analytically with partial
integration and gives the energy spectrum of the excess light events:

dR

dE el
(E) =

ael
2

exp

(︃
− E

del

)︃
·
[︄(︄

erf

(︃
L− Lγ(E)√

2σγ(E)

)︃
− exp

(︄
− L̄(E,L)

wel

+
1

2

(︃
σγ(E)

wel

)︃2
)︄)︄

·
(︄
1 + erf

(︃
1√
2π

(︃
L̄(E,L)

σγ(E)
− σγ(E)

wel

)︃)︃)︄]︄Lmax

Lmin

(7.31)

In Fig. 7.4, an example of an excess light distribution is depicted in the light (and
light yield) versus energy plane as a purple density plot.
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7.2.4 Time-dependent likelihood function

For each stored sample (or triggered event), the DAQ records the timestamp in Unix
time, enabling us to include time as a third dimension in constructing the likelihood
function. There are many applications for a time-dependent fit, for example, to
determine the decay times associated with a γ-peak or to study the decay of the
LEE over time [94]. A time-dependent analysis may also help disentangle a potential
DM signal from a background component of similar spectral shape if the signal and
background behave differently over time (e.g., the LEE in CRESST).

Including the timing information is optional in limitless, as the additional data
and parameters significantly increase the fit’s complexity, while the time dependence
is not always of interest to the user. To keep adaptions in the likelihood function
eq. (7.6) to a minimum, we consider the time distribution NC(t) independent of energy
and light. Moreover, we assume that the time dependence does not affect the total
number of expected events over the total duration of the measurement. In this way,
we do not have to introduce the time dependence in the calculation of ν(θ). To stay
mathematically consistent, the time distribution needs to be normalized before it
can be multiplied with the overall density function:

ρC(E,L, t;θ) = eff(E, t)
dR

dE C
(E;θ)NC(t;θ)

· 1√︁
2πσC(E;θ)

exp

(︃
−(L− LC(E;θ))2

2σ2
C(E;θ)

)︃
(7.32)

The normalization of the time distribution is not a trivial task, as data-taking is
frequently stopped throughout a measurement for cryostat maintenance, such as cryo-
genic fluid refills. Data are thus recorded in intervals (called files) of lengths spanning
from several hours up to three days.2 The timing distribution thus has to satisfy

1 =
∑︂
f

∫︂
tstop,f

tstart,f

dtNC(t), (7.33)

where one sums over all recorded files f and tstart,f and tstop,f denote the times when
the data-taking was started and stopped for file f .

In the current version of limitless, time-dependent densities are implemented
for gamma lines, β/γ-spectra, and the LEE. For all other background components,
changes over time are expected to be negligible.

2The maximum file length of three days is a measure stemming from CRESST, where the wet cryostat
needs to be refilled with liquid helium and nitrogen approximately every 60 hours. For the future
COSINUS experiment, employing a dry cryostat, such maintenance will not be necessary, and longer
periods of continuous data-taking will be possible.
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Decay of γ and β/γ events
The time dependence of backgrounds caused by the decay of a radioactive isotope
can be modeled by an exponential decay

N(t)γ or β/γ = ct exp

(︃
− t

τ

)︃
, (7.34)

with time constant τ and t in years. The normalization constant ct can be cal-
culated analytically

ct =

[︄
τ
∑︂
f

exp

(︃
−tstart,f

τ

)︃
−

(︃
−tstop,f

τ

)︃]︄−1

. (7.35)

We note the relation t1/2 = ln (2) τ between the half-life t1/2 and the mean lifetime τ .

Decay of the low energy excess
The CRESST LEE was shown to decay over time with time constants of around
150 days (the decay times vary between different detector modules) [94]. Similar
to the parametrization of the energy spectrum, in limitless, the user can define the
function describing the LEE decay as needed. The most commonly used description
in CRESST is a combination of a constant and an exponential decay

N(t)γ or β/γ = ct

(︃
Alee exp

(︃
− t

τlee

)︃
+ Clee

)︃
, (7.36)

where the normalization constant ct can be calculated analytically. For future versions
of limitless, it is planned to implement more complex LEE time distributions, which can
model the effects caused by the warm-up tests described in chapter 2. As a reminder, in
CRESST-III run 36, several tests were performed to study the temperature dependence
of the LEE. It could be shown that warming up the cryostat to temperatures above
∼ 10K led to a renewed increase in the number of LEE events in the data. The
recharged LEE component then usually decays on a much smaller time scale of two
weeks. The improved timing description of the LEE should thus be able to fit both
the slow and fast decay time simultaneously.

In Fig. 7.5, an example of a time-dependent MLE is shown for data recorded with
detector TUM93-A in CRESST Run 36. The upper panels show the energy and time
distribution for the LEE below 0.5 keV, and the lower panels for the two lines from
the 55Fe calibration source at 5.9 keV and 6.5 keV. The results shown in both panels
stem from one single time-dependent fit to the whole data set with energies between
the threshold of 0.053 keV and 8 keV. For the LEE, the energy spectrum was modeled
according to eq. (7.23), together with a gamma-peak at 0.1442±0.0035 keV of unknown
origin. The fit resulted in a decay constant τlee = 281± 40days for the LEE, while
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Figure 7.5: Results of the time-dependent analysis of detector TUM93A in CRESST run
36. Top: Energy (left) and time (right) distribution of the LEE below 0.5 keV. In the right
panel, the solid lines (LEE and total spectrum) include the time-averaged efficiency, while
the dashed line includes the time-dependent (td) efficiency. Bottom: Energy (left) and time
(right) distribution of the 55Fe-calibration lines. In the right panel, the solid lines include the
time-averaged efficiency, while the dashed line includes the time-dependent (td) efficiency.

the constant/flat part of the time decay in eq. (7.36) was not present in the data (i.e.,

Clee = 0 in the fit). The decay model in eq. (7.36) was established within CRESST to

fit the binned LEE by itself in an energy region below ∼ 200 eV, which does not factor

in the light dependence or any other backgrounds. The constant time component

reported in other works by CRESST is thus probably not an inherent feature of the LEE

but can instead be attributed to other constant backgrounds present at low energies

(electron/beta-background or excess light). For the calibration lines, a mean lifetime

of τFe55 = 5.4± 2.0 years was found, which is compatible with the literature value of

3.9 years for 55Fe. More information on this detector module can be found in [175].
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7.2.5 Trigger and cut efficiency

So far, we have constructed the density distribution of various background components
in a semi-empirical approach modeling the physics of the respective background
sources. To some degree, we have also included detector physics by convolving certain
contributions with the detector resolution, for example, in eq. (7.12). However, we
have neglected that a fraction of the recoil events created by a background source
may be removed in the triggering or the raw data analysis. As this effect is generally
energy-dependent, simply rescaling the background components is insufficient. We
thus include the trigger and cut efficiency in the density function eq. (7.8). If the
efficiency is not available for a particular measurement (such as run 600 and run 347),
the analysis threshold should be set to an energy where the efficiency is assumed
to have reached its plateau value.

Both an already binned efficiency (as displayed in Fig. 6.7) or the raw output of
the efficiency simulation can be passed to limitless. The simulation file, as created by
the raw data analysis software CAT and cait [176], contains for each simulated event
a timestamp, the value of the injected/simulated energy (i.e., the energy equivalent of
the height of the simulated pulse before superimposing it with the empty noise trace),
the reconstructed energy (i.e., the energy value returned after the entire analysis chain
was applied), whether the pulse survived the triggering, and whether it survived all
subsequent cuts. If the entire simulation file is passed, limitless constructs the binned
trigger and cut efficiency internally from the injected energies. The discrete binned
efficiency is then interpolated so that it can be evaluated at every energy in the data set.

In some cases, fitting a parametric description to the cut and trigger efficiency
can be advantageous. For example, if the number of simulated energies is small and
the binned efficiency is thus subject to strong statistical fluctuations. The following
parametrization is used in limitless

eff(E) = a1

⎛⎝1 + erf

⎛⎝E − Ethr√︂
2σ2

p,0

⎞⎠⎞⎠+ p0 + p1E + p2e
2

+ a2 (1 + f exp (−λE)) + a3 exp

(︃
(E − µ3)

σ3

)︃
. (7.37)

The first term describes the characteristic shape of the trigger efficiency (as in
eq. (6.8)), while the second-order polynomial and the exponential term are purely
phenomenological. The last component of the parametrization accounts for dip-
or step-like features, which can result from an effort to remove certain energy-
dependent artifacts from the data. An example of such a feature can be found
for CRESST Detector A in [67].

When performing a time-dependent analysis, it is essential to consider the cut
and trigger efficiency as a function over time. Changes in the detector performance
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can lead to reduced or increased rates, temporary changes in the trigger threshold,
or the baseline RMS. These effects can be reconstructed in the efficiency simulation
by utilizing the timestamps of the simulated events. The dashed lines in Fig. 7.5
illustrate the importance of including the time dependence in the efficiency. For
the displayed detector, the efficiency was significantly decreased at the start and
even more so at the end of the data taking. If this is not considered in the fit,
one could under- or overestimate the decay times of the various components. More
information on the time-dependent efficiency and the processing of efficiency files
within limitless can be found in Appendix B.

7.2.6 Background/calibration spectra from simulations

The CRESST and COSINUS collaborations perform Monte Carlo simulations to model
conducted measurements and identify the origins of various backgrounds seen in the
data. Instead of including this information component-wise in the likelihood function,
one can use the full background energy spectrum produced by such simulations as a
scaleable component in the fit within limitless. This procedure significantly reduces
the number of fitting parameters while providing better physical motivation.

In single-channel measurements, the implementation is straightforward: the
simulation provides a binned energy spectrum, which is then interpolated to obtain
a continuous function. The simulation accounts for the detector’s energy-dependent
resolution, so only the cut and trigger efficiency must be multiplied. For two-channel
measurements, the simulation result must be divided into components of different
light yields. In a simplified approach, we neglect the effect of gamma-quenching and
assign all X-ray, gamma, β/γ, and electron events to one shared band (the e/γ-band).
Nuclear recoil events are allocated to their respective target nucleus.

If available, including the full simulated spectrum in the likelihood function is
especially advantageous for measurements with many different background components
and peaks. Another use case of this feature is fitting neutron calibration data.
The phenomenological model in eq. (7.20) is only a coarse approximation of the
energy distribution expected from a non-monoenergetic neutron source. However, the
underlying energy distribution may strongly impact where the fit places the different
nuclear recoil bands and their ordering in the light versus energy plane. As these bands
define the signal region for the DM analysis, a good model of the energy distribution
of the elastic neutron recoils of nuclei is desirable. We have applied this approach of
combining simulation results and the likelihood fit to the neutron calibration data of
run 376. The results and implications are described in the subsequent chapter.
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7.3 Total energy deposition

The parametrizations in the previous sections are all defined in terms of light L (i.e.,
the energy deposited in the light detector) and total energy E deposited in the crystal.
In a scintillator operated as a cryogenic calorimeter or bolometer, the determined
phonon energy Ep is a measure of the total deposited energy minus the fraction of
energy emitted as scintillation light. Calibration of the phonon detector with a known
source implicitly accounts for the fraction of energy going into light, and Ep becomes
a direct measure of E. As the light channel is calibrated with the same source, the
light yield LY = L/Ep of events from the source is per definition one. If a γ-source
(prevalent choice) is used for calibration, L denotes a "gamma-equivalent energy".
However, as previously mentioned, the notion "electron-equivalent energy" (keVee)
is commonly used referencing the secondary electrons created in the scintillation
light production of gammas (see also chapter 4).3

The proposition E = Ep breaks down for LY ≠ 1. Events with a light yield smaller
than one deposit less energy in the light detector than expended for the scintillation
light production. The value of Ep is thus a slight overestimation of the true deposited
energy. Similarly, for light yield greater than one, Ep underestimates E. The total
deposited energy of an event can be calculated with

E = ηL+ (1− η)Ep , (7.38)

where η is the scintillation efficiency, a measure of how much energy is extended
towards light production in a certain crystal. In the remainder of this section, we
discuss how η can be extracted from the data to find the true deposited energy of
each measured event.

The over- and underestimation of the true deposited energy by Ep for LY ̸= 1 is
visible in Fig. 6.9. The lines from background and calibration sources, representing
lines of constant E, appear tilted in the light yield versus phonon energy plot. This tilt
can be used to determine η and correctly reconstruct the total deposited energy. From
eq. (7.38), one can derive an expression describing the tilted lines of constant E

as a function of Ep:

LY (Ep) =
E − (1− η)Ep

ηEp

(7.39)

For run 347 we fit eq. (7.39) to the lines of three different peaks in the data: the 241Am
calibration peak at 59.5 keV, the peak at ∼ 239 keV from external 212Pb contamination,
3In CRESST, this terminology also has a historical reason. In previous works of the CRESST
collaboration, the same light quenching was assumed for electrons and gammas, making the two
notions interchangeable. Since quenching factors are defined as a ratio, it is irrelevant whether the
absolute light yield of electrons is equal to one.
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Figure 7.6: The bottom figure shows a fine two-dimensional histogram of LY versus Ep for
run 347. The three most distinct γ-lines are marked with lines fitted to the data according
to eq. (7.39). The three upper panels show each peak’s spectral distribution in Ep.

and the 214Pb peak at ∼ 352 keV. The resulting lines and values for η are displayed
in Fig. 7.6. The extracted values of η vary between the different peaks, suggesting
a decrease in scintillation efficiency towards higher energies. Such a decrease can,
however, not be reasoned physically, and we thus cross-check these results with the
method described in the next paragraph. A potential issue of extracting η from
the tilted lines is that the data points assigned to a peak can not be treated in
isolation from the underlying background. Such a non-flat background, as visible
for each of the three peaks in Fig. 7.6, can thus distort the fit to the tilted lines.
The fit might be further distorted by potential shoulders of the peaks from degradation.

For small crystals, low exposure measurements, or measurements performed in low-
background environments, no γ-lines might be visible in the data besides the calibration
lines. If, in addition, the calibration lines are located close to the threshold where the
spread in light yield is more significant, determining the scintillation efficiency with the
method described above might be infeasible. Within the work of this thesis, another
technique was thus developed to extract η from a single peak. We consider the energy
spectrum as a projection of the light yield versus energy plot onto the x-axis. The more
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Figure 7.7: The result of fitting the 55Fe double peak in run 376 for various values of
scintillation efficiency η. The upper plot shows the fit result for the position of the dominant
line (literature value Eγ = 5.89 keV), and the lower plot the width of the line together with
a sixth-order polynomial fit.

tilted a line, the broader the projected peak appears in the energy spectrum. For the
correct value of η the tilt disappears and peaks in the total deposited energy spectrum
obtain a minimal width. Utilizing this concept, one can determine a single peak’s width
σ as a function of η, the minimum of which gives the correct scintillation efficiency.

This method – named η-from-peak from now on – was first employed to determine
the scintillation efficiency in run 376 [119]. The recorded values for Ep in the low
energy region were transformed to total deposited energy with eq. (7.38) for 100
different values of η. For the resulting spectra of the 55Fe-source double peak (appears
as a single peak due to the resolution, as seen in Fig. 6.6), the Gaussian width σ of
the single lines was estimated. The results for σ as a function of η are displayed in
Fig. 7.7. A sixth-order polynomial is fitted to the resulting function to determine the
scintillation efficiency at the minimum in σ and its uncertainty to 8.9± 1.2%.

We can use the η-from-peak method to cross-check the previously calculated result
for run 347. For the sloped calibration peak in this run η-from-peak is not applicable,
as the peak’s pronounced shoulder is strongly correlated with the peak’s width leading
to biased fitting results. Thus, we only have a look at the 239 keV and 352 keV peaks
in the data. The results are shown in 7.8, and the estimated values for η for the two
peaks agree with each other within uncertainties. However, they are significantly
higher than the values calculated from the respective tilted lines, giving instead a
result consistent with the value for η estimated at the prominent 241Am calibration
peak. In estimating E for the final MLE, we thus set η = 0.03. With this choice of
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Figure 7.8: The results of fitting the 212Pb and 214Pb lines in run 347 for various values of
scintillation efficiency η. The upper panels show the fit result for the position of the line
(literature values Eγ = 238.6 keV and Eγ = 351.9 keV), and the lower panels show the width
together with a fourth-order polynomial fit.

η, we may risk an over-correction of the tilt at higher energies, which can, in turn,
lead to a broadening of the peaks in energy E. However, one can correct for this
potential effect in the fit with an increased value of σp,1 in (7.27).

In run 600, the only γ-lines visible are the iron calibration lines close to the
threshold. However, due to the low activity of the source placed in this run, the peaks
are significantly less populated. The low statistics of the peaks impede fitting the
double peak and, consequently, the estimation of the scintillation efficiency. In Fig.
7.9, we show the resulting values of the double peak’s Gaussian width-parameter σ

as a function of η. We can extract a value of 11± 10 % for the scintillation efficiency
from the fitted polynomial. The uncertainty on this value is considerably higher due
to the strong fluctuations in the fit results. At 11 %, the scintillation efficiency is
significantly higher than the value estimated for the CaWO4 crystal in run 376.

For lines with a mean light yield different from one, the lines’ peak positions
in E change slightly with varying η in addition to the widths of the peaks. In the
upper panels of Figs. 7.7-7.9 we show the fitted peak position Eγ as a function of
η. This relation implies that one should be able to find the correct value for η by
including the total energy correction in the likelihood function when fitting data with
multiple γ-lines of known position. This approach was used in the fitting procedures
described in [169] or the fit performed in the exemplary time-dependent analysis of
the TUM93A data for Fig. 7.5. However, this approach can only work if the energy
calibration is very precise over the whole ROI or for strongly restricted energy ranges.
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Figure 7.9: The result of fitting the 55Fe double peak in run 600 for various values of
scintillation efficiency η. The upper plot shows the fit result for the position of the dominant
line (literature position 5.89 keV), and the lower plot shows the width together with a
fourth-order polynomial fit.

In addition, including the evaluation of E in the likelihood function usually renders
it non-continuous and thus non-differentiable, which can significantly complicate
minimizing the negative log-likelihood. Varying η also alters the set of events in the
ROI, the bounds of which are defined in total deposited energy E. Since η ∈ θ, this
implies that one can not simply drop the term log(N !) in eq. (7.6), as the number
of measured data points N becomes a function of η and thus a function of a subset
of the fit parameters θ. For most fits performed within this work, we thus evaluate
the scintillation efficiency beforehand and fix the parameter η in the fit.
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8
Maximum likelihood estimation - Results

With the mathematical and physical framework established in the preceding chapter,
this section delves into the practical application of the MLE within the context of the
analysis of run 347, run 600, and run 376. First, the various background components
are identified for each of these measurements, and the resulting composition of the
likelihood function is described before showing the minimization results. For the two
measurements with α-sources, the light quenching factors of the heavy ions present are
extracted, compared, and interpreted in the context of the CRESST DM search. The
analysis of run 376 focuses on deriving the energy-dependent quenching factors for
sodium and iodine and studying the scintillator non-proportionality and γ-quenching.

8.1 Light quenching of α-particles in CaWO4

The two measurements performed to extract information on the light quenching of
α-particles in CaWO4 were very different in both the detector and measurement
setup. We thus perform the MLE analysis separately for each measurement, with
two individual likelihood functions specifically constructed to account for the different
backgrounds observed in each case. In this section, we first describe the MLE setup
and results of the measurements individually before comparing and interpreting the
fit results. This section focuses on the one component the measurements have
in common: the α-events.

Exemplary figures are shown throughout the main text for explanation and
visualization purposes. The complete fit results, including all MLE parameters
and errors, can be found in Appendix A.
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8.1.1 Run 347

In this measurement, a comparatively heavy CRESST-II crystal of ∼ 300 g was used,
leading to a large exposure of 2.29 + 0.46 kgd (α-source only + γ-calibration)
compared to the other measurements described in this work. From Fig. 6.9, one can
already conclude the presence of various backgrounds in the data set. This statement
is confirmed by the energy spectrum in Fig. 8.1. In the following, we try to identify
the visible components before presenting the fit result.

We begin with the linear falling component visible in the electron band (pink line in
Fig. 8.1). From simulations of other CaWO4 measurements, one can infer that in the
chosen energy range ROI = [2, 400] keV, this background is dominated by the β-decay
of 234Th to metastable protactinium 234 (234mPa) resulting in a linear falling beta
spectrum between 0 and 200.8 keV [170]. The contaminant 234Th is part of the 238U
decay chain and is present in the CaWO4 crystals, external copper parts, and cryostat
components. Moreover, one of the α-sources placed in this run was a 238U source.

Alongside pure β-decays, simulations suggest β-decays with subsequent gamma
emission. If the contaminant is inside or close to the crystal, the subsequently emitted
gamma can often not be resolved by the detector as an individual event in time. As
previously described, these simukltaneous β/γ events appear as wedge-like features
in the energy spectrum. Due to the energy-splitting between electrons and gammas,
the mean-line of the feature in the light yield versus energy plot lies between the two
respective bands.1 If the same contaminant is present in external parts of the setup, the
γ-emission can generally be resolved in time, and the β/γ feature is accompanied by a γ

peak at the wedge’s onset. This is for example the case for the 210Pb peak at ∼ 46.5 keV.
There is a multitude of γ-lines present in the ROI. To identify the respective

backgrounds, we first quantitatively determine prominent peaks’ positions by applying
SciPy’s peak finding algorithm (scipy.signal.find_peaks()) to the binned and
filtered (scipy.signal.savgol_filter()) energy spectrum. The positions of the
pinpointed peaks are then compared with simulations and nuclear physics databases
[177, 178] to assign each peak a physical origin. For many visible peaks, we could
refer to simulations performed for CRESST-II phase 2 crystals for identification [168].
However, as no such simulation was specifically performed for the crystal Sabine in
the CRESST test setup, some peaks were not a priori clear. For example, we see
a prominent line around 13.5 keV which is not present in the simulations in [168].
With the simulation work described in [170], we can assign this line to Radon 228
(228Ra), which is a product of the 232Th chain, an isotope often found in copper and
CaWO4 crystals themselves. All identified peaks are listed in Tab. 8.1 and Tab. 8.2.
1If the detector is heavily affected by scintillator non-proportionality, the onset of the β/γ feature
might be quenched even below the γ-band. These "low-hanging" bands are for example visible in
detector TUM40 described in [169]. If the existence of β/γ features is not a priori known through
simulations, these features can help identify them in the energy spectrum.
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Figure 8.1: Energy spectrum (total energy, corrected with η) of the background data of
run 347. The plot also shows the parametric descriptions of the energy spectra as yielded by
the MLE.

The various pure peaks listed are then assigned to the γ-band. We note here that
some lines stem from the combination of electron emission (Auger effect) and photon
emission after an electron capture (EC). These lines should thus be placed to some
extent in the electron band but, for simplicity, are assigned to the γ-band as a whole.
An example of such a process is the EC on tantalum 179 (179Ta) to hafnium 179
(179Hf), where an electron or a gamma is subsequently emitted at 65.35 keV, which is
the K-shell binding energy of Hf.

Eγ lit.
(keV) Eγ fit (keV) comments

227Ac 9.3 10.64± 0.07 Q− = 44.8 keV, first identified in [179]
227Ac 24.3 24.95± 0.21 Q− = 44.8 keV, first identified in [179]
210Pb 46.5 44.00± 0.03 Q− = 63.5 keV, first identified in [179]

Table 8.1: Sources of the β/γ-features in run 347.
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Eγ lit.
(keV) Eγ fit (keV) comments

179Ta 2.71 2.93± 0.04 EC to 179Hf (M1-shell) [180]
41Ca 3.61 3.49± 0.06 EC to 41K (K-shell) [179]
181W ∗ 6.23 6.15± 0.03 γ [181]

Cu 8.05 8.29± 0.02 fluorescence, Kα [179, 181]
179Ta 11.27 11.22± 0.04 EC to 179Hf (L1-shell) [180]
228Ra ∗ 13.52 13.51± 0.01 γ [170, 181]
212Pb ∗ 15 - 19 - multiple peaks from external contami-

nation (compare with Fig. 3 in [168])
181W ∗ 15 - 18 - multiple peaks from external contami-

nation (compare with Fig. 3 in [168])
231Th 25.64 25.8± 0.1 γ, from 235U in copper [170, 181]
234Th 33.1 33.52± 0.07 X-ray, from 238U [170], enhanced in γ-

cal from secondary 241Am line
234Th 34.4 34.35± 0.08 X-ray, from 238U [170]
210Pb 46.5 46.68± 0.04 γ, external contamination [179]
241Am 59.5 59.212±0.016 γ-calibration source
241Am - 60.09± 0.10 artificially introduced to widen the cali-

bration peak
234Th 63.3 63.03± 0.03 γ [170, 181]
179Ta ∗ 65.4 63.93± 0.05 EC to 179Hf (K-shell) [179]
181W 74.0 73.38± 0.08 EC to 181Ta (K-shell) + emitted 6.2 keV

γ [179, 180]
212Pb 74.8 75.43± 0.04 X-ray Kα, external contamination [168]
212Pb 77.1 77.34± 0.05 X-ray Kα, external contamination [168]
226Ra 83.8 84.85± 0.08 X-ray Kα, external contamination [168]

(the second Kα expected at 81.1 keV is
not visible)

212Pb 87.3 87.49± 0.08 X-ray Kβ, external contamination [168]
228Ac 90.0 90.26± 0.10 X-ray Kα, external contamination pri-

marily from copper or lead shield [168]
234Th 92.4 92.75± 0.04 γ [180]
228Ac 93.4 93.79± 0.05 X-ray Kα [168, 170]

Continued on the next page
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Eγ lit.
(keV) Eγ fit (keV) comments

228Ac 99.5 99.59± 0.23 γ , external contamination [168]
228Ac 129.1 129.01± 0.16 γ, external contamination [168]
235U ∗ 143.8 143.98± 0.19 γ [181]
226Ra 186.2 185.64± 0.04 γ [180]
228Ac 209.3 209.18± 0.10 γ, external contamination [168]
212Pb 238.6 238.99± 0.10 γ, external contamination [180]
228Ac 270.2 270.62± 0.10 γ, external contamination [168]
208Tl 277.4 287.18± 0.16 γ, contamination in copper holding

structure [168]
214Pb 295.2 295.74± 0.06 γ, contamination in copper holding

structure [168]
212Pb 300.1 300.72± 0.18 γ, external contamination [168]
228Ac 328.1 329.02± 0.14 γ, external contamination [168]
228Ac 338.4 339.50± 0.05 γ, external contamination [168]
214Pb 351.9 353.28± 0.04 γ, contamination in copper holding

structure[168]

Table 8.2: Sources of the γ-features in run 347. Uncertainty remains regarding the assigned
source for entries marked with an asterisk (∗).

The most prominent background contribution is given by the muon- and neutron-
induced γ-background – the characteristic bump-like feature is visible underneath
the various peaks (lilac line labeled "µ/n induced" in Fig. 8.1). There is a double-
bump structure visible, with one spectrum having the onset at about 50 keV and the
second one at 100 keV. We can model this phenomenological feature by including the
description according to eq. (7.18) twice in the likelihood function.

At lower light yield, the well-populated α-band is visible (orange band in Fig. 8.2),
whose parametrization is added to the likelihood function. In addition, there is a
population at even lower light yields. Most of these events are located at low energies
and can be assigned to Nd nuclei emitted in the α-decay of the 147Sm source. However,
there are about ten events above ∼ 80 keV which cannot be explained by Nd nuclei.
These events most likely stem from neutron backgrounds present in the test cryostat.
In previous works, the neutron rate in the CRESST test cryostat has been estimated
to 2-3 neutrons/kg/day [135], which is consistent with the number of neutron events
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Figure 8.2: Two-dimensional histogram of light yield vs. the total deposited energy for
the run 347 background data, including the mean lines and 10 % and 90 % boundaries of
various recoil bands resulting from the MLE. The excess light distribution is shown as a
purple density plot but is mostly hidden behind the dense data.

present in this data. As the majority of the events below the α-band are Nd-events, we
use a single elastic nuclear recoil band to model them in the likelihood function. We call
this band the "Nd band" and leave the quenching factor as a free parameter in the fit.

One major component is still missing in the background model: the excess light.
If excess light events are present in the data, it is crucial to include them in the
fit for the correct placement of the electron band and to avoid overestimating the
energy-dependent detector resolution values. From Fig. 6.9, one can assess that
the population of excess light events is especially dense at energies below 100 keV,
implying a low value for the decay parameter del in eq. (7.30).

From the components listed above, we construct a likelihood function for the MLE
estimation with almost 200 parameters. This setup makes for a computationally
expensive fit with approximately 300 000 events in the ROI of the α-source-only data
set and 67 000 in the γ-calibration. Nevertheless, the minimization with iminuit
converges to a reasonable result, as seen in Fig. 8.2. Especially the energy-dependent
position of the well-populated α-band could be reconstructed satisfactorily. For the
single-fitted nuclear recoil (heavy ion) band, we find a constant quenching factor of
0.064, which is the order of light quenching for Ca. From the data distribution in
light energy, as seen in Fig. 8.3, one may conclude that this simplification does not
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Figure 8.3: Light energy spectrum (quenched energy in keVee) of the background data of
run 347. The plot also shows the parametric descriptions of the spectra as yielded by the
MLE.

fully represent the data. However, it appears sufficient and gives a more physical
result than previous fits, where the heavy ion events were ignored [135].

The precise position and prominence of the various spectrum peaks do not
significantly impact the fit result for the α-band; however, we give some details
for completeness. We assign a parameter for each peak to scale the amplitude in
the α-source-only ("background") data. The amplitude in the γ-calibration data
is then scaled to the exposure according to eq. (7.13) with an additional scaling
amplitude aγ-cal. For the majority of the peaks, the presence of the 241Am source has
no impact, and aγ-cal converges to zero in the fit. In some cases, we observe aγ-cal ̸= 0

pointing towards an additional activation of the peaks’ source by the 241Am calibration
source. Regarding positioning of the peaks, the fit and the literature values agree
well. Discrepancies at low energies are most likely caused by the misidentification of
peaks and/or background components not considered in the likelihood function. At
higher energies, differences can be induced by inaccuracies in the energy calibration
due to the non-linearity of the detector. For two peaks, shoulder-like structures
are visible and thus added to the likelihood function according to eq. (7.15). The
first one is the dominant 212Pb peak from the lead shield at ∼ 238 keV, the other is
the 241Am calibration line. Both peaks stem from sources outside the detector, and
including a shoulder to the peak is thus well reasoned.

Another noteworthy characteristic of this data set and its MLE is the strong
scintillator non-proportionality and resulting γ-quenching. These two properties are
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visible in the two-dimensional histogram in Fig. 8.2, where both the γ-lines and
the bulk distribution from the muon bump(s) are located in the lower part of the
accumulation of events with LY ∼ 1. The fit performs well in disentangling the
electron and γ-events while considering the large amount of excess light. The correct
reconstruction of the position of the electron band is essential in calculating the
α-quenching factor and comparing it to other experimental results.

One main disadvantage of MLE is the lack of a measure for the goodness of fit,
and one thus relies mainly on visual comparisons of fit and data. A less biased method
to estimate the performance of the fit is to compare the number of expected events
ν(θ) as predicted by the fit with the true number of recorded events N . In Tab.
8.3, the expected number of events for each background component and their sum
are listed together with the number of events recorded in the ROI. These numbers
also enable us to check if the results of the MLE are physical in certain aspects. For
example, we would expect the number of alpha- and Nd-events to have a fixed ratio
in both data sets, as they stem from the same process. Comparing the values in
Tab. 8.3, we can conclude this is true. We also find that the flat electron background
and the excess light events scale with exposure, although this is not an internal
requirement of the likelihood function.

background data γ-calibration

Excess light 10675 2817

e− 45008 11120

γ 68810 18160

µ/n induced 152109 32843

β/γ 7283 1454

α 2257 461

Nd elastic 922 190

Total MLE 287064 67045

Total data 287173 66994

Exposure 2.29 kg day 0.46 kg day

Table 8.3: Number of events assigned to each background component by the MLE for run
347.
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8.1.2 Run 600

With its light, wafer-like CaWO4 crystal, the data taken in this run show significantly
fewer background features than run 347. As in the previous section, we begin by
identifying background components from possible radioactive decays. We introduce a
linear falling spectrum to account for any general underlying electron/β−-background.
However, no apparent β/γ features are distinguishable, and thus, none were included
in the likelihood function to avoid over-fitting. Besides the peaks from the 55Fe
calibration source, only three lines have sufficient prominence to be detected by the
peak-finding algorithm. The peak at 8 keV is probably caused by copper fluorescence –
a feature already observed in the run 347 data. The other two lines form a double-peak
structure around 20 keV, whose origin could not be identified (see Fig. 8.4).

The characteristic double-bump feature stemming from muon- and neutron-induced
gammas is distinctive. Together with the flat electron background, this component
accounts for the majority of the measured events. Only very few excess light events are
present in the data, as expected for a measurement with a beaker-shaped light detector.

The most challenging part of finding a suitable likelihood function for this run
is the description of the events with low light yield. Due to the low exposure and
the thicker gold coating on the Sm piece, we have a reduced rate of alphas in this
run, which makes fitting the quenched α-band significantly more difficult. Moreover,
the nuclear recoil bands are also populated in files recorded without the neutron
source (the "background" data). As mentioned, this points towards a significant
neutron background in this above-ground measurement, most likely further enhanced
by cosmic activation of the surrounding lead shield. To account for these events, we
thus initialize elastic nuclear recoil bands for all nuclei in CaWO4 and fit background
and neutron-calibration data together in one MLE with shared parameters. For the
parametrization of the energy-dependent light quenching of Ca, W, and O ions, we
refer to the values given in [134] with only ε in eq. (4.7) as a free fit parameter.

The fit is further complicated by the additional components we introduce to
account for the small number of Nd-events we expect in the data. The quenching
factor of Nd events in CaWO4 is unknown, but we assume it lies between the quenching
factors of W and O, making it difficult to disentangle the Nd-events from the neutron
background. We can, however, take advantage of the fact that alphas and Nd-nuclei
are produced in the same process. One thus anticipates that the number of α-events
in the background data να,bck relative to those in the neutron calibration data να,n-cal

aligns with the proportion of Nd-events νNd,bck in the background data to those in the
calibration data νNd,n-cal. For run 347, we have already seen that this claim is valid
(compare with Tab. 8.3). This statement can be included as an additional condition
in the MLE by adding the following term to the negative log-likelihood function,

− ln (N (rNd; rα, σcond)) ∝ 1

2σ2
cond

(rNd − rα)
2 (8.1)
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Figure 8.4: Energy spectrum (total energy, corrected with η) of the background data of
run 600. The plot also shows the parametric descriptions of the energy spectra as yielded by
the MLE.

where rα = να,bck/να,n-cal, rNd = νNd,bck/νNd,n-cal and σcond can be set as needed to
control the impact of the condition on the likelihood function. This condition is based
on a normal distribution N (x;µ, σ), so the likelihood function and its derivatives stay
continuous.

The MLE of this run required a few adjustments beyond tweaking the likelihood
function to converge reasonably. In the first minimization attempt, the quenching
factor of the Nd-band was left as a free parameter. This resulted in the unphysical
placement of the band between the other elastic nuclear recoil bands and the α-band,
possibly to fit stray events in this region. The quenching factor of Nd nuclei was thus
fixed to the value estimated in run 347. As we are not interested in this quenching
factor per se, this step is justifiable. Another adaption had to be made to account
for the rapidly decreasing performance of the detectors towards higher energies. As
the resolution value at the 55Fe-lines is up to five times higher than the estimated
baseline resolution of phonon and light detector, we do not fix the parameters σp,0

and σl,0 in eq. (7.27) to the baseline resolution but leave them as free parameters in
the first iterations of the fit. This ensures that the resolution at the analysis threshold
of 3 keV is not overestimated (i.e., underestimated in value). We further leave the
exposure of the neutron calibration file as a free parameter for the fit to scale. In
doing so, one can account for a possible decreased cut and trigger efficiency for the
calibration file compared to the background file due to the increased rate. In addition,
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Figure 8.5: Two-dimensional histogram of light yield vs. the total deposited energy for the
run 600 neutron calibration data, including the mean lines and 10 % and 90 % boundaries
of various recoil bands resulting from the MLE. The excess light distribution is shown as a
purple density plot.

the upper limit on the ROI had to be lowered to 300 keV, as both the e−/γ-bands and
the α-band were significantly less densely populated at higher energies. This decrease
was likely caused by a reduced detector or cut- and trigger efficiency at high energies.

With these adjustments, the minimization with iminuit converges satisfactorily.
The visual comparison of fit and data suggests good agreement (see Fig. 8.5). In
addition, the number of expected events and the number of recorded events in the data,
as noted in Tab. 8.4, are consistent. For most components, we observe scaling with
the exposure (excess lights, flat electron background, alpha events). In contrast, for
the muon- and neutron-induced γ-background component, we see a clear amplification
through the presence of the neutron source.

One peculiar feature remains in the result of the MLE, namely that the fit
assigns only a small number of events to the tungsten nuclear recoil band in the
background data set. To determine whether this is a physical result or a mathematical
or computational fluke, one would have to simulate the entire experimental setup
and all potential neutron sources. However, this would go beyond the scope of this
work. Since we are only interested in the position of the nuclear recoil bands (mainly
determined by the neutron calibration data), we will accept this result for now.
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background data n-calibration

Excess light 257 100

e− 24902 9029

γ 1076 439

µ/n induced 21897 12816

α 739 248

Nd elastic 52 18

Ca elastic 258 1714

W elastic 17 1003

O elastic 504 3443

Total MLE 49701 28810

Total data 49708 28816

Exposure 22.8 g day 8.7 g day

Table 8.4: Number of events assigned to each background component by the MLE for run
600.

8.1.3 Comparison and results

The full set of parameters for run 347 and run 600 can be found in Appendix A.
For all fitted parameters (i.e., parameters not fixed in the fit), a symmetric error is
estimated from the Hesse matrix as returned by iminuit ’s MIGRAD minimization.
Only a subset of the parameters is needed to calculate the quenching factor of the
α-band and estimate the possible leakage into the AR. We use the MINOS module of
iminuit to calculate the asymmetric, more accurate 1σ confidence intervals for this
subset (see documentation of iminuit for more information [165]). All parameters used
in the following analysis can be extracted from Tab. A.1 and Tab. A.2 in Appendix
A.

We begin with calculating and comparing the light quenching factors of α-particles
according to eq. (4.1) and eq. (4.10). In Fig. 8.6, we show the quenching factors for
run 347 (magenta) and run 600 (orange) together with the constant quenching factor
(blue dotted) assumed in the analysis of CRESST-II run 32 [84] and the results for
crystal K09 (dark pink dashed) evaluated by Schäffner in [135]. We also show the
3σ confidence band calculated with Monte-Carlo methods for the values evaluated
in this work. The results of this work are consistent with each other and agree well
with the result for K09 from [135]. Moreover, the quenching factors converge towards
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Figure 8.6: Quenching factor of α-particles in CaWO4 as a function of energy. The solid
orange and magenta lines show results from this work with 3σ confidence bands. The dark
pink dashed line shows the result for the measurement with CRESST crystal K09 evaluated
in [135]. The blue dotted line is the constant α-quenching factor assumed in the analysis of
CRESST-II run 32 [84].

the constant value of 0.22 evaluated within CRESST-II from α-lines in the MeV
energy range. While for run 600, the quenching factor flattens out around 350 keV,
we still observe a slight downhill slope at higher energies for run 347 and the result
by Schäffner. This behavior is most likely caused by small effects of the scintillator
non-proportionality at higher energies in the large crystals Sabine and K09.

As a final step of the analysis, we want to assess the impact of a possible α-
background on the sensitivity of current and future CRESST detectors. For this,
we estimate the leakage of events in the α-band into the AR. In CRESST, the AR
used in DM analyses (more on this topic in the next chapter) is defined as the region
between the mean line of the oxygen band and the lower 99.5 % limit of the tungsten
band. The AR and the α-band for run 600 are displayed in Fig. 8.7. We can then
estimate the leakage lα by integrating the distribution of the α-band over the AR
and comparing this value to the integral over the whole ROI

lα =

∫︂
AR⊂R2

dE dLρα(E,L,θ)∫︂
ROI⊂R2

dE dLρα(E,L,θ)
. (8.2)

In this calculation, we approximate the energy spectrum of the α-background with a
flat spectrum in the density function ρα. For run 600 and ROI = [3, 300] keV, eq. (8.2)
gives a leakage of lα = 0.98 %, i.e., if a simulation predicts 100 α-events in the ROI of
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Figure 8.7: Visualization of possible leakage from the α-band (orange) into the acceptance
region (light green). The acceptance region is defined between the mean line of the oxygen
band (light green) and the 99.5 % lower bound of the tungsten band. For all bands, the
mean line is shown (dashed) together with the 10 % and 90 % boundaries. The positioning
and shape of the displayed bands are based on the MLE results of run 600.

a detector with a particular exposure, we expect less than one of these events to lie in
the AR. Since CRESST is focused on the search for low-mass DM, the interest usually
lies in the low-energy region, and in more recent publications, the upper limit of the
ROI has been set to 16 keV or lower. Calculating the leakage from run 600 for a ROI
of [3, 16] keV, we find lα = 16%. This higher value is expected from the characteristic
shape of the band-like density function. We note that while the fraction is higher for
the smaller ROI, the absolute number of leaked alpha events per keV is not increased.

From Fig. 8.7, one can deduce that the width of the bands heavily influences the
amount of leakage. The resolution of the light detector σl,0, and the parameter σl,1

in eq. (7.27) are the leading terms in determining the width of the distribution in
light (yield). We thus want to study the behavior of the leakage lα as a function of
σl,0 and σl,1. This relation is visualized in Fig. 8.8 for a ROI of [0.03, 16] keV (ROI
of Detector A in [182]), using the parametrization of the α- and nuclear quenching
bands extracted from the fit to the run 600 data. In the density plot, we mark the
expected leakage fraction for various CRESST detector modules and the detector
modules utilized in run 600 and run 347 based on their light detector performance.
For the state-of-the-art CRESST-III Detector A we find lα = 5.2%.
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Figure 8.8: Leakage lα defined by eq. (8.2) as a function of the light detector resolution σl,0
and the fit parameter σl,1, calculated for an exemplary ROI of [0.03, 16] keV. The expected
leakage for various detector modules described in this work and used within CRESST is
marked based on their light detector performance.

8.2 Light quenching in NaI

In this section, we apply the MLE framework to the COSINUS test run 376 data
to extract information on the light quenching of various ionizing particles in NaI.
Besides performing a fit with the standard phenomenological framework, we will also
use a simulation of the setup and the neutron source generated for this measurement.
The simulation result can be directly included in the MLE using the limitless feature
described in subsection 7.2.6. After explaining the fitting procedure and results, we
will compare the extracted quenching factors with existing values and theoretical
descriptions. We will then interpret the results in the context of DM searches with
NaI and the DAMA/LIBRA signal claim.

8.2.1 Phenomenological MLE

Compared to the two measurements analyzed in the previous section, the background
and neutron calibration data sets recorded in run 376 contain only a small number
of events. The majority of counts stem from the 55Fe-calibration lines close to the
threshold. In the likelihood function, we include a standard linear electron background
and a single instance of the muon- and neutron-induced γ-background. We do not
expect many excess light events due to the beaker-shaped light detector, but we
include the respective component in the likelihood function for completeness. Opposed
to [119] where only the calibration lines were included in the γ-spectrum, three γ-lines
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Figure 8.9: Energy spectrum (total energy, corrected with η) of the neutron calibration
data of COSINUS test run 376. The plot also shows the parametric descriptions of the
energy spectra as yielded by the MLE.

induced by 241Am in the neutron source were included in this analysis. We note that
any features caused by a possible Potassium 40 (40K) contamination should be located
below the analysis threshold [183] and could only cause minimal leakage into the ROI.

We add an exponential spectrum for Na and I to the likelihood function to model
the elastic nuclear scattering events introduced by the neutron source. We consider
the contribution from Tl negligible due to the low dopant level and the small number
of neutron events in the data. As the ROI of this run extends to 200 keV, it includes
the first excited atomic state of iodine at 57.6 keV [177]. Consequently, we include the
description of neutrons scattering inelastically off I nuclei.

The results of the MLE are exemplarily visualized in Fig. 8.9 and Fig. 8.10 and
the complete set of fit parameters, including the asymmetric errors calculated with
MINOS, can be found in Appendix A. The figures suggest good agreement between
fit and data, as does the comparison of expected and measured events in Tab. 8.5.
The consistency between the data and the underlying likelihood function of the fit
is further illustrated by the placement of the inelastic neutron scattering spectrum
for I. The onset of the wedge-like feature was treated as a free parameter in the fit,
and the ML estimate of 59.505 ± 0.015 keV agrees with the literature value. The
additional three peaks in the likelihood of the neutron calibration data impact the
overall fit result and lead to minor differences compared to [119]. The shape of the
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inelastic I recoil spectrum – which is now less peak-like, thus more physical and a
better representation of the measured data – proposes the most significant difference.

We list two peculiar features of the fit results that are subject to further discussion
later in this section. The first one is this measurement’s (lack of) scintillator non-
proportionality. The electron and the γ-band form a straight line in the light yield
vs. energy plane, with a mean light yield value of one. The MLE confirms this
observation by assigning the parameter NPa in eq. (4.5) a value of zero. Once the
convergence towards zero was observed, NPa and NPd were fixed in the fit to avoid
issues with boundaries and continuity in the minimization. If no non-proportionality
is observed for electron recoils, one would also expect no γ-quenching, and indeed,
in the MLE, the parameters Q0 and Q1 converge towards one and zero. For the
remainder of the analysis, we thus treat the electron and the gamma band as one.
The second unexpected result is the energy dependence of the Na and I quenching
factors. While the iodine light quenching is almost constant over the whole ROI, we
observe a continuous increase of light output towards higher energies for sodium. This
behavior is opposite to what is observed for the lighter nuclei in CaWO4 by CRESST
[134] and to the expectation from Birks’ law. The exponential description of the
energy-dependent quenching factor in eq. (4.7) is still applicable to this measurement
by assigning a positive value to aNa.

Before comparing the quenching factors resulting from these observations with
other measurements, we want to study the MLE result’s compatibility with a neutron
calibration setup simulation.

background data n-calibration

Excess light 31 22

e− 788 406

γ 11085 2657

µ/n induced 1409 783

Na elastic 0 165

I elastic 0 248

I inelastic 0 23

Total MLE 13313 4304

Total data 13313 4304

Exposure 11.6 g day 4.0 g day

Table 8.5: Number of events assigned to each background component by the MLE for run
376.
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Figure 8.10: Two-dimensional histogram of light yield vs. the total deposited energy for the
run 376 neutron calibration data, including the mean lines and 10 % and 90 % boundaries
of various recoil bands resulting from the MLE. The excess light distribution is shown as a
purple density plot.

8.2.2 MLE with simulation integration

To estimate the expected neutron rate before the measurement and check the
consistency of the analysis, a GEANT-4 simulation of the setup, including the AmBe
neutron source, was performed for run 376. More details on the simulation, including
the geometry, can be found in [119]. With some additional effort, the expected
energy spectra for elastic and inelastic neutron scattering off Na and I nuclei were
extracted from this simulation. For elastic nuclear scattering, we can thus replace
the exponential approximation of the energy spectra from the previous section with
the simulated spectra multiplied by a scaling parameter asim,Na/I.

The resulting fit deviates only minimally from the purely phenomenological one,
implying that the single exponential is a good approximation. In Fig. 8.11, the simu-
lated spectra for the elastic neutron scattering scaled by the MLE estimate of asim,Na/I

are shown together with the exponential spectra from the purely phenomenological
MLE. In addition, we also include the simulated spectrum for neutrons recoiling
inelastically off I nuclei, again in comparison with the phenomenological description.
The inelastic feature at ∼ 60 keV is in excellent agreement with the feature in the
simulation result, both in shape and position. However, the simulation features an
additional underlying structure extending towards lower energies. These events can be
traced back to inelastic scatters where the γ escapes the crystal. These events would
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Figure 8.11: Comparison of the phenomenological description (solid lines) of elastic and
inelastic neutron scattering off Na and I nuclei with the prediction from simulation (empty
histograms). In the background, the run 376 neutron calibration energy spectrum is shown.
Detailed discussion of the components can be found in the main text.

thus be assigned to the elastic recoil band in the two-dimensional phenomenological
framework. For now, we do not include this contribution in the MLE framework
of limitless, as we expect the fraction of inelastic neutron scatters with escaping
gammas to decrease for the larger NaI crystals planned for the first COSINUS physics
run (smaller surface-to-volume ratio).

8.2.3 Comparison and results

We begin this section by comparing the observed behavior of the electron and γ-band
with other measurements of scintillator non-proportionality and γ-quenching in NaI.
There are several works considering the non-proportionality in scintillators both from
the experimental and the theory side [136, 184–187] and since NaI is one of the most
commonly used scintillators it is in general featured as an example. In all these
works, some non-proportionality for electron recoils in NaI was observed; however,
the results vary strongly. Moreover, a direct comparison to the result of run 376 is
difficult as most measurements were conducted at room temperature with NaI crystals
of higher Tl dopant levels. The results in [187] hint towards a correlation between
the non-proportionality effect and the level of dopant or impurities in NaI.

In addition, we list three possible reasons why non-proportionality and γ-quenching
might not have been observed in run 376 - or could not be extracted by the MLE.
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To begin with, the electron band might be too sparsely populated to extract enough
information. The same may be true for the γ-band, as only the calibration peaks
are visible in the data. Moreover, the calibration lines located at ∼ 6 keV may be a
poor choice for the calibration of the light channel: if scintillator non-proportionality
were inherent to the detector crystal, due to iodine’s L1-shell energy of 5.18 keV one
would expect a localized decrease in light output for gammas around the energy of
the calibration lines. This effect could significantly distort a fit to the data. A hint
towards such a feature in the light yield was recently reported by the COSINE-100
collaboration for their NaI(Tl) crystals (see Fig. 5 in [188]). Finally, the MLE
may have converged to an absence of non-proportionality because the parametric
description in the likelihood did not reflect the actual underlying physics. For the
MLE, we have adopted the parametrizations developed by CRESST for CaWO4

crystals within limitless. However, experimental evidence suggests that the scintillator
non-proportionality in alkali halides (like NaI) differs from that observed in crystalline
structures containing oxygen [136].

To make a final statement on the scintillator non-proportionality and the γ-
quenching in COSINUS’ NaI crystals, further measurements with multiple γ-sources
of different energies are needed. We note that knowledge of the light output of
electrons is only necessary to state the absolute quenching factors but is not required
for energy calibration or background discrimination in COSINUS.

Retaining the assumption of an absence of scintillator non-proportionality in this
measurement, we can directly extract the energy-dependent quenching factors for Na
and I down to Ethr = 4 keV from the description of the respective nuclear recoil band
and the results of the MLE (see Appendix A for the parameter values). The quenching
factors are displayed in Fig. 8.12, together with the DAMA/LIBRA quenching factors
[53], and the results published by Collar [152], Stiegler [108], and Joo [109]. The
increase in light output towards higher energies for Na hits is consistent with the
behavior observed by other groups. The same applies to the I quenching factor,
which remains almost constant over the whole energy range. For both Na and I, the
quenching factors observed are larger than the results by Collar, Stiegler, and Joo.
Within 1σ, the result for I is consistent with the DAMA/LIBRA quenching factor;
the result for Na converges towards the DAMA/LIBRA value at high energies.

In the final part of this chapter, we study the impact of a possible energy dependence
of the Na quenching factor on the DM parameter space favored by the DAMA/LIBRA
signal claim. For this, we adopt the framework from [73] to extract the favored
values of DM mass and DM-nucleon scattering cross section from the binned, recoil
energy-dependent modulation amplitude as published by DAMA/LIBRA. We restrict
ourselves to the SI case and the DAMA/LIBRA phase 1 data.
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Figure 8.12: Quenching factors of Na (left) and I (right) as a function of total deposited
energy as evaluated from the COSINUS run 376 data MLE with 3σ confidence band (pink).
The lower bound of the energy range is the analysis threshold of run 376 (4 keV). In
comparison, we show data points evaluated by Joo [109], Stiegler [108], and Collar [152], as
well as the constant quenching factors reported by DAMA/LIBRA (blue dashed line) [53].

In [73], three different types of statistical tests are performed to analyze the
DAMA/LIBRA data. We choose here the method referred to as "likelihood ratio"
in a simplified approach with only two fit parameters mχ and σn. Assuming that
the modulation amplitude is normally distributed in each energy bin, the respective
likelihood function can be written as

L(mχ, σn) =
∏︂
k

1√
2πσk

exp

(︄
−
(︁
Sm,k − Sth

m,k(mχ, σn)
)︁2

2σ2
k

)︄

− log(L(mχ, σn)) ∝ 1

2

∑︂
k

(︁
Sm,k − Sth

m,k(mχ, σn)
)︁2

σ2
k⏞ ⏟⏟ ⏞

=:χ2(mχ,σn)

. (8.3)

Here Sm,k denotes the measured modulation amplitude in bin k with uncertainty σk,
and Sth

m,k(mχ, σn) is the theoretical expectation. The best fit to the data and the
contours of mχ and σn can be directly evaluated with the iminuit framework. More
information on likelihood ratio tests can be found in [73, 156] and the subsequent
chapter of this work.

The annual modulation amplitudes with uncertainties for 36 energy bins between 2
and 20 keVee can be extracted from Fig. 9 in [189] and are tabulated in [73]. The missing
component in the likelihood function is thus the theoretical expectation value for the
annual modulation energy bin k. In eq. (3.2) in chapter 3, we have stated an expression
for the modulation amplitude Sm for a measured energy range [Emin, Emax] in keV.
The amplitude reported by DAMA/LIBRA is the average amplitude over the electron-
equivalent energy interval [E1,k, E2,k] defining the bin edges. We can adapt eq. (3.2) to
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find the respective theory expectation of the energy-dependent modulation amplitude:

Sth
m,k(mχ, σn) =

1

E2,k − E1,k

(8.4)

· 1
2

⎛⎜⎝ f−1(E2,k)∫︂
f−1(E1,k)

dE
dE

dR
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⏞ ⏟⏟ ⏞
=:R(E1,k,E2,k,t=June 2nd)

−
f−1(E2,k)∫︂

f−1(E1,k)

dE
dE

dR
(E,Dec 1st)

⎞⎟⎠

The function f−1 maps energy in keVee to energy in keV

f : EkeV ↦→ EkeVee = QF(EkeV)EkeV (8.5)

f−1 : EkeVee ↦→ EkeV, (8.6)

with f−1(EkeVee) = EkeVee/QF in the case of a constant quenching factor. For non-
trivial quenching factors, such as in eq. (4.8), f−1 has to be evaluated numerically.
The differential rate for SI-scattering dE

dR
(EkeV) was derived in section 1.6.2

One should also factor in detector effects for a meaningful comparison of eq. (8.4)
and the data measured by DAMA/LIBRA. DAMA/LIBRA has reported neither
detector nor analysis efficiencies, but we include the detector resolution as stated
in [100] through the following convolution

R(E1,k, E2,k, t) =

f−1(E2,k)∫︂
f−1(E1,k)

dE

∞∫︂
0

dẼ
dE

dR
(Ẽ, t)N

(︂
f(E)− f(Ẽ); 0, σD/L(f(Ẽ))

)︂
,

(8.7)

where N (x;µ, σ) is a normal distribution and

σD/L(EkeVee) = 0.488
√︁

EkeVee + 0.00991EkeVee . (8.8)

We note that for f(E) = QF ·E, with a constant quenching factor, integrating
eq. (8.7) over E yields eq. (2.6) in Savage et al. [73].

The DAMA/LIBRA data points together with the best-fit result for both the
DAMA/LIBRA and the COSINUS quenching factors are shown in Fig. 8.13 for
the low DM mass (left) and the high DM mass regime (right). From the χ2 value
(see eq. (8.4)), we conclude that the high mass regime is favored independent of the
quenching factor. The best-fit result at high DM masses does not differ visibly between
the probed quenching factors. At high masses, iodine is the dominant nucleus in the
scattering rate, for which the DAMA/LIBRA and the COSINUS run 376 quenching
2We neglect in the above notation that the rates R have to be calculated separately for Na and I due
to the different quenching factors. The full modulation amplitude is then found by summing the
rates scaled to their molecular fraction.
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Figure 8.13: The binned average annual modulation rate measured by DAMA/LIBRA
phase 1 (black squares) with the best SI DM scattering fit model. The left figure shows the
best fit for the low-mass region, and the right figure for the high-mass region. The solid light
blue lines show the best fit resulting from the constant DAMA quenching factors, while the
dashed blue lines show the results from employing the energy-dependent quenching factors
measured in COSINUS run 376.

factors are similar. In the low mass regime, where Na dominates, we observe a
significant impact of the different quenching factors. The same observation can also
be made for the 3σ and 5σ contour lines shown in Fig. 8.14. The high mass contours
overlap, while a deviation is seen between the two quenching factors at low masses.

To conclude this chapter, we want to emphasize the importance of light quenching in
DM searches employing scintillators and interpreting the DAMA/LIBRA signal claim.
While COSINUS can extract information on the quenching factors of the employed
crystals down to low nuclear recoil energies as an analysis byproduct, we underline
that no knowledge of them is needed in the DM analysis as the remoTES read-out
enables a direct measurement of the total recoil energy deposited in the crystal.
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Figure 8.14: Contours in the DM mass mχ - SI DM-nucleon cross-section σn-plane marking
the most likely parameters to produce the phase 1 DAMA/LIBRA signal. Filled areas mark
the 3σ contours framed by the 5σ contours. Light blue marks the contours evaluated with
the DAMA/LIBRA quenching factors, and blue (dashed) marks the contours evaluated using
the energy-dependent COSINUS run 376 quenching factors.



9
Dark matter analysis - Exclusion

The previous chapters discussed how information on light quenching in scintillators
can be extracted from data measured with CRESST/COSINUS-like detector modules.
However, CRESST and COSINUS’ primary goal is the search for DM particles. The
remaining chapter of this thesis thus focuses on the frequentist statistical tools and
methods employed to analyze the recorded data in the DM context.

In the most general case, we want to test a certain hypothesis (e.g., the existence of
some DM particle of certain mass and interaction strength) against the measured
data. As a result, the agreement between data and the hypothesis H is quantified by
the p-value – the probability of finding data as or more incompatible with H than the
measured data, assuming that H is the underlying truth. When claiming a discovery,
the data are generally tested against the null hypothesis H0 (i.e., no new physics),
and the resulting p-value can be related to the measure of significance Z of the signal.
The significance Z (in units of σ standard deviation) is defined as

Z = Φ−1(1− p) , (9.1)

where Φ−1 is the inverse cumulative distribution (inverse CDF, quantile) of the
standard normal distribution Φ. The relation between the p-value and the significance
Z is visualized in Fig. 9.1, showing the p-value as a shaded area under the probability
density function of the standard normal distribution. In the particle physics community,
high values of incompatibility 1 − p (i.e., high values of Z) are required to claim a
discovery. A commonly named example is the 5σ significance (p = 2.87 × 10−5)
of the Higgs boson discovery, where the data were tested against the hypothesis
H0 that no Higgs boson exists.

Discovery claims are rare for DM searches, and most experiments (besides DAMA/LI-
BRA) report null results. Nevertheless, even if no signal beyond the expected

143
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Figure 9.1: Visualization of the relation between the p-value, as returned by a statistical
test of measured data against some hypothesis, and the significance Z of the result in units
of standard deviation. The figure shows the PDF of the standard normal distribution in pink,
and the Z-values for 1σ (light blue) and 3σ (dark blue) are marked. The related p-values are
shown as a shaded area below the PDF curve.

background was observed, the collected data can constrain the parameter space
of DM models. If, in a statistical test of the data against any signal hypothesis H, the
p-value falls below a threshold 1− CL, H is said to be excluded at confidence level
CL. In the following, we will discuss various statistical tests and methods used to
compute exclusion limits on parameters of specific DM hypotheses. We apply those
methods to the run 376 COSINUS prototype data set for the standard SI DM-nucleus
scattering hypothesis.

Independent of the type of test, the signal expectation in the detector (this can
be a higher-dimensional density distribution or simply the number of expected DM
scattering events) needs to be known to construct the hypothesis. The first section of
this chapter will thus address how DM theory and knowledge of the detectors can be
combined to calculate a possible DM signal as seen by the detector. Subsequently, we
will introduce the concept of limit calculation based on the cut-and-count approach
before describing Yellin’s methods [190, 191] and limit calculation via a test statistic
based on the profile likelihood ratio.
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9.1 Signal expectation

In the introductory part of this thesis, an expression for the differential scattering
rate of DM particles off nuclei was found (see section 1.6). Calculating the rate
includes input from astro- and particle physics but does not account for any detector
specifics beyond the material of the detector bulk (NaI, CaWO4, etc.). To enable
a valid comparison between theory and experiment, detector effects like resolution
and efficiency must be included in calculating the recoil rate. This concept was
already touched on for DAMA/LIBRA in subsection 8.2.3 and is discussed in detail
for CRESST/COSINUS-specific detectors in the following.

9.1.1 Simulation-based signal modeling

The goal is to find an expression for the differential rate dR/dE as observed in
a real detector by modeling the detector effects. Such modeling can be achieved
using the simulation process employed to calculate the trigger and cut efficiency (see
subsection 6.3.5). The theoretical DM signal is injected as a spectrum of artificial
pulses onto the recorded empty noise traces. Applying the whole raw data analysis
chain to this artificial signal returns a spectrum of reconstructed energies intrinsically
corrected for trigger- and cut efficiency. Moreover, as the finite resolution of a
detector is mainly introduced by the baseline noise and the pulse height reconstruction,
the detector resolution is accounted for in the simulated and reconstructed energy
spectrum. These effects are most prominently observed for events with injected
energies just above the threshold for which the reconstructed energy may lie below
the threshold (and vice versa).

For the majority of particle DM hypotheses, the spectral shape of the differential
recoil rate changes significantly and non-trivially with varying DM mass. This variation
implies that a separate simulation must be performed for every DM mass tested against
the measured data. This approach is currently unfeasible for CRESST and COSINUS
due to the computational cost of such simulations. Instead, a flat energy spectrum
of sufficient size is injected upon the empty baselines. The spectrum resulting from
the simulation is then reshuffled according to the respective DM recoil spectrum of
interest. Due to the generally exponential shape of DM recoil spectra, a high density of
low-energy events is beneficial, and thus, an extra simulation focused on low energies
can be added. The precise steps of the reshuffling and how this approach can be
extended to time-dependent data are described in Appendix B.

9.1.2 Convolution-based signal modeling

Although the flat simulation approach substantially reduces computational costs, it
may still be impractical in certain cases. To achieve sufficient statistical accuracy,
approximately O(106) simulated pulses are required. For each simulated pulse, the
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DM rate must be evaluated at the reconstructed energy during the reshuffling process.
While these calculations are manageable in standard DM scattering models, they can
become computationally expensive when applied to alternative DM models that involve
the evaluation of numerical integrals or other complex mathematical operations (e.g.,
Darkonium [192] or cosmic-ray-boosted DM).

In most cases, a simpler and more efficient approach is thus used, employing the
binned efficiency as a function of injected energy as displayed in Fig. 6.7. Before
the theoretical DM spectrum is weighted (multiplied) with the binned efficiency, the
spectrum is convolved with a normal distribution of width σp to account for the finite
detector resolution. This procedure was already used to some extent in section 8.2.3
for the DAMA/LIBRA signal expectation. To account for any shuffling of low-energy
events over the trigger threshold, the lower integration bound of the convolution is
set to zero.1 In the final step, the energy spectrum is truncated at the threshold of
the dominant detector channel (usually the phonon channel). The expression for the
expected DM signal, as seen in one detector material component N , is then

dR

dE

⃓⃓⃓⃓
exp,N

(E) = Θ (E − Ethr) eff(E)

∫︂ ∞

0

dĒ
dR

dE

⃓⃓⃓⃓
theo,N

(Ē) N (E − Ē|σp) , (9.2)

where dR
dE

⃓⃓
theo,N is the differential scattering rate provided by theory.

In Fig. 9.2, the expected DM rates in the standard SI scattering scenario are
shown, calculated with both methods (full simulation in pink and convolution in blue)
for the CRESST-III CaWO4 detector TUM93-A employed in run 36. For the majority
of energies, the deviations are minimal. The largest differences can be observed
at energies close to the threshold. This deviation can impact the result of a limit
calculation, especially for low DM masses where the differential recoil spectra break off
close to the threshold. However, in most use cases, deviations in the limit calculation
are small to negligible, as was recently demonstrated by CRESST [193].

A prevalent point of critique towards the above-described procedure is the multipli-
cation of the convolved rate (a function of reconstructed energy) with the binned
efficiency as a function of injected/simulated energy. An obvious solution to this issue
is to use the efficiency as a function of reconstructed energy. However, we decline this
approach within this work, as it neglects an essential contribution to the efficiency.
The full efficiency simulation accounts for the effect of false reconstruction of the true
pulse height (whether through a SEV fit or optimum filtering) of small pulses, which
may, as a result, fall below the threshold and are discarded in the analysis. This
1In recent CRESST publications [193] the lower integration bound has been set to Ethr − 2σp or
Ethr − 3σp to increase the compatibility with the full simulation approach. In the raw data analysis
frameworks CAT & cait [176] simulated events for which the reconstructed amplitude differs more
than 2/3σp from the injected energy (this includes all events reconstructed 2/3σp below threshold)
are removed from the simulation. With the adapted integration bound, this can be accounted for.
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Figure 9.2: Differential SI DM-nucleus scattering rate on CaWO4 per pb cross section
in the standard scenario for a 5GeV DM particle, corrected for effects of the CRESST-II
detector TUM93-A. The figure shows a comparison of the three approaches to include the
detector effect: using a full simulation (pink) or a combination of convolution and binned
efficiency as a function of injected (blue solid) or reconstructed (dark blue, dashed) energy.
More information on the methodology can be found in the main text.

effect is partially accountable for the error-function-like shape of the efficiency at the
threshold. If the binned efficiency is given as a function of reconstructed energy, this
behavior is, per definition, neglected. It can be argued that this effect of shuffling
around the threshold is a direct consequence of the finite detector resolution and
is accounted for by the convolution. This argument would imply that in eq. (9.2),
this effect of shuffling near the threshold is applied to the spectrum twice, effectively
underestimating the rate close to the threshold (compare blue solid and dark blue
dashed line in Fig. 9.2), which in turn leads to an over-conservative limit. However, the
precise origin and impact of the observed detector effects are not yet fully understood,
and we thus prefer the more conservative but informed approach employing the
efficiency as a function of injected energies.

For the DM analysis of run 376, we use the combination of convolution and
subsequent multiplication of the binned efficiency according to eq. (9.2) to account
for detector effects. The full simulation approach was not applicable for this test
run due to the limited measurement time, which resulted in a reduced number
of recorded empty noise traces.
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9.1.3 Two-dimensional DM signal expectation and acceptance
region

So far, the expected DM signal has only been considered a function of a single measured
quantity: the total energy deposited in the detector through nuclear scattering.
However, in CRESST and COSINUS, a recorded signal is characterized by both
(phonon) energy and light. As this additional information from the light channel
can be used to discriminate a potential signal from the background, it should be
included in the DM analysis.

Some statistical tests (e.g., profile likelihood ratio test) directly compare the
two-dimensional data with a two-dimensional theoretical signal density function. In
the scenario where DM scatters primarily off nuclei, the density of the expected DM
signal in the light (yield) versus energy plane can be calculated along the lines of
eq. (7.8) for nucleus N in the target material:

ρχ,N(E,L) =
dR

dE

⃓⃓⃓⃓
exp,N

(E)
1√︂

2πσ2
χ,N(E)

exp

(︄
−(L− Lχ,N(E))2

2σ2
χ,N(E)

)︄
(9.3)

The functions Lχ,N and σ2
χ,N are analogous to the expressions LN and σ2

N if the
DM signal is expected to lie in the region assigned to the nuclear recoil bands. The
parameters necessary to construct these expressions can be found via a likelihood fit to
the neutron calibration data described in the previous two chapters. An example of the
expected DM density is shown in Fig. 9.3. For this figure, a detector with an improved
resolution compared to run 376 was assumed to better visualize and distinguish
the two signal components from the Na (higher light yield, flatter spectrum) and
I nuclei (lower light yield, steeper spectrum).

For many standard statistical tests, such as cut-and-count or Yellin’s optimum
interval method [190], the input data can only be one-dimensional (in general, the total
deposited energy is used). An AR is defined to include the two-channel information
in such a test. The AR is a subspace of the full ROI, constructed to contain maximal
signal and minimal background leakage. For CRESST’s CaWO4 detectors, the AR is
confined by the mean light (yield) of the O band and the lower 99.5 % bound of the W
band (see also Fig. 8.7). In accordance, the AR for COSINUS run 376 is set between
the mean of the Na and the lower 99.5 % bound of the I band (compare Fig. 8.10
and Fig. 9.3).2 For the DM analysis, only events located in the AR are considered.

While choosing an AR can significantly reduce the background, it also reduces
the sensitivity to a potential DM signal (e.g., for Na in NaI, one loses over half of

2Due to the different shape of the nuclear recoil bands in NaI compared to CaWO4 the above choice
of AR may not be the ideal one. Ideally, simulations should be performed to find the AR that
provides the best signal-to-noise ratio. Still, for this first-ever COSINUS limit calculation, we adopt
the definitions from CRESST.
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Figure 9.3: Two-dimensional density distribution of a DM-nucleus scattering signal in a
COSINUS-like detector module in the light yield versus energy plane. The upper part of
the distribution (higher light yield) can be assigned to Na-dominated recoils and the lower
part to I-dominated recoils. The parameters from run 376 were assumed for calculating the
density, but the detector resolutions were improved to σp = 200 eV and σl = 200 eVee to
enhance the separation of the Na and I contribution. The green solid lines correspond to the
outer borders of the AR.

the signal by only considering events in the AR). Thus, the choice of AR needs to be
included in the calculation of the one-dimensional signal expectation for nucleus N :

dR

dE

⃓⃓⃓⃓
AR,N

(E) =

∫︂
AR

dLρχ,N(E,L) (9.4)

=
dR

dE

⃓⃓⃓⃓
exp,N

(E)
1√︂

2πσ2
χ,N(E)

∫︂
AR

dL exp

(︄
−(L− Lχ,N(E))2

2σ2
χ,N(E)

)︄
⏞ ⏟⏟ ⏞

accN (E)

The nucleus-specific correction term accN(E) is also referred to as acceptance prob-
ability. Note that for the total rate in a compound material, the above equation
needs to be summed over all nuclei in the molecule, scaled to the respective molecular
fraction. It is common practice to set bounds on the light yield in the raw data
analysis (mainly to remove light-only events), which then should be included in the
integration bounds in eq. (9.4) and also considered in the calculation of a signal
expectation even if no AR was set.
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9.2 Counting analysis

This section introduces setting an upper limit on the DM parameter space based
on the cut-and-count strategy. This simple but robust method is frequently used
in high-energy physics, most prominently at the LHC [194]. It relies only on the
number of recorded and expected signal events, hence the "count". The "cut"
refers to any preceding data cleaning steps and, as in this application, the setting
of an AR. The total number of recorded events nAR in the AR is then expected
to follow a Poisson distribution

P (nAR; νχ) =
νnAR
χ

nAR!
exp(−νχ) , (9.5)

where νχ is the number of expected DM signal events. In the most general SI DM-
nucleus scattering scenario, limits are set on the DM-nucleon cross-section σn

3 as
a function of the DM particle mass mχ. The number of expected hits νχ(σn,mχ)

in a detector can then be calculated by integrating eq. (9.4) over the appropriate
energy range. In a more general notation, one may also express νχ as a function of
a universal signal strength parameter µχ (i.e., νχ(µχ,mχ)), which can represent a
cross-section, a coupling strength, or any other physical parameter.

To find an upper limit on the signal strength parameter µχ based on the measured
data with confidence level CL one then excludes all values of µχ producing a signal of
size nAR or larger in the detector with a probability of α = 1 − CL. For a Poisson
distribution α is given by [156]

α =

nAR∑︂
n=0

νχ(µχ,mχ)
n

n!
exp(−νχ(µχ,mχ)) . (9.6)

The above expression can be solved analytically for νχ

νχ(µχ,mχ) =
1

2
CDF−1

χ2 (1− α; 2(nAR + 1)) , (9.7)

where CDF−1
χ2 denotes the inverse cumulative χ2-distribution with 2(nAR + 1) degrees

of freedom. An upper limit on µχ can be found by solving eq. (9.7) for the desired
CL.

We want to apply this methodology to find a limit on the SI DM-nucleon scattering
cross-section from the data recorded in COSINUS run 376. For the "cut"-step, we select
an AR region as described in the previous section, reducing the number of potential
3This parameter is frequently denoted as σp, but we refrain from this notation to avoid confusion
with the phonon detector resolution.
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Figure 9.4: Visualization of the AR in run 376. Left: Scatter plot of light yield versus
energy in the low energy region. The light blue dots represent all recorded events, and the
blue dots represent the events in the AR (green shaded area). Right: Projection of the
figure on the left onto the x-axis, resulting in a histogram of all measured energies (light blue)
and of the energies of the events in the AR (blue); the events in the AR form a peak-like
structure.

signal events from >13000 to nAR = 85. In Fig. 9.4, the populated fraction of the AR
is displayed in a light yield versus energy plot (left) together with a projection onto
the energy axis (right). The expected signal can be calculated for various DM masses
by integration over the energy in eq. (9.4) for each nucleus N in the target material:

νχ(µχ,mχ) =

∫︂ max(ROI)

Ethr

dE
dR

dE

⃓⃓⃓⃓
AR,N

(E) (9.8)

In Fig. 9.4 we show νχ in the standard SI DM-nucleus scattering scenario as a
function of mχ for σn = 1 pb considering all detector-specific effects of run 376.
Since νχ scales linearly with σn, one can already judge the behavior of the limit
in the parameter plane from νχ(mχ).

Before calculating a 90 % confidence level upper limit on σn, we must define a
suitable range of DM masses the detector is sensitive to. With decreasing mχ, the
maximum recoil energy that can be deposited in a material by scattering decreases.
If this maximum energy falls below the threshold, the detector is no longer sensitive
to the DM signal. The maximum energy produced in DM-nucleus scattering can be
calculated from kinematics and the fact that DM in the Milky Way has a maximum
velocity limited by the galactic escape velocity vesc:

Emax(mχ) =
2m2

χm
2
N(vesc + vearth)

2

mN(mχ +mN)2
(9.9)
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Figure 9.5: The expected number of potential DM events in a COSINUS-like detector as a
function of the DM mass mχ. The reference SI DM-nucleon scattering cross section is set to
a nominal value of 1 pb. The dashed lines signal the minimal accessible mass for a detector
with a threshold and resolution comparable to run 376. The minimal mass still probed in
the upper limit calculation is marked by the dashed dark blue line, corresponding to energies
of two times the resolution below the threshold.

In a compound material, the maximum energy is given when mN is the mass of
the lightest nucleus in the target material. In practice, we then find the minimal
accessible DM mass by solving

Emax(mχ) = Ethr − 2σn (9.10)

for mχ, where the threshold is reduced by two times the (phonon-)detector resolution
to account for any shuffling of low energy events over the threshold (resolution effects).
There is, in principle, no upper bound on the DM mass accessible to a detector in
the standard DM-nucleus scattering scenario. Still, a loss in sensitivity is expected
due to the decrease in number density.

For run 376, we calculate limits from DM masses between 2.5 and 500GeV. The
cut-and-count limit is shown in Fig. 9.7 (magenta line). The inverse of the function
displayed in Fig. 9.5 gives the shape of the limit. One can observe a drastic loss in
sensitivity towards lower masses (corresponding to maximum energies closer to the
threshold). A loss in sensitivity can also be observed towards higher masses. Around
mχ = 7 GeV, the limit exhibits a kink-like feature, marking the mass for which the
iodine component of the expected DM spectrum falls below the threshold, and the
limit depends only on the sodium contribution of the signal.
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9.3 Yellin’s methods

While the method of cut-and-count provides a simple yet robust framework, it does
not include all the information the data provides. If the distribution of the measured
data is distinct from the expected signal distribution, we should be able to utilize this
knowledge to find a stronger limit. Statistical tests based on likelihood functions (such
as the profile likelihood ratio method described in the next section) can distinguish
between background and signal distribution, but only if both are known in their
functional form. The same is true for methods of direct background subtraction.
In DM searches and rare event searches in general, the precise likelihood of the
entire expected background is often unknown or subject to uncertainties. To still
provide strong upper limits when the background is to some degree unknown, Steve
Yellin developed methods for the CDMS collaboration to "Find[ing] an upper limit
in the presence of unknown background" [190]. These methods are briefly described
below and applied to the run 376 data.

9.3.1 Maximum gap

Yellin’s methods are based on choosing an interval in the ROI, such that a cut-
and-count analysis on this interval provides the strongest limit achievable with such
methodology. In other words, the interval is chosen to include very few events
compared to the signal expectation. This data-based choice of the interval inherently
induces bias, which is, however, accounted for in Yellin’s construction.

For the maximum gap method, one chooses the ideal interval between two
consecutive events Ei, Ei+1 from the list of measured and sorted quantities, including
the bounds of the ROI (i.e., the interval can also be from the threshold to the first
measured event), such that the "gap size" xi is maximal. The measure xi is defined
as the signal expectation on [Ei, Ei+1]

xi(µ) =

∫︂ Ei+1

Ei

dE
dR

dE

⃓⃓⃓⃓
exp
(E;µ), (9.11)

with the signal strength parameter µ (e.g., a cross section σ or some coupling g).
We then consider a hypothesis Hµ of signal strength µ incompatible with the data
if a high number of events xi(µ) is expected for the chosen interval, but none were
observed. The incompatibility of data and Hµ can be quantified via the probability
that, under the assumption of Hµ, the size of the maximum gap x = max(xi) is
smaller than the measured x. To find an expression for this probability, Yellin takes
advantage of the fact that any signal distribution dR

dE
(E) can be mapped onto a

uniform distribution of size ν on the interval [0, 1]

E ↦→ E ′ ∼ U(0, 1) , (9.12)
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where ν(µ) =
∫︁

ROI dE
dR
dE

⃓⃓
exp (E;µ) is the expected number of events in the whole

ROI. If we only want to consider the events in the AR or any other part of the
ROI, we have to adjust the definition of ν(µ) accordingly. For a standard uniform
distribution, the gap size is then simply

xi(µ) = ν(µ)(E ′
i+1 − E ′

i). (9.13)

Consequently, Yellin finds the following expression for the desired probability dis-
tribution as a function of only x and ν

C0(x; ν) =
m∑︂
k=0

(kx(µ)− ν(µ))ke−kx(µ)

k!

(︃
1 +

k

ν(µ)− kx(µ)

)︃
(9.14)

with m = ⌊ν/x⌋. An upper limit of confidence level CL on the signal strength is
then the value µmax for which

C0(x(µmax); ν(µmax)) = CL. (9.15)

We note that we can interpret x as a test statistic with CDF C0(x; ν). The derivation
of eq. (9.14) can be found in [190]; here, we provide a simple proof-of-principle example
to justify the expression. For this, we draw ν = 10 (ν = 50) values of E ′ from a uniform
distribution on [0, 1] and find the value of the maximum gap. We repeat this artificial
experiment 10000 times to find the distribution of the maximum gap size P (x; ν), which
can be integrated over the ROI to find C0(x; ν). The histogrammed simulation results
and Yellin’s expression for C0(x; ν) are displayed in Fig. 9.6 and show good agreement.

As no simulations are needed, the maximum gap method is straightforward to
implement and thus directly included in limitless without the need for the original
Fortan-based implementation by Yellin. We use Brent’s root finding algorithm [195]
to solve eq. (9.15). The maximum gap method is then applied to the data points in
the AR of the run 376 background-only data, and the resulting limit is displayed in
Fig. 9.7 (orange line). We will discuss the limit in more detail in the next subsection.

9.3.2 Optimum interval

Instead of restricting ourselves to empty intervals, we can extend the maximum gap
framework to intervals containing one or more events. This approach can be especially
advantageous for densely populated data sets. We define the probability Cn(x; ν)

analogously to C0(x; ν) for the interval containing n events with the largest size x.
For n ̸= 0 we cannot find a numerical expression for the probability and thus revert
to simulated "experiments" performed for each n and ν, analogously to those shown
for n = 0 in Fig. 9.6, and find Cn(x; ν) via interpolation.
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Figure 9.6: Visualization of Yellin’s maximum gap method for uniformly distributed data.
Upper rows display the result for ν = 10 expected events, lower rows for ν = 50. Left
column: Exemplary simulated experiment drawn from a uniform distribution of size ν, each
black tick represents one random measurement of E′. The maximum gap is filled in light
blue and annotated with its value. Right column: Histogram of the distribution (PDF)
and integrated distribution (CDF) of the maximum gap from 10000 simulated experiments.
The pink line shows the numerical approximation of the CDF as found by Yellin.

Next, an optimal n needs to be decided on for the limit calculation. We want
to choose n in a way that we can achieve the strictest limit possible and define for
a measured x and given ν the optimum interval via

Cmax = max
n

(Cn(x; ν)) . (9.16)

From the set of simulated experiments used to determine the functions Cn, one can then
further extract a function C̄max(C; ν) for which the inequality C̄max(C; ν) > Cmax holds
for a fraction C of the simulated experiments. The upper limit µmax at confidence
level CL is then given by the value of µ for which

C̄max(C; ν(µmax)) = Cmax . (9.17)

We can thus interpret Cmax as a test statistic with percent point function (PPF, inverse
of the CDF) C̄max(C; ν(µmax)). More information on the construction of the functions
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Figure 9.7: Upper limits on the standard spin-independent DM-nucleon scattering cross
section as a function of the DM mass from run 376 data. The solid pink line is the limit
calculated from a cut-and-count analysis. The orange line is the limit from Yellin’s maximum
gap method, considering only events in the acceptance region. The dark blue lines are limits
calculated with Yellin’s optimum interval method, where the dashed line corresponds to the
limit from the whole data set, and the solid line was computed considering only events in
the acceptance region. All limits are 90% confidence level. The light blue filled areas mark
the parameter space favored by the DAMA/LIBRA experiment [189] as reported in [73].

Cn(x; ν) and C̄max(C; ν(µmax)) can be found in the original works by Yellin [190, 191].
For a detailed explanation of the practical implementation of Yellin’s ideas in a Python
framework, the reader is referred to [196]. The work by Okçu also includes extensions to
and approximations of the optimum interval method. With a Python wrapper, Yellin’s
original Fortran code for the optimum interval method is directly included in limitless.

We apply the optimum interval method to the run 376 data to extract limits on
the SI DM-nucleon scattering cross section in NaI. The calculations are performed
on both the whole ROI and only the events in the AR. The results are shown in Fig.
9.7 together with the Poisson limit from the previous section. Yellin’s methods give
an improvement compared to the Poisson limit of almost one order of magnitude,
increasing up to almost two orders at higher DM masses. In addition to the previously
observed kink-like feature marking the transition from Na- to I-dominated limit,
another feature is present for the Yellin limit at mχ = 10-20 GeV. This feature can be
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attributed to the 55Fe calibration lines.4 One can further observe that selecting an
AR gives the biggest improvement to the limit at high DM masses. Conversely, we
observe no improvement at low DM masses, consistent with the lack of discrimination
power close to the threshold. The limit calculated with the optimum interval method
differs only minimally from the limit calculated with the maximum gap approach.
This can be reasoned with the sparsely populated AR, which causes the optimum
interval to contain zero events – hence being the maximum gap. Differences between
the numerical implementation in the maximum gap method and the simulation-based
functions in the optimum interval method cause small variations between the results.
As a result, the maximum gap limit may lie slightly below the optimum interval limit
for some masses.

We want to test how stable the Yellin optimum interval limits are under statistical
fluctuations of the measured data. To do this, we simulate O(10 000) data sets in
a Monte Carlo (MC) framework based on the results of the MLE described in the
previous chapters and evaluate the limits from both ROI and AR for each data set.
From the set of simulated limits, we can then extract the 1σ (blue) and 2σ (light blue)
confidence bands displayed in Fig. 9.8. Comparing the MC simulation with the ROI
limit from real data yields perfect agreement for most masses and only a deviation
around the calibration line feature. The stricter simulated limits in the mass region of
the iron line feature imply that the likelihood model used in the MC simulation does
not represent the measured data perfectly and most likely underestimates the number
of events in and around the 55Fe lines. Possible reasons for such an underestimation are
a wrong parametrization of the calibration lines and/or an unaccounted background
close to the threshold, such as noise leakage or leakage from another contamination
source below the threshold (e.g., potential 40K). The AR limits from simulated data
are stricter than those from the actual data over the whole DM mass range. This
behavior is a direct consequence of the above observation for the ROI limit since the
AR is majorly composed of 55Fe events in the nuclear recoil bands.

The principle of calculating exclusion limits from simulated data can also be used
to study the sensitivity of a detector setup under various background conditions. One
may manipulate the underlying likelihood function of the simulation to increase the
exposure or rescale specific background components. As an example, we test the
DM sensitivity that could have been achieved in run 376 without the 55Fe source
contributing to the background. The resulting confidence bands for the AR limit are
shown in Fig. 9.10. Comparison with the AR limit from the measured data shows
significant improvement in the medium to low DM mass range. Moreover, the feature
between mχ = 10 GeV and mχ = 20 GeV is not present in the MC limits, confirming
the connection made between the feature and the 55Fe lines.
4The feature appears at different masses for the ROI and the AR limit, which is compatible with the
variation in the peak position of the iron events (compare with Fig. 9.4 right).



158 9.4. Profile likelihood ratio

Figure 9.8: As in Fig. 9.7 dark blue lines are limits calculated with Yellin’s optimum
interval method, where the dashed line corresponds to the limit from the whole data set of
run 376, and the solid line was computed considering only events in the AR. The blue (light
blue) shaded areas correspond to the 1σ (2σ) confidence bands for these 90% confidence
level limit calculations determined via MC simulations of the run 376 data based on the
background likelihood fit.

9.4 Profile likelihood ratio

The results of the MLE for run 376 and the previous section imply that the majority
of the background, and more importantly, the bulk of events in the signal region,
stem from the 55Fe calibration source. The shape of the 55Fe event distribution is well
known in both energy and light, and only the overall strength of the signal is unknown
(i.e., the scaling amplitude of the peak). The same is true for possible leakage from
the flat e−/γ-spectrum into the signal region. Applying Yellin’s optimum interval
method, which was developed for the analysis of data sets with unknown backgrounds
and thus may be an overly conservative approach in this case.

We want to use our knowledge of the various background components in the
limit calculation by defining a test statistic that includes the background distribution
functions. The likelihood function is a natural choice, as we can extend the background
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density function found in chapter 7 by the DM signal density from eq. (9.3)

ρtot(E,L; θbck ∪ θχ) = ρbck(E,L; θbck) + ρχ(E,L; θχ), (9.18)

and find the respective likelihood function according to eq. (7.1). We note that the
likelihood function inherently contains the information from both energy and light
channels, thus rendering the selection of an AR obsolete and avoiding introducing
bias into the limit by cherry-picking an AR. To construct the test statistic, we use
the combined likelihood of background and neutron calibration data to restrict the
placement of the signal region (i.e., the nuclear recoil bands).

Before defining an appropriate test statistic, we discuss the composition of the set
of parameters θbck ∪ θχ. The DM hypothesis H we want to test against the data is
characterized by θχ, and we want to set a limit on µ ⊂ θχ. In the usually probed
standard scenarios, µ is a single scaling parameter of the model, but µ can be
any variable of the model or even a set of variables (higher dimensional limit). The
remaining parameters θχ\µ are fixed in evaluating the likelihood function, for example,
the DM mass or any model parameters from cosmology. The parameters θbck are split
into a set of fixed parameters (e.g., the detector resolution or peak positions of certain
γ-lines) and a set of nuisance parameters. The nuisance parameters are all variables of
the density function that are not a priori known and need to be described by their ML
estimate. In particular, these include the overall scaling parameters of the background.
One may also want to treat signal model parameters as nuisance parameters, especially
if the literature values are subject to larger uncertainties. The DM community has
an agreed-upon set of values for the standard astronomical parameters to avoid such
additional nuisance parameters [197]. Nevertheless, background and signal may have
shared nuisance parameters, such as the nuclear quenching factors or the detector
resolution. In the following θ denotes the set of nuisance parameters and we write
L(µ, θ), omitting all fixed parameters in the notation.

The likelihood function itself is not suited as a test statistic, as its value is not
an absolute measure of the compatibility of the hypothesis and the data. We can
only use it as a measure of comparison, i.e., hypothesis Hµ1 is more compatible with
the data than Hµ2 if L(µ1, θ̂1) > L(µ2, θ̂2), with θ̂1 (θ̂2) the ML estimates of the
nuisance parameters under the assumption of the respective hypothesis. We thus
define the profile likelihood ratio (PLR) as

λ(µ) =
L(µ, ˆ̂θ(µ))
L(µ̂, θ̂) . (9.19)

The denominator of λ(µ) is the unconditional likelihood function with both µ̂ and θ̂

their respective ML estimators, and thus the set of best fitting parameters under the
given hypothesis (i.e., the likelihood function is maximal). The nominator gives the
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likelihood under the condition of fixed µ, and only the values of ˆ̂θ are ML estimators,
with their values generally dependent on the value of µ. The hypothesis Hµ is thus
compared to the best fitting hypothesis Hµ̂, where both hypotheses have the same set
of fixed parameters (θbck∪θχ)\ (µ∪θ). If the tested µ is compatible with the data, the
PLR is close to one; for bad agreement, λ(µ) goes to zero. To find a p-value associated
with Hµ and ultimately set an exclusion limit on µ, we need to find the sampling
distribution f(λ(µ)|µ) of the PLR under the assumption of Hµ. This can be done
via MC simulations of the background plus a superimposed artificial signal with the
characteristics of Hµ and a subsequent study of the distribution of the resulting PLRs.
One can avoid such a computationally expensive simulation by defining the test statistic

tµ = −2 log(λ(µ)), (9.20)

which was shown by Wilk [198] to asymptotically follow a χ2 distribution where the
number of degrees of freedom (d.o.f.) is given by the size of the set µ. In the following,
we will restrict ourselves to µ being a single parameter and thus d.o.f.=1.

For the calculation of upper exclusion limits, we make further adjustments to the
test statistic tµ according to [199] and define the new test statistic

qµ =

{︄
−2 log(λ(µ)) µ ≥ µ̂

0 µ < µ̂ .
(9.21)

Since we want to set only an upper limit, any values µ < µ̂ should inherently not
be a part of the rejection region of the test statistic.5 In cases where only positive
values of µ are allowed, i.e., if µ describes a physical cross-section, we have to
further adjust the test statistic to

q̃µ =

⎧⎪⎪⎨⎪⎪⎩
−2 log L(µ, ˆ̂θ(µ))

L(0, ˆ̂θ(0) µ̂ < 0

−2 log(λ(µ)) µ ≥ µ̂

0 µ < µ̂ .

(9.22)

The above equation implies that if the best fit of µ to the data is negative, µ̂ is
automatically adjusted to zero. We note that this is not necessarily equivalent to
putting a lower bound on µ in the MLE. In [199], it was shown that the test statistic
qµ is asymptotically distributed according to

f(qµ|µ) = 1

2
δ(qµ) +

1

2

1√
2π

1

qµ
e−qµ/2 (9.23)

=
1

2
δ(qµ) +

1

2
χ2(qµ, d.o.f. = 1) ,

5We note that this statement and eq. (9.21) are only valid for signal models which scale directly in
strength with µ. For more complex relations between the scaling of the signal and the parameter of
interest µ, the reader is referred to [77].
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Figure 9.9: Cumulative density function of the PLR test statistics tµ and qµ as defined in
equations eq. (9.20) and eq. (9.21), respectively. The two-sided test statistic tµ follows the
CDF of a χ2 distribution (pink), and the one-sided test statistic qµ follows the CDF of a
standard normal distribution (blue). The horizontal grey lines mark confidence levels of 80,
90, and 95 %, and the vertical gray lines mark the respective values of the test statistic on
the x-axis.

with corresponding CDF F (qµ|µ) = Φ(
√
qµ). This distribution differs from the χ2 dis-

tribution predicted by Wilk’s theorem for tµ. For q̃µ, one finds yet another distribution
(see eq. (63) in [199]), which can be approximated by eq. (9.23) in most cases.

For the implementation in limitless, the χ2 distribution, according to Wilk, is used
to model the PDF of the test statistics qµ and q̃µ, as it allows for generalization to
higher-dimensional or two-sided limits. This choice of χ2 over eq. (9.23) is valid since it
will always return the more conservative upper limit. This statement can be concluded
from the respective CDFs in Fig. 9.9 and the fact that all above-defined test statistics
increase with increasing incompatibility between data and tested hypothesis.6 Fig. 9.9
also displays the relation between the distribution for tµ (χ2) of a two-sided test and qµ
(eq. (9.23)) of a one-sided test: the value tµ = qµ = 1.64 corresponds to a confidence
level of 0.8 for the two-sided test and to a confidence level of 0.9 for the one-sided test.
To summarize, to find an upper limit of the desired confidence level CL on µ, we solve

qµmax = PPFχ2(CL, d.o.f. = dim(µ)) , (9.24)

for µmax with PPFχ2 the percent point function (inverse of the CDF, quantile) of the
χ2 distribution.

6The conservative choice of two-sided over one-sided limit is also recommended in [197].
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We want to discuss how eq. (9.24) can be solved in practice. A good starting point
is calculating the unconditional (log-)likelihood function L(µ̂, θ̂), which gives the
denominator in the calculation of the test statistic independent of µ. One may then
scan the parameter space around the unconditional minimum to find the µ for which
eq. (9.24) holds. In each scanning iteration, the negative log-likelihood needs to
be minimized with respect to all nuisance parameters. This procedure is denoted
as profiling, and the iminuit package offers a routine to perform such a scan with
mnprofile(). The main flaw of this approach is that we do not know a priori the
extent of the parameter space of µ we need to scan over, nor the number of evaluations
on the parameter space required to achieve a sufficient precision on µmax. This can
lead to an extremely high computational cost for calculating a limit under a single
hypothesis. We thus propose a different approach, rearranging eq. (9.24) to

qµ − PPFχ2(CL, d.o.f.) = 0 , (9.25)

and finding ourselves with a root-finding problem. When setting an upper limit on a
one-dimensional parameter, qµ is expected to be a strictly monotonically increasing
function. Thus, a standard root-finding algorithm may be used. In limitless Brent’s
method [195] is implemented to search the interval [µlow = µ̂, µup) ∋ µmax with
qµlow − PPFχ2(CL, d.o.f.) < 0 and qµup − PPFχ2(CL, d.o.f.) > 0. For the upper bound
of the search interval µup, we use the respective limit on µ set by a cut-and-count
analysis. We expect the cut-and-count limit to be more incompatible with the data than
µmax and thus fulfill the upper bound requirement to have a positive functional value.
If the cut-and-count limit is stricter than the PLR limit, the boundary requirement
is not met, and Brent’s method fails. We account for such cases in limitless by
implementing algorithm 1. Brent’s method then usually converges to a limit of high
precision within less than ten steps, significantly reducing the computational cost
compared to the parameter scan. This approach can also be extended to calculating
two-sided exclusion limits as demonstrated in [77].

Algorithm 1: Robust Brent’s method for upper exclusion limit
Input : Function f(µ) according to eq. (9.25); initial µlow and µup

Output : Limit on µ
1 while True do
2 try
3 limit = Brent(f(µ), interval= [µlow, µup])
4 break

5 catch Brent failed
6 µlow = µup

7 increase µup
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The PLR limit calculation is implemented in a universal and easily extendable
way in limitless, allowing the calculation of exclusion limits on parameters of various
DM models. For example, limitless was used for a recent study of self-interacting DM
using CRESST and XENON1T data [192]. In principle, any one- or two-dimensional
data set can be used for the calculation, as long as a complete likelihood function
describing the background can be constructed within limitless. It is important to note
that the PLR approach, as described above, and Wilk’s theorem are only valid if the
constructed likelihood function can reflect the underlying truth for the correct choice
of the parameters µ ∪ θ. If this is not ensured, one should revert to MC simulations
instead of asymptotic formulae to construct the test statistic’s distribution [197]. For
run 376, we assume that the asymptotic formulae are valid, as we do not observe any
unexpected signatures in the data. This can, however, not be said for data recorded
in recent CRESST-III campaigns, where an unexpected and (so far) unexplainable
excess of events at low energies is observed. While some phenomenological descriptions
of the LEE were stated earlier in this work (see eq. (7.22) and eq. (7.23)), we are
hesitant to state that these do indeed reflect the true underlying distribution. As
long as the origin of the LEE is unclear and no physically motivated parametrization
exists, it is advisable to revert to the more conservative methods by Yellin for the
calculation of limits from CRESST data. It was shown in [169], that in the presence
of a strong LEE, the PLR limit might not even give a significant advantage over the
optimum interval limit due to the similar spectral shape of the LEE and a potential
DM scattering signal in the standard scenario.

In Fig. 9.10, we show the PLR limit (orange) from the run 376 data in comparison
with the optimum interval limit (dark blue) and the prognosticated sensitivity for a
measurement without an 55Fe source (pink, also an optimum interval limit). We observe
a significant improvement compared to the limits calculated with Yellin’s methods.
Moreover, the 55Fe feature is not present in the PLR limit, indicating that the PLR
method can indeed differentiate background from a potential signal. To conclude this
chapter, we want to emphasize that the PLR limit from the run 376 data is less than
two orders of magnitude away from the parameter space favored by DAMA/LIBRA
for a net exposure of only 11.6 g d. The achieved sensitivity is especially impressive
when compared to the limit calculated by the COSINE collaboration displayed in
green in Fig. 1.11 that was acquired with an exposure of over 6000 kg d.
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Figure 9.10: As in Fig. 9.7, the solid dark blue line is the optimum interval limit calculated
from the acceptance region of run 376. The solid orange line marks the limit calculated with
the PLR test statistic under the assumption of Wilks approximation. The pink (purple)
shaded area corresponds to the 1σ (2σ) confidence bands for an optimum interval limit
calculated from simulated data of a run 376-like experiment without an 55Fe source (more
information in the main text). The light blue filled areas mark the parameter space favored
by the DAMA/LIBRA experiment [189] as reported in [73]. All limits are 90% confidence
level and were calculated in the standard SI DM-nucleus scattering scenario, including
detector effects.
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Conclusion

This thesis analyzed light quenching in three cryogenic, scintillating detector modules
within the context of direct DM detection. The detectors studied are representative
of those used in the CRESST and COSINUS experiments, detailed in chapter 2
and chapter 3, respectively.

Understanding the expected light output for electron and nuclear scattering
events is crucial in both CRESST and COSINUS for signal region selection, making
the production mechanism of scintillation light a central topic of this thesis. In
chapter 4, we reviewed the current understanding of this process. Although theoretical
models exist, this chapter concludes that scintillation light quenching is highly target-
and crystal-specific, often requiring data-driven, phenomenological descriptions for
accurate modeling. Accordingly, this thesis analyzed data from three dedicated
measurements using CaWO4 and NaI target crystals to extract light quenching
information for various ionizing particles in these materials. The setup details of
these measurements were discussed in chapter 5, and the raw data analysis procedures
were described in chapter 6.

In the subsequent chapters, the study of light quenching was integrated with
the second major focus of this thesis: the Python-based analysis software package
limitless. Among its various features, limitless enables users to perform maximum
likelihood estimations on CRESST- and COSINUS-like data to extract information on
backgrounds, light quenching, or potential excesses. In chapter 7, the mathematical
and physical foundations of the MLE were outlined, followed by a discussion of the
results from three test measurements in chapter 8.

The goal of the measurements with CaWO4 crystals was to study the light
quenching of α-particles at low energies. This information was used to estimate
the potential background leakage of degraded α particles into the acceptance region.
Our findings suggest that for the latest generation of CRESST-III modules, which
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employ high-performance light detectors, the expected leakage is ≲ 5%. The CRESST
simulation team is currently investigating low-energy α backgrounds in CRESST
detector modules to provide an absolute estimate of expected α events in the acceptance
region for future CRESST iterations.

The exceptional performance and resolution of the NaI remoTES detector module
allowed for an energy-dependent evaluation of quenching factors down to 4 keV. The
maximum likelihood analysis indicated an absence of non-proportionality (with respect
to electron quenching) and a corresponding lack of gamma quenching, contradicting
recent findings for doped NaI at room temperature by the COSINE collaboration [188].
Further measurements, ideally with an even lower detection threshold, are planned to
determine whether this observed lack of non-proportionality is an inherent feature of
COSINUS’ NaI crystals at mK temperatures or if it results from the measurement
setup or analysis chain. Additionally, the COSINUS R&D measurement revealed a
strong energy dependence of the Na quenching factor. The decrease in scintillation
light output at lower energies aligns with results from other groups [108, 109, 152]
but contrasts sharply with the constant quenching factor assumed by DAMA/LIBRA.
In subsection 8.2.3, we tested the impact of such energy dependence of the Na
quenching factor on the DAMA/LIBRA modulation signal, underscoring the critical
importance of precise knowledge of the quenching factors in any model-independent
comparison with the DAMA/LIBRA results.

In the final chapter, we focused on a more DM-specific topic: the calculation
of exclusion limits. We discussed four different methods – Poisson limit, Yellin’s
maximum gap and optimum interval methods, and profile likelihood ratio limits
– to calculate upper and two-sided exclusion limits in the presence of (unknown)
backgrounds. For each method, we provided details on the mathematical framework
and its implementation in limitless, discussing the advantages and drawbacks of each,
as demonstrated by data from the first COSINUS underground test measurement. The
low background data and successful event-by-event discrimination in this measurement
allowed us to set the first COSINUS limit on the SI DM-nucleus scattering cross
section, which is only two orders of magnitude from the parameter space favored
by DAMA/LIBRA with a net exposure of just 11.6 gd. In addition to the limit
published in [119], calculated using Yellin’s optimum interval method, this thesis
presents an improved PLR limit. The PLR analysis confirmed that the sensitivity
of the R&D detector module was primarily limited by background events from the
55Fe calibration source. These results from COSINUS’ first underground measurement
provide confidence that the experiment will achieve the sensitivity required for a
model-independent test of the DAMA/LIBRA signal claim.

To summarize, this thesis provides new insights into the scintillation light quenching
of heavy ionizing particles in CaWO4 and NaI, crucial for background discrimination
in CRESST and COSINUS and of general interest to experiments using inorganic
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scintillators. Additionally, the limitless package offers a comprehensive and user-
friendly analysis toolkit for the CRESST and COSINUS experiments, with the
potential for adaptation to other rare event searches. The open source release of this
software is in preparation and will include additional functionalities, such as tools
for discovery analysis and the ability to combine data from multiple detectors in the
calculation of PLR limits. Limitless has been used in the calculations of various recently
published results [58, 60, 85, 118, 119, 192, 193] and will be an essential tool in future
iterations of CRESST and COSINUS’ cross-check of the DAMA/LIBRA signal claim.
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A
MLE - Detailed results and parameters

This appendix reports the full set of parameters used in the MLE of runs 347, 600,
and 376. The parameters are listed with their fitted/assigned value, error, bounds
and unit and whether they were fixed or not (open) in the fit. Asymmetrical errors
were calculated using the MINOS module of iminuit, and symmetrical errors were
extracted from the Hesse matrix. If the calculation of the MINOS error fails (e.q.
due to a large parameter correlation) we revert to the Hesse error. In addition to
the parameters, detailed figures of the data and the parametric descriptions of the
MLE are shown for both background and calibration data sets. For more details on
the MLE setup in general and the physics results the reader is referred to Chapters
7 and 8. The equations introducing the parameters can be found in Sections 4.3
and 7.2.1-7.2.3, as well as eq. (7.38).

A.1 Run 347

Parameter Value Error Bounds Unit Fixed

σp,0 0.1272 keV 1
σp,1 6.93× 10−3 ±0.04× 10−3 [0.01, 0.01] 1 0
σl,0 0.7679 keVee 1
σl,1 0.2661 ±0.0026 [0.0, 0.5] keVee 0
σl,2 7.3660× 10−3 ±0.028× 10−3 [0.0, 0.0] 1 0
Ethr 2.0 keV 1
L0 1.251656 −0.035× 10−3

+0.035× 10−3

[0.8, 1.4] keVee
keV 0

L1 80.9× 10−6
−1.3× 10−6
+1.3× 10−6

[-0.01, 0.01] keVee

keV2 0

Continued on the next page
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Parameter Value Error Bounds Unit Fixed

NPa 0.2092 −0.8× 10−3
+0.8× 10−3

[0.1, 1.0] 1 0

NPd 68.06 −0.25
+0.25 [5.0, 80.0] keV 0

Q0 0.83312 ±0.00015 [0.8, 1.0] 1 0
Q1 69.5× 10−6 ±0.8× 10−6 [-0.1, 0.1] 1 0
exp. bck 2.293 kg d 1
exp. γ-cal 0.458 kg d 1
P0,bck 184.0 ±0.7 [0.0, 300] keV−1 0
P1,bck -0.3529 ±0.0025 [-1.0, 5.0] keV−2 0
P0,γ-cal 47.531 ±0.34 [0.0, 80.0] keV−1 0
P1,γ-cal -0.0975 ±0.0012 [-1.0, 1.0] keV−2 0
wel 5.063 ±0.021 [1.0, 10.0] keVee 0
del 43.3 ±0.8 [1.0, 700] keV 0
ael,bck 258 ±4 [0.0, 1000] keV−1 0
ael,γ-cal 16.6 ±1.9 [0.0, 100] keV−1 0
η 0.03 1 1
cα,bck 7.82 ±0.12 [0.0, 20.0] keV−1 0
mα,bck -0.0107 ±0.0004 [-0.1, 0.0] keV−2 0
cα,γ-cal 1.64 ±0.05 [0.0, 10.0] keV−1 0
mα,γ-cal -0.00242 ±0.00020 [-0.0, 0.0] keV−2 0
A0 0.1718 −0.4× 10−3

+0.4× 10−3

[0.0, 1.0] 1 0

A1 0.5261
0.0028
+0.0028 [0.0, 0.8] 1 0

A2 297.7 −3.2
+3.2 [1.0, 500] keV 0

ε 1.0 1 1
QFNd 0.066 ±0.004 [0.0, 0.1] 1 0
aNd 0.0 1 1
dNd 1.0 keV 1
aNd,bck 424 ±15 [0.0, 1000] keV−1 0
aNd,γ-cal 87 ±7 [0.0, 200] keV−1 0
dNd,bck = dNd,γ-cal 533 ±10 [100, 1000] keV 0
aµ/n,bck 440.5 ±1.9 [0.0, 600] keV−1 0
aµ/n,γ-cal 2.645281 ±1.0 [0.0, 15.0] keV−1 0
bµ/n 0.07122 ±0.00022 [0.0, 0.1] keV−1 0
cµ/n 192.9 ±1.4 [80.0, 250] keV 0
dµ/n 0.01482 ±0.00004 [0.0, 0.1] keV 0
aµ/n2,bck 238.4 ±1.5 [0.0, 500] keV−1 0
aµ/n2,γ-cal 54.7 ±0.7 [0.0, 100] keV−1 0

Continued on the next page
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Parameter Value Error Bounds Unit Fixed

bµ/n2 0.04547 ±0.00017 [0.0, 0.1] keV−1 0
cµ/n2 498 ±4 [350, 600] keV 0
dµ/n2 8398× 10−6 ±19× 10−6 [0.0, 0.1] keV 0
Eγ (179Ta, 2.7 keV) 2.93 ±0.04 [2.4, 3.1] keV 0
aγ,bck (179Ta, 2.7 keV) 72 ±14 [0.0, 100] keV−1 0
aγ,γ-cal (179Ta, 2.7 keV) 3 ±6 [0.0, 10.0] keV−1 0
Eγ (41Ca, 3.6 keV) 3.49 ±0.06 [3.4, 3.8] keV 0
aγ,bck (41Ca, 3.6 keV) 47 ±12 [0.0, 100] keV−1 0
aγ,γ-cal (41Ca, 3.6 keV) 0.0 ±1 [0.0, 1.0] keV−1 0
Eγ (281W, 6.2 keV) 6.152 ±0.026 [5.9, 6.3] keV 0
aγ,bck (281W, 6.2 keV) 117 ±14 [0.0, 150] keV−1 0
aγ,γ-cal (281W, 6.2 keV) 4 ±7 [0.0, 10.0] keV−1 0
Eγ (Cu, 8.05 keV) 8.285 ±0.015 [7.8, 8.4] keV 0
aγ,bck (Cu, 8.05 keV) 223 ±18 [0.0, 1000] keV−1 0
aγ,γ-cal (Cu, 8.05 keV) 10 ±9 [0.0, 100] keV−1 0
Eγ (179Ta, 11.3 keV) 11.22 ±0.04 [10.7, 11.8] keV 0
aγ,bck (179Ta, 11.3 keV) 79 ±16 [0.0, 1000] keV−1 0
aγ,γ-cal (179Ta, 11.3 keV) 0.0 ±0.8 [0.0, 1.0] keV−1 0
Eγ (228Ra, 13.5 keV) 13.508 ±0.013 [13.3, 13.9] keV 0
aγ,bck (228Ra, 13.5 keV) 518 ±27 [0.0, 2000] keV−1 0
aγ,γ-cal (228Ra, 13.5 keV) 11 ±14 [0.0, 200] keV−1 0
Eγ (212Pb, ?) 15.921 ±0.026 [15.0, 16.5] keV 0
aγ,bck (212Pb, ?) 189 ±20 [0.0, 1000] keV−1 0
aγ,γ-cal (212Pb, ?) 0.0 ±0.8 [0.0, 1.0] keV−1 0
Eγ (281W, ?) 16.395 ±0.016 [15.0, 17.0] keV 0
aγ,bck (281W, ?) 377 ±26 [0.0, 1000] keV−1 0
aγ,γ-cal (281W, ?) 0.0 ±0.8 [0.0, 1.0] keV−1 0
Eγ (212Pb, ?) 16.795 ±0.015 [16.5, 17.5] keV 0
aγ,bck (212Pb, ?) 383 ±27 [0.0, 1000] keV−1 0
aγ,γ-cal (212Pb, ?) 20 ±14 [0.0, 100] keV−1 0
Eγ (281W, ?) 17.340099 ±0.02 [16.5, 18.5] keV 0
aγ,bck (281W, ?) 279 ±22 [0.0, 1000] keV−1 0
aγ,γ-cal (281W, ?) 3 ±11 [0.0, 100] keV−1 0
Eγ (212Pb, ?) 18.25 ±0.04 [17.5, 18.5] keV 0
aγ,bck (212Pb, ?) 153 ±18 [0.0, 1000] keV−1 0
aγ,γ-cal (212Pb, ?) 7 ±9 [0.0, 100] keV−1 0
Eγ (212Pb, ?) 19.626 ±0.028 [18.6, 20.6] keV 0

Continued on the next page
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Parameter Value Error Bounds Unit Fixed

aγ,bck (212Pb, ?) 24 ±20 [0.0, 1000] keV−1 0
aγ,γ-cal (212Pb, ?) 1 ±7 [0.0, 10.0] keV−1 0
Eγ (231Th, 25.6 keV) 25.8 ±0.1 [25.4, 26.2] keV 0
aγ,bck (231Th, 25.6 keV) 51 ±17 [0.0, 200] keV−1 0
aγ,γ-cal (231Th, 25.6 keV) 0.0 ±1 [0.0, 1.0] keV−1 0
Eγ (234Th, 33.1 keV) 33.52 ±0.07 [32.0, 34.0] keV 0
aγ,bck (234Th, 33.1 keV) 96 ±17 [0.0, 500] keV−1 0
aγ,γ-cal (234Th, 33.1 keV) 7 ±8 [0.0, 10.0] keV−1 0
Eγ (234Th, 34.4 keV) 34.35 ±0.08 [34.0, 36.0] keV 0
aγ,bck (234Th, 34.4 keV) 88 ±17 [0.0, 500] keV−1 0
aγ,γ-cal (234Th, 34.4 keV) 10 ±9 [0.0, 100] keV−1 0
Eγ (210Pb, 46.5 keV) 46.68 ±0.04 [46.0, 47.0] keV 0
aγ,bck (210Pb, 46.5 keV) 401 ±27 [0.0, 1000] keV−1 0
aγ,γ-cal (210Pb, 46.5 keV) 0.0 ±8 [0.0, 10.0] keV−1 0
Eγ (241Am, 59.5 keV) 59.212 ±0.016 [58.8, 59.6] keV 0
aγ,γ-cal (241Am, 59.5 keV) 1604 ±50 [0.0, 5000] keV−1 0
as,γ-cal (241Am, 59.5 keV) 187 ±10 [0.0, 500] keV−1 0
ws,γ-cal (241Am, 59.5 keV) 8.15 ±0.32 [0.0, 56.0] keV 0
Eγ (241Am, artif.) 60.086 ±0.019 [59.5, 62.0] keV 0
aγ,γ-cal (241Am, artif.) 1180 ±40 [0.0, 10000] keV−1 0
Eγ (234Th, 63.3 keV) 63.03 ±0.04 [62.3, 63.4] keV 0
aγ,bck (234Th, 63.3 keV) 435 ±33 [0.0, 2000] keV−1 0
aγ,γ-cal (234Th, 63.3 keV) 0.0 ±0.9 [0.0, 1.0] keV−1 0
Eγ (179Ta, 65.4 keV) 63.93 ±0.05 [63.8, 64.6] keV 0
aγ,bck (179Ta, 65.4 keV) 349 ±32 [0.0, 1000] keV−1 0
aγ,γ-cal (179Ta, 65.4 keV) 0.0 ±0.6 [0.0, 1.0] keV−1 0
Eγ (281W, 74.0 keV) 73.83 ±0.08 [73.0, 74.0] keV 0
aγ,bck (281W, 74.0 keV) 370 ±40 [0.0, 1000] keV−1 0
aγ,γ-cal (281W, 74.0 keV) 63 ±19 [0.0, 100] keV−1 0
Eγ (212Pb, 77.1 keV) 75.42 ±0.04 [74.0, 76.0] keV 0
aγ,bck (212Pb, 77.1 keV) 938 ±40 [0.0, 5000] keV−1 0
aγ,γ-cal (212Pb, 77.1 keV) 0.0 ±0.5 [0.0, 1.0] keV−1 0
Eγ (212Pb, 77.1 keV) 77.34 ±0.05 [76.0, 78.0] keV 0
aγ,bck (212Pb, 77.1 keV) 862 ±40 [0.0, 5000] keV−1 0
aγ,γ-cal (212Pb, 77.1 keV) 30 ±21 [0.0, 100] keV−1 0
Eγ (226Ra 83.8 keV) 84.85 ±0.08 [82.0, 86.0] keV 0
aγ,bck (226Ra 83.8 keV) 441 ±40 [0.0, 1000] keV−1 0

Continued on the next page
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Parameter Value Error Bounds Unit Fixed

aγ,γ-cal (226Ra 83.8 keV) 7 ±6 [0.0, 10.0] keV−1 0
Eγ (212Pb, 87.3 keV) 87.49 ±0.08 [86.5, 88.5] keV 0
aγ,bck (212Pb, 87.3 keV) 506 ±40 [0.0, 1000] keV−1 0
aγ,γ-cal (212Pb, 87.3 keV) 54 ±21 [0.0, 100] keV−1 0
Eγ (228Ac, 90.0 keV) 90.26 ±0.10 [88.5, 92.0] keV 0
aγ,bck (228Ac, 90.0 keV) 375 ±40 [0.0, 1000] keV−1 0
aγ,γ-cal (228Ac, 90.0 keV) 29 ±20 [0.0, 100] keV−1 0
Eγ (234Th, 92.4 keV) 92.75 ±0.04 [92.0, 94.0] keV 0
aγ,bck (234Th, 92.4 keV) 1190 ±50 [0.0, 5000] keV−1 0
aγ,γ-cal (234Th, 92.4 keV) 52 ±27 [0.0, 500] keV−1 0
Eγ (228Ac, 93.4 keV) 93.79 ±0.05 [91.5, 95.5] keV 0
aγ,bck (228Ac, 93.4 keV) 956 ±50 [0.0, 2000] keV−1 0
aγ,γ-cal (228Ac, 93.4 keV) 0.0 ±0.8 [0.0, 1.0] keV−1 0
Eγ (228Ac, 99.5 keV) 99.59 ±0.23 [98.5, 100.5] keV 0
aγ,bck (228Ac, 99.5 keV) 104 ±40 [0.0, 1000] keV−1 0
aγ,γ-cal (228Ac, 99.5 keV) 26 ±19 [0.0, 100] keV−1 0
Eγ (228Ac, 129.1 keV) 129.01 ±0.16 [127.5, 131.5] keV 0
aγ,bck (228Ac, 129.1 keV) 410 ±50 [0.0, 1000] keV−1 0
aγ,γ-cal (228Ac, 129.1 keV) 26 ±25 [0.0, 100] keV−1 0
Eγ (235U, 143.8 keV) 143.98 ±0.19 [142.5, 145.5] keV 0
aγ,bck (235U, 143.8 keV) 360 ±50 [0.0, 1000] keV−1 0
aγ,γ-cal (235U, 143.8 keV) 0.0 ±0.8 [0.0, 1.0] keV−1 0
Eγ (226Ra, 186.2 keV) 185.64 ±0.04 [184.0, 187.0] keV 0
aγ,bck (226Ra, 186.2 keV) 2630 ±80 [0.0, 10000] keV−1 0
aγ,γ-cal (226Ra, 186.2 keV) 90 ±40 [0.0, 200] keV−1 0
Eγ (228Ac, 209.3 keV) 209.18 ±0.10 [207.0, 211.0] keV 0
aγ,bck (228Ac, 209.3 keV) 1030 ±70 [0.0, 5000] keV−1 0
aγ,γ-cal (228Ac, 209.3 keV) 77 ±34 [0.0, 500] keV−1 0
Eγ (212Pb, 238.6 keV) 238.987 ±0.016 [237.0, 240.0] keV 0
aγ,bck (212Pb, 238.6 keV) 15650 ±130 [0.0, 20000] keV−1 0
aγ,γ-cal (212Pb, 238.6 keV) 430 ±70 [0.0, 1000] keV−1 0
as,bck (212Pb, 238.6 keV) 172.4 ±3.1 [0.0, 400] keV−1 0
as,γ-cal (212Pb, 238.6 keV) 29.4 ±1.5 [0.0, 100] keV−1 0
ws,bck (212Pb, 238.6 keV) 238.0 [0.0, 238.0] keV 1
ws,γ-cal (212Pb, 238.6 keV) 238.0 [0.0, 238.0] keV 1
Eγ (228Ac, 270.2 keV) 270.62 ±0.10 [268.0, 273.0] keV 0
aγ,bck (228Ac, 270.2 keV) 1397 ±60 [0.0, 10000] keV−1 0

Continued on the next page
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Parameter Value Error Bounds Unit Fixed

aγ,γ-cal (228Ac, 270.2 keV) 69 ±32 [0.0, 200] keV−1 0
Eγ (208Tl, 277.4 keV) 278.18 ±0.16 [275.0, 280.0] keV 0
aγ,bck (208Tl, 277.4 keV) 885 ±60 [0.0, 2000] keV−1 0
aγ,γ-cal (208Tl, 277.4 keV) 0.0 ±0.6 [0.0, 1.0] keV−1 0
Eγ (214Pb, 295.2 keV) 295.74 ±0.06 [293.0, 298.0] keV 0
aγ,bck (214Pb, 295.2 keV) 3600 ±80 [0.0, 10000] keV−1 0
aγ,γ-cal (214Pb, 295.2 keV) 0.0 ±0.5 [0.0, 1.0] keV−1 0
Eγ (212Pb, 300.1 keV) 300.72 ±0.18 [298.0, 303.0] keV 0
aγ,bck (212Pb, 300.1 keV) 763 ±60 [0.0, 1000] keV−1 0
aγ,γ-cal (212Pb, 300.1 keV) 105 ±32 [0.0, 1000] keV−1 0
Eγ (228Ac, 328.1 keV) 329.02 ±0.14 [327.0, 332.0] keV 0
aγ,bck (228Ac, 328.1 keV) 1260 ±60 [0.0, 10000] keV−1 0
aγ,γ-cal (228Ac, 328.1 keV) 0.0 ±1 [0.0, 1.0] keV−1 0
Eγ (228Ac, 338.4 keV) 339.50 ±0.05 [334.0, 342.0] keV 0
aγ,bck (228Ac, 338.4 keV) 3910 ±80 [0.0, 10000] keV−1 0
aγ,γ-cal (228Ac, 338.4 keV) 170 ±40 [0.0, 1000] keV−1 0
Eγ (214Pb, 351.9 keV) 353.28 ±0.04 [349.0, 355.0] keV 0
aγ,bck (214Pb, 351.9 keV) 6560 ±90 [0.0, 10000] keV−1 0
aγ,γ-cal (214Pb, 351.9 keV) 170 ±50 [0.0, 1000] keV−1 0
Eγ (227Ac, 9.3 keV) 10.64 ±0.07 [9.0, 12.5] keV 0
aβ/γ,bck (227Ac, 9.3 keV) 247 ±6 [0.0, 250] keV−1 0
aβ/γ,γ-cal (227Ac, 9.3 keV) 0.0 [0.0, 1.0] keV−1 1
Qβ/γ (227Ac, 9.3 keV) 45.5 keV 1
Eγ (227Ac, 24.3 keV) 24.95 ±0.21 [23.3, 25.3] keV 0
aβ/γ,bck (227Ac, 24.3 keV) 13 ±6 [0.0, 500] keV−1 0
aβ/γ,γ-cal (227Ac, 24.3 keV) 0.0 [0.0, 1.0] keV−1 1
Qβ/γ (227Ac, 24.3 keV) 44.8 keV 1
Eγ (220Pb, 46.5 keV) 44.00 ±0.03 [44.0, 47.5] keV 0
aβ/γ,bck (220Pb, 46.5 keV) 171 ±6 [0.0, 200] keV−1 0
aβ/γ,γ-cal (220Pb, 46.5 keV) 0.0 [0.0, 1.0] keV−1 1
Qβ/γ 63.5 keV 1

Table A.1: Full set of parameters for the likelihood function describing the run 347 data.
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A.2 Run 600

Parameter Value Error Bounds Unit Fixed

σp,0 0.696 −0.027
+0.027 [0.1, 0.8] keV 0

σp,1 0.0 −0.5
+0.5 [0.0, 0.5] 1 0

σl,0 1.465 −0.023
+0.023 [0.7, 1.8] keVee 0

σl,1 0.727 −0.007
+0.007 [0.0, 2.0] keVee 0

σl,2 13.79× 10−3
−0.04× 10−3
+0.04× 10−3

[0.0, 0.01] 1 0

Ethr 3.0 keV 1

L0 1.17004 −0.00032
+0.00475 [0.8, 1.3] keVee

keV 0

L1 −366.0× 10−6
−1.7× 10−6
+1.7× 10−6

[-0.01, 0.01] keVee

keV2 0

NPa 0.09700 −0.0060
+0.0031 [0.0, 0.5] 1 0

NPd 43.1 −1.0
+4.0 [0.0, 70.0] keV 0

Q0 935.1× 10−3
−0.4× 10−3
+0.4× 10−3

[0.8, 1.0] 1 0

Q1 −12.0× 10−6
−2.1× 10−6
+2.1× 10−6

[-0.1, 0.1] 1 0

exp. bck 0.0228 kg d 1

exp. n-cal 0.0043 −0.18× 10−3
+0.18× 10−3

[0.0, 0.012] kg d 0

P0,bck 111.6 −0.6
+0.6 [0.0, 140] keV−1 0

P1,bck −0.183 −0.004
+0.004 [-1.0, 0.0] keV−2 0

P0,n-cal 52.7 −0.4
+0.4 [0.0, 100] keV−1 0

P1,n-cal −0.1469 −0.0021
+0.0021 [-5.0, 0.0] keV−2 0

wel 46.9 −2.9
+2.9 [1.0, 100] keVee 0

del 103 −8
+8 [0.0, 1000] keV 0

ael,bck 2.72 −0.23
+0.23 [0.0, 10.0] keV−1 0

ael,n-cal 0.55 −0.14
+0.14 [0.0, 1.0] keV−1 0

η 0.10 1 1

cα,bck 3.06 −0.09
+0.09 [0.0, 10.0] keV−1 0

mα,bck −3.8× 10−3
−0.5× 10−3
+0.5× 10−3

[-0.01, 0.0] keV−2 0

cα,n-cal 1.12 −0.05
+0.05 [0.0, 10.0] keV−1 0

mα,n-cal −1.86× 10−3
−0.27× 10−3
+0.27× 10−3

[-0.01, 0.0] keV−2 0

A0 0.2125 −0.0011
+0.0011 [0.1, 0.3] 1 0

A1 0.377 −0.024
+0.027 [0.3, 0.6] 1 0

Continued on the next page
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Parameter Value Error Bounds Unit Fixed

A2 146 −5
+5 [100, 400] keV 0

ε 0.944 −0.005
+0.005 [0.5, 1.5] 1 0

QFCa 0.056 1 1
aCa −0.1887 1 1
dCa 801.3 keV 1

aCa,n-cal 100 −4
+4 [0.0, 500] keV−1 0

aCa,bck 12.7 −1.2
+1.2 [0.0, 100] keV−1 0

dCa,n-cal 799 −20
+20 [0.0, 2000] keV 0

dCa,bck 925 −60
+60 [0.0, 2000] keV 0

QFW 0.0196 1 1
aW 0.0 1 1
dW 1.0 keV 1

aW,n-cal 660 −60
+60 [0.0, 1200] keV−1 0

aW,bck 4 −5
+5 [0.0, 1000] keV−1 0

dW,n-cal 651 −40
+40 [0.0, 800] keV 0

dW,bck 1200 −700
+700 [0.0, 20000] keV 0

QFO 0.0739 1 1
aO −0.7088 1 1
dO 567.1 keV 1

aO,n-cal 48.7 −0.9
+0.9 [0.0, 500] keV−1 0

aO,bck 6.32 −0.34
+0.34 [0.0, 20.0] keV−1 0

dO,n-cal 1200 −16
+16 [0.0, 5000] keV 0

dO,bck 1361 −50
+50 [0.0, 5000] keV 0

QFNd 0.063 1 1
aNd 0.0 1 1
dNd 1.0 keV 1

aNd,n-cal 4600 −1600
+1600 [0.0, 50000] keV−1 0

aNd,bck 13100 −2500
+2500 [0.0, 50000] keV−1 0

dNd,bck = dNd,n-cal 85 −4
+4 [0.0, 800.0] keV 0

aµ/n,bck 781 −9
+9 [0.0, 1000] keV−1 0

aµ/n,n-cal 254 −7
+7 [0.0, 1000] keV−1 0

bµ/n 0.013394 −0.011× 10−3
+0.011× 10−3

[0.0, 0.1] keV−1 0

cµ/n 106.61 −0.09
+0.09 [60.0, 300] keV 0

Continued on the next page
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Parameter Value Error Bounds Unit Fixed

dµ/n 0.01539 −0.05× 10−3
+0.05× 10−3

[0.0, 0.2] keV 0

aµ/n2,bck 389 −8
+8 [0.0, 1000] keV−1 0

aµ/n2,n-cal 278 −5
+5 [0.0, 1000] keV−1 0

bµ/n2 0.034983 −0.026× 10−3
+0.026× 10−3

[0.0, 0.2] keV−1 0

cµ/n2 721.6 −0.5
+0.5 [0.0, 1000] keV 0

dµ/n2 0.015103 −0.06× 10−3
+0.06× 10−3

[0.0, 0.1] keV 0

Eγ (55Fe, Kα) 5.89 keV 1
Eγ (55Fe, Kβ) 6.49 keV 1

aγ,bck (55Fe, Kα) 787 −34
+34 [0.0, 2000.0] keV−1 0

aγ,bck (55Fe, Kβ) 73 −31
+31 [0.0, 500.0] keV−1 0

aγ,n-cal (55Fe, Kα) −3 −23
+23 [-100.0, 100.0] keV−1 0

aγ,n-cal (55Fe, Kβ) 156 −23
+23 [0.0, 1000.0] keV−1 0

Eγ (Cu) 8.06 −0.12
+0.12 [7.6, 8.5] keV 0

aγ,bck (Cu) 137 −21
+21 [0.0, 1000] keV−1 0

aγ,n-cal (Cu) 53 −16
+16 [0.0, 100] keV−1 0

Eγ (?) 19.24 −0.21
+0.21 [18.6, 20.6] keV 0

aγ,bck (?) 68 −17
+17 [0.0, 100] keV−1 0

aγ,n-cal (?) 5 −12
+12 [0.0, 1000] keV−1 0

Eγ (?) 21.52 −0.32
+0.32 [20.3, 22.6] keV 0

aγ,bck (?) 11 −15
+15 [0.0, 100] keV−1 0

aγ,n-cal (?) 24 −12
+12 [0.0, 100] keV−1 0

Table A.2: Full set of parameters for the likelihood function describing the run 600 data.
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A.3 Run 376

Parameter Value Error Bounds Unit Fixed

σp,0 0.44 [0.41, 0.51] keV 1
σp,1 0.0431 ±0.0016 [0.01, 0.20] 1 0
σl,0 0.98 [0.76, 1.00] keVee 1
σl,1 0.208 −0.006

+0.006 [0.1, 1.0] keVee 0

σl,2 5.25× 10−3 ±0.23× 10−3 [0.0, 0.01] 1 0
Ethr 4.0 keV 1
L0 1.0000 −0.0022

+0.0022 [0.8, 1.5] keVee
keV 0

L1 0.016× 10−3
−0.013× 10−3
+0.013× 10−3

[-0.001, 0.001] keVee

keV2 0

NPa 0.0 1 1
NPd 1.0 keV 1
Q0 1.0 1 1
Q1 0.0 1 1
exp. bck 0.0116 kg d 1
exp. n-cal 2.63× 10−3

−0.05× 10−3
+0.07× 10−3

[0.0, 0.01] kg d 0

P0,bck 17.6 −0.4
+0.9 [0.0, 50.0] keV−1 0

P1,bck −0.093 ±0.004 [-0.2, 0.0] keV−2 0
P0,n-cal 8.92 ±0.29 [0.0, 20.0] keV−1 0
P1,n-cal −0.0462 −0.0069

+0.0020 [-0.2, 0.0] keV−2 0

wel 48 −8
+11 [1.0, 100] keVee 0

del 230 −110
+270 [0.0, 500] keV 0

ael,bck 0.48 ±0.12 [0.0, 1.0] keV−1 0
ael,n-cal 0.24 −0.10

+0.17 [0.0, 1.0] keV−1 0

η 0.089 1 1
ε 1.0 1 1
QFNa 4.63 ±0.06 [0.1, 6.0] 1 0
aNa 0.9586 ±0.0010 [-1.0, 2.0] 1 0
dNa 3380 ±130 [0.0, 3000] keV 0
aNa,n-cal 4.9 −0.4

+0.9 [0.0, 20.0] keV−1 0

dNa,n-cal 1800 ±130 [0.0, 5000] keV 0
QF I 0.090 −0.004

+0.004 [0.0, 0.2] 1 0

aI 700 ±700 [-10.0, 5000] 1 0
dI 0.05 ±0.08 [0.0, 0.2] keV 0
aI,n-cal 44.3 ±3.0 [0.0, 200] keV−1 0

Continued on the next page
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Parameter Value Error Bounds Unit Fixed

dI,n-cal 1950 −80
+140 [1.0, 5000] keV 0

Ee (I, 57.6 keV) 61.92 ±0.19 [54.0, 63.0] keV 0
piI,0 0.82 −0.24

+0.25 [0.0, 5.0] keV−1 0

piI,1 −0.0074 −0.0036
+0.0028 [-1.0, 0.0] keV−2 0

aµ/n,bck 16.0 ±0.4 [5.0, 50.0] keV−1 0
aµ/n,n-cal 5.24 ±0.34 [0.0, 50.0] keV−1 0
bµ/n 0.0472 ±0.0006 [0.01, 0.1] keV−1 0
cµ/n 192 ±5 [180, 500] keV 0
dµ/n 8.52× 10−3 ±0.15× 10−3 [0.0, 0.02] keV 0
Eγ (55Fe, Kα) 5.902 ±0.004 [5.5,6.1] keV 0
Eγ (55Fe, Kβ) 6.858 ±0.033 [6.2,7.0] keV 0
aγ,bck (55Fe, Kα) 25730 −370

+220 [0.0, 40000] keV−1 0

aγ,bck (55Fe, Kβ) 920 ±70 [0.0, 8000] keV−1 0
aγ,n-cal (55Fe, Kα) 1.0 ±0.9 [0.0, 10.0] keV−1 0
aγ,n-cal (55Fe, Kβ) 190 ±50 [0.0, 1000] keV−1 0
Eγ (241Am, 26.3 keV) 26.93 −0.32

+0.33 [25.02, 27.66] keV 0

aγ,n-cal (241Am, 26.3 keV) 61 −14
+15 [0.00, 100.00] keV−1 0

Eγ (241Am, 33.2 keV) 32.2 −0.7
+1.8 [31.54, 34.86] keV 0

aγ,n-cal (241Am, 33.2 keV) 25 −12
+14 [0.00, 100.00] keV−1 0

Eγ (241Am, 59.5 keV) 60.8 ±1.0 [56.56, 62.52] keV 0
aγ,n-cal (241Am, 59.5 keV) 43 −15

+14 [0.00, 100.00] keV−1 0

Table A.3: Full set of parameters for the likelihood function describing the run 376 data.
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B
Cut- and trigger efficiency in limitless

In this appendix, we detail how limitless processes information on the efficiency as
passed by raw data analysis tools. There are two high-level analysis steps where the
cut- and trigger efficiency is essential. The first one is constructing the likelihood
function for various background components - there, the binned efficiency is invariably
used (see also subsection 6.3.5). The second step is calculating the DM signal
expectation, as described in section 9.1, where one may use either the binned efficiency
or the full flat efficiency simulation.

B.1 Binned efficiency

In the limitless framework, the user can pass either an already binned cut- and trigger
efficiency as an .xy file (surviving fraction versus energy) or load the full efficiency
simulation. Such an efficiency simulation file should have the following structure:

Column 1 Column 2 Column 3 Column 4 Column 5
Timestamp
in Unix time

Injected energy
in keV

Recon. energy
in keV

Boolean:
Survived Trigger

Boolean:
Survived Cuts

The simulated data are then binned according to the injected energies (if not specified
differently by the user), where the bin width should be of the order of the baseline
resolution of the detector. The fraction of surviving events is then calculated for each
bin, and an interpolation function is generated with scipy.interpolate.interp1d().

The procedure is slightly more involved if the user wants to perform a time-
dependent analysis. The injected amplitudes are sorted into a two-dimensional
histogram, with the energy along the first and the time along the second axis. Each
recorded file corresponds to a time bin, thus to define the bins the starting and
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Figure B.1: Graphical representation of the time-dependent efficiency returned by limitless.
Top left: Average efficiency over time, including the interval of 1σ deviation in each energy
bin. Top right: The median of the efficiency over time (blue histogram) compared to the
plateauing value of the efficiency (dark blue). Light blue dashed: minimum value of the
efficiency function over time. Bottom: Two-dimensional histogram of the time-dependent
efficiency. White regions mark the times when data taking was interrupted.

stopping times of each recorded file are needed (stored in a "start-stop-file" by the
raw data analysis software). Between times of data taking the efficiency is set to zero,
throughout a single file the efficiency is assumed to be constant.

The resulting two-dimensional histogram is shown exemplarily for TUM93-A in
the lower panel of Fig. B.1. Employing SciPy’s RegularGridInterpolator(), a
two-dimensional efficiency function is generated from the histogram that can be
used to evaluate the time-dependent cut efficiency for every data point in the ROI.
When a time-dependent binned efficiency is processed limitless additionally returns
a plot of the efficiency averaged over time (upper left of Fig. B.1) and the median
efficiency - which usually corresponds to the plateauing value - as a function of time
(upper right of Fig. B.1). As a final remark, we note that through the efficiency, a
time-dependence can be introduced to signal and background components that are
a priori not time-dependent in the likelihood function.
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B.2 Efficiency simulation

This section will describe how the expected DM signal is calculated in limitless via
the full efficiency simulation, incorporating resolution and efficiency in a single step.
The injected energies follow a flat distribution to minimize the computational cost
(see also chapter 9 for more details). The distribution of reconstructed energies has to
be rescaled according to the theoretical DM recoil spectrum. This rescaling process is
repeated for every set of parameters characterizing a DM hypothesis if the change of
parameters induces a change in the shape of the resulting recoil spectrum (e.q. in the
standard DM-nucleus scattering scenario, this is the case for every DM mass we want
to probe).

The most intuitive approach to this problem is a Metropolis-Hastings Monte Carlo-like
sampling, where the DM spectrum is drawn from the set of reconstructed energies
Er. The acceptance rule for Er is

fχ(Ei(Er)) > u(Er) , (B.1)

where fχ is the normalized theoretical DM density function, Ei(Er) is the injected
energy from which Er originates, and u(Er) is a random number drawn from a
flat distribution individually for each Er. The generated data set is then binned,
and a functional expression for dE

dR

⃓⃓
exp

is found via interpolation (care has to be
taken of the correct scaling).

While this method is intuitive and straightforward to implement, it holds some
issues. A large number of the simulated events is discarded by eq. (B.1) rendering
the method very inefficient. Moreover, almost all data in the simulation file must
be accessible during the computation of the DM spectrum, causing a substantial
load on the random-access memory.

We thus propose an alternative method for the rescaling of the flat spectrum.
First we define n equidistant bins with bin edges B = {b0, . . . , bn}, where b0 ≤
(Ethr−bin width) and bn ≥ (max(ROI)+bin width) (the extra bins eliminate boundary
effects in the ROI). The bin width should be smaller than the detector resolution, in
limitless the default is 0.1σp,0. Assigning the total set of injected energies Ei (before
triggering and cuts) to these bins results in an almost perfectly flat distribution
with an average number of

norm =
# simulated events ∈ [b0, bn]

n
(B.2)

counts in each bin.1 In the next step, we bin the reconstructed events that survived
triggering and all cuts according to the set of bin edges B. We can then approximate
1In principle, there are no counts in the first bin if no events with injected energy below the threshold
were simulated. However, due to the small bin width and large number of bins used, eq. (B.2) is
approximately valid.
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Figure B.2: Data structure of the reconstructed energies as generated in limitless for the
binned rescaling of the flat efficiency simulation. The left side of the graphic shows the
two-dimensional ragged array for the time-independent cut efficiency. The right side shows
the three-dimensional time-dependent equivalent.

the DM spectrum expected at the energy of bin edge bj (in reconstructed energy) with

dE

dR

⃓⃓⃓⃓
exp

(bj) =
∑︂

Er∈[bj ,bj+1]

1

norm
dE

dR

⃓⃓⃓⃓
theo

(Ei(Er)) , (B.3)

where the sum goes over all survived events with reconstructed energy in bin j. A
functional form of dE

dR

⃓⃓
exp

can then be found by interpolation between the bin edges.
After binning the reconstructed energies, a ragged array-like object of structure

as visualized in Fig. B.2 can be constructed. This data structure contains all the
information to evaluate eq. (B.3) while having size < n×(norm+1) and thus consuming
significantly less memory than the full simulation file. Moreover, this framework can
be extended to time-dependent efficiencies by adding an axis to the data structure in
Fig. B.2 (left) and adapting "norm" in eq. (B.2) to account for the varying file lengths.

Providing a thorough mathematical proof that these two methods are equivalent in
the limit of an infinitely large simulation is difficult and beyond the scope of this work.
Instead, we provide a proof-of-principle study to show the compatibility of the two
methods. We draw 106 injected energies from a uniform distribution on [1, 10] keV.
We then create the reconstructed energy values from the injected ones by summing
an error ε drawn for each Ei from a normal distribution of width 0.2 keV centered
around 0. In this way, we mimic a detector with a baseline resolution of 0.2 keV and
Ethr = 1 keV. To simulate possible cuts, we remove all events where Er differs from
Ei by more than 20 % and discard 50 % of all simulated events. The resulting energy
distributions are shown in the two upper panels of Fig. B.3 and mimic the results
of a real efficiency simulation well (compare with Fig. 6.7).
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Figure B.3: Visualization of the proof-of-principle that for the calculation of dE
dR

⃓⃓
exp

from a
flat cut efficiency simulation, both an MC sampling approach and a binned approach lead to
a comparable result (more information in the main text). Upper left: Histogram of injected
energies, sampled from a uniform distribution, before (light blue) and after cuts (blue).
Upper right: Histogram of the reconstructed energies – the pulse height reconstruction is
mimicked by introducing a normal-distributed error. Lower left: Histogram of all injected
events after the MC reshuffling to an exponential signal (only ∼ 4 % survive the reshuffling).
The pink line is the signal prediction scaled to fit the histogram. Lower right: Histogram
of the reconstructed events that survived all cuts after the MC reshuffling (i.e., the signal as
seen by the experiment). The pink line from the binned approach matches the result well.

We then approximate the theoretical DM signal with a simple exponential decay
(decay constant τ = 1) and reshuffle all injected events according to this distribution.
The resulting data distribution, shown in the lower left panel of Fig. B.3, has the shape
of the theoretical signal distribution – only about 4 % of the simulated events survive
the sampling process. The reshuffled reconstructed energies (after "trigger and cuts")
are shown in the lower right panel of Fig. B.3. We also apply the method of binned
rescaling to the efficiency simulation, resulting in the magenta line superimposed
onto the histogram. The two methods return almost identical results (note that the
interpolated line from the rescaling method was normalized to fit the histogram).
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